igb_main.c revision be28b63506a99dc6dc8c6267ecfea8a649b29523
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 0
61#define BUILD 5
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67				"Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69				"Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72	[board_82575] = &e1000_82575_info,
73};
74
75static const struct pci_device_id igb_pci_tbl[] = {
76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111	/* required last entry */
112	{0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140					  struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev,
159			  netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171			       int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174				   bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176				 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189#ifdef CONFIG_PM_RUNTIME
190static int igb_runtime_suspend(struct device *dev);
191static int igb_runtime_resume(struct device *dev);
192static int igb_runtime_idle(struct device *dev);
193#endif
194static const struct dev_pm_ops igb_pm_ops = {
195	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197			igb_runtime_idle)
198};
199#endif
200static void igb_shutdown(struct pci_dev *);
201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202#ifdef CONFIG_IGB_DCA
203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204static struct notifier_block dca_notifier = {
205	.notifier_call	= igb_notify_dca,
206	.next		= NULL,
207	.priority	= 0
208};
209#endif
210#ifdef CONFIG_NET_POLL_CONTROLLER
211/* for netdump / net console */
212static void igb_netpoll(struct net_device *);
213#endif
214#ifdef CONFIG_PCI_IOV
215static unsigned int max_vfs;
216module_param(max_vfs, uint, 0);
217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218#endif /* CONFIG_PCI_IOV */
219
220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221		     pci_channel_state_t);
222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223static void igb_io_resume(struct pci_dev *);
224
225static const struct pci_error_handlers igb_err_handler = {
226	.error_detected = igb_io_error_detected,
227	.slot_reset = igb_io_slot_reset,
228	.resume = igb_io_resume,
229};
230
231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233static struct pci_driver igb_driver = {
234	.name     = igb_driver_name,
235	.id_table = igb_pci_tbl,
236	.probe    = igb_probe,
237	.remove   = igb_remove,
238#ifdef CONFIG_PM
239	.driver.pm = &igb_pm_ops,
240#endif
241	.shutdown = igb_shutdown,
242	.sriov_configure = igb_pci_sriov_configure,
243	.err_handler = &igb_err_handler
244};
245
246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248MODULE_LICENSE("GPL");
249MODULE_VERSION(DRV_VERSION);
250
251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252static int debug = -1;
253module_param(debug, int, 0);
254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256struct igb_reg_info {
257	u32 ofs;
258	char *name;
259};
260
261static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263	/* General Registers */
264	{E1000_CTRL, "CTRL"},
265	{E1000_STATUS, "STATUS"},
266	{E1000_CTRL_EXT, "CTRL_EXT"},
267
268	/* Interrupt Registers */
269	{E1000_ICR, "ICR"},
270
271	/* RX Registers */
272	{E1000_RCTL, "RCTL"},
273	{E1000_RDLEN(0), "RDLEN"},
274	{E1000_RDH(0), "RDH"},
275	{E1000_RDT(0), "RDT"},
276	{E1000_RXDCTL(0), "RXDCTL"},
277	{E1000_RDBAL(0), "RDBAL"},
278	{E1000_RDBAH(0), "RDBAH"},
279
280	/* TX Registers */
281	{E1000_TCTL, "TCTL"},
282	{E1000_TDBAL(0), "TDBAL"},
283	{E1000_TDBAH(0), "TDBAH"},
284	{E1000_TDLEN(0), "TDLEN"},
285	{E1000_TDH(0), "TDH"},
286	{E1000_TDT(0), "TDT"},
287	{E1000_TXDCTL(0), "TXDCTL"},
288	{E1000_TDFH, "TDFH"},
289	{E1000_TDFT, "TDFT"},
290	{E1000_TDFHS, "TDFHS"},
291	{E1000_TDFPC, "TDFPC"},
292
293	/* List Terminator */
294	{}
295};
296
297/* igb_regdump - register printout routine */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300	int n = 0;
301	char rname[16];
302	u32 regs[8];
303
304	switch (reginfo->ofs) {
305	case E1000_RDLEN(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RDLEN(n));
308		break;
309	case E1000_RDH(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDH(n));
312		break;
313	case E1000_RDT(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDT(n));
316		break;
317	case E1000_RXDCTL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RXDCTL(n));
320		break;
321	case E1000_RDBAL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RDBAL(n));
324		break;
325	case E1000_RDBAH(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAH(n));
328		break;
329	case E1000_TDBAL(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAL(n));
332		break;
333	case E1000_TDBAH(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDBAH(n));
336		break;
337	case E1000_TDLEN(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDLEN(n));
340		break;
341	case E1000_TDH(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDH(n));
344		break;
345	case E1000_TDT(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDT(n));
348		break;
349	case E1000_TXDCTL(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TXDCTL(n));
352		break;
353	default:
354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355		return;
356	}
357
358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360		regs[2], regs[3]);
361}
362
363/* igb_dump - Print registers, Tx-rings and Rx-rings */
364static void igb_dump(struct igb_adapter *adapter)
365{
366	struct net_device *netdev = adapter->netdev;
367	struct e1000_hw *hw = &adapter->hw;
368	struct igb_reg_info *reginfo;
369	struct igb_ring *tx_ring;
370	union e1000_adv_tx_desc *tx_desc;
371	struct my_u0 { u64 a; u64 b; } *u0;
372	struct igb_ring *rx_ring;
373	union e1000_adv_rx_desc *rx_desc;
374	u32 staterr;
375	u16 i, n;
376
377	if (!netif_msg_hw(adapter))
378		return;
379
380	/* Print netdevice Info */
381	if (netdev) {
382		dev_info(&adapter->pdev->dev, "Net device Info\n");
383		pr_info("Device Name     state            trans_start      last_rx\n");
384		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385			netdev->state, netdev->trans_start, netdev->last_rx);
386	}
387
388	/* Print Registers */
389	dev_info(&adapter->pdev->dev, "Register Dump\n");
390	pr_info(" Register Name   Value\n");
391	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392	     reginfo->name; reginfo++) {
393		igb_regdump(hw, reginfo);
394	}
395
396	/* Print TX Ring Summary */
397	if (!netdev || !netif_running(netdev))
398		goto exit;
399
400	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402	for (n = 0; n < adapter->num_tx_queues; n++) {
403		struct igb_tx_buffer *buffer_info;
404		tx_ring = adapter->tx_ring[n];
405		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408			(u64)dma_unmap_addr(buffer_info, dma),
409			dma_unmap_len(buffer_info, len),
410			buffer_info->next_to_watch,
411			(u64)buffer_info->time_stamp);
412	}
413
414	/* Print TX Rings */
415	if (!netif_msg_tx_done(adapter))
416		goto rx_ring_summary;
417
418	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420	/* Transmit Descriptor Formats
421	 *
422	 * Advanced Transmit Descriptor
423	 *   +--------------------------------------------------------------+
424	 * 0 |         Buffer Address [63:0]                                |
425	 *   +--------------------------------------------------------------+
426	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427	 *   +--------------------------------------------------------------+
428	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
429	 */
430
431	for (n = 0; n < adapter->num_tx_queues; n++) {
432		tx_ring = adapter->tx_ring[n];
433		pr_info("------------------------------------\n");
434		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435		pr_info("------------------------------------\n");
436		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439			const char *next_desc;
440			struct igb_tx_buffer *buffer_info;
441			tx_desc = IGB_TX_DESC(tx_ring, i);
442			buffer_info = &tx_ring->tx_buffer_info[i];
443			u0 = (struct my_u0 *)tx_desc;
444			if (i == tx_ring->next_to_use &&
445			    i == tx_ring->next_to_clean)
446				next_desc = " NTC/U";
447			else if (i == tx_ring->next_to_use)
448				next_desc = " NTU";
449			else if (i == tx_ring->next_to_clean)
450				next_desc = " NTC";
451			else
452				next_desc = "";
453
454			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455				i, le64_to_cpu(u0->a),
456				le64_to_cpu(u0->b),
457				(u64)dma_unmap_addr(buffer_info, dma),
458				dma_unmap_len(buffer_info, len),
459				buffer_info->next_to_watch,
460				(u64)buffer_info->time_stamp,
461				buffer_info->skb, next_desc);
462
463			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464				print_hex_dump(KERN_INFO, "",
465					DUMP_PREFIX_ADDRESS,
466					16, 1, buffer_info->skb->data,
467					dma_unmap_len(buffer_info, len),
468					true);
469		}
470	}
471
472	/* Print RX Rings Summary */
473rx_ring_summary:
474	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475	pr_info("Queue [NTU] [NTC]\n");
476	for (n = 0; n < adapter->num_rx_queues; n++) {
477		rx_ring = adapter->rx_ring[n];
478		pr_info(" %5d %5X %5X\n",
479			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480	}
481
482	/* Print RX Rings */
483	if (!netif_msg_rx_status(adapter))
484		goto exit;
485
486	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488	/* Advanced Receive Descriptor (Read) Format
489	 *    63                                           1        0
490	 *    +-----------------------------------------------------+
491	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492	 *    +----------------------------------------------+------+
493	 *  8 |       Header Buffer Address [63:1]           |  DD  |
494	 *    +-----------------------------------------------------+
495	 *
496	 *
497	 * Advanced Receive Descriptor (Write-Back) Format
498	 *
499	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
500	 *   +------------------------------------------------------+
501	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502	 *   | Checksum   Ident  |   |           |    | Type | Type |
503	 *   +------------------------------------------------------+
504	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505	 *   +------------------------------------------------------+
506	 *   63       48 47    32 31            20 19               0
507	 */
508
509	for (n = 0; n < adapter->num_rx_queues; n++) {
510		rx_ring = adapter->rx_ring[n];
511		pr_info("------------------------------------\n");
512		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513		pr_info("------------------------------------\n");
514		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517		for (i = 0; i < rx_ring->count; i++) {
518			const char *next_desc;
519			struct igb_rx_buffer *buffer_info;
520			buffer_info = &rx_ring->rx_buffer_info[i];
521			rx_desc = IGB_RX_DESC(rx_ring, i);
522			u0 = (struct my_u0 *)rx_desc;
523			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525			if (i == rx_ring->next_to_use)
526				next_desc = " NTU";
527			else if (i == rx_ring->next_to_clean)
528				next_desc = " NTC";
529			else
530				next_desc = "";
531
532			if (staterr & E1000_RXD_STAT_DD) {
533				/* Descriptor Done */
534				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535					"RWB", i,
536					le64_to_cpu(u0->a),
537					le64_to_cpu(u0->b),
538					next_desc);
539			} else {
540				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541					"R  ", i,
542					le64_to_cpu(u0->a),
543					le64_to_cpu(u0->b),
544					(u64)buffer_info->dma,
545					next_desc);
546
547				if (netif_msg_pktdata(adapter) &&
548				    buffer_info->dma && buffer_info->page) {
549					print_hex_dump(KERN_INFO, "",
550					  DUMP_PREFIX_ADDRESS,
551					  16, 1,
552					  page_address(buffer_info->page) +
553						      buffer_info->page_offset,
554					  IGB_RX_BUFSZ, true);
555				}
556			}
557		}
558	}
559
560exit:
561	return;
562}
563
564/**
565 *  igb_get_i2c_data - Reads the I2C SDA data bit
566 *  @hw: pointer to hardware structure
567 *  @i2cctl: Current value of I2CCTL register
568 *
569 *  Returns the I2C data bit value
570 **/
571static int igb_get_i2c_data(void *data)
572{
573	struct igb_adapter *adapter = (struct igb_adapter *)data;
574	struct e1000_hw *hw = &adapter->hw;
575	s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577	return !!(i2cctl & E1000_I2C_DATA_IN);
578}
579
580/**
581 *  igb_set_i2c_data - Sets the I2C data bit
582 *  @data: pointer to hardware structure
583 *  @state: I2C data value (0 or 1) to set
584 *
585 *  Sets the I2C data bit
586 **/
587static void igb_set_i2c_data(void *data, int state)
588{
589	struct igb_adapter *adapter = (struct igb_adapter *)data;
590	struct e1000_hw *hw = &adapter->hw;
591	s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593	if (state)
594		i2cctl |= E1000_I2C_DATA_OUT;
595	else
596		i2cctl &= ~E1000_I2C_DATA_OUT;
597
598	i2cctl &= ~E1000_I2C_DATA_OE_N;
599	i2cctl |= E1000_I2C_CLK_OE_N;
600	wr32(E1000_I2CPARAMS, i2cctl);
601	wrfl();
602
603}
604
605/**
606 *  igb_set_i2c_clk - Sets the I2C SCL clock
607 *  @data: pointer to hardware structure
608 *  @state: state to set clock
609 *
610 *  Sets the I2C clock line to state
611 **/
612static void igb_set_i2c_clk(void *data, int state)
613{
614	struct igb_adapter *adapter = (struct igb_adapter *)data;
615	struct e1000_hw *hw = &adapter->hw;
616	s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618	if (state) {
619		i2cctl |= E1000_I2C_CLK_OUT;
620		i2cctl &= ~E1000_I2C_CLK_OE_N;
621	} else {
622		i2cctl &= ~E1000_I2C_CLK_OUT;
623		i2cctl &= ~E1000_I2C_CLK_OE_N;
624	}
625	wr32(E1000_I2CPARAMS, i2cctl);
626	wrfl();
627}
628
629/**
630 *  igb_get_i2c_clk - Gets the I2C SCL clock state
631 *  @data: pointer to hardware structure
632 *
633 *  Gets the I2C clock state
634 **/
635static int igb_get_i2c_clk(void *data)
636{
637	struct igb_adapter *adapter = (struct igb_adapter *)data;
638	struct e1000_hw *hw = &adapter->hw;
639	s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641	return !!(i2cctl & E1000_I2C_CLK_IN);
642}
643
644static const struct i2c_algo_bit_data igb_i2c_algo = {
645	.setsda		= igb_set_i2c_data,
646	.setscl		= igb_set_i2c_clk,
647	.getsda		= igb_get_i2c_data,
648	.getscl		= igb_get_i2c_clk,
649	.udelay		= 5,
650	.timeout	= 20,
651};
652
653/**
654 *  igb_get_hw_dev - return device
655 *  @hw: pointer to hardware structure
656 *
657 *  used by hardware layer to print debugging information
658 **/
659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660{
661	struct igb_adapter *adapter = hw->back;
662	return adapter->netdev;
663}
664
665/**
666 *  igb_init_module - Driver Registration Routine
667 *
668 *  igb_init_module is the first routine called when the driver is
669 *  loaded. All it does is register with the PCI subsystem.
670 **/
671static int __init igb_init_module(void)
672{
673	int ret;
674
675	pr_info("%s - version %s\n",
676	       igb_driver_string, igb_driver_version);
677	pr_info("%s\n", igb_copyright);
678
679#ifdef CONFIG_IGB_DCA
680	dca_register_notify(&dca_notifier);
681#endif
682	ret = pci_register_driver(&igb_driver);
683	return ret;
684}
685
686module_init(igb_init_module);
687
688/**
689 *  igb_exit_module - Driver Exit Cleanup Routine
690 *
691 *  igb_exit_module is called just before the driver is removed
692 *  from memory.
693 **/
694static void __exit igb_exit_module(void)
695{
696#ifdef CONFIG_IGB_DCA
697	dca_unregister_notify(&dca_notifier);
698#endif
699	pci_unregister_driver(&igb_driver);
700}
701
702module_exit(igb_exit_module);
703
704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705/**
706 *  igb_cache_ring_register - Descriptor ring to register mapping
707 *  @adapter: board private structure to initialize
708 *
709 *  Once we know the feature-set enabled for the device, we'll cache
710 *  the register offset the descriptor ring is assigned to.
711 **/
712static void igb_cache_ring_register(struct igb_adapter *adapter)
713{
714	int i = 0, j = 0;
715	u32 rbase_offset = adapter->vfs_allocated_count;
716
717	switch (adapter->hw.mac.type) {
718	case e1000_82576:
719		/* The queues are allocated for virtualization such that VF 0
720		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721		 * In order to avoid collision we start at the first free queue
722		 * and continue consuming queues in the same sequence
723		 */
724		if (adapter->vfs_allocated_count) {
725			for (; i < adapter->rss_queues; i++)
726				adapter->rx_ring[i]->reg_idx = rbase_offset +
727							       Q_IDX_82576(i);
728		}
729		/* Fall through */
730	case e1000_82575:
731	case e1000_82580:
732	case e1000_i350:
733	case e1000_i354:
734	case e1000_i210:
735	case e1000_i211:
736		/* Fall through */
737	default:
738		for (; i < adapter->num_rx_queues; i++)
739			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740		for (; j < adapter->num_tx_queues; j++)
741			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742		break;
743	}
744}
745
746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747{
748	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750	u32 value = 0;
751
752	if (E1000_REMOVED(hw_addr))
753		return ~value;
754
755	value = readl(&hw_addr[reg]);
756
757	/* reads should not return all F's */
758	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759		struct net_device *netdev = igb->netdev;
760		hw->hw_addr = NULL;
761		netif_device_detach(netdev);
762		netdev_err(netdev, "PCIe link lost, device now detached\n");
763	}
764
765	return value;
766}
767
768/**
769 *  igb_write_ivar - configure ivar for given MSI-X vector
770 *  @hw: pointer to the HW structure
771 *  @msix_vector: vector number we are allocating to a given ring
772 *  @index: row index of IVAR register to write within IVAR table
773 *  @offset: column offset of in IVAR, should be multiple of 8
774 *
775 *  This function is intended to handle the writing of the IVAR register
776 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777 *  each containing an cause allocation for an Rx and Tx ring, and a
778 *  variable number of rows depending on the number of queues supported.
779 **/
780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781			   int index, int offset)
782{
783	u32 ivar = array_rd32(E1000_IVAR0, index);
784
785	/* clear any bits that are currently set */
786	ivar &= ~((u32)0xFF << offset);
787
788	/* write vector and valid bit */
789	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791	array_wr32(E1000_IVAR0, index, ivar);
792}
793
794#define IGB_N0_QUEUE -1
795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796{
797	struct igb_adapter *adapter = q_vector->adapter;
798	struct e1000_hw *hw = &adapter->hw;
799	int rx_queue = IGB_N0_QUEUE;
800	int tx_queue = IGB_N0_QUEUE;
801	u32 msixbm = 0;
802
803	if (q_vector->rx.ring)
804		rx_queue = q_vector->rx.ring->reg_idx;
805	if (q_vector->tx.ring)
806		tx_queue = q_vector->tx.ring->reg_idx;
807
808	switch (hw->mac.type) {
809	case e1000_82575:
810		/* The 82575 assigns vectors using a bitmask, which matches the
811		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812		 * or more queues to a vector, we write the appropriate bits
813		 * into the MSIXBM register for that vector.
814		 */
815		if (rx_queue > IGB_N0_QUEUE)
816			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817		if (tx_queue > IGB_N0_QUEUE)
818			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820			msixbm |= E1000_EIMS_OTHER;
821		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822		q_vector->eims_value = msixbm;
823		break;
824	case e1000_82576:
825		/* 82576 uses a table that essentially consists of 2 columns
826		 * with 8 rows.  The ordering is column-major so we use the
827		 * lower 3 bits as the row index, and the 4th bit as the
828		 * column offset.
829		 */
830		if (rx_queue > IGB_N0_QUEUE)
831			igb_write_ivar(hw, msix_vector,
832				       rx_queue & 0x7,
833				       (rx_queue & 0x8) << 1);
834		if (tx_queue > IGB_N0_QUEUE)
835			igb_write_ivar(hw, msix_vector,
836				       tx_queue & 0x7,
837				       ((tx_queue & 0x8) << 1) + 8);
838		q_vector->eims_value = 1 << msix_vector;
839		break;
840	case e1000_82580:
841	case e1000_i350:
842	case e1000_i354:
843	case e1000_i210:
844	case e1000_i211:
845		/* On 82580 and newer adapters the scheme is similar to 82576
846		 * however instead of ordering column-major we have things
847		 * ordered row-major.  So we traverse the table by using
848		 * bit 0 as the column offset, and the remaining bits as the
849		 * row index.
850		 */
851		if (rx_queue > IGB_N0_QUEUE)
852			igb_write_ivar(hw, msix_vector,
853				       rx_queue >> 1,
854				       (rx_queue & 0x1) << 4);
855		if (tx_queue > IGB_N0_QUEUE)
856			igb_write_ivar(hw, msix_vector,
857				       tx_queue >> 1,
858				       ((tx_queue & 0x1) << 4) + 8);
859		q_vector->eims_value = 1 << msix_vector;
860		break;
861	default:
862		BUG();
863		break;
864	}
865
866	/* add q_vector eims value to global eims_enable_mask */
867	adapter->eims_enable_mask |= q_vector->eims_value;
868
869	/* configure q_vector to set itr on first interrupt */
870	q_vector->set_itr = 1;
871}
872
873/**
874 *  igb_configure_msix - Configure MSI-X hardware
875 *  @adapter: board private structure to initialize
876 *
877 *  igb_configure_msix sets up the hardware to properly
878 *  generate MSI-X interrupts.
879 **/
880static void igb_configure_msix(struct igb_adapter *adapter)
881{
882	u32 tmp;
883	int i, vector = 0;
884	struct e1000_hw *hw = &adapter->hw;
885
886	adapter->eims_enable_mask = 0;
887
888	/* set vector for other causes, i.e. link changes */
889	switch (hw->mac.type) {
890	case e1000_82575:
891		tmp = rd32(E1000_CTRL_EXT);
892		/* enable MSI-X PBA support*/
893		tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895		/* Auto-Mask interrupts upon ICR read. */
896		tmp |= E1000_CTRL_EXT_EIAME;
897		tmp |= E1000_CTRL_EXT_IRCA;
898
899		wr32(E1000_CTRL_EXT, tmp);
900
901		/* enable msix_other interrupt */
902		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903		adapter->eims_other = E1000_EIMS_OTHER;
904
905		break;
906
907	case e1000_82576:
908	case e1000_82580:
909	case e1000_i350:
910	case e1000_i354:
911	case e1000_i210:
912	case e1000_i211:
913		/* Turn on MSI-X capability first, or our settings
914		 * won't stick.  And it will take days to debug.
915		 */
916		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
918		     E1000_GPIE_NSICR);
919
920		/* enable msix_other interrupt */
921		adapter->eims_other = 1 << vector;
922		tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924		wr32(E1000_IVAR_MISC, tmp);
925		break;
926	default:
927		/* do nothing, since nothing else supports MSI-X */
928		break;
929	} /* switch (hw->mac.type) */
930
931	adapter->eims_enable_mask |= adapter->eims_other;
932
933	for (i = 0; i < adapter->num_q_vectors; i++)
934		igb_assign_vector(adapter->q_vector[i], vector++);
935
936	wrfl();
937}
938
939/**
940 *  igb_request_msix - Initialize MSI-X interrupts
941 *  @adapter: board private structure to initialize
942 *
943 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 *  kernel.
945 **/
946static int igb_request_msix(struct igb_adapter *adapter)
947{
948	struct net_device *netdev = adapter->netdev;
949	struct e1000_hw *hw = &adapter->hw;
950	int i, err = 0, vector = 0, free_vector = 0;
951
952	err = request_irq(adapter->msix_entries[vector].vector,
953			  igb_msix_other, 0, netdev->name, adapter);
954	if (err)
955		goto err_out;
956
957	for (i = 0; i < adapter->num_q_vectors; i++) {
958		struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960		vector++;
961
962		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964		if (q_vector->rx.ring && q_vector->tx.ring)
965			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966				q_vector->rx.ring->queue_index);
967		else if (q_vector->tx.ring)
968			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969				q_vector->tx.ring->queue_index);
970		else if (q_vector->rx.ring)
971			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972				q_vector->rx.ring->queue_index);
973		else
974			sprintf(q_vector->name, "%s-unused", netdev->name);
975
976		err = request_irq(adapter->msix_entries[vector].vector,
977				  igb_msix_ring, 0, q_vector->name,
978				  q_vector);
979		if (err)
980			goto err_free;
981	}
982
983	igb_configure_msix(adapter);
984	return 0;
985
986err_free:
987	/* free already assigned IRQs */
988	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990	vector--;
991	for (i = 0; i < vector; i++) {
992		free_irq(adapter->msix_entries[free_vector++].vector,
993			 adapter->q_vector[i]);
994	}
995err_out:
996	return err;
997}
998
999/**
1000 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 *  @adapter: board private structure to initialize
1002 *  @v_idx: Index of vector to be freed
1003 *
1004 *  This function frees the memory allocated to the q_vector.
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010	adapter->q_vector[v_idx] = NULL;
1011
1012	/* igb_get_stats64() might access the rings on this vector,
1013	 * we must wait a grace period before freeing it.
1014	 */
1015	kfree_rcu(q_vector, rcu);
1016}
1017
1018/**
1019 *  igb_reset_q_vector - Reset config for interrupt vector
1020 *  @adapter: board private structure to initialize
1021 *  @v_idx: Index of vector to be reset
1022 *
1023 *  If NAPI is enabled it will delete any references to the
1024 *  NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027{
1028	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1031	 * allocated. So, q_vector is NULL so we should stop here.
1032	 */
1033	if (!q_vector)
1034		return;
1035
1036	if (q_vector->tx.ring)
1037		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039	if (q_vector->rx.ring)
1040		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042	netif_napi_del(&q_vector->napi);
1043
1044}
1045
1046static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047{
1048	int v_idx = adapter->num_q_vectors;
1049
1050	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051		pci_disable_msix(adapter->pdev);
1052	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053		pci_disable_msi(adapter->pdev);
1054
1055	while (v_idx--)
1056		igb_reset_q_vector(adapter, v_idx);
1057}
1058
1059/**
1060 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 *  @adapter: board private structure to initialize
1062 *
1063 *  This function frees the memory allocated to the q_vectors.  In addition if
1064 *  NAPI is enabled it will delete any references to the NAPI struct prior
1065 *  to freeing the q_vector.
1066 **/
1067static void igb_free_q_vectors(struct igb_adapter *adapter)
1068{
1069	int v_idx = adapter->num_q_vectors;
1070
1071	adapter->num_tx_queues = 0;
1072	adapter->num_rx_queues = 0;
1073	adapter->num_q_vectors = 0;
1074
1075	while (v_idx--) {
1076		igb_reset_q_vector(adapter, v_idx);
1077		igb_free_q_vector(adapter, v_idx);
1078	}
1079}
1080
1081/**
1082 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 *  @adapter: board private structure to initialize
1084 *
1085 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 *  MSI-X interrupts allocated.
1087 */
1088static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089{
1090	igb_free_q_vectors(adapter);
1091	igb_reset_interrupt_capability(adapter);
1092}
1093
1094/**
1095 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 *  @adapter: board private structure to initialize
1097 *  @msix: boolean value of MSIX capability
1098 *
1099 *  Attempt to configure interrupts using the best available
1100 *  capabilities of the hardware and kernel.
1101 **/
1102static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103{
1104	int err;
1105	int numvecs, i;
1106
1107	if (!msix)
1108		goto msi_only;
1109	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111	/* Number of supported queues. */
1112	adapter->num_rx_queues = adapter->rss_queues;
1113	if (adapter->vfs_allocated_count)
1114		adapter->num_tx_queues = 1;
1115	else
1116		adapter->num_tx_queues = adapter->rss_queues;
1117
1118	/* start with one vector for every Rx queue */
1119	numvecs = adapter->num_rx_queues;
1120
1121	/* if Tx handler is separate add 1 for every Tx queue */
1122	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123		numvecs += adapter->num_tx_queues;
1124
1125	/* store the number of vectors reserved for queues */
1126	adapter->num_q_vectors = numvecs;
1127
1128	/* add 1 vector for link status interrupts */
1129	numvecs++;
1130	for (i = 0; i < numvecs; i++)
1131		adapter->msix_entries[i].entry = i;
1132
1133	err = pci_enable_msix_range(adapter->pdev,
1134				    adapter->msix_entries,
1135				    numvecs,
1136				    numvecs);
1137	if (err > 0)
1138		return;
1139
1140	igb_reset_interrupt_capability(adapter);
1141
1142	/* If we can't do MSI-X, try MSI */
1143msi_only:
1144	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145#ifdef CONFIG_PCI_IOV
1146	/* disable SR-IOV for non MSI-X configurations */
1147	if (adapter->vf_data) {
1148		struct e1000_hw *hw = &adapter->hw;
1149		/* disable iov and allow time for transactions to clear */
1150		pci_disable_sriov(adapter->pdev);
1151		msleep(500);
1152
1153		kfree(adapter->vf_data);
1154		adapter->vf_data = NULL;
1155		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156		wrfl();
1157		msleep(100);
1158		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159	}
1160#endif
1161	adapter->vfs_allocated_count = 0;
1162	adapter->rss_queues = 1;
1163	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164	adapter->num_rx_queues = 1;
1165	adapter->num_tx_queues = 1;
1166	adapter->num_q_vectors = 1;
1167	if (!pci_enable_msi(adapter->pdev))
1168		adapter->flags |= IGB_FLAG_HAS_MSI;
1169}
1170
1171static void igb_add_ring(struct igb_ring *ring,
1172			 struct igb_ring_container *head)
1173{
1174	head->ring = ring;
1175	head->count++;
1176}
1177
1178/**
1179 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 *  @adapter: board private structure to initialize
1181 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 *  @v_idx: index of vector in adapter struct
1183 *  @txr_count: total number of Tx rings to allocate
1184 *  @txr_idx: index of first Tx ring to allocate
1185 *  @rxr_count: total number of Rx rings to allocate
1186 *  @rxr_idx: index of first Rx ring to allocate
1187 *
1188 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189 **/
1190static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191			      int v_count, int v_idx,
1192			      int txr_count, int txr_idx,
1193			      int rxr_count, int rxr_idx)
1194{
1195	struct igb_q_vector *q_vector;
1196	struct igb_ring *ring;
1197	int ring_count, size;
1198
1199	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200	if (txr_count > 1 || rxr_count > 1)
1201		return -ENOMEM;
1202
1203	ring_count = txr_count + rxr_count;
1204	size = sizeof(struct igb_q_vector) +
1205	       (sizeof(struct igb_ring) * ring_count);
1206
1207	/* allocate q_vector and rings */
1208	q_vector = adapter->q_vector[v_idx];
1209	if (!q_vector)
1210		q_vector = kzalloc(size, GFP_KERNEL);
1211	if (!q_vector)
1212		return -ENOMEM;
1213
1214	/* initialize NAPI */
1215	netif_napi_add(adapter->netdev, &q_vector->napi,
1216		       igb_poll, 64);
1217
1218	/* tie q_vector and adapter together */
1219	adapter->q_vector[v_idx] = q_vector;
1220	q_vector->adapter = adapter;
1221
1222	/* initialize work limits */
1223	q_vector->tx.work_limit = adapter->tx_work_limit;
1224
1225	/* initialize ITR configuration */
1226	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1227	q_vector->itr_val = IGB_START_ITR;
1228
1229	/* initialize pointer to rings */
1230	ring = q_vector->ring;
1231
1232	/* intialize ITR */
1233	if (rxr_count) {
1234		/* rx or rx/tx vector */
1235		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236			q_vector->itr_val = adapter->rx_itr_setting;
1237	} else {
1238		/* tx only vector */
1239		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240			q_vector->itr_val = adapter->tx_itr_setting;
1241	}
1242
1243	if (txr_count) {
1244		/* assign generic ring traits */
1245		ring->dev = &adapter->pdev->dev;
1246		ring->netdev = adapter->netdev;
1247
1248		/* configure backlink on ring */
1249		ring->q_vector = q_vector;
1250
1251		/* update q_vector Tx values */
1252		igb_add_ring(ring, &q_vector->tx);
1253
1254		/* For 82575, context index must be unique per ring. */
1255		if (adapter->hw.mac.type == e1000_82575)
1256			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257
1258		/* apply Tx specific ring traits */
1259		ring->count = adapter->tx_ring_count;
1260		ring->queue_index = txr_idx;
1261
1262		u64_stats_init(&ring->tx_syncp);
1263		u64_stats_init(&ring->tx_syncp2);
1264
1265		/* assign ring to adapter */
1266		adapter->tx_ring[txr_idx] = ring;
1267
1268		/* push pointer to next ring */
1269		ring++;
1270	}
1271
1272	if (rxr_count) {
1273		/* assign generic ring traits */
1274		ring->dev = &adapter->pdev->dev;
1275		ring->netdev = adapter->netdev;
1276
1277		/* configure backlink on ring */
1278		ring->q_vector = q_vector;
1279
1280		/* update q_vector Rx values */
1281		igb_add_ring(ring, &q_vector->rx);
1282
1283		/* set flag indicating ring supports SCTP checksum offload */
1284		if (adapter->hw.mac.type >= e1000_82576)
1285			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287		/* On i350, i354, i210, and i211, loopback VLAN packets
1288		 * have the tag byte-swapped.
