igb_main.c revision c75c4edfc38da8235d110a8f28b596193de787ab
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221#endif /* CONFIG_PCI_IOV */
222
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224		     pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
228static const struct pci_error_handlers igb_err_handler = {
229	.error_detected = igb_io_error_detected,
230	.slot_reset = igb_io_slot_reset,
231	.resume = igb_io_resume,
232};
233
234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236static struct pci_driver igb_driver = {
237	.name     = igb_driver_name,
238	.id_table = igb_pci_tbl,
239	.probe    = igb_probe,
240	.remove   = igb_remove,
241#ifdef CONFIG_PM
242	.driver.pm = &igb_pm_ops,
243#endif
244	.shutdown = igb_shutdown,
245	.sriov_configure = igb_pci_sriov_configure,
246	.err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259struct igb_reg_info {
260	u32 ofs;
261	char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266	/* General Registers */
267	{E1000_CTRL, "CTRL"},
268	{E1000_STATUS, "STATUS"},
269	{E1000_CTRL_EXT, "CTRL_EXT"},
270
271	/* Interrupt Registers */
272	{E1000_ICR, "ICR"},
273
274	/* RX Registers */
275	{E1000_RCTL, "RCTL"},
276	{E1000_RDLEN(0), "RDLEN"},
277	{E1000_RDH(0), "RDH"},
278	{E1000_RDT(0), "RDT"},
279	{E1000_RXDCTL(0), "RXDCTL"},
280	{E1000_RDBAL(0), "RDBAL"},
281	{E1000_RDBAH(0), "RDBAH"},
282
283	/* TX Registers */
284	{E1000_TCTL, "TCTL"},
285	{E1000_TDBAL(0), "TDBAL"},
286	{E1000_TDBAH(0), "TDBAH"},
287	{E1000_TDLEN(0), "TDLEN"},
288	{E1000_TDH(0), "TDH"},
289	{E1000_TDT(0), "TDT"},
290	{E1000_TXDCTL(0), "TXDCTL"},
291	{E1000_TDFH, "TDFH"},
292	{E1000_TDFT, "TDFT"},
293	{E1000_TDFHS, "TDFHS"},
294	{E1000_TDFPC, "TDFPC"},
295
296	/* List Terminator */
297	{}
298};
299
300/* igb_regdump - register printout routine */
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303	int n = 0;
304	char rname[16];
305	u32 regs[8];
306
307	switch (reginfo->ofs) {
308	case E1000_RDLEN(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDLEN(n));
311		break;
312	case E1000_RDH(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RDH(n));
315		break;
316	case E1000_RDT(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDT(n));
319		break;
320	case E1000_RXDCTL(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RXDCTL(n));
323		break;
324	case E1000_RDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_RDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_RDBAH(n));
331		break;
332	case E1000_TDBAL(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_RDBAL(n));
335		break;
336	case E1000_TDBAH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDBAH(n));
339		break;
340	case E1000_TDLEN(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDLEN(n));
343		break;
344	case E1000_TDH(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TDH(n));
347		break;
348	case E1000_TDT(0):
349		for (n = 0; n < 4; n++)
350			regs[n] = rd32(E1000_TDT(n));
351		break;
352	case E1000_TXDCTL(0):
353		for (n = 0; n < 4; n++)
354			regs[n] = rd32(E1000_TXDCTL(n));
355		break;
356	default:
357		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358		return;
359	}
360
361	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363		regs[2], regs[3]);
364}
365
366/* igb_dump - Print registers, Tx-rings and Rx-rings */
367static void igb_dump(struct igb_adapter *adapter)
368{
369	struct net_device *netdev = adapter->netdev;
370	struct e1000_hw *hw = &adapter->hw;
371	struct igb_reg_info *reginfo;
372	struct igb_ring *tx_ring;
373	union e1000_adv_tx_desc *tx_desc;
374	struct my_u0 { u64 a; u64 b; } *u0;
375	struct igb_ring *rx_ring;
376	union e1000_adv_rx_desc *rx_desc;
377	u32 staterr;
378	u16 i, n;
379
380	if (!netif_msg_hw(adapter))
381		return;
382
383	/* Print netdevice Info */
384	if (netdev) {
385		dev_info(&adapter->pdev->dev, "Net device Info\n");
386		pr_info("Device Name     state            trans_start      last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440
441		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442			const char *next_desc;
443			struct igb_tx_buffer *buffer_info;
444			tx_desc = IGB_TX_DESC(tx_ring, i);
445			buffer_info = &tx_ring->tx_buffer_info[i];
446			u0 = (struct my_u0 *)tx_desc;
447			if (i == tx_ring->next_to_use &&
448			    i == tx_ring->next_to_clean)
449				next_desc = " NTC/U";
450			else if (i == tx_ring->next_to_use)
451				next_desc = " NTU";
452			else if (i == tx_ring->next_to_clean)
453				next_desc = " NTC";
454			else
455				next_desc = "";
456
457			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458				i, le64_to_cpu(u0->a),
459				le64_to_cpu(u0->b),
460				(u64)dma_unmap_addr(buffer_info, dma),
461				dma_unmap_len(buffer_info, len),
462				buffer_info->next_to_watch,
463				(u64)buffer_info->time_stamp,
464				buffer_info->skb, next_desc);
465
466			if (netif_msg_pktdata(adapter) && buffer_info->skb)
467				print_hex_dump(KERN_INFO, "",
468					DUMP_PREFIX_ADDRESS,
469					16, 1, buffer_info->skb->data,
470					dma_unmap_len(buffer_info, len),
471					true);
472		}
473	}
474
475	/* Print RX Rings Summary */
476rx_ring_summary:
477	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478	pr_info("Queue [NTU] [NTC]\n");
479	for (n = 0; n < adapter->num_rx_queues; n++) {
480		rx_ring = adapter->rx_ring[n];
481		pr_info(" %5d %5X %5X\n",
482			n, rx_ring->next_to_use, rx_ring->next_to_clean);
483	}
484
485	/* Print RX Rings */
486	if (!netif_msg_rx_status(adapter))
487		goto exit;
488
489	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491	/* Advanced Receive Descriptor (Read) Format
492	 *    63                                           1        0
493	 *    +-----------------------------------------------------+
494	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495	 *    +----------------------------------------------+------+
496	 *  8 |       Header Buffer Address [63:1]           |  DD  |
497	 *    +-----------------------------------------------------+
498	 *
499	 *
500	 * Advanced Receive Descriptor (Write-Back) Format
501	 *
502	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
503	 *   +------------------------------------------------------+
504	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505	 *   | Checksum   Ident  |   |           |    | Type | Type |
506	 *   +------------------------------------------------------+
507	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508	 *   +------------------------------------------------------+
509	 *   63       48 47    32 31            20 19               0
510	 */
511
512	for (n = 0; n < adapter->num_rx_queues; n++) {
513		rx_ring = adapter->rx_ring[n];
514		pr_info("------------------------------------\n");
515		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516		pr_info("------------------------------------\n");
517		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520		for (i = 0; i < rx_ring->count; i++) {
521			const char *next_desc;
522			struct igb_rx_buffer *buffer_info;
523			buffer_info = &rx_ring->rx_buffer_info[i];
524			rx_desc = IGB_RX_DESC(rx_ring, i);
525			u0 = (struct my_u0 *)rx_desc;
526			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528			if (i == rx_ring->next_to_use)
529				next_desc = " NTU";
530			else if (i == rx_ring->next_to_clean)
531				next_desc = " NTC";
532			else
533				next_desc = "";
534
535			if (staterr & E1000_RXD_STAT_DD) {
536				/* Descriptor Done */
537				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538					"RWB", i,
539					le64_to_cpu(u0->a),
540					le64_to_cpu(u0->b),
541					next_desc);
542			} else {
543				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544					"R  ", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					(u64)buffer_info->dma,
548					next_desc);
549
550				if (netif_msg_pktdata(adapter) &&
551				    buffer_info->dma && buffer_info->page) {
552					print_hex_dump(KERN_INFO, "",
553					  DUMP_PREFIX_ADDRESS,
554					  16, 1,
555					  page_address(buffer_info->page) +
556						      buffer_info->page_offset,
557					  IGB_RX_BUFSZ, true);
558				}
559			}
560		}
561	}
562
563exit:
564	return;
565}
566
567/**
568 *  igb_get_i2c_data - Reads the I2C SDA data bit
569 *  @hw: pointer to hardware structure
570 *  @i2cctl: Current value of I2CCTL register
571 *
572 *  Returns the I2C data bit value
573 **/
574static int igb_get_i2c_data(void *data)
575{
576	struct igb_adapter *adapter = (struct igb_adapter *)data;
577	struct e1000_hw *hw = &adapter->hw;
578	s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
581}
582
583/**
584 *  igb_set_i2c_data - Sets the I2C data bit
585 *  @data: pointer to hardware structure
586 *  @state: I2C data value (0 or 1) to set
587 *
588 *  Sets the I2C data bit
589 **/
590static void igb_set_i2c_data(void *data, int state)
591{
592	struct igb_adapter *adapter = (struct igb_adapter *)data;
593	struct e1000_hw *hw = &adapter->hw;
594	s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596	if (state)
597		i2cctl |= E1000_I2C_DATA_OUT;
598	else
599		i2cctl &= ~E1000_I2C_DATA_OUT;
600
601	i2cctl &= ~E1000_I2C_DATA_OE_N;
602	i2cctl |= E1000_I2C_CLK_OE_N;
603	wr32(E1000_I2CPARAMS, i2cctl);
604	wrfl();
605
606}
607
608/**
609 *  igb_set_i2c_clk - Sets the I2C SCL clock
610 *  @data: pointer to hardware structure
611 *  @state: state to set clock
612 *
613 *  Sets the I2C clock line to state
614 **/
615static void igb_set_i2c_clk(void *data, int state)
616{
617	struct igb_adapter *adapter = (struct igb_adapter *)data;
618	struct e1000_hw *hw = &adapter->hw;
619	s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621	if (state) {
622		i2cctl |= E1000_I2C_CLK_OUT;
623		i2cctl &= ~E1000_I2C_CLK_OE_N;
624	} else {
625		i2cctl &= ~E1000_I2C_CLK_OUT;
626		i2cctl &= ~E1000_I2C_CLK_OE_N;
627	}
628	wr32(E1000_I2CPARAMS, i2cctl);
629	wrfl();
630}
631
632/**
633 *  igb_get_i2c_clk - Gets the I2C SCL clock state
634 *  @data: pointer to hardware structure
635 *
636 *  Gets the I2C clock state
637 **/
638static int igb_get_i2c_clk(void *data)
639{
640	struct igb_adapter *adapter = (struct igb_adapter *)data;
641	struct e1000_hw *hw = &adapter->hw;
642	s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645}
646
647static const struct i2c_algo_bit_data igb_i2c_algo = {
648	.setsda		= igb_set_i2c_data,
649	.setscl		= igb_set_i2c_clk,
650	.getsda		= igb_get_i2c_data,
651	.getscl		= igb_get_i2c_clk,
652	.udelay		= 5,
653	.timeout	= 20,
654};
655
656/**
657 *  igb_get_hw_dev - return device
658 *  @hw: pointer to hardware structure
659 *
660 *  used by hardware layer to print debugging information
661 **/
662struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663{
664	struct igb_adapter *adapter = hw->back;
665	return adapter->netdev;
666}
667
668/**
669 *  igb_init_module - Driver Registration Routine
670 *
671 *  igb_init_module is the first routine called when the driver is
672 *  loaded. All it does is register with the PCI subsystem.
673 **/
674static int __init igb_init_module(void)
675{
676	int ret;
677	pr_info("%s - version %s\n",
678	       igb_driver_string, igb_driver_version);
679
680	pr_info("%s\n", igb_copyright);
681
682#ifdef CONFIG_IGB_DCA
683	dca_register_notify(&dca_notifier);
684#endif
685	ret = pci_register_driver(&igb_driver);
686	return ret;
687}
688
689module_init(igb_init_module);
690
691/**
692 *  igb_exit_module - Driver Exit Cleanup Routine
693 *
694 *  igb_exit_module is called just before the driver is removed
695 *  from memory.
696 **/
697static void __exit igb_exit_module(void)
698{
699#ifdef CONFIG_IGB_DCA
700	dca_unregister_notify(&dca_notifier);
701#endif
702	pci_unregister_driver(&igb_driver);
703}
704
705module_exit(igb_exit_module);
706
707#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708/**
709 *  igb_cache_ring_register - Descriptor ring to register mapping
710 *  @adapter: board private structure to initialize
711 *
712 *  Once we know the feature-set enabled for the device, we'll cache
713 *  the register offset the descriptor ring is assigned to.
714 **/
715static void igb_cache_ring_register(struct igb_adapter *adapter)
716{
717	int i = 0, j = 0;
718	u32 rbase_offset = adapter->vfs_allocated_count;
719
720	switch (adapter->hw.mac.type) {
721	case e1000_82576:
722		/* The queues are allocated for virtualization such that VF 0
723		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724		 * In order to avoid collision we start at the first free queue
725		 * and continue consuming queues in the same sequence
726		 */
727		if (adapter->vfs_allocated_count) {
728			for (; i < adapter->rss_queues; i++)
729				adapter->rx_ring[i]->reg_idx = rbase_offset +
730							       Q_IDX_82576(i);
731		}
732	case e1000_82575:
733	case e1000_82580:
734	case e1000_i350:
735	case e1000_i354:
736	case e1000_i210:
737	case e1000_i211:
738	default:
739		for (; i < adapter->num_rx_queues; i++)
740			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741		for (; j < adapter->num_tx_queues; j++)
742			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743		break;
744	}
745}
746
747u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748{
749	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751	u32 value = 0;
752
753	if (E1000_REMOVED(hw_addr))
754		return ~value;
755
756	value = readl(&hw_addr[reg]);
757
758	/* reads should not return all F's */
759	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760		struct net_device *netdev = igb->netdev;
761		hw->hw_addr = NULL;
762		netif_device_detach(netdev);
763		netdev_err(netdev, "PCIe link lost, device now detached\n");
764	}
765
766	return value;
767}
768
769/**
770 *  igb_write_ivar - configure ivar for given MSI-X vector
771 *  @hw: pointer to the HW structure
772 *  @msix_vector: vector number we are allocating to a given ring
773 *  @index: row index of IVAR register to write within IVAR table
774 *  @offset: column offset of in IVAR, should be multiple of 8
775 *
776 *  This function is intended to handle the writing of the IVAR register
777 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778 *  each containing an cause allocation for an Rx and Tx ring, and a
779 *  variable number of rows depending on the number of queues supported.
780 **/
781static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782			   int index, int offset)
783{
784	u32 ivar = array_rd32(E1000_IVAR0, index);
785
786	/* clear any bits that are currently set */
787	ivar &= ~((u32)0xFF << offset);
788
789	/* write vector and valid bit */
790	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792	array_wr32(E1000_IVAR0, index, ivar);
793}
794
795#define IGB_N0_QUEUE -1
796static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797{
798	struct igb_adapter *adapter = q_vector->adapter;
799	struct e1000_hw *hw = &adapter->hw;
800	int rx_queue = IGB_N0_QUEUE;
801	int tx_queue = IGB_N0_QUEUE;
802	u32 msixbm = 0;
803
804	if (q_vector->rx.ring)
805		rx_queue = q_vector->rx.ring->reg_idx;
806	if (q_vector->tx.ring)
807		tx_queue = q_vector->tx.ring->reg_idx;
808
809	switch (hw->mac.type) {
810	case e1000_82575:
811		/* The 82575 assigns vectors using a bitmask, which matches the
812		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813		 * or more queues to a vector, we write the appropriate bits
814		 * into the MSIXBM register for that vector.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818		if (tx_queue > IGB_N0_QUEUE)
819			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821			msixbm |= E1000_EIMS_OTHER;
822		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823		q_vector->eims_value = msixbm;
824		break;
825	case e1000_82576:
826		/* 82576 uses a table that essentially consists of 2 columns
827		 * with 8 rows.  The ordering is column-major so we use the
828		 * lower 3 bits as the row index, and the 4th bit as the
829		 * column offset.
830		 */
831		if (rx_queue > IGB_N0_QUEUE)
832			igb_write_ivar(hw, msix_vector,
833				       rx_queue & 0x7,
834				       (rx_queue & 0x8) << 1);
835		if (tx_queue > IGB_N0_QUEUE)
836			igb_write_ivar(hw, msix_vector,
837				       tx_queue & 0x7,
838				       ((tx_queue & 0x8) << 1) + 8);
839		q_vector->eims_value = 1 << msix_vector;
840		break;
841	case e1000_82580:
842	case e1000_i350:
843	case e1000_i354:
844	case e1000_i210:
845	case e1000_i211:
846		/* On 82580 and newer adapters the scheme is similar to 82576
847		 * however instead of ordering column-major we have things
848		 * ordered row-major.  So we traverse the table by using
849		 * bit 0 as the column offset, and the remaining bits as the
850		 * row index.
851		 */
852		if (rx_queue > IGB_N0_QUEUE)
853			igb_write_ivar(hw, msix_vector,
854				       rx_queue >> 1,
855				       (rx_queue & 0x1) << 4);
856		if (tx_queue > IGB_N0_QUEUE)
857			igb_write_ivar(hw, msix_vector,
858				       tx_queue >> 1,
859				       ((tx_queue & 0x1) << 4) + 8);
860		q_vector->eims_value = 1 << msix_vector;
861		break;
862	default:
863		BUG();
864		break;
865	}
866
867	/* add q_vector eims value to global eims_enable_mask */
868	adapter->eims_enable_mask |= q_vector->eims_value;
869
870	/* configure q_vector to set itr on first interrupt */
871	q_vector->set_itr = 1;
872}
873
874/**
875 *  igb_configure_msix - Configure MSI-X hardware
876 *  @adapter: board private structure to initialize
877 *
878 *  igb_configure_msix sets up the hardware to properly
879 *  generate MSI-X interrupts.
880 **/
881static void igb_configure_msix(struct igb_adapter *adapter)
882{
883	u32 tmp;
884	int i, vector = 0;
885	struct e1000_hw *hw = &adapter->hw;
886
887	adapter->eims_enable_mask = 0;
888
889	/* set vector for other causes, i.e. link changes */
890	switch (hw->mac.type) {
891	case e1000_82575:
892		tmp = rd32(E1000_CTRL_EXT);
893		/* enable MSI-X PBA support*/
894		tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896		/* Auto-Mask interrupts upon ICR read. */
897		tmp |= E1000_CTRL_EXT_EIAME;
898		tmp |= E1000_CTRL_EXT_IRCA;
899
900		wr32(E1000_CTRL_EXT, tmp);
901
902		/* enable msix_other interrupt */
903		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904		adapter->eims_other = E1000_EIMS_OTHER;
905
906		break;
907
908	case e1000_82576:
909	case e1000_82580:
910	case e1000_i350:
911	case e1000_i354:
912	case e1000_i210:
913	case e1000_i211:
914		/* Turn on MSI-X capability first, or our settings
915		 * won't stick.  And it will take days to debug.
916		 */
917		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
919		     E1000_GPIE_NSICR);
920
921		/* enable msix_other interrupt */
922		adapter->eims_other = 1 << vector;
923		tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925		wr32(E1000_IVAR_MISC, tmp);
926		break;
927	default:
928		/* do nothing, since nothing else supports MSI-X */
929		break;
930	} /* switch (hw->mac.type) */
931
932	adapter->eims_enable_mask |= adapter->eims_other;
933
934	for (i = 0; i < adapter->num_q_vectors; i++)
935		igb_assign_vector(adapter->q_vector[i], vector++);
936
937	wrfl();
938}
939
940/**
941 *  igb_request_msix - Initialize MSI-X interrupts
942 *  @adapter: board private structure to initialize
943 *
944 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 *  kernel.
946 **/
947static int igb_request_msix(struct igb_adapter *adapter)
948{
949	struct net_device *netdev = adapter->netdev;
950	struct e1000_hw *hw = &adapter->hw;
951	int i, err = 0, vector = 0, free_vector = 0;
952
953	err = request_irq(adapter->msix_entries[vector].vector,
954			  igb_msix_other, 0, netdev->name, adapter);
955	if (err)
956		goto err_out;
957
958	for (i = 0; i < adapter->num_q_vectors; i++) {
959		struct igb_q_vector *q_vector = adapter->q_vector[i];
960
961		vector++;
962
963		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
964
965		if (q_vector->rx.ring && q_vector->tx.ring)
966			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
967				q_vector->rx.ring->queue_index);
968		else if (q_vector->tx.ring)
969			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
970				q_vector->tx.ring->queue_index);
971		else if (q_vector->rx.ring)
972			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
973				q_vector->rx.ring->queue_index);
974		else
975			sprintf(q_vector->name, "%s-unused", netdev->name);
976
977		err = request_irq(adapter->msix_entries[vector].vector,
978				  igb_msix_ring, 0, q_vector->name,
979				  q_vector);
980		if (err)
981			goto err_free;
982	}
983
984	igb_configure_msix(adapter);
985	return 0;
986
987err_free:
988	/* free already assigned IRQs */
989	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
990
991	vector--;
992	for (i = 0; i < vector; i++) {
993		free_irq(adapter->msix_entries[free_vector++].vector,
994			 adapter->q_vector[i]);
995	}
996err_out:
997	return err;
998}
999
1000/**
1001 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1002 *  @adapter: board private structure to initialize
1003 *  @v_idx: Index of vector to be freed
1004 *
1005 *  This function frees the memory allocated to the q_vector.
1006 **/
1007static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1008{
1009	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1010
1011	adapter->q_vector[v_idx] = NULL;
1012
1013	/* igb_get_stats64() might access the rings on this vector,
1014	 * we must wait a grace period before freeing it.
