igb_main.c revision c342b39ea7ca0e46e093cdb346bf52b2b4e71b01
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 5
64#define MIN 0
65#define BUILD 3
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115	/* required last entry */
116	{0, }
117};
118
119MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121void igb_reset(struct igb_adapter *);
122static int igb_setup_all_tx_resources(struct igb_adapter *);
123static int igb_setup_all_rx_resources(struct igb_adapter *);
124static void igb_free_all_tx_resources(struct igb_adapter *);
125static void igb_free_all_rx_resources(struct igb_adapter *);
126static void igb_setup_mrqc(struct igb_adapter *);
127static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128static void igb_remove(struct pci_dev *pdev);
129static int igb_sw_init(struct igb_adapter *);
130static int igb_open(struct net_device *);
131static int igb_close(struct net_device *);
132static void igb_configure(struct igb_adapter *);
133static void igb_configure_tx(struct igb_adapter *);
134static void igb_configure_rx(struct igb_adapter *);
135static void igb_clean_all_tx_rings(struct igb_adapter *);
136static void igb_clean_all_rx_rings(struct igb_adapter *);
137static void igb_clean_tx_ring(struct igb_ring *);
138static void igb_clean_rx_ring(struct igb_ring *);
139static void igb_set_rx_mode(struct net_device *);
140static void igb_update_phy_info(unsigned long);
141static void igb_watchdog(unsigned long);
142static void igb_watchdog_task(struct work_struct *);
143static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145						 struct rtnl_link_stats64 *stats);
146static int igb_change_mtu(struct net_device *, int);
147static int igb_set_mac(struct net_device *, void *);
148static void igb_set_uta(struct igb_adapter *adapter);
149static irqreturn_t igb_intr(int irq, void *);
150static irqreturn_t igb_intr_msi(int irq, void *);
151static irqreturn_t igb_msix_other(int irq, void *);
152static irqreturn_t igb_msix_ring(int irq, void *);
153#ifdef CONFIG_IGB_DCA
154static void igb_update_dca(struct igb_q_vector *);
155static void igb_setup_dca(struct igb_adapter *);
156#endif /* CONFIG_IGB_DCA */
157static int igb_poll(struct napi_struct *, int);
158static bool igb_clean_tx_irq(struct igb_q_vector *);
159static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161static void igb_tx_timeout(struct net_device *);
162static void igb_reset_task(struct work_struct *);
163static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166static void igb_restore_vlan(struct igb_adapter *);
167static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168static void igb_ping_all_vfs(struct igb_adapter *);
169static void igb_msg_task(struct igb_adapter *);
170static void igb_vmm_control(struct igb_adapter *);
171static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175			       int vf, u16 vlan, u8 qos);
176static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178				   bool setting);
179static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180				 struct ifla_vf_info *ivi);
181static void igb_check_vf_rate_limit(struct igb_adapter *);
182
183#ifdef CONFIG_PCI_IOV
184static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225		     pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
229static const struct pci_error_handlers igb_err_handler = {
230	.error_detected = igb_io_error_detected,
231	.slot_reset = igb_io_slot_reset,
232	.resume = igb_io_resume,
233};
234
235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237static struct pci_driver igb_driver = {
238	.name     = igb_driver_name,
239	.id_table = igb_pci_tbl,
240	.probe    = igb_probe,
241	.remove   = igb_remove,
242#ifdef CONFIG_PM
243	.driver.pm = &igb_pm_ops,
244#endif
245	.shutdown = igb_shutdown,
246	.sriov_configure = igb_pci_sriov_configure,
247	.err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260struct igb_reg_info {
261	u32 ofs;
262	char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267	/* General Registers */
268	{E1000_CTRL, "CTRL"},
269	{E1000_STATUS, "STATUS"},
270	{E1000_CTRL_EXT, "CTRL_EXT"},
271
272	/* Interrupt Registers */
273	{E1000_ICR, "ICR"},
274
275	/* RX Registers */
276	{E1000_RCTL, "RCTL"},
277	{E1000_RDLEN(0), "RDLEN"},
278	{E1000_RDH(0), "RDH"},
279	{E1000_RDT(0), "RDT"},
280	{E1000_RXDCTL(0), "RXDCTL"},
281	{E1000_RDBAL(0), "RDBAL"},
282	{E1000_RDBAH(0), "RDBAH"},
283
284	/* TX Registers */
285	{E1000_TCTL, "TCTL"},
286	{E1000_TDBAL(0), "TDBAL"},
287	{E1000_TDBAH(0), "TDBAH"},
288	{E1000_TDLEN(0), "TDLEN"},
289	{E1000_TDH(0), "TDH"},
290	{E1000_TDT(0), "TDT"},
291	{E1000_TXDCTL(0), "TXDCTL"},
292	{E1000_TDFH, "TDFH"},
293	{E1000_TDFT, "TDFT"},
294	{E1000_TDFHS, "TDFHS"},
295	{E1000_TDFPC, "TDFPC"},
296
297	/* List Terminator */
298	{}
299};
300
301/* igb_regdump - register printout routine */
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304	int n = 0;
305	char rname[16];
306	u32 regs[8];
307
308	switch (reginfo->ofs) {
309	case E1000_RDLEN(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDLEN(n));
312		break;
313	case E1000_RDH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDH(n));
316		break;
317	case E1000_RDT(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDT(n));
320		break;
321	case E1000_RXDCTL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RXDCTL(n));
324		break;
325	case E1000_RDBAL(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAL(n));
328		break;
329	case E1000_RDBAH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAH(n));
332		break;
333	case E1000_TDBAL(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_RDBAL(n));
336		break;
337	case E1000_TDBAH(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDBAH(n));
340		break;
341	case E1000_TDLEN(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDLEN(n));
344		break;
345	case E1000_TDH(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDH(n));
348		break;
349	case E1000_TDT(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TDT(n));
352		break;
353	case E1000_TXDCTL(0):
354		for (n = 0; n < 4; n++)
355			regs[n] = rd32(E1000_TXDCTL(n));
356		break;
357	default:
358		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359		return;
360	}
361
362	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364		regs[2], regs[3]);
365}
366
367/* igb_dump - Print registers, Tx-rings and Rx-rings */
368static void igb_dump(struct igb_adapter *adapter)
369{
370	struct net_device *netdev = adapter->netdev;
371	struct e1000_hw *hw = &adapter->hw;
372	struct igb_reg_info *reginfo;
373	struct igb_ring *tx_ring;
374	union e1000_adv_tx_desc *tx_desc;
375	struct my_u0 { u64 a; u64 b; } *u0;
376	struct igb_ring *rx_ring;
377	union e1000_adv_rx_desc *rx_desc;
378	u32 staterr;
379	u16 i, n;
380
381	if (!netif_msg_hw(adapter))
382		return;
383
384	/* Print netdevice Info */
385	if (netdev) {
386		dev_info(&adapter->pdev->dev, "Net device Info\n");
387		pr_info("Device Name     state            trans_start      "
388			"last_rx\n");
389		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390			netdev->state, netdev->trans_start, netdev->last_rx);
391	}
392
393	/* Print Registers */
394	dev_info(&adapter->pdev->dev, "Register Dump\n");
395	pr_info(" Register Name   Value\n");
396	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397	     reginfo->name; reginfo++) {
398		igb_regdump(hw, reginfo);
399	}
400
401	/* Print TX Ring Summary */
402	if (!netdev || !netif_running(netdev))
403		goto exit;
404
405	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407	for (n = 0; n < adapter->num_tx_queues; n++) {
408		struct igb_tx_buffer *buffer_info;
409		tx_ring = adapter->tx_ring[n];
410		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413			(u64)dma_unmap_addr(buffer_info, dma),
414			dma_unmap_len(buffer_info, len),
415			buffer_info->next_to_watch,
416			(u64)buffer_info->time_stamp);
417	}
418
419	/* Print TX Rings */
420	if (!netif_msg_tx_done(adapter))
421		goto rx_ring_summary;
422
423	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425	/* Transmit Descriptor Formats
426	 *
427	 * Advanced Transmit Descriptor
428	 *   +--------------------------------------------------------------+
429	 * 0 |         Buffer Address [63:0]                                |
430	 *   +--------------------------------------------------------------+
431	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432	 *   +--------------------------------------------------------------+
433	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434	 */
435
436	for (n = 0; n < adapter->num_tx_queues; n++) {
437		tx_ring = adapter->tx_ring[n];
438		pr_info("------------------------------------\n");
439		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440		pr_info("------------------------------------\n");
441		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442			"[bi->dma       ] leng  ntw timestamp        "
443			"bi->skb\n");
444
445		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446			const char *next_desc;
447			struct igb_tx_buffer *buffer_info;
448			tx_desc = IGB_TX_DESC(tx_ring, i);
449			buffer_info = &tx_ring->tx_buffer_info[i];
450			u0 = (struct my_u0 *)tx_desc;
451			if (i == tx_ring->next_to_use &&
452			    i == tx_ring->next_to_clean)
453				next_desc = " NTC/U";
454			else if (i == tx_ring->next_to_use)
455				next_desc = " NTU";
456			else if (i == tx_ring->next_to_clean)
457				next_desc = " NTC";
458			else
459				next_desc = "";
460
461			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462				" %04X  %p %016llX %p%s\n", i,
463				le64_to_cpu(u0->a),
464				le64_to_cpu(u0->b),
465				(u64)dma_unmap_addr(buffer_info, dma),
466				dma_unmap_len(buffer_info, len),
467				buffer_info->next_to_watch,
468				(u64)buffer_info->time_stamp,
469				buffer_info->skb, next_desc);
470
471			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472				print_hex_dump(KERN_INFO, "",
473					DUMP_PREFIX_ADDRESS,
474					16, 1, buffer_info->skb->data,
475					dma_unmap_len(buffer_info, len),
476					true);
477		}
478	}
479
480	/* Print RX Rings Summary */
481rx_ring_summary:
482	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483	pr_info("Queue [NTU] [NTC]\n");
484	for (n = 0; n < adapter->num_rx_queues; n++) {
485		rx_ring = adapter->rx_ring[n];
486		pr_info(" %5d %5X %5X\n",
487			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488	}
489
490	/* Print RX Rings */
491	if (!netif_msg_rx_status(adapter))
492		goto exit;
493
494	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496	/* Advanced Receive Descriptor (Read) Format
497	 *    63                                           1        0
498	 *    +-----------------------------------------------------+
499	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500	 *    +----------------------------------------------+------+
501	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502	 *    +-----------------------------------------------------+
503	 *
504	 *
505	 * Advanced Receive Descriptor (Write-Back) Format
506	 *
507	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508	 *   +------------------------------------------------------+
509	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510	 *   | Checksum   Ident  |   |           |    | Type | Type |
511	 *   +------------------------------------------------------+
512	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513	 *   +------------------------------------------------------+
514	 *   63       48 47    32 31            20 19               0
515	 */
516
517	for (n = 0; n < adapter->num_rx_queues; n++) {
518		rx_ring = adapter->rx_ring[n];
519		pr_info("------------------------------------\n");
520		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521		pr_info("------------------------------------\n");
522		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527		for (i = 0; i < rx_ring->count; i++) {
528			const char *next_desc;
529			struct igb_rx_buffer *buffer_info;
530			buffer_info = &rx_ring->rx_buffer_info[i];
531			rx_desc = IGB_RX_DESC(rx_ring, i);
532			u0 = (struct my_u0 *)rx_desc;
533			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535			if (i == rx_ring->next_to_use)
536				next_desc = " NTU";
537			else if (i == rx_ring->next_to_clean)
538				next_desc = " NTC";
539			else
540				next_desc = "";
541
542			if (staterr & E1000_RXD_STAT_DD) {
543				/* Descriptor Done */
544				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545					"RWB", i,
546					le64_to_cpu(u0->a),
547					le64_to_cpu(u0->b),
548					next_desc);
549			} else {
550				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551					"R  ", i,
552					le64_to_cpu(u0->a),
553					le64_to_cpu(u0->b),
554					(u64)buffer_info->dma,
555					next_desc);
556
557				if (netif_msg_pktdata(adapter) &&
558				    buffer_info->dma && buffer_info->page) {
559					print_hex_dump(KERN_INFO, "",
560					  DUMP_PREFIX_ADDRESS,
561					  16, 1,
562					  page_address(buffer_info->page) +
563						      buffer_info->page_offset,
564					  IGB_RX_BUFSZ, true);
565				}
566			}
567		}
568	}
569
570exit:
571	return;
572}
573
574/**
575 *  igb_get_i2c_data - Reads the I2C SDA data bit
576 *  @hw: pointer to hardware structure
577 *  @i2cctl: Current value of I2CCTL register
578 *
579 *  Returns the I2C data bit value
580 **/
581static int igb_get_i2c_data(void *data)
582{
583	struct igb_adapter *adapter = (struct igb_adapter *)data;
584	struct e1000_hw *hw = &adapter->hw;
585	s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
590/**
591 *  igb_set_i2c_data - Sets the I2C data bit
592 *  @data: pointer to hardware structure
593 *  @state: I2C data value (0 or 1) to set
594 *
595 *  Sets the I2C data bit
596 **/
597static void igb_set_i2c_data(void *data, int state)
598{
599	struct igb_adapter *adapter = (struct igb_adapter *)data;
600	struct e1000_hw *hw = &adapter->hw;
601	s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603	if (state)
604		i2cctl |= E1000_I2C_DATA_OUT;
605	else
606		i2cctl &= ~E1000_I2C_DATA_OUT;
607
608	i2cctl &= ~E1000_I2C_DATA_OE_N;
609	i2cctl |= E1000_I2C_CLK_OE_N;
610	wr32(E1000_I2CPARAMS, i2cctl);
611	wrfl();
612
613}
614
615/**
616 *  igb_set_i2c_clk - Sets the I2C SCL clock
617 *  @data: pointer to hardware structure
618 *  @state: state to set clock
619 *
620 *  Sets the I2C clock line to state
621 **/
622static void igb_set_i2c_clk(void *data, int state)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	if (state) {
629		i2cctl |= E1000_I2C_CLK_OUT;
630		i2cctl &= ~E1000_I2C_CLK_OE_N;
631	} else {
632		i2cctl &= ~E1000_I2C_CLK_OUT;
633		i2cctl &= ~E1000_I2C_CLK_OE_N;
634	}
635	wr32(E1000_I2CPARAMS, i2cctl);
636	wrfl();
637}
638
639/**
640 *  igb_get_i2c_clk - Gets the I2C SCL clock state
641 *  @data: pointer to hardware structure
642 *
643 *  Gets the I2C clock state
644 **/
645static int igb_get_i2c_clk(void *data)
646{
647	struct igb_adapter *adapter = (struct igb_adapter *)data;
648	struct e1000_hw *hw = &adapter->hw;
649	s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655	.setsda		= igb_set_i2c_data,
656	.setscl		= igb_set_i2c_clk,
657	.getsda		= igb_get_i2c_data,
658	.getscl		= igb_get_i2c_clk,
659	.udelay		= 5,
660	.timeout	= 20,
661};
662
663/**
664 *  igb_get_hw_dev - return device
665 *  @hw: pointer to hardware structure
666 *
667 *  used by hardware layer to print debugging information
668 **/
669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670{
671	struct igb_adapter *adapter = hw->back;
672	return adapter->netdev;
673}
674
675/**
676 *  igb_init_module - Driver Registration Routine
677 *
678 *  igb_init_module is the first routine called when the driver is
679 *  loaded. All it does is register with the PCI subsystem.
680 **/
681static int __init igb_init_module(void)
682{
683	int ret;
684	pr_info("%s - version %s\n",
685	       igb_driver_string, igb_driver_version);
686
687	pr_info("%s\n", igb_copyright);
688
689#ifdef CONFIG_IGB_DCA
690	dca_register_notify(&dca_notifier);
691#endif
692	ret = pci_register_driver(&igb_driver);
693	return ret;
694}
695
696module_init(igb_init_module);
697
698/**
699 *  igb_exit_module - Driver Exit Cleanup Routine
700 *
701 *  igb_exit_module is called just before the driver is removed
702 *  from memory.
703 **/
704static void __exit igb_exit_module(void)
705{
706#ifdef CONFIG_IGB_DCA
707	dca_unregister_notify(&dca_notifier);
708#endif
709	pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
716 *  igb_cache_ring_register - Descriptor ring to register mapping
717 *  @adapter: board private structure to initialize
718 *
719 *  Once we know the feature-set enabled for the device, we'll cache
720 *  the register offset the descriptor ring is assigned to.
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
724	int i = 0, j = 0;
725	u32 rbase_offset = adapter->vfs_allocated_count;
726
727	switch (adapter->hw.mac.type) {
728	case e1000_82576:
729		/* The queues are allocated for virtualization such that VF 0
730		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731		 * In order to avoid collision we start at the first free queue
732		 * and continue consuming queues in the same sequence
733		 */
734		if (adapter->vfs_allocated_count) {
735			for (; i < adapter->rss_queues; i++)
736				adapter->rx_ring[i]->reg_idx = rbase_offset +
737							       Q_IDX_82576(i);
738		}
739	case e1000_82575:
740	case e1000_82580:
741	case e1000_i350:
742	case e1000_i354:
743	case e1000_i210:
744	case e1000_i211:
745	default:
746		for (; i < adapter->num_rx_queues; i++)
747			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748		for (; j < adapter->num_tx_queues; j++)
749			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750		break;
751	}
752}
753
754/**
755 *  igb_write_ivar - configure ivar for given MSI-X vector
756 *  @hw: pointer to the HW structure
757 *  @msix_vector: vector number we are allocating to a given ring
758 *  @index: row index of IVAR register to write within IVAR table
759 *  @offset: column offset of in IVAR, should be multiple of 8
760 *
761 *  This function is intended to handle the writing of the IVAR register
762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763 *  each containing an cause allocation for an Rx and Tx ring, and a
764 *  variable number of rows depending on the number of queues supported.
765 **/
766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767			   int index, int offset)
768{
769	u32 ivar = array_rd32(E1000_IVAR0, index);
770
771	/* clear any bits that are currently set */
772	ivar &= ~((u32)0xFF << offset);
773
774	/* write vector and valid bit */
775	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777	array_wr32(E1000_IVAR0, index, ivar);
778}
779
780#define IGB_N0_QUEUE -1
781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782{
783	struct igb_adapter *adapter = q_vector->adapter;
784	struct e1000_hw *hw = &adapter->hw;
785	int rx_queue = IGB_N0_QUEUE;
786	int tx_queue = IGB_N0_QUEUE;
787	u32 msixbm = 0;
788
789	if (q_vector->rx.ring)
790		rx_queue = q_vector->rx.ring->reg_idx;
791	if (q_vector->tx.ring)
792		tx_queue = q_vector->tx.ring->reg_idx;
793
794	switch (hw->mac.type) {
795	case e1000_82575:
796		/* The 82575 assigns vectors using a bitmask, which matches the
797		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798		 * or more queues to a vector, we write the appropriate bits
799		 * into the MSIXBM register for that vector.
800		 */
801		if (rx_queue > IGB_N0_QUEUE)
802			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803		if (tx_queue > IGB_N0_QUEUE)
804			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805		if (!adapter->msix_entries && msix_vector == 0)
806			msixbm |= E1000_EIMS_OTHER;
807		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808		q_vector->eims_value = msixbm;
809		break;
810	case e1000_82576:
811		/* 82576 uses a table that essentially consists of 2 columns
812		 * with 8 rows.  The ordering is column-major so we use the
813		 * lower 3 bits as the row index, and the 4th bit as the
814		 * column offset.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			igb_write_ivar(hw, msix_vector,
818				       rx_queue & 0x7,
819				       (rx_queue & 0x8) << 1);
820		if (tx_queue > IGB_N0_QUEUE)
821			igb_write_ivar(hw, msix_vector,
822				       tx_queue & 0x7,
823				       ((tx_queue & 0x8) << 1) + 8);
824		q_vector->eims_value = 1 << msix_vector;
825		break;
826	case e1000_82580:
827	case e1000_i350:
828	case e1000_i354:
829	case e1000_i210:
830	case e1000_i211:
831		/* On 82580 and newer adapters the scheme is similar to 82576
832		 * however instead of ordering column-major we have things
833		 * ordered row-major.  So we traverse the table by using
834		 * bit 0 as the column offset, and the remaining bits as the
835		 * row index.
836		 */
837		if (rx_queue > IGB_N0_QUEUE)
838			igb_write_ivar(hw, msix_vector,
839				       rx_queue >> 1,
840				       (rx_queue & 0x1) << 4);
841		if (tx_queue > IGB_N0_QUEUE)
842			igb_write_ivar(hw, msix_vector,
843				       tx_queue >> 1,
844				       ((tx_queue & 0x1) << 4) + 8);
845		q_vector->eims_value = 1 << msix_vector;
846		break;
847	default:
848		BUG();
849		break;
850	}
851
852	/* add q_vector eims value to global eims_enable_mask */
853	adapter->eims_enable_mask |= q_vector->eims_value;
854
855	/* configure q_vector to set itr on first interrupt */
856	q_vector->set_itr = 1;
857}
858
859/**
860 *  igb_configure_msix - Configure MSI-X hardware
861 *  @adapter: board private structure to initialize
862 *
863 *  igb_configure_msix sets up the hardware to properly
864 *  generate MSI-X interrupts.
865 **/
866static void igb_configure_msix(struct igb_adapter *adapter)
867{
868	u32 tmp;
869	int i, vector = 0;
870	struct e1000_hw *hw = &adapter->hw;
871
872	adapter->eims_enable_mask = 0;
873
874	/* set vector for other causes, i.e. link changes */
875	switch (hw->mac.type) {
876	case e1000_82575:
877		tmp = rd32(E1000_CTRL_EXT);
878		/* enable MSI-X PBA support*/
879		tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881		/* Auto-Mask interrupts upon ICR read. */
882		tmp |= E1000_CTRL_EXT_EIAME;
883		tmp |= E1000_CTRL_EXT_IRCA;
884
885		wr32(E1000_CTRL_EXT, tmp);
886
887		/* enable msix_other interrupt */
888		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889		adapter->eims_other = E1000_EIMS_OTHER;
890
891		break;
892
893	case e1000_82576:
894	case e1000_82580:
895	case e1000_i350:
896	case e1000_i354:
897	case e1000_i210:
898	case e1000_i211:
899		/* Turn on MSI-X capability first, or our settings
900		 * won't stick.  And it will take days to debug.
901		 */
902		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904		     E1000_GPIE_NSICR);
905
906		/* enable msix_other interrupt */
907		adapter->eims_other = 1 << vector;
908		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910		wr32(E1000_IVAR_MISC, tmp);
911		break;
912	default:
913		/* do nothing, since nothing else supports MSI-X */
914		break;
915	} /* switch (hw->mac.type) */
916
917	adapter->eims_enable_mask |= adapter->eims_other;
918
919	for (i = 0; i < adapter->num_q_vectors; i++)
920		igb_assign_vector(adapter->q_vector[i], vector++);
921
922	wrfl();
923}
924
925/**
926 *  igb_request_msix - Initialize MSI-X interrupts
927 *  @adapter: board private structure to initialize
928 *
929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 *  kernel.
931 **/
932static int igb_request_msix(struct igb_adapter *adapter)
933{
934	struct net_device *netdev = adapter->netdev;
935	struct e1000_hw *hw = &adapter->hw;
936	int i, err = 0, vector = 0, free_vector = 0;
937
938	err = request_irq(adapter->msix_entries[vector].vector,
939			  igb_msix_other, 0, netdev->name, adapter);
940	if (err)
941		goto err_out;
942
943	for (i = 0; i < adapter->num_q_vectors; i++) {
944		struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946		vector++;
947
948		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950		if (q_vector->rx.ring && q_vector->tx.ring)
951			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952				q_vector->rx.ring->queue_index);
953		else if (q_vector->tx.ring)
954			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955				q_vector->tx.ring->queue_index);
956		else if (q_vector->rx.ring)
957			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958				q_vector->rx.ring->queue_index);
959		else
960			sprintf(q_vector->name, "%s-unused", netdev->name);
961
962		err = request_irq(adapter->msix_entries[vector].vector,
963				  igb_msix_ring, 0, q_vector->name,
964				  q_vector);
965		if (err)
966			goto err_free;
967	}
968
969	igb_configure_msix(adapter);
970	return 0;
971
972err_free:
973	/* free already assigned IRQs */
974	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976	vector--;
977	for (i = 0; i < vector; i++) {
978		free_irq(adapter->msix_entries[free_vector++].vector,
979			 adapter->q_vector[i]);
980	}
981err_out:
982	return err;
983}
984
985static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
986{
987	if (adapter->msix_entries) {
988		pci_disable_msix(adapter->pdev);
989		kfree(adapter->msix_entries);
990		adapter->msix_entries = NULL;
991	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992		pci_disable_msi(adapter->pdev);
993	}
994}
995
996/**
997 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
998 *  @adapter: board private structure to initialize
999 *  @v_idx: Index of vector to be freed
1000 *
1001 *  This function frees the memory allocated to the q_vector.  In addition if
1002 *  NAPI is enabled it will delete any references to the NAPI struct prior
1003 *  to freeing the q_vector.
1004 **/
1005static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006{
1007	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009	if (q_vector->tx.ring)
1010		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012	if (q_vector->rx.ring)
1013		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015	adapter->q_vector[v_idx] = NULL;
1016	netif_napi_del(&q_vector->napi);
1017
1018	/* igb_get_stats64() might access the rings on this vector,
1019	 * we must wait a grace period before freeing it.
1020	 */
1021	kfree_rcu(q_vector, rcu);
1022}
1023
1024/**
1025 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1026 *  @adapter: board private structure to initialize
1027 *
1028 *  This function frees the memory allocated to the q_vectors.  In addition if
1029 *  NAPI is enabled it will delete any references to the NAPI struct prior
1030 *  to freeing the q_vector.
1031 **/
1032static void igb_free_q_vectors(struct igb_adapter *adapter)
1033{
1034	int v_idx = adapter->num_q_vectors;
1035
1036	adapter->num_tx_queues = 0;
1037	adapter->num_rx_queues = 0;
1038	adapter->num_q_vectors = 0;
1039
1040	while (v_idx--)
1041		igb_free_q_vector(adapter, v_idx);
1042}
1043
1044/**
1045 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1046 *  @adapter: board private structure to initialize
1047 *
1048 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1049 *  MSI-X interrupts allocated.
1050 */
1051static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1052{
1053	igb_free_q_vectors(adapter);
1054	igb_reset_interrupt_capability(adapter);
1055}
1056
1057/**
1058 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1059 *  @adapter: board private structure to initialize
1060 *  @msix: boolean value of MSIX capability
1061 *
1062 *  Attempt to configure interrupts using the best available
1063 *  capabilities of the hardware and kernel.
1064 **/
1065static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066{
1067	int err;
1068	int numvecs, i;
1069
1070	if (!msix)
1071		goto msi_only;
1072
1073	/* Number of supported queues. */
1074	adapter->num_rx_queues = adapter->rss_queues;
1075	if (adapter->vfs_allocated_count)
1076		adapter->num_tx_queues = 1;
1077	else
1078		adapter->num_tx_queues = adapter->rss_queues;
1079
1080	/* start with one vector for every Rx queue */
1081	numvecs = adapter->num_rx_queues;
1082
1083	/* if Tx handler is separate add 1 for every Tx queue */
1084	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1085		numvecs += adapter->num_tx_queues;
1086
1087	/* store the number of vectors reserved for queues */
1088	adapter->num_q_vectors = numvecs;
1089
1090	/* add 1 vector for link status interrupts */
1091	numvecs++;
1092	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1093					GFP_KERNEL);
1094
1095	if (!adapter->msix_entries)
1096		goto msi_only;
1097
1098	for (i = 0; i < numvecs; i++)
1099		adapter->msix_entries[i].entry = i;
1100
1101	err = pci_enable_msix(adapter->pdev,
1102			      adapter->msix_entries,
1103			      numvecs);
1104	if (err == 0)
1105		return;
1106
1107	igb_reset_interrupt_capability(adapter);
1108
1109	/* If we can't do MSI-X, try MSI */
1110msi_only:
1111#ifdef CONFIG_PCI_IOV
1112	/* disable SR-IOV for non MSI-X configurations */
1113	if (adapter->vf_data) {
1114		struct e1000_hw *hw = &adapter->hw;
1115		/* disable iov and allow time for transactions to clear */
1116		pci_disable_sriov(adapter->pdev);
1117		msleep(500);
1118
1119		kfree(adapter->vf_data);
1120		adapter->vf_data = NULL;
1121		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122		wrfl();
1123		msleep(100);
1124		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125	}
1126#endif
1127	adapter->vfs_allocated_count = 0;
1128	adapter->rss_queues = 1;
1129	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130	adapter->num_rx_queues = 1;
1131	adapter->num_tx_queues = 1;
1132	adapter->num_q_vectors = 1;
1133	if (!pci_enable_msi(adapter->pdev))
1134		adapter->flags |= IGB_FLAG_HAS_MSI;
1135}
1136
1137static void igb_add_ring(struct igb_ring *ring,
1138			 struct igb_ring_container *head)
1139{
1140	head->ring = ring;
1141	head->count++;
1142}
1143
1144/**
1145 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146 *  @adapter: board private structure to initialize
1147 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1148 *  @v_idx: index of vector in adapter struct
1149 *  @txr_count: total number of Tx rings to allocate
1150 *  @txr_idx: index of first Tx ring to allocate
1151 *  @rxr_count: total number of Rx rings to allocate
1152 *  @rxr_idx: index of first Rx ring to allocate
1153 *
1154 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155 **/
1156static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157			      int v_count, int v_idx,
1158			      int txr_count, int txr_idx,
1159			      int rxr_count, int rxr_idx)
1160{
1161	struct igb_q_vector *q_vector;
1162	struct igb_ring *ring;
1163	int ring_count, size;
1164
1165	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1166	if (txr_count > 1 || rxr_count > 1)
1167		return -ENOMEM;
1168
1169	ring_count = txr_count + rxr_count;
1170	size = sizeof(struct igb_q_vector) +
1171	       (sizeof(struct igb_ring) * ring_count);
1172
1173	/* allocate q_vector and rings */
1174	q_vector = kzalloc(size, GFP_KERNEL);
1175	if (!q_vector)
1176		return -ENOMEM;
1177
1178	/* initialize NAPI */
1179	netif_napi_add(adapter->netdev, &q_vector->napi,
1180		       igb_poll, 64);
1181
1182	/* tie q_vector and adapter together */
1183	adapter->q_vector[v_idx] = q_vector;
1184	q_vector->adapter = adapter;
1185
1186	/* initialize work limits */
1187	q_vector->tx.work_limit = adapter->tx_work_limit;
1188
1189	/* initialize ITR configuration */
1190	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1191	q_vector->itr_val = IGB_START_ITR;
1192
1193	/* initialize pointer to rings */
1194	ring = q_vector->ring;
1195
1196	/* intialize ITR */
1197	if (rxr_count) {
1198		/* rx or rx/tx vector */
1199		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1200			q_vector->itr_val = adapter->rx_itr_setting;
1201	} else {
1202		/* tx only vector */
1203		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1204			q_vector->itr_val = adapter->tx_itr_setting;
1205	}
1206
1207	if (txr_count) {
1208		/* assign generic ring traits */
1209		ring->dev = &adapter->pdev->dev;
1210		ring->netdev = adapter->netdev;
1211
1212		/* configure backlink on ring */
1213		ring->q_vector = q_vector;
1214
1215		/* update q_vector Tx values */
1216		igb_add_ring(ring, &q_vector->tx);
1217
1218		/* For 82575, context index must be unique per ring. */
1219		if (adapter->hw.mac.type == e1000_82575)
1220			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1221
1222		/* apply Tx specific ring traits */
1223		ring->count = adapter->tx_ring_count;
1224		ring->queue_index = txr_idx;
1225
1226		/* assign ring to adapter */
1227		adapter->tx_ring[txr_idx] = ring;
1228
1229		/* push pointer to next ring */
1230		ring++;
1231	}
1232
1233	if (rxr_count) {
1234		/* assign generic ring traits */
1235		ring->dev = &adapter->pdev->dev;
1236		ring->netdev = adapter->netdev;
1237
1238		/* configure backlink on ring */
1239		ring->q_vector = q_vector;
1240
1241		/* update q_vector Rx values */
1242		igb_add_ring(ring, &q_vector->rx);
1243
1244		/* set flag indicating ring supports SCTP checksum offload */
1245		if (adapter->hw.mac.type >= e1000_82576)
1246			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247
1248		/*
1249		 * On i350, i354, i210, and i211, loopback VLAN packets
1250		 * have the tag byte-swapped.