1289		 */
1290		if (adapter->hw.mac.type >= e1000_i350)
1291			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293		/* apply Rx specific ring traits */
1294		ring->count = adapter->rx_ring_count;
1295		ring->queue_index = rxr_idx;
1296
1297		u64_stats_init(&ring->rx_syncp);
1298
1299		/* assign ring to adapter */
1300		adapter->rx_ring[rxr_idx] = ring;
1301	}
1302
1303	return 0;
1304}
1305
1306
1307/**
1308 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 *  @adapter: board private structure to initialize
1310 *
1311 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312 *  return -ENOMEM.
1313 **/
1314static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315{
1316	int q_vectors = adapter->num_q_vectors;
1317	int rxr_remaining = adapter->num_rx_queues;
1318	int txr_remaining = adapter->num_tx_queues;
1319	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320	int err;
1321
1322	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323		for (; rxr_remaining; v_idx++) {
1324			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325						 0, 0, 1, rxr_idx);
1326
1327			if (err)
1328				goto err_out;
1329
1330			/* update counts and index */
1331			rxr_remaining--;
1332			rxr_idx++;
1333		}
1334	}
1335
1336	for (; v_idx < q_vectors; v_idx++) {
1337		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341					 tqpv, txr_idx, rqpv, rxr_idx);
1342
1343		if (err)
1344			goto err_out;
1345
1346		/* update counts and index */
1347		rxr_remaining -= rqpv;
1348		txr_remaining -= tqpv;
1349		rxr_idx++;
1350		txr_idx++;
1351	}
1352
1353	return 0;
1354
1355err_out:
1356	adapter->num_tx_queues = 0;
1357	adapter->num_rx_queues = 0;
1358	adapter->num_q_vectors = 0;
1359
1360	while (v_idx--)
1361		igb_free_q_vector(adapter, v_idx);
1362
1363	return -ENOMEM;
1364}
1365
1366/**
1367 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 *  @adapter: board private structure to initialize
1369 *  @msix: boolean value of MSIX capability
1370 *
1371 *  This function initializes the interrupts and allocates all of the queues.
1372 **/
1373static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374{
1375	struct pci_dev *pdev = adapter->pdev;
1376	int err;
1377
1378	igb_set_interrupt_capability(adapter, msix);
1379
1380	err = igb_alloc_q_vectors(adapter);
1381	if (err) {
1382		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383		goto err_alloc_q_vectors;
1384	}
1385
1386	igb_cache_ring_register(adapter);
1387
1388	return 0;
1389
1390err_alloc_q_vectors:
1391	igb_reset_interrupt_capability(adapter);
1392	return err;
1393}
1394
1395/**
1396 *  igb_request_irq - initialize interrupts
1397 *  @adapter: board private structure to initialize
1398 *
1399 *  Attempts to configure interrupts using the best available
1400 *  capabilities of the hardware and kernel.
1401 **/
1402static int igb_request_irq(struct igb_adapter *adapter)
1403{
1404	struct net_device *netdev = adapter->netdev;
1405	struct pci_dev *pdev = adapter->pdev;
1406	int err = 0;
1407
1408	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409		err = igb_request_msix(adapter);
1410		if (!err)
1411			goto request_done;
1412		/* fall back to MSI */
1413		igb_free_all_tx_resources(adapter);
1414		igb_free_all_rx_resources(adapter);
1415
1416		igb_clear_interrupt_scheme(adapter);
1417		err = igb_init_interrupt_scheme(adapter, false);
1418		if (err)
1419			goto request_done;
1420
1421		igb_setup_all_tx_resources(adapter);
1422		igb_setup_all_rx_resources(adapter);
1423		igb_configure(adapter);
1424	}
1425
1426	igb_assign_vector(adapter->q_vector[0], 0);
1427
1428	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430				  netdev->name, adapter);
1431		if (!err)
1432			goto request_done;
1433
1434		/* fall back to legacy interrupts */
1435		igb_reset_interrupt_capability(adapter);
1436		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437	}
1438
1439	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440			  netdev->name, adapter);
1441
1442	if (err)
1443		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444			err);
1445
1446request_done:
1447	return err;
1448}
1449
1450static void igb_free_irq(struct igb_adapter *adapter)
1451{
1452	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453		int vector = 0, i;
1454
1455		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457		for (i = 0; i < adapter->num_q_vectors; i++)
1458			free_irq(adapter->msix_entries[vector++].vector,
1459				 adapter->q_vector[i]);
1460	} else {
1461		free_irq(adapter->pdev->irq, adapter);
1462	}
1463}
1464
1465/**
1466 *  igb_irq_disable - Mask off interrupt generation on the NIC
1467 *  @adapter: board private structure
1468 **/
1469static void igb_irq_disable(struct igb_adapter *adapter)
1470{
1471	struct e1000_hw *hw = &adapter->hw;
1472
1473	/* we need to be careful when disabling interrupts.  The VFs are also
1474	 * mapped into these registers and so clearing the bits can cause
1475	 * issues on the VF drivers so we only need to clear what we set
1476	 */
1477	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478		u32 regval = rd32(E1000_EIAM);
1479
1480		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482		regval = rd32(E1000_EIAC);
1483		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484	}
1485
1486	wr32(E1000_IAM, 0);
1487	wr32(E1000_IMC, ~0);
1488	wrfl();
1489	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490		int i;
1491
1492		for (i = 0; i < adapter->num_q_vectors; i++)
1493			synchronize_irq(adapter->msix_entries[i].vector);
1494	} else {
1495		synchronize_irq(adapter->pdev->irq);
1496	}
1497}
1498
1499/**
1500 *  igb_irq_enable - Enable default interrupt generation settings
1501 *  @adapter: board private structure
1502 **/
1503static void igb_irq_enable(struct igb_adapter *adapter)
1504{
1505	struct e1000_hw *hw = &adapter->hw;
1506
1507	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509		u32 regval = rd32(E1000_EIAC);
1510
1511		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512		regval = rd32(E1000_EIAM);
1513		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515		if (adapter->vfs_allocated_count) {
1516			wr32(E1000_MBVFIMR, 0xFF);
1517			ims |= E1000_IMS_VMMB;
1518		}
1519		wr32(E1000_IMS, ims);
1520	} else {
1521		wr32(E1000_IMS, IMS_ENABLE_MASK |
1522				E1000_IMS_DRSTA);
1523		wr32(E1000_IAM, IMS_ENABLE_MASK |
1524				E1000_IMS_DRSTA);
1525	}
1526}
1527
1528static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529{
1530	struct e1000_hw *hw = &adapter->hw;
1531	u16 vid = adapter->hw.mng_cookie.vlan_id;
1532	u16 old_vid = adapter->mng_vlan_id;
1533
1534	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535		/* add VID to filter table */
1536		igb_vfta_set(hw, vid, true);
1537		adapter->mng_vlan_id = vid;
1538	} else {
1539		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540	}
1541
1542	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543	    (vid != old_vid) &&
1544	    !test_bit(old_vid, adapter->active_vlans)) {
1545		/* remove VID from filter table */
1546		igb_vfta_set(hw, old_vid, false);
1547	}
1548}
1549
1550/**
1551 *  igb_release_hw_control - release control of the h/w to f/w
1552 *  @adapter: address of board private structure
1553 *
1554 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555 *  For ASF and Pass Through versions of f/w this means that the
1556 *  driver is no longer loaded.
1557 **/
1558static void igb_release_hw_control(struct igb_adapter *adapter)
1559{
1560	struct e1000_hw *hw = &adapter->hw;
1561	u32 ctrl_ext;
1562
1563	/* Let firmware take over control of h/w */
1564	ctrl_ext = rd32(E1000_CTRL_EXT);
1565	wr32(E1000_CTRL_EXT,
1566			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567}
1568
1569/**
1570 *  igb_get_hw_control - get control of the h/w from f/w
1571 *  @adapter: address of board private structure
1572 *
1573 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574 *  For ASF and Pass Through versions of f/w this means that
1575 *  the driver is loaded.
1576 **/
1577static void igb_get_hw_control(struct igb_adapter *adapter)
1578{
1579	struct e1000_hw *hw = &adapter->hw;
1580	u32 ctrl_ext;
1581
1582	/* Let firmware know the driver has taken over */
1583	ctrl_ext = rd32(E1000_CTRL_EXT);
1584	wr32(E1000_CTRL_EXT,
1585			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586}
1587
1588/**
1589 *  igb_configure - configure the hardware for RX and TX
1590 *  @adapter: private board structure
1591 **/
1592static void igb_configure(struct igb_adapter *adapter)
1593{
1594	struct net_device *netdev = adapter->netdev;
1595	int i;
1596
1597	igb_get_hw_control(adapter);
1598	igb_set_rx_mode(netdev);
1599
1600	igb_restore_vlan(adapter);
1601
1602	igb_setup_tctl(adapter);
1603	igb_setup_mrqc(adapter);
1604	igb_setup_rctl(adapter);
1605
1606	igb_configure_tx(adapter);
1607	igb_configure_rx(adapter);
1608
1609	igb_rx_fifo_flush_82575(&adapter->hw);
1610
1611	/* call igb_desc_unused which always leaves
1612	 * at least 1 descriptor unused to make sure
1613	 * next_to_use != next_to_clean
1614	 */
1615	for (i = 0; i < adapter->num_rx_queues; i++) {
1616		struct igb_ring *ring = adapter->rx_ring[i];
1617		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618	}
1619}
1620
1621/**
1622 *  igb_power_up_link - Power up the phy/serdes link
1623 *  @adapter: address of board private structure
1624 **/
1625void igb_power_up_link(struct igb_adapter *adapter)
1626{
1627	igb_reset_phy(&adapter->hw);
1628
1629	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1630		igb_power_up_phy_copper(&adapter->hw);
1631	else
1632		igb_power_up_serdes_link_82575(&adapter->hw);
1633}
1634
1635/**
1636 *  igb_power_down_link - Power down the phy/serdes link
1637 *  @adapter: address of board private structure
1638 */
1639static void igb_power_down_link(struct igb_adapter *adapter)
1640{
1641	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1642		igb_power_down_phy_copper_82575(&adapter->hw);
1643	else
1644		igb_shutdown_serdes_link_82575(&adapter->hw);
1645}
1646
1647/**
1648 * Detect and switch function for Media Auto Sense
1649 * @adapter: address of the board private structure
1650 **/
1651static void igb_check_swap_media(struct igb_adapter *adapter)
1652{
1653	struct e1000_hw *hw = &adapter->hw;
1654	u32 ctrl_ext, connsw;
1655	bool swap_now = false;
1656
1657	ctrl_ext = rd32(E1000_CTRL_EXT);
1658	connsw = rd32(E1000_CONNSW);
1659
1660	/* need to live swap if current media is copper and we have fiber/serdes
1661	 * to go to.
1662	 */
1663
1664	if ((hw->phy.media_type == e1000_media_type_copper) &&
1665	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1666		swap_now = true;
1667	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1668		/* copper signal takes time to appear */
1669		if (adapter->copper_tries < 4) {
1670			adapter->copper_tries++;
1671			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1672			wr32(E1000_CONNSW, connsw);
1673			return;
1674		} else {
1675			adapter->copper_tries = 0;
1676			if ((connsw & E1000_CONNSW_PHYSD) &&
1677			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1678				swap_now = true;
1679				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1680				wr32(E1000_CONNSW, connsw);
1681			}
1682		}
1683	}
1684
1685	if (!swap_now)
1686		return;
1687
1688	switch (hw->phy.media_type) {
1689	case e1000_media_type_copper:
1690		netdev_info(adapter->netdev,
1691			"MAS: changing media to fiber/serdes\n");
1692		ctrl_ext |=
1693			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1694		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1695		adapter->copper_tries = 0;
1696		break;
1697	case e1000_media_type_internal_serdes:
1698	case e1000_media_type_fiber:
1699		netdev_info(adapter->netdev,
1700			"MAS: changing media to copper\n");
1701		ctrl_ext &=
1702			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704		break;
1705	default:
1706		/* shouldn't get here during regular operation */
1707		netdev_err(adapter->netdev,
1708			"AMS: Invalid media type found, returning\n");
1709		break;
1710	}
1711	wr32(E1000_CTRL_EXT, ctrl_ext);
1712}
1713
1714/**
1715 *  igb_up - Open the interface and prepare it to handle traffic
1716 *  @adapter: board private structure
1717 **/
1718int igb_up(struct igb_adapter *adapter)
1719{
1720	struct e1000_hw *hw = &adapter->hw;
1721	int i;
1722
1723	/* hardware has been reset, we need to reload some things */
1724	igb_configure(adapter);
1725
1726	clear_bit(__IGB_DOWN, &adapter->state);
1727
1728	for (i = 0; i < adapter->num_q_vectors; i++)
1729		napi_enable(&(adapter->q_vector[i]->napi));
1730
1731	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1732		igb_configure_msix(adapter);
1733	else
1734		igb_assign_vector(adapter->q_vector[0], 0);
1735
1736	/* Clear any pending interrupts. */
1737	rd32(E1000_ICR);
1738	igb_irq_enable(adapter);
1739
1740	/* notify VFs that reset has been completed */
1741	if (adapter->vfs_allocated_count) {
1742		u32 reg_data = rd32(E1000_CTRL_EXT);
1743
1744		reg_data |= E1000_CTRL_EXT_PFRSTD;
1745		wr32(E1000_CTRL_EXT, reg_data);
1746	}
1747
1748	netif_tx_start_all_queues(adapter->netdev);
1749
1750	/* start the watchdog. */
1751	hw->mac.get_link_status = 1;
1752	schedule_work(&adapter->watchdog_task);
1753
1754	if ((adapter->flags & IGB_FLAG_EEE) &&
1755	    (!hw->dev_spec._82575.eee_disable))
1756		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1757
1758	return 0;
1759}
1760
1761void igb_down(struct igb_adapter *adapter)
1762{
1763	struct net_device *netdev = adapter->netdev;
1764	struct e1000_hw *hw = &adapter->hw;
1765	u32 tctl, rctl;
1766	int i;
1767
1768	/* signal that we're down so the interrupt handler does not
1769	 * reschedule our watchdog timer
1770	 */
1771	set_bit(__IGB_DOWN, &adapter->state);
1772
1773	/* disable receives in the hardware */
1774	rctl = rd32(E1000_RCTL);
1775	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1776	/* flush and sleep below */
1777
1778	netif_tx_stop_all_queues(netdev);
1779
1780	/* disable transmits in the hardware */
1781	tctl = rd32(E1000_TCTL);
1782	tctl &= ~E1000_TCTL_EN;
1783	wr32(E1000_TCTL, tctl);
1784	/* flush both disables and wait for them to finish */
1785	wrfl();
1786	usleep_range(10000, 11000);
1787
1788	igb_irq_disable(adapter);
1789
1790	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1791
1792	for (i = 0; i < adapter->num_q_vectors; i++) {
1793		napi_synchronize(&(adapter->q_vector[i]->napi));
1794		napi_disable(&(adapter->q_vector[i]->napi));
1795	}
1796
1797
1798	del_timer_sync(&adapter->watchdog_timer);
1799	del_timer_sync(&adapter->phy_info_timer);
1800
1801	netif_carrier_off(netdev);
1802
1803	/* record the stats before reset*/
1804	spin_lock(&adapter->stats64_lock);
1805	igb_update_stats(adapter, &adapter->stats64);
1806	spin_unlock(&adapter->stats64_lock);
1807
1808	adapter->link_speed = 0;
1809	adapter->link_duplex = 0;
1810
1811	if (!pci_channel_offline(adapter->pdev))
1812		igb_reset(adapter);
1813	igb_clean_all_tx_rings(adapter);
1814	igb_clean_all_rx_rings(adapter);
1815#ifdef CONFIG_IGB_DCA
1816
1817	/* since we reset the hardware DCA settings were cleared */
1818	igb_setup_dca(adapter);
1819#endif
1820}
1821
1822void igb_reinit_locked(struct igb_adapter *adapter)
1823{
1824	WARN_ON(in_interrupt());
1825	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1826		usleep_range(1000, 2000);
1827	igb_down(adapter);
1828	igb_up(adapter);
1829	clear_bit(__IGB_RESETTING, &adapter->state);
1830}
1831
1832/** igb_enable_mas - Media Autosense re-enable after swap
1833 *
1834 * @adapter: adapter struct
1835 **/
1836static s32 igb_enable_mas(struct igb_adapter *adapter)
1837{
1838	struct e1000_hw *hw = &adapter->hw;
1839	u32 connsw;
1840	s32 ret_val = 0;
1841
1842	connsw = rd32(E1000_CONNSW);
1843	if (!(hw->phy.media_type == e1000_media_type_copper))
1844		return ret_val;
1845
1846	/* configure for SerDes media detect */
1847	if (!(connsw & E1000_CONNSW_SERDESD)) {
1848		connsw |= E1000_CONNSW_ENRGSRC;
1849		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1850		wr32(E1000_CONNSW, connsw);
1851		wrfl();
1852	} else if (connsw & E1000_CONNSW_SERDESD) {
1853		/* already SerDes, no need to enable anything */
1854		return ret_val;
1855	} else {
1856		netdev_info(adapter->netdev,
1857			"MAS: Unable to configure feature, disabling..\n");
1858		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1859	}
1860	return ret_val;
1861}
1862
1863void igb_reset(struct igb_adapter *adapter)
1864{
1865	struct pci_dev *pdev = adapter->pdev;
1866	struct e1000_hw *hw = &adapter->hw;
1867	struct e1000_mac_info *mac = &hw->mac;
1868	struct e1000_fc_info *fc = &hw->fc;
1869	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1870
1871	/* Repartition Pba for greater than 9k mtu
1872	 * To take effect CTRL.RST is required.
1873	 */
1874	switch (mac->type) {
1875	case e1000_i350:
1876	case e1000_i354:
1877	case e1000_82580:
1878		pba = rd32(E1000_RXPBS);
1879		pba = igb_rxpbs_adjust_82580(pba);
1880		break;
1881	case e1000_82576:
1882		pba = rd32(E1000_RXPBS);
1883		pba &= E1000_RXPBS_SIZE_MASK_82576;
1884		break;
1885	case e1000_82575:
1886	case e1000_i210:
1887	case e1000_i211:
1888	default:
1889		pba = E1000_PBA_34K;
1890		break;
1891	}
1892
1893	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1894	    (mac->type < e1000_82576)) {
1895		/* adjust PBA for jumbo frames */
1896		wr32(E1000_PBA, pba);
1897
1898		/* To maintain wire speed transmits, the Tx FIFO should be
1899		 * large enough to accommodate two full transmit packets,
1900		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1901		 * the Rx FIFO should be large enough to accommodate at least
1902		 * one full receive packet and is similarly rounded up and
1903		 * expressed in KB.
1904		 */
1905		pba = rd32(E1000_PBA);
1906		/* upper 16 bits has Tx packet buffer allocation size in KB */
1907		tx_space = pba >> 16;
1908		/* lower 16 bits has Rx packet buffer allocation size in KB */
1909		pba &= 0xffff;
1910		/* the Tx fifo also stores 16 bytes of information about the Tx
1911		 * but don't include ethernet FCS because hardware appends it
1912		 */
1913		min_tx_space = (adapter->max_frame_size +
1914				sizeof(union e1000_adv_tx_desc) -
1915				ETH_FCS_LEN) * 2;
1916		min_tx_space = ALIGN(min_tx_space, 1024);
1917		min_tx_space >>= 10;
1918		/* software strips receive CRC, so leave room for it */
1919		min_rx_space = adapter->max_frame_size;
1920		min_rx_space = ALIGN(min_rx_space, 1024);
1921		min_rx_space >>= 10;
1922
1923		/* If current Tx allocation is less than the min Tx FIFO size,
1924		 * and the min Tx FIFO size is less than the current Rx FIFO
1925		 * allocation, take space away from current Rx allocation
1926		 */
1927		if (tx_space < min_tx_space &&
1928		    ((min_tx_space - tx_space) < pba)) {
1929			pba = pba - (min_tx_space - tx_space);
1930
1931			/* if short on Rx space, Rx wins and must trump Tx
1932			 * adjustment
1933			 */
1934			if (pba < min_rx_space)
1935				pba = min_rx_space;
1936		}
1937		wr32(E1000_PBA, pba);
1938	}
1939
1940	/* flow control settings */
1941	/* The high water mark must be low enough to fit one full frame
1942	 * (or the size used for early receive) above it in the Rx FIFO.
1943	 * Set it to the lower of:
1944	 * - 90% of the Rx FIFO size, or
1945	 * - the full Rx FIFO size minus one full frame
1946	 */
1947	hwm = min(((pba << 10) * 9 / 10),
1948			((pba << 10) - 2 * adapter->max_frame_size));
1949
1950	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1951	fc->low_water = fc->high_water - 16;
1952	fc->pause_time = 0xFFFF;
1953	fc->send_xon = 1;
1954	fc->current_mode = fc->requested_mode;
1955
1956	/* disable receive for all VFs and wait one second */
1957	if (adapter->vfs_allocated_count) {
1958		int i;
1959
1960		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963		/* ping all the active vfs to let them know we are going down */
1964		igb_ping_all_vfs(adapter);
1965
1966		/* disable transmits and receives */
1967		wr32(E1000_VFRE, 0);
1968		wr32(E1000_VFTE, 0);
1969	}
1970
1971	/* Allow time for pending master requests to run */
1972	hw->mac.ops.reset_hw(hw);
1973	wr32(E1000_WUC, 0);
1974
1975	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976		/* need to resetup here after media swap */
1977		adapter->ei.get_invariants(hw);
1978		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979	}
1980	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1981		if (igb_enable_mas(adapter))
1982			dev_err(&pdev->dev,
1983				"Error enabling Media Auto Sense\n");
1984	}
1985	if (hw->mac.ops.init_hw(hw))
1986		dev_err(&pdev->dev, "Hardware Error\n");
1987
1988	/* Flow control settings reset on hardware reset, so guarantee flow
1989	 * control is off when forcing speed.
1990	 */
1991	if (!hw->mac.autoneg)
1992		igb_force_mac_fc(hw);
1993
1994	igb_init_dmac(adapter, pba);
1995#ifdef CONFIG_IGB_HWMON
1996	/* Re-initialize the thermal sensor on i350 devices. */
1997	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1998		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1999			/* If present, re-initialize the external thermal sensor
2000			 * interface.
2001			 */
2002			if (adapter->ets)
2003				mac->ops.init_thermal_sensor_thresh(hw);
2004		}
2005	}
2006#endif
2007	/* Re-establish EEE setting */
2008	if (hw->phy.media_type == e1000_media_type_copper) {
2009		switch (mac->type) {
2010		case e1000_i350:
2011		case e1000_i210:
2012		case e1000_i211:
2013			igb_set_eee_i350(hw);
2014			break;
2015		case e1000_i354:
2016			igb_set_eee_i354(hw);
2017			break;
2018		default:
2019			break;
2020		}
2021	}
2022	if (!netif_running(adapter->netdev))
2023		igb_power_down_link(adapter);
2024
2025	igb_update_mng_vlan(adapter);
2026
2027	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2028	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2029
2030	/* Re-enable PTP, where applicable. */
2031	igb_ptp_reset(adapter);
2032
2033	igb_get_phy_info(hw);
2034}
2035
2036static netdev_features_t igb_fix_features(struct net_device *netdev,
2037	netdev_features_t features)
2038{
2039	/* Since there is no support for separate Rx/Tx vlan accel
2040	 * enable/disable make sure Tx flag is always in same state as Rx.
2041	 */
2042	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043		features |= NETIF_F_HW_VLAN_CTAG_TX;
2044	else
2045		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047	return features;
2048}
2049
2050static int igb_set_features(struct net_device *netdev,
2051	netdev_features_t features)
2052{
2053	netdev_features_t changed = netdev->features ^ features;
2054	struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057		igb_vlan_mode(netdev, features);
2058
2059	if (!(changed & NETIF_F_RXALL))
2060		return 0;
2061
2062	netdev->features = features;
2063
2064	if (netif_running(netdev))
2065		igb_reinit_locked(adapter);
2066	else
2067		igb_reset(adapter);
2068
2069	return 0;
2070}
2071
2072static const struct net_device_ops igb_netdev_ops = {
2073	.ndo_open		= igb_open,
2074	.ndo_stop		= igb_close,
2075	.ndo_start_xmit		= igb_xmit_frame,
2076	.ndo_get_stats64	= igb_get_stats64,
2077	.ndo_set_rx_mode	= igb_set_rx_mode,
2078	.ndo_set_mac_address	= igb_set_mac,
2079	.ndo_change_mtu		= igb_change_mtu,
2080	.ndo_do_ioctl		= igb_ioctl,
2081	.ndo_tx_timeout		= igb_tx_timeout,
2082	.ndo_validate_addr	= eth_validate_addr,
2083	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2084	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2085	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2086	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2087	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2088	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2089	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2090#ifdef CONFIG_NET_POLL_CONTROLLER
2091	.ndo_poll_controller	= igb_netpoll,
2092#endif
2093	.ndo_fix_features	= igb_fix_features,
2094	.ndo_set_features	= igb_set_features,
2095};
2096
2097/**
2098 * igb_set_fw_version - Configure version string for ethtool
2099 * @adapter: adapter struct
2100 **/
2101void igb_set_fw_version(struct igb_adapter *adapter)
2102{
2103	struct e1000_hw *hw = &adapter->hw;
2104	struct e1000_fw_version fw;
2105
2106	igb_get_fw_version(hw, &fw);
2107
2108	switch (hw->mac.type) {
2109	case e1000_i210:
2110	case e1000_i211:
2111		if (!(igb_get_flash_presence_i210(hw))) {
2112			snprintf(adapter->fw_version,
2113				 sizeof(adapter->fw_version),
2114				 "%2d.%2d-%d",
2115				 fw.invm_major, fw.invm_minor,
2116				 fw.invm_img_type);
2117			break;
2118		}
2119		/* fall through */
2120	default:
2121		/* if option is rom valid, display its version too */
2122		if (fw.or_valid) {
2123			snprintf(adapter->fw_version,
2124				 sizeof(adapter->fw_version),
2125				 "%d.%d, 0x%08x, %d.%d.%d",
2126				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2127				 fw.or_major, fw.or_build, fw.or_patch);
2128		/* no option rom */
2129		} else if (fw.etrack_id != 0X0000) {
2130			snprintf(adapter->fw_version,
2131			    sizeof(adapter->fw_version),
2132			    "%d.%d, 0x%08x",
2133			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2134		} else {
2135		snprintf(adapter->fw_version,
2136		    sizeof(adapter->fw_version),
2137		    "%d.%d.%d",
2138		    fw.eep_major, fw.eep_minor, fw.eep_build);
2139		}
2140		break;
2141	}
2142	return;
2143}
2144
2145/**
2146 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2147 *
2148 * @adapter: adapter struct
2149 **/
2150static void igb_init_mas(struct igb_adapter *adapter)
2151{
2152	struct e1000_hw *hw = &adapter->hw;
2153	u16 eeprom_data;
2154
2155	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2156	switch (hw->bus.func) {
2157	case E1000_FUNC_0:
2158		if (eeprom_data & IGB_MAS_ENABLE_0) {
2159			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2160			netdev_info(adapter->netdev,
2161				"MAS: Enabling Media Autosense for port %d\n",
2162				hw->bus.func);
2163		}
2164		break;
2165	case E1000_FUNC_1:
2166		if (eeprom_data & IGB_MAS_ENABLE_1) {
2167			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2168			netdev_info(adapter->netdev,
2169				"MAS: Enabling Media Autosense for port %d\n",
2170				hw->bus.func);
2171		}
2172		break;
2173	case E1000_FUNC_2:
2174		if (eeprom_data & IGB_MAS_ENABLE_2) {
2175			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2176			netdev_info(adapter->netdev,
2177				"MAS: Enabling Media Autosense for port %d\n",
2178				hw->bus.func);
2179		}
2180		break;
2181	case E1000_FUNC_3:
2182		if (eeprom_data & IGB_MAS_ENABLE_3) {
2183			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2184			netdev_info(adapter->netdev,
2185				"MAS: Enabling Media Autosense for port %d\n",
2186				hw->bus.func);
2187		}
2188		break;
2189	default:
2190		/* Shouldn't get here */
2191		netdev_err(adapter->netdev,
2192			"MAS: Invalid port configuration, returning\n");
2193		break;
2194	}
2195}
2196
2197/**
2198 *  igb_init_i2c - Init I2C interface
2199 *  @adapter: pointer to adapter structure
2200 **/
2201static s32 igb_init_i2c(struct igb_adapter *adapter)
2202{
2203	s32 status = E1000_SUCCESS;
2204
2205	/* I2C interface supported on i350 devices */
2206	if (adapter->hw.mac.type != e1000_i350)
2207		return E1000_SUCCESS;
2208
2209	/* Initialize the i2c bus which is controlled by the registers.