1015	 */
1016	kfree_rcu(q_vector, rcu);
1017}
1018
1019/**
1020 *  igb_reset_q_vector - Reset config for interrupt vector
1021 *  @adapter: board private structure to initialize
1022 *  @v_idx: Index of vector to be reset
1023 *
1024 *  If NAPI is enabled it will delete any references to the
1025 *  NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028{
1029	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1032	 * allocated. So, q_vector is NULL so we should stop here.
1033	 */
1034	if (!q_vector)
1035		return;
1036
1037	if (q_vector->tx.ring)
1038		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040	if (q_vector->rx.ring)
1041		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043	netif_napi_del(&q_vector->napi);
1044
1045}
1046
1047static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048{
1049	int v_idx = adapter->num_q_vectors;
1050
1051	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052		pci_disable_msix(adapter->pdev);
1053	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054		pci_disable_msi(adapter->pdev);
1055
1056	while (v_idx--)
1057		igb_reset_q_vector(adapter, v_idx);
1058}
1059
1060/**
1061 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 *  @adapter: board private structure to initialize
1063 *
1064 *  This function frees the memory allocated to the q_vectors.  In addition if
1065 *  NAPI is enabled it will delete any references to the NAPI struct prior
1066 *  to freeing the q_vector.
1067 **/
1068static void igb_free_q_vectors(struct igb_adapter *adapter)
1069{
1070	int v_idx = adapter->num_q_vectors;
1071
1072	adapter->num_tx_queues = 0;
1073	adapter->num_rx_queues = 0;
1074	adapter->num_q_vectors = 0;
1075
1076	while (v_idx--) {
1077		igb_reset_q_vector(adapter, v_idx);
1078		igb_free_q_vector(adapter, v_idx);
1079	}
1080}
1081
1082/**
1083 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 *  @adapter: board private structure to initialize
1085 *
1086 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 *  MSI-X interrupts allocated.
1088 */
1089static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090{
1091	igb_free_q_vectors(adapter);
1092	igb_reset_interrupt_capability(adapter);
1093}
1094
1095/**
1096 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 *  @adapter: board private structure to initialize
1098 *  @msix: boolean value of MSIX capability
1099 *
1100 *  Attempt to configure interrupts using the best available
1101 *  capabilities of the hardware and kernel.
1102 **/
1103static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104{
1105	int err;
1106	int numvecs, i;
1107
1108	if (!msix)
1109		goto msi_only;
1110	adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112	/* Number of supported queues. */
1113	adapter->num_rx_queues = adapter->rss_queues;
1114	if (adapter->vfs_allocated_count)
1115		adapter->num_tx_queues = 1;
1116	else
1117		adapter->num_tx_queues = adapter->rss_queues;
1118
1119	/* start with one vector for every Rx queue */
1120	numvecs = adapter->num_rx_queues;
1121
1122	/* if Tx handler is separate add 1 for every Tx queue */
1123	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124		numvecs += adapter->num_tx_queues;
1125
1126	/* store the number of vectors reserved for queues */
1127	adapter->num_q_vectors = numvecs;
1128
1129	/* add 1 vector for link status interrupts */
1130	numvecs++;
1131	for (i = 0; i < numvecs; i++)
1132		adapter->msix_entries[i].entry = i;
1133
1134	err = pci_enable_msix_range(adapter->pdev,
1135				    adapter->msix_entries,
1136				    numvecs,
1137				    numvecs);
1138	if (err > 0)
1139		return;
1140
1141	igb_reset_interrupt_capability(adapter);
1142
1143	/* If we can't do MSI-X, try MSI */
1144msi_only:
1145	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146#ifdef CONFIG_PCI_IOV
1147	/* disable SR-IOV for non MSI-X configurations */
1148	if (adapter->vf_data) {
1149		struct e1000_hw *hw = &adapter->hw;
1150		/* disable iov and allow time for transactions to clear */
1151		pci_disable_sriov(adapter->pdev);
1152		msleep(500);
1153
1154		kfree(adapter->vf_data);
1155		adapter->vf_data = NULL;
1156		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157		wrfl();
1158		msleep(100);
1159		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160	}
1161#endif
1162	adapter->vfs_allocated_count = 0;
1163	adapter->rss_queues = 1;
1164	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165	adapter->num_rx_queues = 1;
1166	adapter->num_tx_queues = 1;
1167	adapter->num_q_vectors = 1;
1168	if (!pci_enable_msi(adapter->pdev))
1169		adapter->flags |= IGB_FLAG_HAS_MSI;
1170}
1171
1172static void igb_add_ring(struct igb_ring *ring,
1173			 struct igb_ring_container *head)
1174{
1175	head->ring = ring;
1176	head->count++;
1177}
1178
1179/**
1180 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 *  @adapter: board private structure to initialize
1182 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 *  @v_idx: index of vector in adapter struct
1184 *  @txr_count: total number of Tx rings to allocate
1185 *  @txr_idx: index of first Tx ring to allocate
1186 *  @rxr_count: total number of Rx rings to allocate
1187 *  @rxr_idx: index of first Rx ring to allocate
1188 *
1189 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190 **/
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192			      int v_count, int v_idx,
1193			      int txr_count, int txr_idx,
1194			      int rxr_count, int rxr_idx)
1195{
1196	struct igb_q_vector *q_vector;
1197	struct igb_ring *ring;
1198	int ring_count, size;
1199
1200	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201	if (txr_count > 1 || rxr_count > 1)
1202		return -ENOMEM;
1203
1204	ring_count = txr_count + rxr_count;
1205	size = sizeof(struct igb_q_vector) +
1206	       (sizeof(struct igb_ring) * ring_count);
1207
1208	/* allocate q_vector and rings */
1209	q_vector = adapter->q_vector[v_idx];
1210	if (!q_vector)
1211		q_vector = kzalloc(size, GFP_KERNEL);
1212	if (!q_vector)
1213		return -ENOMEM;
1214
1215	/* initialize NAPI */
1216	netif_napi_add(adapter->netdev, &q_vector->napi,
1217		       igb_poll, 64);
1218
1219	/* tie q_vector and adapter together */
1220	adapter->q_vector[v_idx] = q_vector;
1221	q_vector->adapter = adapter;
1222
1223	/* initialize work limits */
1224	q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226	/* initialize ITR configuration */
1227	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228	q_vector->itr_val = IGB_START_ITR;
1229
1230	/* initialize pointer to rings */
1231	ring = q_vector->ring;
1232
1233	/* intialize ITR */
1234	if (rxr_count) {
1235		/* rx or rx/tx vector */
1236		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237			q_vector->itr_val = adapter->rx_itr_setting;
1238	} else {
1239		/* tx only vector */
1240		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241			q_vector->itr_val = adapter->tx_itr_setting;
1242	}
1243
1244	if (txr_count) {
1245		/* assign generic ring traits */
1246		ring->dev = &adapter->pdev->dev;
1247		ring->netdev = adapter->netdev;
1248
1249		/* configure backlink on ring */
1250		ring->q_vector = q_vector;
1251
1252		/* update q_vector Tx values */
1253		igb_add_ring(ring, &q_vector->tx);
1254
1255		/* For 82575, context index must be unique per ring. */
1256		if (adapter->hw.mac.type == e1000_82575)
1257			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259		/* apply Tx specific ring traits */
1260		ring->count = adapter->tx_ring_count;
1261		ring->queue_index = txr_idx;
1262
1263		u64_stats_init(&ring->tx_syncp);
1264		u64_stats_init(&ring->tx_syncp2);
1265
1266		/* assign ring to adapter */
1267		adapter->tx_ring[txr_idx] = ring;
1268
1269		/* push pointer to next ring */
1270		ring++;
1271	}
1272
1273	if (rxr_count) {
1274		/* assign generic ring traits */
1275		ring->dev = &adapter->pdev->dev;
1276		ring->netdev = adapter->netdev;
1277
1278		/* configure backlink on ring */
1279		ring->q_vector = q_vector;
1280
1281		/* update q_vector Rx values */
1282		igb_add_ring(ring, &q_vector->rx);
1283
1284		/* set flag indicating ring supports SCTP checksum offload */
1285		if (adapter->hw.mac.type >= e1000_82576)
1286			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288		/*
1289		 * On i350, i354, i210, and i211, loopback VLAN packets
1290		 * have the tag byte-swapped.
1291		 */
1292		if (adapter->hw.mac.type >= e1000_i350)
1293			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294
1295		/* apply Rx specific ring traits */
1296		ring->count = adapter->rx_ring_count;
1297		ring->queue_index = rxr_idx;
1298
1299		u64_stats_init(&ring->rx_syncp);
1300
1301		/* assign ring to adapter */
1302		adapter->rx_ring[rxr_idx] = ring;
1303	}
1304
1305	return 0;
1306}
1307
1308
1309/**
1310 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1311 *  @adapter: board private structure to initialize
1312 *
1313 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1314 *  return -ENOMEM.
1315 **/
1316static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317{
1318	int q_vectors = adapter->num_q_vectors;
1319	int rxr_remaining = adapter->num_rx_queues;
1320	int txr_remaining = adapter->num_tx_queues;
1321	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1322	int err;
1323
1324	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1325		for (; rxr_remaining; v_idx++) {
1326			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1327						 0, 0, 1, rxr_idx);
1328
1329			if (err)
1330				goto err_out;
1331
1332			/* update counts and index */
1333			rxr_remaining--;
1334			rxr_idx++;
1335		}
1336	}
1337
1338	for (; v_idx < q_vectors; v_idx++) {
1339		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1340		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342					 tqpv, txr_idx, rqpv, rxr_idx);
1343
1344		if (err)
1345			goto err_out;
1346
1347		/* update counts and index */
1348		rxr_remaining -= rqpv;
1349		txr_remaining -= tqpv;
1350		rxr_idx++;
1351		txr_idx++;
1352	}
1353
1354	return 0;
1355
1356err_out:
1357	adapter->num_tx_queues = 0;
1358	adapter->num_rx_queues = 0;
1359	adapter->num_q_vectors = 0;
1360
1361	while (v_idx--)
1362		igb_free_q_vector(adapter, v_idx);
1363
1364	return -ENOMEM;
1365}
1366
1367/**
1368 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 *  @adapter: board private structure to initialize
1370 *  @msix: boolean value of MSIX capability
1371 *
1372 *  This function initializes the interrupts and allocates all of the queues.
1373 **/
1374static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375{
1376	struct pci_dev *pdev = adapter->pdev;
1377	int err;
1378
1379	igb_set_interrupt_capability(adapter, msix);
1380
1381	err = igb_alloc_q_vectors(adapter);
1382	if (err) {
1383		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384		goto err_alloc_q_vectors;
1385	}
1386
1387	igb_cache_ring_register(adapter);
1388
1389	return 0;
1390
1391err_alloc_q_vectors:
1392	igb_reset_interrupt_capability(adapter);
1393	return err;
1394}
1395
1396/**
1397 *  igb_request_irq - initialize interrupts
1398 *  @adapter: board private structure to initialize
1399 *
1400 *  Attempts to configure interrupts using the best available
1401 *  capabilities of the hardware and kernel.
1402 **/
1403static int igb_request_irq(struct igb_adapter *adapter)
1404{
1405	struct net_device *netdev = adapter->netdev;
1406	struct pci_dev *pdev = adapter->pdev;
1407	int err = 0;
1408
1409	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410		err = igb_request_msix(adapter);
1411		if (!err)
1412			goto request_done;
1413		/* fall back to MSI */
1414		igb_free_all_tx_resources(adapter);
1415		igb_free_all_rx_resources(adapter);
1416
1417		igb_clear_interrupt_scheme(adapter);
1418		err = igb_init_interrupt_scheme(adapter, false);
1419		if (err)
1420			goto request_done;
1421
1422		igb_setup_all_tx_resources(adapter);
1423		igb_setup_all_rx_resources(adapter);
1424		igb_configure(adapter);
1425	}
1426
1427	igb_assign_vector(adapter->q_vector[0], 0);
1428
1429	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430		err = request_irq(pdev->irq, igb_intr_msi, 0,
1431				  netdev->name, adapter);
1432		if (!err)
1433			goto request_done;
1434
1435		/* fall back to legacy interrupts */
1436		igb_reset_interrupt_capability(adapter);
1437		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438	}
1439
1440	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441			  netdev->name, adapter);
1442
1443	if (err)
1444		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445			err);
1446
1447request_done:
1448	return err;
1449}
1450
1451static void igb_free_irq(struct igb_adapter *adapter)
1452{
1453	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454		int vector = 0, i;
1455
1456		free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458		for (i = 0; i < adapter->num_q_vectors; i++)
1459			free_irq(adapter->msix_entries[vector++].vector,
1460				 adapter->q_vector[i]);
1461	} else {
1462		free_irq(adapter->pdev->irq, adapter);
1463	}
1464}
1465
1466/**
1467 *  igb_irq_disable - Mask off interrupt generation on the NIC
1468 *  @adapter: board private structure
1469 **/
1470static void igb_irq_disable(struct igb_adapter *adapter)
1471{
1472	struct e1000_hw *hw = &adapter->hw;
1473
1474	/* we need to be careful when disabling interrupts.  The VFs are also
1475	 * mapped into these registers and so clearing the bits can cause
1476	 * issues on the VF drivers so we only need to clear what we set
1477	 */
1478	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479		u32 regval = rd32(E1000_EIAM);
1480		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482		regval = rd32(E1000_EIAC);
1483		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484	}
1485
1486	wr32(E1000_IAM, 0);
1487	wr32(E1000_IMC, ~0);
1488	wrfl();
1489	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490		int i;
1491		for (i = 0; i < adapter->num_q_vectors; i++)
1492			synchronize_irq(adapter->msix_entries[i].vector);
1493	} else {
1494		synchronize_irq(adapter->pdev->irq);
1495	}
1496}
1497
1498/**
1499 *  igb_irq_enable - Enable default interrupt generation settings
1500 *  @adapter: board private structure
1501 **/
1502static void igb_irq_enable(struct igb_adapter *adapter)
1503{
1504	struct e1000_hw *hw = &adapter->hw;
1505
1506	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508		u32 regval = rd32(E1000_EIAC);
1509		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1510		regval = rd32(E1000_EIAM);
1511		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1512		wr32(E1000_EIMS, adapter->eims_enable_mask);
1513		if (adapter->vfs_allocated_count) {
1514			wr32(E1000_MBVFIMR, 0xFF);
1515			ims |= E1000_IMS_VMMB;
1516		}
1517		wr32(E1000_IMS, ims);
1518	} else {
1519		wr32(E1000_IMS, IMS_ENABLE_MASK |
1520				E1000_IMS_DRSTA);
1521		wr32(E1000_IAM, IMS_ENABLE_MASK |
1522				E1000_IMS_DRSTA);
1523	}
1524}
1525
1526static void igb_update_mng_vlan(struct igb_adapter *adapter)
1527{
1528	struct e1000_hw *hw = &adapter->hw;
1529	u16 vid = adapter->hw.mng_cookie.vlan_id;
1530	u16 old_vid = adapter->mng_vlan_id;
1531
1532	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1533		/* add VID to filter table */
1534		igb_vfta_set(hw, vid, true);
1535		adapter->mng_vlan_id = vid;
1536	} else {
1537		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1538	}
1539
1540	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1541	    (vid != old_vid) &&
1542	    !test_bit(old_vid, adapter->active_vlans)) {
1543		/* remove VID from filter table */
1544		igb_vfta_set(hw, old_vid, false);
1545	}
1546}
1547
1548/**
1549 *  igb_release_hw_control - release control of the h/w to f/w
1550 *  @adapter: address of board private structure
1551 *
1552 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1553 *  For ASF and Pass Through versions of f/w this means that the
1554 *  driver is no longer loaded.
1555 **/
1556static void igb_release_hw_control(struct igb_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559	u32 ctrl_ext;
1560
1561	/* Let firmware take over control of h/w */
1562	ctrl_ext = rd32(E1000_CTRL_EXT);
1563	wr32(E1000_CTRL_EXT,
1564			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1565}
1566
1567/**
1568 *  igb_get_hw_control - get control of the h/w from f/w
1569 *  @adapter: address of board private structure
1570 *
1571 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1572 *  For ASF and Pass Through versions of f/w this means that
1573 *  the driver is loaded.
1574 **/
1575static void igb_get_hw_control(struct igb_adapter *adapter)
1576{
1577	struct e1000_hw *hw = &adapter->hw;
1578	u32 ctrl_ext;
1579
1580	/* Let firmware know the driver has taken over */
1581	ctrl_ext = rd32(E1000_CTRL_EXT);
1582	wr32(E1000_CTRL_EXT,
1583			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1584}
1585
1586/**
1587 *  igb_configure - configure the hardware for RX and TX
1588 *  @adapter: private board structure
1589 **/
1590static void igb_configure(struct igb_adapter *adapter)
1591{
1592	struct net_device *netdev = adapter->netdev;
1593	int i;
1594
1595	igb_get_hw_control(adapter);
1596	igb_set_rx_mode(netdev);
1597
1598	igb_restore_vlan(adapter);
1599
1600	igb_setup_tctl(adapter);
1601	igb_setup_mrqc(adapter);
1602	igb_setup_rctl(adapter);
1603
1604	igb_configure_tx(adapter);
1605	igb_configure_rx(adapter);
1606
1607	igb_rx_fifo_flush_82575(&adapter->hw);
1608
1609	/* call igb_desc_unused which always leaves
1610	 * at least 1 descriptor unused to make sure
1611	 * next_to_use != next_to_clean
1612	 */
1613	for (i = 0; i < adapter->num_rx_queues; i++) {
1614		struct igb_ring *ring = adapter->rx_ring[i];
1615		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1616	}
1617}
1618
1619/**
1620 *  igb_power_up_link - Power up the phy/serdes link
1621 *  @adapter: address of board private structure
1622 **/
1623void igb_power_up_link(struct igb_adapter *adapter)
1624{
1625	igb_reset_phy(&adapter->hw);
1626
1627	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1628		igb_power_up_phy_copper(&adapter->hw);
1629	else
1630		igb_power_up_serdes_link_82575(&adapter->hw);
1631}
1632
1633/**
1634 *  igb_power_down_link - Power down the phy/serdes link
1635 *  @adapter: address of board private structure
1636 */
1637static void igb_power_down_link(struct igb_adapter *adapter)
1638{
1639	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1640		igb_power_down_phy_copper_82575(&adapter->hw);
1641	else
1642		igb_shutdown_serdes_link_82575(&adapter->hw);
1643}
1644
1645/**
1646 * Detect and switch function for Media Auto Sense
1647 * @adapter: address of the board private structure
1648 **/
1649static void igb_check_swap_media(struct igb_adapter *adapter)
1650{
1651	struct e1000_hw *hw = &adapter->hw;
1652	u32 ctrl_ext, connsw;
1653	bool swap_now = false;
1654
1655	ctrl_ext = rd32(E1000_CTRL_EXT);
1656	connsw = rd32(E1000_CONNSW);
1657
1658	/* need to live swap if current media is copper and we have fiber/serdes
1659	 * to go to.