1251		 */
1252		if (adapter->hw.mac.type >= e1000_i350)
1253			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254
1255		/* apply Rx specific ring traits */
1256		ring->count = adapter->rx_ring_count;
1257		ring->queue_index = rxr_idx;
1258
1259		/* assign ring to adapter */
1260		adapter->rx_ring[rxr_idx] = ring;
1261	}
1262
1263	return 0;
1264}
1265
1266
1267/**
1268 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1269 *  @adapter: board private structure to initialize
1270 *
1271 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1272 *  return -ENOMEM.
1273 **/
1274static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275{
1276	int q_vectors = adapter->num_q_vectors;
1277	int rxr_remaining = adapter->num_rx_queues;
1278	int txr_remaining = adapter->num_tx_queues;
1279	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1280	int err;
1281
1282	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1283		for (; rxr_remaining; v_idx++) {
1284			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1285						 0, 0, 1, rxr_idx);
1286
1287			if (err)
1288				goto err_out;
1289
1290			/* update counts and index */
1291			rxr_remaining--;
1292			rxr_idx++;
1293		}
1294	}
1295
1296	for (; v_idx < q_vectors; v_idx++) {
1297		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1298		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1299		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1300					 tqpv, txr_idx, rqpv, rxr_idx);
1301
1302		if (err)
1303			goto err_out;
1304
1305		/* update counts and index */
1306		rxr_remaining -= rqpv;
1307		txr_remaining -= tqpv;
1308		rxr_idx++;
1309		txr_idx++;
1310	}
1311
1312	return 0;
1313
1314err_out:
1315	adapter->num_tx_queues = 0;
1316	adapter->num_rx_queues = 0;
1317	adapter->num_q_vectors = 0;
1318
1319	while (v_idx--)
1320		igb_free_q_vector(adapter, v_idx);
1321
1322	return -ENOMEM;
1323}
1324
1325/**
1326 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1327 *  @adapter: board private structure to initialize
1328 *  @msix: boolean value of MSIX capability
1329 *
1330 *  This function initializes the interrupts and allocates all of the queues.
1331 **/
1332static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333{
1334	struct pci_dev *pdev = adapter->pdev;
1335	int err;
1336
1337	igb_set_interrupt_capability(adapter, msix);
1338
1339	err = igb_alloc_q_vectors(adapter);
1340	if (err) {
1341		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1342		goto err_alloc_q_vectors;
1343	}
1344
1345	igb_cache_ring_register(adapter);
1346
1347	return 0;
1348
1349err_alloc_q_vectors:
1350	igb_reset_interrupt_capability(adapter);
1351	return err;
1352}
1353
1354/**
1355 *  igb_request_irq - initialize interrupts
1356 *  @adapter: board private structure to initialize
1357 *
1358 *  Attempts to configure interrupts using the best available
1359 *  capabilities of the hardware and kernel.
1360 **/
1361static int igb_request_irq(struct igb_adapter *adapter)
1362{
1363	struct net_device *netdev = adapter->netdev;
1364	struct pci_dev *pdev = adapter->pdev;
1365	int err = 0;
1366
1367	if (adapter->msix_entries) {
1368		err = igb_request_msix(adapter);
1369		if (!err)
1370			goto request_done;
1371		/* fall back to MSI */
1372		igb_free_all_tx_resources(adapter);
1373		igb_free_all_rx_resources(adapter);
1374
1375		igb_clear_interrupt_scheme(adapter);
1376		err = igb_init_interrupt_scheme(adapter, false);
1377		if (err)
1378			goto request_done;
1379
1380		igb_setup_all_tx_resources(adapter);
1381		igb_setup_all_rx_resources(adapter);
1382		igb_configure(adapter);
1383	}
1384
1385	igb_assign_vector(adapter->q_vector[0], 0);
1386
1387	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388		err = request_irq(pdev->irq, igb_intr_msi, 0,
1389				  netdev->name, adapter);
1390		if (!err)
1391			goto request_done;
1392
1393		/* fall back to legacy interrupts */
1394		igb_reset_interrupt_capability(adapter);
1395		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396	}
1397
1398	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399			  netdev->name, adapter);
1400
1401	if (err)
1402		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403			err);
1404
1405request_done:
1406	return err;
1407}
1408
1409static void igb_free_irq(struct igb_adapter *adapter)
1410{
1411	if (adapter->msix_entries) {
1412		int vector = 0, i;
1413
1414		free_irq(adapter->msix_entries[vector++].vector, adapter);
1415
1416		for (i = 0; i < adapter->num_q_vectors; i++)
1417			free_irq(adapter->msix_entries[vector++].vector,
1418				 adapter->q_vector[i]);
1419	} else {
1420		free_irq(adapter->pdev->irq, adapter);
1421	}
1422}
1423
1424/**
1425 *  igb_irq_disable - Mask off interrupt generation on the NIC
1426 *  @adapter: board private structure
1427 **/
1428static void igb_irq_disable(struct igb_adapter *adapter)
1429{
1430	struct e1000_hw *hw = &adapter->hw;
1431
1432	/* we need to be careful when disabling interrupts.  The VFs are also
1433	 * mapped into these registers and so clearing the bits can cause
1434	 * issues on the VF drivers so we only need to clear what we set
1435	 */
1436	if (adapter->msix_entries) {
1437		u32 regval = rd32(E1000_EIAM);
1438		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1439		wr32(E1000_EIMC, adapter->eims_enable_mask);
1440		regval = rd32(E1000_EIAC);
1441		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442	}
1443
1444	wr32(E1000_IAM, 0);
1445	wr32(E1000_IMC, ~0);
1446	wrfl();
1447	if (adapter->msix_entries) {
1448		int i;
1449		for (i = 0; i < adapter->num_q_vectors; i++)
1450			synchronize_irq(adapter->msix_entries[i].vector);
1451	} else {
1452		synchronize_irq(adapter->pdev->irq);
1453	}
1454}
1455
1456/**
1457 *  igb_irq_enable - Enable default interrupt generation settings
1458 *  @adapter: board private structure
1459 **/
1460static void igb_irq_enable(struct igb_adapter *adapter)
1461{
1462	struct e1000_hw *hw = &adapter->hw;
1463
1464	if (adapter->msix_entries) {
1465		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466		u32 regval = rd32(E1000_EIAC);
1467		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1468		regval = rd32(E1000_EIAM);
1469		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1470		wr32(E1000_EIMS, adapter->eims_enable_mask);
1471		if (adapter->vfs_allocated_count) {
1472			wr32(E1000_MBVFIMR, 0xFF);
1473			ims |= E1000_IMS_VMMB;
1474		}
1475		wr32(E1000_IMS, ims);
1476	} else {
1477		wr32(E1000_IMS, IMS_ENABLE_MASK |
1478				E1000_IMS_DRSTA);
1479		wr32(E1000_IAM, IMS_ENABLE_MASK |
1480				E1000_IMS_DRSTA);
1481	}
1482}
1483
1484static void igb_update_mng_vlan(struct igb_adapter *adapter)
1485{
1486	struct e1000_hw *hw = &adapter->hw;
1487	u16 vid = adapter->hw.mng_cookie.vlan_id;
1488	u16 old_vid = adapter->mng_vlan_id;
1489
1490	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1491		/* add VID to filter table */
1492		igb_vfta_set(hw, vid, true);
1493		adapter->mng_vlan_id = vid;
1494	} else {
1495		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1496	}
1497
1498	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1499	    (vid != old_vid) &&
1500	    !test_bit(old_vid, adapter->active_vlans)) {
1501		/* remove VID from filter table */
1502		igb_vfta_set(hw, old_vid, false);
1503	}
1504}
1505
1506/**
1507 *  igb_release_hw_control - release control of the h/w to f/w
1508 *  @adapter: address of board private structure
1509 *
1510 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1511 *  For ASF and Pass Through versions of f/w this means that the
1512 *  driver is no longer loaded.
1513 **/
1514static void igb_release_hw_control(struct igb_adapter *adapter)
1515{
1516	struct e1000_hw *hw = &adapter->hw;
1517	u32 ctrl_ext;
1518
1519	/* Let firmware take over control of h/w */
1520	ctrl_ext = rd32(E1000_CTRL_EXT);
1521	wr32(E1000_CTRL_EXT,
1522			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1523}
1524
1525/**
1526 *  igb_get_hw_control - get control of the h/w from f/w
1527 *  @adapter: address of board private structure
1528 *
1529 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1530 *  For ASF and Pass Through versions of f/w this means that
1531 *  the driver is loaded.
1532 **/
1533static void igb_get_hw_control(struct igb_adapter *adapter)
1534{
1535	struct e1000_hw *hw = &adapter->hw;
1536	u32 ctrl_ext;
1537
1538	/* Let firmware know the driver has taken over */
1539	ctrl_ext = rd32(E1000_CTRL_EXT);
1540	wr32(E1000_CTRL_EXT,
1541			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1542}
1543
1544/**
1545 *  igb_configure - configure the hardware for RX and TX
1546 *  @adapter: private board structure
1547 **/
1548static void igb_configure(struct igb_adapter *adapter)
1549{
1550	struct net_device *netdev = adapter->netdev;
1551	int i;
1552
1553	igb_get_hw_control(adapter);
1554	igb_set_rx_mode(netdev);
1555
1556	igb_restore_vlan(adapter);
1557
1558	igb_setup_tctl(adapter);
1559	igb_setup_mrqc(adapter);
1560	igb_setup_rctl(adapter);
1561
1562	igb_configure_tx(adapter);
1563	igb_configure_rx(adapter);
1564
1565	igb_rx_fifo_flush_82575(&adapter->hw);
1566
1567	/* call igb_desc_unused which always leaves
1568	 * at least 1 descriptor unused to make sure
1569	 * next_to_use != next_to_clean
1570	 */
1571	for (i = 0; i < adapter->num_rx_queues; i++) {
1572		struct igb_ring *ring = adapter->rx_ring[i];
1573		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574	}
1575}
1576
1577/**
1578 *  igb_power_up_link - Power up the phy/serdes link
1579 *  @adapter: address of board private structure
1580 **/
1581void igb_power_up_link(struct igb_adapter *adapter)
1582{
1583	igb_reset_phy(&adapter->hw);
1584
1585	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1586		igb_power_up_phy_copper(&adapter->hw);
1587	else
1588		igb_power_up_serdes_link_82575(&adapter->hw);
1589}
1590
1591/**
1592 *  igb_power_down_link - Power down the phy/serdes link
1593 *  @adapter: address of board private structure
1594 */
1595static void igb_power_down_link(struct igb_adapter *adapter)
1596{
1597	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1598		igb_power_down_phy_copper_82575(&adapter->hw);
1599	else
1600		igb_shutdown_serdes_link_82575(&adapter->hw);
1601}
1602
1603/**
1604 *  igb_up - Open the interface and prepare it to handle traffic
1605 *  @adapter: board private structure
1606 **/
1607int igb_up(struct igb_adapter *adapter)
1608{
1609	struct e1000_hw *hw = &adapter->hw;
1610	int i;
1611
1612	/* hardware has been reset, we need to reload some things */
1613	igb_configure(adapter);
1614
1615	clear_bit(__IGB_DOWN, &adapter->state);
1616
1617	for (i = 0; i < adapter->num_q_vectors; i++)
1618		napi_enable(&(adapter->q_vector[i]->napi));
1619
1620	if (adapter->msix_entries)
1621		igb_configure_msix(adapter);
1622	else
1623		igb_assign_vector(adapter->q_vector[0], 0);
1624
1625	/* Clear any pending interrupts. */
1626	rd32(E1000_ICR);
1627	igb_irq_enable(adapter);
1628
1629	/* notify VFs that reset has been completed */
1630	if (adapter->vfs_allocated_count) {
1631		u32 reg_data = rd32(E1000_CTRL_EXT);
1632		reg_data |= E1000_CTRL_EXT_PFRSTD;
1633		wr32(E1000_CTRL_EXT, reg_data);
1634	}
1635
1636	netif_tx_start_all_queues(adapter->netdev);
1637
1638	/* start the watchdog. */
1639	hw->mac.get_link_status = 1;
1640	schedule_work(&adapter->watchdog_task);
1641
1642	return 0;
1643}
1644
1645void igb_down(struct igb_adapter *adapter)
1646{
1647	struct net_device *netdev = adapter->netdev;
1648	struct e1000_hw *hw = &adapter->hw;
1649	u32 tctl, rctl;
1650	int i;
1651
1652	/* signal that we're down so the interrupt handler does not
1653	 * reschedule our watchdog timer
1654	 */
1655	set_bit(__IGB_DOWN, &adapter->state);
1656
1657	/* disable receives in the hardware */
1658	rctl = rd32(E1000_RCTL);
1659	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1660	/* flush and sleep below */
1661
1662	netif_tx_stop_all_queues(netdev);
1663
1664	/* disable transmits in the hardware */
1665	tctl = rd32(E1000_TCTL);
1666	tctl &= ~E1000_TCTL_EN;
1667	wr32(E1000_TCTL, tctl);
1668	/* flush both disables and wait for them to finish */
1669	wrfl();
1670	msleep(10);
1671
1672	igb_irq_disable(adapter);
1673
1674	for (i = 0; i < adapter->num_q_vectors; i++) {
1675		napi_synchronize(&(adapter->q_vector[i]->napi));
1676		napi_disable(&(adapter->q_vector[i]->napi));
1677	}
1678
1679
1680	del_timer_sync(&adapter->watchdog_timer);
1681	del_timer_sync(&adapter->phy_info_timer);
1682
1683	netif_carrier_off(netdev);
1684
1685	/* record the stats before reset*/
1686	spin_lock(&adapter->stats64_lock);
1687	igb_update_stats(adapter, &adapter->stats64);
1688	spin_unlock(&adapter->stats64_lock);
1689
1690	adapter->link_speed = 0;
1691	adapter->link_duplex = 0;
1692
1693	if (!pci_channel_offline(adapter->pdev))
1694		igb_reset(adapter);
1695	igb_clean_all_tx_rings(adapter);
1696	igb_clean_all_rx_rings(adapter);
1697#ifdef CONFIG_IGB_DCA
1698
1699	/* since we reset the hardware DCA settings were cleared */
1700	igb_setup_dca(adapter);
1701#endif
1702}
1703
1704void igb_reinit_locked(struct igb_adapter *adapter)
1705{
1706	WARN_ON(in_interrupt());
1707	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1708		msleep(1);
1709	igb_down(adapter);
1710	igb_up(adapter);
1711	clear_bit(__IGB_RESETTING, &adapter->state);
1712}
1713
1714void igb_reset(struct igb_adapter *adapter)
1715{
1716	struct pci_dev *pdev = adapter->pdev;
1717	struct e1000_hw *hw = &adapter->hw;
1718	struct e1000_mac_info *mac = &hw->mac;
1719	struct e1000_fc_info *fc = &hw->fc;
1720	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1721
1722	/* Repartition Pba for greater than 9k mtu
1723	 * To take effect CTRL.RST is required.
1724	 */
1725	switch (mac->type) {
1726	case e1000_i350:
1727	case e1000_i354:
1728	case e1000_82580:
1729		pba = rd32(E1000_RXPBS);
1730		pba = igb_rxpbs_adjust_82580(pba);
1731		break;
1732	case e1000_82576:
1733		pba = rd32(E1000_RXPBS);
1734		pba &= E1000_RXPBS_SIZE_MASK_82576;
1735		break;
1736	case e1000_82575:
1737	case e1000_i210:
1738	case e1000_i211:
1739	default:
1740		pba = E1000_PBA_34K;
1741		break;
1742	}
1743
1744	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1745	    (mac->type < e1000_82576)) {
1746		/* adjust PBA for jumbo frames */
1747		wr32(E1000_PBA, pba);
1748
1749		/* To maintain wire speed transmits, the Tx FIFO should be
1750		 * large enough to accommodate two full transmit packets,
1751		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1752		 * the Rx FIFO should be large enough to accommodate at least
1753		 * one full receive packet and is similarly rounded up and
1754		 * expressed in KB.
1755		 */
1756		pba = rd32(E1000_PBA);
1757		/* upper 16 bits has Tx packet buffer allocation size in KB */
1758		tx_space = pba >> 16;
1759		/* lower 16 bits has Rx packet buffer allocation size in KB */
1760		pba &= 0xffff;
1761		/* the Tx fifo also stores 16 bytes of information about the Tx
1762		 * but don't include ethernet FCS because hardware appends it
1763		 */
1764		min_tx_space = (adapter->max_frame_size +
1765				sizeof(union e1000_adv_tx_desc) -
1766				ETH_FCS_LEN) * 2;
1767		min_tx_space = ALIGN(min_tx_space, 1024);
1768		min_tx_space >>= 10;
1769		/* software strips receive CRC, so leave room for it */
1770		min_rx_space = adapter->max_frame_size;
1771		min_rx_space = ALIGN(min_rx_space, 1024);
1772		min_rx_space >>= 10;
1773
1774		/* If current Tx allocation is less than the min Tx FIFO size,
1775		 * and the min Tx FIFO size is less than the current Rx FIFO
1776		 * allocation, take space away from current Rx allocation
1777		 */
1778		if (tx_space < min_tx_space &&
1779		    ((min_tx_space - tx_space) < pba)) {
1780			pba = pba - (min_tx_space - tx_space);
1781
1782			/* if short on Rx space, Rx wins and must trump Tx
1783			 * adjustment
1784			 */
1785			if (pba < min_rx_space)
1786				pba = min_rx_space;
1787		}
1788		wr32(E1000_PBA, pba);
1789	}
1790
1791	/* flow control settings */
1792	/* The high water mark must be low enough to fit one full frame
1793	 * (or the size used for early receive) above it in the Rx FIFO.
1794	 * Set it to the lower of:
1795	 * - 90% of the Rx FIFO size, or
1796	 * - the full Rx FIFO size minus one full frame
1797	 */
1798	hwm = min(((pba << 10) * 9 / 10),
1799			((pba << 10) - 2 * adapter->max_frame_size));
1800
1801	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1802	fc->low_water = fc->high_water - 16;
1803	fc->pause_time = 0xFFFF;
1804	fc->send_xon = 1;
1805	fc->current_mode = fc->requested_mode;
1806
1807	/* disable receive for all VFs and wait one second */
1808	if (adapter->vfs_allocated_count) {
1809		int i;
1810		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1811			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1812
1813		/* ping all the active vfs to let them know we are going down */
1814		igb_ping_all_vfs(adapter);
1815
1816		/* disable transmits and receives */
1817		wr32(E1000_VFRE, 0);
1818		wr32(E1000_VFTE, 0);
1819	}
1820
1821	/* Allow time for pending master requests to run */
1822	hw->mac.ops.reset_hw(hw);
1823	wr32(E1000_WUC, 0);
1824
1825	if (hw->mac.ops.init_hw(hw))
1826		dev_err(&pdev->dev, "Hardware Error\n");
1827
1828	/* Flow control settings reset on hardware reset, so guarantee flow
1829	 * control is off when forcing speed.
1830	 */
1831	if (!hw->mac.autoneg)
1832		igb_force_mac_fc(hw);
1833
1834	igb_init_dmac(adapter, pba);
1835#ifdef CONFIG_IGB_HWMON
1836	/* Re-initialize the thermal sensor on i350 devices. */
1837	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1838		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1839			/* If present, re-initialize the external thermal sensor
1840			 * interface.
1841			 */
1842			if (adapter->ets)
1843				mac->ops.init_thermal_sensor_thresh(hw);
1844		}
1845	}
1846#endif
1847	if (!netif_running(adapter->netdev))
1848		igb_power_down_link(adapter);
1849
1850	igb_update_mng_vlan(adapter);
1851
1852	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1853	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1854
1855	/* Re-enable PTP, where applicable. */
1856	igb_ptp_reset(adapter);
1857
1858	igb_get_phy_info(hw);
1859}
1860
1861static netdev_features_t igb_fix_features(struct net_device *netdev,
1862	netdev_features_t features)
1863{
1864	/* Since there is no support for separate Rx/Tx vlan accel
1865	 * enable/disable make sure Tx flag is always in same state as Rx.
1866	 */
1867	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1868		features |= NETIF_F_HW_VLAN_CTAG_TX;
1869	else
1870		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1871
1872	return features;
1873}
1874
1875static int igb_set_features(struct net_device *netdev,
1876	netdev_features_t features)
1877{
1878	netdev_features_t changed = netdev->features ^ features;
1879	struct igb_adapter *adapter = netdev_priv(netdev);
1880
1881	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1882		igb_vlan_mode(netdev, features);
1883
1884	if (!(changed & NETIF_F_RXALL))
1885		return 0;
1886
1887	netdev->features = features;
1888
1889	if (netif_running(netdev))
1890		igb_reinit_locked(adapter);
1891	else
1892		igb_reset(adapter);
1893
1894	return 0;
1895}
1896
1897static const struct net_device_ops igb_netdev_ops = {
1898	.ndo_open		= igb_open,
1899	.ndo_stop		= igb_close,
1900	.ndo_start_xmit		= igb_xmit_frame,
1901	.ndo_get_stats64	= igb_get_stats64,
1902	.ndo_set_rx_mode	= igb_set_rx_mode,
1903	.ndo_set_mac_address	= igb_set_mac,
1904	.ndo_change_mtu		= igb_change_mtu,
1905	.ndo_do_ioctl		= igb_ioctl,
1906	.ndo_tx_timeout		= igb_tx_timeout,
1907	.ndo_validate_addr	= eth_validate_addr,
1908	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1909	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1910	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1911	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1912	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1913	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1914	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1915#ifdef CONFIG_NET_POLL_CONTROLLER
1916	.ndo_poll_controller	= igb_netpoll,
1917#endif
1918	.ndo_fix_features	= igb_fix_features,
1919	.ndo_set_features	= igb_set_features,
1920};
1921
1922/**
1923 * igb_set_fw_version - Configure version string for ethtool
1924 * @adapter: adapter struct
1925 **/
1926void igb_set_fw_version(struct igb_adapter *adapter)
1927{
1928	struct e1000_hw *hw = &adapter->hw;
1929	struct e1000_fw_version fw;
1930
1931	igb_get_fw_version(hw, &fw);
1932
1933	switch (hw->mac.type) {
1934	case e1000_i210:
1935	case e1000_i211:
1936		if (!(igb_get_flash_presence_i210(hw))) {
1937			snprintf(adapter->fw_version,
1938				 sizeof(adapter->fw_version),
1939				 "%2d.%2d-%d",
1940				 fw.invm_major, fw.invm_minor,
1941				 fw.invm_img_type);
1942			break;
1943		}
1944		/* fall through */
1945	default:
1946		/* if option is rom valid, display its version too */
1947		if (fw.or_valid) {
1948			snprintf(adapter->fw_version,
1949				 sizeof(adapter->fw_version),
1950				 "%d.%d, 0x%08x, %d.%d.%d",
1951				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1952				 fw.or_major, fw.or_build, fw.or_patch);
1953		/* no option rom */
1954		} else if (fw.etrack_id != 0X0000) {
1955			snprintf(adapter->fw_version,
1956			    sizeof(adapter->fw_version),
1957			    "%d.%d, 0x%08x",
1958			    fw.eep_major, fw.eep_minor, fw.etrack_id);
1959		} else {
1960		snprintf(adapter->fw_version,
1961		    sizeof(adapter->fw_version),
1962		    "%d.%d.%d",
1963		    fw.eep_major, fw.eep_minor, fw.eep_build);
1964		}
1965		break;
1966	}
1967	return;
1968}
1969
1970/**
1971 *  igb_init_i2c - Init I2C interface
1972 *  @adapter: pointer to adapter structure
1973 **/
1974static s32 igb_init_i2c(struct igb_adapter *adapter)
1975{
1976	s32 status = E1000_SUCCESS;
1977
1978	/* I2C interface supported on i350 devices */
1979	if (adapter->hw.mac.type != e1000_i350)
1980		return E1000_SUCCESS;
1981
1982	/* Initialize the i2c bus which is controlled by the registers.
1983	 * This bus will use the i2c_algo_bit structue that implements
1984	 * the protocol through toggling of the 4 bits in the register.
1985	 */
1986	adapter->i2c_adap.owner = THIS_MODULE;
1987	adapter->i2c_algo = igb_i2c_algo;
1988	adapter->i2c_algo.data = adapter;
1989	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1990	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1991	strlcpy(adapter->i2c_adap.name, "igb BB",
1992		sizeof(adapter->i2c_adap.name));
1993	status = i2c_bit_add_bus(&adapter->i2c_adap);
1994	return status;
1995}
1996
1997/**
1998 *  igb_probe - Device Initialization Routine
1999 *  @pdev: PCI device information struct
2000 *  @ent: entry in igb_pci_tbl
2001 *
2002 *  Returns 0 on success, negative on failure
2003 *
2004 *  igb_probe initializes an adapter identified by a pci_dev structure.
2005 *  The OS initialization, configuring of the adapter private structure,
2006 *  and a hardware reset occur.
2007 **/
2008static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2009{
2010	struct net_device *netdev;
2011	struct igb_adapter *adapter;
2012	struct e1000_hw *hw;
2013	u16 eeprom_data = 0;
2014	s32 ret_val;
2015	static int global_quad_port_a; /* global quad port a indication */
2016	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2017	unsigned long mmio_start, mmio_len;
2018	int err, pci_using_dac;
2019	u8 part_str[E1000_PBANUM_LENGTH];
2020
2021	/* Catch broken hardware that put the wrong VF device ID in
2022	 * the PCIe SR-IOV capability.