2210	 * This bus will use the i2c_algo_bit structue that implements
2211	 * the protocol through toggling of the 4 bits in the register.
2212	 */
2213	adapter->i2c_adap.owner = THIS_MODULE;
2214	adapter->i2c_algo = igb_i2c_algo;
2215	adapter->i2c_algo.data = adapter;
2216	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2217	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2218	strlcpy(adapter->i2c_adap.name, "igb BB",
2219		sizeof(adapter->i2c_adap.name));
2220	status = i2c_bit_add_bus(&adapter->i2c_adap);
2221	return status;
2222}
2223
2224/**
2225 *  igb_probe - Device Initialization Routine
2226 *  @pdev: PCI device information struct
2227 *  @ent: entry in igb_pci_tbl
2228 *
2229 *  Returns 0 on success, negative on failure
2230 *
2231 *  igb_probe initializes an adapter identified by a pci_dev structure.
2232 *  The OS initialization, configuring of the adapter private structure,
2233 *  and a hardware reset occur.
2234 **/
2235static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2236{
2237	struct net_device *netdev;
2238	struct igb_adapter *adapter;
2239	struct e1000_hw *hw;
2240	u16 eeprom_data = 0;
2241	s32 ret_val;
2242	static int global_quad_port_a; /* global quad port a indication */
2243	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2244	int err, pci_using_dac;
2245	u8 part_str[E1000_PBANUM_LENGTH];
2246
2247	/* Catch broken hardware that put the wrong VF device ID in
2248	 * the PCIe SR-IOV capability.
2249	 */
2250	if (pdev->is_virtfn) {
2251		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2252			pci_name(pdev), pdev->vendor, pdev->device);
2253		return -EINVAL;
2254	}
2255
2256	err = pci_enable_device_mem(pdev);
2257	if (err)
2258		return err;
2259
2260	pci_using_dac = 0;
2261	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2262	if (!err) {
2263		pci_using_dac = 1;
2264	} else {
2265		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2266		if (err) {
2267			dev_err(&pdev->dev,
2268				"No usable DMA configuration, aborting\n");
2269			goto err_dma;
2270		}
2271	}
2272
2273	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2274					   IORESOURCE_MEM),
2275					   igb_driver_name);
2276	if (err)
2277		goto err_pci_reg;
2278
2279	pci_enable_pcie_error_reporting(pdev);
2280
2281	pci_set_master(pdev);
2282	pci_save_state(pdev);
2283
2284	err = -ENOMEM;
2285	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2286				   IGB_MAX_TX_QUEUES);
2287	if (!netdev)
2288		goto err_alloc_etherdev;
2289
2290	SET_NETDEV_DEV(netdev, &pdev->dev);
2291
2292	pci_set_drvdata(pdev, netdev);
2293	adapter = netdev_priv(netdev);
2294	adapter->netdev = netdev;
2295	adapter->pdev = pdev;
2296	hw = &adapter->hw;
2297	hw->back = adapter;
2298	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2299
2300	err = -EIO;
2301	hw->hw_addr = pci_iomap(pdev, 0, 0);
2302	if (!hw->hw_addr)
2303		goto err_ioremap;
2304
2305	netdev->netdev_ops = &igb_netdev_ops;
2306	igb_set_ethtool_ops(netdev);
2307	netdev->watchdog_timeo = 5 * HZ;
2308
2309	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2310
2311	netdev->mem_start = pci_resource_start(pdev, 0);
2312	netdev->mem_end = pci_resource_end(pdev, 0);
2313
2314	/* PCI config space info */
2315	hw->vendor_id = pdev->vendor;
2316	hw->device_id = pdev->device;
2317	hw->revision_id = pdev->revision;
2318	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2319	hw->subsystem_device_id = pdev->subsystem_device;
2320
2321	/* Copy the default MAC, PHY and NVM function pointers */
2322	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2323	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2324	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2325	/* Initialize skew-specific constants */
2326	err = ei->get_invariants(hw);
2327	if (err)
2328		goto err_sw_init;
2329
2330	/* setup the private structure */
2331	err = igb_sw_init(adapter);
2332	if (err)
2333		goto err_sw_init;
2334
2335	igb_get_bus_info_pcie(hw);
2336
2337	hw->phy.autoneg_wait_to_complete = false;
2338
2339	/* Copper options */
2340	if (hw->phy.media_type == e1000_media_type_copper) {
2341		hw->phy.mdix = AUTO_ALL_MODES;
2342		hw->phy.disable_polarity_correction = false;
2343		hw->phy.ms_type = e1000_ms_hw_default;
2344	}
2345
2346	if (igb_check_reset_block(hw))
2347		dev_info(&pdev->dev,
2348			"PHY reset is blocked due to SOL/IDER session.\n");
2349
2350	/* features is initialized to 0 in allocation, it might have bits
2351	 * set by igb_sw_init so we should use an or instead of an
2352	 * assignment.
2353	 */
2354	netdev->features |= NETIF_F_SG |
2355			    NETIF_F_IP_CSUM |
2356			    NETIF_F_IPV6_CSUM |
2357			    NETIF_F_TSO |
2358			    NETIF_F_TSO6 |
2359			    NETIF_F_RXHASH |
2360			    NETIF_F_RXCSUM |
2361			    NETIF_F_HW_VLAN_CTAG_RX |
2362			    NETIF_F_HW_VLAN_CTAG_TX;
2363
2364	/* copy netdev features into list of user selectable features */
2365	netdev->hw_features |= netdev->features;
2366	netdev->hw_features |= NETIF_F_RXALL;
2367
2368	/* set this bit last since it cannot be part of hw_features */
2369	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2370
2371	netdev->vlan_features |= NETIF_F_TSO |
2372				 NETIF_F_TSO6 |
2373				 NETIF_F_IP_CSUM |
2374				 NETIF_F_IPV6_CSUM |
2375				 NETIF_F_SG;
2376
2377	netdev->priv_flags |= IFF_SUPP_NOFCS;
2378
2379	if (pci_using_dac) {
2380		netdev->features |= NETIF_F_HIGHDMA;
2381		netdev->vlan_features |= NETIF_F_HIGHDMA;
2382	}
2383
2384	if (hw->mac.type >= e1000_82576) {
2385		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2386		netdev->features |= NETIF_F_SCTP_CSUM;
2387	}
2388
2389	netdev->priv_flags |= IFF_UNICAST_FLT;
2390
2391	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2392
2393	/* before reading the NVM, reset the controller to put the device in a
2394	 * known good starting state
2395	 */
2396	hw->mac.ops.reset_hw(hw);
2397
2398	/* make sure the NVM is good , i211/i210 parts can have special NVM
2399	 * that doesn't contain a checksum
2400	 */
2401	switch (hw->mac.type) {
2402	case e1000_i210:
2403	case e1000_i211:
2404		if (igb_get_flash_presence_i210(hw)) {
2405			if (hw->nvm.ops.validate(hw) < 0) {
2406				dev_err(&pdev->dev,
2407					"The NVM Checksum Is Not Valid\n");
2408				err = -EIO;
2409				goto err_eeprom;
2410			}
2411		}
2412		break;
2413	default:
2414		if (hw->nvm.ops.validate(hw) < 0) {
2415			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2416			err = -EIO;
2417			goto err_eeprom;
2418		}
2419		break;
2420	}
2421
2422	/* copy the MAC address out of the NVM */
2423	if (hw->mac.ops.read_mac_addr(hw))
2424		dev_err(&pdev->dev, "NVM Read Error\n");
2425
2426	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2427
2428	if (!is_valid_ether_addr(netdev->dev_addr)) {
2429		dev_err(&pdev->dev, "Invalid MAC Address\n");
2430		err = -EIO;
2431		goto err_eeprom;
2432	}
2433
2434	/* get firmware version for ethtool -i */
2435	igb_set_fw_version(adapter);
2436
2437	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2438		    (unsigned long) adapter);
2439	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2440		    (unsigned long) adapter);
2441
2442	INIT_WORK(&adapter->reset_task, igb_reset_task);
2443	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2444
2445	/* Initialize link properties that are user-changeable */
2446	adapter->fc_autoneg = true;
2447	hw->mac.autoneg = true;
2448	hw->phy.autoneg_advertised = 0x2f;
2449
2450	hw->fc.requested_mode = e1000_fc_default;
2451	hw->fc.current_mode = e1000_fc_default;
2452
2453	igb_validate_mdi_setting(hw);
2454
2455	/* By default, support wake on port A */
2456	if (hw->bus.func == 0)
2457		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2458
2459	/* Check the NVM for wake support on non-port A ports */
2460	if (hw->mac.type >= e1000_82580)
2461		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2462				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2463				 &eeprom_data);
2464	else if (hw->bus.func == 1)
2465		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2466
2467	if (eeprom_data & IGB_EEPROM_APME)
2468		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2469
2470	/* now that we have the eeprom settings, apply the special cases where
2471	 * the eeprom may be wrong or the board simply won't support wake on
2472	 * lan on a particular port
2473	 */
2474	switch (pdev->device) {
2475	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2476		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2477		break;
2478	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2479	case E1000_DEV_ID_82576_FIBER:
2480	case E1000_DEV_ID_82576_SERDES:
2481		/* Wake events only supported on port A for dual fiber
2482		 * regardless of eeprom setting
2483		 */
2484		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2485			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2486		break;
2487	case E1000_DEV_ID_82576_QUAD_COPPER:
2488	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2489		/* if quad port adapter, disable WoL on all but port A */
2490		if (global_quad_port_a != 0)
2491			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2492		else
2493			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2494		/* Reset for multiple quad port adapters */
2495		if (++global_quad_port_a == 4)
2496			global_quad_port_a = 0;
2497		break;
2498	default:
2499		/* If the device can't wake, don't set software support */
2500		if (!device_can_wakeup(&adapter->pdev->dev))
2501			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502	}
2503
2504	/* initialize the wol settings based on the eeprom settings */
2505	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2506		adapter->wol |= E1000_WUFC_MAG;
2507
2508	/* Some vendors want WoL disabled by default, but still supported */
2509	if ((hw->mac.type == e1000_i350) &&
2510	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2511		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2512		adapter->wol = 0;
2513	}
2514
2515	device_set_wakeup_enable(&adapter->pdev->dev,
2516				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2517
2518	/* reset the hardware with the new settings */
2519	igb_reset(adapter);
2520
2521	/* Init the I2C interface */
2522	err = igb_init_i2c(adapter);
2523	if (err) {
2524		dev_err(&pdev->dev, "failed to init i2c interface\n");
2525		goto err_eeprom;
2526	}
2527
2528	/* let the f/w know that the h/w is now under the control of the
2529	 * driver.
2530	 */
2531	igb_get_hw_control(adapter);
2532
2533	strcpy(netdev->name, "eth%d");
2534	err = register_netdev(netdev);
2535	if (err)
2536		goto err_register;
2537
2538	/* carrier off reporting is important to ethtool even BEFORE open */
2539	netif_carrier_off(netdev);
2540
2541#ifdef CONFIG_IGB_DCA
2542	if (dca_add_requester(&pdev->dev) == 0) {
2543		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2544		dev_info(&pdev->dev, "DCA enabled\n");
2545		igb_setup_dca(adapter);
2546	}
2547
2548#endif
2549#ifdef CONFIG_IGB_HWMON
2550	/* Initialize the thermal sensor on i350 devices. */
2551	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2552		u16 ets_word;
2553
2554		/* Read the NVM to determine if this i350 device supports an
2555		 * external thermal sensor.
2556		 */
2557		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2558		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2559			adapter->ets = true;
2560		else
2561			adapter->ets = false;
2562		if (igb_sysfs_init(adapter))
2563			dev_err(&pdev->dev,
2564				"failed to allocate sysfs resources\n");
2565	} else {
2566		adapter->ets = false;
2567	}
2568#endif
2569	/* Check if Media Autosense is enabled */
2570	adapter->ei = *ei;
2571	if (hw->dev_spec._82575.mas_capable)
2572		igb_init_mas(adapter);
2573
2574	/* do hw tstamp init after resetting */
2575	igb_ptp_init(adapter);
2576
2577	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2578	/* print bus type/speed/width info, not applicable to i354 */
2579	if (hw->mac.type != e1000_i354) {
2580		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2581			 netdev->name,
2582			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2583			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2584			   "unknown"),
2585			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2586			  "Width x4" :
2587			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2588			  "Width x2" :
2589			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2590			  "Width x1" : "unknown"), netdev->dev_addr);
2591	}
2592
2593	if ((hw->mac.type >= e1000_i210 ||
2594	     igb_get_flash_presence_i210(hw))) {
2595		ret_val = igb_read_part_string(hw, part_str,
2596					       E1000_PBANUM_LENGTH);
2597	} else {
2598		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2599	}
2600
2601	if (ret_val)
2602		strcpy(part_str, "Unknown");
2603	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2604	dev_info(&pdev->dev,
2605		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2606		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2607		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2608		adapter->num_rx_queues, adapter->num_tx_queues);
2609	if (hw->phy.media_type == e1000_media_type_copper) {
2610		switch (hw->mac.type) {
2611		case e1000_i350:
2612		case e1000_i210:
2613		case e1000_i211:
2614			/* Enable EEE for internal copper PHY devices */
2615			err = igb_set_eee_i350(hw);
2616			if ((!err) &&
2617			    (!hw->dev_spec._82575.eee_disable)) {
2618				adapter->eee_advert =
2619					MDIO_EEE_100TX | MDIO_EEE_1000T;
2620				adapter->flags |= IGB_FLAG_EEE;
2621			}
2622			break;
2623		case e1000_i354:
2624			if ((rd32(E1000_CTRL_EXT) &
2625			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2626				err = igb_set_eee_i354(hw);
2627				if ((!err) &&
2628					(!hw->dev_spec._82575.eee_disable)) {
2629					adapter->eee_advert =
2630					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2631					adapter->flags |= IGB_FLAG_EEE;
2632				}
2633			}
2634			break;
2635		default:
2636			break;
2637		}
2638	}
2639	pm_runtime_put_noidle(&pdev->dev);
2640	return 0;
2641
2642err_register:
2643	igb_release_hw_control(adapter);
2644	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2645err_eeprom:
2646	if (!igb_check_reset_block(hw))
2647		igb_reset_phy(hw);
2648
2649	if (hw->flash_address)
2650		iounmap(hw->flash_address);
2651err_sw_init:
2652	igb_clear_interrupt_scheme(adapter);
2653	pci_iounmap(pdev, hw->hw_addr);
2654err_ioremap:
2655	free_netdev(netdev);
2656err_alloc_etherdev:
2657	pci_release_selected_regions(pdev,
2658				     pci_select_bars(pdev, IORESOURCE_MEM));
2659err_pci_reg:
2660err_dma:
2661	pci_disable_device(pdev);
2662	return err;
2663}
2664
2665#ifdef CONFIG_PCI_IOV
2666static int igb_disable_sriov(struct pci_dev *pdev)
2667{
2668	struct net_device *netdev = pci_get_drvdata(pdev);
2669	struct igb_adapter *adapter = netdev_priv(netdev);
2670	struct e1000_hw *hw = &adapter->hw;
2671
2672	/* reclaim resources allocated to VFs */
2673	if (adapter->vf_data) {
2674		/* disable iov and allow time for transactions to clear */
2675		if (pci_vfs_assigned(pdev)) {
2676			dev_warn(&pdev->dev,
2677				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2678			return -EPERM;
2679		} else {
2680			pci_disable_sriov(pdev);
2681			msleep(500);
2682		}
2683
2684		kfree(adapter->vf_data);
2685		adapter->vf_data = NULL;
2686		adapter->vfs_allocated_count = 0;
2687		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2688		wrfl();
2689		msleep(100);
2690		dev_info(&pdev->dev, "IOV Disabled\n");
2691
2692		/* Re-enable DMA Coalescing flag since IOV is turned off */
2693		adapter->flags |= IGB_FLAG_DMAC;
2694	}
2695
2696	return 0;
2697}
2698
2699static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2700{
2701	struct net_device *netdev = pci_get_drvdata(pdev);
2702	struct igb_adapter *adapter = netdev_priv(netdev);
2703	int old_vfs = pci_num_vf(pdev);
2704	int err = 0;
2705	int i;
2706
2707	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2708		err = -EPERM;
2709		goto out;
2710	}
2711	if (!num_vfs)
2712		goto out;
2713
2714	if (old_vfs) {
2715		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2716			 old_vfs, max_vfs);
2717		adapter->vfs_allocated_count = old_vfs;
2718	} else
2719		adapter->vfs_allocated_count = num_vfs;
2720
2721	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2722				sizeof(struct vf_data_storage), GFP_KERNEL);
2723
2724	/* if allocation failed then we do not support SR-IOV */
2725	if (!adapter->vf_data) {
2726		adapter->vfs_allocated_count = 0;
2727		dev_err(&pdev->dev,
2728			"Unable to allocate memory for VF Data Storage\n");
2729		err = -ENOMEM;
2730		goto out;
2731	}
2732
2733	/* only call pci_enable_sriov() if no VFs are allocated already */
2734	if (!old_vfs) {
2735		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2736		if (err)
2737			goto err_out;
2738	}
2739	dev_info(&pdev->dev, "%d VFs allocated\n",
2740		 adapter->vfs_allocated_count);
2741	for (i = 0; i < adapter->vfs_allocated_count; i++)
2742		igb_vf_configure(adapter, i);
2743
2744	/* DMA Coalescing is not supported in IOV mode. */
2745	adapter->flags &= ~IGB_FLAG_DMAC;
2746	goto out;
2747
2748err_out:
2749	kfree(adapter->vf_data);
2750	adapter->vf_data = NULL;
2751	adapter->vfs_allocated_count = 0;
2752out:
2753	return err;
2754}
2755
2756#endif
2757/**
2758 *  igb_remove_i2c - Cleanup  I2C interface
2759 *  @adapter: pointer to adapter structure
2760 **/
2761static void igb_remove_i2c(struct igb_adapter *adapter)
2762{
2763	/* free the adapter bus structure */
2764	i2c_del_adapter(&adapter->i2c_adap);
2765}
2766
2767/**
2768 *  igb_remove - Device Removal Routine
2769 *  @pdev: PCI device information struct
2770 *
2771 *  igb_remove is called by the PCI subsystem to alert the driver
2772 *  that it should release a PCI device.  The could be caused by a
2773 *  Hot-Plug event, or because the driver is going to be removed from
2774 *  memory.
2775 **/
2776static void igb_remove(struct pci_dev *pdev)
2777{
2778	struct net_device *netdev = pci_get_drvdata(pdev);
2779	struct igb_adapter *adapter = netdev_priv(netdev);
2780	struct e1000_hw *hw = &adapter->hw;
2781
2782	pm_runtime_get_noresume(&pdev->dev);
2783#ifdef CONFIG_IGB_HWMON
2784	igb_sysfs_exit(adapter);
2785#endif
2786	igb_remove_i2c(adapter);
2787	igb_ptp_stop(adapter);
2788	/* The watchdog timer may be rescheduled, so explicitly
2789	 * disable watchdog from being rescheduled.
2790	 */
2791	set_bit(__IGB_DOWN, &adapter->state);
2792	del_timer_sync(&adapter->watchdog_timer);
2793	del_timer_sync(&adapter->phy_info_timer);
2794
2795	cancel_work_sync(&adapter->reset_task);
2796	cancel_work_sync(&adapter->watchdog_task);
2797
2798#ifdef CONFIG_IGB_DCA
2799	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2800		dev_info(&pdev->dev, "DCA disabled\n");
2801		dca_remove_requester(&pdev->dev);
2802		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2803		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2804	}
2805#endif
2806
2807	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2808	 * would have already happened in close and is redundant.
2809	 */
2810	igb_release_hw_control(adapter);
2811
2812	unregister_netdev(netdev);
2813
2814	igb_clear_interrupt_scheme(adapter);
2815
2816#ifdef CONFIG_PCI_IOV
2817	igb_disable_sriov(pdev);
2818#endif
2819
2820	pci_iounmap(pdev, hw->hw_addr);
2821	if (hw->flash_address)
2822		iounmap(hw->flash_address);
2823	pci_release_selected_regions(pdev,
2824				     pci_select_bars(pdev, IORESOURCE_MEM));
2825
2826	kfree(adapter->shadow_vfta);
2827	free_netdev(netdev);
2828
2829	pci_disable_pcie_error_reporting(pdev);
2830
2831	pci_disable_device(pdev);
2832}
2833
2834/**
2835 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2836 *  @adapter: board private structure to initialize
2837 *
2838 *  This function initializes the vf specific data storage and then attempts to
2839 *  allocate the VFs.  The reason for ordering it this way is because it is much
2840 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2841 *  the memory for the VFs.
2842 **/
2843static void igb_probe_vfs(struct igb_adapter *adapter)
2844{
2845#ifdef CONFIG_PCI_IOV
2846	struct pci_dev *pdev = adapter->pdev;
2847	struct e1000_hw *hw = &adapter->hw;
2848
2849	/* Virtualization features not supported on i210 family. */
2850	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2851		return;
2852
2853	pci_sriov_set_totalvfs(pdev, 7);
2854	igb_pci_enable_sriov(pdev, max_vfs);
2855
2856#endif /* CONFIG_PCI_IOV */
2857}
2858
2859static void igb_init_queue_configuration(struct igb_adapter *adapter)
2860{
2861	struct e1000_hw *hw = &adapter->hw;
2862	u32 max_rss_queues;
2863
2864	/* Determine the maximum number of RSS queues supported. */
2865	switch (hw->mac.type) {
2866	case e1000_i211:
2867		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2868		break;
2869	case e1000_82575:
2870	case e1000_i210:
2871		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2872		break;
2873	case e1000_i350:
2874		/* I350 cannot do RSS and SR-IOV at the same time */
2875		if (!!adapter->vfs_allocated_count) {
2876			max_rss_queues = 1;
2877			break;
2878		}
2879		/* fall through */
2880	case e1000_82576:
2881		if (!!adapter->vfs_allocated_count) {
2882			max_rss_queues = 2;
2883			break;
2884		}
2885		/* fall through */
2886	case e1000_82580:
2887	case e1000_i354:
2888	default:
2889		max_rss_queues = IGB_MAX_RX_QUEUES;
2890		break;
2891	}
2892
2893	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2894
2895	/* Determine if we need to pair queues. */
2896	switch (hw->mac.type) {
2897	case e1000_82575:
2898	case e1000_i211:
2899		/* Device supports enough interrupts without queue pairing. */
2900		break;
2901	case e1000_82576:
2902		/* If VFs are going to be allocated with RSS queues then we
2903		 * should pair the queues in order to conserve interrupts due
2904		 * to limited supply.
2905		 */
2906		if ((adapter->rss_queues > 1) &&
2907		    (adapter->vfs_allocated_count > 6))
2908			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2909		/* fall through */
2910	case e1000_82580:
2911	case e1000_i350:
2912	case e1000_i354:
2913	case e1000_i210:
2914	default:
2915		/* If rss_queues > half of max_rss_queues, pair the queues in
2916		 * order to conserve interrupts due to limited supply.
2917		 */
2918		if (adapter->rss_queues > (max_rss_queues / 2))
2919			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2920		break;
2921	}
2922}
2923
2924/**
2925 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2926 *  @adapter: board private structure to initialize
2927 *
2928 *  igb_sw_init initializes the Adapter private data structure.
2929 *  Fields are initialized based on PCI device information and
2930 *  OS network device settings (MTU size).
2931 **/
2932static int igb_sw_init(struct igb_adapter *adapter)
2933{
2934	struct e1000_hw *hw = &adapter->hw;
2935	struct net_device *netdev = adapter->netdev;
2936	struct pci_dev *pdev = adapter->pdev;
2937
2938	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2939
2940	/* set default ring sizes */
2941	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2942	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2943
2944	/* set default ITR values */
2945	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2946	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2947
2948	/* set default work limits */
2949	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2950
2951	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2952				  VLAN_HLEN;
2953	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2954
2955	spin_lock_init(&adapter->stats64_lock);
2956#ifdef CONFIG_PCI_IOV
2957	switch (hw->mac.type) {
2958	case e1000_82576:
2959	case e1000_i350:
2960		if (max_vfs > 7) {
2961			dev_warn(&pdev->dev,
2962				 "Maximum of 7 VFs per PF, using max\n");
2963			max_vfs = adapter->vfs_allocated_count = 7;
2964		} else
2965			adapter->vfs_allocated_count = max_vfs;
2966		if (adapter->vfs_allocated_count)
2967			dev_warn(&pdev->dev,
2968				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2969		break;
2970	default:
2971		break;
2972	}
2973#endif /* CONFIG_PCI_IOV */
2974
2975	igb_init_queue_configuration(adapter);
2976
2977	/* Setup and initialize a copy of the hw vlan table array */
2978	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2979				       GFP_ATOMIC);
2980
2981	/* This call may decrease the number of queues */
2982	if (igb_init_interrupt_scheme(adapter, true)) {
2983		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2984		return -ENOMEM;
2985	}
2986
2987	igb_probe_vfs(adapter);
2988
2989	/* Explicitly disable IRQ since the NIC can be in any state. */
2990	igb_irq_disable(adapter);
2991
2992	if (hw->mac.type >= e1000_i350)
2993		adapter->flags &= ~IGB_FLAG_DMAC;
2994
2995	set_bit(__IGB_DOWN, &adapter->state);
2996	return 0;
2997}
2998
2999/**
3000 *  igb_open - Called when a network interface is made active
3001 *  @netdev: network interface device structure
3002 *
3003 *  Returns 0 on success, negative value on failure
3004 *
3005 *  The open entry point is called when a network interface is made
3006 *  active by the system (IFF_UP).  At this point all resources needed
3007 *  for transmit and receive operations are allocated, the interrupt
3008 *  handler is registered with the OS, the watchdog timer is started,
3009 *  and the stack is notified that the interface is ready.
3010 **/
3011static int __igb_open(struct net_device *netdev, bool resuming)
3012{
3013	struct igb_adapter *adapter = netdev_priv(netdev);
3014	struct e1000_hw *hw = &adapter->hw;
3015	struct pci_dev *pdev = adapter->pdev;
3016	int err;
3017	int i;
3018
3019	/* disallow open during test */
3020	if (test_bit(__IGB_TESTING, &adapter->state)) {
3021		WARN_ON(resuming);
3022		return -EBUSY;
3023	}
3024
3025	if (!resuming)
3026		pm_runtime_get_sync(&pdev->dev);
3027
3028	netif_carrier_off(netdev);
3029
3030	/* allocate transmit descriptors */
3031	err = igb_setup_all_tx_resources(adapter);
3032	if (err)
3033		goto err_setup_tx;
3034
3035	/* allocate receive descriptors */
3036	err = igb_setup_all_rx_resources(adapter);
3037	if (err)
3038		goto err_setup_rx;
3039
3040	igb_power_up_link(adapter);
3041
3042	/* before we allocate an interrupt, we must be ready to handle it.
3043	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3044	 * as soon as we call pci_request_irq, so we have to setup our
3045	 * clean_rx handler before we do so.
3046	 */
3047	igb_configure(adapter);
3048
3049	err = igb_request_irq(adapter);
3050	if (err)
3051		goto err_req_irq;
3052
3053	/* Notify the stack of the actual queue counts. */
3054	err = netif_set_real_num_tx_queues(adapter->netdev,
3055					   adapter->num_tx_queues);
3056	if (err)
3057		goto err_set_queues;
3058
3059	err = netif_set_real_num_rx_queues(adapter->netdev,
3060					   adapter->num_rx_queues);
3061	if (err)
3062		goto err_set_queues;
3063
3064	/* From here on the code is the same as igb_up() */
3065	clear_bit(__IGB_DOWN, &adapter->state);
3066
3067	for (i = 0; i < adapter->num_q_vectors; i++)
3068		napi_enable(&(adapter->q_vector[i]->napi));
3069
3070	/* Clear any pending interrupts. */
3071	rd32(E1000_ICR);
3072
3073	igb_irq_enable(adapter);
3074
3075	/* notify VFs that reset has been completed */
3076	if (adapter->vfs_allocated_count) {
3077		u32 reg_data = rd32(E1000_CTRL_EXT);
3078
3079		reg_data |= E1000_CTRL_EXT_PFRSTD;
3080		wr32(E1000_CTRL_EXT, reg_data);
3081	}
3082
3083	netif_tx_start_all_queues(netdev);
3084
3085	if (!resuming)
3086		pm_runtime_put(&pdev->dev);
3087
3088	/* start the watchdog. */
3089	hw->mac.get_link_status = 1;
3090	schedule_work(&adapter->watchdog_task);
3091
3092	return 0;
3093
3094err_set_queues:
3095	igb_free_irq(adapter);
3096err_req_irq:
3097	igb_release_hw_control(adapter);
3098	igb_power_down_link(adapter);
3099	igb_free_all_rx_resources(adapter);
3100err_setup_rx:
3101	igb_free_all_tx_resources(adapter);
3102err_setup_tx:
3103	igb_reset(adapter);
3104	if (!resuming)
3105		pm_runtime_put(&pdev->dev);
3106
3107	return err;
3108}
3109
3110static int igb_open(struct net_device *netdev)
3111{
3112	return __igb_open(netdev, false);
3113}
3114
3115/**
3116 *  igb_close - Disables a network interface
3117 *  @netdev: network interface device structure
3118 *
3119 *  Returns 0, this is not allowed to fail
3120 *
3121 *  The close entry point is called when an interface is de-activated
3122 *  by the OS.  The hardware is still under the driver's control, but
3123 *  needs to be disabled.  A global MAC reset is issued to stop the
3124 *  hardware, and all transmit and receive resources are freed.