1660	 */
1661
1662	if ((hw->phy.media_type == e1000_media_type_copper) &&
1663	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1664		swap_now = true;
1665	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1666		/* copper signal takes time to appear */
1667		if (adapter->copper_tries < 4) {
1668			adapter->copper_tries++;
1669			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1670			wr32(E1000_CONNSW, connsw);
1671			return;
1672		} else {
1673			adapter->copper_tries = 0;
1674			if ((connsw & E1000_CONNSW_PHYSD) &&
1675			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1676				swap_now = true;
1677				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1678				wr32(E1000_CONNSW, connsw);
1679			}
1680		}
1681	}
1682
1683	if (!swap_now)
1684		return;
1685
1686	switch (hw->phy.media_type) {
1687	case e1000_media_type_copper:
1688		netdev_info(adapter->netdev,
1689			"MAS: changing media to fiber/serdes\n");
1690		ctrl_ext |=
1691			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1692		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1693		adapter->copper_tries = 0;
1694		break;
1695	case e1000_media_type_internal_serdes:
1696	case e1000_media_type_fiber:
1697		netdev_info(adapter->netdev,
1698			"MAS: changing media to copper\n");
1699		ctrl_ext &=
1700			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702		break;
1703	default:
1704		/* shouldn't get here during regular operation */
1705		netdev_err(adapter->netdev,
1706			"AMS: Invalid media type found, returning\n");
1707		break;
1708	}
1709	wr32(E1000_CTRL_EXT, ctrl_ext);
1710}
1711
1712/**
1713 *  igb_up - Open the interface and prepare it to handle traffic
1714 *  @adapter: board private structure
1715 **/
1716int igb_up(struct igb_adapter *adapter)
1717{
1718	struct e1000_hw *hw = &adapter->hw;
1719	int i;
1720
1721	/* hardware has been reset, we need to reload some things */
1722	igb_configure(adapter);
1723
1724	clear_bit(__IGB_DOWN, &adapter->state);
1725
1726	for (i = 0; i < adapter->num_q_vectors; i++)
1727		napi_enable(&(adapter->q_vector[i]->napi));
1728
1729	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1730		igb_configure_msix(adapter);
1731	else
1732		igb_assign_vector(adapter->q_vector[0], 0);
1733
1734	/* Clear any pending interrupts. */
1735	rd32(E1000_ICR);
1736	igb_irq_enable(adapter);
1737
1738	/* notify VFs that reset has been completed */
1739	if (adapter->vfs_allocated_count) {
1740		u32 reg_data = rd32(E1000_CTRL_EXT);
1741		reg_data |= E1000_CTRL_EXT_PFRSTD;
1742		wr32(E1000_CTRL_EXT, reg_data);
1743	}
1744
1745	netif_tx_start_all_queues(adapter->netdev);
1746
1747	/* start the watchdog. */
1748	hw->mac.get_link_status = 1;
1749	schedule_work(&adapter->watchdog_task);
1750
1751	if ((adapter->flags & IGB_FLAG_EEE) &&
1752	    (!hw->dev_spec._82575.eee_disable))
1753		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1754
1755	return 0;
1756}
1757
1758void igb_down(struct igb_adapter *adapter)
1759{
1760	struct net_device *netdev = adapter->netdev;
1761	struct e1000_hw *hw = &adapter->hw;
1762	u32 tctl, rctl;
1763	int i;
1764
1765	/* signal that we're down so the interrupt handler does not
1766	 * reschedule our watchdog timer
1767	 */
1768	set_bit(__IGB_DOWN, &adapter->state);
1769
1770	/* disable receives in the hardware */
1771	rctl = rd32(E1000_RCTL);
1772	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1773	/* flush and sleep below */
1774
1775	netif_tx_stop_all_queues(netdev);
1776
1777	/* disable transmits in the hardware */
1778	tctl = rd32(E1000_TCTL);
1779	tctl &= ~E1000_TCTL_EN;
1780	wr32(E1000_TCTL, tctl);
1781	/* flush both disables and wait for them to finish */
1782	wrfl();
1783	msleep(10);
1784
1785	igb_irq_disable(adapter);
1786
1787	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1788
1789	for (i = 0; i < adapter->num_q_vectors; i++) {
1790		napi_synchronize(&(adapter->q_vector[i]->napi));
1791		napi_disable(&(adapter->q_vector[i]->napi));
1792	}
1793
1794
1795	del_timer_sync(&adapter->watchdog_timer);
1796	del_timer_sync(&adapter->phy_info_timer);
1797
1798	netif_carrier_off(netdev);
1799
1800	/* record the stats before reset*/
1801	spin_lock(&adapter->stats64_lock);
1802	igb_update_stats(adapter, &adapter->stats64);
1803	spin_unlock(&adapter->stats64_lock);
1804
1805	adapter->link_speed = 0;
1806	adapter->link_duplex = 0;
1807
1808	if (!pci_channel_offline(adapter->pdev))
1809		igb_reset(adapter);
1810	igb_clean_all_tx_rings(adapter);
1811	igb_clean_all_rx_rings(adapter);
1812#ifdef CONFIG_IGB_DCA
1813
1814	/* since we reset the hardware DCA settings were cleared */
1815	igb_setup_dca(adapter);
1816#endif
1817}
1818
1819void igb_reinit_locked(struct igb_adapter *adapter)
1820{
1821	WARN_ON(in_interrupt());
1822	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1823		msleep(1);
1824	igb_down(adapter);
1825	igb_up(adapter);
1826	clear_bit(__IGB_RESETTING, &adapter->state);
1827}
1828
1829/** igb_enable_mas - Media Autosense re-enable after swap
1830 *
1831 * @adapter: adapter struct
1832 **/
1833static s32 igb_enable_mas(struct igb_adapter *adapter)
1834{
1835	struct e1000_hw *hw = &adapter->hw;
1836	u32 connsw;
1837	s32 ret_val = 0;
1838
1839	connsw = rd32(E1000_CONNSW);
1840	if (!(hw->phy.media_type == e1000_media_type_copper))
1841		return ret_val;
1842
1843	/* configure for SerDes media detect */
1844	if (!(connsw & E1000_CONNSW_SERDESD)) {
1845		connsw |= E1000_CONNSW_ENRGSRC;
1846		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1847		wr32(E1000_CONNSW, connsw);
1848		wrfl();
1849	} else if (connsw & E1000_CONNSW_SERDESD) {
1850		/* already SerDes, no need to enable anything */
1851		return ret_val;
1852	} else {
1853		netdev_info(adapter->netdev,
1854			"MAS: Unable to configure feature, disabling..\n");
1855		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1856	}
1857	return ret_val;
1858}
1859
1860void igb_reset(struct igb_adapter *adapter)
1861{
1862	struct pci_dev *pdev = adapter->pdev;
1863	struct e1000_hw *hw = &adapter->hw;
1864	struct e1000_mac_info *mac = &hw->mac;
1865	struct e1000_fc_info *fc = &hw->fc;
1866	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1867
1868	/* Repartition Pba for greater than 9k mtu
1869	 * To take effect CTRL.RST is required.
1870	 */
1871	switch (mac->type) {
1872	case e1000_i350:
1873	case e1000_i354:
1874	case e1000_82580:
1875		pba = rd32(E1000_RXPBS);
1876		pba = igb_rxpbs_adjust_82580(pba);
1877		break;
1878	case e1000_82576:
1879		pba = rd32(E1000_RXPBS);
1880		pba &= E1000_RXPBS_SIZE_MASK_82576;
1881		break;
1882	case e1000_82575:
1883	case e1000_i210:
1884	case e1000_i211:
1885	default:
1886		pba = E1000_PBA_34K;
1887		break;
1888	}
1889
1890	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1891	    (mac->type < e1000_82576)) {
1892		/* adjust PBA for jumbo frames */
1893		wr32(E1000_PBA, pba);
1894
1895		/* To maintain wire speed transmits, the Tx FIFO should be
1896		 * large enough to accommodate two full transmit packets,
1897		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1898		 * the Rx FIFO should be large enough to accommodate at least
1899		 * one full receive packet and is similarly rounded up and
1900		 * expressed in KB.
1901		 */
1902		pba = rd32(E1000_PBA);
1903		/* upper 16 bits has Tx packet buffer allocation size in KB */
1904		tx_space = pba >> 16;
1905		/* lower 16 bits has Rx packet buffer allocation size in KB */
1906		pba &= 0xffff;
1907		/* the Tx fifo also stores 16 bytes of information about the Tx
1908		 * but don't include ethernet FCS because hardware appends it
1909		 */
1910		min_tx_space = (adapter->max_frame_size +
1911				sizeof(union e1000_adv_tx_desc) -
1912				ETH_FCS_LEN) * 2;
1913		min_tx_space = ALIGN(min_tx_space, 1024);
1914		min_tx_space >>= 10;
1915		/* software strips receive CRC, so leave room for it */
1916		min_rx_space = adapter->max_frame_size;
1917		min_rx_space = ALIGN(min_rx_space, 1024);
1918		min_rx_space >>= 10;
1919
1920		/* If current Tx allocation is less than the min Tx FIFO size,
1921		 * and the min Tx FIFO size is less than the current Rx FIFO
1922		 * allocation, take space away from current Rx allocation
1923		 */
1924		if (tx_space < min_tx_space &&
1925		    ((min_tx_space - tx_space) < pba)) {
1926			pba = pba - (min_tx_space - tx_space);
1927
1928			/* if short on Rx space, Rx wins and must trump Tx
1929			 * adjustment
1930			 */
1931			if (pba < min_rx_space)
1932				pba = min_rx_space;
1933		}
1934		wr32(E1000_PBA, pba);
1935	}
1936
1937	/* flow control settings */
1938	/* The high water mark must be low enough to fit one full frame
1939	 * (or the size used for early receive) above it in the Rx FIFO.
1940	 * Set it to the lower of:
1941	 * - 90% of the Rx FIFO size, or
1942	 * - the full Rx FIFO size minus one full frame
1943	 */
1944	hwm = min(((pba << 10) * 9 / 10),
1945			((pba << 10) - 2 * adapter->max_frame_size));
1946
1947	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1948	fc->low_water = fc->high_water - 16;
1949	fc->pause_time = 0xFFFF;
1950	fc->send_xon = 1;
1951	fc->current_mode = fc->requested_mode;
1952
1953	/* disable receive for all VFs and wait one second */
1954	if (adapter->vfs_allocated_count) {
1955		int i;
1956		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1957			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1958
1959		/* ping all the active vfs to let them know we are going down */
1960		igb_ping_all_vfs(adapter);
1961
1962		/* disable transmits and receives */
1963		wr32(E1000_VFRE, 0);
1964		wr32(E1000_VFTE, 0);
1965	}
1966
1967	/* Allow time for pending master requests to run */
1968	hw->mac.ops.reset_hw(hw);
1969	wr32(E1000_WUC, 0);
1970
1971	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1972		/* need to resetup here after media swap */
1973		adapter->ei.get_invariants(hw);
1974		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1975	}
1976	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1977		if (igb_enable_mas(adapter))
1978			dev_err(&pdev->dev,
1979				"Error enabling Media Auto Sense\n");
1980	}
1981	if (hw->mac.ops.init_hw(hw))
1982		dev_err(&pdev->dev, "Hardware Error\n");
1983
1984	/* Flow control settings reset on hardware reset, so guarantee flow
1985	 * control is off when forcing speed.
1986	 */
1987	if (!hw->mac.autoneg)
1988		igb_force_mac_fc(hw);
1989
1990	igb_init_dmac(adapter, pba);
1991#ifdef CONFIG_IGB_HWMON
1992	/* Re-initialize the thermal sensor on i350 devices. */
1993	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1994		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1995			/* If present, re-initialize the external thermal sensor
1996			 * interface.
1997			 */
1998			if (adapter->ets)
1999				mac->ops.init_thermal_sensor_thresh(hw);
2000		}
2001	}
2002#endif
2003	/* Re-establish EEE setting */
2004	if (hw->phy.media_type == e1000_media_type_copper) {
2005		switch (mac->type) {
2006		case e1000_i350:
2007		case e1000_i210:
2008		case e1000_i211:
2009			igb_set_eee_i350(hw);
2010			break;
2011		case e1000_i354:
2012			igb_set_eee_i354(hw);
2013			break;
2014		default:
2015			break;
2016		}
2017	}
2018	if (!netif_running(adapter->netdev))
2019		igb_power_down_link(adapter);
2020
2021	igb_update_mng_vlan(adapter);
2022
2023	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2024	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2025
2026	/* Re-enable PTP, where applicable. */
2027	igb_ptp_reset(adapter);
2028
2029	igb_get_phy_info(hw);
2030}
2031
2032static netdev_features_t igb_fix_features(struct net_device *netdev,
2033	netdev_features_t features)
2034{
2035	/* Since there is no support for separate Rx/Tx vlan accel
2036	 * enable/disable make sure Tx flag is always in same state as Rx.
2037	 */
2038	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2039		features |= NETIF_F_HW_VLAN_CTAG_TX;
2040	else
2041		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2042
2043	return features;
2044}
2045
2046static int igb_set_features(struct net_device *netdev,
2047	netdev_features_t features)
2048{
2049	netdev_features_t changed = netdev->features ^ features;
2050	struct igb_adapter *adapter = netdev_priv(netdev);
2051
2052	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2053		igb_vlan_mode(netdev, features);
2054
2055	if (!(changed & NETIF_F_RXALL))
2056		return 0;
2057
2058	netdev->features = features;
2059
2060	if (netif_running(netdev))
2061		igb_reinit_locked(adapter);
2062	else
2063		igb_reset(adapter);
2064
2065	return 0;
2066}
2067
2068static const struct net_device_ops igb_netdev_ops = {
2069	.ndo_open		= igb_open,
2070	.ndo_stop		= igb_close,
2071	.ndo_start_xmit		= igb_xmit_frame,
2072	.ndo_get_stats64	= igb_get_stats64,
2073	.ndo_set_rx_mode	= igb_set_rx_mode,
2074	.ndo_set_mac_address	= igb_set_mac,
2075	.ndo_change_mtu		= igb_change_mtu,
2076	.ndo_do_ioctl		= igb_ioctl,
2077	.ndo_tx_timeout		= igb_tx_timeout,
2078	.ndo_validate_addr	= eth_validate_addr,
2079	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2080	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2081	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2082	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2083	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2084	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2085	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2086#ifdef CONFIG_NET_POLL_CONTROLLER
2087	.ndo_poll_controller	= igb_netpoll,
2088#endif
2089	.ndo_fix_features	= igb_fix_features,
2090	.ndo_set_features	= igb_set_features,
2091};
2092
2093/**
2094 * igb_set_fw_version - Configure version string for ethtool
2095 * @adapter: adapter struct
2096 **/
2097void igb_set_fw_version(struct igb_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100	struct e1000_fw_version fw;
2101
2102	igb_get_fw_version(hw, &fw);
2103
2104	switch (hw->mac.type) {
2105	case e1000_i210:
2106	case e1000_i211:
2107		if (!(igb_get_flash_presence_i210(hw))) {
2108			snprintf(adapter->fw_version,
2109				 sizeof(adapter->fw_version),
2110				 "%2d.%2d-%d",
2111				 fw.invm_major, fw.invm_minor,
2112				 fw.invm_img_type);
2113			break;
2114		}
2115		/* fall through */
2116	default:
2117		/* if option is rom valid, display its version too */
2118		if (fw.or_valid) {
2119			snprintf(adapter->fw_version,
2120				 sizeof(adapter->fw_version),
2121				 "%d.%d, 0x%08x, %d.%d.%d",
2122				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2123				 fw.or_major, fw.or_build, fw.or_patch);
2124		/* no option rom */
2125		} else if (fw.etrack_id != 0X0000) {
2126			snprintf(adapter->fw_version,
2127			    sizeof(adapter->fw_version),
2128			    "%d.%d, 0x%08x",
2129			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2130		} else {
2131		snprintf(adapter->fw_version,
2132		    sizeof(adapter->fw_version),
2133		    "%d.%d.%d",
2134		    fw.eep_major, fw.eep_minor, fw.eep_build);
2135		}
2136		break;
2137	}
2138	return;
2139}
2140
2141/**
2142 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2143 *
2144 * @adapter: adapter struct
2145 **/
2146static void igb_init_mas(struct igb_adapter *adapter)
2147{
2148	struct e1000_hw *hw = &adapter->hw;
2149	u16 eeprom_data;
2150
2151	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2152	switch (hw->bus.func) {
2153	case E1000_FUNC_0:
2154		if (eeprom_data & IGB_MAS_ENABLE_0) {
2155			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2156			netdev_info(adapter->netdev,
2157				"MAS: Enabling Media Autosense for port %d\n",
2158				hw->bus.func);
2159		}
2160		break;
2161	case E1000_FUNC_1:
2162		if (eeprom_data & IGB_MAS_ENABLE_1) {
2163			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164			netdev_info(adapter->netdev,
2165				"MAS: Enabling Media Autosense for port %d\n",
2166				hw->bus.func);
2167		}
2168		break;
2169	case E1000_FUNC_2:
2170		if (eeprom_data & IGB_MAS_ENABLE_2) {
2171			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172			netdev_info(adapter->netdev,
2173				"MAS: Enabling Media Autosense for port %d\n",
2174				hw->bus.func);
2175		}
2176		break;
2177	case E1000_FUNC_3:
2178		if (eeprom_data & IGB_MAS_ENABLE_3) {
2179			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180			netdev_info(adapter->netdev,
2181				"MAS: Enabling Media Autosense for port %d\n",
2182				hw->bus.func);
2183		}
2184		break;
2185	default:
2186		/* Shouldn't get here */
2187		netdev_err(adapter->netdev,
2188			"MAS: Invalid port configuration, returning\n");
2189		break;
2190	}
2191}
2192
2193/**
2194 *  igb_init_i2c - Init I2C interface
2195 *  @adapter: pointer to adapter structure
2196 **/
2197static s32 igb_init_i2c(struct igb_adapter *adapter)
2198{
2199	s32 status = E1000_SUCCESS;
2200
2201	/* I2C interface supported on i350 devices */
2202	if (adapter->hw.mac.type != e1000_i350)
2203		return E1000_SUCCESS;
2204
2205	/* Initialize the i2c bus which is controlled by the registers.
2206	 * This bus will use the i2c_algo_bit structue that implements
2207	 * the protocol through toggling of the 4 bits in the register.
2208	 */
2209	adapter->i2c_adap.owner = THIS_MODULE;
2210	adapter->i2c_algo = igb_i2c_algo;
2211	adapter->i2c_algo.data = adapter;
2212	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2213	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2214	strlcpy(adapter->i2c_adap.name, "igb BB",
2215		sizeof(adapter->i2c_adap.name));
2216	status = i2c_bit_add_bus(&adapter->i2c_adap);
2217	return status;
2218}
2219
2220/**
2221 *  igb_probe - Device Initialization Routine
2222 *  @pdev: PCI device information struct
2223 *  @ent: entry in igb_pci_tbl
2224 *
2225 *  Returns 0 on success, negative on failure
2226 *
2227 *  igb_probe initializes an adapter identified by a pci_dev structure.
2228 *  The OS initialization, configuring of the adapter private structure,
2229 *  and a hardware reset occur.
2230 **/
2231static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2232{
2233	struct net_device *netdev;
2234	struct igb_adapter *adapter;
2235	struct e1000_hw *hw;
2236	u16 eeprom_data = 0;
2237	s32 ret_val;
2238	static int global_quad_port_a; /* global quad port a indication */
2239	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2240	int err, pci_using_dac;
2241	u8 part_str[E1000_PBANUM_LENGTH];
2242
2243	/* Catch broken hardware that put the wrong VF device ID in
2244	 * the PCIe SR-IOV capability.
2245	 */
2246	if (pdev->is_virtfn) {
2247		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2248			pci_name(pdev), pdev->vendor, pdev->device);
2249		return -EINVAL;
2250	}
2251
2252	err = pci_enable_device_mem(pdev);
2253	if (err)
2254		return err;
2255
2256	pci_using_dac = 0;
2257	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2258	if (!err) {
2259		pci_using_dac = 1;
2260	} else {
2261		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2262		if (err) {
2263			dev_err(&pdev->dev,
2264				"No usable DMA configuration, aborting\n");
2265			goto err_dma;
2266		}
2267	}
2268
2269	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2270					   IORESOURCE_MEM),
2271					   igb_driver_name);
2272	if (err)
2273		goto err_pci_reg;
2274
2275	pci_enable_pcie_error_reporting(pdev);
2276
2277	pci_set_master(pdev);
2278	pci_save_state(pdev);
2279
2280	err = -ENOMEM;
2281	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2282				   IGB_MAX_TX_QUEUES);
2283	if (!netdev)
2284		goto err_alloc_etherdev;
2285
2286	SET_NETDEV_DEV(netdev, &pdev->dev);
2287
2288	pci_set_drvdata(pdev, netdev);
2289	adapter = netdev_priv(netdev);
2290	adapter->netdev = netdev;
2291	adapter->pdev = pdev;
2292	hw = &adapter->hw;
2293	hw->back = adapter;
2294	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2295
2296	err = -EIO;
2297	hw->hw_addr = pci_iomap(pdev, 0, 0);
2298	if (!hw->hw_addr)
2299		goto err_ioremap;
2300
2301	netdev->netdev_ops = &igb_netdev_ops;
2302	igb_set_ethtool_ops(netdev);
2303	netdev->watchdog_timeo = 5 * HZ;
2304
2305	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2306
2307	netdev->mem_start = pci_resource_start(pdev, 0);
2308	netdev->mem_end = pci_resource_end(pdev, 0);
2309
2310	/* PCI config space info */
2311	hw->vendor_id = pdev->vendor;
2312	hw->device_id = pdev->device;
2313	hw->revision_id = pdev->revision;
2314	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2315	hw->subsystem_device_id = pdev->subsystem_device;
2316
2317	/* Copy the default MAC, PHY and NVM function pointers */
2318	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2319	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2320	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2321	/* Initialize skew-specific constants */
2322	err = ei->get_invariants(hw);
2323	if (err)
2324		goto err_sw_init;
2325
2326	/* setup the private structure */
2327	err = igb_sw_init(adapter);
2328	if (err)
2329		goto err_sw_init;
2330
2331	igb_get_bus_info_pcie(hw);
2332
2333	hw->phy.autoneg_wait_to_complete = false;
2334
2335	/* Copper options */
2336	if (hw->phy.media_type == e1000_media_type_copper) {
2337		hw->phy.mdix = AUTO_ALL_MODES;
2338		hw->phy.disable_polarity_correction = false;
2339		hw->phy.ms_type = e1000_ms_hw_default;
2340	}
2341
2342	if (igb_check_reset_block(hw))
2343		dev_info(&pdev->dev,
2344			"PHY reset is blocked due to SOL/IDER session.\n");
2345
2346	/* features is initialized to 0 in allocation, it might have bits
2347	 * set by igb_sw_init so we should use an or instead of an
2348	 * assignment.