2023	 */
2024	if (pdev->is_virtfn) {
2025		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2026			pci_name(pdev), pdev->vendor, pdev->device);
2027		return -EINVAL;
2028	}
2029
2030	err = pci_enable_device_mem(pdev);
2031	if (err)
2032		return err;
2033
2034	pci_using_dac = 0;
2035	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2036	if (!err) {
2037		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2038		if (!err)
2039			pci_using_dac = 1;
2040	} else {
2041		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2042		if (err) {
2043			err = dma_set_coherent_mask(&pdev->dev,
2044						    DMA_BIT_MASK(32));
2045			if (err) {
2046				dev_err(&pdev->dev,
2047					"No usable DMA configuration, aborting\n");
2048				goto err_dma;
2049			}
2050		}
2051	}
2052
2053	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2054					   IORESOURCE_MEM),
2055					   igb_driver_name);
2056	if (err)
2057		goto err_pci_reg;
2058
2059	pci_enable_pcie_error_reporting(pdev);
2060
2061	pci_set_master(pdev);
2062	pci_save_state(pdev);
2063
2064	err = -ENOMEM;
2065	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2066				   IGB_MAX_TX_QUEUES);
2067	if (!netdev)
2068		goto err_alloc_etherdev;
2069
2070	SET_NETDEV_DEV(netdev, &pdev->dev);
2071
2072	pci_set_drvdata(pdev, netdev);
2073	adapter = netdev_priv(netdev);
2074	adapter->netdev = netdev;
2075	adapter->pdev = pdev;
2076	hw = &adapter->hw;
2077	hw->back = adapter;
2078	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2079
2080	mmio_start = pci_resource_start(pdev, 0);
2081	mmio_len = pci_resource_len(pdev, 0);
2082
2083	err = -EIO;
2084	hw->hw_addr = ioremap(mmio_start, mmio_len);
2085	if (!hw->hw_addr)
2086		goto err_ioremap;
2087
2088	netdev->netdev_ops = &igb_netdev_ops;
2089	igb_set_ethtool_ops(netdev);
2090	netdev->watchdog_timeo = 5 * HZ;
2091
2092	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2093
2094	netdev->mem_start = mmio_start;
2095	netdev->mem_end = mmio_start + mmio_len;
2096
2097	/* PCI config space info */
2098	hw->vendor_id = pdev->vendor;
2099	hw->device_id = pdev->device;
2100	hw->revision_id = pdev->revision;
2101	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2102	hw->subsystem_device_id = pdev->subsystem_device;
2103
2104	/* Copy the default MAC, PHY and NVM function pointers */
2105	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2106	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2107	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2108	/* Initialize skew-specific constants */
2109	err = ei->get_invariants(hw);
2110	if (err)
2111		goto err_sw_init;
2112
2113	/* setup the private structure */
2114	err = igb_sw_init(adapter);
2115	if (err)
2116		goto err_sw_init;
2117
2118	igb_get_bus_info_pcie(hw);
2119
2120	hw->phy.autoneg_wait_to_complete = false;
2121
2122	/* Copper options */
2123	if (hw->phy.media_type == e1000_media_type_copper) {
2124		hw->phy.mdix = AUTO_ALL_MODES;
2125		hw->phy.disable_polarity_correction = false;
2126		hw->phy.ms_type = e1000_ms_hw_default;
2127	}
2128
2129	if (igb_check_reset_block(hw))
2130		dev_info(&pdev->dev,
2131			"PHY reset is blocked due to SOL/IDER session.\n");
2132
2133	/* features is initialized to 0 in allocation, it might have bits
2134	 * set by igb_sw_init so we should use an or instead of an
2135	 * assignment.
2136	 */
2137	netdev->features |= NETIF_F_SG |
2138			    NETIF_F_IP_CSUM |
2139			    NETIF_F_IPV6_CSUM |
2140			    NETIF_F_TSO |
2141			    NETIF_F_TSO6 |
2142			    NETIF_F_RXHASH |
2143			    NETIF_F_RXCSUM |
2144			    NETIF_F_HW_VLAN_CTAG_RX |
2145			    NETIF_F_HW_VLAN_CTAG_TX;
2146
2147	/* copy netdev features into list of user selectable features */
2148	netdev->hw_features |= netdev->features;
2149	netdev->hw_features |= NETIF_F_RXALL;
2150
2151	/* set this bit last since it cannot be part of hw_features */
2152	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2153
2154	netdev->vlan_features |= NETIF_F_TSO |
2155				 NETIF_F_TSO6 |
2156				 NETIF_F_IP_CSUM |
2157				 NETIF_F_IPV6_CSUM |
2158				 NETIF_F_SG;
2159
2160	netdev->priv_flags |= IFF_SUPP_NOFCS;
2161
2162	if (pci_using_dac) {
2163		netdev->features |= NETIF_F_HIGHDMA;
2164		netdev->vlan_features |= NETIF_F_HIGHDMA;
2165	}
2166
2167	if (hw->mac.type >= e1000_82576) {
2168		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2169		netdev->features |= NETIF_F_SCTP_CSUM;
2170	}
2171
2172	netdev->priv_flags |= IFF_UNICAST_FLT;
2173
2174	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2175
2176	/* before reading the NVM, reset the controller to put the device in a
2177	 * known good starting state
2178	 */
2179	hw->mac.ops.reset_hw(hw);
2180
2181	/* make sure the NVM is good , i211/i210 parts can have special NVM
2182	 * that doesn't contain a checksum
2183	 */
2184	switch (hw->mac.type) {
2185	case e1000_i210:
2186	case e1000_i211:
2187		if (igb_get_flash_presence_i210(hw)) {
2188			if (hw->nvm.ops.validate(hw) < 0) {
2189				dev_err(&pdev->dev,
2190					"The NVM Checksum Is Not Valid\n");
2191				err = -EIO;
2192				goto err_eeprom;
2193			}
2194		}
2195		break;
2196	default:
2197		if (hw->nvm.ops.validate(hw) < 0) {
2198			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2199			err = -EIO;
2200			goto err_eeprom;
2201		}
2202		break;
2203	}
2204
2205	/* copy the MAC address out of the NVM */
2206	if (hw->mac.ops.read_mac_addr(hw))
2207		dev_err(&pdev->dev, "NVM Read Error\n");
2208
2209	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2210
2211	if (!is_valid_ether_addr(netdev->dev_addr)) {
2212		dev_err(&pdev->dev, "Invalid MAC Address\n");
2213		err = -EIO;
2214		goto err_eeprom;
2215	}
2216
2217	/* get firmware version for ethtool -i */
2218	igb_set_fw_version(adapter);
2219
2220	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2221		    (unsigned long) adapter);
2222	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2223		    (unsigned long) adapter);
2224
2225	INIT_WORK(&adapter->reset_task, igb_reset_task);
2226	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2227
2228	/* Initialize link properties that are user-changeable */
2229	adapter->fc_autoneg = true;
2230	hw->mac.autoneg = true;
2231	hw->phy.autoneg_advertised = 0x2f;
2232
2233	hw->fc.requested_mode = e1000_fc_default;
2234	hw->fc.current_mode = e1000_fc_default;
2235
2236	igb_validate_mdi_setting(hw);
2237
2238	/* By default, support wake on port A */
2239	if (hw->bus.func == 0)
2240		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2241
2242	/* Check the NVM for wake support on non-port A ports */
2243	if (hw->mac.type >= e1000_82580)
2244		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2245				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2246				 &eeprom_data);
2247	else if (hw->bus.func == 1)
2248		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2249
2250	if (eeprom_data & IGB_EEPROM_APME)
2251		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2252
2253	/* now that we have the eeprom settings, apply the special cases where
2254	 * the eeprom may be wrong or the board simply won't support wake on
2255	 * lan on a particular port
2256	 */
2257	switch (pdev->device) {
2258	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2259		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260		break;
2261	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2262	case E1000_DEV_ID_82576_FIBER:
2263	case E1000_DEV_ID_82576_SERDES:
2264		/* Wake events only supported on port A for dual fiber
2265		 * regardless of eeprom setting
2266		 */
2267		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2268			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2269		break;
2270	case E1000_DEV_ID_82576_QUAD_COPPER:
2271	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2272		/* if quad port adapter, disable WoL on all but port A */
2273		if (global_quad_port_a != 0)
2274			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2275		else
2276			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2277		/* Reset for multiple quad port adapters */
2278		if (++global_quad_port_a == 4)
2279			global_quad_port_a = 0;
2280		break;
2281	default:
2282		/* If the device can't wake, don't set software support */
2283		if (!device_can_wakeup(&adapter->pdev->dev))
2284			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2285	}
2286
2287	/* initialize the wol settings based on the eeprom settings */
2288	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2289		adapter->wol |= E1000_WUFC_MAG;
2290
2291	/* Some vendors want WoL disabled by default, but still supported */
2292	if ((hw->mac.type == e1000_i350) &&
2293	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2294		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2295		adapter->wol = 0;
2296	}
2297
2298	device_set_wakeup_enable(&adapter->pdev->dev,
2299				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2300
2301	/* reset the hardware with the new settings */
2302	igb_reset(adapter);
2303
2304	/* Init the I2C interface */
2305	err = igb_init_i2c(adapter);
2306	if (err) {
2307		dev_err(&pdev->dev, "failed to init i2c interface\n");
2308		goto err_eeprom;
2309	}
2310
2311	/* let the f/w know that the h/w is now under the control of the
2312	 * driver. */
2313	igb_get_hw_control(adapter);
2314
2315	strcpy(netdev->name, "eth%d");
2316	err = register_netdev(netdev);
2317	if (err)
2318		goto err_register;
2319
2320	/* carrier off reporting is important to ethtool even BEFORE open */
2321	netif_carrier_off(netdev);
2322
2323#ifdef CONFIG_IGB_DCA
2324	if (dca_add_requester(&pdev->dev) == 0) {
2325		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2326		dev_info(&pdev->dev, "DCA enabled\n");
2327		igb_setup_dca(adapter);
2328	}
2329
2330#endif
2331#ifdef CONFIG_IGB_HWMON
2332	/* Initialize the thermal sensor on i350 devices. */
2333	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2334		u16 ets_word;
2335
2336		/* Read the NVM to determine if this i350 device supports an
2337		 * external thermal sensor.
2338		 */
2339		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2340		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2341			adapter->ets = true;
2342		else
2343			adapter->ets = false;
2344		if (igb_sysfs_init(adapter))
2345			dev_err(&pdev->dev,
2346				"failed to allocate sysfs resources\n");
2347	} else {
2348		adapter->ets = false;
2349	}
2350#endif
2351	/* do hw tstamp init after resetting */
2352	igb_ptp_init(adapter);
2353
2354	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2355	/* print bus type/speed/width info, not applicable to i354 */
2356	if (hw->mac.type != e1000_i354) {
2357		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2358			 netdev->name,
2359			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2360			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2361			   "unknown"),
2362			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2363			  "Width x4" :
2364			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2365			  "Width x2" :
2366			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2367			  "Width x1" : "unknown"), netdev->dev_addr);
2368	}
2369
2370	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2371	if (ret_val)
2372		strcpy(part_str, "Unknown");
2373	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2374	dev_info(&pdev->dev,
2375		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2376		adapter->msix_entries ? "MSI-X" :
2377		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2378		adapter->num_rx_queues, adapter->num_tx_queues);
2379	switch (hw->mac.type) {
2380	case e1000_i350:
2381	case e1000_i210:
2382	case e1000_i211:
2383		igb_set_eee_i350(hw);
2384		break;
2385	case e1000_i354:
2386		if (hw->phy.media_type == e1000_media_type_copper) {
2387			if ((rd32(E1000_CTRL_EXT) &
2388			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2389				igb_set_eee_i354(hw);
2390		}
2391		break;
2392	default:
2393		break;
2394	}
2395
2396	pm_runtime_put_noidle(&pdev->dev);
2397	return 0;
2398
2399err_register:
2400	igb_release_hw_control(adapter);
2401	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2402err_eeprom:
2403	if (!igb_check_reset_block(hw))
2404		igb_reset_phy(hw);
2405
2406	if (hw->flash_address)
2407		iounmap(hw->flash_address);
2408err_sw_init:
2409	igb_clear_interrupt_scheme(adapter);
2410	iounmap(hw->hw_addr);
2411err_ioremap:
2412	free_netdev(netdev);
2413err_alloc_etherdev:
2414	pci_release_selected_regions(pdev,
2415				     pci_select_bars(pdev, IORESOURCE_MEM));
2416err_pci_reg:
2417err_dma:
2418	pci_disable_device(pdev);
2419	return err;
2420}
2421
2422#ifdef CONFIG_PCI_IOV
2423static int  igb_disable_sriov(struct pci_dev *pdev)
2424{
2425	struct net_device *netdev = pci_get_drvdata(pdev);
2426	struct igb_adapter *adapter = netdev_priv(netdev);
2427	struct e1000_hw *hw = &adapter->hw;
2428
2429	/* reclaim resources allocated to VFs */
2430	if (adapter->vf_data) {
2431		/* disable iov and allow time for transactions to clear */
2432		if (pci_vfs_assigned(pdev)) {
2433			dev_warn(&pdev->dev,
2434				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2435			return -EPERM;
2436		} else {
2437			pci_disable_sriov(pdev);
2438			msleep(500);
2439		}
2440
2441		kfree(adapter->vf_data);
2442		adapter->vf_data = NULL;
2443		adapter->vfs_allocated_count = 0;
2444		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2445		wrfl();
2446		msleep(100);
2447		dev_info(&pdev->dev, "IOV Disabled\n");
2448
2449		/* Re-enable DMA Coalescing flag since IOV is turned off */
2450		adapter->flags |= IGB_FLAG_DMAC;
2451	}
2452
2453	return 0;
2454}
2455
2456static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2457{
2458	struct net_device *netdev = pci_get_drvdata(pdev);
2459	struct igb_adapter *adapter = netdev_priv(netdev);
2460	int old_vfs = pci_num_vf(pdev);
2461	int err = 0;
2462	int i;
2463
2464	if (!adapter->msix_entries) {
2465		err = -EPERM;
2466		goto out;
2467	}
2468
2469	if (!num_vfs)
2470		goto out;
2471	else if (old_vfs && old_vfs == num_vfs)
2472		goto out;
2473	else if (old_vfs && old_vfs != num_vfs)
2474		err = igb_disable_sriov(pdev);
2475
2476	if (err)
2477		goto out;
2478
2479	if (num_vfs > 7) {
2480		err = -EPERM;
2481		goto out;
2482	}
2483
2484	adapter->vfs_allocated_count = num_vfs;
2485
2486	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2487				sizeof(struct vf_data_storage), GFP_KERNEL);
2488
2489	/* if allocation failed then we do not support SR-IOV */
2490	if (!adapter->vf_data) {
2491		adapter->vfs_allocated_count = 0;
2492		dev_err(&pdev->dev,
2493			"Unable to allocate memory for VF Data Storage\n");
2494		err = -ENOMEM;
2495		goto out;
2496	}
2497
2498	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2499	if (err)
2500		goto err_out;
2501
2502	dev_info(&pdev->dev, "%d VFs allocated\n",
2503		 adapter->vfs_allocated_count);
2504	for (i = 0; i < adapter->vfs_allocated_count; i++)
2505		igb_vf_configure(adapter, i);
2506
2507	/* DMA Coalescing is not supported in IOV mode. */
2508	adapter->flags &= ~IGB_FLAG_DMAC;
2509	goto out;
2510
2511err_out:
2512	kfree(adapter->vf_data);
2513	adapter->vf_data = NULL;
2514	adapter->vfs_allocated_count = 0;
2515out:
2516	return err;
2517}
2518
2519#endif
2520/**
2521 *  igb_remove_i2c - Cleanup  I2C interface
2522 *  @adapter: pointer to adapter structure
2523 **/
2524static void igb_remove_i2c(struct igb_adapter *adapter)
2525{
2526	/* free the adapter bus structure */
2527	i2c_del_adapter(&adapter->i2c_adap);
2528}
2529
2530/**
2531 *  igb_remove - Device Removal Routine
2532 *  @pdev: PCI device information struct
2533 *
2534 *  igb_remove is called by the PCI subsystem to alert the driver
2535 *  that it should release a PCI device.  The could be caused by a
2536 *  Hot-Plug event, or because the driver is going to be removed from
2537 *  memory.
2538 **/
2539static void igb_remove(struct pci_dev *pdev)
2540{
2541	struct net_device *netdev = pci_get_drvdata(pdev);
2542	struct igb_adapter *adapter = netdev_priv(netdev);
2543	struct e1000_hw *hw = &adapter->hw;
2544
2545	pm_runtime_get_noresume(&pdev->dev);
2546#ifdef CONFIG_IGB_HWMON
2547	igb_sysfs_exit(adapter);
2548#endif
2549	igb_remove_i2c(adapter);
2550	igb_ptp_stop(adapter);
2551	/* The watchdog timer may be rescheduled, so explicitly
2552	 * disable watchdog from being rescheduled.
2553	 */
2554	set_bit(__IGB_DOWN, &adapter->state);
2555	del_timer_sync(&adapter->watchdog_timer);
2556	del_timer_sync(&adapter->phy_info_timer);
2557
2558	cancel_work_sync(&adapter->reset_task);
2559	cancel_work_sync(&adapter->watchdog_task);
2560
2561#ifdef CONFIG_IGB_DCA
2562	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2563		dev_info(&pdev->dev, "DCA disabled\n");
2564		dca_remove_requester(&pdev->dev);
2565		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2566		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2567	}
2568#endif
2569
2570	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2571	 * would have already happened in close and is redundant.
2572	 */
2573	igb_release_hw_control(adapter);
2574
2575	unregister_netdev(netdev);
2576
2577	igb_clear_interrupt_scheme(adapter);
2578
2579#ifdef CONFIG_PCI_IOV
2580	igb_disable_sriov(pdev);
2581#endif
2582
2583	iounmap(hw->hw_addr);
2584	if (hw->flash_address)
2585		iounmap(hw->flash_address);
2586	pci_release_selected_regions(pdev,
2587				     pci_select_bars(pdev, IORESOURCE_MEM));
2588
2589	kfree(adapter->shadow_vfta);
2590	free_netdev(netdev);
2591
2592	pci_disable_pcie_error_reporting(pdev);
2593
2594	pci_disable_device(pdev);
2595}
2596
2597/**
2598 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2599 *  @adapter: board private structure to initialize
2600 *
2601 *  This function initializes the vf specific data storage and then attempts to
2602 *  allocate the VFs.  The reason for ordering it this way is because it is much
2603 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2604 *  the memory for the VFs.
2605 **/
2606static void igb_probe_vfs(struct igb_adapter *adapter)
2607{
2608#ifdef CONFIG_PCI_IOV
2609	struct pci_dev *pdev = adapter->pdev;
2610	struct e1000_hw *hw = &adapter->hw;
2611
2612	/* Virtualization features not supported on i210 family. */
2613	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2614		return;
2615
2616	pci_sriov_set_totalvfs(pdev, 7);
2617	igb_enable_sriov(pdev, max_vfs);
2618
2619#endif /* CONFIG_PCI_IOV */
2620}
2621
2622static void igb_init_queue_configuration(struct igb_adapter *adapter)
2623{
2624	struct e1000_hw *hw = &adapter->hw;
2625	u32 max_rss_queues;
2626
2627	/* Determine the maximum number of RSS queues supported. */
2628	switch (hw->mac.type) {
2629	case e1000_i211:
2630		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2631		break;
2632	case e1000_82575:
2633	case e1000_i210:
2634		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2635		break;
2636	case e1000_i350:
2637		/* I350 cannot do RSS and SR-IOV at the same time */
2638		if (!!adapter->vfs_allocated_count) {
2639			max_rss_queues = 1;
2640			break;
2641		}
2642		/* fall through */
2643	case e1000_82576:
2644		if (!!adapter->vfs_allocated_count) {
2645			max_rss_queues = 2;
2646			break;
2647		}
2648		/* fall through */
2649	case e1000_82580:
2650	case e1000_i354:
2651	default:
2652		max_rss_queues = IGB_MAX_RX_QUEUES;
2653		break;
2654	}
2655
2656	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2657
2658	/* Determine if we need to pair queues. */
2659	switch (hw->mac.type) {
2660	case e1000_82575:
2661	case e1000_i211:
2662		/* Device supports enough interrupts without queue pairing. */
2663		break;
2664	case e1000_82576:
2665		/* If VFs are going to be allocated with RSS queues then we
2666		 * should pair the queues in order to conserve interrupts due
2667		 * to limited supply.
2668		 */
2669		if ((adapter->rss_queues > 1) &&
2670		    (adapter->vfs_allocated_count > 6))
2671			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2672		/* fall through */
2673	case e1000_82580:
2674	case e1000_i350:
2675	case e1000_i354:
2676	case e1000_i210:
2677	default:
2678		/* If rss_queues > half of max_rss_queues, pair the queues in
2679		 * order to conserve interrupts due to limited supply.
2680		 */
2681		if (adapter->rss_queues > (max_rss_queues / 2))
2682			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2683		break;
2684	}
2685}
2686
2687/**
2688 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2689 *  @adapter: board private structure to initialize
2690 *
2691 *  igb_sw_init initializes the Adapter private data structure.
2692 *  Fields are initialized based on PCI device information and
2693 *  OS network device settings (MTU size).
2694 **/
2695static int igb_sw_init(struct igb_adapter *adapter)
2696{
2697	struct e1000_hw *hw = &adapter->hw;
2698	struct net_device *netdev = adapter->netdev;
2699	struct pci_dev *pdev = adapter->pdev;
2700
2701	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2702
2703	/* set default ring sizes */
2704	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2705	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2706
2707	/* set default ITR values */
2708	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2709	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2710
2711	/* set default work limits */
2712	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2713
2714	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2715				  VLAN_HLEN;
2716	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2717
2718	spin_lock_init(&adapter->stats64_lock);
2719#ifdef CONFIG_PCI_IOV
2720	switch (hw->mac.type) {
2721	case e1000_82576:
2722	case e1000_i350:
2723		if (max_vfs > 7) {
2724			dev_warn(&pdev->dev,
2725				 "Maximum of 7 VFs per PF, using max\n");
2726			max_vfs = adapter->vfs_allocated_count = 7;
2727		} else
2728			adapter->vfs_allocated_count = max_vfs;
2729		if (adapter->vfs_allocated_count)
2730			dev_warn(&pdev->dev,
2731				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2732		break;
2733	default:
2734		break;
2735	}
2736#endif /* CONFIG_PCI_IOV */
2737
2738	igb_init_queue_configuration(adapter);
2739
2740	/* Setup and initialize a copy of the hw vlan table array */
2741	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2742				       GFP_ATOMIC);
2743
2744	/* This call may decrease the number of queues */
2745	if (igb_init_interrupt_scheme(adapter, true)) {
2746		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2747		return -ENOMEM;
2748	}
2749
2750	igb_probe_vfs(adapter);
2751
2752	/* Explicitly disable IRQ since the NIC can be in any state. */
2753	igb_irq_disable(adapter);
2754
2755	if (hw->mac.type >= e1000_i350)
2756		adapter->flags &= ~IGB_FLAG_DMAC;
2757
2758	set_bit(__IGB_DOWN, &adapter->state);
2759	return 0;
2760}
2761
2762/**
2763 *  igb_open - Called when a network interface is made active
2764 *  @netdev: network interface device structure
2765 *
2766 *  Returns 0 on success, negative value on failure
2767 *
2768 *  The open entry point is called when a network interface is made
2769 *  active by the system (IFF_UP).  At this point all resources needed
2770 *  for transmit and receive operations are allocated, the interrupt
2771 *  handler is registered with the OS, the watchdog timer is started,
2772 *  and the stack is notified that the interface is ready.
2773 **/
2774static int __igb_open(struct net_device *netdev, bool resuming)
2775{
2776	struct igb_adapter *adapter = netdev_priv(netdev);
2777	struct e1000_hw *hw = &adapter->hw;
2778	struct pci_dev *pdev = adapter->pdev;
2779	int err;
2780	int i;
2781
2782	/* disallow open during test */
2783	if (test_bit(__IGB_TESTING, &adapter->state)) {
2784		WARN_ON(resuming);
2785		return -EBUSY;
2786	}
2787
2788	if (!resuming)
2789		pm_runtime_get_sync(&pdev->dev);
2790
2791	netif_carrier_off(netdev);
2792
2793	/* allocate transmit descriptors */
2794	err = igb_setup_all_tx_resources(adapter);
2795	if (err)
2796		goto err_setup_tx;
2797
2798	/* allocate receive descriptors */
2799	err = igb_setup_all_rx_resources(adapter);
2800	if (err)
2801		goto err_setup_rx;
2802
2803	igb_power_up_link(adapter);
2804
2805	/* before we allocate an interrupt, we must be ready to handle it.
2806	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2807	 * as soon as we call pci_request_irq, so we have to setup our
2808	 * clean_rx handler before we do so.
2809	 */
2810	igb_configure(adapter);
2811
2812	err = igb_request_irq(adapter);
2813	if (err)
2814		goto err_req_irq;
2815
2816	/* Notify the stack of the actual queue counts. */
2817	err = netif_set_real_num_tx_queues(adapter->netdev,
2818					   adapter->num_tx_queues);
2819	if (err)
2820		goto err_set_queues;
2821
2822	err = netif_set_real_num_rx_queues(adapter->netdev,
2823					   adapter->num_rx_queues);
2824	if (err)
2825		goto err_set_queues;
2826
2827	/* From here on the code is the same as igb_up() */
2828	clear_bit(__IGB_DOWN, &adapter->state);
2829
2830	for (i = 0; i < adapter->num_q_vectors; i++)
2831		napi_enable(&(adapter->q_vector[i]->napi));
2832
2833	/* Clear any pending interrupts. */
2834	rd32(E1000_ICR);
2835
2836	igb_irq_enable(adapter);
2837
2838	/* notify VFs that reset has been completed */
2839	if (adapter->vfs_allocated_count) {
2840		u32 reg_data = rd32(E1000_CTRL_EXT);
2841		reg_data |= E1000_CTRL_EXT_PFRSTD;
2842		wr32(E1000_CTRL_EXT, reg_data);
2843	}
2844
2845	netif_tx_start_all_queues(netdev);
2846
2847	if (!resuming)
2848		pm_runtime_put(&pdev->dev);
2849
2850	/* start the watchdog. */
2851	hw->mac.get_link_status = 1;
2852	schedule_work(&adapter->watchdog_task);
2853
2854	return 0;
2855
2856err_set_queues:
2857	igb_free_irq(adapter);
2858err_req_irq:
2859	igb_release_hw_control(adapter);
2860	igb_power_down_link(adapter);
2861	igb_free_all_rx_resources(adapter);
2862err_setup_rx:
2863	igb_free_all_tx_resources(adapter);
2864err_setup_tx:
2865	igb_reset(adapter);
2866	if (!resuming)
2867		pm_runtime_put(&pdev->dev);
2868
2869	return err;
2870}
2871
2872static int igb_open(struct net_device *netdev)
2873{
2874	return __igb_open(netdev, false);
2875}
2876
2877/**
2878 *  igb_close - Disables a network interface
2879 *  @netdev: network interface device structure
2880 *
2881 *  Returns 0, this is not allowed to fail
2882 *
2883 *  The close entry point is called when an interface is de-activated
2884 *  by the OS.  The hardware is still under the driver's control, but
2885 *  needs to be disabled.  A global MAC reset is issued to stop the
2886 *  hardware, and all transmit and receive resources are freed.
2887 **/
2888static int __igb_close(struct net_device *netdev, bool suspending)
2889{
2890	struct igb_adapter *adapter = netdev_priv(netdev);
2891	struct pci_dev *pdev = adapter->pdev;
2892
2893	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2894
2895	if (!suspending)
2896		pm_runtime_get_sync(&pdev->dev);
2897
2898	igb_down(adapter);
2899	igb_free_irq(adapter);
2900
2901	igb_free_all_tx_resources(adapter);
2902	igb_free_all_rx_resources(adapter);
2903
2904	if (!suspending)
2905		pm_runtime_put_sync(&pdev->dev);
2906	return 0;
2907}
2908
2909static int igb_close(struct net_device *netdev)
2910{
2911	return __igb_close(netdev, false);
2912}
2913
2914/**
2915 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2916 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2917 *
2918 *  Return 0 on success, negative on failure
2919 **/
2920int igb_setup_tx_resources(struct igb_ring *tx_ring)
2921{
2922	struct device *dev = tx_ring->dev;
2923	int size;
2924
2925	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2926
2927	tx_ring->tx_buffer_info = vzalloc(size);
2928	if (!tx_ring->tx_buffer_info)
2929		goto err;
2930
2931	/* round up to nearest 4K */
2932	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2933	tx_ring->size = ALIGN(tx_ring->size, 4096);
2934
2935	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2936					   &tx_ring->dma, GFP_KERNEL);
2937	if (!tx_ring->desc)
2938		goto err;
2939
2940	tx_ring->next_to_use = 0;
2941	tx_ring->next_to_clean = 0;
2942
2943	return 0;
2944
2945err:
2946	vfree(tx_ring->tx_buffer_info);
2947	tx_ring->tx_buffer_info = NULL;
2948	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2949	return -ENOMEM;
2950}
2951
2952/**
2953 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2954 *				 (Descriptors) for all queues
2955 *  @adapter: board private structure
2956 *
2957 *  Return 0 on success, negative on failure
2958 **/
2959static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2960{
2961	struct pci_dev *pdev = adapter->pdev;
2962	int i, err = 0;
2963
2964	for (i = 0; i < adapter->num_tx_queues; i++) {
2965		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2966		if (err) {
2967			dev_err(&pdev->dev,
2968				"Allocation for Tx Queue %u failed\n", i);
2969			for (i--; i >= 0; i--)
2970				igb_free_tx_resources(adapter->tx_ring[i]);
2971			break;
2972		}
2973	}
2974
2975	return err;
2976}
2977
2978/**
2979 *  igb_setup_tctl - configure the transmit control registers
2980 *  @adapter: Board private structure
2981 **/
2982void igb_setup_tctl(struct igb_adapter *adapter)
2983{
2984	struct e1000_hw *hw = &adapter->hw;
2985	u32 tctl;
2986
2987	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2988	wr32(E1000_TXDCTL(0), 0);
2989
2990	/* Program the Transmit Control Register */
2991	tctl = rd32(E1000_TCTL);
2992	tctl &= ~E1000_TCTL_CT;
2993	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2994		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2995
2996	igb_config_collision_dist(hw);
2997
2998	/* Enable transmits */
2999	tctl |= E1000_TCTL_EN;
3000
3001	wr32(E1000_TCTL, tctl);
3002}
3003
3004/**
3005 *  igb_configure_tx_ring - Configure transmit ring after Reset
3006 *  @adapter: board private structure
3007 *  @ring: tx ring to configure
3008 *
3009 *  Configure a transmit ring after a reset.