3125 **/
3126static int __igb_close(struct net_device *netdev, bool suspending)
3127{
3128	struct igb_adapter *adapter = netdev_priv(netdev);
3129	struct pci_dev *pdev = adapter->pdev;
3130
3131	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3132
3133	if (!suspending)
3134		pm_runtime_get_sync(&pdev->dev);
3135
3136	igb_down(adapter);
3137	igb_free_irq(adapter);
3138
3139	igb_free_all_tx_resources(adapter);
3140	igb_free_all_rx_resources(adapter);
3141
3142	if (!suspending)
3143		pm_runtime_put_sync(&pdev->dev);
3144	return 0;
3145}
3146
3147static int igb_close(struct net_device *netdev)
3148{
3149	return __igb_close(netdev, false);
3150}
3151
3152/**
3153 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3154 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3155 *
3156 *  Return 0 on success, negative on failure
3157 **/
3158int igb_setup_tx_resources(struct igb_ring *tx_ring)
3159{
3160	struct device *dev = tx_ring->dev;
3161	int size;
3162
3163	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3164
3165	tx_ring->tx_buffer_info = vzalloc(size);
3166	if (!tx_ring->tx_buffer_info)
3167		goto err;
3168
3169	/* round up to nearest 4K */
3170	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3171	tx_ring->size = ALIGN(tx_ring->size, 4096);
3172
3173	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3174					   &tx_ring->dma, GFP_KERNEL);
3175	if (!tx_ring->desc)
3176		goto err;
3177
3178	tx_ring->next_to_use = 0;
3179	tx_ring->next_to_clean = 0;
3180
3181	return 0;
3182
3183err:
3184	vfree(tx_ring->tx_buffer_info);
3185	tx_ring->tx_buffer_info = NULL;
3186	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3187	return -ENOMEM;
3188}
3189
3190/**
3191 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3192 *				 (Descriptors) for all queues
3193 *  @adapter: board private structure
3194 *
3195 *  Return 0 on success, negative on failure
3196 **/
3197static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3198{
3199	struct pci_dev *pdev = adapter->pdev;
3200	int i, err = 0;
3201
3202	for (i = 0; i < adapter->num_tx_queues; i++) {
3203		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3204		if (err) {
3205			dev_err(&pdev->dev,
3206				"Allocation for Tx Queue %u failed\n", i);
3207			for (i--; i >= 0; i--)
3208				igb_free_tx_resources(adapter->tx_ring[i]);
3209			break;
3210		}
3211	}
3212
3213	return err;
3214}
3215
3216/**
3217 *  igb_setup_tctl - configure the transmit control registers
3218 *  @adapter: Board private structure
3219 **/
3220void igb_setup_tctl(struct igb_adapter *adapter)
3221{
3222	struct e1000_hw *hw = &adapter->hw;
3223	u32 tctl;
3224
3225	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3226	wr32(E1000_TXDCTL(0), 0);
3227
3228	/* Program the Transmit Control Register */
3229	tctl = rd32(E1000_TCTL);
3230	tctl &= ~E1000_TCTL_CT;
3231	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3232		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3233
3234	igb_config_collision_dist(hw);
3235
3236	/* Enable transmits */
3237	tctl |= E1000_TCTL_EN;
3238
3239	wr32(E1000_TCTL, tctl);
3240}
3241
3242/**
3243 *  igb_configure_tx_ring - Configure transmit ring after Reset
3244 *  @adapter: board private structure
3245 *  @ring: tx ring to configure
3246 *
3247 *  Configure a transmit ring after a reset.
3248 **/
3249void igb_configure_tx_ring(struct igb_adapter *adapter,
3250			   struct igb_ring *ring)
3251{
3252	struct e1000_hw *hw = &adapter->hw;
3253	u32 txdctl = 0;
3254	u64 tdba = ring->dma;
3255	int reg_idx = ring->reg_idx;
3256
3257	/* disable the queue */
3258	wr32(E1000_TXDCTL(reg_idx), 0);
3259	wrfl();
3260	mdelay(10);
3261
3262	wr32(E1000_TDLEN(reg_idx),
3263	     ring->count * sizeof(union e1000_adv_tx_desc));
3264	wr32(E1000_TDBAL(reg_idx),
3265	     tdba & 0x00000000ffffffffULL);
3266	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3267
3268	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3269	wr32(E1000_TDH(reg_idx), 0);
3270	writel(0, ring->tail);
3271
3272	txdctl |= IGB_TX_PTHRESH;
3273	txdctl |= IGB_TX_HTHRESH << 8;
3274	txdctl |= IGB_TX_WTHRESH << 16;
3275
3276	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3277	wr32(E1000_TXDCTL(reg_idx), txdctl);
3278}
3279
3280/**
3281 *  igb_configure_tx - Configure transmit Unit after Reset
3282 *  @adapter: board private structure
3283 *
3284 *  Configure the Tx unit of the MAC after a reset.
3285 **/
3286static void igb_configure_tx(struct igb_adapter *adapter)
3287{
3288	int i;
3289
3290	for (i = 0; i < adapter->num_tx_queues; i++)
3291		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3292}
3293
3294/**
3295 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3296 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3297 *
3298 *  Returns 0 on success, negative on failure
3299 **/
3300int igb_setup_rx_resources(struct igb_ring *rx_ring)
3301{
3302	struct device *dev = rx_ring->dev;
3303	int size;
3304
3305	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3306
3307	rx_ring->rx_buffer_info = vzalloc(size);
3308	if (!rx_ring->rx_buffer_info)
3309		goto err;
3310
3311	/* Round up to nearest 4K */
3312	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3313	rx_ring->size = ALIGN(rx_ring->size, 4096);
3314
3315	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3316					   &rx_ring->dma, GFP_KERNEL);
3317	if (!rx_ring->desc)
3318		goto err;
3319
3320	rx_ring->next_to_alloc = 0;
3321	rx_ring->next_to_clean = 0;
3322	rx_ring->next_to_use = 0;
3323
3324	return 0;
3325
3326err:
3327	vfree(rx_ring->rx_buffer_info);
3328	rx_ring->rx_buffer_info = NULL;
3329	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3330	return -ENOMEM;
3331}
3332
3333/**
3334 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3335 *				 (Descriptors) for all queues
3336 *  @adapter: board private structure
3337 *
3338 *  Return 0 on success, negative on failure
3339 **/
3340static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3341{
3342	struct pci_dev *pdev = adapter->pdev;
3343	int i, err = 0;
3344
3345	for (i = 0; i < adapter->num_rx_queues; i++) {
3346		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3347		if (err) {
3348			dev_err(&pdev->dev,
3349				"Allocation for Rx Queue %u failed\n", i);
3350			for (i--; i >= 0; i--)
3351				igb_free_rx_resources(adapter->rx_ring[i]);
3352			break;
3353		}
3354	}
3355
3356	return err;
3357}
3358
3359/**
3360 *  igb_setup_mrqc - configure the multiple receive queue control registers
3361 *  @adapter: Board private structure
3362 **/
3363static void igb_setup_mrqc(struct igb_adapter *adapter)
3364{
3365	struct e1000_hw *hw = &adapter->hw;
3366	u32 mrqc, rxcsum;
3367	u32 j, num_rx_queues;
3368	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3369					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3370					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3371					0xFA01ACBE };
3372
3373	/* Fill out hash function seeds */
3374	for (j = 0; j < 10; j++)
3375		wr32(E1000_RSSRK(j), rsskey[j]);
3376
3377	num_rx_queues = adapter->rss_queues;
3378
3379	switch (hw->mac.type) {
3380	case e1000_82576:
3381		/* 82576 supports 2 RSS queues for SR-IOV */
3382		if (adapter->vfs_allocated_count)
3383			num_rx_queues = 2;
3384		break;
3385	default:
3386		break;
3387	}
3388
3389	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3390		for (j = 0; j < IGB_RETA_SIZE; j++)
3391			adapter->rss_indir_tbl[j] =
3392			(j * num_rx_queues) / IGB_RETA_SIZE;
3393		adapter->rss_indir_tbl_init = num_rx_queues;
3394	}
3395	igb_write_rss_indir_tbl(adapter);
3396
3397	/* Disable raw packet checksumming so that RSS hash is placed in
3398	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3399	 * offloads as they are enabled by default
3400	 */
3401	rxcsum = rd32(E1000_RXCSUM);
3402	rxcsum |= E1000_RXCSUM_PCSD;
3403
3404	if (adapter->hw.mac.type >= e1000_82576)
3405		/* Enable Receive Checksum Offload for SCTP */
3406		rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3409	wr32(E1000_RXCSUM, rxcsum);
3410
3411	/* Generate RSS hash based on packet types, TCP/UDP
3412	 * port numbers and/or IPv4/v6 src and dst addresses
3413	 */
3414	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416	       E1000_MRQC_RSS_FIELD_IPV6 |
3417	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425	/* If VMDq is enabled then we set the appropriate mode for that, else
3426	 * we default to RSS so that an RSS hash is calculated per packet even
3427	 * if we are only using one queue
3428	 */
3429	if (adapter->vfs_allocated_count) {
3430		if (hw->mac.type > e1000_82575) {
3431			/* Set the default pool for the PF's first queue */
3432			u32 vtctl = rd32(E1000_VT_CTL);
3433
3434			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3435				   E1000_VT_CTL_DISABLE_DEF_POOL);
3436			vtctl |= adapter->vfs_allocated_count <<
3437				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3438			wr32(E1000_VT_CTL, vtctl);
3439		}
3440		if (adapter->rss_queues > 1)
3441			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3442		else
3443			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3444	} else {
3445		if (hw->mac.type != e1000_i211)
3446			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3447	}
3448	igb_vmm_control(adapter);
3449
3450	wr32(E1000_MRQC, mrqc);
3451}
3452
3453/**
3454 *  igb_setup_rctl - configure the receive control registers
3455 *  @adapter: Board private structure
3456 **/
3457void igb_setup_rctl(struct igb_adapter *adapter)
3458{
3459	struct e1000_hw *hw = &adapter->hw;
3460	u32 rctl;
3461
3462	rctl = rd32(E1000_RCTL);
3463
3464	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3465	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3466
3467	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3468		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3469
3470	/* enable stripping of CRC. It's unlikely this will break BMC
3471	 * redirection as it did with e1000. Newer features require
3472	 * that the HW strips the CRC.
3473	 */
3474	rctl |= E1000_RCTL_SECRC;
3475
3476	/* disable store bad packets and clear size bits. */
3477	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3478
3479	/* enable LPE to prevent packets larger than max_frame_size */
3480	rctl |= E1000_RCTL_LPE;
3481
3482	/* disable queue 0 to prevent tail write w/o re-config */
3483	wr32(E1000_RXDCTL(0), 0);
3484
3485	/* Attention!!!  For SR-IOV PF driver operations you must enable
3486	 * queue drop for all VF and PF queues to prevent head of line blocking
3487	 * if an un-trusted VF does not provide descriptors to hardware.
3488	 */
3489	if (adapter->vfs_allocated_count) {
3490		/* set all queue drop enable bits */
3491		wr32(E1000_QDE, ALL_QUEUES);
3492	}
3493
3494	/* This is useful for sniffing bad packets. */
3495	if (adapter->netdev->features & NETIF_F_RXALL) {
3496		/* UPE and MPE will be handled by normal PROMISC logic
3497		 * in e1000e_set_rx_mode
3498		 */
3499		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3500			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3501			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3502
3503		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3504			  E1000_RCTL_DPF | /* Allow filtered pause */
3505			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3506		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3507		 * and that breaks VLANs.
3508		 */
3509	}
3510
3511	wr32(E1000_RCTL, rctl);
3512}
3513
3514static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3515				   int vfn)
3516{
3517	struct e1000_hw *hw = &adapter->hw;
3518	u32 vmolr;
3519
3520	/* if it isn't the PF check to see if VFs are enabled and
3521	 * increase the size to support vlan tags
3522	 */
3523	if (vfn < adapter->vfs_allocated_count &&
3524	    adapter->vf_data[vfn].vlans_enabled)
3525		size += VLAN_TAG_SIZE;
3526
3527	vmolr = rd32(E1000_VMOLR(vfn));
3528	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3529	vmolr |= size | E1000_VMOLR_LPE;
3530	wr32(E1000_VMOLR(vfn), vmolr);
3531
3532	return 0;
3533}
3534
3535/**
3536 *  igb_rlpml_set - set maximum receive packet size
3537 *  @adapter: board private structure
3538 *
3539 *  Configure maximum receivable packet size.
3540 **/
3541static void igb_rlpml_set(struct igb_adapter *adapter)
3542{
3543	u32 max_frame_size = adapter->max_frame_size;
3544	struct e1000_hw *hw = &adapter->hw;
3545	u16 pf_id = adapter->vfs_allocated_count;
3546
3547	if (pf_id) {
3548		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3549		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3550		 * to our max jumbo frame size, in case we need to enable
3551		 * jumbo frames on one of the rings later.
3552		 * This will not pass over-length frames into the default
3553		 * queue because it's gated by the VMOLR.RLPML.
3554		 */
3555		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3556	}
3557
3558	wr32(E1000_RLPML, max_frame_size);
3559}
3560
3561static inline void igb_set_vmolr(struct igb_adapter *adapter,
3562				 int vfn, bool aupe)
3563{
3564	struct e1000_hw *hw = &adapter->hw;
3565	u32 vmolr;
3566
3567	/* This register exists only on 82576 and newer so if we are older then
3568	 * we should exit and do nothing
3569	 */
3570	if (hw->mac.type < e1000_82576)
3571		return;
3572
3573	vmolr = rd32(E1000_VMOLR(vfn));
3574	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3575	if (hw->mac.type == e1000_i350) {
3576		u32 dvmolr;
3577
3578		dvmolr = rd32(E1000_DVMOLR(vfn));
3579		dvmolr |= E1000_DVMOLR_STRVLAN;
3580		wr32(E1000_DVMOLR(vfn), dvmolr);
3581	}
3582	if (aupe)
3583		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3584	else
3585		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3586
3587	/* clear all bits that might not be set */
3588	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3589
3590	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3591		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3592	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3593	 * multicast packets
3594	 */
3595	if (vfn <= adapter->vfs_allocated_count)
3596		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3597
3598	wr32(E1000_VMOLR(vfn), vmolr);
3599}
3600
3601/**
3602 *  igb_configure_rx_ring - Configure a receive ring after Reset
3603 *  @adapter: board private structure
3604 *  @ring: receive ring to be configured
3605 *
3606 *  Configure the Rx unit of the MAC after a reset.
3607 **/
3608void igb_configure_rx_ring(struct igb_adapter *adapter,
3609			   struct igb_ring *ring)
3610{
3611	struct e1000_hw *hw = &adapter->hw;
3612	u64 rdba = ring->dma;
3613	int reg_idx = ring->reg_idx;
3614	u32 srrctl = 0, rxdctl = 0;
3615
3616	/* disable the queue */
3617	wr32(E1000_RXDCTL(reg_idx), 0);
3618
3619	/* Set DMA base address registers */
3620	wr32(E1000_RDBAL(reg_idx),
3621	     rdba & 0x00000000ffffffffULL);
3622	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3623	wr32(E1000_RDLEN(reg_idx),
3624	     ring->count * sizeof(union e1000_adv_rx_desc));
3625
3626	/* initialize head and tail */
3627	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3628	wr32(E1000_RDH(reg_idx), 0);
3629	writel(0, ring->tail);
3630
3631	/* set descriptor configuration */
3632	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3633	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3634	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3635	if (hw->mac.type >= e1000_82580)
3636		srrctl |= E1000_SRRCTL_TIMESTAMP;
3637	/* Only set Drop Enable if we are supporting multiple queues */
3638	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3639		srrctl |= E1000_SRRCTL_DROP_EN;
3640
3641	wr32(E1000_SRRCTL(reg_idx), srrctl);
3642
3643	/* set filtering for VMDQ pools */
3644	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3645
3646	rxdctl |= IGB_RX_PTHRESH;
3647	rxdctl |= IGB_RX_HTHRESH << 8;
3648	rxdctl |= IGB_RX_WTHRESH << 16;
3649
3650	/* enable receive descriptor fetching */
3651	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3652	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3653}
3654
3655/**
3656 *  igb_configure_rx - Configure receive Unit after Reset
3657 *  @adapter: board private structure
3658 *
3659 *  Configure the Rx unit of the MAC after a reset.
3660 **/
3661static void igb_configure_rx(struct igb_adapter *adapter)
3662{
3663	int i;
3664
3665	/* set UTA to appropriate mode */
3666	igb_set_uta(adapter);
3667
3668	/* set the correct pool for the PF default MAC address in entry 0 */
3669	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3670			 adapter->vfs_allocated_count);
3671
3672	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3673	 * the Base and Length of the Rx Descriptor Ring
3674	 */
3675	for (i = 0; i < adapter->num_rx_queues; i++)
3676		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3677}
3678
3679/**
3680 *  igb_free_tx_resources - Free Tx Resources per Queue
3681 *  @tx_ring: Tx descriptor ring for a specific queue
3682 *
3683 *  Free all transmit software resources
3684 **/
3685void igb_free_tx_resources(struct igb_ring *tx_ring)
3686{
3687	igb_clean_tx_ring(tx_ring);
3688
3689	vfree(tx_ring->tx_buffer_info);
3690	tx_ring->tx_buffer_info = NULL;
3691
3692	/* if not set, then don't free */
3693	if (!tx_ring->desc)
3694		return;
3695
3696	dma_free_coherent(tx_ring->dev, tx_ring->size,
3697			  tx_ring->desc, tx_ring->dma);
3698
3699	tx_ring->desc = NULL;
3700}
3701
3702/**
3703 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3704 *  @adapter: board private structure
3705 *
3706 *  Free all transmit software resources
3707 **/
3708static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3709{
3710	int i;
3711
3712	for (i = 0; i < adapter->num_tx_queues; i++)
3713		igb_free_tx_resources(adapter->tx_ring[i]);
3714}
3715
3716void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3717				    struct igb_tx_buffer *tx_buffer)
3718{
3719	if (tx_buffer->skb) {
3720		dev_kfree_skb_any(tx_buffer->skb);
3721		if (dma_unmap_len(tx_buffer, len))
3722			dma_unmap_single(ring->dev,
3723					 dma_unmap_addr(tx_buffer, dma),
3724					 dma_unmap_len(tx_buffer, len),
3725					 DMA_TO_DEVICE);
3726	} else if (dma_unmap_len(tx_buffer, len)) {
3727		dma_unmap_page(ring->dev,
3728			       dma_unmap_addr(tx_buffer, dma),
3729			       dma_unmap_len(tx_buffer, len),
3730			       DMA_TO_DEVICE);
3731	}
3732	tx_buffer->next_to_watch = NULL;
3733	tx_buffer->skb = NULL;
3734	dma_unmap_len_set(tx_buffer, len, 0);
3735	/* buffer_info must be completely set up in the transmit path */
3736}
3737
3738/**
3739 *  igb_clean_tx_ring - Free Tx Buffers
3740 *  @tx_ring: ring to be cleaned
3741 **/
3742static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3743{
3744	struct igb_tx_buffer *buffer_info;
3745	unsigned long size;
3746	u16 i;
3747
3748	if (!tx_ring->tx_buffer_info)
3749		return;
3750	/* Free all the Tx ring sk_buffs */
3751
3752	for (i = 0; i < tx_ring->count; i++) {
3753		buffer_info = &tx_ring->tx_buffer_info[i];
3754		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3755	}
3756
3757	netdev_tx_reset_queue(txring_txq(tx_ring));
3758
3759	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3760	memset(tx_ring->tx_buffer_info, 0, size);
3761
3762	/* Zero out the descriptor ring */
3763	memset(tx_ring->desc, 0, tx_ring->size);
3764
3765	tx_ring->next_to_use = 0;
3766	tx_ring->next_to_clean = 0;
3767}
3768
3769/**
3770 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3771 *  @adapter: board private structure
3772 **/
3773static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3774{
3775	int i;
3776
3777	for (i = 0; i < adapter->num_tx_queues; i++)
3778		igb_clean_tx_ring(adapter->tx_ring[i]);
3779}
3780
3781/**
3782 *  igb_free_rx_resources - Free Rx Resources
3783 *  @rx_ring: ring to clean the resources from
3784 *
3785 *  Free all receive software resources
3786 **/
3787void igb_free_rx_resources(struct igb_ring *rx_ring)
3788{
3789	igb_clean_rx_ring(rx_ring);
3790
3791	vfree(rx_ring->rx_buffer_info);
3792	rx_ring->rx_buffer_info = NULL;
3793
3794	/* if not set, then don't free */
3795	if (!rx_ring->desc)
3796		return;
3797
3798	dma_free_coherent(rx_ring->dev, rx_ring->size,
3799			  rx_ring->desc, rx_ring->dma);
3800
3801	rx_ring->desc = NULL;
3802}
3803
3804/**
3805 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3806 *  @adapter: board private structure
3807 *
3808 *  Free all receive software resources
3809 **/
3810static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3811{
3812	int i;
3813
3814	for (i = 0; i < adapter->num_rx_queues; i++)
3815		igb_free_rx_resources(adapter->rx_ring[i]);
3816}
3817
3818/**
3819 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3820 *  @rx_ring: ring to free buffers from
3821 **/
3822static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3823{
3824	unsigned long size;
3825	u16 i;
3826
3827	if (rx_ring->skb)
3828		dev_kfree_skb(rx_ring->skb);
3829	rx_ring->skb = NULL;
3830
3831	if (!rx_ring->rx_buffer_info)
3832		return;
3833
3834	/* Free all the Rx ring sk_buffs */
3835	for (i = 0; i < rx_ring->count; i++) {
3836		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3837
3838		if (!buffer_info->page)
3839			continue;
3840
3841		dma_unmap_page(rx_ring->dev,
3842			       buffer_info->dma,
3843			       PAGE_SIZE,
3844			       DMA_FROM_DEVICE);
3845		__free_page(buffer_info->page);
3846
3847		buffer_info->page = NULL;
3848	}
3849
3850	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3851	memset(rx_ring->rx_buffer_info, 0, size);
3852
3853	/* Zero out the descriptor ring */
3854	memset(rx_ring->desc, 0, rx_ring->size);
3855
3856	rx_ring->next_to_alloc = 0;
3857	rx_ring->next_to_clean = 0;
3858	rx_ring->next_to_use = 0;
3859}
3860
3861/**
3862 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3863 *  @adapter: board private structure
3864 **/
3865static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3866{
3867	int i;
3868
3869	for (i = 0; i < adapter->num_rx_queues; i++)
3870		igb_clean_rx_ring(adapter->rx_ring[i]);
3871}
3872
3873/**
3874 *  igb_set_mac - Change the Ethernet Address of the NIC
3875 *  @netdev: network interface device structure
3876 *  @p: pointer to an address structure
3877 *
3878 *  Returns 0 on success, negative on failure
3879 **/
3880static int igb_set_mac(struct net_device *netdev, void *p)
3881{
3882	struct igb_adapter *adapter = netdev_priv(netdev);
3883	struct e1000_hw *hw = &adapter->hw;
3884	struct sockaddr *addr = p;
3885
3886	if (!is_valid_ether_addr(addr->sa_data))
3887		return -EADDRNOTAVAIL;
3888
3889	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3890	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3891
3892	/* set the correct pool for the new PF MAC address in entry 0 */
3893	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3894			 adapter->vfs_allocated_count);
3895
3896	return 0;
3897}
3898
3899/**
3900 *  igb_write_mc_addr_list - write multicast addresses to MTA
3901 *  @netdev: network interface device structure
3902 *
3903 *  Writes multicast address list to the MTA hash table.
3904 *  Returns: -ENOMEM on failure
3905 *           0 on no addresses written
3906 *           X on writing X addresses to MTA
3907 **/
3908static int igb_write_mc_addr_list(struct net_device *netdev)
3909{
3910	struct igb_adapter *adapter = netdev_priv(netdev);
3911	struct e1000_hw *hw = &adapter->hw;
3912	struct netdev_hw_addr *ha;
3913	u8  *mta_list;
3914	int i;
3915
3916	if (netdev_mc_empty(netdev)) {
3917		/* nothing to program, so clear mc list */
3918		igb_update_mc_addr_list(hw, NULL, 0);
3919		igb_restore_vf_multicasts(adapter);
3920		return 0;
3921	}
3922
3923	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3924	if (!mta_list)
3925		return -ENOMEM;
3926
3927	/* The shared function expects a packed array of only addresses. */
3928	i = 0;
3929	netdev_for_each_mc_addr(ha, netdev)
3930		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3931
3932	igb_update_mc_addr_list(hw, mta_list, i);
3933	kfree(mta_list);
3934
3935	return netdev_mc_count(netdev);
3936}
3937
3938/**
3939 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3940 *  @netdev: network interface device structure
3941 *
3942 *  Writes unicast address list to the RAR table.
3943 *  Returns: -ENOMEM on failure/insufficient address space
3944 *           0 on no addresses written
3945 *           X on writing X addresses to the RAR table
3946 **/
3947static int igb_write_uc_addr_list(struct net_device *netdev)
3948{
3949	struct igb_adapter *adapter = netdev_priv(netdev);
3950	struct e1000_hw *hw = &adapter->hw;
3951	unsigned int vfn = adapter->vfs_allocated_count;
3952	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3953	int count = 0;
3954
3955	/* return ENOMEM indicating insufficient memory for addresses */
3956	if (netdev_uc_count(netdev) > rar_entries)
3957		return -ENOMEM;
3958
3959	if (!netdev_uc_empty(netdev) && rar_entries) {
3960		struct netdev_hw_addr *ha;
3961
3962		netdev_for_each_uc_addr(ha, netdev) {
3963			if (!rar_entries)
3964				break;
3965			igb_rar_set_qsel(adapter, ha->addr,
3966					 rar_entries--,
3967					 vfn);
3968			count++;
3969		}
3970	}
3971	/* write the addresses in reverse order to avoid write combining */
3972	for (; rar_entries > 0 ; rar_entries--) {
3973		wr32(E1000_RAH(rar_entries), 0);
3974		wr32(E1000_RAL(rar_entries), 0);
3975	}
3976	wrfl();
3977
3978	return count;
3979}
3980
3981/**
3982 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3983 *  @netdev: network interface device structure
3984 *
3985 *  The set_rx_mode entry point is called whenever the unicast or multicast
3986 *  address lists or the network interface flags are updated.  This routine is
3987 *  responsible for configuring the hardware for proper unicast, multicast,
3988 *  promiscuous mode, and all-multi behavior.
3989 **/
3990static void igb_set_rx_mode(struct net_device *netdev)
3991{
3992	struct igb_adapter *adapter = netdev_priv(netdev);
3993	struct e1000_hw *hw = &adapter->hw;
3994	unsigned int vfn = adapter->vfs_allocated_count;
3995	u32 rctl, vmolr = 0;
3996	int count;
3997
3998	/* Check for Promiscuous and All Multicast modes */
3999	rctl = rd32(E1000_RCTL);
4000
4001	/* clear the effected bits */
4002	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4003
4004	if (netdev->flags & IFF_PROMISC) {
4005		/* retain VLAN HW filtering if in VT mode */
4006		if (adapter->vfs_allocated_count)
4007			rctl |= E1000_RCTL_VFE;
4008		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4009		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4010	} else {
4011		if (netdev->flags & IFF_ALLMULTI) {
4012			rctl |= E1000_RCTL_MPE;
4013			vmolr |= E1000_VMOLR_MPME;
4014		} else {
4015			/* Write addresses to the MTA, if the attempt fails
4016			 * then we should just turn on promiscuous mode so
4017			 * that we can at least receive multicast traffic
4018			 */
4019			count = igb_write_mc_addr_list(netdev);
4020			if (count < 0) {
4021				rctl |= E1000_RCTL_MPE;
4022				vmolr |= E1000_VMOLR_MPME;
4023			} else if (count) {
4024				vmolr |= E1000_VMOLR_ROMPE;
4025			}
4026		}
4027		/* Write addresses to available RAR registers, if there is not
4028		 * sufficient space to store all the addresses then enable
4029		 * unicast promiscuous mode
4030		 */
4031		count = igb_write_uc_addr_list(netdev);
4032		if (count < 0) {
4033			rctl |= E1000_RCTL_UPE;
4034			vmolr |= E1000_VMOLR_ROPE;
4035		}
4036		rctl |= E1000_RCTL_VFE;
4037	}
4038	wr32(E1000_RCTL, rctl);
4039
4040	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4041	 * the VMOLR to enable the appropriate modes.  Without this workaround
4042	 * we will have issues with VLAN tag stripping not being done for frames
4043	 * that are only arriving because we are the default pool
4044	 */
4045	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4046		return;
4047
4048	vmolr |= rd32(E1000_VMOLR(vfn)) &
4049		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4050	wr32(E1000_VMOLR(vfn), vmolr);
4051	igb_restore_vf_multicasts(adapter);
4052}
4053
4054static void igb_check_wvbr(struct igb_adapter *adapter)
4055{
4056	struct e1000_hw *hw = &adapter->hw;
4057	u32 wvbr = 0;
4058
4059	switch (hw->mac.type) {
4060	case e1000_82576:
4061	case e1000_i350:
4062		wvbr = rd32(E1000_WVBR);
4063		if (!wvbr)
4064			return;
4065		break;
4066	default:
4067		break;
4068	}
4069
4070	adapter->wvbr |= wvbr;
4071}
4072
4073#define IGB_STAGGERED_QUEUE_OFFSET 8
4074
4075static void igb_spoof_check(struct igb_adapter *adapter)
4076{
4077	int j;
4078
4079	if (!adapter->wvbr)
4080		return;
4081
4082	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4083		if (adapter->wvbr & (1 << j) ||
4084		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4085			dev_warn(&adapter->pdev->dev,
4086				"Spoof event(s) detected on VF %d\n", j);
4087			adapter->wvbr &=
4088				~((1 << j) |
4089				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4090		}
4091	}
4092}
4093
4094/* Need to wait a few seconds after link up to get diagnostic information from
4095 * the phy
4096 */
4097static void igb_update_phy_info(unsigned long data)
4098{
4099	struct igb_adapter *adapter = (struct igb_adapter *) data;
4100	igb_get_phy_info(&adapter->hw);
4101}
4102
4103/**
4104 *  igb_has_link - check shared code for link and determine up/down
4105 *  @adapter: pointer to driver private info
4106 **/
4107bool igb_has_link(struct igb_adapter *adapter)
4108{
4109	struct e1000_hw *hw = &adapter->hw;
4110	bool link_active = false;
4111
4112	/* get_link_status is set on LSC (link status) interrupt or
4113	 * rx sequence error interrupt.  get_link_status will stay
4114	 * false until the e1000_check_for_link establishes link
4115	 * for copper adapters ONLY
4116	 */
4117	switch (hw->phy.media_type) {
4118	case e1000_media_type_copper:
4119		if (!hw->mac.get_link_status)
4120			return true;
4121	case e1000_media_type_internal_serdes:
4122		hw->mac.ops.check_for_link(hw);
4123		link_active = !hw->mac.get_link_status;
4124		break;
4125	default:
4126	case e1000_media_type_unknown:
4127		break;
4128	}
4129
4130	if (((hw->mac.type == e1000_i210) ||
4131	     (hw->mac.type == e1000_i211)) &&
4132	     (hw->phy.id == I210_I_PHY_ID)) {
4133		if (!netif_carrier_ok(adapter->netdev)) {
4134			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4135		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4136			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4137			adapter->link_check_timeout = jiffies;
4138		}
4139	}
4140
4141	return link_active;
4142}
4143
4144static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4145{
4146	bool ret = false;
4147	u32 ctrl_ext, thstat;
4148
4149	/* check for thermal sensor event on i350 copper only */
4150	if (hw->mac.type == e1000_i350) {
4151		thstat = rd32(E1000_THSTAT);
4152		ctrl_ext = rd32(E1000_CTRL_EXT);
4153
4154		if ((hw->phy.media_type == e1000_media_type_copper) &&
4155		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4156			ret = !!(thstat & event);
4157	}
4158
4159	return ret;
4160}
4161
4162/**
4163 *  igb_watchdog - Timer Call-back
4164 *  @data: pointer to adapter cast into an unsigned long
4165 **/
4166static void igb_watchdog(unsigned long data)
4167{
4168	struct igb_adapter *adapter = (struct igb_adapter *)data;
4169	/* Do the rest outside of interrupt context */
4170	schedule_work(&adapter->watchdog_task);
4171}
4172
4173static void igb_watchdog_task(struct work_struct *work)
4174{
4175	struct igb_adapter *adapter = container_of(work,
4176						   struct igb_adapter,
4177						   watchdog_task);
4178	struct e1000_hw *hw = &adapter->hw;
4179	struct e1000_phy_info *phy = &hw->phy;
4180	struct net_device *netdev = adapter->netdev;
4181	u32 link;
4182	int i;
4183	u32 connsw;
4184
4185	link = igb_has_link(adapter);
4186
4187	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4188		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4189			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4190		else
4191			link = false;
4192	}
4193
4194	/* Force link down if we have fiber to swap to */
4195	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4196		if (hw->phy.media_type == e1000_media_type_copper) {
4197			connsw = rd32(E1000_CONNSW);
4198			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4199				link = 0;
4200		}
4201	}
4202	if (link) {
4203		/* Perform a reset if the media type changed. */
4204		if (hw->dev_spec._82575.media_changed) {
4205			hw->dev_spec._82575.media_changed = false;
4206			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4207			igb_reset(adapter);
4208		}
4209		/* Cancel scheduled suspend requests. */
4210		pm_runtime_resume(netdev->dev.parent);
4211
4212		if (!netif_carrier_ok(netdev)) {
4213			u32 ctrl;
4214
4215			hw->mac.ops.get_speed_and_duplex(hw,
4216							 &adapter->link_speed,
4217							 &adapter->link_duplex);
4218
4219			ctrl = rd32(E1000_CTRL);
4220			/* Links status message must follow this format */
4221			netdev_info(netdev,
4222			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4223			       netdev->name,
4224			       adapter->link_speed,
4225			       adapter->link_duplex == FULL_DUPLEX ?