2349	 */
2350	netdev->features |= NETIF_F_SG |
2351			    NETIF_F_IP_CSUM |
2352			    NETIF_F_IPV6_CSUM |
2353			    NETIF_F_TSO |
2354			    NETIF_F_TSO6 |
2355			    NETIF_F_RXHASH |
2356			    NETIF_F_RXCSUM |
2357			    NETIF_F_HW_VLAN_CTAG_RX |
2358			    NETIF_F_HW_VLAN_CTAG_TX;
2359
2360	/* copy netdev features into list of user selectable features */
2361	netdev->hw_features |= netdev->features;
2362	netdev->hw_features |= NETIF_F_RXALL;
2363
2364	/* set this bit last since it cannot be part of hw_features */
2365	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2366
2367	netdev->vlan_features |= NETIF_F_TSO |
2368				 NETIF_F_TSO6 |
2369				 NETIF_F_IP_CSUM |
2370				 NETIF_F_IPV6_CSUM |
2371				 NETIF_F_SG;
2372
2373	netdev->priv_flags |= IFF_SUPP_NOFCS;
2374
2375	if (pci_using_dac) {
2376		netdev->features |= NETIF_F_HIGHDMA;
2377		netdev->vlan_features |= NETIF_F_HIGHDMA;
2378	}
2379
2380	if (hw->mac.type >= e1000_82576) {
2381		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2382		netdev->features |= NETIF_F_SCTP_CSUM;
2383	}
2384
2385	netdev->priv_flags |= IFF_UNICAST_FLT;
2386
2387	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2388
2389	/* before reading the NVM, reset the controller to put the device in a
2390	 * known good starting state
2391	 */
2392	hw->mac.ops.reset_hw(hw);
2393
2394	/* make sure the NVM is good , i211/i210 parts can have special NVM
2395	 * that doesn't contain a checksum
2396	 */
2397	switch (hw->mac.type) {
2398	case e1000_i210:
2399	case e1000_i211:
2400		if (igb_get_flash_presence_i210(hw)) {
2401			if (hw->nvm.ops.validate(hw) < 0) {
2402				dev_err(&pdev->dev,
2403					"The NVM Checksum Is Not Valid\n");
2404				err = -EIO;
2405				goto err_eeprom;
2406			}
2407		}
2408		break;
2409	default:
2410		if (hw->nvm.ops.validate(hw) < 0) {
2411			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2412			err = -EIO;
2413			goto err_eeprom;
2414		}
2415		break;
2416	}
2417
2418	/* copy the MAC address out of the NVM */
2419	if (hw->mac.ops.read_mac_addr(hw))
2420		dev_err(&pdev->dev, "NVM Read Error\n");
2421
2422	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2423
2424	if (!is_valid_ether_addr(netdev->dev_addr)) {
2425		dev_err(&pdev->dev, "Invalid MAC Address\n");
2426		err = -EIO;
2427		goto err_eeprom;
2428	}
2429
2430	/* get firmware version for ethtool -i */
2431	igb_set_fw_version(adapter);
2432
2433	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2434		    (unsigned long) adapter);
2435	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2436		    (unsigned long) adapter);
2437
2438	INIT_WORK(&adapter->reset_task, igb_reset_task);
2439	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2440
2441	/* Initialize link properties that are user-changeable */
2442	adapter->fc_autoneg = true;
2443	hw->mac.autoneg = true;
2444	hw->phy.autoneg_advertised = 0x2f;
2445
2446	hw->fc.requested_mode = e1000_fc_default;
2447	hw->fc.current_mode = e1000_fc_default;
2448
2449	igb_validate_mdi_setting(hw);
2450
2451	/* By default, support wake on port A */
2452	if (hw->bus.func == 0)
2453		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2454
2455	/* Check the NVM for wake support on non-port A ports */
2456	if (hw->mac.type >= e1000_82580)
2457		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2458				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2459				 &eeprom_data);
2460	else if (hw->bus.func == 1)
2461		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2462
2463	if (eeprom_data & IGB_EEPROM_APME)
2464		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466	/* now that we have the eeprom settings, apply the special cases where
2467	 * the eeprom may be wrong or the board simply won't support wake on
2468	 * lan on a particular port
2469	 */
2470	switch (pdev->device) {
2471	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2472		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2473		break;
2474	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2475	case E1000_DEV_ID_82576_FIBER:
2476	case E1000_DEV_ID_82576_SERDES:
2477		/* Wake events only supported on port A for dual fiber
2478		 * regardless of eeprom setting
2479		 */
2480		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2481			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482		break;
2483	case E1000_DEV_ID_82576_QUAD_COPPER:
2484	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2485		/* if quad port adapter, disable WoL on all but port A */
2486		if (global_quad_port_a != 0)
2487			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488		else
2489			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2490		/* Reset for multiple quad port adapters */
2491		if (++global_quad_port_a == 4)
2492			global_quad_port_a = 0;
2493		break;
2494	default:
2495		/* If the device can't wake, don't set software support */
2496		if (!device_can_wakeup(&adapter->pdev->dev))
2497			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2498	}
2499
2500	/* initialize the wol settings based on the eeprom settings */
2501	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2502		adapter->wol |= E1000_WUFC_MAG;
2503
2504	/* Some vendors want WoL disabled by default, but still supported */
2505	if ((hw->mac.type == e1000_i350) &&
2506	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2507		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2508		adapter->wol = 0;
2509	}
2510
2511	device_set_wakeup_enable(&adapter->pdev->dev,
2512				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2513
2514	/* reset the hardware with the new settings */
2515	igb_reset(adapter);
2516
2517	/* Init the I2C interface */
2518	err = igb_init_i2c(adapter);
2519	if (err) {
2520		dev_err(&pdev->dev, "failed to init i2c interface\n");
2521		goto err_eeprom;
2522	}
2523
2524	/* let the f/w know that the h/w is now under the control of the
2525	 * driver. */
2526	igb_get_hw_control(adapter);
2527
2528	strcpy(netdev->name, "eth%d");
2529	err = register_netdev(netdev);
2530	if (err)
2531		goto err_register;
2532
2533	/* carrier off reporting is important to ethtool even BEFORE open */
2534	netif_carrier_off(netdev);
2535
2536#ifdef CONFIG_IGB_DCA
2537	if (dca_add_requester(&pdev->dev) == 0) {
2538		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2539		dev_info(&pdev->dev, "DCA enabled\n");
2540		igb_setup_dca(adapter);
2541	}
2542
2543#endif
2544#ifdef CONFIG_IGB_HWMON
2545	/* Initialize the thermal sensor on i350 devices. */
2546	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2547		u16 ets_word;
2548
2549		/* Read the NVM to determine if this i350 device supports an
2550		 * external thermal sensor.
2551		 */
2552		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2553		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2554			adapter->ets = true;
2555		else
2556			adapter->ets = false;
2557		if (igb_sysfs_init(adapter))
2558			dev_err(&pdev->dev,
2559				"failed to allocate sysfs resources\n");
2560	} else {
2561		adapter->ets = false;
2562	}
2563#endif
2564	/* Check if Media Autosense is enabled */
2565	adapter->ei = *ei;
2566	if (hw->dev_spec._82575.mas_capable)
2567		igb_init_mas(adapter);
2568
2569	/* do hw tstamp init after resetting */
2570	igb_ptp_init(adapter);
2571
2572	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2573	/* print bus type/speed/width info, not applicable to i354 */
2574	if (hw->mac.type != e1000_i354) {
2575		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2576			 netdev->name,
2577			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2578			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2579			   "unknown"),
2580			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2581			  "Width x4" :
2582			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2583			  "Width x2" :
2584			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2585			  "Width x1" : "unknown"), netdev->dev_addr);
2586	}
2587
2588	if ((hw->mac.type >= e1000_i210 ||
2589	     igb_get_flash_presence_i210(hw))) {
2590		ret_val = igb_read_part_string(hw, part_str,
2591					       E1000_PBANUM_LENGTH);
2592	} else {
2593		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2594	}
2595
2596	if (ret_val)
2597		strcpy(part_str, "Unknown");
2598	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2599	dev_info(&pdev->dev,
2600		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2601		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2602		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2603		adapter->num_rx_queues, adapter->num_tx_queues);
2604	if (hw->phy.media_type == e1000_media_type_copper) {
2605		switch (hw->mac.type) {
2606		case e1000_i350:
2607		case e1000_i210:
2608		case e1000_i211:
2609			/* Enable EEE for internal copper PHY devices */
2610			err = igb_set_eee_i350(hw);
2611			if ((!err) &&
2612			    (!hw->dev_spec._82575.eee_disable)) {
2613				adapter->eee_advert =
2614					MDIO_EEE_100TX | MDIO_EEE_1000T;
2615				adapter->flags |= IGB_FLAG_EEE;
2616			}
2617			break;
2618		case e1000_i354:
2619			if ((rd32(E1000_CTRL_EXT) &
2620			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2621				err = igb_set_eee_i354(hw);
2622				if ((!err) &&
2623					(!hw->dev_spec._82575.eee_disable)) {
2624					adapter->eee_advert =
2625					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2626					adapter->flags |= IGB_FLAG_EEE;
2627				}
2628			}
2629			break;
2630		default:
2631			break;
2632		}
2633	}
2634	pm_runtime_put_noidle(&pdev->dev);
2635	return 0;
2636
2637err_register:
2638	igb_release_hw_control(adapter);
2639	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2640err_eeprom:
2641	if (!igb_check_reset_block(hw))
2642		igb_reset_phy(hw);
2643
2644	if (hw->flash_address)
2645		iounmap(hw->flash_address);
2646err_sw_init:
2647	igb_clear_interrupt_scheme(adapter);
2648	pci_iounmap(pdev, hw->hw_addr);
2649err_ioremap:
2650	free_netdev(netdev);
2651err_alloc_etherdev:
2652	pci_release_selected_regions(pdev,
2653				     pci_select_bars(pdev, IORESOURCE_MEM));
2654err_pci_reg:
2655err_dma:
2656	pci_disable_device(pdev);
2657	return err;
2658}
2659
2660#ifdef CONFIG_PCI_IOV
2661static int igb_disable_sriov(struct pci_dev *pdev)
2662{
2663	struct net_device *netdev = pci_get_drvdata(pdev);
2664	struct igb_adapter *adapter = netdev_priv(netdev);
2665	struct e1000_hw *hw = &adapter->hw;
2666
2667	/* reclaim resources allocated to VFs */
2668	if (adapter->vf_data) {
2669		/* disable iov and allow time for transactions to clear */
2670		if (pci_vfs_assigned(pdev)) {
2671			dev_warn(&pdev->dev,
2672				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2673			return -EPERM;
2674		} else {
2675			pci_disable_sriov(pdev);
2676			msleep(500);
2677		}
2678
2679		kfree(adapter->vf_data);
2680		adapter->vf_data = NULL;
2681		adapter->vfs_allocated_count = 0;
2682		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2683		wrfl();
2684		msleep(100);
2685		dev_info(&pdev->dev, "IOV Disabled\n");
2686
2687		/* Re-enable DMA Coalescing flag since IOV is turned off */
2688		adapter->flags |= IGB_FLAG_DMAC;
2689	}
2690
2691	return 0;
2692}
2693
2694static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2695{
2696	struct net_device *netdev = pci_get_drvdata(pdev);
2697	struct igb_adapter *adapter = netdev_priv(netdev);
2698	int old_vfs = pci_num_vf(pdev);
2699	int err = 0;
2700	int i;
2701
2702	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2703		err = -EPERM;
2704		goto out;
2705	}
2706	if (!num_vfs)
2707		goto out;
2708
2709	if (old_vfs) {
2710		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2711			 old_vfs, max_vfs);
2712		adapter->vfs_allocated_count = old_vfs;
2713	} else
2714		adapter->vfs_allocated_count = num_vfs;
2715
2716	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2717				sizeof(struct vf_data_storage), GFP_KERNEL);
2718
2719	/* if allocation failed then we do not support SR-IOV */
2720	if (!adapter->vf_data) {
2721		adapter->vfs_allocated_count = 0;
2722		dev_err(&pdev->dev,
2723			"Unable to allocate memory for VF Data Storage\n");
2724		err = -ENOMEM;
2725		goto out;
2726	}
2727
2728	/* only call pci_enable_sriov() if no VFs are allocated already */
2729	if (!old_vfs) {
2730		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2731		if (err)
2732			goto err_out;
2733	}
2734	dev_info(&pdev->dev, "%d VFs allocated\n",
2735		 adapter->vfs_allocated_count);
2736	for (i = 0; i < adapter->vfs_allocated_count; i++)
2737		igb_vf_configure(adapter, i);
2738
2739	/* DMA Coalescing is not supported in IOV mode. */
2740	adapter->flags &= ~IGB_FLAG_DMAC;
2741	goto out;
2742
2743err_out:
2744	kfree(adapter->vf_data);
2745	adapter->vf_data = NULL;
2746	adapter->vfs_allocated_count = 0;
2747out:
2748	return err;
2749}
2750
2751#endif
2752/**
2753 *  igb_remove_i2c - Cleanup  I2C interface
2754 *  @adapter: pointer to adapter structure
2755 **/
2756static void igb_remove_i2c(struct igb_adapter *adapter)
2757{
2758	/* free the adapter bus structure */
2759	i2c_del_adapter(&adapter->i2c_adap);
2760}
2761
2762/**
2763 *  igb_remove - Device Removal Routine
2764 *  @pdev: PCI device information struct
2765 *
2766 *  igb_remove is called by the PCI subsystem to alert the driver
2767 *  that it should release a PCI device.  The could be caused by a
2768 *  Hot-Plug event, or because the driver is going to be removed from
2769 *  memory.
2770 **/
2771static void igb_remove(struct pci_dev *pdev)
2772{
2773	struct net_device *netdev = pci_get_drvdata(pdev);
2774	struct igb_adapter *adapter = netdev_priv(netdev);
2775	struct e1000_hw *hw = &adapter->hw;
2776
2777	pm_runtime_get_noresume(&pdev->dev);
2778#ifdef CONFIG_IGB_HWMON
2779	igb_sysfs_exit(adapter);
2780#endif
2781	igb_remove_i2c(adapter);
2782	igb_ptp_stop(adapter);
2783	/* The watchdog timer may be rescheduled, so explicitly
2784	 * disable watchdog from being rescheduled.
2785	 */
2786	set_bit(__IGB_DOWN, &adapter->state);
2787	del_timer_sync(&adapter->watchdog_timer);
2788	del_timer_sync(&adapter->phy_info_timer);
2789
2790	cancel_work_sync(&adapter->reset_task);
2791	cancel_work_sync(&adapter->watchdog_task);
2792
2793#ifdef CONFIG_IGB_DCA
2794	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2795		dev_info(&pdev->dev, "DCA disabled\n");
2796		dca_remove_requester(&pdev->dev);
2797		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2798		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2799	}
2800#endif
2801
2802	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2803	 * would have already happened in close and is redundant.
2804	 */
2805	igb_release_hw_control(adapter);
2806
2807	unregister_netdev(netdev);
2808
2809	igb_clear_interrupt_scheme(adapter);
2810
2811#ifdef CONFIG_PCI_IOV
2812	igb_disable_sriov(pdev);
2813#endif
2814
2815	pci_iounmap(pdev, hw->hw_addr);
2816	if (hw->flash_address)
2817		iounmap(hw->flash_address);
2818	pci_release_selected_regions(pdev,
2819				     pci_select_bars(pdev, IORESOURCE_MEM));
2820
2821	kfree(adapter->shadow_vfta);
2822	free_netdev(netdev);
2823
2824	pci_disable_pcie_error_reporting(pdev);
2825
2826	pci_disable_device(pdev);
2827}
2828
2829/**
2830 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2831 *  @adapter: board private structure to initialize
2832 *
2833 *  This function initializes the vf specific data storage and then attempts to
2834 *  allocate the VFs.  The reason for ordering it this way is because it is much
2835 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2836 *  the memory for the VFs.
2837 **/
2838static void igb_probe_vfs(struct igb_adapter *adapter)
2839{
2840#ifdef CONFIG_PCI_IOV
2841	struct pci_dev *pdev = adapter->pdev;
2842	struct e1000_hw *hw = &adapter->hw;
2843
2844	/* Virtualization features not supported on i210 family. */
2845	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2846		return;
2847
2848	pci_sriov_set_totalvfs(pdev, 7);
2849	igb_pci_enable_sriov(pdev, max_vfs);
2850
2851#endif /* CONFIG_PCI_IOV */
2852}
2853
2854static void igb_init_queue_configuration(struct igb_adapter *adapter)
2855{
2856	struct e1000_hw *hw = &adapter->hw;
2857	u32 max_rss_queues;
2858
2859	/* Determine the maximum number of RSS queues supported. */
2860	switch (hw->mac.type) {
2861	case e1000_i211:
2862		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2863		break;
2864	case e1000_82575:
2865	case e1000_i210:
2866		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2867		break;
2868	case e1000_i350:
2869		/* I350 cannot do RSS and SR-IOV at the same time */
2870		if (!!adapter->vfs_allocated_count) {
2871			max_rss_queues = 1;
2872			break;
2873		}
2874		/* fall through */
2875	case e1000_82576:
2876		if (!!adapter->vfs_allocated_count) {
2877			max_rss_queues = 2;
2878			break;
2879		}
2880		/* fall through */
2881	case e1000_82580:
2882	case e1000_i354:
2883	default:
2884		max_rss_queues = IGB_MAX_RX_QUEUES;
2885		break;
2886	}
2887
2888	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2889
2890	/* Determine if we need to pair queues. */
2891	switch (hw->mac.type) {
2892	case e1000_82575:
2893	case e1000_i211:
2894		/* Device supports enough interrupts without queue pairing. */
2895		break;
2896	case e1000_82576:
2897		/* If VFs are going to be allocated with RSS queues then we
2898		 * should pair the queues in order to conserve interrupts due
2899		 * to limited supply.
2900		 */
2901		if ((adapter->rss_queues > 1) &&
2902		    (adapter->vfs_allocated_count > 6))
2903			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2904		/* fall through */
2905	case e1000_82580:
2906	case e1000_i350:
2907	case e1000_i354:
2908	case e1000_i210:
2909	default:
2910		/* If rss_queues > half of max_rss_queues, pair the queues in
2911		 * order to conserve interrupts due to limited supply.
2912		 */
2913		if (adapter->rss_queues > (max_rss_queues / 2))
2914			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2915		break;
2916	}
2917}
2918
2919/**
2920 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2921 *  @adapter: board private structure to initialize
2922 *
2923 *  igb_sw_init initializes the Adapter private data structure.
2924 *  Fields are initialized based on PCI device information and
2925 *  OS network device settings (MTU size).
2926 **/
2927static int igb_sw_init(struct igb_adapter *adapter)
2928{
2929	struct e1000_hw *hw = &adapter->hw;
2930	struct net_device *netdev = adapter->netdev;
2931	struct pci_dev *pdev = adapter->pdev;
2932
2933	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2934
2935	/* set default ring sizes */
2936	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2937	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2938
2939	/* set default ITR values */
2940	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2941	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2942
2943	/* set default work limits */
2944	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2945
2946	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2947				  VLAN_HLEN;
2948	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2949
2950	spin_lock_init(&adapter->stats64_lock);
2951#ifdef CONFIG_PCI_IOV
2952	switch (hw->mac.type) {
2953	case e1000_82576:
2954	case e1000_i350:
2955		if (max_vfs > 7) {
2956			dev_warn(&pdev->dev,
2957				 "Maximum of 7 VFs per PF, using max\n");
2958			max_vfs = adapter->vfs_allocated_count = 7;
2959		} else
2960			adapter->vfs_allocated_count = max_vfs;
2961		if (adapter->vfs_allocated_count)
2962			dev_warn(&pdev->dev,
2963				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2964		break;
2965	default:
2966		break;
2967	}
2968#endif /* CONFIG_PCI_IOV */
2969
2970	igb_init_queue_configuration(adapter);
2971
2972	/* Setup and initialize a copy of the hw vlan table array */
2973	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2974				       GFP_ATOMIC);
2975
2976	/* This call may decrease the number of queues */
2977	if (igb_init_interrupt_scheme(adapter, true)) {
2978		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2979		return -ENOMEM;
2980	}
2981
2982	igb_probe_vfs(adapter);
2983
2984	/* Explicitly disable IRQ since the NIC can be in any state. */
2985	igb_irq_disable(adapter);
2986
2987	if (hw->mac.type >= e1000_i350)
2988		adapter->flags &= ~IGB_FLAG_DMAC;
2989
2990	set_bit(__IGB_DOWN, &adapter->state);
2991	return 0;
2992}
2993
2994/**
2995 *  igb_open - Called when a network interface is made active
2996 *  @netdev: network interface device structure
2997 *
2998 *  Returns 0 on success, negative value on failure
2999 *
3000 *  The open entry point is called when a network interface is made
3001 *  active by the system (IFF_UP).  At this point all resources needed
3002 *  for transmit and receive operations are allocated, the interrupt
3003 *  handler is registered with the OS, the watchdog timer is started,
3004 *  and the stack is notified that the interface is ready.
3005 **/
3006static int __igb_open(struct net_device *netdev, bool resuming)
3007{
3008	struct igb_adapter *adapter = netdev_priv(netdev);
3009	struct e1000_hw *hw = &adapter->hw;
3010	struct pci_dev *pdev = adapter->pdev;
3011	int err;
3012	int i;
3013
3014	/* disallow open during test */
3015	if (test_bit(__IGB_TESTING, &adapter->state)) {
3016		WARN_ON(resuming);
3017		return -EBUSY;
3018	}
3019
3020	if (!resuming)
3021		pm_runtime_get_sync(&pdev->dev);
3022
3023	netif_carrier_off(netdev);
3024
3025	/* allocate transmit descriptors */
3026	err = igb_setup_all_tx_resources(adapter);
3027	if (err)
3028		goto err_setup_tx;
3029
3030	/* allocate receive descriptors */
3031	err = igb_setup_all_rx_resources(adapter);
3032	if (err)
3033		goto err_setup_rx;
3034
3035	igb_power_up_link(adapter);
3036
3037	/* before we allocate an interrupt, we must be ready to handle it.
3038	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3039	 * as soon as we call pci_request_irq, so we have to setup our
3040	 * clean_rx handler before we do so.
3041	 */
3042	igb_configure(adapter);
3043
3044	err = igb_request_irq(adapter);
3045	if (err)
3046		goto err_req_irq;
3047
3048	/* Notify the stack of the actual queue counts. */
3049	err = netif_set_real_num_tx_queues(adapter->netdev,
3050					   adapter->num_tx_queues);
3051	if (err)
3052		goto err_set_queues;
3053
3054	err = netif_set_real_num_rx_queues(adapter->netdev,
3055					   adapter->num_rx_queues);
3056	if (err)
3057		goto err_set_queues;
3058
3059	/* From here on the code is the same as igb_up() */
3060	clear_bit(__IGB_DOWN, &adapter->state);
3061
3062	for (i = 0; i < adapter->num_q_vectors; i++)
3063		napi_enable(&(adapter->q_vector[i]->napi));
3064
3065	/* Clear any pending interrupts. */
3066	rd32(E1000_ICR);
3067
3068	igb_irq_enable(adapter);
3069
3070	/* notify VFs that reset has been completed */
3071	if (adapter->vfs_allocated_count) {
3072		u32 reg_data = rd32(E1000_CTRL_EXT);
3073		reg_data |= E1000_CTRL_EXT_PFRSTD;
3074		wr32(E1000_CTRL_EXT, reg_data);
3075	}
3076
3077	netif_tx_start_all_queues(netdev);
3078
3079	if (!resuming)
3080		pm_runtime_put(&pdev->dev);
3081
3082	/* start the watchdog. */
3083	hw->mac.get_link_status = 1;
3084	schedule_work(&adapter->watchdog_task);
3085
3086	return 0;
3087
3088err_set_queues:
3089	igb_free_irq(adapter);
3090err_req_irq:
3091	igb_release_hw_control(adapter);
3092	igb_power_down_link(adapter);
3093	igb_free_all_rx_resources(adapter);
3094err_setup_rx:
3095	igb_free_all_tx_resources(adapter);
3096err_setup_tx:
3097	igb_reset(adapter);
3098	if (!resuming)
3099		pm_runtime_put(&pdev->dev);
3100
3101	return err;
3102}
3103
3104static int igb_open(struct net_device *netdev)
3105{
3106	return __igb_open(netdev, false);
3107}
3108
3109/**
3110 *  igb_close - Disables a network interface
3111 *  @netdev: network interface device structure
3112 *
3113 *  Returns 0, this is not allowed to fail
3114 *
3115 *  The close entry point is called when an interface is de-activated
3116 *  by the OS.  The hardware is still under the driver's control, but
3117 *  needs to be disabled.  A global MAC reset is issued to stop the
3118 *  hardware, and all transmit and receive resources are freed.