3010 **/
3011void igb_configure_tx_ring(struct igb_adapter *adapter,
3012                           struct igb_ring *ring)
3013{
3014	struct e1000_hw *hw = &adapter->hw;
3015	u32 txdctl = 0;
3016	u64 tdba = ring->dma;
3017	int reg_idx = ring->reg_idx;
3018
3019	/* disable the queue */
3020	wr32(E1000_TXDCTL(reg_idx), 0);
3021	wrfl();
3022	mdelay(10);
3023
3024	wr32(E1000_TDLEN(reg_idx),
3025	     ring->count * sizeof(union e1000_adv_tx_desc));
3026	wr32(E1000_TDBAL(reg_idx),
3027	     tdba & 0x00000000ffffffffULL);
3028	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3029
3030	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3031	wr32(E1000_TDH(reg_idx), 0);
3032	writel(0, ring->tail);
3033
3034	txdctl |= IGB_TX_PTHRESH;
3035	txdctl |= IGB_TX_HTHRESH << 8;
3036	txdctl |= IGB_TX_WTHRESH << 16;
3037
3038	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3039	wr32(E1000_TXDCTL(reg_idx), txdctl);
3040}
3041
3042/**
3043 *  igb_configure_tx - Configure transmit Unit after Reset
3044 *  @adapter: board private structure
3045 *
3046 *  Configure the Tx unit of the MAC after a reset.
3047 **/
3048static void igb_configure_tx(struct igb_adapter *adapter)
3049{
3050	int i;
3051
3052	for (i = 0; i < adapter->num_tx_queues; i++)
3053		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3054}
3055
3056/**
3057 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3058 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3059 *
3060 *  Returns 0 on success, negative on failure
3061 **/
3062int igb_setup_rx_resources(struct igb_ring *rx_ring)
3063{
3064	struct device *dev = rx_ring->dev;
3065	int size;
3066
3067	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3068
3069	rx_ring->rx_buffer_info = vzalloc(size);
3070	if (!rx_ring->rx_buffer_info)
3071		goto err;
3072
3073	/* Round up to nearest 4K */
3074	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3075	rx_ring->size = ALIGN(rx_ring->size, 4096);
3076
3077	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3078					   &rx_ring->dma, GFP_KERNEL);
3079	if (!rx_ring->desc)
3080		goto err;
3081
3082	rx_ring->next_to_alloc = 0;
3083	rx_ring->next_to_clean = 0;
3084	rx_ring->next_to_use = 0;
3085
3086	return 0;
3087
3088err:
3089	vfree(rx_ring->rx_buffer_info);
3090	rx_ring->rx_buffer_info = NULL;
3091	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3092	return -ENOMEM;
3093}
3094
3095/**
3096 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3097 *				 (Descriptors) for all queues
3098 *  @adapter: board private structure
3099 *
3100 *  Return 0 on success, negative on failure
3101 **/
3102static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3103{
3104	struct pci_dev *pdev = adapter->pdev;
3105	int i, err = 0;
3106
3107	for (i = 0; i < adapter->num_rx_queues; i++) {
3108		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3109		if (err) {
3110			dev_err(&pdev->dev,
3111				"Allocation for Rx Queue %u failed\n", i);
3112			for (i--; i >= 0; i--)
3113				igb_free_rx_resources(adapter->rx_ring[i]);
3114			break;
3115		}
3116	}
3117
3118	return err;
3119}
3120
3121/**
3122 *  igb_setup_mrqc - configure the multiple receive queue control registers
3123 *  @adapter: Board private structure
3124 **/
3125static void igb_setup_mrqc(struct igb_adapter *adapter)
3126{
3127	struct e1000_hw *hw = &adapter->hw;
3128	u32 mrqc, rxcsum;
3129	u32 j, num_rx_queues, shift = 0;
3130	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3131					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3132					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3133					0xFA01ACBE };
3134
3135	/* Fill out hash function seeds */
3136	for (j = 0; j < 10; j++)
3137		wr32(E1000_RSSRK(j), rsskey[j]);
3138
3139	num_rx_queues = adapter->rss_queues;
3140
3141	switch (hw->mac.type) {
3142	case e1000_82575:
3143		shift = 6;
3144		break;
3145	case e1000_82576:
3146		/* 82576 supports 2 RSS queues for SR-IOV */
3147		if (adapter->vfs_allocated_count) {
3148			shift = 3;
3149			num_rx_queues = 2;
3150		}
3151		break;
3152	default:
3153		break;
3154	}
3155
3156	/* Populate the indirection table 4 entries at a time.  To do this
3157	 * we are generating the results for n and n+2 and then interleaving
3158	 * those with the results with n+1 and n+3.
3159	 */
3160	for (j = 0; j < IGB_RETA_SIZE / 4; j++) {
3161		/* first pass generates n and n+2 */
3162		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3163		u32 reta = (base & 0x07800780) >> (7 - shift);
3164
3165		/* second pass generates n+1 and n+3 */
3166		base += 0x00010001 * num_rx_queues;
3167		reta |= (base & 0x07800780) << (1 + shift);
3168
3169		wr32(E1000_RETA(j), reta);
3170	}
3171
3172	/* Disable raw packet checksumming so that RSS hash is placed in
3173	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3174	 * offloads as they are enabled by default
3175	 */
3176	rxcsum = rd32(E1000_RXCSUM);
3177	rxcsum |= E1000_RXCSUM_PCSD;
3178
3179	if (adapter->hw.mac.type >= e1000_82576)
3180		/* Enable Receive Checksum Offload for SCTP */
3181		rxcsum |= E1000_RXCSUM_CRCOFL;
3182
3183	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3184	wr32(E1000_RXCSUM, rxcsum);
3185
3186	/* Generate RSS hash based on packet types, TCP/UDP
3187	 * port numbers and/or IPv4/v6 src and dst addresses
3188	 */
3189	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3190	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3191	       E1000_MRQC_RSS_FIELD_IPV6 |
3192	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3193	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3194
3195	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3196		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3197	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3198		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3199
3200	/* If VMDq is enabled then we set the appropriate mode for that, else
3201	 * we default to RSS so that an RSS hash is calculated per packet even
3202	 * if we are only using one queue
3203	 */
3204	if (adapter->vfs_allocated_count) {
3205		if (hw->mac.type > e1000_82575) {
3206			/* Set the default pool for the PF's first queue */
3207			u32 vtctl = rd32(E1000_VT_CTL);
3208			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3209				   E1000_VT_CTL_DISABLE_DEF_POOL);
3210			vtctl |= adapter->vfs_allocated_count <<
3211				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3212			wr32(E1000_VT_CTL, vtctl);
3213		}
3214		if (adapter->rss_queues > 1)
3215			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3216		else
3217			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3218	} else {
3219		if (hw->mac.type != e1000_i211)
3220			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3221	}
3222	igb_vmm_control(adapter);
3223
3224	wr32(E1000_MRQC, mrqc);
3225}
3226
3227/**
3228 *  igb_setup_rctl - configure the receive control registers
3229 *  @adapter: Board private structure
3230 **/
3231void igb_setup_rctl(struct igb_adapter *adapter)
3232{
3233	struct e1000_hw *hw = &adapter->hw;
3234	u32 rctl;
3235
3236	rctl = rd32(E1000_RCTL);
3237
3238	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3239	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3240
3241	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3242		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3243
3244	/* enable stripping of CRC. It's unlikely this will break BMC
3245	 * redirection as it did with e1000. Newer features require
3246	 * that the HW strips the CRC.
3247	 */
3248	rctl |= E1000_RCTL_SECRC;
3249
3250	/* disable store bad packets and clear size bits. */
3251	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3252
3253	/* enable LPE to prevent packets larger than max_frame_size */
3254	rctl |= E1000_RCTL_LPE;
3255
3256	/* disable queue 0 to prevent tail write w/o re-config */
3257	wr32(E1000_RXDCTL(0), 0);
3258
3259	/* Attention!!!  For SR-IOV PF driver operations you must enable
3260	 * queue drop for all VF and PF queues to prevent head of line blocking
3261	 * if an un-trusted VF does not provide descriptors to hardware.
3262	 */
3263	if (adapter->vfs_allocated_count) {
3264		/* set all queue drop enable bits */
3265		wr32(E1000_QDE, ALL_QUEUES);
3266	}
3267
3268	/* This is useful for sniffing bad packets. */
3269	if (adapter->netdev->features & NETIF_F_RXALL) {
3270		/* UPE and MPE will be handled by normal PROMISC logic
3271		 * in e1000e_set_rx_mode
3272		 */
3273		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3274			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3275			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3276
3277		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3278			  E1000_RCTL_DPF | /* Allow filtered pause */
3279			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3280		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3281		 * and that breaks VLANs.
3282		 */
3283	}
3284
3285	wr32(E1000_RCTL, rctl);
3286}
3287
3288static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3289                                   int vfn)
3290{
3291	struct e1000_hw *hw = &adapter->hw;
3292	u32 vmolr;
3293
3294	/* if it isn't the PF check to see if VFs are enabled and
3295	 * increase the size to support vlan tags
3296	 */
3297	if (vfn < adapter->vfs_allocated_count &&
3298	    adapter->vf_data[vfn].vlans_enabled)
3299		size += VLAN_TAG_SIZE;
3300
3301	vmolr = rd32(E1000_VMOLR(vfn));
3302	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3303	vmolr |= size | E1000_VMOLR_LPE;
3304	wr32(E1000_VMOLR(vfn), vmolr);
3305
3306	return 0;
3307}
3308
3309/**
3310 *  igb_rlpml_set - set maximum receive packet size
3311 *  @adapter: board private structure
3312 *
3313 *  Configure maximum receivable packet size.
3314 **/
3315static void igb_rlpml_set(struct igb_adapter *adapter)
3316{
3317	u32 max_frame_size = adapter->max_frame_size;
3318	struct e1000_hw *hw = &adapter->hw;
3319	u16 pf_id = adapter->vfs_allocated_count;
3320
3321	if (pf_id) {
3322		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3323		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3324		 * to our max jumbo frame size, in case we need to enable
3325		 * jumbo frames on one of the rings later.
3326		 * This will not pass over-length frames into the default
3327		 * queue because it's gated by the VMOLR.RLPML.
3328		 */
3329		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3330	}
3331
3332	wr32(E1000_RLPML, max_frame_size);
3333}
3334
3335static inline void igb_set_vmolr(struct igb_adapter *adapter,
3336				 int vfn, bool aupe)
3337{
3338	struct e1000_hw *hw = &adapter->hw;
3339	u32 vmolr;
3340
3341	/* This register exists only on 82576 and newer so if we are older then
3342	 * we should exit and do nothing
3343	 */
3344	if (hw->mac.type < e1000_82576)
3345		return;
3346
3347	vmolr = rd32(E1000_VMOLR(vfn));
3348	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3349	if (aupe)
3350		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3351	else
3352		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3353
3354	/* clear all bits that might not be set */
3355	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3356
3357	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3358		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3359	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3360	 * multicast packets
3361	 */
3362	if (vfn <= adapter->vfs_allocated_count)
3363		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3364
3365	wr32(E1000_VMOLR(vfn), vmolr);
3366}
3367
3368/**
3369 *  igb_configure_rx_ring - Configure a receive ring after Reset
3370 *  @adapter: board private structure
3371 *  @ring: receive ring to be configured
3372 *
3373 *  Configure the Rx unit of the MAC after a reset.
3374 **/
3375void igb_configure_rx_ring(struct igb_adapter *adapter,
3376			   struct igb_ring *ring)
3377{
3378	struct e1000_hw *hw = &adapter->hw;
3379	u64 rdba = ring->dma;
3380	int reg_idx = ring->reg_idx;
3381	u32 srrctl = 0, rxdctl = 0;
3382
3383	/* disable the queue */
3384	wr32(E1000_RXDCTL(reg_idx), 0);
3385
3386	/* Set DMA base address registers */
3387	wr32(E1000_RDBAL(reg_idx),
3388	     rdba & 0x00000000ffffffffULL);
3389	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3390	wr32(E1000_RDLEN(reg_idx),
3391	     ring->count * sizeof(union e1000_adv_rx_desc));
3392
3393	/* initialize head and tail */
3394	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3395	wr32(E1000_RDH(reg_idx), 0);
3396	writel(0, ring->tail);
3397
3398	/* set descriptor configuration */
3399	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3400	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3401	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3402	if (hw->mac.type >= e1000_82580)
3403		srrctl |= E1000_SRRCTL_TIMESTAMP;
3404	/* Only set Drop Enable if we are supporting multiple queues */
3405	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3406		srrctl |= E1000_SRRCTL_DROP_EN;
3407
3408	wr32(E1000_SRRCTL(reg_idx), srrctl);
3409
3410	/* set filtering for VMDQ pools */
3411	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3412
3413	rxdctl |= IGB_RX_PTHRESH;
3414	rxdctl |= IGB_RX_HTHRESH << 8;
3415	rxdctl |= IGB_RX_WTHRESH << 16;
3416
3417	/* enable receive descriptor fetching */
3418	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3419	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3420}
3421
3422/**
3423 *  igb_configure_rx - Configure receive Unit after Reset
3424 *  @adapter: board private structure
3425 *
3426 *  Configure the Rx unit of the MAC after a reset.
3427 **/
3428static void igb_configure_rx(struct igb_adapter *adapter)
3429{
3430	int i;
3431
3432	/* set UTA to appropriate mode */
3433	igb_set_uta(adapter);
3434
3435	/* set the correct pool for the PF default MAC address in entry 0 */
3436	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3437			 adapter->vfs_allocated_count);
3438
3439	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3440	 * the Base and Length of the Rx Descriptor Ring
3441	 */
3442	for (i = 0; i < adapter->num_rx_queues; i++)
3443		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3444}
3445
3446/**
3447 *  igb_free_tx_resources - Free Tx Resources per Queue
3448 *  @tx_ring: Tx descriptor ring for a specific queue
3449 *
3450 *  Free all transmit software resources
3451 **/
3452void igb_free_tx_resources(struct igb_ring *tx_ring)
3453{
3454	igb_clean_tx_ring(tx_ring);
3455
3456	vfree(tx_ring->tx_buffer_info);
3457	tx_ring->tx_buffer_info = NULL;
3458
3459	/* if not set, then don't free */
3460	if (!tx_ring->desc)
3461		return;
3462
3463	dma_free_coherent(tx_ring->dev, tx_ring->size,
3464			  tx_ring->desc, tx_ring->dma);
3465
3466	tx_ring->desc = NULL;
3467}
3468
3469/**
3470 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3471 *  @adapter: board private structure
3472 *
3473 *  Free all transmit software resources
3474 **/
3475static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3476{
3477	int i;
3478
3479	for (i = 0; i < adapter->num_tx_queues; i++)
3480		igb_free_tx_resources(adapter->tx_ring[i]);
3481}
3482
3483void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3484				    struct igb_tx_buffer *tx_buffer)
3485{
3486	if (tx_buffer->skb) {
3487		dev_kfree_skb_any(tx_buffer->skb);
3488		if (dma_unmap_len(tx_buffer, len))
3489			dma_unmap_single(ring->dev,
3490					 dma_unmap_addr(tx_buffer, dma),
3491					 dma_unmap_len(tx_buffer, len),
3492					 DMA_TO_DEVICE);
3493	} else if (dma_unmap_len(tx_buffer, len)) {
3494		dma_unmap_page(ring->dev,
3495			       dma_unmap_addr(tx_buffer, dma),
3496			       dma_unmap_len(tx_buffer, len),
3497			       DMA_TO_DEVICE);
3498	}
3499	tx_buffer->next_to_watch = NULL;
3500	tx_buffer->skb = NULL;
3501	dma_unmap_len_set(tx_buffer, len, 0);
3502	/* buffer_info must be completely set up in the transmit path */
3503}
3504
3505/**
3506 *  igb_clean_tx_ring - Free Tx Buffers
3507 *  @tx_ring: ring to be cleaned
3508 **/
3509static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3510{
3511	struct igb_tx_buffer *buffer_info;
3512	unsigned long size;
3513	u16 i;
3514
3515	if (!tx_ring->tx_buffer_info)
3516		return;
3517	/* Free all the Tx ring sk_buffs */
3518
3519	for (i = 0; i < tx_ring->count; i++) {
3520		buffer_info = &tx_ring->tx_buffer_info[i];
3521		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3522	}
3523
3524	netdev_tx_reset_queue(txring_txq(tx_ring));
3525
3526	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3527	memset(tx_ring->tx_buffer_info, 0, size);
3528
3529	/* Zero out the descriptor ring */
3530	memset(tx_ring->desc, 0, tx_ring->size);
3531
3532	tx_ring->next_to_use = 0;
3533	tx_ring->next_to_clean = 0;
3534}
3535
3536/**
3537 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3538 *  @adapter: board private structure
3539 **/
3540static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3541{
3542	int i;
3543
3544	for (i = 0; i < adapter->num_tx_queues; i++)
3545		igb_clean_tx_ring(adapter->tx_ring[i]);
3546}
3547
3548/**
3549 *  igb_free_rx_resources - Free Rx Resources
3550 *  @rx_ring: ring to clean the resources from
3551 *
3552 *  Free all receive software resources
3553 **/
3554void igb_free_rx_resources(struct igb_ring *rx_ring)
3555{
3556	igb_clean_rx_ring(rx_ring);
3557
3558	vfree(rx_ring->rx_buffer_info);
3559	rx_ring->rx_buffer_info = NULL;
3560
3561	/* if not set, then don't free */
3562	if (!rx_ring->desc)
3563		return;
3564
3565	dma_free_coherent(rx_ring->dev, rx_ring->size,
3566			  rx_ring->desc, rx_ring->dma);
3567
3568	rx_ring->desc = NULL;
3569}
3570
3571/**
3572 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3573 *  @adapter: board private structure
3574 *
3575 *  Free all receive software resources
3576 **/
3577static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3578{
3579	int i;
3580
3581	for (i = 0; i < adapter->num_rx_queues; i++)
3582		igb_free_rx_resources(adapter->rx_ring[i]);
3583}
3584
3585/**
3586 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3587 *  @rx_ring: ring to free buffers from
3588 **/
3589static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3590{
3591	unsigned long size;
3592	u16 i;
3593
3594	if (rx_ring->skb)
3595		dev_kfree_skb(rx_ring->skb);
3596	rx_ring->skb = NULL;
3597
3598	if (!rx_ring->rx_buffer_info)
3599		return;
3600
3601	/* Free all the Rx ring sk_buffs */
3602	for (i = 0; i < rx_ring->count; i++) {
3603		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3604
3605		if (!buffer_info->page)
3606			continue;
3607
3608		dma_unmap_page(rx_ring->dev,
3609			       buffer_info->dma,
3610			       PAGE_SIZE,
3611			       DMA_FROM_DEVICE);
3612		__free_page(buffer_info->page);
3613
3614		buffer_info->page = NULL;
3615	}
3616
3617	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3618	memset(rx_ring->rx_buffer_info, 0, size);
3619
3620	/* Zero out the descriptor ring */
3621	memset(rx_ring->desc, 0, rx_ring->size);
3622
3623	rx_ring->next_to_alloc = 0;
3624	rx_ring->next_to_clean = 0;
3625	rx_ring->next_to_use = 0;
3626}
3627
3628/**
3629 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3630 *  @adapter: board private structure
3631 **/
3632static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3633{
3634	int i;
3635
3636	for (i = 0; i < adapter->num_rx_queues; i++)
3637		igb_clean_rx_ring(adapter->rx_ring[i]);
3638}
3639
3640/**
3641 *  igb_set_mac - Change the Ethernet Address of the NIC
3642 *  @netdev: network interface device structure
3643 *  @p: pointer to an address structure
3644 *
3645 *  Returns 0 on success, negative on failure
3646 **/
3647static int igb_set_mac(struct net_device *netdev, void *p)
3648{
3649	struct igb_adapter *adapter = netdev_priv(netdev);
3650	struct e1000_hw *hw = &adapter->hw;
3651	struct sockaddr *addr = p;
3652
3653	if (!is_valid_ether_addr(addr->sa_data))
3654		return -EADDRNOTAVAIL;
3655
3656	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3657	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3658
3659	/* set the correct pool for the new PF MAC address in entry 0 */
3660	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3661			 adapter->vfs_allocated_count);
3662
3663	return 0;
3664}
3665
3666/**
3667 *  igb_write_mc_addr_list - write multicast addresses to MTA
3668 *  @netdev: network interface device structure
3669 *
3670 *  Writes multicast address list to the MTA hash table.
3671 *  Returns: -ENOMEM on failure
3672 *           0 on no addresses written
3673 *           X on writing X addresses to MTA
3674 **/
3675static int igb_write_mc_addr_list(struct net_device *netdev)
3676{
3677	struct igb_adapter *adapter = netdev_priv(netdev);
3678	struct e1000_hw *hw = &adapter->hw;
3679	struct netdev_hw_addr *ha;
3680	u8  *mta_list;
3681	int i;
3682
3683	if (netdev_mc_empty(netdev)) {
3684		/* nothing to program, so clear mc list */
3685		igb_update_mc_addr_list(hw, NULL, 0);
3686		igb_restore_vf_multicasts(adapter);
3687		return 0;
3688	}
3689
3690	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3691	if (!mta_list)
3692		return -ENOMEM;
3693
3694	/* The shared function expects a packed array of only addresses. */
3695	i = 0;
3696	netdev_for_each_mc_addr(ha, netdev)
3697		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3698
3699	igb_update_mc_addr_list(hw, mta_list, i);
3700	kfree(mta_list);
3701
3702	return netdev_mc_count(netdev);
3703}
3704
3705/**
3706 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3707 *  @netdev: network interface device structure
3708 *
3709 *  Writes unicast address list to the RAR table.
3710 *  Returns: -ENOMEM on failure/insufficient address space
3711 *           0 on no addresses written
3712 *           X on writing X addresses to the RAR table
3713 **/
3714static int igb_write_uc_addr_list(struct net_device *netdev)
3715{
3716	struct igb_adapter *adapter = netdev_priv(netdev);
3717	struct e1000_hw *hw = &adapter->hw;
3718	unsigned int vfn = adapter->vfs_allocated_count;
3719	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3720	int count = 0;
3721
3722	/* return ENOMEM indicating insufficient memory for addresses */
3723	if (netdev_uc_count(netdev) > rar_entries)
3724		return -ENOMEM;
3725
3726	if (!netdev_uc_empty(netdev) && rar_entries) {
3727		struct netdev_hw_addr *ha;
3728
3729		netdev_for_each_uc_addr(ha, netdev) {
3730			if (!rar_entries)
3731				break;
3732			igb_rar_set_qsel(adapter, ha->addr,
3733					 rar_entries--,
3734					 vfn);
3735			count++;
3736		}
3737	}
3738	/* write the addresses in reverse order to avoid write combining */
3739	for (; rar_entries > 0 ; rar_entries--) {
3740		wr32(E1000_RAH(rar_entries), 0);
3741		wr32(E1000_RAL(rar_entries), 0);
3742	}
3743	wrfl();
3744
3745	return count;
3746}
3747
3748/**
3749 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3750 *  @netdev: network interface device structure
3751 *
3752 *  The set_rx_mode entry point is called whenever the unicast or multicast
3753 *  address lists or the network interface flags are updated.  This routine is
3754 *  responsible for configuring the hardware for proper unicast, multicast,
3755 *  promiscuous mode, and all-multi behavior.
3756 **/
3757static void igb_set_rx_mode(struct net_device *netdev)
3758{
3759	struct igb_adapter *adapter = netdev_priv(netdev);
3760	struct e1000_hw *hw = &adapter->hw;
3761	unsigned int vfn = adapter->vfs_allocated_count;
3762	u32 rctl, vmolr = 0;
3763	int count;
3764
3765	/* Check for Promiscuous and All Multicast modes */
3766	rctl = rd32(E1000_RCTL);
3767
3768	/* clear the effected bits */
3769	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3770
3771	if (netdev->flags & IFF_PROMISC) {
3772		/* retain VLAN HW filtering if in VT mode */
3773		if (adapter->vfs_allocated_count)
3774			rctl |= E1000_RCTL_VFE;
3775		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3776		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3777	} else {
3778		if (netdev->flags & IFF_ALLMULTI) {
3779			rctl |= E1000_RCTL_MPE;
3780			vmolr |= E1000_VMOLR_MPME;
3781		} else {
3782			/* Write addresses to the MTA, if the attempt fails
3783			 * then we should just turn on promiscuous mode so
3784			 * that we can at least receive multicast traffic
3785			 */
3786			count = igb_write_mc_addr_list(netdev);
3787			if (count < 0) {
3788				rctl |= E1000_RCTL_MPE;
3789				vmolr |= E1000_VMOLR_MPME;
3790			} else if (count) {
3791				vmolr |= E1000_VMOLR_ROMPE;
3792			}
3793		}
3794		/* Write addresses to available RAR registers, if there is not
3795		 * sufficient space to store all the addresses then enable
3796		 * unicast promiscuous mode
3797		 */
3798		count = igb_write_uc_addr_list(netdev);
3799		if (count < 0) {
3800			rctl |= E1000_RCTL_UPE;
3801			vmolr |= E1000_VMOLR_ROPE;
3802		}
3803		rctl |= E1000_RCTL_VFE;
3804	}
3805	wr32(E1000_RCTL, rctl);
3806
3807	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3808	 * the VMOLR to enable the appropriate modes.  Without this workaround
3809	 * we will have issues with VLAN tag stripping not being done for frames
3810	 * that are only arriving because we are the default pool
3811	 */
3812	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3813		return;
3814
3815	vmolr |= rd32(E1000_VMOLR(vfn)) &
3816		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3817	wr32(E1000_VMOLR(vfn), vmolr);
3818	igb_restore_vf_multicasts(adapter);
3819}
3820
3821static void igb_check_wvbr(struct igb_adapter *adapter)
3822{
3823	struct e1000_hw *hw = &adapter->hw;
3824	u32 wvbr = 0;
3825
3826	switch (hw->mac.type) {
3827	case e1000_82576:
3828	case e1000_i350:
3829		if (!(wvbr = rd32(E1000_WVBR)))
3830			return;
3831		break;
3832	default:
3833		break;
3834	}
3835
3836	adapter->wvbr |= wvbr;
3837}
3838
3839#define IGB_STAGGERED_QUEUE_OFFSET 8
3840
3841static void igb_spoof_check(struct igb_adapter *adapter)
3842{
3843	int j;
3844
3845	if (!adapter->wvbr)
3846		return;
3847
3848	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3849		if (adapter->wvbr & (1 << j) ||
3850		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3851			dev_warn(&adapter->pdev->dev,
3852				"Spoof event(s) detected on VF %d\n", j);
3853			adapter->wvbr &=
3854				~((1 << j) |
3855				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3856		}
3857	}
3858}
3859
3860/* Need to wait a few seconds after link up to get diagnostic information from
3861 * the phy
3862 */
3863static void igb_update_phy_info(unsigned long data)
3864{
3865	struct igb_adapter *adapter = (struct igb_adapter *) data;
3866	igb_get_phy_info(&adapter->hw);
3867}
3868
3869/**
3870 *  igb_has_link - check shared code for link and determine up/down
3871 *  @adapter: pointer to driver private info
3872 **/
3873bool igb_has_link(struct igb_adapter *adapter)
3874{
3875	struct e1000_hw *hw = &adapter->hw;
3876	bool link_active = false;
3877
3878	/* get_link_status is set on LSC (link status) interrupt or
3879	 * rx sequence error interrupt.  get_link_status will stay
3880	 * false until the e1000_check_for_link establishes link
3881	 * for copper adapters ONLY
3882	 */
3883	switch (hw->phy.media_type) {
3884	case e1000_media_type_copper:
3885		if (!hw->mac.get_link_status)
3886			return true;
3887	case e1000_media_type_internal_serdes:
3888		hw->mac.ops.check_for_link(hw);
3889		link_active = !hw->mac.get_link_status;
3890		break;
3891	default:
3892	case e1000_media_type_unknown:
3893		break;
3894	}
3895
3896	return link_active;
3897}
3898
3899static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3900{
3901	bool ret = false;
3902	u32 ctrl_ext, thstat;
3903
3904	/* check for thermal sensor event on i350 copper only */
3905	if (hw->mac.type == e1000_i350) {
3906		thstat = rd32(E1000_THSTAT);
3907		ctrl_ext = rd32(E1000_CTRL_EXT);
3908
3909		if ((hw->phy.media_type == e1000_media_type_copper) &&
3910		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3911			ret = !!(thstat & event);
3912	}
3913
3914	return ret;
3915}
3916
3917/**
3918 *  igb_watchdog - Timer Call-back
3919 *  @data: pointer to adapter cast into an unsigned long
3920 **/
3921static void igb_watchdog(unsigned long data)
3922{
3923	struct igb_adapter *adapter = (struct igb_adapter *)data;
3924	/* Do the rest outside of interrupt context */
3925	schedule_work(&adapter->watchdog_task);
3926}
3927
3928static void igb_watchdog_task(struct work_struct *work)
3929{
3930	struct igb_adapter *adapter = container_of(work,
3931						   struct igb_adapter,
3932						   watchdog_task);
3933	struct e1000_hw *hw = &adapter->hw;
3934	struct e1000_phy_info *phy = &hw->phy;
3935	struct net_device *netdev = adapter->netdev;
3936	u32 link;
3937	int i;
3938
3939	link = igb_has_link(adapter);
3940	if (link) {
3941		/* Cancel scheduled suspend requests. */
3942		pm_runtime_resume(netdev->dev.parent);
3943
3944		if (!netif_carrier_ok(netdev)) {
3945			u32 ctrl;
3946			hw->mac.ops.get_speed_and_duplex(hw,
3947							 &adapter->link_speed,
3948							 &adapter->link_duplex);
3949
3950			ctrl = rd32(E1000_CTRL);
3951			/* Links status message must follow this format */
3952			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3953			       "Duplex, Flow Control: %s\n",
3954			       netdev->name,
3955			       adapter->link_speed,
3956			       adapter->link_duplex == FULL_DUPLEX ?