4226			       "Full" : "Half",
4227			       (ctrl & E1000_CTRL_TFCE) &&
4228			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4229			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4230			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4231
4232			/* disable EEE if enabled */
4233			if ((adapter->flags & IGB_FLAG_EEE) &&
4234				(adapter->link_duplex == HALF_DUPLEX)) {
4235				dev_info(&adapter->pdev->dev,
4236				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4237				adapter->hw.dev_spec._82575.eee_disable = true;
4238				adapter->flags &= ~IGB_FLAG_EEE;
4239			}
4240
4241			/* check if SmartSpeed worked */
4242			igb_check_downshift(hw);
4243			if (phy->speed_downgraded)
4244				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4245
4246			/* check for thermal sensor event */
4247			if (igb_thermal_sensor_event(hw,
4248			    E1000_THSTAT_LINK_THROTTLE))
4249				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4250
4251			/* adjust timeout factor according to speed/duplex */
4252			adapter->tx_timeout_factor = 1;
4253			switch (adapter->link_speed) {
4254			case SPEED_10:
4255				adapter->tx_timeout_factor = 14;
4256				break;
4257			case SPEED_100:
4258				/* maybe add some timeout factor ? */
4259				break;
4260			}
4261
4262			netif_carrier_on(netdev);
4263
4264			igb_ping_all_vfs(adapter);
4265			igb_check_vf_rate_limit(adapter);
4266
4267			/* link state has changed, schedule phy info update */
4268			if (!test_bit(__IGB_DOWN, &adapter->state))
4269				mod_timer(&adapter->phy_info_timer,
4270					  round_jiffies(jiffies + 2 * HZ));
4271		}
4272	} else {
4273		if (netif_carrier_ok(netdev)) {
4274			adapter->link_speed = 0;
4275			adapter->link_duplex = 0;
4276
4277			/* check for thermal sensor event */
4278			if (igb_thermal_sensor_event(hw,
4279			    E1000_THSTAT_PWR_DOWN)) {
4280				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4281			}
4282
4283			/* Links status message must follow this format */
4284			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4285			       netdev->name);
4286			netif_carrier_off(netdev);
4287
4288			igb_ping_all_vfs(adapter);
4289
4290			/* link state has changed, schedule phy info update */
4291			if (!test_bit(__IGB_DOWN, &adapter->state))
4292				mod_timer(&adapter->phy_info_timer,
4293					  round_jiffies(jiffies + 2 * HZ));
4294
4295			/* link is down, time to check for alternate media */
4296			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4297				igb_check_swap_media(adapter);
4298				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4299					schedule_work(&adapter->reset_task);
4300					/* return immediately */
4301					return;
4302				}
4303			}
4304			pm_schedule_suspend(netdev->dev.parent,
4305					    MSEC_PER_SEC * 5);
4306
4307		/* also check for alternate media here */
4308		} else if (!netif_carrier_ok(netdev) &&
4309			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4310			igb_check_swap_media(adapter);
4311			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4312				schedule_work(&adapter->reset_task);
4313				/* return immediately */
4314				return;
4315			}
4316		}
4317	}
4318
4319	spin_lock(&adapter->stats64_lock);
4320	igb_update_stats(adapter, &adapter->stats64);
4321	spin_unlock(&adapter->stats64_lock);
4322
4323	for (i = 0; i < adapter->num_tx_queues; i++) {
4324		struct igb_ring *tx_ring = adapter->tx_ring[i];
4325		if (!netif_carrier_ok(netdev)) {
4326			/* We've lost link, so the controller stops DMA,
4327			 * but we've got queued Tx work that's never going
4328			 * to get done, so reset controller to flush Tx.
4329			 * (Do the reset outside of interrupt context).
4330			 */
4331			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4332				adapter->tx_timeout_count++;
4333				schedule_work(&adapter->reset_task);
4334				/* return immediately since reset is imminent */
4335				return;
4336			}
4337		}
4338
4339		/* Force detection of hung controller every watchdog period */
4340		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4341	}
4342
4343	/* Cause software interrupt to ensure Rx ring is cleaned */
4344	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4345		u32 eics = 0;
4346
4347		for (i = 0; i < adapter->num_q_vectors; i++)
4348			eics |= adapter->q_vector[i]->eims_value;
4349		wr32(E1000_EICS, eics);
4350	} else {
4351		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352	}
4353
4354	igb_spoof_check(adapter);
4355	igb_ptp_rx_hang(adapter);
4356
4357	/* Reset the timer */
4358	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360			mod_timer(&adapter->watchdog_timer,
4361				  round_jiffies(jiffies +  HZ));
4362		else
4363			mod_timer(&adapter->watchdog_timer,
4364				  round_jiffies(jiffies + 2 * HZ));
4365	}
4366}
4367
4368enum latency_range {
4369	lowest_latency = 0,
4370	low_latency = 1,
4371	bulk_latency = 2,
4372	latency_invalid = 255
4373};
4374
4375/**
4376 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4377 *  @q_vector: pointer to q_vector
4378 *
4379 *  Stores a new ITR value based on strictly on packet size.  This
4380 *  algorithm is less sophisticated than that used in igb_update_itr,
4381 *  due to the difficulty of synchronizing statistics across multiple
4382 *  receive rings.  The divisors and thresholds used by this function
4383 *  were determined based on theoretical maximum wire speed and testing
4384 *  data, in order to minimize response time while increasing bulk
4385 *  throughput.
4386 *  This functionality is controlled by ethtool's coalescing settings.
4387 *  NOTE:  This function is called only when operating in a multiqueue
4388 *         receive environment.
4389 **/
4390static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4391{
4392	int new_val = q_vector->itr_val;
4393	int avg_wire_size = 0;
4394	struct igb_adapter *adapter = q_vector->adapter;
4395	unsigned int packets;
4396
4397	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4398	 * ints/sec - ITR timer value of 120 ticks.
4399	 */
4400	if (adapter->link_speed != SPEED_1000) {
4401		new_val = IGB_4K_ITR;
4402		goto set_itr_val;
4403	}
4404
4405	packets = q_vector->rx.total_packets;
4406	if (packets)
4407		avg_wire_size = q_vector->rx.total_bytes / packets;
4408
4409	packets = q_vector->tx.total_packets;
4410	if (packets)
4411		avg_wire_size = max_t(u32, avg_wire_size,
4412				      q_vector->tx.total_bytes / packets);
4413
4414	/* if avg_wire_size isn't set no work was done */
4415	if (!avg_wire_size)
4416		goto clear_counts;
4417
4418	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4419	avg_wire_size += 24;
4420
4421	/* Don't starve jumbo frames */
4422	avg_wire_size = min(avg_wire_size, 3000);
4423
4424	/* Give a little boost to mid-size frames */
4425	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426		new_val = avg_wire_size / 3;
4427	else
4428		new_val = avg_wire_size / 2;
4429
4430	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4431	if (new_val < IGB_20K_ITR &&
4432	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434		new_val = IGB_20K_ITR;
4435
4436set_itr_val:
4437	if (new_val != q_vector->itr_val) {
4438		q_vector->itr_val = new_val;
4439		q_vector->set_itr = 1;
4440	}
4441clear_counts:
4442	q_vector->rx.total_bytes = 0;
4443	q_vector->rx.total_packets = 0;
4444	q_vector->tx.total_bytes = 0;
4445	q_vector->tx.total_packets = 0;
4446}
4447
4448/**
4449 *  igb_update_itr - update the dynamic ITR value based on statistics
4450 *  @q_vector: pointer to q_vector
4451 *  @ring_container: ring info to update the itr for
4452 *
4453 *  Stores a new ITR value based on packets and byte
4454 *  counts during the last interrupt.  The advantage of per interrupt
4455 *  computation is faster updates and more accurate ITR for the current
4456 *  traffic pattern.  Constants in this function were computed
4457 *  based on theoretical maximum wire speed and thresholds were set based
4458 *  on testing data as well as attempting to minimize response time
4459 *  while increasing bulk throughput.
4460 *  This functionality is controlled by ethtool's coalescing settings.
4461 *  NOTE:  These calculations are only valid when operating in a single-
4462 *         queue environment.
4463 **/
4464static void igb_update_itr(struct igb_q_vector *q_vector,
4465			   struct igb_ring_container *ring_container)
4466{
4467	unsigned int packets = ring_container->total_packets;
4468	unsigned int bytes = ring_container->total_bytes;
4469	u8 itrval = ring_container->itr;
4470
4471	/* no packets, exit with status unchanged */
4472	if (packets == 0)
4473		return;
4474
4475	switch (itrval) {
4476	case lowest_latency:
4477		/* handle TSO and jumbo frames */
4478		if (bytes/packets > 8000)
4479			itrval = bulk_latency;
4480		else if ((packets < 5) && (bytes > 512))
4481			itrval = low_latency;
4482		break;
4483	case low_latency:  /* 50 usec aka 20000 ints/s */
4484		if (bytes > 10000) {
4485			/* this if handles the TSO accounting */
4486			if (bytes/packets > 8000)
4487				itrval = bulk_latency;
4488			else if ((packets < 10) || ((bytes/packets) > 1200))
4489				itrval = bulk_latency;
4490			else if ((packets > 35))
4491				itrval = lowest_latency;
4492		} else if (bytes/packets > 2000) {
4493			itrval = bulk_latency;
4494		} else if (packets <= 2 && bytes < 512) {
4495			itrval = lowest_latency;
4496		}
4497		break;
4498	case bulk_latency: /* 250 usec aka 4000 ints/s */
4499		if (bytes > 25000) {
4500			if (packets > 35)
4501				itrval = low_latency;
4502		} else if (bytes < 1500) {
4503			itrval = low_latency;
4504		}
4505		break;
4506	}
4507
4508	/* clear work counters since we have the values we need */
4509	ring_container->total_bytes = 0;
4510	ring_container->total_packets = 0;
4511
4512	/* write updated itr to ring container */
4513	ring_container->itr = itrval;
4514}
4515
4516static void igb_set_itr(struct igb_q_vector *q_vector)
4517{
4518	struct igb_adapter *adapter = q_vector->adapter;
4519	u32 new_itr = q_vector->itr_val;
4520	u8 current_itr = 0;
4521
4522	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4523	if (adapter->link_speed != SPEED_1000) {
4524		current_itr = 0;
4525		new_itr = IGB_4K_ITR;
4526		goto set_itr_now;
4527	}
4528
4529	igb_update_itr(q_vector, &q_vector->tx);
4530	igb_update_itr(q_vector, &q_vector->rx);
4531
4532	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4533
4534	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4535	if (current_itr == lowest_latency &&
4536	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4537	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4538		current_itr = low_latency;
4539
4540	switch (current_itr) {
4541	/* counts and packets in update_itr are dependent on these numbers */
4542	case lowest_latency:
4543		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4544		break;
4545	case low_latency:
4546		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4547		break;
4548	case bulk_latency:
4549		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4550		break;
4551	default:
4552		break;
4553	}
4554
4555set_itr_now:
4556	if (new_itr != q_vector->itr_val) {
4557		/* this attempts to bias the interrupt rate towards Bulk
4558		 * by adding intermediate steps when interrupt rate is
4559		 * increasing
4560		 */
4561		new_itr = new_itr > q_vector->itr_val ?
4562			  max((new_itr * q_vector->itr_val) /
4563			  (new_itr + (q_vector->itr_val >> 2)),
4564			  new_itr) : new_itr;
4565		/* Don't write the value here; it resets the adapter's
4566		 * internal timer, and causes us to delay far longer than
4567		 * we should between interrupts.  Instead, we write the ITR
4568		 * value at the beginning of the next interrupt so the timing
4569		 * ends up being correct.
4570		 */
4571		q_vector->itr_val = new_itr;
4572		q_vector->set_itr = 1;
4573	}
4574}
4575
4576static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4577			    u32 type_tucmd, u32 mss_l4len_idx)
4578{
4579	struct e1000_adv_tx_context_desc *context_desc;
4580	u16 i = tx_ring->next_to_use;
4581
4582	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4583
4584	i++;
4585	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4586
4587	/* set bits to identify this as an advanced context descriptor */
4588	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4589
4590	/* For 82575, context index must be unique per ring. */
4591	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4592		mss_l4len_idx |= tx_ring->reg_idx << 4;
4593
4594	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4595	context_desc->seqnum_seed	= 0;
4596	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4597	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4598}
4599
4600static int igb_tso(struct igb_ring *tx_ring,
4601		   struct igb_tx_buffer *first,
4602		   u8 *hdr_len)
4603{
4604	struct sk_buff *skb = first->skb;
4605	u32 vlan_macip_lens, type_tucmd;
4606	u32 mss_l4len_idx, l4len;
4607	int err;
4608
4609	if (skb->ip_summed != CHECKSUM_PARTIAL)
4610		return 0;
4611
4612	if (!skb_is_gso(skb))
4613		return 0;
4614
4615	err = skb_cow_head(skb, 0);
4616	if (err < 0)
4617		return err;
4618
4619	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4620	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4621
4622	if (first->protocol == htons(ETH_P_IP)) {
4623		struct iphdr *iph = ip_hdr(skb);
4624		iph->tot_len = 0;
4625		iph->check = 0;
4626		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4627							 iph->daddr, 0,
4628							 IPPROTO_TCP,
4629							 0);
4630		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4631		first->tx_flags |= IGB_TX_FLAGS_TSO |
4632				   IGB_TX_FLAGS_CSUM |
4633				   IGB_TX_FLAGS_IPV4;
4634	} else if (skb_is_gso_v6(skb)) {
4635		ipv6_hdr(skb)->payload_len = 0;
4636		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4637						       &ipv6_hdr(skb)->daddr,
4638						       0, IPPROTO_TCP, 0);
4639		first->tx_flags |= IGB_TX_FLAGS_TSO |
4640				   IGB_TX_FLAGS_CSUM;
4641	}
4642
4643	/* compute header lengths */
4644	l4len = tcp_hdrlen(skb);
4645	*hdr_len = skb_transport_offset(skb) + l4len;
4646
4647	/* update gso size and bytecount with header size */
4648	first->gso_segs = skb_shinfo(skb)->gso_segs;
4649	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4650
4651	/* MSS L4LEN IDX */
4652	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4653	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4654
4655	/* VLAN MACLEN IPLEN */
4656	vlan_macip_lens = skb_network_header_len(skb);
4657	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4658	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4659
4660	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4661
4662	return 1;
4663}
4664
4665static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4666{
4667	struct sk_buff *skb = first->skb;
4668	u32 vlan_macip_lens = 0;
4669	u32 mss_l4len_idx = 0;
4670	u32 type_tucmd = 0;
4671
4672	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4673		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4674			return;
4675	} else {
4676		u8 l4_hdr = 0;
4677
4678		switch (first->protocol) {
4679		case htons(ETH_P_IP):
4680			vlan_macip_lens |= skb_network_header_len(skb);
4681			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682			l4_hdr = ip_hdr(skb)->protocol;
4683			break;
4684		case htons(ETH_P_IPV6):
4685			vlan_macip_lens |= skb_network_header_len(skb);
4686			l4_hdr = ipv6_hdr(skb)->nexthdr;
4687			break;
4688		default:
4689			if (unlikely(net_ratelimit())) {
4690				dev_warn(tx_ring->dev,
4691					 "partial checksum but proto=%x!\n",
4692					 first->protocol);
4693			}
4694			break;
4695		}
4696
4697		switch (l4_hdr) {
4698		case IPPROTO_TCP:
4699			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4700			mss_l4len_idx = tcp_hdrlen(skb) <<
4701					E1000_ADVTXD_L4LEN_SHIFT;
4702			break;
4703		case IPPROTO_SCTP:
4704			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4705			mss_l4len_idx = sizeof(struct sctphdr) <<
4706					E1000_ADVTXD_L4LEN_SHIFT;
4707			break;
4708		case IPPROTO_UDP:
4709			mss_l4len_idx = sizeof(struct udphdr) <<
4710					E1000_ADVTXD_L4LEN_SHIFT;
4711			break;
4712		default:
4713			if (unlikely(net_ratelimit())) {
4714				dev_warn(tx_ring->dev,
4715					 "partial checksum but l4 proto=%x!\n",
4716					 l4_hdr);
4717			}
4718			break;
4719		}
4720
4721		/* update TX checksum flag */
4722		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4723	}
4724
4725	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4726	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4727
4728	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4729}
4730
4731#define IGB_SET_FLAG(_input, _flag, _result) \
4732	((_flag <= _result) ? \
4733	 ((u32)(_input & _flag) * (_result / _flag)) : \
4734	 ((u32)(_input & _flag) / (_flag / _result)))
4735
4736static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4737{
4738	/* set type for advanced descriptor with frame checksum insertion */
4739	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4740		       E1000_ADVTXD_DCMD_DEXT |
4741		       E1000_ADVTXD_DCMD_IFCS;
4742
4743	/* set HW vlan bit if vlan is present */
4744	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4745				 (E1000_ADVTXD_DCMD_VLE));
4746
4747	/* set segmentation bits for TSO */
4748	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4749				 (E1000_ADVTXD_DCMD_TSE));
4750
4751	/* set timestamp bit if present */
4752	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4753				 (E1000_ADVTXD_MAC_TSTAMP));
4754
4755	/* insert frame checksum */
4756	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4757
4758	return cmd_type;
4759}
4760
4761static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4762				 union e1000_adv_tx_desc *tx_desc,
4763				 u32 tx_flags, unsigned int paylen)
4764{
4765	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4766
4767	/* 82575 requires a unique index per ring */
4768	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4769		olinfo_status |= tx_ring->reg_idx << 4;
4770
4771	/* insert L4 checksum */
4772	olinfo_status |= IGB_SET_FLAG(tx_flags,
4773				      IGB_TX_FLAGS_CSUM,
4774				      (E1000_TXD_POPTS_TXSM << 8));
4775
4776	/* insert IPv4 checksum */
4777	olinfo_status |= IGB_SET_FLAG(tx_flags,
4778				      IGB_TX_FLAGS_IPV4,
4779				      (E1000_TXD_POPTS_IXSM << 8));
4780
4781	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4782}
4783
4784static void igb_tx_map(struct igb_ring *tx_ring,
4785		       struct igb_tx_buffer *first,
4786		       const u8 hdr_len)
4787{
4788	struct sk_buff *skb = first->skb;
4789	struct igb_tx_buffer *tx_buffer;
4790	union e1000_adv_tx_desc *tx_desc;
4791	struct skb_frag_struct *frag;
4792	dma_addr_t dma;
4793	unsigned int data_len, size;
4794	u32 tx_flags = first->tx_flags;
4795	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4796	u16 i = tx_ring->next_to_use;
4797
4798	tx_desc = IGB_TX_DESC(tx_ring, i);
4799
4800	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4801
4802	size = skb_headlen(skb);
4803	data_len = skb->data_len;
4804
4805	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4806
4807	tx_buffer = first;
4808
4809	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4810		if (dma_mapping_error(tx_ring->dev, dma))
4811			goto dma_error;
4812
4813		/* record length, and DMA address */
4814		dma_unmap_len_set(tx_buffer, len, size);
4815		dma_unmap_addr_set(tx_buffer, dma, dma);
4816
4817		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4818
4819		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4820			tx_desc->read.cmd_type_len =
4821				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4822
4823			i++;
4824			tx_desc++;
4825			if (i == tx_ring->count) {
4826				tx_desc = IGB_TX_DESC(tx_ring, 0);
4827				i = 0;
4828			}
4829			tx_desc->read.olinfo_status = 0;
4830
4831			dma += IGB_MAX_DATA_PER_TXD;
4832			size -= IGB_MAX_DATA_PER_TXD;
4833
4834			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4835		}
4836
4837		if (likely(!data_len))
4838			break;
4839
4840		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4841
4842		i++;
4843		tx_desc++;
4844		if (i == tx_ring->count) {
4845			tx_desc = IGB_TX_DESC(tx_ring, 0);
4846			i = 0;
4847		}
4848		tx_desc->read.olinfo_status = 0;
4849
4850		size = skb_frag_size(frag);
4851		data_len -= size;
4852
4853		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4854				       size, DMA_TO_DEVICE);
4855
4856		tx_buffer = &tx_ring->tx_buffer_info[i];
4857	}
4858
4859	/* write last descriptor with RS and EOP bits */
4860	cmd_type |= size | IGB_TXD_DCMD;
4861	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4862
4863	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4864
4865	/* set the timestamp */
4866	first->time_stamp = jiffies;
4867
4868	/* Force memory writes to complete before letting h/w know there
4869	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4870	 * memory model archs, such as IA-64).
4871	 *
4872	 * We also need this memory barrier to make certain all of the
4873	 * status bits have been updated before next_to_watch is written.
4874	 */
4875	wmb();
4876
4877	/* set next_to_watch value indicating a packet is present */
4878	first->next_to_watch = tx_desc;
4879
4880	i++;
4881	if (i == tx_ring->count)
4882		i = 0;
4883
4884	tx_ring->next_to_use = i;
4885
4886	writel(i, tx_ring->tail);
4887
4888	/* we need this if more than one processor can write to our tail
4889	 * at a time, it synchronizes IO on IA64/Altix systems
4890	 */
4891	mmiowb();
4892
4893	return;
4894
4895dma_error:
4896	dev_err(tx_ring->dev, "TX DMA map failed\n");
4897
4898	/* clear dma mappings for failed tx_buffer_info map */
4899	for (;;) {
4900		tx_buffer = &tx_ring->tx_buffer_info[i];
4901		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4902		if (tx_buffer == first)
4903			break;
4904		if (i == 0)
4905			i = tx_ring->count;
4906		i--;
4907	}
4908
4909	tx_ring->next_to_use = i;
4910}
4911
4912static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4913{
4914	struct net_device *netdev = tx_ring->netdev;
4915
4916	netif_stop_subqueue(netdev, tx_ring->queue_index);
4917
4918	/* Herbert's original patch had:
4919	 *  smp_mb__after_netif_stop_queue();
4920	 * but since that doesn't exist yet, just open code it.
4921	 */
4922	smp_mb();
4923
4924	/* We need to check again in a case another CPU has just
4925	 * made room available.
4926	 */
4927	if (igb_desc_unused(tx_ring) < size)
4928		return -EBUSY;
4929
4930	/* A reprieve! */
4931	netif_wake_subqueue(netdev, tx_ring->queue_index);
4932
4933	u64_stats_update_begin(&tx_ring->tx_syncp2);
4934	tx_ring->tx_stats.restart_queue2++;
4935	u64_stats_update_end(&tx_ring->tx_syncp2);
4936
4937	return 0;
4938}
4939
4940static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4941{
4942	if (igb_desc_unused(tx_ring) >= size)
4943		return 0;
4944	return __igb_maybe_stop_tx(tx_ring, size);
4945}
4946
4947netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4948				struct igb_ring *tx_ring)
4949{
4950	struct igb_tx_buffer *first;
4951	int tso;
4952	u32 tx_flags = 0;
4953	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4954	__be16 protocol = vlan_get_protocol(skb);
4955	u8 hdr_len = 0;
4956
4957	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4958	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4959	 *       + 2 desc gap to keep tail from touching head,
4960	 *       + 1 desc for context descriptor,
4961	 * otherwise try next time
4962	 */
4963	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4964		unsigned short f;
4965
4966		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4967			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4968	} else {
4969		count += skb_shinfo(skb)->nr_frags;
4970	}
4971
4972	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4973		/* this is a hard error */
4974		return NETDEV_TX_BUSY;
4975	}
4976
4977	/* record the location of the first descriptor for this packet */
4978	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4979	first->skb = skb;
4980	first->bytecount = skb->len;
4981	first->gso_segs = 1;
4982
4983	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4984		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4985
4986		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4987					   &adapter->state)) {
4988			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4989			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4990
4991			adapter->ptp_tx_skb = skb_get(skb);
4992			adapter->ptp_tx_start = jiffies;
4993			if (adapter->hw.mac.type == e1000_82576)
4994				schedule_work(&adapter->ptp_tx_work);
4995		}
4996	}
4997
4998	skb_tx_timestamp(skb);
4999
5000	if (vlan_tx_tag_present(skb)) {
5001		tx_flags |= IGB_TX_FLAGS_VLAN;
5002		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5003	}
5004
5005	/* record initial flags and protocol */
5006	first->tx_flags = tx_flags;
5007	first->protocol = protocol;
5008
5009	tso = igb_tso(tx_ring, first, &hdr_len);
5010	if (tso < 0)
5011		goto out_drop;
5012	else if (!tso)
5013		igb_tx_csum(tx_ring, first);
5014
5015	igb_tx_map(tx_ring, first, hdr_len);
5016
5017	/* Make sure there is space in the ring for the next send. */
5018	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5019
5020	return NETDEV_TX_OK;
5021
5022out_drop:
5023	igb_unmap_and_free_tx_resource(tx_ring, first);
5024
5025	return NETDEV_TX_OK;
5026}
5027
5028static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5029						    struct sk_buff *skb)
5030{
5031	unsigned int r_idx = skb->queue_mapping;
5032
5033	if (r_idx >= adapter->num_tx_queues)
5034		r_idx = r_idx % adapter->num_tx_queues;
5035
5036	return adapter->tx_ring[r_idx];
5037}
5038
5039static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5040				  struct net_device *netdev)
5041{
5042	struct igb_adapter *adapter = netdev_priv(netdev);
5043
5044	if (test_bit(__IGB_DOWN, &adapter->state)) {
5045		dev_kfree_skb_any(skb);
5046		return NETDEV_TX_OK;
5047	}
5048
5049	if (skb->len <= 0) {
5050		dev_kfree_skb_any(skb);
5051		return NETDEV_TX_OK;
5052	}
5053
5054	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5055	 * in order to meet this minimum size requirement.
5056	 */
5057	if (unlikely(skb->len < 17)) {
5058		if (skb_pad(skb, 17 - skb->len))
5059			return NETDEV_TX_OK;
5060		skb->len = 17;
5061		skb_set_tail_pointer(skb, 17);
5062	}
5063
5064	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5065}
5066
5067/**
5068 *  igb_tx_timeout - Respond to a Tx Hang
5069 *  @netdev: network interface device structure
5070 **/
5071static void igb_tx_timeout(struct net_device *netdev)
5072{
5073	struct igb_adapter *adapter = netdev_priv(netdev);
5074	struct e1000_hw *hw = &adapter->hw;
5075
5076	/* Do the reset outside of interrupt context */
5077	adapter->tx_timeout_count++;
5078
5079	if (hw->mac.type >= e1000_82580)
5080		hw->dev_spec._82575.global_device_reset = true;
5081
5082	schedule_work(&adapter->reset_task);
5083	wr32(E1000_EICS,
5084	     (adapter->eims_enable_mask & ~adapter->eims_other));
5085}
5086
5087static void igb_reset_task(struct work_struct *work)
5088{
5089	struct igb_adapter *adapter;
5090	adapter = container_of(work, struct igb_adapter, reset_task);
5091
5092	igb_dump(adapter);
5093	netdev_err(adapter->netdev, "Reset adapter\n");
5094	igb_reinit_locked(adapter);
5095}
5096
5097/**
5098 *  igb_get_stats64 - Get System Network Statistics
5099 *  @netdev: network interface device structure
5100 *  @stats: rtnl_link_stats64 pointer
5101 **/
5102static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5103						struct rtnl_link_stats64 *stats)
5104{
5105	struct igb_adapter *adapter = netdev_priv(netdev);
5106
5107	spin_lock(&adapter->stats64_lock);
5108	igb_update_stats(adapter, &adapter->stats64);
5109	memcpy(stats, &adapter->stats64, sizeof(*stats));
5110	spin_unlock(&adapter->stats64_lock);
5111
5112	return stats;
5113}
5114
5115/**
5116 *  igb_change_mtu - Change the Maximum Transfer Unit
5117 *  @netdev: network interface device structure
5118 *  @new_mtu: new value for maximum frame size
5119 *
5120 *  Returns 0 on success, negative on failure
5121 **/
5122static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5123{
5124	struct igb_adapter *adapter = netdev_priv(netdev);
5125	struct pci_dev *pdev = adapter->pdev;
5126	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5127
5128	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5129		dev_err(&pdev->dev, "Invalid MTU setting\n");
5130		return -EINVAL;
5131	}
5132
5133#define MAX_STD_JUMBO_FRAME_SIZE 9238
5134	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5135		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5136		return -EINVAL;
5137	}
5138
5139	/* adjust max frame to be at least the size of a standard frame */
5140	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5141		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5142
5143	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5144		usleep_range(1000, 2000);
5145
5146	/* igb_down has a dependency on max_frame_size */
5147	adapter->max_frame_size = max_frame;
5148
5149	if (netif_running(netdev))
5150		igb_down(adapter);
5151
5152	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5153		 netdev->mtu, new_mtu);
5154	netdev->mtu = new_mtu;
5155
5156	if (netif_running(netdev))
5157		igb_up(adapter);
5158	else
5159		igb_reset(adapter);
5160
5161	clear_bit(__IGB_RESETTING, &adapter->state);
5162
5163	return 0;
5164}
5165
5166/**
5167 *  igb_update_stats - Update the board statistics counters
5168 *  @adapter: board private structure
5169 **/
5170void igb_update_stats(struct igb_adapter *adapter,
5171		      struct rtnl_link_stats64 *net_stats)
5172{
5173	struct e1000_hw *hw = &adapter->hw;
5174	struct pci_dev *pdev = adapter->pdev;
5175	u32 reg, mpc;
5176	u16 phy_tmp;
5177	int i;
5178	u64 bytes, packets;
5179	unsigned int start;
5180	u64 _bytes, _packets;
5181
5182#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5183
5184	/* Prevent stats update while adapter is being reset, or if the pci
5185	 * connection is down.