3119 **/
3120static int __igb_close(struct net_device *netdev, bool suspending)
3121{
3122	struct igb_adapter *adapter = netdev_priv(netdev);
3123	struct pci_dev *pdev = adapter->pdev;
3124
3125	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3126
3127	if (!suspending)
3128		pm_runtime_get_sync(&pdev->dev);
3129
3130	igb_down(adapter);
3131	igb_free_irq(adapter);
3132
3133	igb_free_all_tx_resources(adapter);
3134	igb_free_all_rx_resources(adapter);
3135
3136	if (!suspending)
3137		pm_runtime_put_sync(&pdev->dev);
3138	return 0;
3139}
3140
3141static int igb_close(struct net_device *netdev)
3142{
3143	return __igb_close(netdev, false);
3144}
3145
3146/**
3147 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3148 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3149 *
3150 *  Return 0 on success, negative on failure
3151 **/
3152int igb_setup_tx_resources(struct igb_ring *tx_ring)
3153{
3154	struct device *dev = tx_ring->dev;
3155	int size;
3156
3157	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3158
3159	tx_ring->tx_buffer_info = vzalloc(size);
3160	if (!tx_ring->tx_buffer_info)
3161		goto err;
3162
3163	/* round up to nearest 4K */
3164	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3165	tx_ring->size = ALIGN(tx_ring->size, 4096);
3166
3167	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3168					   &tx_ring->dma, GFP_KERNEL);
3169	if (!tx_ring->desc)
3170		goto err;
3171
3172	tx_ring->next_to_use = 0;
3173	tx_ring->next_to_clean = 0;
3174
3175	return 0;
3176
3177err:
3178	vfree(tx_ring->tx_buffer_info);
3179	tx_ring->tx_buffer_info = NULL;
3180	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3181	return -ENOMEM;
3182}
3183
3184/**
3185 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3186 *				 (Descriptors) for all queues
3187 *  @adapter: board private structure
3188 *
3189 *  Return 0 on success, negative on failure
3190 **/
3191static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3192{
3193	struct pci_dev *pdev = adapter->pdev;
3194	int i, err = 0;
3195
3196	for (i = 0; i < adapter->num_tx_queues; i++) {
3197		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3198		if (err) {
3199			dev_err(&pdev->dev,
3200				"Allocation for Tx Queue %u failed\n", i);
3201			for (i--; i >= 0; i--)
3202				igb_free_tx_resources(adapter->tx_ring[i]);
3203			break;
3204		}
3205	}
3206
3207	return err;
3208}
3209
3210/**
3211 *  igb_setup_tctl - configure the transmit control registers
3212 *  @adapter: Board private structure
3213 **/
3214void igb_setup_tctl(struct igb_adapter *adapter)
3215{
3216	struct e1000_hw *hw = &adapter->hw;
3217	u32 tctl;
3218
3219	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3220	wr32(E1000_TXDCTL(0), 0);
3221
3222	/* Program the Transmit Control Register */
3223	tctl = rd32(E1000_TCTL);
3224	tctl &= ~E1000_TCTL_CT;
3225	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3226		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3227
3228	igb_config_collision_dist(hw);
3229
3230	/* Enable transmits */
3231	tctl |= E1000_TCTL_EN;
3232
3233	wr32(E1000_TCTL, tctl);
3234}
3235
3236/**
3237 *  igb_configure_tx_ring - Configure transmit ring after Reset
3238 *  @adapter: board private structure
3239 *  @ring: tx ring to configure
3240 *
3241 *  Configure a transmit ring after a reset.
3242 **/
3243void igb_configure_tx_ring(struct igb_adapter *adapter,
3244                           struct igb_ring *ring)
3245{
3246	struct e1000_hw *hw = &adapter->hw;
3247	u32 txdctl = 0;
3248	u64 tdba = ring->dma;
3249	int reg_idx = ring->reg_idx;
3250
3251	/* disable the queue */
3252	wr32(E1000_TXDCTL(reg_idx), 0);
3253	wrfl();
3254	mdelay(10);
3255
3256	wr32(E1000_TDLEN(reg_idx),
3257	     ring->count * sizeof(union e1000_adv_tx_desc));
3258	wr32(E1000_TDBAL(reg_idx),
3259	     tdba & 0x00000000ffffffffULL);
3260	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3261
3262	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3263	wr32(E1000_TDH(reg_idx), 0);
3264	writel(0, ring->tail);
3265
3266	txdctl |= IGB_TX_PTHRESH;
3267	txdctl |= IGB_TX_HTHRESH << 8;
3268	txdctl |= IGB_TX_WTHRESH << 16;
3269
3270	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3271	wr32(E1000_TXDCTL(reg_idx), txdctl);
3272}
3273
3274/**
3275 *  igb_configure_tx - Configure transmit Unit after Reset
3276 *  @adapter: board private structure
3277 *
3278 *  Configure the Tx unit of the MAC after a reset.
3279 **/
3280static void igb_configure_tx(struct igb_adapter *adapter)
3281{
3282	int i;
3283
3284	for (i = 0; i < adapter->num_tx_queues; i++)
3285		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3286}
3287
3288/**
3289 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3290 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3291 *
3292 *  Returns 0 on success, negative on failure
3293 **/
3294int igb_setup_rx_resources(struct igb_ring *rx_ring)
3295{
3296	struct device *dev = rx_ring->dev;
3297	int size;
3298
3299	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3300
3301	rx_ring->rx_buffer_info = vzalloc(size);
3302	if (!rx_ring->rx_buffer_info)
3303		goto err;
3304
3305	/* Round up to nearest 4K */
3306	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3307	rx_ring->size = ALIGN(rx_ring->size, 4096);
3308
3309	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3310					   &rx_ring->dma, GFP_KERNEL);
3311	if (!rx_ring->desc)
3312		goto err;
3313
3314	rx_ring->next_to_alloc = 0;
3315	rx_ring->next_to_clean = 0;
3316	rx_ring->next_to_use = 0;
3317
3318	return 0;
3319
3320err:
3321	vfree(rx_ring->rx_buffer_info);
3322	rx_ring->rx_buffer_info = NULL;
3323	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3324	return -ENOMEM;
3325}
3326
3327/**
3328 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3329 *				 (Descriptors) for all queues
3330 *  @adapter: board private structure
3331 *
3332 *  Return 0 on success, negative on failure
3333 **/
3334static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3335{
3336	struct pci_dev *pdev = adapter->pdev;
3337	int i, err = 0;
3338
3339	for (i = 0; i < adapter->num_rx_queues; i++) {
3340		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3341		if (err) {
3342			dev_err(&pdev->dev,
3343				"Allocation for Rx Queue %u failed\n", i);
3344			for (i--; i >= 0; i--)
3345				igb_free_rx_resources(adapter->rx_ring[i]);
3346			break;
3347		}
3348	}
3349
3350	return err;
3351}
3352
3353/**
3354 *  igb_setup_mrqc - configure the multiple receive queue control registers
3355 *  @adapter: Board private structure
3356 **/
3357static void igb_setup_mrqc(struct igb_adapter *adapter)
3358{
3359	struct e1000_hw *hw = &adapter->hw;
3360	u32 mrqc, rxcsum;
3361	u32 j, num_rx_queues;
3362	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3363					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3364					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3365					0xFA01ACBE };
3366
3367	/* Fill out hash function seeds */
3368	for (j = 0; j < 10; j++)
3369		wr32(E1000_RSSRK(j), rsskey[j]);
3370
3371	num_rx_queues = adapter->rss_queues;
3372
3373	switch (hw->mac.type) {
3374	case e1000_82576:
3375		/* 82576 supports 2 RSS queues for SR-IOV */
3376		if (adapter->vfs_allocated_count)
3377			num_rx_queues = 2;
3378		break;
3379	default:
3380		break;
3381	}
3382
3383	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3384		for (j = 0; j < IGB_RETA_SIZE; j++)
3385			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3386		adapter->rss_indir_tbl_init = num_rx_queues;
3387	}
3388	igb_write_rss_indir_tbl(adapter);
3389
3390	/* Disable raw packet checksumming so that RSS hash is placed in
3391	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3392	 * offloads as they are enabled by default
3393	 */
3394	rxcsum = rd32(E1000_RXCSUM);
3395	rxcsum |= E1000_RXCSUM_PCSD;
3396
3397	if (adapter->hw.mac.type >= e1000_82576)
3398		/* Enable Receive Checksum Offload for SCTP */
3399		rxcsum |= E1000_RXCSUM_CRCOFL;
3400
3401	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3402	wr32(E1000_RXCSUM, rxcsum);
3403
3404	/* Generate RSS hash based on packet types, TCP/UDP
3405	 * port numbers and/or IPv4/v6 src and dst addresses
3406	 */
3407	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3408	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3409	       E1000_MRQC_RSS_FIELD_IPV6 |
3410	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3411	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3412
3413	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3414		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3415	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3416		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3417
3418	/* If VMDq is enabled then we set the appropriate mode for that, else
3419	 * we default to RSS so that an RSS hash is calculated per packet even
3420	 * if we are only using one queue
3421	 */
3422	if (adapter->vfs_allocated_count) {
3423		if (hw->mac.type > e1000_82575) {
3424			/* Set the default pool for the PF's first queue */
3425			u32 vtctl = rd32(E1000_VT_CTL);
3426			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3427				   E1000_VT_CTL_DISABLE_DEF_POOL);
3428			vtctl |= adapter->vfs_allocated_count <<
3429				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3430			wr32(E1000_VT_CTL, vtctl);
3431		}
3432		if (adapter->rss_queues > 1)
3433			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3434		else
3435			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3436	} else {
3437		if (hw->mac.type != e1000_i211)
3438			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3439	}
3440	igb_vmm_control(adapter);
3441
3442	wr32(E1000_MRQC, mrqc);
3443}
3444
3445/**
3446 *  igb_setup_rctl - configure the receive control registers
3447 *  @adapter: Board private structure
3448 **/
3449void igb_setup_rctl(struct igb_adapter *adapter)
3450{
3451	struct e1000_hw *hw = &adapter->hw;
3452	u32 rctl;
3453
3454	rctl = rd32(E1000_RCTL);
3455
3456	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3457	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3458
3459	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3460		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3461
3462	/* enable stripping of CRC. It's unlikely this will break BMC
3463	 * redirection as it did with e1000. Newer features require
3464	 * that the HW strips the CRC.
3465	 */
3466	rctl |= E1000_RCTL_SECRC;
3467
3468	/* disable store bad packets and clear size bits. */
3469	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3470
3471	/* enable LPE to prevent packets larger than max_frame_size */
3472	rctl |= E1000_RCTL_LPE;
3473
3474	/* disable queue 0 to prevent tail write w/o re-config */
3475	wr32(E1000_RXDCTL(0), 0);
3476
3477	/* Attention!!!  For SR-IOV PF driver operations you must enable
3478	 * queue drop for all VF and PF queues to prevent head of line blocking
3479	 * if an un-trusted VF does not provide descriptors to hardware.
3480	 */
3481	if (adapter->vfs_allocated_count) {
3482		/* set all queue drop enable bits */
3483		wr32(E1000_QDE, ALL_QUEUES);
3484	}
3485
3486	/* This is useful for sniffing bad packets. */
3487	if (adapter->netdev->features & NETIF_F_RXALL) {
3488		/* UPE and MPE will be handled by normal PROMISC logic
3489		 * in e1000e_set_rx_mode
3490		 */
3491		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3492			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3493			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3494
3495		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3496			  E1000_RCTL_DPF | /* Allow filtered pause */
3497			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3498		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3499		 * and that breaks VLANs.
3500		 */
3501	}
3502
3503	wr32(E1000_RCTL, rctl);
3504}
3505
3506static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3507                                   int vfn)
3508{
3509	struct e1000_hw *hw = &adapter->hw;
3510	u32 vmolr;
3511
3512	/* if it isn't the PF check to see if VFs are enabled and
3513	 * increase the size to support vlan tags
3514	 */
3515	if (vfn < adapter->vfs_allocated_count &&
3516	    adapter->vf_data[vfn].vlans_enabled)
3517		size += VLAN_TAG_SIZE;
3518
3519	vmolr = rd32(E1000_VMOLR(vfn));
3520	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3521	vmolr |= size | E1000_VMOLR_LPE;
3522	wr32(E1000_VMOLR(vfn), vmolr);
3523
3524	return 0;
3525}
3526
3527/**
3528 *  igb_rlpml_set - set maximum receive packet size
3529 *  @adapter: board private structure
3530 *
3531 *  Configure maximum receivable packet size.
3532 **/
3533static void igb_rlpml_set(struct igb_adapter *adapter)
3534{
3535	u32 max_frame_size = adapter->max_frame_size;
3536	struct e1000_hw *hw = &adapter->hw;
3537	u16 pf_id = adapter->vfs_allocated_count;
3538
3539	if (pf_id) {
3540		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3541		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3542		 * to our max jumbo frame size, in case we need to enable
3543		 * jumbo frames on one of the rings later.
3544		 * This will not pass over-length frames into the default
3545		 * queue because it's gated by the VMOLR.RLPML.
3546		 */
3547		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3548	}
3549
3550	wr32(E1000_RLPML, max_frame_size);
3551}
3552
3553static inline void igb_set_vmolr(struct igb_adapter *adapter,
3554				 int vfn, bool aupe)
3555{
3556	struct e1000_hw *hw = &adapter->hw;
3557	u32 vmolr;
3558
3559	/* This register exists only on 82576 and newer so if we are older then
3560	 * we should exit and do nothing
3561	 */
3562	if (hw->mac.type < e1000_82576)
3563		return;
3564
3565	vmolr = rd32(E1000_VMOLR(vfn));
3566	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3567	if (hw->mac.type == e1000_i350) {
3568		u32 dvmolr;
3569
3570		dvmolr = rd32(E1000_DVMOLR(vfn));
3571		dvmolr |= E1000_DVMOLR_STRVLAN;
3572		wr32(E1000_DVMOLR(vfn), dvmolr);
3573	}
3574	if (aupe)
3575		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3576	else
3577		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3578
3579	/* clear all bits that might not be set */
3580	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3581
3582	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3583		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3584	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3585	 * multicast packets
3586	 */
3587	if (vfn <= adapter->vfs_allocated_count)
3588		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3589
3590	wr32(E1000_VMOLR(vfn), vmolr);
3591}
3592
3593/**
3594 *  igb_configure_rx_ring - Configure a receive ring after Reset
3595 *  @adapter: board private structure
3596 *  @ring: receive ring to be configured
3597 *
3598 *  Configure the Rx unit of the MAC after a reset.
3599 **/
3600void igb_configure_rx_ring(struct igb_adapter *adapter,
3601			   struct igb_ring *ring)
3602{
3603	struct e1000_hw *hw = &adapter->hw;
3604	u64 rdba = ring->dma;
3605	int reg_idx = ring->reg_idx;
3606	u32 srrctl = 0, rxdctl = 0;
3607
3608	/* disable the queue */
3609	wr32(E1000_RXDCTL(reg_idx), 0);
3610
3611	/* Set DMA base address registers */
3612	wr32(E1000_RDBAL(reg_idx),
3613	     rdba & 0x00000000ffffffffULL);
3614	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3615	wr32(E1000_RDLEN(reg_idx),
3616	     ring->count * sizeof(union e1000_adv_rx_desc));
3617
3618	/* initialize head and tail */
3619	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3620	wr32(E1000_RDH(reg_idx), 0);
3621	writel(0, ring->tail);
3622
3623	/* set descriptor configuration */
3624	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3625	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3626	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3627	if (hw->mac.type >= e1000_82580)
3628		srrctl |= E1000_SRRCTL_TIMESTAMP;
3629	/* Only set Drop Enable if we are supporting multiple queues */
3630	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3631		srrctl |= E1000_SRRCTL_DROP_EN;
3632
3633	wr32(E1000_SRRCTL(reg_idx), srrctl);
3634
3635	/* set filtering for VMDQ pools */
3636	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3637
3638	rxdctl |= IGB_RX_PTHRESH;
3639	rxdctl |= IGB_RX_HTHRESH << 8;
3640	rxdctl |= IGB_RX_WTHRESH << 16;
3641
3642	/* enable receive descriptor fetching */
3643	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3644	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3645}
3646
3647/**
3648 *  igb_configure_rx - Configure receive Unit after Reset
3649 *  @adapter: board private structure
3650 *
3651 *  Configure the Rx unit of the MAC after a reset.
3652 **/
3653static void igb_configure_rx(struct igb_adapter *adapter)
3654{
3655	int i;
3656
3657	/* set UTA to appropriate mode */
3658	igb_set_uta(adapter);
3659
3660	/* set the correct pool for the PF default MAC address in entry 0 */
3661	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3662			 adapter->vfs_allocated_count);
3663
3664	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3665	 * the Base and Length of the Rx Descriptor Ring
3666	 */
3667	for (i = 0; i < adapter->num_rx_queues; i++)
3668		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3669}
3670
3671/**
3672 *  igb_free_tx_resources - Free Tx Resources per Queue
3673 *  @tx_ring: Tx descriptor ring for a specific queue
3674 *
3675 *  Free all transmit software resources
3676 **/
3677void igb_free_tx_resources(struct igb_ring *tx_ring)
3678{
3679	igb_clean_tx_ring(tx_ring);
3680
3681	vfree(tx_ring->tx_buffer_info);
3682	tx_ring->tx_buffer_info = NULL;
3683
3684	/* if not set, then don't free */
3685	if (!tx_ring->desc)
3686		return;
3687
3688	dma_free_coherent(tx_ring->dev, tx_ring->size,
3689			  tx_ring->desc, tx_ring->dma);
3690
3691	tx_ring->desc = NULL;
3692}
3693
3694/**
3695 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3696 *  @adapter: board private structure
3697 *
3698 *  Free all transmit software resources
3699 **/
3700static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3701{
3702	int i;
3703
3704	for (i = 0; i < adapter->num_tx_queues; i++)
3705		igb_free_tx_resources(adapter->tx_ring[i]);
3706}
3707
3708void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3709				    struct igb_tx_buffer *tx_buffer)
3710{
3711	if (tx_buffer->skb) {
3712		dev_kfree_skb_any(tx_buffer->skb);
3713		if (dma_unmap_len(tx_buffer, len))
3714			dma_unmap_single(ring->dev,
3715					 dma_unmap_addr(tx_buffer, dma),
3716					 dma_unmap_len(tx_buffer, len),
3717					 DMA_TO_DEVICE);
3718	} else if (dma_unmap_len(tx_buffer, len)) {
3719		dma_unmap_page(ring->dev,
3720			       dma_unmap_addr(tx_buffer, dma),
3721			       dma_unmap_len(tx_buffer, len),
3722			       DMA_TO_DEVICE);
3723	}
3724	tx_buffer->next_to_watch = NULL;
3725	tx_buffer->skb = NULL;
3726	dma_unmap_len_set(tx_buffer, len, 0);
3727	/* buffer_info must be completely set up in the transmit path */
3728}
3729
3730/**
3731 *  igb_clean_tx_ring - Free Tx Buffers
3732 *  @tx_ring: ring to be cleaned
3733 **/
3734static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3735{
3736	struct igb_tx_buffer *buffer_info;
3737	unsigned long size;
3738	u16 i;
3739
3740	if (!tx_ring->tx_buffer_info)
3741		return;
3742	/* Free all the Tx ring sk_buffs */
3743
3744	for (i = 0; i < tx_ring->count; i++) {
3745		buffer_info = &tx_ring->tx_buffer_info[i];
3746		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3747	}
3748
3749	netdev_tx_reset_queue(txring_txq(tx_ring));
3750
3751	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3752	memset(tx_ring->tx_buffer_info, 0, size);
3753
3754	/* Zero out the descriptor ring */
3755	memset(tx_ring->desc, 0, tx_ring->size);
3756
3757	tx_ring->next_to_use = 0;
3758	tx_ring->next_to_clean = 0;
3759}
3760
3761/**
3762 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3763 *  @adapter: board private structure
3764 **/
3765static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3766{
3767	int i;
3768
3769	for (i = 0; i < adapter->num_tx_queues; i++)
3770		igb_clean_tx_ring(adapter->tx_ring[i]);
3771}
3772
3773/**
3774 *  igb_free_rx_resources - Free Rx Resources
3775 *  @rx_ring: ring to clean the resources from
3776 *
3777 *  Free all receive software resources
3778 **/
3779void igb_free_rx_resources(struct igb_ring *rx_ring)
3780{
3781	igb_clean_rx_ring(rx_ring);
3782
3783	vfree(rx_ring->rx_buffer_info);
3784	rx_ring->rx_buffer_info = NULL;
3785
3786	/* if not set, then don't free */
3787	if (!rx_ring->desc)
3788		return;
3789
3790	dma_free_coherent(rx_ring->dev, rx_ring->size,
3791			  rx_ring->desc, rx_ring->dma);
3792
3793	rx_ring->desc = NULL;
3794}
3795
3796/**
3797 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3798 *  @adapter: board private structure
3799 *
3800 *  Free all receive software resources
3801 **/
3802static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3803{
3804	int i;
3805
3806	for (i = 0; i < adapter->num_rx_queues; i++)
3807		igb_free_rx_resources(adapter->rx_ring[i]);
3808}
3809
3810/**
3811 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3812 *  @rx_ring: ring to free buffers from
3813 **/
3814static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3815{
3816	unsigned long size;
3817	u16 i;
3818
3819	if (rx_ring->skb)
3820		dev_kfree_skb(rx_ring->skb);
3821	rx_ring->skb = NULL;
3822
3823	if (!rx_ring->rx_buffer_info)
3824		return;
3825
3826	/* Free all the Rx ring sk_buffs */
3827	for (i = 0; i < rx_ring->count; i++) {
3828		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3829
3830		if (!buffer_info->page)
3831			continue;
3832
3833		dma_unmap_page(rx_ring->dev,
3834			       buffer_info->dma,
3835			       PAGE_SIZE,
3836			       DMA_FROM_DEVICE);
3837		__free_page(buffer_info->page);
3838
3839		buffer_info->page = NULL;
3840	}
3841
3842	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3843	memset(rx_ring->rx_buffer_info, 0, size);
3844
3845	/* Zero out the descriptor ring */
3846	memset(rx_ring->desc, 0, rx_ring->size);
3847
3848	rx_ring->next_to_alloc = 0;
3849	rx_ring->next_to_clean = 0;
3850	rx_ring->next_to_use = 0;
3851}
3852
3853/**
3854 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3855 *  @adapter: board private structure
3856 **/
3857static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3858{
3859	int i;
3860
3861	for (i = 0; i < adapter->num_rx_queues; i++)
3862		igb_clean_rx_ring(adapter->rx_ring[i]);
3863}
3864
3865/**
3866 *  igb_set_mac - Change the Ethernet Address of the NIC
3867 *  @netdev: network interface device structure
3868 *  @p: pointer to an address structure
3869 *
3870 *  Returns 0 on success, negative on failure
3871 **/
3872static int igb_set_mac(struct net_device *netdev, void *p)
3873{
3874	struct igb_adapter *adapter = netdev_priv(netdev);
3875	struct e1000_hw *hw = &adapter->hw;
3876	struct sockaddr *addr = p;
3877
3878	if (!is_valid_ether_addr(addr->sa_data))
3879		return -EADDRNOTAVAIL;
3880
3881	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3882	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3883
3884	/* set the correct pool for the new PF MAC address in entry 0 */
3885	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3886			 adapter->vfs_allocated_count);
3887
3888	return 0;
3889}
3890
3891/**
3892 *  igb_write_mc_addr_list - write multicast addresses to MTA
3893 *  @netdev: network interface device structure
3894 *
3895 *  Writes multicast address list to the MTA hash table.