3957			       "Full" : "Half",
3958			       (ctrl & E1000_CTRL_TFCE) &&
3959			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3960			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3961			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3962
3963			/* check if SmartSpeed worked */
3964			igb_check_downshift(hw);
3965			if (phy->speed_downgraded)
3966				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3967
3968			/* check for thermal sensor event */
3969			if (igb_thermal_sensor_event(hw,
3970			    E1000_THSTAT_LINK_THROTTLE)) {
3971				netdev_info(netdev, "The network adapter link "
3972					    "speed was downshifted because it "
3973					    "overheated\n");
3974			}
3975
3976			/* adjust timeout factor according to speed/duplex */
3977			adapter->tx_timeout_factor = 1;
3978			switch (adapter->link_speed) {
3979			case SPEED_10:
3980				adapter->tx_timeout_factor = 14;
3981				break;
3982			case SPEED_100:
3983				/* maybe add some timeout factor ? */
3984				break;
3985			}
3986
3987			netif_carrier_on(netdev);
3988
3989			igb_ping_all_vfs(adapter);
3990			igb_check_vf_rate_limit(adapter);
3991
3992			/* link state has changed, schedule phy info update */
3993			if (!test_bit(__IGB_DOWN, &adapter->state))
3994				mod_timer(&adapter->phy_info_timer,
3995					  round_jiffies(jiffies + 2 * HZ));
3996		}
3997	} else {
3998		if (netif_carrier_ok(netdev)) {
3999			adapter->link_speed = 0;
4000			adapter->link_duplex = 0;
4001
4002			/* check for thermal sensor event */
4003			if (igb_thermal_sensor_event(hw,
4004			    E1000_THSTAT_PWR_DOWN)) {
4005				netdev_err(netdev, "The network adapter was "
4006					   "stopped because it overheated\n");
4007			}
4008
4009			/* Links status message must follow this format */
4010			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4011			       netdev->name);
4012			netif_carrier_off(netdev);
4013
4014			igb_ping_all_vfs(adapter);
4015
4016			/* link state has changed, schedule phy info update */
4017			if (!test_bit(__IGB_DOWN, &adapter->state))
4018				mod_timer(&adapter->phy_info_timer,
4019					  round_jiffies(jiffies + 2 * HZ));
4020
4021			pm_schedule_suspend(netdev->dev.parent,
4022					    MSEC_PER_SEC * 5);
4023		}
4024	}
4025
4026	spin_lock(&adapter->stats64_lock);
4027	igb_update_stats(adapter, &adapter->stats64);
4028	spin_unlock(&adapter->stats64_lock);
4029
4030	for (i = 0; i < adapter->num_tx_queues; i++) {
4031		struct igb_ring *tx_ring = adapter->tx_ring[i];
4032		if (!netif_carrier_ok(netdev)) {
4033			/* We've lost link, so the controller stops DMA,
4034			 * but we've got queued Tx work that's never going
4035			 * to get done, so reset controller to flush Tx.
4036			 * (Do the reset outside of interrupt context).
4037			 */
4038			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4039				adapter->tx_timeout_count++;
4040				schedule_work(&adapter->reset_task);
4041				/* return immediately since reset is imminent */
4042				return;
4043			}
4044		}
4045
4046		/* Force detection of hung controller every watchdog period */
4047		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4048	}
4049
4050	/* Cause software interrupt to ensure Rx ring is cleaned */
4051	if (adapter->msix_entries) {
4052		u32 eics = 0;
4053		for (i = 0; i < adapter->num_q_vectors; i++)
4054			eics |= adapter->q_vector[i]->eims_value;
4055		wr32(E1000_EICS, eics);
4056	} else {
4057		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4058	}
4059
4060	igb_spoof_check(adapter);
4061	igb_ptp_rx_hang(adapter);
4062
4063	/* Reset the timer */
4064	if (!test_bit(__IGB_DOWN, &adapter->state))
4065		mod_timer(&adapter->watchdog_timer,
4066			  round_jiffies(jiffies + 2 * HZ));
4067}
4068
4069enum latency_range {
4070	lowest_latency = 0,
4071	low_latency = 1,
4072	bulk_latency = 2,
4073	latency_invalid = 255
4074};
4075
4076/**
4077 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4078 *  @q_vector: pointer to q_vector
4079 *
4080 *  Stores a new ITR value based on strictly on packet size.  This
4081 *  algorithm is less sophisticated than that used in igb_update_itr,
4082 *  due to the difficulty of synchronizing statistics across multiple
4083 *  receive rings.  The divisors and thresholds used by this function
4084 *  were determined based on theoretical maximum wire speed and testing
4085 *  data, in order to minimize response time while increasing bulk
4086 *  throughput.
4087 *  This functionality is controlled by the InterruptThrottleRate module
4088 *  parameter (see igb_param.c)
4089 *  NOTE:  This function is called only when operating in a multiqueue
4090 *         receive environment.
4091 **/
4092static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4093{
4094	int new_val = q_vector->itr_val;
4095	int avg_wire_size = 0;
4096	struct igb_adapter *adapter = q_vector->adapter;
4097	unsigned int packets;
4098
4099	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4100	 * ints/sec - ITR timer value of 120 ticks.
4101	 */
4102	if (adapter->link_speed != SPEED_1000) {
4103		new_val = IGB_4K_ITR;
4104		goto set_itr_val;
4105	}
4106
4107	packets = q_vector->rx.total_packets;
4108	if (packets)
4109		avg_wire_size = q_vector->rx.total_bytes / packets;
4110
4111	packets = q_vector->tx.total_packets;
4112	if (packets)
4113		avg_wire_size = max_t(u32, avg_wire_size,
4114				      q_vector->tx.total_bytes / packets);
4115
4116	/* if avg_wire_size isn't set no work was done */
4117	if (!avg_wire_size)
4118		goto clear_counts;
4119
4120	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4121	avg_wire_size += 24;
4122
4123	/* Don't starve jumbo frames */
4124	avg_wire_size = min(avg_wire_size, 3000);
4125
4126	/* Give a little boost to mid-size frames */
4127	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4128		new_val = avg_wire_size / 3;
4129	else
4130		new_val = avg_wire_size / 2;
4131
4132	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4133	if (new_val < IGB_20K_ITR &&
4134	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4135	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4136		new_val = IGB_20K_ITR;
4137
4138set_itr_val:
4139	if (new_val != q_vector->itr_val) {
4140		q_vector->itr_val = new_val;
4141		q_vector->set_itr = 1;
4142	}
4143clear_counts:
4144	q_vector->rx.total_bytes = 0;
4145	q_vector->rx.total_packets = 0;
4146	q_vector->tx.total_bytes = 0;
4147	q_vector->tx.total_packets = 0;
4148}
4149
4150/**
4151 *  igb_update_itr - update the dynamic ITR value based on statistics
4152 *  @q_vector: pointer to q_vector
4153 *  @ring_container: ring info to update the itr for
4154 *
4155 *  Stores a new ITR value based on packets and byte
4156 *  counts during the last interrupt.  The advantage of per interrupt
4157 *  computation is faster updates and more accurate ITR for the current
4158 *  traffic pattern.  Constants in this function were computed
4159 *  based on theoretical maximum wire speed and thresholds were set based
4160 *  on testing data as well as attempting to minimize response time
4161 *  while increasing bulk throughput.
4162 *  this functionality is controlled by the InterruptThrottleRate module
4163 *  parameter (see igb_param.c)
4164 *  NOTE:  These calculations are only valid when operating in a single-
4165 *         queue environment.
4166 **/
4167static void igb_update_itr(struct igb_q_vector *q_vector,
4168			   struct igb_ring_container *ring_container)
4169{
4170	unsigned int packets = ring_container->total_packets;
4171	unsigned int bytes = ring_container->total_bytes;
4172	u8 itrval = ring_container->itr;
4173
4174	/* no packets, exit with status unchanged */
4175	if (packets == 0)
4176		return;
4177
4178	switch (itrval) {
4179	case lowest_latency:
4180		/* handle TSO and jumbo frames */
4181		if (bytes/packets > 8000)
4182			itrval = bulk_latency;
4183		else if ((packets < 5) && (bytes > 512))
4184			itrval = low_latency;
4185		break;
4186	case low_latency:  /* 50 usec aka 20000 ints/s */
4187		if (bytes > 10000) {
4188			/* this if handles the TSO accounting */
4189			if (bytes/packets > 8000) {
4190				itrval = bulk_latency;
4191			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4192				itrval = bulk_latency;
4193			} else if ((packets > 35)) {
4194				itrval = lowest_latency;
4195			}
4196		} else if (bytes/packets > 2000) {
4197			itrval = bulk_latency;
4198		} else if (packets <= 2 && bytes < 512) {
4199			itrval = lowest_latency;
4200		}
4201		break;
4202	case bulk_latency: /* 250 usec aka 4000 ints/s */
4203		if (bytes > 25000) {
4204			if (packets > 35)
4205				itrval = low_latency;
4206		} else if (bytes < 1500) {
4207			itrval = low_latency;
4208		}
4209		break;
4210	}
4211
4212	/* clear work counters since we have the values we need */
4213	ring_container->total_bytes = 0;
4214	ring_container->total_packets = 0;
4215
4216	/* write updated itr to ring container */
4217	ring_container->itr = itrval;
4218}
4219
4220static void igb_set_itr(struct igb_q_vector *q_vector)
4221{
4222	struct igb_adapter *adapter = q_vector->adapter;
4223	u32 new_itr = q_vector->itr_val;
4224	u8 current_itr = 0;
4225
4226	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4227	if (adapter->link_speed != SPEED_1000) {
4228		current_itr = 0;
4229		new_itr = IGB_4K_ITR;
4230		goto set_itr_now;
4231	}
4232
4233	igb_update_itr(q_vector, &q_vector->tx);
4234	igb_update_itr(q_vector, &q_vector->rx);
4235
4236	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4237
4238	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4239	if (current_itr == lowest_latency &&
4240	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4241	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4242		current_itr = low_latency;
4243
4244	switch (current_itr) {
4245	/* counts and packets in update_itr are dependent on these numbers */
4246	case lowest_latency:
4247		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4248		break;
4249	case low_latency:
4250		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4251		break;
4252	case bulk_latency:
4253		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4254		break;
4255	default:
4256		break;
4257	}
4258
4259set_itr_now:
4260	if (new_itr != q_vector->itr_val) {
4261		/* this attempts to bias the interrupt rate towards Bulk
4262		 * by adding intermediate steps when interrupt rate is
4263		 * increasing
4264		 */
4265		new_itr = new_itr > q_vector->itr_val ?
4266			  max((new_itr * q_vector->itr_val) /
4267			  (new_itr + (q_vector->itr_val >> 2)),
4268			  new_itr) : new_itr;
4269		/* Don't write the value here; it resets the adapter's
4270		 * internal timer, and causes us to delay far longer than
4271		 * we should between interrupts.  Instead, we write the ITR
4272		 * value at the beginning of the next interrupt so the timing
4273		 * ends up being correct.
4274		 */
4275		q_vector->itr_val = new_itr;
4276		q_vector->set_itr = 1;
4277	}
4278}
4279
4280static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4281			    u32 type_tucmd, u32 mss_l4len_idx)
4282{
4283	struct e1000_adv_tx_context_desc *context_desc;
4284	u16 i = tx_ring->next_to_use;
4285
4286	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4287
4288	i++;
4289	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4290
4291	/* set bits to identify this as an advanced context descriptor */
4292	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4293
4294	/* For 82575, context index must be unique per ring. */
4295	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4296		mss_l4len_idx |= tx_ring->reg_idx << 4;
4297
4298	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4299	context_desc->seqnum_seed	= 0;
4300	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4301	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4302}
4303
4304static int igb_tso(struct igb_ring *tx_ring,
4305		   struct igb_tx_buffer *first,
4306		   u8 *hdr_len)
4307{
4308	struct sk_buff *skb = first->skb;
4309	u32 vlan_macip_lens, type_tucmd;
4310	u32 mss_l4len_idx, l4len;
4311
4312	if (skb->ip_summed != CHECKSUM_PARTIAL)
4313		return 0;
4314
4315	if (!skb_is_gso(skb))
4316		return 0;
4317
4318	if (skb_header_cloned(skb)) {
4319		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4320		if (err)
4321			return err;
4322	}
4323
4324	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4325	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4326
4327	if (first->protocol == __constant_htons(ETH_P_IP)) {
4328		struct iphdr *iph = ip_hdr(skb);
4329		iph->tot_len = 0;
4330		iph->check = 0;
4331		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4332							 iph->daddr, 0,
4333							 IPPROTO_TCP,
4334							 0);
4335		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4336		first->tx_flags |= IGB_TX_FLAGS_TSO |
4337				   IGB_TX_FLAGS_CSUM |
4338				   IGB_TX_FLAGS_IPV4;
4339	} else if (skb_is_gso_v6(skb)) {
4340		ipv6_hdr(skb)->payload_len = 0;
4341		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4342						       &ipv6_hdr(skb)->daddr,
4343						       0, IPPROTO_TCP, 0);
4344		first->tx_flags |= IGB_TX_FLAGS_TSO |
4345				   IGB_TX_FLAGS_CSUM;
4346	}
4347
4348	/* compute header lengths */
4349	l4len = tcp_hdrlen(skb);
4350	*hdr_len = skb_transport_offset(skb) + l4len;
4351
4352	/* update gso size and bytecount with header size */
4353	first->gso_segs = skb_shinfo(skb)->gso_segs;
4354	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4355
4356	/* MSS L4LEN IDX */
4357	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4358	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4359
4360	/* VLAN MACLEN IPLEN */
4361	vlan_macip_lens = skb_network_header_len(skb);
4362	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4363	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4364
4365	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4366
4367	return 1;
4368}
4369
4370static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4371{
4372	struct sk_buff *skb = first->skb;
4373	u32 vlan_macip_lens = 0;
4374	u32 mss_l4len_idx = 0;
4375	u32 type_tucmd = 0;
4376
4377	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4378		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4379			return;
4380	} else {
4381		u8 l4_hdr = 0;
4382		switch (first->protocol) {
4383		case __constant_htons(ETH_P_IP):
4384			vlan_macip_lens |= skb_network_header_len(skb);
4385			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4386			l4_hdr = ip_hdr(skb)->protocol;
4387			break;
4388		case __constant_htons(ETH_P_IPV6):
4389			vlan_macip_lens |= skb_network_header_len(skb);
4390			l4_hdr = ipv6_hdr(skb)->nexthdr;
4391			break;
4392		default:
4393			if (unlikely(net_ratelimit())) {
4394				dev_warn(tx_ring->dev,
4395					 "partial checksum but proto=%x!\n",
4396					 first->protocol);
4397			}
4398			break;
4399		}
4400
4401		switch (l4_hdr) {
4402		case IPPROTO_TCP:
4403			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4404			mss_l4len_idx = tcp_hdrlen(skb) <<
4405					E1000_ADVTXD_L4LEN_SHIFT;
4406			break;
4407		case IPPROTO_SCTP:
4408			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4409			mss_l4len_idx = sizeof(struct sctphdr) <<
4410					E1000_ADVTXD_L4LEN_SHIFT;
4411			break;
4412		case IPPROTO_UDP:
4413			mss_l4len_idx = sizeof(struct udphdr) <<
4414					E1000_ADVTXD_L4LEN_SHIFT;
4415			break;
4416		default:
4417			if (unlikely(net_ratelimit())) {
4418				dev_warn(tx_ring->dev,
4419					 "partial checksum but l4 proto=%x!\n",
4420					 l4_hdr);
4421			}
4422			break;
4423		}
4424
4425		/* update TX checksum flag */
4426		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4427	}
4428
4429	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4430	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4431
4432	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4433}
4434
4435#define IGB_SET_FLAG(_input, _flag, _result) \
4436	((_flag <= _result) ? \
4437	 ((u32)(_input & _flag) * (_result / _flag)) : \
4438	 ((u32)(_input & _flag) / (_flag / _result)))
4439
4440static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4441{
4442	/* set type for advanced descriptor with frame checksum insertion */
4443	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4444		       E1000_ADVTXD_DCMD_DEXT |
4445		       E1000_ADVTXD_DCMD_IFCS;
4446
4447	/* set HW vlan bit if vlan is present */
4448	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4449				 (E1000_ADVTXD_DCMD_VLE));
4450
4451	/* set segmentation bits for TSO */
4452	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4453				 (E1000_ADVTXD_DCMD_TSE));
4454
4455	/* set timestamp bit if present */
4456	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4457				 (E1000_ADVTXD_MAC_TSTAMP));
4458
4459	/* insert frame checksum */
4460	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4461
4462	return cmd_type;
4463}
4464
4465static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4466				 union e1000_adv_tx_desc *tx_desc,
4467				 u32 tx_flags, unsigned int paylen)
4468{
4469	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4470
4471	/* 82575 requires a unique index per ring */
4472	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4473		olinfo_status |= tx_ring->reg_idx << 4;
4474
4475	/* insert L4 checksum */
4476	olinfo_status |= IGB_SET_FLAG(tx_flags,
4477				      IGB_TX_FLAGS_CSUM,
4478				      (E1000_TXD_POPTS_TXSM << 8));
4479
4480	/* insert IPv4 checksum */
4481	olinfo_status |= IGB_SET_FLAG(tx_flags,
4482				      IGB_TX_FLAGS_IPV4,
4483				      (E1000_TXD_POPTS_IXSM << 8));
4484
4485	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4486}
4487
4488static void igb_tx_map(struct igb_ring *tx_ring,
4489		       struct igb_tx_buffer *first,
4490		       const u8 hdr_len)
4491{
4492	struct sk_buff *skb = first->skb;
4493	struct igb_tx_buffer *tx_buffer;
4494	union e1000_adv_tx_desc *tx_desc;
4495	struct skb_frag_struct *frag;
4496	dma_addr_t dma;
4497	unsigned int data_len, size;
4498	u32 tx_flags = first->tx_flags;
4499	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4500	u16 i = tx_ring->next_to_use;
4501
4502	tx_desc = IGB_TX_DESC(tx_ring, i);
4503
4504	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4505
4506	size = skb_headlen(skb);
4507	data_len = skb->data_len;
4508
4509	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4510
4511	tx_buffer = first;
4512
4513	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4514		if (dma_mapping_error(tx_ring->dev, dma))
4515			goto dma_error;
4516
4517		/* record length, and DMA address */
4518		dma_unmap_len_set(tx_buffer, len, size);
4519		dma_unmap_addr_set(tx_buffer, dma, dma);
4520
4521		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4522
4523		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4524			tx_desc->read.cmd_type_len =
4525				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4526
4527			i++;
4528			tx_desc++;
4529			if (i == tx_ring->count) {
4530				tx_desc = IGB_TX_DESC(tx_ring, 0);
4531				i = 0;
4532			}
4533			tx_desc->read.olinfo_status = 0;
4534
4535			dma += IGB_MAX_DATA_PER_TXD;
4536			size -= IGB_MAX_DATA_PER_TXD;
4537
4538			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4539		}
4540
4541		if (likely(!data_len))
4542			break;
4543
4544		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4545
4546		i++;
4547		tx_desc++;
4548		if (i == tx_ring->count) {
4549			tx_desc = IGB_TX_DESC(tx_ring, 0);
4550			i = 0;
4551		}
4552		tx_desc->read.olinfo_status = 0;
4553
4554		size = skb_frag_size(frag);
4555		data_len -= size;
4556
4557		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4558				       size, DMA_TO_DEVICE);
4559
4560		tx_buffer = &tx_ring->tx_buffer_info[i];
4561	}
4562
4563	/* write last descriptor with RS and EOP bits */
4564	cmd_type |= size | IGB_TXD_DCMD;
4565	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4566
4567	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4568
4569	/* set the timestamp */
4570	first->time_stamp = jiffies;
4571
4572	/* Force memory writes to complete before letting h/w know there
4573	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4574	 * memory model archs, such as IA-64).
4575	 *
4576	 * We also need this memory barrier to make certain all of the
4577	 * status bits have been updated before next_to_watch is written.
4578	 */
4579	wmb();
4580
4581	/* set next_to_watch value indicating a packet is present */
4582	first->next_to_watch = tx_desc;
4583
4584	i++;
4585	if (i == tx_ring->count)
4586		i = 0;
4587
4588	tx_ring->next_to_use = i;
4589
4590	writel(i, tx_ring->tail);
4591
4592	/* we need this if more than one processor can write to our tail
4593	 * at a time, it synchronizes IO on IA64/Altix systems
4594	 */
4595	mmiowb();
4596
4597	return;
4598
4599dma_error:
4600	dev_err(tx_ring->dev, "TX DMA map failed\n");
4601
4602	/* clear dma mappings for failed tx_buffer_info map */
4603	for (;;) {
4604		tx_buffer = &tx_ring->tx_buffer_info[i];
4605		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4606		if (tx_buffer == first)
4607			break;
4608		if (i == 0)
4609			i = tx_ring->count;
4610		i--;
4611	}
4612
4613	tx_ring->next_to_use = i;
4614}
4615
4616static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4617{
4618	struct net_device *netdev = tx_ring->netdev;
4619
4620	netif_stop_subqueue(netdev, tx_ring->queue_index);
4621
4622	/* Herbert's original patch had:
4623	 *  smp_mb__after_netif_stop_queue();
4624	 * but since that doesn't exist yet, just open code it.
4625	 */
4626	smp_mb();
4627
4628	/* We need to check again in a case another CPU has just
4629	 * made room available.
4630	 */
4631	if (igb_desc_unused(tx_ring) < size)
4632		return -EBUSY;
4633
4634	/* A reprieve! */
4635	netif_wake_subqueue(netdev, tx_ring->queue_index);
4636
4637	u64_stats_update_begin(&tx_ring->tx_syncp2);
4638	tx_ring->tx_stats.restart_queue2++;
4639	u64_stats_update_end(&tx_ring->tx_syncp2);
4640
4641	return 0;
4642}
4643
4644static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4645{
4646	if (igb_desc_unused(tx_ring) >= size)
4647		return 0;
4648	return __igb_maybe_stop_tx(tx_ring, size);
4649}
4650
4651netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4652				struct igb_ring *tx_ring)
4653{
4654	struct igb_tx_buffer *first;
4655	int tso;
4656	u32 tx_flags = 0;
4657	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4658	__be16 protocol = vlan_get_protocol(skb);
4659	u8 hdr_len = 0;
4660
4661	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4662	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4663	 *       + 2 desc gap to keep tail from touching head,
4664	 *       + 1 desc for context descriptor,
4665	 * otherwise try next time
4666	 */
4667	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4668		unsigned short f;
4669		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4670			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4671	} else {
4672		count += skb_shinfo(skb)->nr_frags;
4673	}
4674
4675	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4676		/* this is a hard error */
4677		return NETDEV_TX_BUSY;
4678	}
4679
4680	/* record the location of the first descriptor for this packet */
4681	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4682	first->skb = skb;
4683	first->bytecount = skb->len;
4684	first->gso_segs = 1;
4685
4686	skb_tx_timestamp(skb);
4687
4688	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4689		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4690
4691		if (!(adapter->ptp_tx_skb)) {
4692			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4693			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4694
4695			adapter->ptp_tx_skb = skb_get(skb);
4696			adapter->ptp_tx_start = jiffies;
4697			if (adapter->hw.mac.type == e1000_82576)
4698				schedule_work(&adapter->ptp_tx_work);
4699		}
4700	}
4701
4702	if (vlan_tx_tag_present(skb)) {
4703		tx_flags |= IGB_TX_FLAGS_VLAN;
4704		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4705	}
4706
4707	/* record initial flags and protocol */
4708	first->tx_flags = tx_flags;
4709	first->protocol = protocol;
4710
4711	tso = igb_tso(tx_ring, first, &hdr_len);
4712	if (tso < 0)
4713		goto out_drop;
4714	else if (!tso)
4715		igb_tx_csum(tx_ring, first);
4716
4717	igb_tx_map(tx_ring, first, hdr_len);
4718
4719	/* Make sure there is space in the ring for the next send. */
4720	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4721
4722	return NETDEV_TX_OK;
4723
4724out_drop:
4725	igb_unmap_and_free_tx_resource(tx_ring, first);
4726
4727	return NETDEV_TX_OK;
4728}
4729
4730static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4731						    struct sk_buff *skb)
4732{
4733	unsigned int r_idx = skb->queue_mapping;
4734
4735	if (r_idx >= adapter->num_tx_queues)
4736		r_idx = r_idx % adapter->num_tx_queues;
4737
4738	return adapter->tx_ring[r_idx];
4739}
4740
4741static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4742				  struct net_device *netdev)
4743{
4744	struct igb_adapter *adapter = netdev_priv(netdev);
4745
4746	if (test_bit(__IGB_DOWN, &adapter->state)) {
4747		dev_kfree_skb_any(skb);
4748		return NETDEV_TX_OK;
4749	}
4750
4751	if (skb->len <= 0) {
4752		dev_kfree_skb_any(skb);
4753		return NETDEV_TX_OK;
4754	}
4755
4756	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4757	 * in order to meet this minimum size requirement.
4758	 */
4759	if (unlikely(skb->len < 17)) {
4760		if (skb_pad(skb, 17 - skb->len))
4761			return NETDEV_TX_OK;
4762		skb->len = 17;
4763		skb_set_tail_pointer(skb, 17);
4764	}
4765
4766	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4767}
4768
4769/**
4770 *  igb_tx_timeout - Respond to a Tx Hang
4771 *  @netdev: network interface device structure
4772 **/
4773static void igb_tx_timeout(struct net_device *netdev)
4774{
4775	struct igb_adapter *adapter = netdev_priv(netdev);
4776	struct e1000_hw *hw = &adapter->hw;
4777
4778	/* Do the reset outside of interrupt context */
4779	adapter->tx_timeout_count++;
4780
4781	if (hw->mac.type >= e1000_82580)
4782		hw->dev_spec._82575.global_device_reset = true;
4783
4784	schedule_work(&adapter->reset_task);
4785	wr32(E1000_EICS,
4786	     (adapter->eims_enable_mask & ~adapter->eims_other));
4787}
4788
4789static void igb_reset_task(struct work_struct *work)
4790{
4791	struct igb_adapter *adapter;
4792	adapter = container_of(work, struct igb_adapter, reset_task);
4793
4794	igb_dump(adapter);
4795	netdev_err(adapter->netdev, "Reset adapter\n");
4796	igb_reinit_locked(adapter);
4797}
4798
4799/**
4800 *  igb_get_stats64 - Get System Network Statistics
4801 *  @netdev: network interface device structure
4802 *  @stats: rtnl_link_stats64 pointer
4803 **/
4804static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4805						struct rtnl_link_stats64 *stats)
4806{
4807	struct igb_adapter *adapter = netdev_priv(netdev);
4808
4809	spin_lock(&adapter->stats64_lock);
4810	igb_update_stats(adapter, &adapter->stats64);
4811	memcpy(stats, &adapter->stats64, sizeof(*stats));
4812	spin_unlock(&adapter->stats64_lock);
4813
4814	return stats;
4815}
4816
4817/**
4818 *  igb_change_mtu - Change the Maximum Transfer Unit
4819 *  @netdev: network interface device structure
4820 *  @new_mtu: new value for maximum frame size
4821 *
4822 *  Returns 0 on success, negative on failure
4823 **/
4824static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4825{
4826	struct igb_adapter *adapter = netdev_priv(netdev);
4827	struct pci_dev *pdev = adapter->pdev;
4828	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4829
4830	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4831		dev_err(&pdev->dev, "Invalid MTU setting\n");
4832		return -EINVAL;
4833	}
4834
4835#define MAX_STD_JUMBO_FRAME_SIZE 9238
4836	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4837		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4838		return -EINVAL;
4839	}
4840
4841	/* adjust max frame to be at least the size of a standard frame */
4842	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4843		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4844
4845	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4846		msleep(1);
4847
4848	/* igb_down has a dependency on max_frame_size */
4849	adapter->max_frame_size = max_frame;
4850
4851	if (netif_running(netdev))
4852		igb_down(adapter);
4853
4854	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4855		 netdev->mtu, new_mtu);
4856	netdev->mtu = new_mtu;
4857
4858	if (netif_running(netdev))
4859		igb_up(adapter);
4860	else
4861		igb_reset(adapter);
4862
4863	clear_bit(__IGB_RESETTING, &adapter->state);
4864
4865	return 0;
4866}
4867
4868/**
4869 *  igb_update_stats - Update the board statistics counters
4870 *  @adapter: board private structure
4871 **/
4872void igb_update_stats(struct igb_adapter *adapter,
4873		      struct rtnl_link_stats64 *net_stats)
4874{
4875	struct e1000_hw *hw = &adapter->hw;
4876	struct pci_dev *pdev = adapter->pdev;
4877	u32 reg, mpc;
4878	u16 phy_tmp;
4879	int i;
4880	u64 bytes, packets;
4881	unsigned int start;
4882	u64 _bytes, _packets;
4883
4884#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4885
4886	/* Prevent stats update while adapter is being reset, or if the pci
4887	 * connection is down.