5186	 */
5187	if (adapter->link_speed == 0)
5188		return;
5189	if (pci_channel_offline(pdev))
5190		return;
5191
5192	bytes = 0;
5193	packets = 0;
5194
5195	rcu_read_lock();
5196	for (i = 0; i < adapter->num_rx_queues; i++) {
5197		struct igb_ring *ring = adapter->rx_ring[i];
5198		u32 rqdpc = rd32(E1000_RQDPC(i));
5199		if (hw->mac.type >= e1000_i210)
5200			wr32(E1000_RQDPC(i), 0);
5201
5202		if (rqdpc) {
5203			ring->rx_stats.drops += rqdpc;
5204			net_stats->rx_fifo_errors += rqdpc;
5205		}
5206
5207		do {
5208			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5209			_bytes = ring->rx_stats.bytes;
5210			_packets = ring->rx_stats.packets;
5211		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5212		bytes += _bytes;
5213		packets += _packets;
5214	}
5215
5216	net_stats->rx_bytes = bytes;
5217	net_stats->rx_packets = packets;
5218
5219	bytes = 0;
5220	packets = 0;
5221	for (i = 0; i < adapter->num_tx_queues; i++) {
5222		struct igb_ring *ring = adapter->tx_ring[i];
5223		do {
5224			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5225			_bytes = ring->tx_stats.bytes;
5226			_packets = ring->tx_stats.packets;
5227		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5228		bytes += _bytes;
5229		packets += _packets;
5230	}
5231	net_stats->tx_bytes = bytes;
5232	net_stats->tx_packets = packets;
5233	rcu_read_unlock();
5234
5235	/* read stats registers */
5236	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5237	adapter->stats.gprc += rd32(E1000_GPRC);
5238	adapter->stats.gorc += rd32(E1000_GORCL);
5239	rd32(E1000_GORCH); /* clear GORCL */
5240	adapter->stats.bprc += rd32(E1000_BPRC);
5241	adapter->stats.mprc += rd32(E1000_MPRC);
5242	adapter->stats.roc += rd32(E1000_ROC);
5243
5244	adapter->stats.prc64 += rd32(E1000_PRC64);
5245	adapter->stats.prc127 += rd32(E1000_PRC127);
5246	adapter->stats.prc255 += rd32(E1000_PRC255);
5247	adapter->stats.prc511 += rd32(E1000_PRC511);
5248	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5249	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5250	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5251	adapter->stats.sec += rd32(E1000_SEC);
5252
5253	mpc = rd32(E1000_MPC);
5254	adapter->stats.mpc += mpc;
5255	net_stats->rx_fifo_errors += mpc;
5256	adapter->stats.scc += rd32(E1000_SCC);
5257	adapter->stats.ecol += rd32(E1000_ECOL);
5258	adapter->stats.mcc += rd32(E1000_MCC);
5259	adapter->stats.latecol += rd32(E1000_LATECOL);
5260	adapter->stats.dc += rd32(E1000_DC);
5261	adapter->stats.rlec += rd32(E1000_RLEC);
5262	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5263	adapter->stats.xontxc += rd32(E1000_XONTXC);
5264	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5265	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5266	adapter->stats.fcruc += rd32(E1000_FCRUC);
5267	adapter->stats.gptc += rd32(E1000_GPTC);
5268	adapter->stats.gotc += rd32(E1000_GOTCL);
5269	rd32(E1000_GOTCH); /* clear GOTCL */
5270	adapter->stats.rnbc += rd32(E1000_RNBC);
5271	adapter->stats.ruc += rd32(E1000_RUC);
5272	adapter->stats.rfc += rd32(E1000_RFC);
5273	adapter->stats.rjc += rd32(E1000_RJC);
5274	adapter->stats.tor += rd32(E1000_TORH);
5275	adapter->stats.tot += rd32(E1000_TOTH);
5276	adapter->stats.tpr += rd32(E1000_TPR);
5277
5278	adapter->stats.ptc64 += rd32(E1000_PTC64);
5279	adapter->stats.ptc127 += rd32(E1000_PTC127);
5280	adapter->stats.ptc255 += rd32(E1000_PTC255);
5281	adapter->stats.ptc511 += rd32(E1000_PTC511);
5282	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5283	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5284
5285	adapter->stats.mptc += rd32(E1000_MPTC);
5286	adapter->stats.bptc += rd32(E1000_BPTC);
5287
5288	adapter->stats.tpt += rd32(E1000_TPT);
5289	adapter->stats.colc += rd32(E1000_COLC);
5290
5291	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5292	/* read internal phy specific stats */
5293	reg = rd32(E1000_CTRL_EXT);
5294	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5295		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5296
5297		/* this stat has invalid values on i210/i211 */
5298		if ((hw->mac.type != e1000_i210) &&
5299		    (hw->mac.type != e1000_i211))
5300			adapter->stats.tncrs += rd32(E1000_TNCRS);
5301	}
5302
5303	adapter->stats.tsctc += rd32(E1000_TSCTC);
5304	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5305
5306	adapter->stats.iac += rd32(E1000_IAC);
5307	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5308	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5309	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5310	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5311	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5312	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5313	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5314	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5315
5316	/* Fill out the OS statistics structure */
5317	net_stats->multicast = adapter->stats.mprc;
5318	net_stats->collisions = adapter->stats.colc;
5319
5320	/* Rx Errors */
5321
5322	/* RLEC on some newer hardware can be incorrect so build
5323	 * our own version based on RUC and ROC
5324	 */
5325	net_stats->rx_errors = adapter->stats.rxerrc +
5326		adapter->stats.crcerrs + adapter->stats.algnerrc +
5327		adapter->stats.ruc + adapter->stats.roc +
5328		adapter->stats.cexterr;
5329	net_stats->rx_length_errors = adapter->stats.ruc +
5330				      adapter->stats.roc;
5331	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5332	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5333	net_stats->rx_missed_errors = adapter->stats.mpc;
5334
5335	/* Tx Errors */
5336	net_stats->tx_errors = adapter->stats.ecol +
5337			       adapter->stats.latecol;
5338	net_stats->tx_aborted_errors = adapter->stats.ecol;
5339	net_stats->tx_window_errors = adapter->stats.latecol;
5340	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5341
5342	/* Tx Dropped needs to be maintained elsewhere */
5343
5344	/* Phy Stats */
5345	if (hw->phy.media_type == e1000_media_type_copper) {
5346		if ((adapter->link_speed == SPEED_1000) &&
5347		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5348			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5349			adapter->phy_stats.idle_errors += phy_tmp;
5350		}
5351	}
5352
5353	/* Management Stats */
5354	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5355	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5356	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5357
5358	/* OS2BMC Stats */
5359	reg = rd32(E1000_MANC);
5360	if (reg & E1000_MANC_EN_BMC2OS) {
5361		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5362		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5363		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5364		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5365	}
5366}
5367
5368static irqreturn_t igb_msix_other(int irq, void *data)
5369{
5370	struct igb_adapter *adapter = data;
5371	struct e1000_hw *hw = &adapter->hw;
5372	u32 icr = rd32(E1000_ICR);
5373	/* reading ICR causes bit 31 of EICR to be cleared */
5374
5375	if (icr & E1000_ICR_DRSTA)
5376		schedule_work(&adapter->reset_task);
5377
5378	if (icr & E1000_ICR_DOUTSYNC) {
5379		/* HW is reporting DMA is out of sync */
5380		adapter->stats.doosync++;
5381		/* The DMA Out of Sync is also indication of a spoof event
5382		 * in IOV mode. Check the Wrong VM Behavior register to
5383		 * see if it is really a spoof event.
5384		 */
5385		igb_check_wvbr(adapter);
5386	}
5387
5388	/* Check for a mailbox event */
5389	if (icr & E1000_ICR_VMMB)
5390		igb_msg_task(adapter);
5391
5392	if (icr & E1000_ICR_LSC) {
5393		hw->mac.get_link_status = 1;
5394		/* guard against interrupt when we're going down */
5395		if (!test_bit(__IGB_DOWN, &adapter->state))
5396			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5397	}
5398
5399	if (icr & E1000_ICR_TS) {
5400		u32 tsicr = rd32(E1000_TSICR);
5401
5402		if (tsicr & E1000_TSICR_TXTS) {
5403			/* acknowledge the interrupt */
5404			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5405			/* retrieve hardware timestamp */
5406			schedule_work(&adapter->ptp_tx_work);
5407		}
5408	}
5409
5410	wr32(E1000_EIMS, adapter->eims_other);
5411
5412	return IRQ_HANDLED;
5413}
5414
5415static void igb_write_itr(struct igb_q_vector *q_vector)
5416{
5417	struct igb_adapter *adapter = q_vector->adapter;
5418	u32 itr_val = q_vector->itr_val & 0x7FFC;
5419
5420	if (!q_vector->set_itr)
5421		return;
5422
5423	if (!itr_val)
5424		itr_val = 0x4;
5425
5426	if (adapter->hw.mac.type == e1000_82575)
5427		itr_val |= itr_val << 16;
5428	else
5429		itr_val |= E1000_EITR_CNT_IGNR;
5430
5431	writel(itr_val, q_vector->itr_register);
5432	q_vector->set_itr = 0;
5433}
5434
5435static irqreturn_t igb_msix_ring(int irq, void *data)
5436{
5437	struct igb_q_vector *q_vector = data;
5438
5439	/* Write the ITR value calculated from the previous interrupt. */
5440	igb_write_itr(q_vector);
5441
5442	napi_schedule(&q_vector->napi);
5443
5444	return IRQ_HANDLED;
5445}
5446
5447#ifdef CONFIG_IGB_DCA
5448static void igb_update_tx_dca(struct igb_adapter *adapter,
5449			      struct igb_ring *tx_ring,
5450			      int cpu)
5451{
5452	struct e1000_hw *hw = &adapter->hw;
5453	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5454
5455	if (hw->mac.type != e1000_82575)
5456		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5457
5458	/* We can enable relaxed ordering for reads, but not writes when
5459	 * DCA is enabled.  This is due to a known issue in some chipsets
5460	 * which will cause the DCA tag to be cleared.
5461	 */
5462	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5463		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5464		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5465
5466	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5467}
5468
5469static void igb_update_rx_dca(struct igb_adapter *adapter,
5470			      struct igb_ring *rx_ring,
5471			      int cpu)
5472{
5473	struct e1000_hw *hw = &adapter->hw;
5474	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5475
5476	if (hw->mac.type != e1000_82575)
5477		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5478
5479	/* We can enable relaxed ordering for reads, but not writes when
5480	 * DCA is enabled.  This is due to a known issue in some chipsets
5481	 * which will cause the DCA tag to be cleared.
5482	 */
5483	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5484		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5485
5486	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5487}
5488
5489static void igb_update_dca(struct igb_q_vector *q_vector)
5490{
5491	struct igb_adapter *adapter = q_vector->adapter;
5492	int cpu = get_cpu();
5493
5494	if (q_vector->cpu == cpu)
5495		goto out_no_update;
5496
5497	if (q_vector->tx.ring)
5498		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5499
5500	if (q_vector->rx.ring)
5501		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5502
5503	q_vector->cpu = cpu;
5504out_no_update:
5505	put_cpu();
5506}
5507
5508static void igb_setup_dca(struct igb_adapter *adapter)
5509{
5510	struct e1000_hw *hw = &adapter->hw;
5511	int i;
5512
5513	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5514		return;
5515
5516	/* Always use CB2 mode, difference is masked in the CB driver. */
5517	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5518
5519	for (i = 0; i < adapter->num_q_vectors; i++) {
5520		adapter->q_vector[i]->cpu = -1;
5521		igb_update_dca(adapter->q_vector[i]);
5522	}
5523}
5524
5525static int __igb_notify_dca(struct device *dev, void *data)
5526{
5527	struct net_device *netdev = dev_get_drvdata(dev);
5528	struct igb_adapter *adapter = netdev_priv(netdev);
5529	struct pci_dev *pdev = adapter->pdev;
5530	struct e1000_hw *hw = &adapter->hw;
5531	unsigned long event = *(unsigned long *)data;
5532
5533	switch (event) {
5534	case DCA_PROVIDER_ADD:
5535		/* if already enabled, don't do it again */
5536		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5537			break;
5538		if (dca_add_requester(dev) == 0) {
5539			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5540			dev_info(&pdev->dev, "DCA enabled\n");
5541			igb_setup_dca(adapter);
5542			break;
5543		}
5544		/* Fall Through since DCA is disabled. */
5545	case DCA_PROVIDER_REMOVE:
5546		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5547			/* without this a class_device is left
5548			 * hanging around in the sysfs model
5549			 */
5550			dca_remove_requester(dev);
5551			dev_info(&pdev->dev, "DCA disabled\n");
5552			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5553			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5554		}
5555		break;
5556	}
5557
5558	return 0;
5559}
5560
5561static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5562			  void *p)
5563{
5564	int ret_val;
5565
5566	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5567					 __igb_notify_dca);
5568
5569	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5570}
5571#endif /* CONFIG_IGB_DCA */
5572
5573#ifdef CONFIG_PCI_IOV
5574static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5575{
5576	unsigned char mac_addr[ETH_ALEN];
5577
5578	eth_zero_addr(mac_addr);
5579	igb_set_vf_mac(adapter, vf, mac_addr);
5580
5581	/* By default spoof check is enabled for all VFs */
5582	adapter->vf_data[vf].spoofchk_enabled = true;
5583
5584	return 0;
5585}
5586
5587#endif
5588static void igb_ping_all_vfs(struct igb_adapter *adapter)
5589{
5590	struct e1000_hw *hw = &adapter->hw;
5591	u32 ping;
5592	int i;
5593
5594	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5595		ping = E1000_PF_CONTROL_MSG;
5596		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5597			ping |= E1000_VT_MSGTYPE_CTS;
5598		igb_write_mbx(hw, &ping, 1, i);
5599	}
5600}
5601
5602static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5603{
5604	struct e1000_hw *hw = &adapter->hw;
5605	u32 vmolr = rd32(E1000_VMOLR(vf));
5606	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5607
5608	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5609			    IGB_VF_FLAG_MULTI_PROMISC);
5610	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5611
5612	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5613		vmolr |= E1000_VMOLR_MPME;
5614		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5615		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5616	} else {
5617		/* if we have hashes and we are clearing a multicast promisc
5618		 * flag we need to write the hashes to the MTA as this step
5619		 * was previously skipped
5620		 */
5621		if (vf_data->num_vf_mc_hashes > 30) {
5622			vmolr |= E1000_VMOLR_MPME;
5623		} else if (vf_data->num_vf_mc_hashes) {
5624			int j;
5625
5626			vmolr |= E1000_VMOLR_ROMPE;
5627			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5628				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5629		}
5630	}
5631
5632	wr32(E1000_VMOLR(vf), vmolr);
5633
5634	/* there are flags left unprocessed, likely not supported */
5635	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5636		return -EINVAL;
5637
5638	return 0;
5639}
5640
5641static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5642				  u32 *msgbuf, u32 vf)
5643{
5644	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5645	u16 *hash_list = (u16 *)&msgbuf[1];
5646	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5647	int i;
5648
5649	/* salt away the number of multicast addresses assigned
5650	 * to this VF for later use to restore when the PF multi cast
5651	 * list changes
5652	 */
5653	vf_data->num_vf_mc_hashes = n;
5654
5655	/* only up to 30 hash values supported */
5656	if (n > 30)
5657		n = 30;
5658
5659	/* store the hashes for later use */
5660	for (i = 0; i < n; i++)
5661		vf_data->vf_mc_hashes[i] = hash_list[i];
5662
5663	/* Flush and reset the mta with the new values */
5664	igb_set_rx_mode(adapter->netdev);
5665
5666	return 0;
5667}
5668
5669static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5670{
5671	struct e1000_hw *hw = &adapter->hw;
5672	struct vf_data_storage *vf_data;
5673	int i, j;
5674
5675	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5676		u32 vmolr = rd32(E1000_VMOLR(i));
5677
5678		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5679
5680		vf_data = &adapter->vf_data[i];
5681
5682		if ((vf_data->num_vf_mc_hashes > 30) ||
5683		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5684			vmolr |= E1000_VMOLR_MPME;
5685		} else if (vf_data->num_vf_mc_hashes) {
5686			vmolr |= E1000_VMOLR_ROMPE;
5687			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5688				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5689		}
5690		wr32(E1000_VMOLR(i), vmolr);
5691	}
5692}
5693
5694static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5695{
5696	struct e1000_hw *hw = &adapter->hw;
5697	u32 pool_mask, reg, vid;
5698	int i;
5699
5700	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5701
5702	/* Find the vlan filter for this id */
5703	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5704		reg = rd32(E1000_VLVF(i));
5705
5706		/* remove the vf from the pool */
5707		reg &= ~pool_mask;
5708
5709		/* if pool is empty then remove entry from vfta */
5710		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5711		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5712			reg = 0;
5713			vid = reg & E1000_VLVF_VLANID_MASK;
5714			igb_vfta_set(hw, vid, false);
5715		}
5716
5717		wr32(E1000_VLVF(i), reg);
5718	}
5719
5720	adapter->vf_data[vf].vlans_enabled = 0;
5721}
5722
5723static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5724{
5725	struct e1000_hw *hw = &adapter->hw;
5726	u32 reg, i;
5727
5728	/* The vlvf table only exists on 82576 hardware and newer */
5729	if (hw->mac.type < e1000_82576)
5730		return -1;
5731
5732	/* we only need to do this if VMDq is enabled */
5733	if (!adapter->vfs_allocated_count)
5734		return -1;
5735
5736	/* Find the vlan filter for this id */
5737	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5738		reg = rd32(E1000_VLVF(i));
5739		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5740		    vid == (reg & E1000_VLVF_VLANID_MASK))
5741			break;
5742	}
5743
5744	if (add) {
5745		if (i == E1000_VLVF_ARRAY_SIZE) {
5746			/* Did not find a matching VLAN ID entry that was
5747			 * enabled.  Search for a free filter entry, i.e.
5748			 * one without the enable bit set
5749			 */
5750			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5751				reg = rd32(E1000_VLVF(i));
5752				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5753					break;
5754			}
5755		}
5756		if (i < E1000_VLVF_ARRAY_SIZE) {
5757			/* Found an enabled/available entry */
5758			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5759
5760			/* if !enabled we need to set this up in vfta */
5761			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5762				/* add VID to filter table */
5763				igb_vfta_set(hw, vid, true);
5764				reg |= E1000_VLVF_VLANID_ENABLE;
5765			}
5766			reg &= ~E1000_VLVF_VLANID_MASK;
5767			reg |= vid;
5768			wr32(E1000_VLVF(i), reg);
5769
5770			/* do not modify RLPML for PF devices */
5771			if (vf >= adapter->vfs_allocated_count)
5772				return 0;
5773
5774			if (!adapter->vf_data[vf].vlans_enabled) {
5775				u32 size;
5776
5777				reg = rd32(E1000_VMOLR(vf));
5778				size = reg & E1000_VMOLR_RLPML_MASK;
5779				size += 4;
5780				reg &= ~E1000_VMOLR_RLPML_MASK;
5781				reg |= size;
5782				wr32(E1000_VMOLR(vf), reg);
5783			}
5784
5785			adapter->vf_data[vf].vlans_enabled++;
5786		}
5787	} else {
5788		if (i < E1000_VLVF_ARRAY_SIZE) {
5789			/* remove vf from the pool */
5790			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5791			/* if pool is empty then remove entry from vfta */
5792			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5793				reg = 0;
5794				igb_vfta_set(hw, vid, false);
5795			}
5796			wr32(E1000_VLVF(i), reg);
5797
5798			/* do not modify RLPML for PF devices */
5799			if (vf >= adapter->vfs_allocated_count)
5800				return 0;
5801
5802			adapter->vf_data[vf].vlans_enabled--;
5803			if (!adapter->vf_data[vf].vlans_enabled) {
5804				u32 size;
5805
5806				reg = rd32(E1000_VMOLR(vf));
5807				size = reg & E1000_VMOLR_RLPML_MASK;
5808				size -= 4;
5809				reg &= ~E1000_VMOLR_RLPML_MASK;
5810				reg |= size;
5811				wr32(E1000_VMOLR(vf), reg);
5812			}
5813		}
5814	}
5815	return 0;
5816}
5817
5818static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5819{
5820	struct e1000_hw *hw = &adapter->hw;
5821
5822	if (vid)
5823		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5824	else
5825		wr32(E1000_VMVIR(vf), 0);
5826}
5827
5828static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5829			       int vf, u16 vlan, u8 qos)
5830{
5831	int err = 0;
5832	struct igb_adapter *adapter = netdev_priv(netdev);
5833
5834	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5835		return -EINVAL;
5836	if (vlan || qos) {
5837		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5838		if (err)
5839			goto out;
5840		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5841		igb_set_vmolr(adapter, vf, !vlan);
5842		adapter->vf_data[vf].pf_vlan = vlan;
5843		adapter->vf_data[vf].pf_qos = qos;
5844		dev_info(&adapter->pdev->dev,
5845			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5846		if (test_bit(__IGB_DOWN, &adapter->state)) {
5847			dev_warn(&adapter->pdev->dev,
5848				 "The VF VLAN has been set, but the PF device is not up.\n");
5849			dev_warn(&adapter->pdev->dev,
5850				 "Bring the PF device up before attempting to use the VF device.\n");
5851		}
5852	} else {
5853		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5854			     false, vf);
5855		igb_set_vmvir(adapter, vlan, vf);
5856		igb_set_vmolr(adapter, vf, true);
5857		adapter->vf_data[vf].pf_vlan = 0;
5858		adapter->vf_data[vf].pf_qos = 0;
5859	}
5860out:
5861	return err;
5862}
5863
5864static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5865{
5866	struct e1000_hw *hw = &adapter->hw;
5867	int i;
5868	u32 reg;
5869
5870	/* Find the vlan filter for this id */
5871	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5872		reg = rd32(E1000_VLVF(i));
5873		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5874		    vid == (reg & E1000_VLVF_VLANID_MASK))
5875			break;
5876	}
5877
5878	if (i >= E1000_VLVF_ARRAY_SIZE)
5879		i = -1;
5880
5881	return i;
5882}
5883
5884static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5885{
5886	struct e1000_hw *hw = &adapter->hw;
5887	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5888	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5889	int err = 0;
5890
5891	/* If in promiscuous mode we need to make sure the PF also has
5892	 * the VLAN filter set.
5893	 */
5894	if (add && (adapter->netdev->flags & IFF_PROMISC))
5895		err = igb_vlvf_set(adapter, vid, add,
5896				   adapter->vfs_allocated_count);
5897	if (err)
5898		goto out;
5899
5900	err = igb_vlvf_set(adapter, vid, add, vf);
5901
5902	if (err)
5903		goto out;
5904
5905	/* Go through all the checks to see if the VLAN filter should
5906	 * be wiped completely.
5907	 */
5908	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5909		u32 vlvf, bits;
5910		int regndx = igb_find_vlvf_entry(adapter, vid);
5911
5912		if (regndx < 0)
5913			goto out;
5914		/* See if any other pools are set for this VLAN filter
5915		 * entry other than the PF.
5916		 */
5917		vlvf = bits = rd32(E1000_VLVF(regndx));
5918		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5919			      adapter->vfs_allocated_count);
5920		/* If the filter was removed then ensure PF pool bit
5921		 * is cleared if the PF only added itself to the pool
5922		 * because the PF is in promiscuous mode.
5923		 */
5924		if ((vlvf & VLAN_VID_MASK) == vid &&
5925		    !test_bit(vid, adapter->active_vlans) &&
5926		    !bits)
5927			igb_vlvf_set(adapter, vid, add,
5928				     adapter->vfs_allocated_count);
5929	}
5930
5931out:
5932	return err;
5933}
5934
5935static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5936{
5937	/* clear flags - except flag that indicates PF has set the MAC */
5938	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5939	adapter->vf_data[vf].last_nack = jiffies;
5940
5941	/* reset offloads to defaults */
5942	igb_set_vmolr(adapter, vf, true);
5943
5944	/* reset vlans for device */
5945	igb_clear_vf_vfta(adapter, vf);
5946	if (adapter->vf_data[vf].pf_vlan)
5947		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5948				    adapter->vf_data[vf].pf_vlan,
5949				    adapter->vf_data[vf].pf_qos);
5950	else
5951		igb_clear_vf_vfta(adapter, vf);
5952
5953	/* reset multicast table array for vf */
5954	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5955
5956	/* Flush and reset the mta with the new values */
5957	igb_set_rx_mode(adapter->netdev);
5958}
5959
5960static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5961{
5962	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5963
5964	/* clear mac address as we were hotplug removed/added */
5965	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5966		eth_zero_addr(vf_mac);
5967
5968	/* process remaining reset events */
5969	igb_vf_reset(adapter, vf);
5970}
5971
5972static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5973{
5974	struct e1000_hw *hw = &adapter->hw;
5975	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5976	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5977	u32 reg, msgbuf[3];
5978	u8 *addr = (u8 *)(&msgbuf[1]);
5979
5980	/* process all the same items cleared in a function level reset */
5981	igb_vf_reset(adapter, vf);
5982
5983	/* set vf mac address */
5984	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5985
5986	/* enable transmit and receive for vf */
5987	reg = rd32(E1000_VFTE);
5988	wr32(E1000_VFTE, reg | (1 << vf));
5989	reg = rd32(E1000_VFRE);
5990	wr32(E1000_VFRE, reg | (1 << vf));
5991
5992	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5993
5994	/* reply to reset with ack and vf mac address */
5995	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5996	memcpy(addr, vf_mac, ETH_ALEN);
5997	igb_write_mbx(hw, msgbuf, 3, vf);
5998}
5999
6000static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6001{
6002	/* The VF MAC Address is stored in a packed array of bytes
6003	 * starting at the second 32 bit word of the msg array
6004	 */
6005	unsigned char *addr = (char *)&msg[1];
6006	int err = -1;
6007
6008	if (is_valid_ether_addr(addr))
6009		err = igb_set_vf_mac(adapter, vf, addr);
6010
6011	return err;
6012}
6013
6014static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6015{
6016	struct e1000_hw *hw = &adapter->hw;
6017	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6018	u32 msg = E1000_VT_MSGTYPE_NACK;
6019
6020	/* if device isn't clear to send it shouldn't be reading either */
6021	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6022	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6023		igb_write_mbx(hw, &msg, 1, vf);
6024		vf_data->last_nack = jiffies;
6025	}
6026}
6027
6028static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6029{
6030	struct pci_dev *pdev = adapter->pdev;
6031	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6032	struct e1000_hw *hw = &adapter->hw;
6033	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6034	s32 retval;
6035
6036	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6037
6038	if (retval) {
6039		/* if receive failed revoke VF CTS stats and restart init */
6040		dev_err(&pdev->dev, "Error receiving message from VF\n");
6041		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6042		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6043			return;
6044		goto out;
6045	}
6046
6047	/* this is a message we already processed, do nothing */
6048	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6049		return;
6050
6051	/* until the vf completes a reset it should not be
6052	 * allowed to start any configuration.
6053	 */
6054	if (msgbuf[0] == E1000_VF_RESET) {
6055		igb_vf_reset_msg(adapter, vf);
6056		return;
6057	}
6058
6059	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6060		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6061			return;
6062		retval = -1;
6063		goto out;
6064	}
6065
6066	switch ((msgbuf[0] & 0xFFFF)) {
6067	case E1000_VF_SET_MAC_ADDR:
6068		retval = -EINVAL;
6069		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6070			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6071		else
6072			dev_warn(&pdev->dev,
6073				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6074				 vf);
6075		break;
6076	case E1000_VF_SET_PROMISC:
6077		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6078		break;
6079	case E1000_VF_SET_MULTICAST:
6080		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6081		break;
6082	case E1000_VF_SET_LPE:
6083		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6084		break;
6085	case E1000_VF_SET_VLAN:
6086		retval = -1;
6087		if (vf_data->pf_vlan)
6088			dev_warn(&pdev->dev,
6089				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6090				 vf);
6091		else
6092			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6093		break;
6094	default:
6095		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6096		retval = -1;
6097		break;
6098	}
6099
6100	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6101out:
6102	/* notify the VF of the results of what it sent us */
6103	if (retval)
6104		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6105	else
6106		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6107
6108	igb_write_mbx(hw, msgbuf, 1, vf);
6109}
6110
6111static void igb_msg_task(struct igb_adapter *adapter)
6112{
6113	struct e1000_hw *hw = &adapter->hw;
6114	u32 vf;
6115
6116	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6117		/* process any reset requests */
6118		if (!igb_check_for_rst(hw, vf))
6119			igb_vf_reset_event(adapter, vf);
6120
6121		/* process any messages pending */
6122		if (!igb_check_for_msg(hw, vf))
6123			igb_rcv_msg_from_vf(adapter, vf);
6124
6125		/* process any acks */
6126		if (!igb_check_for_ack(hw, vf))
6127			igb_rcv_ack_from_vf(adapter, vf);
6128	}
6129}
6130
6131/**
6132 *  igb_set_uta - Set unicast filter table address
6133 *  @adapter: board private structure
6134 *
6135 *  The unicast table address is a register array of 32-bit registers.