3896 *  Returns: -ENOMEM on failure
3897 *           0 on no addresses written
3898 *           X on writing X addresses to MTA
3899 **/
3900static int igb_write_mc_addr_list(struct net_device *netdev)
3901{
3902	struct igb_adapter *adapter = netdev_priv(netdev);
3903	struct e1000_hw *hw = &adapter->hw;
3904	struct netdev_hw_addr *ha;
3905	u8  *mta_list;
3906	int i;
3907
3908	if (netdev_mc_empty(netdev)) {
3909		/* nothing to program, so clear mc list */
3910		igb_update_mc_addr_list(hw, NULL, 0);
3911		igb_restore_vf_multicasts(adapter);
3912		return 0;
3913	}
3914
3915	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3916	if (!mta_list)
3917		return -ENOMEM;
3918
3919	/* The shared function expects a packed array of only addresses. */
3920	i = 0;
3921	netdev_for_each_mc_addr(ha, netdev)
3922		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3923
3924	igb_update_mc_addr_list(hw, mta_list, i);
3925	kfree(mta_list);
3926
3927	return netdev_mc_count(netdev);
3928}
3929
3930/**
3931 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3932 *  @netdev: network interface device structure
3933 *
3934 *  Writes unicast address list to the RAR table.
3935 *  Returns: -ENOMEM on failure/insufficient address space
3936 *           0 on no addresses written
3937 *           X on writing X addresses to the RAR table
3938 **/
3939static int igb_write_uc_addr_list(struct net_device *netdev)
3940{
3941	struct igb_adapter *adapter = netdev_priv(netdev);
3942	struct e1000_hw *hw = &adapter->hw;
3943	unsigned int vfn = adapter->vfs_allocated_count;
3944	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3945	int count = 0;
3946
3947	/* return ENOMEM indicating insufficient memory for addresses */
3948	if (netdev_uc_count(netdev) > rar_entries)
3949		return -ENOMEM;
3950
3951	if (!netdev_uc_empty(netdev) && rar_entries) {
3952		struct netdev_hw_addr *ha;
3953
3954		netdev_for_each_uc_addr(ha, netdev) {
3955			if (!rar_entries)
3956				break;
3957			igb_rar_set_qsel(adapter, ha->addr,
3958					 rar_entries--,
3959					 vfn);
3960			count++;
3961		}
3962	}
3963	/* write the addresses in reverse order to avoid write combining */
3964	for (; rar_entries > 0 ; rar_entries--) {
3965		wr32(E1000_RAH(rar_entries), 0);
3966		wr32(E1000_RAL(rar_entries), 0);
3967	}
3968	wrfl();
3969
3970	return count;
3971}
3972
3973/**
3974 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3975 *  @netdev: network interface device structure
3976 *
3977 *  The set_rx_mode entry point is called whenever the unicast or multicast
3978 *  address lists or the network interface flags are updated.  This routine is
3979 *  responsible for configuring the hardware for proper unicast, multicast,
3980 *  promiscuous mode, and all-multi behavior.
3981 **/
3982static void igb_set_rx_mode(struct net_device *netdev)
3983{
3984	struct igb_adapter *adapter = netdev_priv(netdev);
3985	struct e1000_hw *hw = &adapter->hw;
3986	unsigned int vfn = adapter->vfs_allocated_count;
3987	u32 rctl, vmolr = 0;
3988	int count;
3989
3990	/* Check for Promiscuous and All Multicast modes */
3991	rctl = rd32(E1000_RCTL);
3992
3993	/* clear the effected bits */
3994	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3995
3996	if (netdev->flags & IFF_PROMISC) {
3997		/* retain VLAN HW filtering if in VT mode */
3998		if (adapter->vfs_allocated_count)
3999			rctl |= E1000_RCTL_VFE;
4000		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4001		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4002	} else {
4003		if (netdev->flags & IFF_ALLMULTI) {
4004			rctl |= E1000_RCTL_MPE;
4005			vmolr |= E1000_VMOLR_MPME;
4006		} else {
4007			/* Write addresses to the MTA, if the attempt fails
4008			 * then we should just turn on promiscuous mode so
4009			 * that we can at least receive multicast traffic
4010			 */
4011			count = igb_write_mc_addr_list(netdev);
4012			if (count < 0) {
4013				rctl |= E1000_RCTL_MPE;
4014				vmolr |= E1000_VMOLR_MPME;
4015			} else if (count) {
4016				vmolr |= E1000_VMOLR_ROMPE;
4017			}
4018		}
4019		/* Write addresses to available RAR registers, if there is not
4020		 * sufficient space to store all the addresses then enable
4021		 * unicast promiscuous mode
4022		 */
4023		count = igb_write_uc_addr_list(netdev);
4024		if (count < 0) {
4025			rctl |= E1000_RCTL_UPE;
4026			vmolr |= E1000_VMOLR_ROPE;
4027		}
4028		rctl |= E1000_RCTL_VFE;
4029	}
4030	wr32(E1000_RCTL, rctl);
4031
4032	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4033	 * the VMOLR to enable the appropriate modes.  Without this workaround
4034	 * we will have issues with VLAN tag stripping not being done for frames
4035	 * that are only arriving because we are the default pool
4036	 */
4037	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4038		return;
4039
4040	vmolr |= rd32(E1000_VMOLR(vfn)) &
4041		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4042	wr32(E1000_VMOLR(vfn), vmolr);
4043	igb_restore_vf_multicasts(adapter);
4044}
4045
4046static void igb_check_wvbr(struct igb_adapter *adapter)
4047{
4048	struct e1000_hw *hw = &adapter->hw;
4049	u32 wvbr = 0;
4050
4051	switch (hw->mac.type) {
4052	case e1000_82576:
4053	case e1000_i350:
4054		if (!(wvbr = rd32(E1000_WVBR)))
4055			return;
4056		break;
4057	default:
4058		break;
4059	}
4060
4061	adapter->wvbr |= wvbr;
4062}
4063
4064#define IGB_STAGGERED_QUEUE_OFFSET 8
4065
4066static void igb_spoof_check(struct igb_adapter *adapter)
4067{
4068	int j;
4069
4070	if (!adapter->wvbr)
4071		return;
4072
4073	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4074		if (adapter->wvbr & (1 << j) ||
4075		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4076			dev_warn(&adapter->pdev->dev,
4077				"Spoof event(s) detected on VF %d\n", j);
4078			adapter->wvbr &=
4079				~((1 << j) |
4080				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4081		}
4082	}
4083}
4084
4085/* Need to wait a few seconds after link up to get diagnostic information from
4086 * the phy
4087 */
4088static void igb_update_phy_info(unsigned long data)
4089{
4090	struct igb_adapter *adapter = (struct igb_adapter *) data;
4091	igb_get_phy_info(&adapter->hw);
4092}
4093
4094/**
4095 *  igb_has_link - check shared code for link and determine up/down
4096 *  @adapter: pointer to driver private info
4097 **/
4098bool igb_has_link(struct igb_adapter *adapter)
4099{
4100	struct e1000_hw *hw = &adapter->hw;
4101	bool link_active = false;
4102
4103	/* get_link_status is set on LSC (link status) interrupt or
4104	 * rx sequence error interrupt.  get_link_status will stay
4105	 * false until the e1000_check_for_link establishes link
4106	 * for copper adapters ONLY
4107	 */
4108	switch (hw->phy.media_type) {
4109	case e1000_media_type_copper:
4110		if (!hw->mac.get_link_status)
4111			return true;
4112	case e1000_media_type_internal_serdes:
4113		hw->mac.ops.check_for_link(hw);
4114		link_active = !hw->mac.get_link_status;
4115		break;
4116	default:
4117	case e1000_media_type_unknown:
4118		break;
4119	}
4120
4121	if (((hw->mac.type == e1000_i210) ||
4122	     (hw->mac.type == e1000_i211)) &&
4123	     (hw->phy.id == I210_I_PHY_ID)) {
4124		if (!netif_carrier_ok(adapter->netdev)) {
4125			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4126		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4127			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4128			adapter->link_check_timeout = jiffies;
4129		}
4130	}
4131
4132	return link_active;
4133}
4134
4135static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4136{
4137	bool ret = false;
4138	u32 ctrl_ext, thstat;
4139
4140	/* check for thermal sensor event on i350 copper only */
4141	if (hw->mac.type == e1000_i350) {
4142		thstat = rd32(E1000_THSTAT);
4143		ctrl_ext = rd32(E1000_CTRL_EXT);
4144
4145		if ((hw->phy.media_type == e1000_media_type_copper) &&
4146		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4147			ret = !!(thstat & event);
4148	}
4149
4150	return ret;
4151}
4152
4153/**
4154 *  igb_watchdog - Timer Call-back
4155 *  @data: pointer to adapter cast into an unsigned long
4156 **/
4157static void igb_watchdog(unsigned long data)
4158{
4159	struct igb_adapter *adapter = (struct igb_adapter *)data;
4160	/* Do the rest outside of interrupt context */
4161	schedule_work(&adapter->watchdog_task);
4162}
4163
4164static void igb_watchdog_task(struct work_struct *work)
4165{
4166	struct igb_adapter *adapter = container_of(work,
4167						   struct igb_adapter,
4168						   watchdog_task);
4169	struct e1000_hw *hw = &adapter->hw;
4170	struct e1000_phy_info *phy = &hw->phy;
4171	struct net_device *netdev = adapter->netdev;
4172	u32 link;
4173	int i;
4174	u32 connsw;
4175
4176	link = igb_has_link(adapter);
4177
4178	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4179		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4180			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4181		else
4182			link = false;
4183	}
4184
4185	/* Force link down if we have fiber to swap to */
4186	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4187		if (hw->phy.media_type == e1000_media_type_copper) {
4188			connsw = rd32(E1000_CONNSW);
4189			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4190				link = 0;
4191		}
4192	}
4193	if (link) {
4194		/* Perform a reset if the media type changed. */
4195		if (hw->dev_spec._82575.media_changed) {
4196			hw->dev_spec._82575.media_changed = false;
4197			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4198			igb_reset(adapter);
4199		}
4200		/* Cancel scheduled suspend requests. */
4201		pm_runtime_resume(netdev->dev.parent);
4202
4203		if (!netif_carrier_ok(netdev)) {
4204			u32 ctrl;
4205			hw->mac.ops.get_speed_and_duplex(hw,
4206							 &adapter->link_speed,
4207							 &adapter->link_duplex);
4208
4209			ctrl = rd32(E1000_CTRL);
4210			/* Links status message must follow this format */
4211			netdev_info(netdev,
4212			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4213			       netdev->name,
4214			       adapter->link_speed,
4215			       adapter->link_duplex == FULL_DUPLEX ?
4216			       "Full" : "Half",
4217			       (ctrl & E1000_CTRL_TFCE) &&
4218			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4219			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4220			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4221
4222			/* disable EEE if enabled */
4223			if ((adapter->flags & IGB_FLAG_EEE) &&
4224				(adapter->link_duplex == HALF_DUPLEX)) {
4225				dev_info(&adapter->pdev->dev,
4226				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4227				adapter->hw.dev_spec._82575.eee_disable = true;
4228				adapter->flags &= ~IGB_FLAG_EEE;
4229			}
4230
4231			/* check if SmartSpeed worked */
4232			igb_check_downshift(hw);
4233			if (phy->speed_downgraded)
4234				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4235
4236			/* check for thermal sensor event */
4237			if (igb_thermal_sensor_event(hw,
4238			    E1000_THSTAT_LINK_THROTTLE)) {
4239				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4240			}
4241
4242			/* adjust timeout factor according to speed/duplex */
4243			adapter->tx_timeout_factor = 1;
4244			switch (adapter->link_speed) {
4245			case SPEED_10:
4246				adapter->tx_timeout_factor = 14;
4247				break;
4248			case SPEED_100:
4249				/* maybe add some timeout factor ? */
4250				break;
4251			}
4252
4253			netif_carrier_on(netdev);
4254
4255			igb_ping_all_vfs(adapter);
4256			igb_check_vf_rate_limit(adapter);
4257
4258			/* link state has changed, schedule phy info update */
4259			if (!test_bit(__IGB_DOWN, &adapter->state))
4260				mod_timer(&adapter->phy_info_timer,
4261					  round_jiffies(jiffies + 2 * HZ));
4262		}
4263	} else {
4264		if (netif_carrier_ok(netdev)) {
4265			adapter->link_speed = 0;
4266			adapter->link_duplex = 0;
4267
4268			/* check for thermal sensor event */
4269			if (igb_thermal_sensor_event(hw,
4270			    E1000_THSTAT_PWR_DOWN)) {
4271				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4272			}
4273
4274			/* Links status message must follow this format */
4275			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4276			       netdev->name);
4277			netif_carrier_off(netdev);
4278
4279			igb_ping_all_vfs(adapter);
4280
4281			/* link state has changed, schedule phy info update */
4282			if (!test_bit(__IGB_DOWN, &adapter->state))
4283				mod_timer(&adapter->phy_info_timer,
4284					  round_jiffies(jiffies + 2 * HZ));
4285
4286			/* link is down, time to check for alternate media */
4287			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4288				igb_check_swap_media(adapter);
4289				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4290					schedule_work(&adapter->reset_task);
4291					/* return immediately */
4292					return;
4293				}
4294			}
4295			pm_schedule_suspend(netdev->dev.parent,
4296					    MSEC_PER_SEC * 5);
4297
4298		/* also check for alternate media here */
4299		} else if (!netif_carrier_ok(netdev) &&
4300			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4301			igb_check_swap_media(adapter);
4302			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4303				schedule_work(&adapter->reset_task);
4304				/* return immediately */
4305				return;
4306			}
4307		}
4308	}
4309
4310	spin_lock(&adapter->stats64_lock);
4311	igb_update_stats(adapter, &adapter->stats64);
4312	spin_unlock(&adapter->stats64_lock);
4313
4314	for (i = 0; i < adapter->num_tx_queues; i++) {
4315		struct igb_ring *tx_ring = adapter->tx_ring[i];
4316		if (!netif_carrier_ok(netdev)) {
4317			/* We've lost link, so the controller stops DMA,
4318			 * but we've got queued Tx work that's never going
4319			 * to get done, so reset controller to flush Tx.
4320			 * (Do the reset outside of interrupt context).
4321			 */
4322			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4323				adapter->tx_timeout_count++;
4324				schedule_work(&adapter->reset_task);
4325				/* return immediately since reset is imminent */
4326				return;
4327			}
4328		}
4329
4330		/* Force detection of hung controller every watchdog period */
4331		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4332	}
4333
4334	/* Cause software interrupt to ensure Rx ring is cleaned */
4335	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4336		u32 eics = 0;
4337		for (i = 0; i < adapter->num_q_vectors; i++)
4338			eics |= adapter->q_vector[i]->eims_value;
4339		wr32(E1000_EICS, eics);
4340	} else {
4341		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4342	}
4343
4344	igb_spoof_check(adapter);
4345	igb_ptp_rx_hang(adapter);
4346
4347	/* Reset the timer */
4348	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4349		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4350			mod_timer(&adapter->watchdog_timer,
4351				  round_jiffies(jiffies +  HZ));
4352		else
4353			mod_timer(&adapter->watchdog_timer,
4354				  round_jiffies(jiffies + 2 * HZ));
4355	}
4356}
4357
4358enum latency_range {
4359	lowest_latency = 0,
4360	low_latency = 1,
4361	bulk_latency = 2,
4362	latency_invalid = 255
4363};
4364
4365/**
4366 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4367 *  @q_vector: pointer to q_vector
4368 *
4369 *  Stores a new ITR value based on strictly on packet size.  This
4370 *  algorithm is less sophisticated than that used in igb_update_itr,
4371 *  due to the difficulty of synchronizing statistics across multiple
4372 *  receive rings.  The divisors and thresholds used by this function
4373 *  were determined based on theoretical maximum wire speed and testing
4374 *  data, in order to minimize response time while increasing bulk
4375 *  throughput.
4376 *  This functionality is controlled by ethtool's coalescing settings.
4377 *  NOTE:  This function is called only when operating in a multiqueue
4378 *         receive environment.
4379 **/
4380static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4381{
4382	int new_val = q_vector->itr_val;
4383	int avg_wire_size = 0;
4384	struct igb_adapter *adapter = q_vector->adapter;
4385	unsigned int packets;
4386
4387	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4388	 * ints/sec - ITR timer value of 120 ticks.
4389	 */
4390	if (adapter->link_speed != SPEED_1000) {
4391		new_val = IGB_4K_ITR;
4392		goto set_itr_val;
4393	}
4394
4395	packets = q_vector->rx.total_packets;
4396	if (packets)
4397		avg_wire_size = q_vector->rx.total_bytes / packets;
4398
4399	packets = q_vector->tx.total_packets;
4400	if (packets)
4401		avg_wire_size = max_t(u32, avg_wire_size,
4402				      q_vector->tx.total_bytes / packets);
4403
4404	/* if avg_wire_size isn't set no work was done */
4405	if (!avg_wire_size)
4406		goto clear_counts;
4407
4408	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4409	avg_wire_size += 24;
4410
4411	/* Don't starve jumbo frames */
4412	avg_wire_size = min(avg_wire_size, 3000);
4413
4414	/* Give a little boost to mid-size frames */
4415	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4416		new_val = avg_wire_size / 3;
4417	else
4418		new_val = avg_wire_size / 2;
4419
4420	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4421	if (new_val < IGB_20K_ITR &&
4422	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4423	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4424		new_val = IGB_20K_ITR;
4425
4426set_itr_val:
4427	if (new_val != q_vector->itr_val) {
4428		q_vector->itr_val = new_val;
4429		q_vector->set_itr = 1;
4430	}
4431clear_counts:
4432	q_vector->rx.total_bytes = 0;
4433	q_vector->rx.total_packets = 0;
4434	q_vector->tx.total_bytes = 0;
4435	q_vector->tx.total_packets = 0;
4436}
4437
4438/**
4439 *  igb_update_itr - update the dynamic ITR value based on statistics
4440 *  @q_vector: pointer to q_vector
4441 *  @ring_container: ring info to update the itr for
4442 *
4443 *  Stores a new ITR value based on packets and byte
4444 *  counts during the last interrupt.  The advantage of per interrupt
4445 *  computation is faster updates and more accurate ITR for the current
4446 *  traffic pattern.  Constants in this function were computed
4447 *  based on theoretical maximum wire speed and thresholds were set based
4448 *  on testing data as well as attempting to minimize response time
4449 *  while increasing bulk throughput.
4450 *  This functionality is controlled by ethtool's coalescing settings.
4451 *  NOTE:  These calculations are only valid when operating in a single-
4452 *         queue environment.