4888	 */
4889	if (adapter->link_speed == 0)
4890		return;
4891	if (pci_channel_offline(pdev))
4892		return;
4893
4894	bytes = 0;
4895	packets = 0;
4896
4897	rcu_read_lock();
4898	for (i = 0; i < adapter->num_rx_queues; i++) {
4899		u32 rqdpc = rd32(E1000_RQDPC(i));
4900		struct igb_ring *ring = adapter->rx_ring[i];
4901
4902		if (rqdpc) {
4903			ring->rx_stats.drops += rqdpc;
4904			net_stats->rx_fifo_errors += rqdpc;
4905		}
4906
4907		do {
4908			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4909			_bytes = ring->rx_stats.bytes;
4910			_packets = ring->rx_stats.packets;
4911		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4912		bytes += _bytes;
4913		packets += _packets;
4914	}
4915
4916	net_stats->rx_bytes = bytes;
4917	net_stats->rx_packets = packets;
4918
4919	bytes = 0;
4920	packets = 0;
4921	for (i = 0; i < adapter->num_tx_queues; i++) {
4922		struct igb_ring *ring = adapter->tx_ring[i];
4923		do {
4924			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4925			_bytes = ring->tx_stats.bytes;
4926			_packets = ring->tx_stats.packets;
4927		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4928		bytes += _bytes;
4929		packets += _packets;
4930	}
4931	net_stats->tx_bytes = bytes;
4932	net_stats->tx_packets = packets;
4933	rcu_read_unlock();
4934
4935	/* read stats registers */
4936	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4937	adapter->stats.gprc += rd32(E1000_GPRC);
4938	adapter->stats.gorc += rd32(E1000_GORCL);
4939	rd32(E1000_GORCH); /* clear GORCL */
4940	adapter->stats.bprc += rd32(E1000_BPRC);
4941	adapter->stats.mprc += rd32(E1000_MPRC);
4942	adapter->stats.roc += rd32(E1000_ROC);
4943
4944	adapter->stats.prc64 += rd32(E1000_PRC64);
4945	adapter->stats.prc127 += rd32(E1000_PRC127);
4946	adapter->stats.prc255 += rd32(E1000_PRC255);
4947	adapter->stats.prc511 += rd32(E1000_PRC511);
4948	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4949	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4950	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4951	adapter->stats.sec += rd32(E1000_SEC);
4952
4953	mpc = rd32(E1000_MPC);
4954	adapter->stats.mpc += mpc;
4955	net_stats->rx_fifo_errors += mpc;
4956	adapter->stats.scc += rd32(E1000_SCC);
4957	adapter->stats.ecol += rd32(E1000_ECOL);
4958	adapter->stats.mcc += rd32(E1000_MCC);
4959	adapter->stats.latecol += rd32(E1000_LATECOL);
4960	adapter->stats.dc += rd32(E1000_DC);
4961	adapter->stats.rlec += rd32(E1000_RLEC);
4962	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4963	adapter->stats.xontxc += rd32(E1000_XONTXC);
4964	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4965	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4966	adapter->stats.fcruc += rd32(E1000_FCRUC);
4967	adapter->stats.gptc += rd32(E1000_GPTC);
4968	adapter->stats.gotc += rd32(E1000_GOTCL);
4969	rd32(E1000_GOTCH); /* clear GOTCL */
4970	adapter->stats.rnbc += rd32(E1000_RNBC);
4971	adapter->stats.ruc += rd32(E1000_RUC);
4972	adapter->stats.rfc += rd32(E1000_RFC);
4973	adapter->stats.rjc += rd32(E1000_RJC);
4974	adapter->stats.tor += rd32(E1000_TORH);
4975	adapter->stats.tot += rd32(E1000_TOTH);
4976	adapter->stats.tpr += rd32(E1000_TPR);
4977
4978	adapter->stats.ptc64 += rd32(E1000_PTC64);
4979	adapter->stats.ptc127 += rd32(E1000_PTC127);
4980	adapter->stats.ptc255 += rd32(E1000_PTC255);
4981	adapter->stats.ptc511 += rd32(E1000_PTC511);
4982	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4983	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4984
4985	adapter->stats.mptc += rd32(E1000_MPTC);
4986	adapter->stats.bptc += rd32(E1000_BPTC);
4987
4988	adapter->stats.tpt += rd32(E1000_TPT);
4989	adapter->stats.colc += rd32(E1000_COLC);
4990
4991	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4992	/* read internal phy specific stats */
4993	reg = rd32(E1000_CTRL_EXT);
4994	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4995		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4996
4997		/* this stat has invalid values on i210/i211 */
4998		if ((hw->mac.type != e1000_i210) &&
4999		    (hw->mac.type != e1000_i211))
5000			adapter->stats.tncrs += rd32(E1000_TNCRS);
5001	}
5002
5003	adapter->stats.tsctc += rd32(E1000_TSCTC);
5004	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5005
5006	adapter->stats.iac += rd32(E1000_IAC);
5007	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5008	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5009	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5010	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5011	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5012	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5013	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5014	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5015
5016	/* Fill out the OS statistics structure */
5017	net_stats->multicast = adapter->stats.mprc;
5018	net_stats->collisions = adapter->stats.colc;
5019
5020	/* Rx Errors */
5021
5022	/* RLEC on some newer hardware can be incorrect so build
5023	 * our own version based on RUC and ROC
5024	 */
5025	net_stats->rx_errors = adapter->stats.rxerrc +
5026		adapter->stats.crcerrs + adapter->stats.algnerrc +
5027		adapter->stats.ruc + adapter->stats.roc +
5028		adapter->stats.cexterr;
5029	net_stats->rx_length_errors = adapter->stats.ruc +
5030				      adapter->stats.roc;
5031	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5032	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5033	net_stats->rx_missed_errors = adapter->stats.mpc;
5034
5035	/* Tx Errors */
5036	net_stats->tx_errors = adapter->stats.ecol +
5037			       adapter->stats.latecol;
5038	net_stats->tx_aborted_errors = adapter->stats.ecol;
5039	net_stats->tx_window_errors = adapter->stats.latecol;
5040	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5041
5042	/* Tx Dropped needs to be maintained elsewhere */
5043
5044	/* Phy Stats */
5045	if (hw->phy.media_type == e1000_media_type_copper) {
5046		if ((adapter->link_speed == SPEED_1000) &&
5047		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5048			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5049			adapter->phy_stats.idle_errors += phy_tmp;
5050		}
5051	}
5052
5053	/* Management Stats */
5054	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5055	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5056	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5057
5058	/* OS2BMC Stats */
5059	reg = rd32(E1000_MANC);
5060	if (reg & E1000_MANC_EN_BMC2OS) {
5061		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5062		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5063		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5064		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5065	}
5066}
5067
5068static irqreturn_t igb_msix_other(int irq, void *data)
5069{
5070	struct igb_adapter *adapter = data;
5071	struct e1000_hw *hw = &adapter->hw;
5072	u32 icr = rd32(E1000_ICR);
5073	/* reading ICR causes bit 31 of EICR to be cleared */
5074
5075	if (icr & E1000_ICR_DRSTA)
5076		schedule_work(&adapter->reset_task);
5077
5078	if (icr & E1000_ICR_DOUTSYNC) {
5079		/* HW is reporting DMA is out of sync */
5080		adapter->stats.doosync++;
5081		/* The DMA Out of Sync is also indication of a spoof event
5082		 * in IOV mode. Check the Wrong VM Behavior register to
5083		 * see if it is really a spoof event.
5084		 */
5085		igb_check_wvbr(adapter);
5086	}
5087
5088	/* Check for a mailbox event */
5089	if (icr & E1000_ICR_VMMB)
5090		igb_msg_task(adapter);
5091
5092	if (icr & E1000_ICR_LSC) {
5093		hw->mac.get_link_status = 1;
5094		/* guard against interrupt when we're going down */
5095		if (!test_bit(__IGB_DOWN, &adapter->state))
5096			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5097	}
5098
5099	if (icr & E1000_ICR_TS) {
5100		u32 tsicr = rd32(E1000_TSICR);
5101
5102		if (tsicr & E1000_TSICR_TXTS) {
5103			/* acknowledge the interrupt */
5104			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5105			/* retrieve hardware timestamp */
5106			schedule_work(&adapter->ptp_tx_work);
5107		}
5108	}
5109
5110	wr32(E1000_EIMS, adapter->eims_other);
5111
5112	return IRQ_HANDLED;
5113}
5114
5115static void igb_write_itr(struct igb_q_vector *q_vector)
5116{
5117	struct igb_adapter *adapter = q_vector->adapter;
5118	u32 itr_val = q_vector->itr_val & 0x7FFC;
5119
5120	if (!q_vector->set_itr)
5121		return;
5122
5123	if (!itr_val)
5124		itr_val = 0x4;
5125
5126	if (adapter->hw.mac.type == e1000_82575)
5127		itr_val |= itr_val << 16;
5128	else
5129		itr_val |= E1000_EITR_CNT_IGNR;
5130
5131	writel(itr_val, q_vector->itr_register);
5132	q_vector->set_itr = 0;
5133}
5134
5135static irqreturn_t igb_msix_ring(int irq, void *data)
5136{
5137	struct igb_q_vector *q_vector = data;
5138
5139	/* Write the ITR value calculated from the previous interrupt. */
5140	igb_write_itr(q_vector);
5141
5142	napi_schedule(&q_vector->napi);
5143
5144	return IRQ_HANDLED;
5145}
5146
5147#ifdef CONFIG_IGB_DCA
5148static void igb_update_tx_dca(struct igb_adapter *adapter,
5149			      struct igb_ring *tx_ring,
5150			      int cpu)
5151{
5152	struct e1000_hw *hw = &adapter->hw;
5153	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5154
5155	if (hw->mac.type != e1000_82575)
5156		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5157
5158	/* We can enable relaxed ordering for reads, but not writes when
5159	 * DCA is enabled.  This is due to a known issue in some chipsets
5160	 * which will cause the DCA tag to be cleared.
5161	 */
5162	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5163		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5164		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5165
5166	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5167}
5168
5169static void igb_update_rx_dca(struct igb_adapter *adapter,
5170			      struct igb_ring *rx_ring,
5171			      int cpu)
5172{
5173	struct e1000_hw *hw = &adapter->hw;
5174	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5175
5176	if (hw->mac.type != e1000_82575)
5177		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5178
5179	/* We can enable relaxed ordering for reads, but not writes when
5180	 * DCA is enabled.  This is due to a known issue in some chipsets
5181	 * which will cause the DCA tag to be cleared.
5182	 */
5183	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5184		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5185
5186	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5187}
5188
5189static void igb_update_dca(struct igb_q_vector *q_vector)
5190{
5191	struct igb_adapter *adapter = q_vector->adapter;
5192	int cpu = get_cpu();
5193
5194	if (q_vector->cpu == cpu)
5195		goto out_no_update;
5196
5197	if (q_vector->tx.ring)
5198		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5199
5200	if (q_vector->rx.ring)
5201		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5202
5203	q_vector->cpu = cpu;
5204out_no_update:
5205	put_cpu();
5206}
5207
5208static void igb_setup_dca(struct igb_adapter *adapter)
5209{
5210	struct e1000_hw *hw = &adapter->hw;
5211	int i;
5212
5213	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5214		return;
5215
5216	/* Always use CB2 mode, difference is masked in the CB driver. */
5217	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5218
5219	for (i = 0; i < adapter->num_q_vectors; i++) {
5220		adapter->q_vector[i]->cpu = -1;
5221		igb_update_dca(adapter->q_vector[i]);
5222	}
5223}
5224
5225static int __igb_notify_dca(struct device *dev, void *data)
5226{
5227	struct net_device *netdev = dev_get_drvdata(dev);
5228	struct igb_adapter *adapter = netdev_priv(netdev);
5229	struct pci_dev *pdev = adapter->pdev;
5230	struct e1000_hw *hw = &adapter->hw;
5231	unsigned long event = *(unsigned long *)data;
5232
5233	switch (event) {
5234	case DCA_PROVIDER_ADD:
5235		/* if already enabled, don't do it again */
5236		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5237			break;
5238		if (dca_add_requester(dev) == 0) {
5239			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5240			dev_info(&pdev->dev, "DCA enabled\n");
5241			igb_setup_dca(adapter);
5242			break;
5243		}
5244		/* Fall Through since DCA is disabled. */
5245	case DCA_PROVIDER_REMOVE:
5246		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5247			/* without this a class_device is left
5248			 * hanging around in the sysfs model
5249			 */
5250			dca_remove_requester(dev);
5251			dev_info(&pdev->dev, "DCA disabled\n");
5252			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5253			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5254		}
5255		break;
5256	}
5257
5258	return 0;
5259}
5260
5261static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5262			  void *p)
5263{
5264	int ret_val;
5265
5266	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5267					 __igb_notify_dca);
5268
5269	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5270}
5271#endif /* CONFIG_IGB_DCA */
5272
5273#ifdef CONFIG_PCI_IOV
5274static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5275{
5276	unsigned char mac_addr[ETH_ALEN];
5277
5278	eth_zero_addr(mac_addr);
5279	igb_set_vf_mac(adapter, vf, mac_addr);
5280
5281	/* By default spoof check is enabled for all VFs */
5282	adapter->vf_data[vf].spoofchk_enabled = true;
5283
5284	return 0;
5285}
5286
5287#endif
5288static void igb_ping_all_vfs(struct igb_adapter *adapter)
5289{
5290	struct e1000_hw *hw = &adapter->hw;
5291	u32 ping;
5292	int i;
5293
5294	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5295		ping = E1000_PF_CONTROL_MSG;
5296		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5297			ping |= E1000_VT_MSGTYPE_CTS;
5298		igb_write_mbx(hw, &ping, 1, i);
5299	}
5300}
5301
5302static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5303{
5304	struct e1000_hw *hw = &adapter->hw;
5305	u32 vmolr = rd32(E1000_VMOLR(vf));
5306	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5307
5308	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5309			    IGB_VF_FLAG_MULTI_PROMISC);
5310	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5311
5312	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5313		vmolr |= E1000_VMOLR_MPME;
5314		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5315		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5316	} else {
5317		/* if we have hashes and we are clearing a multicast promisc
5318		 * flag we need to write the hashes to the MTA as this step
5319		 * was previously skipped
5320		 */
5321		if (vf_data->num_vf_mc_hashes > 30) {
5322			vmolr |= E1000_VMOLR_MPME;
5323		} else if (vf_data->num_vf_mc_hashes) {
5324			int j;
5325			vmolr |= E1000_VMOLR_ROMPE;
5326			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5327				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5328		}
5329	}
5330
5331	wr32(E1000_VMOLR(vf), vmolr);
5332
5333	/* there are flags left unprocessed, likely not supported */
5334	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5335		return -EINVAL;
5336
5337	return 0;
5338}
5339
5340static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5341				  u32 *msgbuf, u32 vf)
5342{
5343	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5344	u16 *hash_list = (u16 *)&msgbuf[1];
5345	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5346	int i;
5347
5348	/* salt away the number of multicast addresses assigned
5349	 * to this VF for later use to restore when the PF multi cast
5350	 * list changes
5351	 */
5352	vf_data->num_vf_mc_hashes = n;
5353
5354	/* only up to 30 hash values supported */
5355	if (n > 30)
5356		n = 30;
5357
5358	/* store the hashes for later use */
5359	for (i = 0; i < n; i++)
5360		vf_data->vf_mc_hashes[i] = hash_list[i];
5361
5362	/* Flush and reset the mta with the new values */
5363	igb_set_rx_mode(adapter->netdev);
5364
5365	return 0;
5366}
5367
5368static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5369{
5370	struct e1000_hw *hw = &adapter->hw;
5371	struct vf_data_storage *vf_data;
5372	int i, j;
5373
5374	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5375		u32 vmolr = rd32(E1000_VMOLR(i));
5376		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5377
5378		vf_data = &adapter->vf_data[i];
5379
5380		if ((vf_data->num_vf_mc_hashes > 30) ||
5381		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5382			vmolr |= E1000_VMOLR_MPME;
5383		} else if (vf_data->num_vf_mc_hashes) {
5384			vmolr |= E1000_VMOLR_ROMPE;
5385			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5386				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5387		}
5388		wr32(E1000_VMOLR(i), vmolr);
5389	}
5390}
5391
5392static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5393{
5394	struct e1000_hw *hw = &adapter->hw;
5395	u32 pool_mask, reg, vid;
5396	int i;
5397
5398	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5399
5400	/* Find the vlan filter for this id */
5401	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5402		reg = rd32(E1000_VLVF(i));
5403
5404		/* remove the vf from the pool */
5405		reg &= ~pool_mask;
5406
5407		/* if pool is empty then remove entry from vfta */
5408		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5409		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5410			reg = 0;
5411			vid = reg & E1000_VLVF_VLANID_MASK;
5412			igb_vfta_set(hw, vid, false);
5413		}
5414
5415		wr32(E1000_VLVF(i), reg);
5416	}
5417
5418	adapter->vf_data[vf].vlans_enabled = 0;
5419}
5420
5421static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5422{
5423	struct e1000_hw *hw = &adapter->hw;
5424	u32 reg, i;
5425
5426	/* The vlvf table only exists on 82576 hardware and newer */
5427	if (hw->mac.type < e1000_82576)
5428		return -1;
5429
5430	/* we only need to do this if VMDq is enabled */
5431	if (!adapter->vfs_allocated_count)
5432		return -1;
5433
5434	/* Find the vlan filter for this id */
5435	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5436		reg = rd32(E1000_VLVF(i));
5437		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5438		    vid == (reg & E1000_VLVF_VLANID_MASK))
5439			break;
5440	}
5441
5442	if (add) {
5443		if (i == E1000_VLVF_ARRAY_SIZE) {
5444			/* Did not find a matching VLAN ID entry that was
5445			 * enabled.  Search for a free filter entry, i.e.
5446			 * one without the enable bit set
5447			 */
5448			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5449				reg = rd32(E1000_VLVF(i));
5450				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5451					break;
5452			}
5453		}
5454		if (i < E1000_VLVF_ARRAY_SIZE) {
5455			/* Found an enabled/available entry */
5456			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5457
5458			/* if !enabled we need to set this up in vfta */
5459			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5460				/* add VID to filter table */
5461				igb_vfta_set(hw, vid, true);
5462				reg |= E1000_VLVF_VLANID_ENABLE;
5463			}
5464			reg &= ~E1000_VLVF_VLANID_MASK;
5465			reg |= vid;
5466			wr32(E1000_VLVF(i), reg);
5467
5468			/* do not modify RLPML for PF devices */
5469			if (vf >= adapter->vfs_allocated_count)
5470				return 0;
5471
5472			if (!adapter->vf_data[vf].vlans_enabled) {
5473				u32 size;
5474				reg = rd32(E1000_VMOLR(vf));
5475				size = reg & E1000_VMOLR_RLPML_MASK;
5476				size += 4;
5477				reg &= ~E1000_VMOLR_RLPML_MASK;
5478				reg |= size;
5479				wr32(E1000_VMOLR(vf), reg);
5480			}
5481
5482			adapter->vf_data[vf].vlans_enabled++;
5483		}
5484	} else {
5485		if (i < E1000_VLVF_ARRAY_SIZE) {
5486			/* remove vf from the pool */
5487			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5488			/* if pool is empty then remove entry from vfta */
5489			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5490				reg = 0;
5491				igb_vfta_set(hw, vid, false);
5492			}
5493			wr32(E1000_VLVF(i), reg);
5494
5495			/* do not modify RLPML for PF devices */
5496			if (vf >= adapter->vfs_allocated_count)
5497				return 0;
5498
5499			adapter->vf_data[vf].vlans_enabled--;
5500			if (!adapter->vf_data[vf].vlans_enabled) {
5501				u32 size;
5502				reg = rd32(E1000_VMOLR(vf));
5503				size = reg & E1000_VMOLR_RLPML_MASK;
5504				size -= 4;
5505				reg &= ~E1000_VMOLR_RLPML_MASK;
5506				reg |= size;
5507				wr32(E1000_VMOLR(vf), reg);
5508			}
5509		}
5510	}
5511	return 0;
5512}
5513
5514static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5515{
5516	struct e1000_hw *hw = &adapter->hw;
5517
5518	if (vid)
5519		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5520	else
5521		wr32(E1000_VMVIR(vf), 0);
5522}
5523
5524static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5525			       int vf, u16 vlan, u8 qos)
5526{
5527	int err = 0;
5528	struct igb_adapter *adapter = netdev_priv(netdev);
5529
5530	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5531		return -EINVAL;
5532	if (vlan || qos) {
5533		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5534		if (err)
5535			goto out;
5536		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5537		igb_set_vmolr(adapter, vf, !vlan);
5538		adapter->vf_data[vf].pf_vlan = vlan;
5539		adapter->vf_data[vf].pf_qos = qos;
5540		dev_info(&adapter->pdev->dev,
5541			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5542		if (test_bit(__IGB_DOWN, &adapter->state)) {
5543			dev_warn(&adapter->pdev->dev,
5544				 "The VF VLAN has been set, but the PF device is not up.\n");
5545			dev_warn(&adapter->pdev->dev,
5546				 "Bring the PF device up before attempting to use the VF device.\n");
5547		}
5548	} else {
5549		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5550			     false, vf);
5551		igb_set_vmvir(adapter, vlan, vf);
5552		igb_set_vmolr(adapter, vf, true);
5553		adapter->vf_data[vf].pf_vlan = 0;
5554		adapter->vf_data[vf].pf_qos = 0;
5555	}
5556out:
5557	return err;
5558}
5559
5560static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5561{
5562	struct e1000_hw *hw = &adapter->hw;
5563	int i;
5564	u32 reg;
5565
5566	/* Find the vlan filter for this id */
5567	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5568		reg = rd32(E1000_VLVF(i));
5569		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5570		    vid == (reg & E1000_VLVF_VLANID_MASK))
5571			break;
5572	}
5573
5574	if (i >= E1000_VLVF_ARRAY_SIZE)
5575		i = -1;
5576
5577	return i;
5578}
5579
5580static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5581{
5582	struct e1000_hw *hw = &adapter->hw;
5583	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5584	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5585	int err = 0;
5586
5587	/* If in promiscuous mode we need to make sure the PF also has
5588	 * the VLAN filter set.
5589	 */
5590	if (add && (adapter->netdev->flags & IFF_PROMISC))
5591		err = igb_vlvf_set(adapter, vid, add,
5592				   adapter->vfs_allocated_count);
5593	if (err)
5594		goto out;
5595
5596	err = igb_vlvf_set(adapter, vid, add, vf);
5597
5598	if (err)
5599		goto out;
5600
5601	/* Go through all the checks to see if the VLAN filter should
5602	 * be wiped completely.
5603	 */
5604	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5605		u32 vlvf, bits;
5606
5607		int regndx = igb_find_vlvf_entry(adapter, vid);
5608		if (regndx < 0)
5609			goto out;
5610		/* See if any other pools are set for this VLAN filter
5611		 * entry other than the PF.
5612		 */
5613		vlvf = bits = rd32(E1000_VLVF(regndx));
5614		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5615			      adapter->vfs_allocated_count);
5616		/* If the filter was removed then ensure PF pool bit
5617		 * is cleared if the PF only added itself to the pool
5618		 * because the PF is in promiscuous mode.
5619		 */
5620		if ((vlvf & VLAN_VID_MASK) == vid &&
5621		    !test_bit(vid, adapter->active_vlans) &&
5622		    !bits)
5623			igb_vlvf_set(adapter, vid, add,
5624				     adapter->vfs_allocated_count);
5625	}
5626
5627out:
5628	return err;
5629}
5630
5631static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5632{
5633	/* clear flags - except flag that indicates PF has set the MAC */
5634	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5635	adapter->vf_data[vf].last_nack = jiffies;
5636
5637	/* reset offloads to defaults */
5638	igb_set_vmolr(adapter, vf, true);
5639
5640	/* reset vlans for device */
5641	igb_clear_vf_vfta(adapter, vf);
5642	if (adapter->vf_data[vf].pf_vlan)
5643		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5644				    adapter->vf_data[vf].pf_vlan,
5645				    adapter->vf_data[vf].pf_qos);
5646	else
5647		igb_clear_vf_vfta(adapter, vf);
5648
5649	/* reset multicast table array for vf */
5650	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5651
5652	/* Flush and reset the mta with the new values */
5653	igb_set_rx_mode(adapter->netdev);
5654}
5655
5656static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5657{
5658	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5659
5660	/* clear mac address as we were hotplug removed/added */
5661	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5662		eth_zero_addr(vf_mac);
5663
5664	/* process remaining reset events */
5665	igb_vf_reset(adapter, vf);
5666}
5667
5668static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5669{
5670	struct e1000_hw *hw = &adapter->hw;
5671	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5672	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5673	u32 reg, msgbuf[3];
5674	u8 *addr = (u8 *)(&msgbuf[1]);
5675
5676	/* process all the same items cleared in a function level reset */
5677	igb_vf_reset(adapter, vf);
5678
5679	/* set vf mac address */
5680	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5681
5682	/* enable transmit and receive for vf */
5683	reg = rd32(E1000_VFTE);
5684	wr32(E1000_VFTE, reg | (1 << vf));
5685	reg = rd32(E1000_VFRE);
5686	wr32(E1000_VFRE, reg | (1 << vf));
5687
5688	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5689
5690	/* reply to reset with ack and vf mac address */
5691	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5692	memcpy(addr, vf_mac, 6);
5693	igb_write_mbx(hw, msgbuf, 3, vf);
5694}
5695
5696static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5697{
5698	/* The VF MAC Address is stored in a packed array of bytes
5699	 * starting at the second 32 bit word of the msg array
5700	 */
5701	unsigned char *addr = (char *)&msg[1];
5702	int err = -1;
5703
5704	if (is_valid_ether_addr(addr))
5705		err = igb_set_vf_mac(adapter, vf, addr);
5706
5707	return err;
5708}
5709
5710static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5711{
5712	struct e1000_hw *hw = &adapter->hw;
5713	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5714	u32 msg = E1000_VT_MSGTYPE_NACK;
5715
5716	/* if device isn't clear to send it shouldn't be reading either */
5717	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5718	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5719		igb_write_mbx(hw, &msg, 1, vf);
5720		vf_data->last_nack = jiffies;
5721	}
5722}
5723
5724static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5725{
5726	struct pci_dev *pdev = adapter->pdev;
5727	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5728	struct e1000_hw *hw = &adapter->hw;
5729	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5730	s32 retval;
5731
5732	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5733
5734	if (retval) {
5735		/* if receive failed revoke VF CTS stats and restart init */
5736		dev_err(&pdev->dev, "Error receiving message from VF\n");
5737		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5738		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5739			return;
5740		goto out;
5741	}
5742
5743	/* this is a message we already processed, do nothing */
5744	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5745		return;
5746
5747	/* until the vf completes a reset it should not be
5748	 * allowed to start any configuration.
5749	 */
5750	if (msgbuf[0] == E1000_VF_RESET) {
5751		igb_vf_reset_msg(adapter, vf);
5752		return;
5753	}
5754
5755	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5756		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5757			return;
5758		retval = -1;
5759		goto out;
5760	}
5761
5762	switch ((msgbuf[0] & 0xFFFF)) {
5763	case E1000_VF_SET_MAC_ADDR:
5764		retval = -EINVAL;
5765		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5766			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5767		else
5768			dev_warn(&pdev->dev,
5769				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5770				 vf);
5771		break;
5772	case E1000_VF_SET_PROMISC:
5773		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5774		break;
5775	case E1000_VF_SET_MULTICAST:
5776		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5777		break;
5778	case E1000_VF_SET_LPE:
5779		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5780		break;
5781	case E1000_VF_SET_VLAN:
5782		retval = -1;
5783		if (vf_data->pf_vlan)
5784			dev_warn(&pdev->dev,
5785				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5786				 vf);
5787		else
5788			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5789		break;
5790	default:
5791		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5792		retval = -1;
5793		break;
5794	}
5795
5796	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5797out:
5798	/* notify the VF of the results of what it sent us */
5799	if (retval)
5800		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5801	else
5802		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5803
5804	igb_write_mbx(hw, msgbuf, 1, vf);
5805}
5806
5807static void igb_msg_task(struct igb_adapter *adapter)
5808{
5809	struct e1000_hw *hw = &adapter->hw;
5810	u32 vf;
5811
5812	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5813		/* process any reset requests */
5814		if (!igb_check_for_rst(hw, vf))
5815			igb_vf_reset_event(adapter, vf);
5816
5817		/* process any messages pending */
5818		if (!igb_check_for_msg(hw, vf))
5819			igb_rcv_msg_from_vf(adapter, vf);
5820
5821		/* process any acks */
5822		if (!igb_check_for_ack(hw, vf))
5823			igb_rcv_ack_from_vf(adapter, vf);
5824	}
5825}
5826
5827/**
5828 *  igb_set_uta - Set unicast filter table address
5829 *  @adapter: board private structure
5830 *
5831 *  The unicast table address is a register array of 32-bit registers.