6136 *  The table is meant to be used in a way similar to how the MTA is used
6137 *  however due to certain limitations in the hardware it is necessary to
6138 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6139 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6140 **/
6141static void igb_set_uta(struct igb_adapter *adapter)
6142{
6143	struct e1000_hw *hw = &adapter->hw;
6144	int i;
6145
6146	/* The UTA table only exists on 82576 hardware and newer */
6147	if (hw->mac.type < e1000_82576)
6148		return;
6149
6150	/* we only need to do this if VMDq is enabled */
6151	if (!adapter->vfs_allocated_count)
6152		return;
6153
6154	for (i = 0; i < hw->mac.uta_reg_count; i++)
6155		array_wr32(E1000_UTA, i, ~0);
6156}
6157
6158/**
6159 *  igb_intr_msi - Interrupt Handler
6160 *  @irq: interrupt number
6161 *  @data: pointer to a network interface device structure
6162 **/
6163static irqreturn_t igb_intr_msi(int irq, void *data)
6164{
6165	struct igb_adapter *adapter = data;
6166	struct igb_q_vector *q_vector = adapter->q_vector[0];
6167	struct e1000_hw *hw = &adapter->hw;
6168	/* read ICR disables interrupts using IAM */
6169	u32 icr = rd32(E1000_ICR);
6170
6171	igb_write_itr(q_vector);
6172
6173	if (icr & E1000_ICR_DRSTA)
6174		schedule_work(&adapter->reset_task);
6175
6176	if (icr & E1000_ICR_DOUTSYNC) {
6177		/* HW is reporting DMA is out of sync */
6178		adapter->stats.doosync++;
6179	}
6180
6181	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6182		hw->mac.get_link_status = 1;
6183		if (!test_bit(__IGB_DOWN, &adapter->state))
6184			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6185	}
6186
6187	if (icr & E1000_ICR_TS) {
6188		u32 tsicr = rd32(E1000_TSICR);
6189
6190		if (tsicr & E1000_TSICR_TXTS) {
6191			/* acknowledge the interrupt */
6192			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6193			/* retrieve hardware timestamp */
6194			schedule_work(&adapter->ptp_tx_work);
6195		}
6196	}
6197
6198	napi_schedule(&q_vector->napi);
6199
6200	return IRQ_HANDLED;
6201}
6202
6203/**
6204 *  igb_intr - Legacy Interrupt Handler
6205 *  @irq: interrupt number
6206 *  @data: pointer to a network interface device structure
6207 **/
6208static irqreturn_t igb_intr(int irq, void *data)
6209{
6210	struct igb_adapter *adapter = data;
6211	struct igb_q_vector *q_vector = adapter->q_vector[0];
6212	struct e1000_hw *hw = &adapter->hw;
6213	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6214	 * need for the IMC write
6215	 */
6216	u32 icr = rd32(E1000_ICR);
6217
6218	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6219	 * not set, then the adapter didn't send an interrupt
6220	 */
6221	if (!(icr & E1000_ICR_INT_ASSERTED))
6222		return IRQ_NONE;
6223
6224	igb_write_itr(q_vector);
6225
6226	if (icr & E1000_ICR_DRSTA)
6227		schedule_work(&adapter->reset_task);
6228
6229	if (icr & E1000_ICR_DOUTSYNC) {
6230		/* HW is reporting DMA is out of sync */
6231		adapter->stats.doosync++;
6232	}
6233
6234	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6235		hw->mac.get_link_status = 1;
6236		/* guard against interrupt when we're going down */
6237		if (!test_bit(__IGB_DOWN, &adapter->state))
6238			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6239	}
6240
6241	if (icr & E1000_ICR_TS) {
6242		u32 tsicr = rd32(E1000_TSICR);
6243
6244		if (tsicr & E1000_TSICR_TXTS) {
6245			/* acknowledge the interrupt */
6246			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6247			/* retrieve hardware timestamp */
6248			schedule_work(&adapter->ptp_tx_work);
6249		}
6250	}
6251
6252	napi_schedule(&q_vector->napi);
6253
6254	return IRQ_HANDLED;
6255}
6256
6257static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6258{
6259	struct igb_adapter *adapter = q_vector->adapter;
6260	struct e1000_hw *hw = &adapter->hw;
6261
6262	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6263	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6264		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6265			igb_set_itr(q_vector);
6266		else
6267			igb_update_ring_itr(q_vector);
6268	}
6269
6270	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6271		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6272			wr32(E1000_EIMS, q_vector->eims_value);
6273		else
6274			igb_irq_enable(adapter);
6275	}
6276}
6277
6278/**
6279 *  igb_poll - NAPI Rx polling callback
6280 *  @napi: napi polling structure
6281 *  @budget: count of how many packets we should handle
6282 **/
6283static int igb_poll(struct napi_struct *napi, int budget)
6284{
6285	struct igb_q_vector *q_vector = container_of(napi,
6286						     struct igb_q_vector,
6287						     napi);
6288	bool clean_complete = true;
6289
6290#ifdef CONFIG_IGB_DCA
6291	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6292		igb_update_dca(q_vector);
6293#endif
6294	if (q_vector->tx.ring)
6295		clean_complete = igb_clean_tx_irq(q_vector);
6296
6297	if (q_vector->rx.ring)
6298		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6299
6300	/* If all work not completed, return budget and keep polling */
6301	if (!clean_complete)
6302		return budget;
6303
6304	/* If not enough Rx work done, exit the polling mode */
6305	napi_complete(napi);
6306	igb_ring_irq_enable(q_vector);
6307
6308	return 0;
6309}
6310
6311/**
6312 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6313 *  @q_vector: pointer to q_vector containing needed info
6314 *
6315 *  returns true if ring is completely cleaned
6316 **/
6317static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6318{
6319	struct igb_adapter *adapter = q_vector->adapter;
6320	struct igb_ring *tx_ring = q_vector->tx.ring;
6321	struct igb_tx_buffer *tx_buffer;
6322	union e1000_adv_tx_desc *tx_desc;
6323	unsigned int total_bytes = 0, total_packets = 0;
6324	unsigned int budget = q_vector->tx.work_limit;
6325	unsigned int i = tx_ring->next_to_clean;
6326
6327	if (test_bit(__IGB_DOWN, &adapter->state))
6328		return true;
6329
6330	tx_buffer = &tx_ring->tx_buffer_info[i];
6331	tx_desc = IGB_TX_DESC(tx_ring, i);
6332	i -= tx_ring->count;
6333
6334	do {
6335		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6336
6337		/* if next_to_watch is not set then there is no work pending */
6338		if (!eop_desc)
6339			break;
6340
6341		/* prevent any other reads prior to eop_desc */
6342		read_barrier_depends();
6343
6344		/* if DD is not set pending work has not been completed */
6345		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6346			break;
6347
6348		/* clear next_to_watch to prevent false hangs */
6349		tx_buffer->next_to_watch = NULL;
6350
6351		/* update the statistics for this packet */
6352		total_bytes += tx_buffer->bytecount;
6353		total_packets += tx_buffer->gso_segs;
6354
6355		/* free the skb */
6356		dev_kfree_skb_any(tx_buffer->skb);
6357
6358		/* unmap skb header data */
6359		dma_unmap_single(tx_ring->dev,
6360				 dma_unmap_addr(tx_buffer, dma),
6361				 dma_unmap_len(tx_buffer, len),
6362				 DMA_TO_DEVICE);
6363
6364		/* clear tx_buffer data */
6365		tx_buffer->skb = NULL;
6366		dma_unmap_len_set(tx_buffer, len, 0);
6367
6368		/* clear last DMA location and unmap remaining buffers */
6369		while (tx_desc != eop_desc) {
6370			tx_buffer++;
6371			tx_desc++;
6372			i++;
6373			if (unlikely(!i)) {
6374				i -= tx_ring->count;
6375				tx_buffer = tx_ring->tx_buffer_info;
6376				tx_desc = IGB_TX_DESC(tx_ring, 0);
6377			}
6378
6379			/* unmap any remaining paged data */
6380			if (dma_unmap_len(tx_buffer, len)) {
6381				dma_unmap_page(tx_ring->dev,
6382					       dma_unmap_addr(tx_buffer, dma),
6383					       dma_unmap_len(tx_buffer, len),
6384					       DMA_TO_DEVICE);
6385				dma_unmap_len_set(tx_buffer, len, 0);
6386			}
6387		}
6388
6389		/* move us one more past the eop_desc for start of next pkt */
6390		tx_buffer++;
6391		tx_desc++;
6392		i++;
6393		if (unlikely(!i)) {
6394			i -= tx_ring->count;
6395			tx_buffer = tx_ring->tx_buffer_info;
6396			tx_desc = IGB_TX_DESC(tx_ring, 0);
6397		}
6398
6399		/* issue prefetch for next Tx descriptor */
6400		prefetch(tx_desc);
6401
6402		/* update budget accounting */
6403		budget--;
6404	} while (likely(budget));
6405
6406	netdev_tx_completed_queue(txring_txq(tx_ring),
6407				  total_packets, total_bytes);
6408	i += tx_ring->count;
6409	tx_ring->next_to_clean = i;
6410	u64_stats_update_begin(&tx_ring->tx_syncp);
6411	tx_ring->tx_stats.bytes += total_bytes;
6412	tx_ring->tx_stats.packets += total_packets;
6413	u64_stats_update_end(&tx_ring->tx_syncp);
6414	q_vector->tx.total_bytes += total_bytes;
6415	q_vector->tx.total_packets += total_packets;
6416
6417	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6418		struct e1000_hw *hw = &adapter->hw;
6419
6420		/* Detect a transmit hang in hardware, this serializes the
6421		 * check with the clearing of time_stamp and movement of i
6422		 */
6423		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6424		if (tx_buffer->next_to_watch &&
6425		    time_after(jiffies, tx_buffer->time_stamp +
6426			       (adapter->tx_timeout_factor * HZ)) &&
6427		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6428
6429			/* detected Tx unit hang */
6430			dev_err(tx_ring->dev,
6431				"Detected Tx Unit Hang\n"
6432				"  Tx Queue             <%d>\n"
6433				"  TDH                  <%x>\n"
6434				"  TDT                  <%x>\n"
6435				"  next_to_use          <%x>\n"
6436				"  next_to_clean        <%x>\n"
6437				"buffer_info[next_to_clean]\n"
6438				"  time_stamp           <%lx>\n"
6439				"  next_to_watch        <%p>\n"
6440				"  jiffies              <%lx>\n"
6441				"  desc.status          <%x>\n",
6442				tx_ring->queue_index,
6443				rd32(E1000_TDH(tx_ring->reg_idx)),
6444				readl(tx_ring->tail),
6445				tx_ring->next_to_use,
6446				tx_ring->next_to_clean,
6447				tx_buffer->time_stamp,
6448				tx_buffer->next_to_watch,
6449				jiffies,
6450				tx_buffer->next_to_watch->wb.status);
6451			netif_stop_subqueue(tx_ring->netdev,
6452					    tx_ring->queue_index);
6453
6454			/* we are about to reset, no point in enabling stuff */
6455			return true;
6456		}
6457	}
6458
6459#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6460	if (unlikely(total_packets &&
6461	    netif_carrier_ok(tx_ring->netdev) &&
6462	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6463		/* Make sure that anybody stopping the queue after this
6464		 * sees the new next_to_clean.
6465		 */
6466		smp_mb();
6467		if (__netif_subqueue_stopped(tx_ring->netdev,
6468					     tx_ring->queue_index) &&
6469		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6470			netif_wake_subqueue(tx_ring->netdev,
6471					    tx_ring->queue_index);
6472
6473			u64_stats_update_begin(&tx_ring->tx_syncp);
6474			tx_ring->tx_stats.restart_queue++;
6475			u64_stats_update_end(&tx_ring->tx_syncp);
6476		}
6477	}
6478
6479	return !!budget;
6480}
6481
6482/**
6483 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6484 *  @rx_ring: rx descriptor ring to store buffers on
6485 *  @old_buff: donor buffer to have page reused
6486 *
6487 *  Synchronizes page for reuse by the adapter
6488 **/
6489static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6490			      struct igb_rx_buffer *old_buff)
6491{
6492	struct igb_rx_buffer *new_buff;
6493	u16 nta = rx_ring->next_to_alloc;
6494
6495	new_buff = &rx_ring->rx_buffer_info[nta];
6496
6497	/* update, and store next to alloc */
6498	nta++;
6499	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6500
6501	/* transfer page from old buffer to new buffer */
6502	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6503
6504	/* sync the buffer for use by the device */
6505	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6506					 old_buff->page_offset,
6507					 IGB_RX_BUFSZ,
6508					 DMA_FROM_DEVICE);
6509}
6510
6511static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6512				  struct page *page,
6513				  unsigned int truesize)
6514{
6515	/* avoid re-using remote pages */
6516	if (unlikely(page_to_nid(page) != numa_node_id()))
6517		return false;
6518
6519#if (PAGE_SIZE < 8192)
6520	/* if we are only owner of page we can reuse it */
6521	if (unlikely(page_count(page) != 1))
6522		return false;
6523
6524	/* flip page offset to other buffer */
6525	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6526
6527	/* since we are the only owner of the page and we need to
6528	 * increment it, just set the value to 2 in order to avoid
6529	 * an unnecessary locked operation
6530	 */
6531	atomic_set(&page->_count, 2);
6532#else
6533	/* move offset up to the next cache line */
6534	rx_buffer->page_offset += truesize;
6535
6536	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6537		return false;
6538
6539	/* bump ref count on page before it is given to the stack */
6540	get_page(page);
6541#endif
6542
6543	return true;
6544}
6545
6546/**
6547 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6548 *  @rx_ring: rx descriptor ring to transact packets on
6549 *  @rx_buffer: buffer containing page to add
6550 *  @rx_desc: descriptor containing length of buffer written by hardware
6551 *  @skb: sk_buff to place the data into
6552 *
6553 *  This function will add the data contained in rx_buffer->page to the skb.
6554 *  This is done either through a direct copy if the data in the buffer is
6555 *  less than the skb header size, otherwise it will just attach the page as
6556 *  a frag to the skb.
6557 *
6558 *  The function will then update the page offset if necessary and return
6559 *  true if the buffer can be reused by the adapter.
6560 **/
6561static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6562			    struct igb_rx_buffer *rx_buffer,
6563			    union e1000_adv_rx_desc *rx_desc,
6564			    struct sk_buff *skb)
6565{
6566	struct page *page = rx_buffer->page;
6567	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6568#if (PAGE_SIZE < 8192)
6569	unsigned int truesize = IGB_RX_BUFSZ;
6570#else
6571	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6572#endif
6573
6574	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6575		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6576
6577		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6578			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6579			va += IGB_TS_HDR_LEN;
6580			size -= IGB_TS_HDR_LEN;
6581		}
6582
6583		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6584
6585		/* we can reuse buffer as-is, just make sure it is local */
6586		if (likely(page_to_nid(page) == numa_node_id()))
6587			return true;
6588
6589		/* this page cannot be reused so discard it */
6590		put_page(page);
6591		return false;
6592	}
6593
6594	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6595			rx_buffer->page_offset, size, truesize);
6596
6597	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6598}
6599
6600static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6601					   union e1000_adv_rx_desc *rx_desc,
6602					   struct sk_buff *skb)
6603{
6604	struct igb_rx_buffer *rx_buffer;
6605	struct page *page;
6606
6607	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6608
6609	page = rx_buffer->page;
6610	prefetchw(page);
6611
6612	if (likely(!skb)) {
6613		void *page_addr = page_address(page) +
6614				  rx_buffer->page_offset;
6615
6616		/* prefetch first cache line of first page */
6617		prefetch(page_addr);
6618#if L1_CACHE_BYTES < 128
6619		prefetch(page_addr + L1_CACHE_BYTES);
6620#endif
6621
6622		/* allocate a skb to store the frags */
6623		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6624						IGB_RX_HDR_LEN);
6625		if (unlikely(!skb)) {
6626			rx_ring->rx_stats.alloc_failed++;
6627			return NULL;
6628		}
6629
6630		/* we will be copying header into skb->data in
6631		 * pskb_may_pull so it is in our interest to prefetch
6632		 * it now to avoid a possible cache miss
6633		 */
6634		prefetchw(skb->data);
6635	}
6636
6637	/* we are reusing so sync this buffer for CPU use */
6638	dma_sync_single_range_for_cpu(rx_ring->dev,
6639				      rx_buffer->dma,
6640				      rx_buffer->page_offset,
6641				      IGB_RX_BUFSZ,
6642				      DMA_FROM_DEVICE);
6643
6644	/* pull page into skb */
6645	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6646		/* hand second half of page back to the ring */
6647		igb_reuse_rx_page(rx_ring, rx_buffer);
6648	} else {
6649		/* we are not reusing the buffer so unmap it */
6650		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6651			       PAGE_SIZE, DMA_FROM_DEVICE);
6652	}
6653
6654	/* clear contents of rx_buffer */
6655	rx_buffer->page = NULL;
6656
6657	return skb;
6658}
6659
6660static inline void igb_rx_checksum(struct igb_ring *ring,
6661				   union e1000_adv_rx_desc *rx_desc,
6662				   struct sk_buff *skb)
6663{
6664	skb_checksum_none_assert(skb);
6665
6666	/* Ignore Checksum bit is set */
6667	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6668		return;
6669
6670	/* Rx checksum disabled via ethtool */
6671	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6672		return;
6673
6674	/* TCP/UDP checksum error bit is set */
6675	if (igb_test_staterr(rx_desc,
6676			     E1000_RXDEXT_STATERR_TCPE |
6677			     E1000_RXDEXT_STATERR_IPE)) {
6678		/* work around errata with sctp packets where the TCPE aka
6679		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6680		 * packets, (aka let the stack check the crc32c)
6681		 */
6682		if (!((skb->len == 60) &&
6683		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6684			u64_stats_update_begin(&ring->rx_syncp);
6685			ring->rx_stats.csum_err++;
6686			u64_stats_update_end(&ring->rx_syncp);
6687		}
6688		/* let the stack verify checksum errors */
6689		return;
6690	}
6691	/* It must be a TCP or UDP packet with a valid checksum */
6692	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6693				      E1000_RXD_STAT_UDPCS))
6694		skb->ip_summed = CHECKSUM_UNNECESSARY;
6695
6696	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6697		le32_to_cpu(rx_desc->wb.upper.status_error));
6698}
6699
6700static inline void igb_rx_hash(struct igb_ring *ring,
6701			       union e1000_adv_rx_desc *rx_desc,
6702			       struct sk_buff *skb)
6703{
6704	if (ring->netdev->features & NETIF_F_RXHASH)
6705		skb_set_hash(skb,
6706			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6707			     PKT_HASH_TYPE_L3);
6708}
6709
6710/**
6711 *  igb_is_non_eop - process handling of non-EOP buffers
6712 *  @rx_ring: Rx ring being processed
6713 *  @rx_desc: Rx descriptor for current buffer
6714 *  @skb: current socket buffer containing buffer in progress
6715 *
6716 *  This function updates next to clean.  If the buffer is an EOP buffer
6717 *  this function exits returning false, otherwise it will place the
6718 *  sk_buff in the next buffer to be chained and return true indicating
6719 *  that this is in fact a non-EOP buffer.
6720 **/
6721static bool igb_is_non_eop(struct igb_ring *rx_ring,
6722			   union e1000_adv_rx_desc *rx_desc)
6723{
6724	u32 ntc = rx_ring->next_to_clean + 1;
6725
6726	/* fetch, update, and store next to clean */
6727	ntc = (ntc < rx_ring->count) ? ntc : 0;
6728	rx_ring->next_to_clean = ntc;
6729
6730	prefetch(IGB_RX_DESC(rx_ring, ntc));
6731
6732	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6733		return false;
6734
6735	return true;
6736}
6737
6738/**
6739 *  igb_get_headlen - determine size of header for LRO/GRO
6740 *  @data: pointer to the start of the headers
6741 *  @max_len: total length of section to find headers in
6742 *
6743 *  This function is meant to determine the length of headers that will
6744 *  be recognized by hardware for LRO, and GRO offloads.  The main
6745 *  motivation of doing this is to only perform one pull for IPv4 TCP
6746 *  packets so that we can do basic things like calculating the gso_size
6747 *  based on the average data per packet.
6748 **/
6749static unsigned int igb_get_headlen(unsigned char *data,
6750				    unsigned int max_len)
6751{
6752	union {
6753		unsigned char *network;
6754		/* l2 headers */
6755		struct ethhdr *eth;
6756		struct vlan_hdr *vlan;
6757		/* l3 headers */
6758		struct iphdr *ipv4;
6759		struct ipv6hdr *ipv6;
6760	} hdr;
6761	__be16 protocol;
6762	u8 nexthdr = 0;	/* default to not TCP */
6763	u8 hlen;
6764
6765	/* this should never happen, but better safe than sorry */
6766	if (max_len < ETH_HLEN)
6767		return max_len;
6768
6769	/* initialize network frame pointer */
6770	hdr.network = data;
6771
6772	/* set first protocol and move network header forward */
6773	protocol = hdr.eth->h_proto;
6774	hdr.network += ETH_HLEN;
6775
6776	/* handle any vlan tag if present */
6777	if (protocol == htons(ETH_P_8021Q)) {
6778		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6779			return max_len;
6780
6781		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6782		hdr.network += VLAN_HLEN;
6783	}
6784
6785	/* handle L3 protocols */
6786	if (protocol == htons(ETH_P_IP)) {
6787		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6788			return max_len;
6789
6790		/* access ihl as a u8 to avoid unaligned access on ia64 */
6791		hlen = (hdr.network[0] & 0x0F) << 2;
6792
6793		/* verify hlen meets minimum size requirements */
6794		if (hlen < sizeof(struct iphdr))
6795			return hdr.network - data;
6796
6797		/* record next protocol if header is present */
6798		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6799			nexthdr = hdr.ipv4->protocol;
6800	} else if (protocol == htons(ETH_P_IPV6)) {
6801		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6802			return max_len;
6803
6804		/* record next protocol */
6805		nexthdr = hdr.ipv6->nexthdr;
6806		hlen = sizeof(struct ipv6hdr);
6807	} else {
6808		return hdr.network - data;
6809	}
6810
6811	/* relocate pointer to start of L4 header */
6812	hdr.network += hlen;
6813
6814	/* finally sort out TCP */
6815	if (nexthdr == IPPROTO_TCP) {
6816		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6817			return max_len;
6818
6819		/* access doff as a u8 to avoid unaligned access on ia64 */
6820		hlen = (hdr.network[12] & 0xF0) >> 2;
6821
6822		/* verify hlen meets minimum size requirements */
6823		if (hlen < sizeof(struct tcphdr))
6824			return hdr.network - data;
6825
6826		hdr.network += hlen;
6827	} else if (nexthdr == IPPROTO_UDP) {
6828		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6829			return max_len;
6830
6831		hdr.network += sizeof(struct udphdr);
6832	}
6833
6834	/* If everything has gone correctly hdr.network should be the
6835	 * data section of the packet and will be the end of the header.
6836	 * If not then it probably represents the end of the last recognized
6837	 * header.
6838	 */
6839	if ((hdr.network - data) < max_len)
6840		return hdr.network - data;
6841	else
6842		return max_len;
6843}
6844
6845/**
6846 *  igb_pull_tail - igb specific version of skb_pull_tail
6847 *  @rx_ring: rx descriptor ring packet is being transacted on
6848 *  @rx_desc: pointer to the EOP Rx descriptor
6849 *  @skb: pointer to current skb being adjusted
6850 *
6851 *  This function is an igb specific version of __pskb_pull_tail.  The
6852 *  main difference between this version and the original function is that
6853 *  this function can make several assumptions about the state of things
6854 *  that allow for significant optimizations versus the standard function.
6855 *  As a result we can do things like drop a frag and maintain an accurate
6856 *  truesize for the skb.
6857 */
6858static void igb_pull_tail(struct igb_ring *rx_ring,
6859			  union e1000_adv_rx_desc *rx_desc,
6860			  struct sk_buff *skb)
6861{
6862	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6863	unsigned char *va;
6864	unsigned int pull_len;
6865
6866	/* it is valid to use page_address instead of kmap since we are
6867	 * working with pages allocated out of the lomem pool per
6868	 * alloc_page(GFP_ATOMIC)
6869	 */
6870	va = skb_frag_address(frag);
6871
6872	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6873		/* retrieve timestamp from buffer */
6874		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6875
6876		/* update pointers to remove timestamp header */
6877		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6878		frag->page_offset += IGB_TS_HDR_LEN;
6879		skb->data_len -= IGB_TS_HDR_LEN;
6880		skb->len -= IGB_TS_HDR_LEN;
6881
6882		/* move va to start of packet data */
6883		va += IGB_TS_HDR_LEN;
6884	}
6885
6886	/* we need the header to contain the greater of either ETH_HLEN or
6887	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6888	 */
6889	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6890
6891	/* align pull length to size of long to optimize memcpy performance */
6892	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6893
6894	/* update all of the pointers */
6895	skb_frag_size_sub(frag, pull_len);
6896	frag->page_offset += pull_len;
6897	skb->data_len -= pull_len;
6898	skb->tail += pull_len;
6899}
6900
6901/**
6902 *  igb_cleanup_headers - Correct corrupted or empty headers
6903 *  @rx_ring: rx descriptor ring packet is being transacted on
6904 *  @rx_desc: pointer to the EOP Rx descriptor
6905 *  @skb: pointer to current skb being fixed
6906 *
6907 *  Address the case where we are pulling data in on pages only
6908 *  and as such no data is present in the skb header.
6909 *
6910 *  In addition if skb is not at least 60 bytes we need to pad it so that
6911 *  it is large enough to qualify as a valid Ethernet frame.
6912 *
6913 *  Returns true if an error was encountered and skb was freed.
6914 **/
6915static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6916				union e1000_adv_rx_desc *rx_desc,
6917				struct sk_buff *skb)
6918{
6919	if (unlikely((igb_test_staterr(rx_desc,
6920				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6921		struct net_device *netdev = rx_ring->netdev;
6922		if (!(netdev->features & NETIF_F_RXALL)) {
6923			dev_kfree_skb_any(skb);
6924			return true;
6925		}
6926	}
6927
6928	/* place header in linear portion of buffer */
6929	if (skb_is_nonlinear(skb))
6930		igb_pull_tail(rx_ring, rx_desc, skb);
6931
6932	/* if skb_pad returns an error the skb was freed */
6933	if (unlikely(skb->len < 60)) {
6934		int pad_len = 60 - skb->len;
6935
6936		if (skb_pad(skb, pad_len))
6937			return true;
6938		__skb_put(skb, pad_len);
6939	}
6940
6941	return false;
6942}
6943
6944/**
6945 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6946 *  @rx_ring: rx descriptor ring packet is being transacted on
6947 *  @rx_desc: pointer to the EOP Rx descriptor
6948 *  @skb: pointer to current skb being populated
6949 *
6950 *  This function checks the ring, descriptor, and packet information in
6951 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6952 *  other fields within the skb.
6953 **/
6954static void igb_process_skb_fields(struct igb_ring *rx_ring,
6955				   union e1000_adv_rx_desc *rx_desc,
6956				   struct sk_buff *skb)
6957{
6958	struct net_device *dev = rx_ring->netdev;
6959
6960	igb_rx_hash(rx_ring, rx_desc, skb);
6961
6962	igb_rx_checksum(rx_ring, rx_desc, skb);
6963
6964	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6965	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6966		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6967
6968	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6969	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6970		u16 vid;
6971
6972		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6973		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6974			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6975		else
6976			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6977
6978		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6979	}
6980
6981	skb_record_rx_queue(skb, rx_ring->queue_index);
6982
6983	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6984}
6985
6986static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6987{
6988	struct igb_ring *rx_ring = q_vector->rx.ring;
6989	struct sk_buff *skb = rx_ring->skb;
6990	unsigned int total_bytes = 0, total_packets = 0;
6991	u16 cleaned_count = igb_desc_unused(rx_ring);
6992
6993	while (likely(total_packets < budget)) {
6994		union e1000_adv_rx_desc *rx_desc;
6995
6996		/* return some buffers to hardware, one at a time is too slow */
6997		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6998			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6999			cleaned_count = 0;
7000		}
7001
7002		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7003
7004		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7005			break;
7006
7007		/* This memory barrier is needed to keep us from reading
7008		 * any other fields out of the rx_desc until we know the
7009		 * RXD_STAT_DD bit is set
7010		 */
7011		rmb();
7012
7013		/* retrieve a buffer from the ring */
7014		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7015
7016		/* exit if we failed to retrieve a buffer */
7017		if (!skb)
7018			break;
7019
7020		cleaned_count++;
7021
7022		/* fetch next buffer in frame if non-eop */
7023		if (igb_is_non_eop(rx_ring, rx_desc))
7024			continue;
7025
7026		/* verify the packet layout is correct */
7027		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7028			skb = NULL;
7029			continue;
7030		}
7031
7032		/* probably a little skewed due to removing CRC */
7033		total_bytes += skb->len;
7034
7035		/* populate checksum, timestamp, VLAN, and protocol */
7036		igb_process_skb_fields(rx_ring, rx_desc, skb);
7037
7038		napi_gro_receive(&q_vector->napi, skb);
7039
7040		/* reset skb pointer */
7041		skb = NULL;
7042
7043		/* update budget accounting */
7044		total_packets++;
7045	}
7046
7047	/* place incomplete frames back on ring for completion */
7048	rx_ring->skb = skb;
7049
7050	u64_stats_update_begin(&rx_ring->rx_syncp);
7051	rx_ring->rx_stats.packets += total_packets;
7052	rx_ring->rx_stats.bytes += total_bytes;
7053	u64_stats_update_end(&rx_ring->rx_syncp);
7054	q_vector->rx.total_packets += total_packets;
7055	q_vector->rx.total_bytes += total_bytes;
7056
7057	if (cleaned_count)
7058		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7059
7060	return total_packets < budget;
7061}
7062
7063static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7064				  struct igb_rx_buffer *bi)
7065{
7066	struct page *page = bi->page;
7067	dma_addr_t dma;
7068
7069	/* since we are recycling buffers we should seldom need to alloc */
7070	if (likely(page))
7071		return true;
7072
7073	/* alloc new page for storage */
7074	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7075	if (unlikely(!page)) {
7076		rx_ring->rx_stats.alloc_failed++;
7077		return false;
7078	}
7079
7080	/* map page for use */
7081	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7082
7083	/* if mapping failed free memory back to system since
7084	 * there isn't much point in holding memory we can't use
7085	 */
7086	if (dma_mapping_error(rx_ring->dev, dma)) {
7087		__free_page(page);
7088
7089		rx_ring->rx_stats.alloc_failed++;
7090		return false;
7091	}
7092
7093	bi->dma = dma;
7094	bi->page = page;
7095	bi->page_offset = 0;
7096
7097	return true;
7098}
7099
7100/**
7101 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7102 *  @adapter: address of board private structure
7103 **/
7104void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7105{
7106	union e1000_adv_rx_desc *rx_desc;
7107	struct igb_rx_buffer *bi;
7108	u16 i = rx_ring->next_to_use;
7109
7110	/* nothing to do */
7111	if (!cleaned_count)
7112		return;
7113
7114	rx_desc = IGB_RX_DESC(rx_ring, i);
7115	bi = &rx_ring->rx_buffer_info[i];
7116	i -= rx_ring->count;
7117
7118	do {
7119		if (!igb_alloc_mapped_page(rx_ring, bi))
7120			break;
7121
7122		/* Refresh the desc even if buffer_addrs didn't change
7123		 * because each write-back erases this info.