4453 **/
4454static void igb_update_itr(struct igb_q_vector *q_vector,
4455			   struct igb_ring_container *ring_container)
4456{
4457	unsigned int packets = ring_container->total_packets;
4458	unsigned int bytes = ring_container->total_bytes;
4459	u8 itrval = ring_container->itr;
4460
4461	/* no packets, exit with status unchanged */
4462	if (packets == 0)
4463		return;
4464
4465	switch (itrval) {
4466	case lowest_latency:
4467		/* handle TSO and jumbo frames */
4468		if (bytes/packets > 8000)
4469			itrval = bulk_latency;
4470		else if ((packets < 5) && (bytes > 512))
4471			itrval = low_latency;
4472		break;
4473	case low_latency:  /* 50 usec aka 20000 ints/s */
4474		if (bytes > 10000) {
4475			/* this if handles the TSO accounting */
4476			if (bytes/packets > 8000) {
4477				itrval = bulk_latency;
4478			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4479				itrval = bulk_latency;
4480			} else if ((packets > 35)) {
4481				itrval = lowest_latency;
4482			}
4483		} else if (bytes/packets > 2000) {
4484			itrval = bulk_latency;
4485		} else if (packets <= 2 && bytes < 512) {
4486			itrval = lowest_latency;
4487		}
4488		break;
4489	case bulk_latency: /* 250 usec aka 4000 ints/s */
4490		if (bytes > 25000) {
4491			if (packets > 35)
4492				itrval = low_latency;
4493		} else if (bytes < 1500) {
4494			itrval = low_latency;
4495		}
4496		break;
4497	}
4498
4499	/* clear work counters since we have the values we need */
4500	ring_container->total_bytes = 0;
4501	ring_container->total_packets = 0;
4502
4503	/* write updated itr to ring container */
4504	ring_container->itr = itrval;
4505}
4506
4507static void igb_set_itr(struct igb_q_vector *q_vector)
4508{
4509	struct igb_adapter *adapter = q_vector->adapter;
4510	u32 new_itr = q_vector->itr_val;
4511	u8 current_itr = 0;
4512
4513	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4514	if (adapter->link_speed != SPEED_1000) {
4515		current_itr = 0;
4516		new_itr = IGB_4K_ITR;
4517		goto set_itr_now;
4518	}
4519
4520	igb_update_itr(q_vector, &q_vector->tx);
4521	igb_update_itr(q_vector, &q_vector->rx);
4522
4523	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4524
4525	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4526	if (current_itr == lowest_latency &&
4527	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4528	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4529		current_itr = low_latency;
4530
4531	switch (current_itr) {
4532	/* counts and packets in update_itr are dependent on these numbers */
4533	case lowest_latency:
4534		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4535		break;
4536	case low_latency:
4537		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4538		break;
4539	case bulk_latency:
4540		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4541		break;
4542	default:
4543		break;
4544	}
4545
4546set_itr_now:
4547	if (new_itr != q_vector->itr_val) {
4548		/* this attempts to bias the interrupt rate towards Bulk
4549		 * by adding intermediate steps when interrupt rate is
4550		 * increasing
4551		 */
4552		new_itr = new_itr > q_vector->itr_val ?
4553			  max((new_itr * q_vector->itr_val) /
4554			  (new_itr + (q_vector->itr_val >> 2)),
4555			  new_itr) : new_itr;
4556		/* Don't write the value here; it resets the adapter's
4557		 * internal timer, and causes us to delay far longer than
4558		 * we should between interrupts.  Instead, we write the ITR
4559		 * value at the beginning of the next interrupt so the timing
4560		 * ends up being correct.
4561		 */
4562		q_vector->itr_val = new_itr;
4563		q_vector->set_itr = 1;
4564	}
4565}
4566
4567static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4568			    u32 type_tucmd, u32 mss_l4len_idx)
4569{
4570	struct e1000_adv_tx_context_desc *context_desc;
4571	u16 i = tx_ring->next_to_use;
4572
4573	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4574
4575	i++;
4576	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4577
4578	/* set bits to identify this as an advanced context descriptor */
4579	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4580
4581	/* For 82575, context index must be unique per ring. */
4582	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4583		mss_l4len_idx |= tx_ring->reg_idx << 4;
4584
4585	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4586	context_desc->seqnum_seed	= 0;
4587	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4588	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4589}
4590
4591static int igb_tso(struct igb_ring *tx_ring,
4592		   struct igb_tx_buffer *first,
4593		   u8 *hdr_len)
4594{
4595	struct sk_buff *skb = first->skb;
4596	u32 vlan_macip_lens, type_tucmd;
4597	u32 mss_l4len_idx, l4len;
4598	int err;
4599
4600	if (skb->ip_summed != CHECKSUM_PARTIAL)
4601		return 0;
4602
4603	if (!skb_is_gso(skb))
4604		return 0;
4605
4606	err = skb_cow_head(skb, 0);
4607	if (err < 0)
4608		return err;
4609
4610	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4611	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4612
4613	if (first->protocol == htons(ETH_P_IP)) {
4614		struct iphdr *iph = ip_hdr(skb);
4615		iph->tot_len = 0;
4616		iph->check = 0;
4617		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4618							 iph->daddr, 0,
4619							 IPPROTO_TCP,
4620							 0);
4621		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4622		first->tx_flags |= IGB_TX_FLAGS_TSO |
4623				   IGB_TX_FLAGS_CSUM |
4624				   IGB_TX_FLAGS_IPV4;
4625	} else if (skb_is_gso_v6(skb)) {
4626		ipv6_hdr(skb)->payload_len = 0;
4627		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4628						       &ipv6_hdr(skb)->daddr,
4629						       0, IPPROTO_TCP, 0);
4630		first->tx_flags |= IGB_TX_FLAGS_TSO |
4631				   IGB_TX_FLAGS_CSUM;
4632	}
4633
4634	/* compute header lengths */
4635	l4len = tcp_hdrlen(skb);
4636	*hdr_len = skb_transport_offset(skb) + l4len;
4637
4638	/* update gso size and bytecount with header size */
4639	first->gso_segs = skb_shinfo(skb)->gso_segs;
4640	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4641
4642	/* MSS L4LEN IDX */
4643	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4644	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4645
4646	/* VLAN MACLEN IPLEN */
4647	vlan_macip_lens = skb_network_header_len(skb);
4648	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4649	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4650
4651	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4652
4653	return 1;
4654}
4655
4656static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4657{
4658	struct sk_buff *skb = first->skb;
4659	u32 vlan_macip_lens = 0;
4660	u32 mss_l4len_idx = 0;
4661	u32 type_tucmd = 0;
4662
4663	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4664		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4665			return;
4666	} else {
4667		u8 l4_hdr = 0;
4668		switch (first->protocol) {
4669		case htons(ETH_P_IP):
4670			vlan_macip_lens |= skb_network_header_len(skb);
4671			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4672			l4_hdr = ip_hdr(skb)->protocol;
4673			break;
4674		case htons(ETH_P_IPV6):
4675			vlan_macip_lens |= skb_network_header_len(skb);
4676			l4_hdr = ipv6_hdr(skb)->nexthdr;
4677			break;
4678		default:
4679			if (unlikely(net_ratelimit())) {
4680				dev_warn(tx_ring->dev,
4681					 "partial checksum but proto=%x!\n",
4682					 first->protocol);
4683			}
4684			break;
4685		}
4686
4687		switch (l4_hdr) {
4688		case IPPROTO_TCP:
4689			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4690			mss_l4len_idx = tcp_hdrlen(skb) <<
4691					E1000_ADVTXD_L4LEN_SHIFT;
4692			break;
4693		case IPPROTO_SCTP:
4694			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4695			mss_l4len_idx = sizeof(struct sctphdr) <<
4696					E1000_ADVTXD_L4LEN_SHIFT;
4697			break;
4698		case IPPROTO_UDP:
4699			mss_l4len_idx = sizeof(struct udphdr) <<
4700					E1000_ADVTXD_L4LEN_SHIFT;
4701			break;
4702		default:
4703			if (unlikely(net_ratelimit())) {
4704				dev_warn(tx_ring->dev,
4705					 "partial checksum but l4 proto=%x!\n",
4706					 l4_hdr);
4707			}
4708			break;
4709		}
4710
4711		/* update TX checksum flag */
4712		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4713	}
4714
4715	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4716	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4717
4718	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4719}
4720
4721#define IGB_SET_FLAG(_input, _flag, _result) \
4722	((_flag <= _result) ? \
4723	 ((u32)(_input & _flag) * (_result / _flag)) : \
4724	 ((u32)(_input & _flag) / (_flag / _result)))
4725
4726static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4727{
4728	/* set type for advanced descriptor with frame checksum insertion */
4729	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4730		       E1000_ADVTXD_DCMD_DEXT |
4731		       E1000_ADVTXD_DCMD_IFCS;
4732
4733	/* set HW vlan bit if vlan is present */
4734	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4735				 (E1000_ADVTXD_DCMD_VLE));
4736
4737	/* set segmentation bits for TSO */
4738	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4739				 (E1000_ADVTXD_DCMD_TSE));
4740
4741	/* set timestamp bit if present */
4742	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4743				 (E1000_ADVTXD_MAC_TSTAMP));
4744
4745	/* insert frame checksum */
4746	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4747
4748	return cmd_type;
4749}
4750
4751static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4752				 union e1000_adv_tx_desc *tx_desc,
4753				 u32 tx_flags, unsigned int paylen)
4754{
4755	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4756
4757	/* 82575 requires a unique index per ring */
4758	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4759		olinfo_status |= tx_ring->reg_idx << 4;
4760
4761	/* insert L4 checksum */
4762	olinfo_status |= IGB_SET_FLAG(tx_flags,
4763				      IGB_TX_FLAGS_CSUM,
4764				      (E1000_TXD_POPTS_TXSM << 8));
4765
4766	/* insert IPv4 checksum */
4767	olinfo_status |= IGB_SET_FLAG(tx_flags,
4768				      IGB_TX_FLAGS_IPV4,
4769				      (E1000_TXD_POPTS_IXSM << 8));
4770
4771	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4772}
4773
4774static void igb_tx_map(struct igb_ring *tx_ring,
4775		       struct igb_tx_buffer *first,
4776		       const u8 hdr_len)
4777{
4778	struct sk_buff *skb = first->skb;
4779	struct igb_tx_buffer *tx_buffer;
4780	union e1000_adv_tx_desc *tx_desc;
4781	struct skb_frag_struct *frag;
4782	dma_addr_t dma;
4783	unsigned int data_len, size;
4784	u32 tx_flags = first->tx_flags;
4785	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4786	u16 i = tx_ring->next_to_use;
4787
4788	tx_desc = IGB_TX_DESC(tx_ring, i);
4789
4790	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4791
4792	size = skb_headlen(skb);
4793	data_len = skb->data_len;
4794
4795	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4796
4797	tx_buffer = first;
4798
4799	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4800		if (dma_mapping_error(tx_ring->dev, dma))
4801			goto dma_error;
4802
4803		/* record length, and DMA address */
4804		dma_unmap_len_set(tx_buffer, len, size);
4805		dma_unmap_addr_set(tx_buffer, dma, dma);
4806
4807		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4808
4809		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4810			tx_desc->read.cmd_type_len =
4811				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4812
4813			i++;
4814			tx_desc++;
4815			if (i == tx_ring->count) {
4816				tx_desc = IGB_TX_DESC(tx_ring, 0);
4817				i = 0;
4818			}
4819			tx_desc->read.olinfo_status = 0;
4820
4821			dma += IGB_MAX_DATA_PER_TXD;
4822			size -= IGB_MAX_DATA_PER_TXD;
4823
4824			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4825		}
4826
4827		if (likely(!data_len))
4828			break;
4829
4830		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4831
4832		i++;
4833		tx_desc++;
4834		if (i == tx_ring->count) {
4835			tx_desc = IGB_TX_DESC(tx_ring, 0);
4836			i = 0;
4837		}
4838		tx_desc->read.olinfo_status = 0;
4839
4840		size = skb_frag_size(frag);
4841		data_len -= size;
4842
4843		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4844				       size, DMA_TO_DEVICE);
4845
4846		tx_buffer = &tx_ring->tx_buffer_info[i];
4847	}
4848
4849	/* write last descriptor with RS and EOP bits */
4850	cmd_type |= size | IGB_TXD_DCMD;
4851	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4852
4853	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4854
4855	/* set the timestamp */
4856	first->time_stamp = jiffies;
4857
4858	/* Force memory writes to complete before letting h/w know there
4859	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4860	 * memory model archs, such as IA-64).
4861	 *
4862	 * We also need this memory barrier to make certain all of the
4863	 * status bits have been updated before next_to_watch is written.
4864	 */
4865	wmb();
4866
4867	/* set next_to_watch value indicating a packet is present */
4868	first->next_to_watch = tx_desc;
4869
4870	i++;
4871	if (i == tx_ring->count)
4872		i = 0;
4873
4874	tx_ring->next_to_use = i;
4875
4876	writel(i, tx_ring->tail);
4877
4878	/* we need this if more than one processor can write to our tail
4879	 * at a time, it synchronizes IO on IA64/Altix systems
4880	 */
4881	mmiowb();
4882
4883	return;
4884
4885dma_error:
4886	dev_err(tx_ring->dev, "TX DMA map failed\n");
4887
4888	/* clear dma mappings for failed tx_buffer_info map */
4889	for (;;) {
4890		tx_buffer = &tx_ring->tx_buffer_info[i];
4891		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4892		if (tx_buffer == first)
4893			break;
4894		if (i == 0)
4895			i = tx_ring->count;
4896		i--;
4897	}
4898
4899	tx_ring->next_to_use = i;
4900}
4901
4902static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4903{
4904	struct net_device *netdev = tx_ring->netdev;
4905
4906	netif_stop_subqueue(netdev, tx_ring->queue_index);
4907
4908	/* Herbert's original patch had:
4909	 *  smp_mb__after_netif_stop_queue();
4910	 * but since that doesn't exist yet, just open code it.
4911	 */
4912	smp_mb();
4913
4914	/* We need to check again in a case another CPU has just
4915	 * made room available.
4916	 */
4917	if (igb_desc_unused(tx_ring) < size)
4918		return -EBUSY;
4919
4920	/* A reprieve! */
4921	netif_wake_subqueue(netdev, tx_ring->queue_index);
4922
4923	u64_stats_update_begin(&tx_ring->tx_syncp2);
4924	tx_ring->tx_stats.restart_queue2++;
4925	u64_stats_update_end(&tx_ring->tx_syncp2);
4926
4927	return 0;
4928}
4929
4930static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4931{
4932	if (igb_desc_unused(tx_ring) >= size)
4933		return 0;
4934	return __igb_maybe_stop_tx(tx_ring, size);
4935}
4936
4937netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4938				struct igb_ring *tx_ring)
4939{
4940	struct igb_tx_buffer *first;
4941	int tso;
4942	u32 tx_flags = 0;
4943	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4944	__be16 protocol = vlan_get_protocol(skb);
4945	u8 hdr_len = 0;
4946
4947	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4948	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4949	 *       + 2 desc gap to keep tail from touching head,
4950	 *       + 1 desc for context descriptor,
4951	 * otherwise try next time
4952	 */
4953	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4954		unsigned short f;
4955		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4956			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4957	} else {
4958		count += skb_shinfo(skb)->nr_frags;
4959	}
4960
4961	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4962		/* this is a hard error */
4963		return NETDEV_TX_BUSY;
4964	}
4965
4966	/* record the location of the first descriptor for this packet */
4967	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4968	first->skb = skb;
4969	first->bytecount = skb->len;
4970	first->gso_segs = 1;
4971
4972	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4973		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4974
4975		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4976					   &adapter->state)) {
4977			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4978			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4979
4980			adapter->ptp_tx_skb = skb_get(skb);
4981			adapter->ptp_tx_start = jiffies;
4982			if (adapter->hw.mac.type == e1000_82576)
4983				schedule_work(&adapter->ptp_tx_work);
4984		}
4985	}
4986
4987	skb_tx_timestamp(skb);
4988
4989	if (vlan_tx_tag_present(skb)) {
4990		tx_flags |= IGB_TX_FLAGS_VLAN;
4991		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4992	}
4993
4994	/* record initial flags and protocol */
4995	first->tx_flags = tx_flags;
4996	first->protocol = protocol;
4997
4998	tso = igb_tso(tx_ring, first, &hdr_len);
4999	if (tso < 0)
5000		goto out_drop;
5001	else if (!tso)
5002		igb_tx_csum(tx_ring, first);
5003
5004	igb_tx_map(tx_ring, first, hdr_len);
5005
5006	/* Make sure there is space in the ring for the next send. */
5007	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5008
5009	return NETDEV_TX_OK;
5010
5011out_drop:
5012	igb_unmap_and_free_tx_resource(tx_ring, first);
5013
5014	return NETDEV_TX_OK;
5015}
5016
5017static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5018						    struct sk_buff *skb)
5019{
5020	unsigned int r_idx = skb->queue_mapping;
5021
5022	if (r_idx >= adapter->num_tx_queues)
5023		r_idx = r_idx % adapter->num_tx_queues;
5024
5025	return adapter->tx_ring[r_idx];
5026}
5027
5028static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5029				  struct net_device *netdev)
5030{
5031	struct igb_adapter *adapter = netdev_priv(netdev);
5032
5033	if (test_bit(__IGB_DOWN, &adapter->state)) {
5034		dev_kfree_skb_any(skb);
5035		return NETDEV_TX_OK;
5036	}
5037
5038	if (skb->len <= 0) {
5039		dev_kfree_skb_any(skb);
5040		return NETDEV_TX_OK;
5041	}
5042
5043	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5044	 * in order to meet this minimum size requirement.
5045	 */
5046	if (unlikely(skb->len < 17)) {
5047		if (skb_pad(skb, 17 - skb->len))
5048			return NETDEV_TX_OK;
5049		skb->len = 17;
5050		skb_set_tail_pointer(skb, 17);
5051	}
5052
5053	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5054}
5055
5056/**
5057 *  igb_tx_timeout - Respond to a Tx Hang
5058 *  @netdev: network interface device structure
5059 **/
5060static void igb_tx_timeout(struct net_device *netdev)
5061{
5062	struct igb_adapter *adapter = netdev_priv(netdev);
5063	struct e1000_hw *hw = &adapter->hw;
5064
5065	/* Do the reset outside of interrupt context */
5066	adapter->tx_timeout_count++;
5067
5068	if (hw->mac.type >= e1000_82580)
5069		hw->dev_spec._82575.global_device_reset = true;
5070
5071	schedule_work(&adapter->reset_task);
5072	wr32(E1000_EICS,
5073	     (adapter->eims_enable_mask & ~adapter->eims_other));
5074}
5075
5076static void igb_reset_task(struct work_struct *work)
5077{
5078	struct igb_adapter *adapter;
5079	adapter = container_of(work, struct igb_adapter, reset_task);
5080
5081	igb_dump(adapter);
5082	netdev_err(adapter->netdev, "Reset adapter\n");
5083	igb_reinit_locked(adapter);
5084}
5085
5086/**
5087 *  igb_get_stats64 - Get System Network Statistics
5088 *  @netdev: network interface device structure
5089 *  @stats: rtnl_link_stats64 pointer
5090 **/
5091static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5092						struct rtnl_link_stats64 *stats)
5093{
5094	struct igb_adapter *adapter = netdev_priv(netdev);
5095
5096	spin_lock(&adapter->stats64_lock);
5097	igb_update_stats(adapter, &adapter->stats64);
5098	memcpy(stats, &adapter->stats64, sizeof(*stats));
5099	spin_unlock(&adapter->stats64_lock);
5100
5101	return stats;
5102}
5103
5104/**
5105 *  igb_change_mtu - Change the Maximum Transfer Unit
5106 *  @netdev: network interface device structure
5107 *  @new_mtu: new value for maximum frame size
5108 *
5109 *  Returns 0 on success, negative on failure
5110 **/
5111static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5112{
5113	struct igb_adapter *adapter = netdev_priv(netdev);
5114	struct pci_dev *pdev = adapter->pdev;
5115	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5116
5117	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5118		dev_err(&pdev->dev, "Invalid MTU setting\n");
5119		return -EINVAL;
5120	}
5121
5122#define MAX_STD_JUMBO_FRAME_SIZE 9238
5123	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5124		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5125		return -EINVAL;
5126	}
5127
5128	/* adjust max frame to be at least the size of a standard frame */
5129	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5130		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5131
5132	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5133		msleep(1);
5134
5135	/* igb_down has a dependency on max_frame_size */
5136	adapter->max_frame_size = max_frame;
5137
5138	if (netif_running(netdev))
5139		igb_down(adapter);
5140
5141	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5142		 netdev->mtu, new_mtu);
5143	netdev->mtu = new_mtu;
5144
5145	if (netif_running(netdev))
5146		igb_up(adapter);
5147	else
5148		igb_reset(adapter);
5149
5150	clear_bit(__IGB_RESETTING, &adapter->state);
5151
5152	return 0;
5153}
5154
5155/**
5156 *  igb_update_stats - Update the board statistics counters
5157 *  @adapter: board private structure
5158 **/
5159void igb_update_stats(struct igb_adapter *adapter,
5160		      struct rtnl_link_stats64 *net_stats)
5161{
5162	struct e1000_hw *hw = &adapter->hw;
5163	struct pci_dev *pdev = adapter->pdev;
5164	u32 reg, mpc;
5165	u16 phy_tmp;
5166	int i;
5167	u64 bytes, packets;
5168	unsigned int start;
5169	u64 _bytes, _packets;
5170
5171#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5172
5173	/* Prevent stats update while adapter is being reset, or if the pci
5174	 * connection is down.