5832 *  The table is meant to be used in a way similar to how the MTA is used
5833 *  however due to certain limitations in the hardware it is necessary to
5834 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5835 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5836 **/
5837static void igb_set_uta(struct igb_adapter *adapter)
5838{
5839	struct e1000_hw *hw = &adapter->hw;
5840	int i;
5841
5842	/* The UTA table only exists on 82576 hardware and newer */
5843	if (hw->mac.type < e1000_82576)
5844		return;
5845
5846	/* we only need to do this if VMDq is enabled */
5847	if (!adapter->vfs_allocated_count)
5848		return;
5849
5850	for (i = 0; i < hw->mac.uta_reg_count; i++)
5851		array_wr32(E1000_UTA, i, ~0);
5852}
5853
5854/**
5855 *  igb_intr_msi - Interrupt Handler
5856 *  @irq: interrupt number
5857 *  @data: pointer to a network interface device structure
5858 **/
5859static irqreturn_t igb_intr_msi(int irq, void *data)
5860{
5861	struct igb_adapter *adapter = data;
5862	struct igb_q_vector *q_vector = adapter->q_vector[0];
5863	struct e1000_hw *hw = &adapter->hw;
5864	/* read ICR disables interrupts using IAM */
5865	u32 icr = rd32(E1000_ICR);
5866
5867	igb_write_itr(q_vector);
5868
5869	if (icr & E1000_ICR_DRSTA)
5870		schedule_work(&adapter->reset_task);
5871
5872	if (icr & E1000_ICR_DOUTSYNC) {
5873		/* HW is reporting DMA is out of sync */
5874		adapter->stats.doosync++;
5875	}
5876
5877	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5878		hw->mac.get_link_status = 1;
5879		if (!test_bit(__IGB_DOWN, &adapter->state))
5880			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5881	}
5882
5883	if (icr & E1000_ICR_TS) {
5884		u32 tsicr = rd32(E1000_TSICR);
5885
5886		if (tsicr & E1000_TSICR_TXTS) {
5887			/* acknowledge the interrupt */
5888			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5889			/* retrieve hardware timestamp */
5890			schedule_work(&adapter->ptp_tx_work);
5891		}
5892	}
5893
5894	napi_schedule(&q_vector->napi);
5895
5896	return IRQ_HANDLED;
5897}
5898
5899/**
5900 *  igb_intr - Legacy Interrupt Handler
5901 *  @irq: interrupt number
5902 *  @data: pointer to a network interface device structure
5903 **/
5904static irqreturn_t igb_intr(int irq, void *data)
5905{
5906	struct igb_adapter *adapter = data;
5907	struct igb_q_vector *q_vector = adapter->q_vector[0];
5908	struct e1000_hw *hw = &adapter->hw;
5909	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5910	 * need for the IMC write
5911	 */
5912	u32 icr = rd32(E1000_ICR);
5913
5914	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5915	 * not set, then the adapter didn't send an interrupt
5916	 */
5917	if (!(icr & E1000_ICR_INT_ASSERTED))
5918		return IRQ_NONE;
5919
5920	igb_write_itr(q_vector);
5921
5922	if (icr & E1000_ICR_DRSTA)
5923		schedule_work(&adapter->reset_task);
5924
5925	if (icr & E1000_ICR_DOUTSYNC) {
5926		/* HW is reporting DMA is out of sync */
5927		adapter->stats.doosync++;
5928	}
5929
5930	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5931		hw->mac.get_link_status = 1;
5932		/* guard against interrupt when we're going down */
5933		if (!test_bit(__IGB_DOWN, &adapter->state))
5934			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5935	}
5936
5937	if (icr & E1000_ICR_TS) {
5938		u32 tsicr = rd32(E1000_TSICR);
5939
5940		if (tsicr & E1000_TSICR_TXTS) {
5941			/* acknowledge the interrupt */
5942			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5943			/* retrieve hardware timestamp */
5944			schedule_work(&adapter->ptp_tx_work);
5945		}
5946	}
5947
5948	napi_schedule(&q_vector->napi);
5949
5950	return IRQ_HANDLED;
5951}
5952
5953static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5954{
5955	struct igb_adapter *adapter = q_vector->adapter;
5956	struct e1000_hw *hw = &adapter->hw;
5957
5958	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5959	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5960		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5961			igb_set_itr(q_vector);
5962		else
5963			igb_update_ring_itr(q_vector);
5964	}
5965
5966	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5967		if (adapter->msix_entries)
5968			wr32(E1000_EIMS, q_vector->eims_value);
5969		else
5970			igb_irq_enable(adapter);
5971	}
5972}
5973
5974/**
5975 *  igb_poll - NAPI Rx polling callback
5976 *  @napi: napi polling structure
5977 *  @budget: count of how many packets we should handle
5978 **/
5979static int igb_poll(struct napi_struct *napi, int budget)
5980{
5981	struct igb_q_vector *q_vector = container_of(napi,
5982						     struct igb_q_vector,
5983						     napi);
5984	bool clean_complete = true;
5985
5986#ifdef CONFIG_IGB_DCA
5987	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5988		igb_update_dca(q_vector);
5989#endif
5990	if (q_vector->tx.ring)
5991		clean_complete = igb_clean_tx_irq(q_vector);
5992
5993	if (q_vector->rx.ring)
5994		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5995
5996	/* If all work not completed, return budget and keep polling */
5997	if (!clean_complete)
5998		return budget;
5999
6000	/* If not enough Rx work done, exit the polling mode */
6001	napi_complete(napi);
6002	igb_ring_irq_enable(q_vector);
6003
6004	return 0;
6005}
6006
6007/**
6008 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6009 *  @q_vector: pointer to q_vector containing needed info
6010 *
6011 *  returns true if ring is completely cleaned
6012 **/
6013static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6014{
6015	struct igb_adapter *adapter = q_vector->adapter;
6016	struct igb_ring *tx_ring = q_vector->tx.ring;
6017	struct igb_tx_buffer *tx_buffer;
6018	union e1000_adv_tx_desc *tx_desc;
6019	unsigned int total_bytes = 0, total_packets = 0;
6020	unsigned int budget = q_vector->tx.work_limit;
6021	unsigned int i = tx_ring->next_to_clean;
6022
6023	if (test_bit(__IGB_DOWN, &adapter->state))
6024		return true;
6025
6026	tx_buffer = &tx_ring->tx_buffer_info[i];
6027	tx_desc = IGB_TX_DESC(tx_ring, i);
6028	i -= tx_ring->count;
6029
6030	do {
6031		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6032
6033		/* if next_to_watch is not set then there is no work pending */
6034		if (!eop_desc)
6035			break;
6036
6037		/* prevent any other reads prior to eop_desc */
6038		read_barrier_depends();
6039
6040		/* if DD is not set pending work has not been completed */
6041		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6042			break;
6043
6044		/* clear next_to_watch to prevent false hangs */
6045		tx_buffer->next_to_watch = NULL;
6046
6047		/* update the statistics for this packet */
6048		total_bytes += tx_buffer->bytecount;
6049		total_packets += tx_buffer->gso_segs;
6050
6051		/* free the skb */
6052		dev_kfree_skb_any(tx_buffer->skb);
6053
6054		/* unmap skb header data */
6055		dma_unmap_single(tx_ring->dev,
6056				 dma_unmap_addr(tx_buffer, dma),
6057				 dma_unmap_len(tx_buffer, len),
6058				 DMA_TO_DEVICE);
6059
6060		/* clear tx_buffer data */
6061		tx_buffer->skb = NULL;
6062		dma_unmap_len_set(tx_buffer, len, 0);
6063
6064		/* clear last DMA location and unmap remaining buffers */
6065		while (tx_desc != eop_desc) {
6066			tx_buffer++;
6067			tx_desc++;
6068			i++;
6069			if (unlikely(!i)) {
6070				i -= tx_ring->count;
6071				tx_buffer = tx_ring->tx_buffer_info;
6072				tx_desc = IGB_TX_DESC(tx_ring, 0);
6073			}
6074
6075			/* unmap any remaining paged data */
6076			if (dma_unmap_len(tx_buffer, len)) {
6077				dma_unmap_page(tx_ring->dev,
6078					       dma_unmap_addr(tx_buffer, dma),
6079					       dma_unmap_len(tx_buffer, len),
6080					       DMA_TO_DEVICE);
6081				dma_unmap_len_set(tx_buffer, len, 0);
6082			}
6083		}
6084
6085		/* move us one more past the eop_desc for start of next pkt */
6086		tx_buffer++;
6087		tx_desc++;
6088		i++;
6089		if (unlikely(!i)) {
6090			i -= tx_ring->count;
6091			tx_buffer = tx_ring->tx_buffer_info;
6092			tx_desc = IGB_TX_DESC(tx_ring, 0);
6093		}
6094
6095		/* issue prefetch for next Tx descriptor */
6096		prefetch(tx_desc);
6097
6098		/* update budget accounting */
6099		budget--;
6100	} while (likely(budget));
6101
6102	netdev_tx_completed_queue(txring_txq(tx_ring),
6103				  total_packets, total_bytes);
6104	i += tx_ring->count;
6105	tx_ring->next_to_clean = i;
6106	u64_stats_update_begin(&tx_ring->tx_syncp);
6107	tx_ring->tx_stats.bytes += total_bytes;
6108	tx_ring->tx_stats.packets += total_packets;
6109	u64_stats_update_end(&tx_ring->tx_syncp);
6110	q_vector->tx.total_bytes += total_bytes;
6111	q_vector->tx.total_packets += total_packets;
6112
6113	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6114		struct e1000_hw *hw = &adapter->hw;
6115
6116		/* Detect a transmit hang in hardware, this serializes the
6117		 * check with the clearing of time_stamp and movement of i
6118		 */
6119		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6120		if (tx_buffer->next_to_watch &&
6121		    time_after(jiffies, tx_buffer->time_stamp +
6122			       (adapter->tx_timeout_factor * HZ)) &&
6123		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6124
6125			/* detected Tx unit hang */
6126			dev_err(tx_ring->dev,
6127				"Detected Tx Unit Hang\n"
6128				"  Tx Queue             <%d>\n"
6129				"  TDH                  <%x>\n"
6130				"  TDT                  <%x>\n"
6131				"  next_to_use          <%x>\n"
6132				"  next_to_clean        <%x>\n"
6133				"buffer_info[next_to_clean]\n"
6134				"  time_stamp           <%lx>\n"
6135				"  next_to_watch        <%p>\n"
6136				"  jiffies              <%lx>\n"
6137				"  desc.status          <%x>\n",
6138				tx_ring->queue_index,
6139				rd32(E1000_TDH(tx_ring->reg_idx)),
6140				readl(tx_ring->tail),
6141				tx_ring->next_to_use,
6142				tx_ring->next_to_clean,
6143				tx_buffer->time_stamp,
6144				tx_buffer->next_to_watch,
6145				jiffies,
6146				tx_buffer->next_to_watch->wb.status);
6147			netif_stop_subqueue(tx_ring->netdev,
6148					    tx_ring->queue_index);
6149
6150			/* we are about to reset, no point in enabling stuff */
6151			return true;
6152		}
6153	}
6154
6155#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6156	if (unlikely(total_packets &&
6157	    netif_carrier_ok(tx_ring->netdev) &&
6158	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6159		/* Make sure that anybody stopping the queue after this
6160		 * sees the new next_to_clean.
6161		 */
6162		smp_mb();
6163		if (__netif_subqueue_stopped(tx_ring->netdev,
6164					     tx_ring->queue_index) &&
6165		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6166			netif_wake_subqueue(tx_ring->netdev,
6167					    tx_ring->queue_index);
6168
6169			u64_stats_update_begin(&tx_ring->tx_syncp);
6170			tx_ring->tx_stats.restart_queue++;
6171			u64_stats_update_end(&tx_ring->tx_syncp);
6172		}
6173	}
6174
6175	return !!budget;
6176}
6177
6178/**
6179 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6180 *  @rx_ring: rx descriptor ring to store buffers on
6181 *  @old_buff: donor buffer to have page reused
6182 *
6183 *  Synchronizes page for reuse by the adapter
6184 **/
6185static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6186			      struct igb_rx_buffer *old_buff)
6187{
6188	struct igb_rx_buffer *new_buff;
6189	u16 nta = rx_ring->next_to_alloc;
6190
6191	new_buff = &rx_ring->rx_buffer_info[nta];
6192
6193	/* update, and store next to alloc */
6194	nta++;
6195	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6196
6197	/* transfer page from old buffer to new buffer */
6198	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6199
6200	/* sync the buffer for use by the device */
6201	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6202					 old_buff->page_offset,
6203					 IGB_RX_BUFSZ,
6204					 DMA_FROM_DEVICE);
6205}
6206
6207static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6208				  struct page *page,
6209				  unsigned int truesize)
6210{
6211	/* avoid re-using remote pages */
6212	if (unlikely(page_to_nid(page) != numa_node_id()))
6213		return false;
6214
6215#if (PAGE_SIZE < 8192)
6216	/* if we are only owner of page we can reuse it */
6217	if (unlikely(page_count(page) != 1))
6218		return false;
6219
6220	/* flip page offset to other buffer */
6221	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6222
6223	/* since we are the only owner of the page and we need to
6224	 * increment it, just set the value to 2 in order to avoid
6225	 * an unnecessary locked operation
6226	 */
6227	atomic_set(&page->_count, 2);
6228#else
6229	/* move offset up to the next cache line */
6230	rx_buffer->page_offset += truesize;
6231
6232	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6233		return false;
6234
6235	/* bump ref count on page before it is given to the stack */
6236	get_page(page);
6237#endif
6238
6239	return true;
6240}
6241
6242/**
6243 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6244 *  @rx_ring: rx descriptor ring to transact packets on
6245 *  @rx_buffer: buffer containing page to add
6246 *  @rx_desc: descriptor containing length of buffer written by hardware
6247 *  @skb: sk_buff to place the data into
6248 *
6249 *  This function will add the data contained in rx_buffer->page to the skb.
6250 *  This is done either through a direct copy if the data in the buffer is
6251 *  less than the skb header size, otherwise it will just attach the page as
6252 *  a frag to the skb.
6253 *
6254 *  The function will then update the page offset if necessary and return
6255 *  true if the buffer can be reused by the adapter.
6256 **/
6257static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6258			    struct igb_rx_buffer *rx_buffer,
6259			    union e1000_adv_rx_desc *rx_desc,
6260			    struct sk_buff *skb)
6261{
6262	struct page *page = rx_buffer->page;
6263	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6264#if (PAGE_SIZE < 8192)
6265	unsigned int truesize = IGB_RX_BUFSZ;
6266#else
6267	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6268#endif
6269
6270	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6271		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6272
6273		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6274			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6275			va += IGB_TS_HDR_LEN;
6276			size -= IGB_TS_HDR_LEN;
6277		}
6278
6279		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6280
6281		/* we can reuse buffer as-is, just make sure it is local */
6282		if (likely(page_to_nid(page) == numa_node_id()))
6283			return true;
6284
6285		/* this page cannot be reused so discard it */
6286		put_page(page);
6287		return false;
6288	}
6289
6290	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6291			rx_buffer->page_offset, size, truesize);
6292
6293	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6294}
6295
6296static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6297					   union e1000_adv_rx_desc *rx_desc,
6298					   struct sk_buff *skb)
6299{
6300	struct igb_rx_buffer *rx_buffer;
6301	struct page *page;
6302
6303	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6304
6305	page = rx_buffer->page;
6306	prefetchw(page);
6307
6308	if (likely(!skb)) {
6309		void *page_addr = page_address(page) +
6310				  rx_buffer->page_offset;
6311
6312		/* prefetch first cache line of first page */
6313		prefetch(page_addr);
6314#if L1_CACHE_BYTES < 128
6315		prefetch(page_addr + L1_CACHE_BYTES);
6316#endif
6317
6318		/* allocate a skb to store the frags */
6319		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6320						IGB_RX_HDR_LEN);
6321		if (unlikely(!skb)) {
6322			rx_ring->rx_stats.alloc_failed++;
6323			return NULL;
6324		}
6325
6326		/* we will be copying header into skb->data in
6327		 * pskb_may_pull so it is in our interest to prefetch
6328		 * it now to avoid a possible cache miss
6329		 */
6330		prefetchw(skb->data);
6331	}
6332
6333	/* we are reusing so sync this buffer for CPU use */
6334	dma_sync_single_range_for_cpu(rx_ring->dev,
6335				      rx_buffer->dma,
6336				      rx_buffer->page_offset,
6337				      IGB_RX_BUFSZ,
6338				      DMA_FROM_DEVICE);
6339
6340	/* pull page into skb */
6341	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6342		/* hand second half of page back to the ring */
6343		igb_reuse_rx_page(rx_ring, rx_buffer);
6344	} else {
6345		/* we are not reusing the buffer so unmap it */
6346		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6347			       PAGE_SIZE, DMA_FROM_DEVICE);
6348	}
6349
6350	/* clear contents of rx_buffer */
6351	rx_buffer->page = NULL;
6352
6353	return skb;
6354}
6355
6356static inline void igb_rx_checksum(struct igb_ring *ring,
6357				   union e1000_adv_rx_desc *rx_desc,
6358				   struct sk_buff *skb)
6359{
6360	skb_checksum_none_assert(skb);
6361
6362	/* Ignore Checksum bit is set */
6363	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6364		return;
6365
6366	/* Rx checksum disabled via ethtool */
6367	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6368		return;
6369
6370	/* TCP/UDP checksum error bit is set */
6371	if (igb_test_staterr(rx_desc,
6372			     E1000_RXDEXT_STATERR_TCPE |
6373			     E1000_RXDEXT_STATERR_IPE)) {
6374		/* work around errata with sctp packets where the TCPE aka
6375		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6376		 * packets, (aka let the stack check the crc32c)
6377		 */
6378		if (!((skb->len == 60) &&
6379		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6380			u64_stats_update_begin(&ring->rx_syncp);
6381			ring->rx_stats.csum_err++;
6382			u64_stats_update_end(&ring->rx_syncp);
6383		}
6384		/* let the stack verify checksum errors */
6385		return;
6386	}
6387	/* It must be a TCP or UDP packet with a valid checksum */
6388	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6389				      E1000_RXD_STAT_UDPCS))
6390		skb->ip_summed = CHECKSUM_UNNECESSARY;
6391
6392	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6393		le32_to_cpu(rx_desc->wb.upper.status_error));
6394}
6395
6396static inline void igb_rx_hash(struct igb_ring *ring,
6397			       union e1000_adv_rx_desc *rx_desc,
6398			       struct sk_buff *skb)
6399{
6400	if (ring->netdev->features & NETIF_F_RXHASH)
6401		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6402}
6403
6404/**
6405 *  igb_is_non_eop - process handling of non-EOP buffers
6406 *  @rx_ring: Rx ring being processed
6407 *  @rx_desc: Rx descriptor for current buffer
6408 *  @skb: current socket buffer containing buffer in progress
6409 *
6410 *  This function updates next to clean.  If the buffer is an EOP buffer
6411 *  this function exits returning false, otherwise it will place the
6412 *  sk_buff in the next buffer to be chained and return true indicating
6413 *  that this is in fact a non-EOP buffer.
6414 **/
6415static bool igb_is_non_eop(struct igb_ring *rx_ring,
6416			   union e1000_adv_rx_desc *rx_desc)
6417{
6418	u32 ntc = rx_ring->next_to_clean + 1;
6419
6420	/* fetch, update, and store next to clean */
6421	ntc = (ntc < rx_ring->count) ? ntc : 0;
6422	rx_ring->next_to_clean = ntc;
6423
6424	prefetch(IGB_RX_DESC(rx_ring, ntc));
6425
6426	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6427		return false;
6428
6429	return true;
6430}
6431
6432/**
6433 *  igb_get_headlen - determine size of header for LRO/GRO
6434 *  @data: pointer to the start of the headers
6435 *  @max_len: total length of section to find headers in
6436 *
6437 *  This function is meant to determine the length of headers that will
6438 *  be recognized by hardware for LRO, and GRO offloads.  The main
6439 *  motivation of doing this is to only perform one pull for IPv4 TCP
6440 *  packets so that we can do basic things like calculating the gso_size
6441 *  based on the average data per packet.
6442 **/
6443static unsigned int igb_get_headlen(unsigned char *data,
6444				    unsigned int max_len)
6445{
6446	union {
6447		unsigned char *network;
6448		/* l2 headers */
6449		struct ethhdr *eth;
6450		struct vlan_hdr *vlan;
6451		/* l3 headers */
6452		struct iphdr *ipv4;
6453		struct ipv6hdr *ipv6;
6454	} hdr;
6455	__be16 protocol;
6456	u8 nexthdr = 0;	/* default to not TCP */
6457	u8 hlen;
6458
6459	/* this should never happen, but better safe than sorry */
6460	if (max_len < ETH_HLEN)
6461		return max_len;
6462
6463	/* initialize network frame pointer */
6464	hdr.network = data;
6465
6466	/* set first protocol and move network header forward */
6467	protocol = hdr.eth->h_proto;
6468	hdr.network += ETH_HLEN;
6469
6470	/* handle any vlan tag if present */
6471	if (protocol == __constant_htons(ETH_P_8021Q)) {
6472		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6473			return max_len;
6474
6475		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6476		hdr.network += VLAN_HLEN;
6477	}
6478
6479	/* handle L3 protocols */
6480	if (protocol == __constant_htons(ETH_P_IP)) {
6481		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6482			return max_len;
6483
6484		/* access ihl as a u8 to avoid unaligned access on ia64 */
6485		hlen = (hdr.network[0] & 0x0F) << 2;
6486
6487		/* verify hlen meets minimum size requirements */
6488		if (hlen < sizeof(struct iphdr))
6489			return hdr.network - data;
6490
6491		/* record next protocol if header is present */
6492		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6493			nexthdr = hdr.ipv4->protocol;
6494	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6495		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6496			return max_len;
6497
6498		/* record next protocol */
6499		nexthdr = hdr.ipv6->nexthdr;
6500		hlen = sizeof(struct ipv6hdr);
6501	} else {
6502		return hdr.network - data;
6503	}
6504
6505	/* relocate pointer to start of L4 header */
6506	hdr.network += hlen;
6507
6508	/* finally sort out TCP */
6509	if (nexthdr == IPPROTO_TCP) {
6510		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6511			return max_len;
6512
6513		/* access doff as a u8 to avoid unaligned access on ia64 */
6514		hlen = (hdr.network[12] & 0xF0) >> 2;
6515
6516		/* verify hlen meets minimum size requirements */
6517		if (hlen < sizeof(struct tcphdr))
6518			return hdr.network - data;
6519
6520		hdr.network += hlen;
6521	} else if (nexthdr == IPPROTO_UDP) {
6522		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6523			return max_len;
6524
6525		hdr.network += sizeof(struct udphdr);
6526	}
6527
6528	/* If everything has gone correctly hdr.network should be the
6529	 * data section of the packet and will be the end of the header.
6530	 * If not then it probably represents the end of the last recognized
6531	 * header.
6532	 */
6533	if ((hdr.network - data) < max_len)
6534		return hdr.network - data;
6535	else
6536		return max_len;
6537}
6538
6539/**
6540 *  igb_pull_tail - igb specific version of skb_pull_tail
6541 *  @rx_ring: rx descriptor ring packet is being transacted on
6542 *  @rx_desc: pointer to the EOP Rx descriptor
6543 *  @skb: pointer to current skb being adjusted
6544 *
6545 *  This function is an igb specific version of __pskb_pull_tail.  The
6546 *  main difference between this version and the original function is that
6547 *  this function can make several assumptions about the state of things
6548 *  that allow for significant optimizations versus the standard function.
6549 *  As a result we can do things like drop a frag and maintain an accurate
6550 *  truesize for the skb.
6551 */
6552static void igb_pull_tail(struct igb_ring *rx_ring,
6553			  union e1000_adv_rx_desc *rx_desc,
6554			  struct sk_buff *skb)
6555{
6556	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6557	unsigned char *va;
6558	unsigned int pull_len;
6559
6560	/* it is valid to use page_address instead of kmap since we are
6561	 * working with pages allocated out of the lomem pool per
6562	 * alloc_page(GFP_ATOMIC)
6563	 */
6564	va = skb_frag_address(frag);
6565
6566	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6567		/* retrieve timestamp from buffer */
6568		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6569
6570		/* update pointers to remove timestamp header */
6571		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6572		frag->page_offset += IGB_TS_HDR_LEN;
6573		skb->data_len -= IGB_TS_HDR_LEN;
6574		skb->len -= IGB_TS_HDR_LEN;
6575
6576		/* move va to start of packet data */
6577		va += IGB_TS_HDR_LEN;
6578	}
6579
6580	/* we need the header to contain the greater of either ETH_HLEN or
6581	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6582	 */
6583	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6584
6585	/* align pull length to size of long to optimize memcpy performance */
6586	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6587
6588	/* update all of the pointers */
6589	skb_frag_size_sub(frag, pull_len);
6590	frag->page_offset += pull_len;
6591	skb->data_len -= pull_len;
6592	skb->tail += pull_len;
6593}
6594
6595/**
6596 *  igb_cleanup_headers - Correct corrupted or empty headers
6597 *  @rx_ring: rx descriptor ring packet is being transacted on
6598 *  @rx_desc: pointer to the EOP Rx descriptor
6599 *  @skb: pointer to current skb being fixed
6600 *
6601 *  Address the case where we are pulling data in on pages only
6602 *  and as such no data is present in the skb header.
6603 *
6604 *  In addition if skb is not at least 60 bytes we need to pad it so that
6605 *  it is large enough to qualify as a valid Ethernet frame.
6606 *
6607 *  Returns true if an error was encountered and skb was freed.
6608 **/
6609static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6610				union e1000_adv_rx_desc *rx_desc,
6611				struct sk_buff *skb)
6612{
6613	if (unlikely((igb_test_staterr(rx_desc,
6614				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6615		struct net_device *netdev = rx_ring->netdev;
6616		if (!(netdev->features & NETIF_F_RXALL)) {
6617			dev_kfree_skb_any(skb);
6618			return true;
6619		}
6620	}
6621
6622	/* place header in linear portion of buffer */
6623	if (skb_is_nonlinear(skb))
6624		igb_pull_tail(rx_ring, rx_desc, skb);
6625
6626	/* if skb_pad returns an error the skb was freed */
6627	if (unlikely(skb->len < 60)) {
6628		int pad_len = 60 - skb->len;
6629
6630		if (skb_pad(skb, pad_len))
6631			return true;
6632		__skb_put(skb, pad_len);
6633	}
6634
6635	return false;
6636}
6637
6638/**
6639 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6640 *  @rx_ring: rx descriptor ring packet is being transacted on
6641 *  @rx_desc: pointer to the EOP Rx descriptor
6642 *  @skb: pointer to current skb being populated
6643 *
6644 *  This function checks the ring, descriptor, and packet information in
6645 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6646 *  other fields within the skb.
6647 **/
6648static void igb_process_skb_fields(struct igb_ring *rx_ring,
6649				   union e1000_adv_rx_desc *rx_desc,
6650				   struct sk_buff *skb)
6651{
6652	struct net_device *dev = rx_ring->netdev;
6653
6654	igb_rx_hash(rx_ring, rx_desc, skb);
6655
6656	igb_rx_checksum(rx_ring, rx_desc, skb);
6657
6658	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6659
6660	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6661	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6662		u16 vid;
6663		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6664		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6665			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6666		else
6667			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6668
6669		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6670	}
6671
6672	skb_record_rx_queue(skb, rx_ring->queue_index);
6673
6674	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6675}
6676
6677static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6678{
6679	struct igb_ring *rx_ring = q_vector->rx.ring;
6680	struct sk_buff *skb = rx_ring->skb;
6681	unsigned int total_bytes = 0, total_packets = 0;
6682	u16 cleaned_count = igb_desc_unused(rx_ring);
6683
6684	do {
6685		union e1000_adv_rx_desc *rx_desc;
6686
6687		/* return some buffers to hardware, one at a time is too slow */
6688		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6689			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6690			cleaned_count = 0;
6691		}
6692
6693		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6694
6695		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6696			break;
6697
6698		/* This memory barrier is needed to keep us from reading
6699		 * any other fields out of the rx_desc until we know the
6700		 * RXD_STAT_DD bit is set
6701		 */
6702		rmb();
6703
6704		/* retrieve a buffer from the ring */
6705		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6706
6707		/* exit if we failed to retrieve a buffer */
6708		if (!skb)
6709			break;
6710
6711		cleaned_count++;
6712
6713		/* fetch next buffer in frame if non-eop */
6714		if (igb_is_non_eop(rx_ring, rx_desc))
6715			continue;
6716
6717		/* verify the packet layout is correct */
6718		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6719			skb = NULL;
6720			continue;
6721		}
6722
6723		/* probably a little skewed due to removing CRC */
6724		total_bytes += skb->len;
6725
6726		/* populate checksum, timestamp, VLAN, and protocol */
6727		igb_process_skb_fields(rx_ring, rx_desc, skb);
6728
6729		napi_gro_receive(&q_vector->napi, skb);
6730
6731		/* reset skb pointer */
6732		skb = NULL;
6733
6734		/* update budget accounting */
6735		total_packets++;
6736	} while (likely(total_packets < budget));
6737
6738	/* place incomplete frames back on ring for completion */
6739	rx_ring->skb = skb;
6740
6741	u64_stats_update_begin(&rx_ring->rx_syncp);
6742	rx_ring->rx_stats.packets += total_packets;
6743	rx_ring->rx_stats.bytes += total_bytes;
6744	u64_stats_update_end(&rx_ring->rx_syncp);
6745	q_vector->rx.total_packets += total_packets;
6746	q_vector->rx.total_bytes += total_bytes;
6747
6748	if (cleaned_count)
6749		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6750
6751	return (total_packets < budget);
6752}
6753
6754static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6755				  struct igb_rx_buffer *bi)
6756{
6757	struct page *page = bi->page;
6758	dma_addr_t dma;
6759
6760	/* since we are recycling buffers we should seldom need to alloc */
6761	if (likely(page))
6762		return true;
6763
6764	/* alloc new page for storage */
6765	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6766	if (unlikely(!page)) {
6767		rx_ring->rx_stats.alloc_failed++;
6768		return false;
6769	}
6770
6771	/* map page for use */
6772	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6773
6774	/* if mapping failed free memory back to system since
6775	 * there isn't much point in holding memory we can't use
6776	 */
6777	if (dma_mapping_error(rx_ring->dev, dma)) {
6778		__free_page(page);
6779
6780		rx_ring->rx_stats.alloc_failed++;
6781		return false;
6782	}
6783
6784	bi->dma = dma;
6785	bi->page = page;
6786	bi->page_offset = 0;
6787
6788	return true;
6789}
6790
6791/**
6792 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6793 *  @adapter: address of board private structure
6794 **/
6795void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6796{
6797	union e1000_adv_rx_desc *rx_desc;
6798	struct igb_rx_buffer *bi;
6799	u16 i = rx_ring->next_to_use;
6800
6801	/* nothing to do */
6802	if (!cleaned_count)
6803		return;
6804
6805	rx_desc = IGB_RX_DESC(rx_ring, i);
6806	bi = &rx_ring->rx_buffer_info[i];
6807	i -= rx_ring->count;
6808
6809	do {
6810		if (!igb_alloc_mapped_page(rx_ring, bi))
6811			break;
6812
6813		/* Refresh the desc even if buffer_addrs didn't change
6814		 * because each write-back erases this info.
6815		 */
6816		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6817
6818		rx_desc++;
6819		bi++;
6820		i++;
6821		if (unlikely(!i)) {
6822			rx_desc = IGB_RX_DESC(rx_ring, 0);
6823			bi = rx_ring->rx_buffer_info;
6824			i -= rx_ring->count;
6825		}
6826
6827		/* clear the hdr_addr for the next_to_use descriptor */
6828		rx_desc->read.hdr_addr = 0;
6829
6830		cleaned_count--;
6831	} while (cleaned_count);
6832
6833	i += rx_ring->count;
6834
6835	if (rx_ring->next_to_use != i) {
6836		/* record the next descriptor to use */
6837		rx_ring->next_to_use = i;
6838
6839		/* update next to alloc since we have filled the ring */
6840		rx_ring->next_to_alloc = i;
6841
6842		/* Force memory writes to complete before letting h/w
6843		 * know there are new descriptors to fetch.  (Only
6844		 * applicable for weak-ordered memory model archs,
6845		 * such as IA-64).