7124		 */
7125		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7126
7127		rx_desc++;
7128		bi++;
7129		i++;
7130		if (unlikely(!i)) {
7131			rx_desc = IGB_RX_DESC(rx_ring, 0);
7132			bi = rx_ring->rx_buffer_info;
7133			i -= rx_ring->count;
7134		}
7135
7136		/* clear the hdr_addr for the next_to_use descriptor */
7137		rx_desc->read.hdr_addr = 0;
7138
7139		cleaned_count--;
7140	} while (cleaned_count);
7141
7142	i += rx_ring->count;
7143
7144	if (rx_ring->next_to_use != i) {
7145		/* record the next descriptor to use */
7146		rx_ring->next_to_use = i;
7147
7148		/* update next to alloc since we have filled the ring */
7149		rx_ring->next_to_alloc = i;
7150
7151		/* Force memory writes to complete before letting h/w
7152		 * know there are new descriptors to fetch.  (Only
7153		 * applicable for weak-ordered memory model archs,
7154		 * such as IA-64).
7155		 */
7156		wmb();
7157		writel(i, rx_ring->tail);
7158	}
7159}
7160
7161/**
7162 * igb_mii_ioctl -
7163 * @netdev:
7164 * @ifreq:
7165 * @cmd:
7166 **/
7167static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7168{
7169	struct igb_adapter *adapter = netdev_priv(netdev);
7170	struct mii_ioctl_data *data = if_mii(ifr);
7171
7172	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7173		return -EOPNOTSUPP;
7174
7175	switch (cmd) {
7176	case SIOCGMIIPHY:
7177		data->phy_id = adapter->hw.phy.addr;
7178		break;
7179	case SIOCGMIIREG:
7180		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7181				     &data->val_out))
7182			return -EIO;
7183		break;
7184	case SIOCSMIIREG:
7185	default:
7186		return -EOPNOTSUPP;
7187	}
7188	return 0;
7189}
7190
7191/**
7192 * igb_ioctl -
7193 * @netdev:
7194 * @ifreq:
7195 * @cmd:
7196 **/
7197static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7198{
7199	switch (cmd) {
7200	case SIOCGMIIPHY:
7201	case SIOCGMIIREG:
7202	case SIOCSMIIREG:
7203		return igb_mii_ioctl(netdev, ifr, cmd);
7204	case SIOCGHWTSTAMP:
7205		return igb_ptp_get_ts_config(netdev, ifr);
7206	case SIOCSHWTSTAMP:
7207		return igb_ptp_set_ts_config(netdev, ifr);
7208	default:
7209		return -EOPNOTSUPP;
7210	}
7211}
7212
7213s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7214{
7215	struct igb_adapter *adapter = hw->back;
7216
7217	if (pcie_capability_read_word(adapter->pdev, reg, value))
7218		return -E1000_ERR_CONFIG;
7219
7220	return 0;
7221}
7222
7223s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7224{
7225	struct igb_adapter *adapter = hw->back;
7226
7227	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7228		return -E1000_ERR_CONFIG;
7229
7230	return 0;
7231}
7232
7233static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7234{
7235	struct igb_adapter *adapter = netdev_priv(netdev);
7236	struct e1000_hw *hw = &adapter->hw;
7237	u32 ctrl, rctl;
7238	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7239
7240	if (enable) {
7241		/* enable VLAN tag insert/strip */
7242		ctrl = rd32(E1000_CTRL);
7243		ctrl |= E1000_CTRL_VME;
7244		wr32(E1000_CTRL, ctrl);
7245
7246		/* Disable CFI check */
7247		rctl = rd32(E1000_RCTL);
7248		rctl &= ~E1000_RCTL_CFIEN;
7249		wr32(E1000_RCTL, rctl);
7250	} else {
7251		/* disable VLAN tag insert/strip */
7252		ctrl = rd32(E1000_CTRL);
7253		ctrl &= ~E1000_CTRL_VME;
7254		wr32(E1000_CTRL, ctrl);
7255	}
7256
7257	igb_rlpml_set(adapter);
7258}
7259
7260static int igb_vlan_rx_add_vid(struct net_device *netdev,
7261			       __be16 proto, u16 vid)
7262{
7263	struct igb_adapter *adapter = netdev_priv(netdev);
7264	struct e1000_hw *hw = &adapter->hw;
7265	int pf_id = adapter->vfs_allocated_count;
7266
7267	/* attempt to add filter to vlvf array */
7268	igb_vlvf_set(adapter, vid, true, pf_id);
7269
7270	/* add the filter since PF can receive vlans w/o entry in vlvf */
7271	igb_vfta_set(hw, vid, true);
7272
7273	set_bit(vid, adapter->active_vlans);
7274
7275	return 0;
7276}
7277
7278static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7279				__be16 proto, u16 vid)
7280{
7281	struct igb_adapter *adapter = netdev_priv(netdev);
7282	struct e1000_hw *hw = &adapter->hw;
7283	int pf_id = adapter->vfs_allocated_count;
7284	s32 err;
7285
7286	/* remove vlan from VLVF table array */
7287	err = igb_vlvf_set(adapter, vid, false, pf_id);
7288
7289	/* if vid was not present in VLVF just remove it from table */
7290	if (err)
7291		igb_vfta_set(hw, vid, false);
7292
7293	clear_bit(vid, adapter->active_vlans);
7294
7295	return 0;
7296}
7297
7298static void igb_restore_vlan(struct igb_adapter *adapter)
7299{
7300	u16 vid;
7301
7302	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7303
7304	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7305		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7306}
7307
7308int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7309{
7310	struct pci_dev *pdev = adapter->pdev;
7311	struct e1000_mac_info *mac = &adapter->hw.mac;
7312
7313	mac->autoneg = 0;
7314
7315	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7316	 * for the switch() below to work
7317	 */
7318	if ((spd & 1) || (dplx & ~1))
7319		goto err_inval;
7320
7321	/* Fiber NIC's only allow 1000 gbps Full duplex
7322	 * and 100Mbps Full duplex for 100baseFx sfp
7323	 */
7324	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7325		switch (spd + dplx) {
7326		case SPEED_10 + DUPLEX_HALF:
7327		case SPEED_10 + DUPLEX_FULL:
7328		case SPEED_100 + DUPLEX_HALF:
7329			goto err_inval;
7330		default:
7331			break;
7332		}
7333	}
7334
7335	switch (spd + dplx) {
7336	case SPEED_10 + DUPLEX_HALF:
7337		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7338		break;
7339	case SPEED_10 + DUPLEX_FULL:
7340		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7341		break;
7342	case SPEED_100 + DUPLEX_HALF:
7343		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7344		break;
7345	case SPEED_100 + DUPLEX_FULL:
7346		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7347		break;
7348	case SPEED_1000 + DUPLEX_FULL:
7349		mac->autoneg = 1;
7350		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7351		break;
7352	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7353	default:
7354		goto err_inval;
7355	}
7356
7357	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7358	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7359
7360	return 0;
7361
7362err_inval:
7363	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7364	return -EINVAL;
7365}
7366
7367static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7368			  bool runtime)
7369{
7370	struct net_device *netdev = pci_get_drvdata(pdev);
7371	struct igb_adapter *adapter = netdev_priv(netdev);
7372	struct e1000_hw *hw = &adapter->hw;
7373	u32 ctrl, rctl, status;
7374	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7375#ifdef CONFIG_PM
7376	int retval = 0;
7377#endif
7378
7379	netif_device_detach(netdev);
7380
7381	if (netif_running(netdev))
7382		__igb_close(netdev, true);
7383
7384	igb_clear_interrupt_scheme(adapter);
7385
7386#ifdef CONFIG_PM
7387	retval = pci_save_state(pdev);
7388	if (retval)
7389		return retval;
7390#endif
7391
7392	status = rd32(E1000_STATUS);
7393	if (status & E1000_STATUS_LU)
7394		wufc &= ~E1000_WUFC_LNKC;
7395
7396	if (wufc) {
7397		igb_setup_rctl(adapter);
7398		igb_set_rx_mode(netdev);
7399
7400		/* turn on all-multi mode if wake on multicast is enabled */
7401		if (wufc & E1000_WUFC_MC) {
7402			rctl = rd32(E1000_RCTL);
7403			rctl |= E1000_RCTL_MPE;
7404			wr32(E1000_RCTL, rctl);
7405		}
7406
7407		ctrl = rd32(E1000_CTRL);
7408		/* advertise wake from D3Cold */
7409		#define E1000_CTRL_ADVD3WUC 0x00100000
7410		/* phy power management enable */
7411		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7412		ctrl |= E1000_CTRL_ADVD3WUC;
7413		wr32(E1000_CTRL, ctrl);
7414
7415		/* Allow time for pending master requests to run */
7416		igb_disable_pcie_master(hw);
7417
7418		wr32(E1000_WUC, E1000_WUC_PME_EN);
7419		wr32(E1000_WUFC, wufc);
7420	} else {
7421		wr32(E1000_WUC, 0);
7422		wr32(E1000_WUFC, 0);
7423	}
7424
7425	*enable_wake = wufc || adapter->en_mng_pt;
7426	if (!*enable_wake)
7427		igb_power_down_link(adapter);
7428	else
7429		igb_power_up_link(adapter);
7430
7431	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7432	 * would have already happened in close and is redundant.
7433	 */
7434	igb_release_hw_control(adapter);
7435
7436	pci_disable_device(pdev);
7437
7438	return 0;
7439}
7440
7441#ifdef CONFIG_PM
7442#ifdef CONFIG_PM_SLEEP
7443static int igb_suspend(struct device *dev)
7444{
7445	int retval;
7446	bool wake;
7447	struct pci_dev *pdev = to_pci_dev(dev);
7448
7449	retval = __igb_shutdown(pdev, &wake, 0);
7450	if (retval)
7451		return retval;
7452
7453	if (wake) {
7454		pci_prepare_to_sleep(pdev);
7455	} else {
7456		pci_wake_from_d3(pdev, false);
7457		pci_set_power_state(pdev, PCI_D3hot);
7458	}
7459
7460	return 0;
7461}
7462#endif /* CONFIG_PM_SLEEP */
7463
7464static int igb_resume(struct device *dev)
7465{
7466	struct pci_dev *pdev = to_pci_dev(dev);
7467	struct net_device *netdev = pci_get_drvdata(pdev);
7468	struct igb_adapter *adapter = netdev_priv(netdev);
7469	struct e1000_hw *hw = &adapter->hw;
7470	u32 err;
7471
7472	pci_set_power_state(pdev, PCI_D0);
7473	pci_restore_state(pdev);
7474	pci_save_state(pdev);
7475
7476	err = pci_enable_device_mem(pdev);
7477	if (err) {
7478		dev_err(&pdev->dev,
7479			"igb: Cannot enable PCI device from suspend\n");
7480		return err;
7481	}
7482	pci_set_master(pdev);
7483
7484	pci_enable_wake(pdev, PCI_D3hot, 0);
7485	pci_enable_wake(pdev, PCI_D3cold, 0);
7486
7487	if (igb_init_interrupt_scheme(adapter, true)) {
7488		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7489		return -ENOMEM;
7490	}
7491
7492	igb_reset(adapter);
7493
7494	/* let the f/w know that the h/w is now under the control of the
7495	 * driver.
7496	 */
7497	igb_get_hw_control(adapter);
7498
7499	wr32(E1000_WUS, ~0);
7500
7501	if (netdev->flags & IFF_UP) {
7502		rtnl_lock();
7503		err = __igb_open(netdev, true);
7504		rtnl_unlock();
7505		if (err)
7506			return err;
7507	}
7508
7509	netif_device_attach(netdev);
7510	return 0;
7511}
7512
7513#ifdef CONFIG_PM_RUNTIME
7514static int igb_runtime_idle(struct device *dev)
7515{
7516	struct pci_dev *pdev = to_pci_dev(dev);
7517	struct net_device *netdev = pci_get_drvdata(pdev);
7518	struct igb_adapter *adapter = netdev_priv(netdev);
7519
7520	if (!igb_has_link(adapter))
7521		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7522
7523	return -EBUSY;
7524}
7525
7526static int igb_runtime_suspend(struct device *dev)
7527{
7528	struct pci_dev *pdev = to_pci_dev(dev);
7529	int retval;
7530	bool wake;
7531
7532	retval = __igb_shutdown(pdev, &wake, 1);
7533	if (retval)
7534		return retval;
7535
7536	if (wake) {
7537		pci_prepare_to_sleep(pdev);
7538	} else {
7539		pci_wake_from_d3(pdev, false);
7540		pci_set_power_state(pdev, PCI_D3hot);
7541	}
7542
7543	return 0;
7544}
7545
7546static int igb_runtime_resume(struct device *dev)
7547{
7548	return igb_resume(dev);
7549}
7550#endif /* CONFIG_PM_RUNTIME */
7551#endif
7552
7553static void igb_shutdown(struct pci_dev *pdev)
7554{
7555	bool wake;
7556
7557	__igb_shutdown(pdev, &wake, 0);
7558
7559	if (system_state == SYSTEM_POWER_OFF) {
7560		pci_wake_from_d3(pdev, wake);
7561		pci_set_power_state(pdev, PCI_D3hot);
7562	}
7563}
7564
7565#ifdef CONFIG_PCI_IOV
7566static int igb_sriov_reinit(struct pci_dev *dev)
7567{
7568	struct net_device *netdev = pci_get_drvdata(dev);
7569	struct igb_adapter *adapter = netdev_priv(netdev);
7570	struct pci_dev *pdev = adapter->pdev;
7571
7572	rtnl_lock();
7573
7574	if (netif_running(netdev))
7575		igb_close(netdev);
7576
7577	igb_clear_interrupt_scheme(adapter);
7578
7579	igb_init_queue_configuration(adapter);
7580
7581	if (igb_init_interrupt_scheme(adapter, true)) {
7582		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7583		return -ENOMEM;
7584	}
7585
7586	if (netif_running(netdev))
7587		igb_open(netdev);
7588
7589	rtnl_unlock();
7590
7591	return 0;
7592}
7593
7594static int igb_pci_disable_sriov(struct pci_dev *dev)
7595{
7596	int err = igb_disable_sriov(dev);
7597
7598	if (!err)
7599		err = igb_sriov_reinit(dev);
7600
7601	return err;
7602}
7603
7604static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7605{
7606	int err = igb_enable_sriov(dev, num_vfs);
7607
7608	if (err)
7609		goto out;
7610
7611	err = igb_sriov_reinit(dev);
7612	if (!err)
7613		return num_vfs;
7614
7615out:
7616	return err;
7617}
7618
7619#endif
7620static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7621{
7622#ifdef CONFIG_PCI_IOV
7623	if (num_vfs == 0)
7624		return igb_pci_disable_sriov(dev);
7625	else
7626		return igb_pci_enable_sriov(dev, num_vfs);
7627#endif
7628	return 0;
7629}
7630
7631#ifdef CONFIG_NET_POLL_CONTROLLER
7632/* Polling 'interrupt' - used by things like netconsole to send skbs
7633 * without having to re-enable interrupts. It's not called while
7634 * the interrupt routine is executing.
7635 */
7636static void igb_netpoll(struct net_device *netdev)
7637{
7638	struct igb_adapter *adapter = netdev_priv(netdev);
7639	struct e1000_hw *hw = &adapter->hw;
7640	struct igb_q_vector *q_vector;
7641	int i;
7642
7643	for (i = 0; i < adapter->num_q_vectors; i++) {
7644		q_vector = adapter->q_vector[i];
7645		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7646			wr32(E1000_EIMC, q_vector->eims_value);
7647		else
7648			igb_irq_disable(adapter);
7649		napi_schedule(&q_vector->napi);
7650	}
7651}
7652#endif /* CONFIG_NET_POLL_CONTROLLER */
7653
7654/**
7655 *  igb_io_error_detected - called when PCI error is detected
7656 *  @pdev: Pointer to PCI device
7657 *  @state: The current pci connection state
7658 *
7659 *  This function is called after a PCI bus error affecting
7660 *  this device has been detected.
7661 **/
7662static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7663					      pci_channel_state_t state)
7664{
7665	struct net_device *netdev = pci_get_drvdata(pdev);
7666	struct igb_adapter *adapter = netdev_priv(netdev);
7667
7668	netif_device_detach(netdev);
7669
7670	if (state == pci_channel_io_perm_failure)
7671		return PCI_ERS_RESULT_DISCONNECT;
7672
7673	if (netif_running(netdev))
7674		igb_down(adapter);
7675	pci_disable_device(pdev);
7676
7677	/* Request a slot slot reset. */
7678	return PCI_ERS_RESULT_NEED_RESET;
7679}
7680
7681/**
7682 *  igb_io_slot_reset - called after the pci bus has been reset.
7683 *  @pdev: Pointer to PCI device
7684 *
7685 *  Restart the card from scratch, as if from a cold-boot. Implementation
7686 *  resembles the first-half of the igb_resume routine.
7687 **/
7688static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7689{
7690	struct net_device *netdev = pci_get_drvdata(pdev);
7691	struct igb_adapter *adapter = netdev_priv(netdev);
7692	struct e1000_hw *hw = &adapter->hw;
7693	pci_ers_result_t result;
7694	int err;
7695
7696	if (pci_enable_device_mem(pdev)) {
7697		dev_err(&pdev->dev,
7698			"Cannot re-enable PCI device after reset.\n");
7699		result = PCI_ERS_RESULT_DISCONNECT;
7700	} else {
7701		pci_set_master(pdev);
7702		pci_restore_state(pdev);
7703		pci_save_state(pdev);
7704
7705		pci_enable_wake(pdev, PCI_D3hot, 0);
7706		pci_enable_wake(pdev, PCI_D3cold, 0);
7707
7708		igb_reset(adapter);
7709		wr32(E1000_WUS, ~0);
7710		result = PCI_ERS_RESULT_RECOVERED;
7711	}
7712
7713	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7714	if (err) {
7715		dev_err(&pdev->dev,
7716			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7717			err);
7718		/* non-fatal, continue */
7719	}
7720
7721	return result;
7722}
7723
7724/**
7725 *  igb_io_resume - called when traffic can start flowing again.
7726 *  @pdev: Pointer to PCI device
7727 *
7728 *  This callback is called when the error recovery driver tells us that
7729 *  its OK to resume normal operation. Implementation resembles the
7730 *  second-half of the igb_resume routine.
7731 */
7732static void igb_io_resume(struct pci_dev *pdev)
7733{
7734	struct net_device *netdev = pci_get_drvdata(pdev);
7735	struct igb_adapter *adapter = netdev_priv(netdev);
7736
7737	if (netif_running(netdev)) {
7738		if (igb_up(adapter)) {
7739			dev_err(&pdev->dev, "igb_up failed after reset\n");
7740			return;
7741		}
7742	}
7743
7744	netif_device_attach(netdev);
7745
7746	/* let the f/w know that the h/w is now under the control of the
7747	 * driver.
7748	 */
7749	igb_get_hw_control(adapter);
7750}
7751
7752static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7753			     u8 qsel)
7754{
7755	u32 rar_low, rar_high;
7756	struct e1000_hw *hw = &adapter->hw;
7757
7758	/* HW expects these in little endian so we reverse the byte order
7759	 * from network order (big endian) to little endian
7760	 */
7761	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7762		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7763	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7764
7765	/* Indicate to hardware the Address is Valid. */
7766	rar_high |= E1000_RAH_AV;
7767
7768	if (hw->mac.type == e1000_82575)
7769		rar_high |= E1000_RAH_POOL_1 * qsel;
7770	else
7771		rar_high |= E1000_RAH_POOL_1 << qsel;
7772
7773	wr32(E1000_RAL(index), rar_low);
7774	wrfl();
7775	wr32(E1000_RAH(index), rar_high);
7776	wrfl();
7777}
7778
7779static int igb_set_vf_mac(struct igb_adapter *adapter,
7780			  int vf, unsigned char *mac_addr)
7781{
7782	struct e1000_hw *hw = &adapter->hw;
7783	/* VF MAC addresses start at end of receive addresses and moves
7784	 * towards the first, as a result a collision should not be possible
7785	 */
7786	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7787
7788	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7789
7790	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7791
7792	return 0;
7793}
7794
7795static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7796{
7797	struct igb_adapter *adapter = netdev_priv(netdev);
7798	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7799		return -EINVAL;
7800	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7801	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7802	dev_info(&adapter->pdev->dev,
7803		 "Reload the VF driver to make this change effective.");
7804	if (test_bit(__IGB_DOWN, &adapter->state)) {
7805		dev_warn(&adapter->pdev->dev,
7806			 "The VF MAC address has been set, but the PF device is not up.\n");
7807		dev_warn(&adapter->pdev->dev,
7808			 "Bring the PF device up before attempting to use the VF device.\n");
7809	}
7810	return igb_set_vf_mac(adapter, vf, mac);
7811}
7812
7813static int igb_link_mbps(int internal_link_speed)
7814{
7815	switch (internal_link_speed) {
7816	case SPEED_100:
7817		return 100;
7818	case SPEED_1000:
7819		return 1000;
7820	default:
7821		return 0;
7822	}
7823}
7824
7825static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7826				  int link_speed)
7827{
7828	int rf_dec, rf_int;
7829	u32 bcnrc_val;
7830
7831	if (tx_rate != 0) {
7832		/* Calculate the rate factor values to set */
7833		rf_int = link_speed / tx_rate;
7834		rf_dec = (link_speed - (rf_int * tx_rate));
7835		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7836			 tx_rate;
7837
7838		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7839		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7840			      E1000_RTTBCNRC_RF_INT_MASK);
7841		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7842	} else {
7843		bcnrc_val = 0;
7844	}
7845
7846	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7847	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7848	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7849	 */
7850	wr32(E1000_RTTBCNRM, 0x14);
7851	wr32(E1000_RTTBCNRC, bcnrc_val);
7852}
7853
7854static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7855{
7856	int actual_link_speed, i;
7857	bool reset_rate = false;
7858
7859	/* VF TX rate limit was not set or not supported */
7860	if ((adapter->vf_rate_link_speed == 0) ||
7861	    (adapter->hw.mac.type != e1000_82576))
7862		return;
7863
7864	actual_link_speed = igb_link_mbps(adapter->link_speed);
7865	if (actual_link_speed != adapter->vf_rate_link_speed) {
7866		reset_rate = true;
7867		adapter->vf_rate_link_speed = 0;
7868		dev_info(&adapter->pdev->dev,
7869			 "Link speed has been changed. VF Transmit rate is disabled\n");
7870	}
7871
7872	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7873		if (reset_rate)
7874			adapter->vf_data[i].tx_rate = 0;
7875
7876		igb_set_vf_rate_limit(&adapter->hw, i,
7877				      adapter->vf_data[i].tx_rate,
7878				      actual_link_speed);
7879	}
7880}
7881
7882static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7883{
7884	struct igb_adapter *adapter = netdev_priv(netdev);
7885	struct e1000_hw *hw = &adapter->hw;
7886	int actual_link_speed;
7887
7888	if (hw->mac.type != e1000_82576)
7889		return -EOPNOTSUPP;
7890
7891	actual_link_speed = igb_link_mbps(adapter->link_speed);
7892	if ((vf >= adapter->vfs_allocated_count) ||
7893	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7894	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7895		return -EINVAL;
7896
7897	adapter->vf_rate_link_speed = actual_link_speed;
7898	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7899	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7900
7901	return 0;
7902}
7903
7904static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7905				   bool setting)
7906{
7907	struct igb_adapter *adapter = netdev_priv(netdev);
7908	struct e1000_hw *hw = &adapter->hw;
7909	u32 reg_val, reg_offset;
7910
7911	if (!adapter->vfs_allocated_count)
7912		return -EOPNOTSUPP;
7913
7914	if (vf >= adapter->vfs_allocated_count)
7915		return -EINVAL;
7916
7917	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7918	reg_val = rd32(reg_offset);
7919	if (setting)
7920		reg_val |= ((1 << vf) |
7921			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7922	else
7923		reg_val &= ~((1 << vf) |
7924			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7925	wr32(reg_offset, reg_val);
7926
7927	adapter->vf_data[vf].spoofchk_enabled = setting;
7928	return E1000_SUCCESS;
7929}
7930
7931static int igb_ndo_get_vf_config(struct net_device *netdev,
7932				 int vf, struct ifla_vf_info *ivi)
7933{
7934	struct igb_adapter *adapter = netdev_priv(netdev);
7935	if (vf >= adapter->vfs_allocated_count)
7936		return -EINVAL;
7937	ivi->vf = vf;
7938	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7939	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7940	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7941	ivi->qos = adapter->vf_data[vf].pf_qos;
7942	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7943	return 0;
7944}
7945
7946static void igb_vmm_control(struct igb_adapter *adapter)
7947{
7948	struct e1000_hw *hw = &adapter->hw;
7949	u32 reg;
7950
7951	switch (hw->mac.type) {
7952	case e1000_82575:
7953	case e1000_i210:
7954	case e1000_i211:
7955	case e1000_i354:
7956	default:
7957		/* replication is not supported for 82575 */
7958		return;
7959	case e1000_82576:
7960		/* notify HW that the MAC is adding vlan tags */
7961		reg = rd32(E1000_DTXCTL);
7962		reg |= E1000_DTXCTL_VLAN_ADDED;
7963		wr32(E1000_DTXCTL, reg);
7964		/* Fall through */
7965	case e1000_82580:
7966		/* enable replication vlan tag stripping */
7967		reg = rd32(E1000_RPLOLR);
7968		reg |= E1000_RPLOLR_STRVLAN;
7969		wr32(E1000_RPLOLR, reg);
7970		/* Fall through */
7971	case e1000_i350:
7972		/* none of the above registers are supported by i350 */
7973		break;
7974	}
7975
7976	if (adapter->vfs_allocated_count) {
7977		igb_vmdq_set_loopback_pf(hw, true);
7978		igb_vmdq_set_replication_pf(hw, true);
7979		igb_vmdq_set_anti_spoofing_pf(hw, true,
7980					      adapter->vfs_allocated_count);
7981	} else {
7982		igb_vmdq_set_loopback_pf(hw, false);
7983		igb_vmdq_set_replication_pf(hw, false);
7984	}
7985}
7986
7987static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7988{
7989	struct e1000_hw *hw = &adapter->hw;
7990	u32 dmac_thr;
7991	u16 hwm;
7992
7993	if (hw->mac.type > e1000_82580) {
7994		if (adapter->flags & IGB_FLAG_DMAC) {
7995			u32 reg;
7996
7997			/* force threshold to 0. */
7998			wr32(E1000_DMCTXTH, 0);
7999
8000			/* DMA Coalescing high water mark needs to be greater
8001			 * than the Rx threshold. Set hwm to PBA - max frame
8002			 * size in 16B units, capping it at PBA - 6KB.
8003			 */
8004			hwm = 64 * pba - adapter->max_frame_size / 16;
8005			if (hwm < 64 * (pba - 6))
8006				hwm = 64 * (pba - 6);
8007			reg = rd32(E1000_FCRTC);
8008			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8009			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8010				& E1000_FCRTC_RTH_COAL_MASK);
8011			wr32(E1000_FCRTC, reg);
8012
8013			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8014			 * frame size, capping it at PBA - 10KB.
8015			 */
8016			dmac_thr = pba - adapter->max_frame_size / 512;
8017			if (dmac_thr < pba - 10)
8018				dmac_thr = pba - 10;
8019			reg = rd32(E1000_DMACR);
8020			reg &= ~E1000_DMACR_DMACTHR_MASK;
8021			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8022				& E1000_DMACR_DMACTHR_MASK);
8023
8024			/* transition to L0x or L1 if available..*/
8025			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8026
8027			/* watchdog timer= +-1000 usec in 32usec intervals */
8028			reg |= (1000 >> 5);
8029
8030			/* Disable BMC-to-OS Watchdog Enable */
8031			if (hw->mac.type != e1000_i354)
8032				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8033
8034			wr32(E1000_DMACR, reg);
8035
8036			/* no lower threshold to disable
8037			 * coalescing(smart fifb)-UTRESH=0
8038			 */
8039			wr32(E1000_DMCRTRH, 0);
8040
8041			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8042
8043			wr32(E1000_DMCTLX, reg);
8044
8045			/* free space in tx packet buffer to wake from
8046			 * DMA coal
8047			 */
8048			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8049			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8050
8051			/* make low power state decision controlled
8052			 * by DMA coal
8053			 */
8054			reg = rd32(E1000_PCIEMISC);
8055			reg &= ~E1000_PCIEMISC_LX_DECISION;
8056			wr32(E1000_PCIEMISC, reg);
8057		} /* endif adapter->dmac is not disabled */
8058	} else if (hw->mac.type == e1000_82580) {
8059		u32 reg = rd32(E1000_PCIEMISC);
8060
8061		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8062		wr32(E1000_DMACR, 0);
8063	}
8064}
8065
8066/**
8067 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8068 *  @hw: pointer to hardware structure
8069 *  @byte_offset: byte offset to read
8070 *  @dev_addr: device address
8071 *  @data: value read
8072 *
8073 *  Performs byte read operation over I2C interface at
8074 *  a specified device address.
8075 **/
8076s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8077		      u8 dev_addr, u8 *data)
8078{
8079	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8080	struct i2c_client *this_client = adapter->i2c_client;
8081	s32 status;
8082	u16 swfw_mask = 0;
8083
8084	if (!this_client)
8085		return E1000_ERR_I2C;
8086
8087	swfw_mask = E1000_SWFW_PHY0_SM;
8088
8089	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8090	    != E1000_SUCCESS)
8091		return E1000_ERR_SWFW_SYNC;
8092
8093	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8094	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8095
8096	if (status < 0)
8097		return E1000_ERR_I2C;
8098	else {
8099		*data = status;
8100		return E1000_SUCCESS;
8101	}
8102}
8103
8104/**
8105 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8106 *  @hw: pointer to hardware structure
8107 *  @byte_offset: byte offset to write
8108 *  @dev_addr: device address
8109 *  @data: value to write
8110 *
8111 *  Performs byte write operation over I2C interface at
8112 *  a specified device address.
8113 **/
8114s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8115		       u8 dev_addr, u8 data)
8116{
8117	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8118	struct i2c_client *this_client = adapter->i2c_client;
8119	s32 status;
8120	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8121
8122	if (!this_client)
8123		return E1000_ERR_I2C;
8124
8125	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8126		return E1000_ERR_SWFW_SYNC;
8127	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8128	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8129
8130	if (status)
8131		return E1000_ERR_I2C;
8132	else
8133		return E1000_SUCCESS;
8134
8135}
8136
8137int igb_reinit_queues(struct igb_adapter *adapter)
8138{
8139	struct net_device *netdev = adapter->netdev;
8140	struct pci_dev *pdev = adapter->pdev;
8141	int err = 0;
8142
8143	if (netif_running(netdev))
8144		igb_close(netdev);
8145
8146	igb_reset_interrupt_capability(adapter);
8147
8148	if (igb_init_interrupt_scheme(adapter, true)) {
8149		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8150		return -ENOMEM;
8151	}
8152
8153	if (netif_running(netdev))
8154		err = igb_open(netdev);
8155
8156	return err;
8157}
8158/* igb_main.c */
8159