6846		 */
6847		wmb();
6848		writel(i, rx_ring->tail);
6849	}
6850}
6851
6852/**
6853 * igb_mii_ioctl -
6854 * @netdev:
6855 * @ifreq:
6856 * @cmd:
6857 **/
6858static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6859{
6860	struct igb_adapter *adapter = netdev_priv(netdev);
6861	struct mii_ioctl_data *data = if_mii(ifr);
6862
6863	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6864		return -EOPNOTSUPP;
6865
6866	switch (cmd) {
6867	case SIOCGMIIPHY:
6868		data->phy_id = adapter->hw.phy.addr;
6869		break;
6870	case SIOCGMIIREG:
6871		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6872		                     &data->val_out))
6873			return -EIO;
6874		break;
6875	case SIOCSMIIREG:
6876	default:
6877		return -EOPNOTSUPP;
6878	}
6879	return 0;
6880}
6881
6882/**
6883 * igb_ioctl -
6884 * @netdev:
6885 * @ifreq:
6886 * @cmd:
6887 **/
6888static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6889{
6890	switch (cmd) {
6891	case SIOCGMIIPHY:
6892	case SIOCGMIIREG:
6893	case SIOCSMIIREG:
6894		return igb_mii_ioctl(netdev, ifr, cmd);
6895	case SIOCSHWTSTAMP:
6896		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6897	default:
6898		return -EOPNOTSUPP;
6899	}
6900}
6901
6902s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6903{
6904	struct igb_adapter *adapter = hw->back;
6905
6906	if (pcie_capability_read_word(adapter->pdev, reg, value))
6907		return -E1000_ERR_CONFIG;
6908
6909	return 0;
6910}
6911
6912s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6913{
6914	struct igb_adapter *adapter = hw->back;
6915
6916	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6917		return -E1000_ERR_CONFIG;
6918
6919	return 0;
6920}
6921
6922static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6923{
6924	struct igb_adapter *adapter = netdev_priv(netdev);
6925	struct e1000_hw *hw = &adapter->hw;
6926	u32 ctrl, rctl;
6927	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6928
6929	if (enable) {
6930		/* enable VLAN tag insert/strip */
6931		ctrl = rd32(E1000_CTRL);
6932		ctrl |= E1000_CTRL_VME;
6933		wr32(E1000_CTRL, ctrl);
6934
6935		/* Disable CFI check */
6936		rctl = rd32(E1000_RCTL);
6937		rctl &= ~E1000_RCTL_CFIEN;
6938		wr32(E1000_RCTL, rctl);
6939	} else {
6940		/* disable VLAN tag insert/strip */
6941		ctrl = rd32(E1000_CTRL);
6942		ctrl &= ~E1000_CTRL_VME;
6943		wr32(E1000_CTRL, ctrl);
6944	}
6945
6946	igb_rlpml_set(adapter);
6947}
6948
6949static int igb_vlan_rx_add_vid(struct net_device *netdev,
6950			       __be16 proto, u16 vid)
6951{
6952	struct igb_adapter *adapter = netdev_priv(netdev);
6953	struct e1000_hw *hw = &adapter->hw;
6954	int pf_id = adapter->vfs_allocated_count;
6955
6956	/* attempt to add filter to vlvf array */
6957	igb_vlvf_set(adapter, vid, true, pf_id);
6958
6959	/* add the filter since PF can receive vlans w/o entry in vlvf */
6960	igb_vfta_set(hw, vid, true);
6961
6962	set_bit(vid, adapter->active_vlans);
6963
6964	return 0;
6965}
6966
6967static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6968				__be16 proto, u16 vid)
6969{
6970	struct igb_adapter *adapter = netdev_priv(netdev);
6971	struct e1000_hw *hw = &adapter->hw;
6972	int pf_id = adapter->vfs_allocated_count;
6973	s32 err;
6974
6975	/* remove vlan from VLVF table array */
6976	err = igb_vlvf_set(adapter, vid, false, pf_id);
6977
6978	/* if vid was not present in VLVF just remove it from table */
6979	if (err)
6980		igb_vfta_set(hw, vid, false);
6981
6982	clear_bit(vid, adapter->active_vlans);
6983
6984	return 0;
6985}
6986
6987static void igb_restore_vlan(struct igb_adapter *adapter)
6988{
6989	u16 vid;
6990
6991	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6992
6993	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6994		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6995}
6996
6997int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6998{
6999	struct pci_dev *pdev = adapter->pdev;
7000	struct e1000_mac_info *mac = &adapter->hw.mac;
7001
7002	mac->autoneg = 0;
7003
7004	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7005	 * for the switch() below to work
7006	 */
7007	if ((spd & 1) || (dplx & ~1))
7008		goto err_inval;
7009
7010	/* Fiber NIC's only allow 1000 gbps Full duplex
7011	 * and 100Mbps Full duplex for 100baseFx sfp
7012	 */
7013	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7014		switch (spd + dplx) {
7015		case SPEED_10 + DUPLEX_HALF:
7016		case SPEED_10 + DUPLEX_FULL:
7017		case SPEED_100 + DUPLEX_HALF:
7018			goto err_inval;
7019		default:
7020			break;
7021		}
7022	}
7023
7024	switch (spd + dplx) {
7025	case SPEED_10 + DUPLEX_HALF:
7026		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7027		break;
7028	case SPEED_10 + DUPLEX_FULL:
7029		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7030		break;
7031	case SPEED_100 + DUPLEX_HALF:
7032		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7033		break;
7034	case SPEED_100 + DUPLEX_FULL:
7035		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7036		break;
7037	case SPEED_1000 + DUPLEX_FULL:
7038		mac->autoneg = 1;
7039		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7040		break;
7041	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7042	default:
7043		goto err_inval;
7044	}
7045
7046	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7047	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7048
7049	return 0;
7050
7051err_inval:
7052	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7053	return -EINVAL;
7054}
7055
7056static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7057			  bool runtime)
7058{
7059	struct net_device *netdev = pci_get_drvdata(pdev);
7060	struct igb_adapter *adapter = netdev_priv(netdev);
7061	struct e1000_hw *hw = &adapter->hw;
7062	u32 ctrl, rctl, status;
7063	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7064#ifdef CONFIG_PM
7065	int retval = 0;
7066#endif
7067
7068	netif_device_detach(netdev);
7069
7070	if (netif_running(netdev))
7071		__igb_close(netdev, true);
7072
7073	igb_clear_interrupt_scheme(adapter);
7074
7075#ifdef CONFIG_PM
7076	retval = pci_save_state(pdev);
7077	if (retval)
7078		return retval;
7079#endif
7080
7081	status = rd32(E1000_STATUS);
7082	if (status & E1000_STATUS_LU)
7083		wufc &= ~E1000_WUFC_LNKC;
7084
7085	if (wufc) {
7086		igb_setup_rctl(adapter);
7087		igb_set_rx_mode(netdev);
7088
7089		/* turn on all-multi mode if wake on multicast is enabled */
7090		if (wufc & E1000_WUFC_MC) {
7091			rctl = rd32(E1000_RCTL);
7092			rctl |= E1000_RCTL_MPE;
7093			wr32(E1000_RCTL, rctl);
7094		}
7095
7096		ctrl = rd32(E1000_CTRL);
7097		/* advertise wake from D3Cold */
7098		#define E1000_CTRL_ADVD3WUC 0x00100000
7099		/* phy power management enable */
7100		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7101		ctrl |= E1000_CTRL_ADVD3WUC;
7102		wr32(E1000_CTRL, ctrl);
7103
7104		/* Allow time for pending master requests to run */
7105		igb_disable_pcie_master(hw);
7106
7107		wr32(E1000_WUC, E1000_WUC_PME_EN);
7108		wr32(E1000_WUFC, wufc);
7109	} else {
7110		wr32(E1000_WUC, 0);
7111		wr32(E1000_WUFC, 0);
7112	}
7113
7114	*enable_wake = wufc || adapter->en_mng_pt;
7115	if (!*enable_wake)
7116		igb_power_down_link(adapter);
7117	else
7118		igb_power_up_link(adapter);
7119
7120	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7121	 * would have already happened in close and is redundant.
7122	 */
7123	igb_release_hw_control(adapter);
7124
7125	pci_disable_device(pdev);
7126
7127	return 0;
7128}
7129
7130#ifdef CONFIG_PM
7131#ifdef CONFIG_PM_SLEEP
7132static int igb_suspend(struct device *dev)
7133{
7134	int retval;
7135	bool wake;
7136	struct pci_dev *pdev = to_pci_dev(dev);
7137
7138	retval = __igb_shutdown(pdev, &wake, 0);
7139	if (retval)
7140		return retval;
7141
7142	if (wake) {
7143		pci_prepare_to_sleep(pdev);
7144	} else {
7145		pci_wake_from_d3(pdev, false);
7146		pci_set_power_state(pdev, PCI_D3hot);
7147	}
7148
7149	return 0;
7150}
7151#endif /* CONFIG_PM_SLEEP */
7152
7153static int igb_resume(struct device *dev)
7154{
7155	struct pci_dev *pdev = to_pci_dev(dev);
7156	struct net_device *netdev = pci_get_drvdata(pdev);
7157	struct igb_adapter *adapter = netdev_priv(netdev);
7158	struct e1000_hw *hw = &adapter->hw;
7159	u32 err;
7160
7161	pci_set_power_state(pdev, PCI_D0);
7162	pci_restore_state(pdev);
7163	pci_save_state(pdev);
7164
7165	err = pci_enable_device_mem(pdev);
7166	if (err) {
7167		dev_err(&pdev->dev,
7168			"igb: Cannot enable PCI device from suspend\n");
7169		return err;
7170	}
7171	pci_set_master(pdev);
7172
7173	pci_enable_wake(pdev, PCI_D3hot, 0);
7174	pci_enable_wake(pdev, PCI_D3cold, 0);
7175
7176	if (igb_init_interrupt_scheme(adapter, true)) {
7177		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7178		return -ENOMEM;
7179	}
7180
7181	igb_reset(adapter);
7182
7183	/* let the f/w know that the h/w is now under the control of the
7184	 * driver.
7185	 */
7186	igb_get_hw_control(adapter);
7187
7188	wr32(E1000_WUS, ~0);
7189
7190	if (netdev->flags & IFF_UP) {
7191		rtnl_lock();
7192		err = __igb_open(netdev, true);
7193		rtnl_unlock();
7194		if (err)
7195			return err;
7196	}
7197
7198	netif_device_attach(netdev);
7199	return 0;
7200}
7201
7202#ifdef CONFIG_PM_RUNTIME
7203static int igb_runtime_idle(struct device *dev)
7204{
7205	struct pci_dev *pdev = to_pci_dev(dev);
7206	struct net_device *netdev = pci_get_drvdata(pdev);
7207	struct igb_adapter *adapter = netdev_priv(netdev);
7208
7209	if (!igb_has_link(adapter))
7210		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7211
7212	return -EBUSY;
7213}
7214
7215static int igb_runtime_suspend(struct device *dev)
7216{
7217	struct pci_dev *pdev = to_pci_dev(dev);
7218	int retval;
7219	bool wake;
7220
7221	retval = __igb_shutdown(pdev, &wake, 1);
7222	if (retval)
7223		return retval;
7224
7225	if (wake) {
7226		pci_prepare_to_sleep(pdev);
7227	} else {
7228		pci_wake_from_d3(pdev, false);
7229		pci_set_power_state(pdev, PCI_D3hot);
7230	}
7231
7232	return 0;
7233}
7234
7235static int igb_runtime_resume(struct device *dev)
7236{
7237	return igb_resume(dev);
7238}
7239#endif /* CONFIG_PM_RUNTIME */
7240#endif
7241
7242static void igb_shutdown(struct pci_dev *pdev)
7243{
7244	bool wake;
7245
7246	__igb_shutdown(pdev, &wake, 0);
7247
7248	if (system_state == SYSTEM_POWER_OFF) {
7249		pci_wake_from_d3(pdev, wake);
7250		pci_set_power_state(pdev, PCI_D3hot);
7251	}
7252}
7253
7254#ifdef CONFIG_PCI_IOV
7255static int igb_sriov_reinit(struct pci_dev *dev)
7256{
7257	struct net_device *netdev = pci_get_drvdata(dev);
7258	struct igb_adapter *adapter = netdev_priv(netdev);
7259	struct pci_dev *pdev = adapter->pdev;
7260
7261	rtnl_lock();
7262
7263	if (netif_running(netdev))
7264		igb_close(netdev);
7265
7266	igb_clear_interrupt_scheme(adapter);
7267
7268	igb_init_queue_configuration(adapter);
7269
7270	if (igb_init_interrupt_scheme(adapter, true)) {
7271		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7272		return -ENOMEM;
7273	}
7274
7275	if (netif_running(netdev))
7276		igb_open(netdev);
7277
7278	rtnl_unlock();
7279
7280	return 0;
7281}
7282
7283static int igb_pci_disable_sriov(struct pci_dev *dev)
7284{
7285	int err = igb_disable_sriov(dev);
7286
7287	if (!err)
7288		err = igb_sriov_reinit(dev);
7289
7290	return err;
7291}
7292
7293static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7294{
7295	int err = igb_enable_sriov(dev, num_vfs);
7296
7297	if (err)
7298		goto out;
7299
7300	err = igb_sriov_reinit(dev);
7301	if (!err)
7302		return num_vfs;
7303
7304out:
7305	return err;
7306}
7307
7308#endif
7309static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7310{
7311#ifdef CONFIG_PCI_IOV
7312	if (num_vfs == 0)
7313		return igb_pci_disable_sriov(dev);
7314	else
7315		return igb_pci_enable_sriov(dev, num_vfs);
7316#endif
7317	return 0;
7318}
7319
7320#ifdef CONFIG_NET_POLL_CONTROLLER
7321/* Polling 'interrupt' - used by things like netconsole to send skbs
7322 * without having to re-enable interrupts. It's not called while
7323 * the interrupt routine is executing.
7324 */
7325static void igb_netpoll(struct net_device *netdev)
7326{
7327	struct igb_adapter *adapter = netdev_priv(netdev);
7328	struct e1000_hw *hw = &adapter->hw;
7329	struct igb_q_vector *q_vector;
7330	int i;
7331
7332	for (i = 0; i < adapter->num_q_vectors; i++) {
7333		q_vector = adapter->q_vector[i];
7334		if (adapter->msix_entries)
7335			wr32(E1000_EIMC, q_vector->eims_value);
7336		else
7337			igb_irq_disable(adapter);
7338		napi_schedule(&q_vector->napi);
7339	}
7340}
7341#endif /* CONFIG_NET_POLL_CONTROLLER */
7342
7343/**
7344 *  igb_io_error_detected - called when PCI error is detected
7345 *  @pdev: Pointer to PCI device
7346 *  @state: The current pci connection state
7347 *
7348 *  This function is called after a PCI bus error affecting
7349 *  this device has been detected.
7350 **/
7351static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7352					      pci_channel_state_t state)
7353{
7354	struct net_device *netdev = pci_get_drvdata(pdev);
7355	struct igb_adapter *adapter = netdev_priv(netdev);
7356
7357	netif_device_detach(netdev);
7358
7359	if (state == pci_channel_io_perm_failure)
7360		return PCI_ERS_RESULT_DISCONNECT;
7361
7362	if (netif_running(netdev))
7363		igb_down(adapter);
7364	pci_disable_device(pdev);
7365
7366	/* Request a slot slot reset. */
7367	return PCI_ERS_RESULT_NEED_RESET;
7368}
7369
7370/**
7371 *  igb_io_slot_reset - called after the pci bus has been reset.
7372 *  @pdev: Pointer to PCI device
7373 *
7374 *  Restart the card from scratch, as if from a cold-boot. Implementation
7375 *  resembles the first-half of the igb_resume routine.
7376 **/
7377static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7378{
7379	struct net_device *netdev = pci_get_drvdata(pdev);
7380	struct igb_adapter *adapter = netdev_priv(netdev);
7381	struct e1000_hw *hw = &adapter->hw;
7382	pci_ers_result_t result;
7383	int err;
7384
7385	if (pci_enable_device_mem(pdev)) {
7386		dev_err(&pdev->dev,
7387			"Cannot re-enable PCI device after reset.\n");
7388		result = PCI_ERS_RESULT_DISCONNECT;
7389	} else {
7390		pci_set_master(pdev);
7391		pci_restore_state(pdev);
7392		pci_save_state(pdev);
7393
7394		pci_enable_wake(pdev, PCI_D3hot, 0);
7395		pci_enable_wake(pdev, PCI_D3cold, 0);
7396
7397		igb_reset(adapter);
7398		wr32(E1000_WUS, ~0);
7399		result = PCI_ERS_RESULT_RECOVERED;
7400	}
7401
7402	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7403	if (err) {
7404		dev_err(&pdev->dev,
7405			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7406			err);
7407		/* non-fatal, continue */
7408	}
7409
7410	return result;
7411}
7412
7413/**
7414 *  igb_io_resume - called when traffic can start flowing again.
7415 *  @pdev: Pointer to PCI device
7416 *
7417 *  This callback is called when the error recovery driver tells us that
7418 *  its OK to resume normal operation. Implementation resembles the
7419 *  second-half of the igb_resume routine.
7420 */
7421static void igb_io_resume(struct pci_dev *pdev)
7422{
7423	struct net_device *netdev = pci_get_drvdata(pdev);
7424	struct igb_adapter *adapter = netdev_priv(netdev);
7425
7426	if (netif_running(netdev)) {
7427		if (igb_up(adapter)) {
7428			dev_err(&pdev->dev, "igb_up failed after reset\n");
7429			return;
7430		}
7431	}
7432
7433	netif_device_attach(netdev);
7434
7435	/* let the f/w know that the h/w is now under the control of the
7436	 * driver.
7437	 */
7438	igb_get_hw_control(adapter);
7439}
7440
7441static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7442			     u8 qsel)
7443{
7444	u32 rar_low, rar_high;
7445	struct e1000_hw *hw = &adapter->hw;
7446
7447	/* HW expects these in little endian so we reverse the byte order
7448	 * from network order (big endian) to little endian
7449	 */
7450	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7451		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7452	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7453
7454	/* Indicate to hardware the Address is Valid. */
7455	rar_high |= E1000_RAH_AV;
7456
7457	if (hw->mac.type == e1000_82575)
7458		rar_high |= E1000_RAH_POOL_1 * qsel;
7459	else
7460		rar_high |= E1000_RAH_POOL_1 << qsel;
7461
7462	wr32(E1000_RAL(index), rar_low);
7463	wrfl();
7464	wr32(E1000_RAH(index), rar_high);
7465	wrfl();
7466}
7467
7468static int igb_set_vf_mac(struct igb_adapter *adapter,
7469			  int vf, unsigned char *mac_addr)
7470{
7471	struct e1000_hw *hw = &adapter->hw;
7472	/* VF MAC addresses start at end of receive addresses and moves
7473	 * towards the first, as a result a collision should not be possible
7474	 */
7475	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7476
7477	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7478
7479	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7480
7481	return 0;
7482}
7483
7484static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7485{
7486	struct igb_adapter *adapter = netdev_priv(netdev);
7487	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7488		return -EINVAL;
7489	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7490	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7491	dev_info(&adapter->pdev->dev,
7492		 "Reload the VF driver to make this change effective.");
7493	if (test_bit(__IGB_DOWN, &adapter->state)) {
7494		dev_warn(&adapter->pdev->dev,
7495			 "The VF MAC address has been set, but the PF device is not up.\n");
7496		dev_warn(&adapter->pdev->dev,
7497			 "Bring the PF device up before attempting to use the VF device.\n");
7498	}
7499	return igb_set_vf_mac(adapter, vf, mac);
7500}
7501
7502static int igb_link_mbps(int internal_link_speed)
7503{
7504	switch (internal_link_speed) {
7505	case SPEED_100:
7506		return 100;
7507	case SPEED_1000:
7508		return 1000;
7509	default:
7510		return 0;
7511	}
7512}
7513
7514static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7515				  int link_speed)
7516{
7517	int rf_dec, rf_int;
7518	u32 bcnrc_val;
7519
7520	if (tx_rate != 0) {
7521		/* Calculate the rate factor values to set */
7522		rf_int = link_speed / tx_rate;
7523		rf_dec = (link_speed - (rf_int * tx_rate));
7524		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7525			 tx_rate;
7526
7527		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7528		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7529			      E1000_RTTBCNRC_RF_INT_MASK);
7530		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7531	} else {
7532		bcnrc_val = 0;
7533	}
7534
7535	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7536	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7537	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7538	 */
7539	wr32(E1000_RTTBCNRM, 0x14);
7540	wr32(E1000_RTTBCNRC, bcnrc_val);
7541}
7542
7543static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7544{
7545	int actual_link_speed, i;
7546	bool reset_rate = false;
7547
7548	/* VF TX rate limit was not set or not supported */
7549	if ((adapter->vf_rate_link_speed == 0) ||
7550	    (adapter->hw.mac.type != e1000_82576))
7551		return;
7552
7553	actual_link_speed = igb_link_mbps(adapter->link_speed);
7554	if (actual_link_speed != adapter->vf_rate_link_speed) {
7555		reset_rate = true;
7556		adapter->vf_rate_link_speed = 0;
7557		dev_info(&adapter->pdev->dev,
7558			 "Link speed has been changed. VF Transmit rate is disabled\n");
7559	}
7560
7561	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7562		if (reset_rate)
7563			adapter->vf_data[i].tx_rate = 0;
7564
7565		igb_set_vf_rate_limit(&adapter->hw, i,
7566				      adapter->vf_data[i].tx_rate,
7567				      actual_link_speed);
7568	}
7569}
7570
7571static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7572{
7573	struct igb_adapter *adapter = netdev_priv(netdev);
7574	struct e1000_hw *hw = &adapter->hw;
7575	int actual_link_speed;
7576
7577	if (hw->mac.type != e1000_82576)
7578		return -EOPNOTSUPP;
7579
7580	actual_link_speed = igb_link_mbps(adapter->link_speed);
7581	if ((vf >= adapter->vfs_allocated_count) ||
7582	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7583	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7584		return -EINVAL;
7585
7586	adapter->vf_rate_link_speed = actual_link_speed;
7587	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7588	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7589
7590	return 0;
7591}
7592
7593static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7594				   bool setting)
7595{
7596	struct igb_adapter *adapter = netdev_priv(netdev);
7597	struct e1000_hw *hw = &adapter->hw;
7598	u32 reg_val, reg_offset;
7599
7600	if (!adapter->vfs_allocated_count)
7601		return -EOPNOTSUPP;
7602
7603	if (vf >= adapter->vfs_allocated_count)
7604		return -EINVAL;
7605
7606	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7607	reg_val = rd32(reg_offset);
7608	if (setting)
7609		reg_val |= ((1 << vf) |
7610			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7611	else
7612		reg_val &= ~((1 << vf) |
7613			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7614	wr32(reg_offset, reg_val);
7615
7616	adapter->vf_data[vf].spoofchk_enabled = setting;
7617	return E1000_SUCCESS;
7618}
7619
7620static int igb_ndo_get_vf_config(struct net_device *netdev,
7621				 int vf, struct ifla_vf_info *ivi)
7622{
7623	struct igb_adapter *adapter = netdev_priv(netdev);
7624	if (vf >= adapter->vfs_allocated_count)
7625		return -EINVAL;
7626	ivi->vf = vf;
7627	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7628	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7629	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7630	ivi->qos = adapter->vf_data[vf].pf_qos;
7631	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7632	return 0;
7633}
7634
7635static void igb_vmm_control(struct igb_adapter *adapter)
7636{
7637	struct e1000_hw *hw = &adapter->hw;
7638	u32 reg;
7639
7640	switch (hw->mac.type) {
7641	case e1000_82575:
7642	case e1000_i210:
7643	case e1000_i211:
7644	case e1000_i354:
7645	default:
7646		/* replication is not supported for 82575 */
7647		return;
7648	case e1000_82576:
7649		/* notify HW that the MAC is adding vlan tags */
7650		reg = rd32(E1000_DTXCTL);
7651		reg |= E1000_DTXCTL_VLAN_ADDED;
7652		wr32(E1000_DTXCTL, reg);
7653	case e1000_82580:
7654		/* enable replication vlan tag stripping */
7655		reg = rd32(E1000_RPLOLR);
7656		reg |= E1000_RPLOLR_STRVLAN;
7657		wr32(E1000_RPLOLR, reg);
7658	case e1000_i350:
7659		/* none of the above registers are supported by i350 */
7660		break;
7661	}
7662
7663	if (adapter->vfs_allocated_count) {
7664		igb_vmdq_set_loopback_pf(hw, true);
7665		igb_vmdq_set_replication_pf(hw, true);
7666		igb_vmdq_set_anti_spoofing_pf(hw, true,
7667					      adapter->vfs_allocated_count);
7668	} else {
7669		igb_vmdq_set_loopback_pf(hw, false);
7670		igb_vmdq_set_replication_pf(hw, false);
7671	}
7672}
7673
7674static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7675{
7676	struct e1000_hw *hw = &adapter->hw;
7677	u32 dmac_thr;
7678	u16 hwm;
7679
7680	if (hw->mac.type > e1000_82580) {
7681		if (adapter->flags & IGB_FLAG_DMAC) {
7682			u32 reg;
7683
7684			/* force threshold to 0. */
7685			wr32(E1000_DMCTXTH, 0);
7686
7687			/* DMA Coalescing high water mark needs to be greater
7688			 * than the Rx threshold. Set hwm to PBA - max frame
7689			 * size in 16B units, capping it at PBA - 6KB.
7690			 */
7691			hwm = 64 * pba - adapter->max_frame_size / 16;
7692			if (hwm < 64 * (pba - 6))
7693				hwm = 64 * (pba - 6);
7694			reg = rd32(E1000_FCRTC);
7695			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7696			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7697				& E1000_FCRTC_RTH_COAL_MASK);
7698			wr32(E1000_FCRTC, reg);
7699
7700			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7701			 * frame size, capping it at PBA - 10KB.
7702			 */
7703			dmac_thr = pba - adapter->max_frame_size / 512;
7704			if (dmac_thr < pba - 10)
7705				dmac_thr = pba - 10;
7706			reg = rd32(E1000_DMACR);
7707			reg &= ~E1000_DMACR_DMACTHR_MASK;
7708			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7709				& E1000_DMACR_DMACTHR_MASK);
7710
7711			/* transition to L0x or L1 if available..*/
7712			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7713
7714			/* watchdog timer= +-1000 usec in 32usec intervals */
7715			reg |= (1000 >> 5);
7716
7717			/* Disable BMC-to-OS Watchdog Enable */
7718			if (hw->mac.type != e1000_i354)
7719				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7720
7721			wr32(E1000_DMACR, reg);
7722
7723			/* no lower threshold to disable
7724			 * coalescing(smart fifb)-UTRESH=0
7725			 */
7726			wr32(E1000_DMCRTRH, 0);
7727
7728			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7729
7730			wr32(E1000_DMCTLX, reg);
7731
7732			/* free space in tx packet buffer to wake from
7733			 * DMA coal
7734			 */
7735			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7736			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7737
7738			/* make low power state decision controlled
7739			 * by DMA coal
7740			 */
7741			reg = rd32(E1000_PCIEMISC);
7742			reg &= ~E1000_PCIEMISC_LX_DECISION;
7743			wr32(E1000_PCIEMISC, reg);
7744		} /* endif adapter->dmac is not disabled */
7745	} else if (hw->mac.type == e1000_82580) {
7746		u32 reg = rd32(E1000_PCIEMISC);
7747		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7748		wr32(E1000_DMACR, 0);
7749	}
7750}
7751
7752/**
7753 *  igb_read_i2c_byte - Reads 8 bit word over I2C
7754 *  @hw: pointer to hardware structure
7755 *  @byte_offset: byte offset to read
7756 *  @dev_addr: device address
7757 *  @data: value read
7758 *
7759 *  Performs byte read operation over I2C interface at
7760 *  a specified device address.
7761 **/
7762s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7763		      u8 dev_addr, u8 *data)
7764{
7765	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7766	struct i2c_client *this_client = adapter->i2c_client;
7767	s32 status;
7768	u16 swfw_mask = 0;
7769
7770	if (!this_client)
7771		return E1000_ERR_I2C;
7772
7773	swfw_mask = E1000_SWFW_PHY0_SM;
7774
7775	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7776	    != E1000_SUCCESS)
7777		return E1000_ERR_SWFW_SYNC;
7778
7779	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7780	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7781
7782	if (status < 0)
7783		return E1000_ERR_I2C;
7784	else {
7785		*data = status;
7786		return E1000_SUCCESS;
7787	}
7788}
7789
7790/**
7791 *  igb_write_i2c_byte - Writes 8 bit word over I2C
7792 *  @hw: pointer to hardware structure
7793 *  @byte_offset: byte offset to write
7794 *  @dev_addr: device address
7795 *  @data: value to write
7796 *
7797 *  Performs byte write operation over I2C interface at
7798 *  a specified device address.
7799 **/
7800s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7801		       u8 dev_addr, u8 data)
7802{
7803	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7804	struct i2c_client *this_client = adapter->i2c_client;
7805	s32 status;
7806	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7807
7808	if (!this_client)
7809		return E1000_ERR_I2C;
7810
7811	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7812		return E1000_ERR_SWFW_SYNC;
7813	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7814	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7815
7816	if (status)
7817		return E1000_ERR_I2C;
7818	else
7819		return E1000_SUCCESS;
7820
7821}
7822/* igb_main.c */
7823