5175	 */
5176	if (adapter->link_speed == 0)
5177		return;
5178	if (pci_channel_offline(pdev))
5179		return;
5180
5181	bytes = 0;
5182	packets = 0;
5183
5184	rcu_read_lock();
5185	for (i = 0; i < adapter->num_rx_queues; i++) {
5186		u32 rqdpc = rd32(E1000_RQDPC(i));
5187		struct igb_ring *ring = adapter->rx_ring[i];
5188
5189		if (rqdpc) {
5190			ring->rx_stats.drops += rqdpc;
5191			net_stats->rx_fifo_errors += rqdpc;
5192		}
5193
5194		do {
5195			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5196			_bytes = ring->rx_stats.bytes;
5197			_packets = ring->rx_stats.packets;
5198		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5199		bytes += _bytes;
5200		packets += _packets;
5201	}
5202
5203	net_stats->rx_bytes = bytes;
5204	net_stats->rx_packets = packets;
5205
5206	bytes = 0;
5207	packets = 0;
5208	for (i = 0; i < adapter->num_tx_queues; i++) {
5209		struct igb_ring *ring = adapter->tx_ring[i];
5210		do {
5211			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5212			_bytes = ring->tx_stats.bytes;
5213			_packets = ring->tx_stats.packets;
5214		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5215		bytes += _bytes;
5216		packets += _packets;
5217	}
5218	net_stats->tx_bytes = bytes;
5219	net_stats->tx_packets = packets;
5220	rcu_read_unlock();
5221
5222	/* read stats registers */
5223	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5224	adapter->stats.gprc += rd32(E1000_GPRC);
5225	adapter->stats.gorc += rd32(E1000_GORCL);
5226	rd32(E1000_GORCH); /* clear GORCL */
5227	adapter->stats.bprc += rd32(E1000_BPRC);
5228	adapter->stats.mprc += rd32(E1000_MPRC);
5229	adapter->stats.roc += rd32(E1000_ROC);
5230
5231	adapter->stats.prc64 += rd32(E1000_PRC64);
5232	adapter->stats.prc127 += rd32(E1000_PRC127);
5233	adapter->stats.prc255 += rd32(E1000_PRC255);
5234	adapter->stats.prc511 += rd32(E1000_PRC511);
5235	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5236	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5237	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5238	adapter->stats.sec += rd32(E1000_SEC);
5239
5240	mpc = rd32(E1000_MPC);
5241	adapter->stats.mpc += mpc;
5242	net_stats->rx_fifo_errors += mpc;
5243	adapter->stats.scc += rd32(E1000_SCC);
5244	adapter->stats.ecol += rd32(E1000_ECOL);
5245	adapter->stats.mcc += rd32(E1000_MCC);
5246	adapter->stats.latecol += rd32(E1000_LATECOL);
5247	adapter->stats.dc += rd32(E1000_DC);
5248	adapter->stats.rlec += rd32(E1000_RLEC);
5249	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5250	adapter->stats.xontxc += rd32(E1000_XONTXC);
5251	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5252	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5253	adapter->stats.fcruc += rd32(E1000_FCRUC);
5254	adapter->stats.gptc += rd32(E1000_GPTC);
5255	adapter->stats.gotc += rd32(E1000_GOTCL);
5256	rd32(E1000_GOTCH); /* clear GOTCL */
5257	adapter->stats.rnbc += rd32(E1000_RNBC);
5258	adapter->stats.ruc += rd32(E1000_RUC);
5259	adapter->stats.rfc += rd32(E1000_RFC);
5260	adapter->stats.rjc += rd32(E1000_RJC);
5261	adapter->stats.tor += rd32(E1000_TORH);
5262	adapter->stats.tot += rd32(E1000_TOTH);
5263	adapter->stats.tpr += rd32(E1000_TPR);
5264
5265	adapter->stats.ptc64 += rd32(E1000_PTC64);
5266	adapter->stats.ptc127 += rd32(E1000_PTC127);
5267	adapter->stats.ptc255 += rd32(E1000_PTC255);
5268	adapter->stats.ptc511 += rd32(E1000_PTC511);
5269	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5270	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5271
5272	adapter->stats.mptc += rd32(E1000_MPTC);
5273	adapter->stats.bptc += rd32(E1000_BPTC);
5274
5275	adapter->stats.tpt += rd32(E1000_TPT);
5276	adapter->stats.colc += rd32(E1000_COLC);
5277
5278	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5279	/* read internal phy specific stats */
5280	reg = rd32(E1000_CTRL_EXT);
5281	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5282		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5283
5284		/* this stat has invalid values on i210/i211 */
5285		if ((hw->mac.type != e1000_i210) &&
5286		    (hw->mac.type != e1000_i211))
5287			adapter->stats.tncrs += rd32(E1000_TNCRS);
5288	}
5289
5290	adapter->stats.tsctc += rd32(E1000_TSCTC);
5291	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5292
5293	adapter->stats.iac += rd32(E1000_IAC);
5294	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5295	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5296	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5297	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5298	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5299	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5300	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5301	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5302
5303	/* Fill out the OS statistics structure */
5304	net_stats->multicast = adapter->stats.mprc;
5305	net_stats->collisions = adapter->stats.colc;
5306
5307	/* Rx Errors */
5308
5309	/* RLEC on some newer hardware can be incorrect so build
5310	 * our own version based on RUC and ROC
5311	 */
5312	net_stats->rx_errors = adapter->stats.rxerrc +
5313		adapter->stats.crcerrs + adapter->stats.algnerrc +
5314		adapter->stats.ruc + adapter->stats.roc +
5315		adapter->stats.cexterr;
5316	net_stats->rx_length_errors = adapter->stats.ruc +
5317				      adapter->stats.roc;
5318	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5319	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5320	net_stats->rx_missed_errors = adapter->stats.mpc;
5321
5322	/* Tx Errors */
5323	net_stats->tx_errors = adapter->stats.ecol +
5324			       adapter->stats.latecol;
5325	net_stats->tx_aborted_errors = adapter->stats.ecol;
5326	net_stats->tx_window_errors = adapter->stats.latecol;
5327	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5328
5329	/* Tx Dropped needs to be maintained elsewhere */
5330
5331	/* Phy Stats */
5332	if (hw->phy.media_type == e1000_media_type_copper) {
5333		if ((adapter->link_speed == SPEED_1000) &&
5334		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5335			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5336			adapter->phy_stats.idle_errors += phy_tmp;
5337		}
5338	}
5339
5340	/* Management Stats */
5341	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5342	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5343	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5344
5345	/* OS2BMC Stats */
5346	reg = rd32(E1000_MANC);
5347	if (reg & E1000_MANC_EN_BMC2OS) {
5348		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5349		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5350		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5351		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5352	}
5353}
5354
5355static irqreturn_t igb_msix_other(int irq, void *data)
5356{
5357	struct igb_adapter *adapter = data;
5358	struct e1000_hw *hw = &adapter->hw;
5359	u32 icr = rd32(E1000_ICR);
5360	/* reading ICR causes bit 31 of EICR to be cleared */
5361
5362	if (icr & E1000_ICR_DRSTA)
5363		schedule_work(&adapter->reset_task);
5364
5365	if (icr & E1000_ICR_DOUTSYNC) {
5366		/* HW is reporting DMA is out of sync */
5367		adapter->stats.doosync++;
5368		/* The DMA Out of Sync is also indication of a spoof event
5369		 * in IOV mode. Check the Wrong VM Behavior register to
5370		 * see if it is really a spoof event.
5371		 */
5372		igb_check_wvbr(adapter);
5373	}
5374
5375	/* Check for a mailbox event */
5376	if (icr & E1000_ICR_VMMB)
5377		igb_msg_task(adapter);
5378
5379	if (icr & E1000_ICR_LSC) {
5380		hw->mac.get_link_status = 1;
5381		/* guard against interrupt when we're going down */
5382		if (!test_bit(__IGB_DOWN, &adapter->state))
5383			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5384	}
5385
5386	if (icr & E1000_ICR_TS) {
5387		u32 tsicr = rd32(E1000_TSICR);
5388
5389		if (tsicr & E1000_TSICR_TXTS) {
5390			/* acknowledge the interrupt */
5391			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5392			/* retrieve hardware timestamp */
5393			schedule_work(&adapter->ptp_tx_work);
5394		}
5395	}
5396
5397	wr32(E1000_EIMS, adapter->eims_other);
5398
5399	return IRQ_HANDLED;
5400}
5401
5402static void igb_write_itr(struct igb_q_vector *q_vector)
5403{
5404	struct igb_adapter *adapter = q_vector->adapter;
5405	u32 itr_val = q_vector->itr_val & 0x7FFC;
5406
5407	if (!q_vector->set_itr)
5408		return;
5409
5410	if (!itr_val)
5411		itr_val = 0x4;
5412
5413	if (adapter->hw.mac.type == e1000_82575)
5414		itr_val |= itr_val << 16;
5415	else
5416		itr_val |= E1000_EITR_CNT_IGNR;
5417
5418	writel(itr_val, q_vector->itr_register);
5419	q_vector->set_itr = 0;
5420}
5421
5422static irqreturn_t igb_msix_ring(int irq, void *data)
5423{
5424	struct igb_q_vector *q_vector = data;
5425
5426	/* Write the ITR value calculated from the previous interrupt. */
5427	igb_write_itr(q_vector);
5428
5429	napi_schedule(&q_vector->napi);
5430
5431	return IRQ_HANDLED;
5432}
5433
5434#ifdef CONFIG_IGB_DCA
5435static void igb_update_tx_dca(struct igb_adapter *adapter,
5436			      struct igb_ring *tx_ring,
5437			      int cpu)
5438{
5439	struct e1000_hw *hw = &adapter->hw;
5440	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5441
5442	if (hw->mac.type != e1000_82575)
5443		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5444
5445	/* We can enable relaxed ordering for reads, but not writes when
5446	 * DCA is enabled.  This is due to a known issue in some chipsets
5447	 * which will cause the DCA tag to be cleared.
5448	 */
5449	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5450		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5451		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5452
5453	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5454}
5455
5456static void igb_update_rx_dca(struct igb_adapter *adapter,
5457			      struct igb_ring *rx_ring,
5458			      int cpu)
5459{
5460	struct e1000_hw *hw = &adapter->hw;
5461	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5462
5463	if (hw->mac.type != e1000_82575)
5464		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5465
5466	/* We can enable relaxed ordering for reads, but not writes when
5467	 * DCA is enabled.  This is due to a known issue in some chipsets
5468	 * which will cause the DCA tag to be cleared.
5469	 */
5470	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5471		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5472
5473	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5474}
5475
5476static void igb_update_dca(struct igb_q_vector *q_vector)
5477{
5478	struct igb_adapter *adapter = q_vector->adapter;
5479	int cpu = get_cpu();
5480
5481	if (q_vector->cpu == cpu)
5482		goto out_no_update;
5483
5484	if (q_vector->tx.ring)
5485		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5486
5487	if (q_vector->rx.ring)
5488		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5489
5490	q_vector->cpu = cpu;
5491out_no_update:
5492	put_cpu();
5493}
5494
5495static void igb_setup_dca(struct igb_adapter *adapter)
5496{
5497	struct e1000_hw *hw = &adapter->hw;
5498	int i;
5499
5500	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5501		return;
5502
5503	/* Always use CB2 mode, difference is masked in the CB driver. */
5504	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5505
5506	for (i = 0; i < adapter->num_q_vectors; i++) {
5507		adapter->q_vector[i]->cpu = -1;
5508		igb_update_dca(adapter->q_vector[i]);
5509	}
5510}
5511
5512static int __igb_notify_dca(struct device *dev, void *data)
5513{
5514	struct net_device *netdev = dev_get_drvdata(dev);
5515	struct igb_adapter *adapter = netdev_priv(netdev);
5516	struct pci_dev *pdev = adapter->pdev;
5517	struct e1000_hw *hw = &adapter->hw;
5518	unsigned long event = *(unsigned long *)data;
5519
5520	switch (event) {
5521	case DCA_PROVIDER_ADD:
5522		/* if already enabled, don't do it again */
5523		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5524			break;
5525		if (dca_add_requester(dev) == 0) {
5526			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5527			dev_info(&pdev->dev, "DCA enabled\n");
5528			igb_setup_dca(adapter);
5529			break;
5530		}
5531		/* Fall Through since DCA is disabled. */
5532	case DCA_PROVIDER_REMOVE:
5533		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5534			/* without this a class_device is left
5535			 * hanging around in the sysfs model
5536			 */
5537			dca_remove_requester(dev);
5538			dev_info(&pdev->dev, "DCA disabled\n");
5539			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5540			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5541		}
5542		break;
5543	}
5544
5545	return 0;
5546}
5547
5548static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5549			  void *p)
5550{
5551	int ret_val;
5552
5553	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5554					 __igb_notify_dca);
5555
5556	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5557}
5558#endif /* CONFIG_IGB_DCA */
5559
5560#ifdef CONFIG_PCI_IOV
5561static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5562{
5563	unsigned char mac_addr[ETH_ALEN];
5564
5565	eth_zero_addr(mac_addr);
5566	igb_set_vf_mac(adapter, vf, mac_addr);
5567
5568	/* By default spoof check is enabled for all VFs */
5569	adapter->vf_data[vf].spoofchk_enabled = true;
5570
5571	return 0;
5572}
5573
5574#endif
5575static void igb_ping_all_vfs(struct igb_adapter *adapter)
5576{
5577	struct e1000_hw *hw = &adapter->hw;
5578	u32 ping;
5579	int i;
5580
5581	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5582		ping = E1000_PF_CONTROL_MSG;
5583		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5584			ping |= E1000_VT_MSGTYPE_CTS;
5585		igb_write_mbx(hw, &ping, 1, i);
5586	}
5587}
5588
5589static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5590{
5591	struct e1000_hw *hw = &adapter->hw;
5592	u32 vmolr = rd32(E1000_VMOLR(vf));
5593	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5594
5595	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5596			    IGB_VF_FLAG_MULTI_PROMISC);
5597	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5598
5599	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5600		vmolr |= E1000_VMOLR_MPME;
5601		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5602		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5603	} else {
5604		/* if we have hashes and we are clearing a multicast promisc
5605		 * flag we need to write the hashes to the MTA as this step
5606		 * was previously skipped
5607		 */
5608		if (vf_data->num_vf_mc_hashes > 30) {
5609			vmolr |= E1000_VMOLR_MPME;
5610		} else if (vf_data->num_vf_mc_hashes) {
5611			int j;
5612			vmolr |= E1000_VMOLR_ROMPE;
5613			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5614				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5615		}
5616	}
5617
5618	wr32(E1000_VMOLR(vf), vmolr);
5619
5620	/* there are flags left unprocessed, likely not supported */
5621	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5622		return -EINVAL;
5623
5624	return 0;
5625}
5626
5627static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5628				  u32 *msgbuf, u32 vf)
5629{
5630	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5631	u16 *hash_list = (u16 *)&msgbuf[1];
5632	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5633	int i;
5634
5635	/* salt away the number of multicast addresses assigned
5636	 * to this VF for later use to restore when the PF multi cast
5637	 * list changes
5638	 */
5639	vf_data->num_vf_mc_hashes = n;
5640
5641	/* only up to 30 hash values supported */
5642	if (n > 30)
5643		n = 30;
5644
5645	/* store the hashes for later use */
5646	for (i = 0; i < n; i++)
5647		vf_data->vf_mc_hashes[i] = hash_list[i];
5648
5649	/* Flush and reset the mta with the new values */
5650	igb_set_rx_mode(adapter->netdev);
5651
5652	return 0;
5653}
5654
5655static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5656{
5657	struct e1000_hw *hw = &adapter->hw;
5658	struct vf_data_storage *vf_data;
5659	int i, j;
5660
5661	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5662		u32 vmolr = rd32(E1000_VMOLR(i));
5663		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5664
5665		vf_data = &adapter->vf_data[i];
5666
5667		if ((vf_data->num_vf_mc_hashes > 30) ||
5668		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5669			vmolr |= E1000_VMOLR_MPME;
5670		} else if (vf_data->num_vf_mc_hashes) {
5671			vmolr |= E1000_VMOLR_ROMPE;
5672			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5673				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5674		}
5675		wr32(E1000_VMOLR(i), vmolr);
5676	}
5677}
5678
5679static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5680{
5681	struct e1000_hw *hw = &adapter->hw;
5682	u32 pool_mask, reg, vid;
5683	int i;
5684
5685	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5686
5687	/* Find the vlan filter for this id */
5688	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5689		reg = rd32(E1000_VLVF(i));
5690
5691		/* remove the vf from the pool */
5692		reg &= ~pool_mask;
5693
5694		/* if pool is empty then remove entry from vfta */
5695		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5696		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5697			reg = 0;
5698			vid = reg & E1000_VLVF_VLANID_MASK;
5699			igb_vfta_set(hw, vid, false);
5700		}
5701
5702		wr32(E1000_VLVF(i), reg);
5703	}
5704
5705	adapter->vf_data[vf].vlans_enabled = 0;
5706}
5707
5708static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5709{
5710	struct e1000_hw *hw = &adapter->hw;
5711	u32 reg, i;
5712
5713	/* The vlvf table only exists on 82576 hardware and newer */
5714	if (hw->mac.type < e1000_82576)
5715		return -1;
5716
5717	/* we only need to do this if VMDq is enabled */
5718	if (!adapter->vfs_allocated_count)
5719		return -1;
5720
5721	/* Find the vlan filter for this id */
5722	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5723		reg = rd32(E1000_VLVF(i));
5724		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5725		    vid == (reg & E1000_VLVF_VLANID_MASK))
5726			break;
5727	}
5728
5729	if (add) {
5730		if (i == E1000_VLVF_ARRAY_SIZE) {
5731			/* Did not find a matching VLAN ID entry that was
5732			 * enabled.  Search for a free filter entry, i.e.
5733			 * one without the enable bit set
5734			 */
5735			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5736				reg = rd32(E1000_VLVF(i));
5737				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5738					break;
5739			}
5740		}
5741		if (i < E1000_VLVF_ARRAY_SIZE) {
5742			/* Found an enabled/available entry */
5743			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5744
5745			/* if !enabled we need to set this up in vfta */
5746			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5747				/* add VID to filter table */
5748				igb_vfta_set(hw, vid, true);
5749				reg |= E1000_VLVF_VLANID_ENABLE;
5750			}
5751			reg &= ~E1000_VLVF_VLANID_MASK;
5752			reg |= vid;
5753			wr32(E1000_VLVF(i), reg);
5754
5755			/* do not modify RLPML for PF devices */
5756			if (vf >= adapter->vfs_allocated_count)
5757				return 0;
5758
5759			if (!adapter->vf_data[vf].vlans_enabled) {
5760				u32 size;
5761				reg = rd32(E1000_VMOLR(vf));
5762				size = reg & E1000_VMOLR_RLPML_MASK;
5763				size += 4;
5764				reg &= ~E1000_VMOLR_RLPML_MASK;
5765				reg |= size;
5766				wr32(E1000_VMOLR(vf), reg);
5767			}
5768
5769			adapter->vf_data[vf].vlans_enabled++;
5770		}
5771	} else {
5772		if (i < E1000_VLVF_ARRAY_SIZE) {
5773			/* remove vf from the pool */
5774			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5775			/* if pool is empty then remove entry from vfta */
5776			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5777				reg = 0;
5778				igb_vfta_set(hw, vid, false);
5779			}
5780			wr32(E1000_VLVF(i), reg);
5781
5782			/* do not modify RLPML for PF devices */
5783			if (vf >= adapter->vfs_allocated_count)
5784				return 0;
5785
5786			adapter->vf_data[vf].vlans_enabled--;
5787			if (!adapter->vf_data[vf].vlans_enabled) {
5788				u32 size;
5789				reg = rd32(E1000_VMOLR(vf));
5790				size = reg & E1000_VMOLR_RLPML_MASK;
5791				size -= 4;
5792				reg &= ~E1000_VMOLR_RLPML_MASK;
5793				reg |= size;
5794				wr32(E1000_VMOLR(vf), reg);
5795			}
5796		}
5797	}
5798	return 0;
5799}
5800
5801static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5802{
5803	struct e1000_hw *hw = &adapter->hw;
5804
5805	if (vid)
5806		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5807	else
5808		wr32(E1000_VMVIR(vf), 0);
5809}
5810
5811static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5812			       int vf, u16 vlan, u8 qos)
5813{
5814	int err = 0;
5815	struct igb_adapter *adapter = netdev_priv(netdev);
5816
5817	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5818		return -EINVAL;
5819	if (vlan || qos) {
5820		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5821		if (err)
5822			goto out;
5823		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5824		igb_set_vmolr(adapter, vf, !vlan);
5825		adapter->vf_data[vf].pf_vlan = vlan;
5826		adapter->vf_data[vf].pf_qos = qos;
5827		dev_info(&adapter->pdev->dev,
5828			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5829		if (test_bit(__IGB_DOWN, &adapter->state)) {
5830			dev_warn(&adapter->pdev->dev,
5831				 "The VF VLAN has been set, but the PF device is not up.\n");
5832			dev_warn(&adapter->pdev->dev,
5833				 "Bring the PF device up before attempting to use the VF device.\n");
5834		}
5835	} else {
5836		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5837			     false, vf);
5838		igb_set_vmvir(adapter, vlan, vf);
5839		igb_set_vmolr(adapter, vf, true);
5840		adapter->vf_data[vf].pf_vlan = 0;
5841		adapter->vf_data[vf].pf_qos = 0;
5842	}
5843out:
5844	return err;
5845}
5846
5847static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5848{
5849	struct e1000_hw *hw = &adapter->hw;
5850	int i;
5851	u32 reg;
5852
5853	/* Find the vlan filter for this id */
5854	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5855		reg = rd32(E1000_VLVF(i));
5856		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5857		    vid == (reg & E1000_VLVF_VLANID_MASK))
5858			break;
5859	}
5860
5861	if (i >= E1000_VLVF_ARRAY_SIZE)
5862		i = -1;
5863
5864	return i;
5865}
5866
5867static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5868{
5869	struct e1000_hw *hw = &adapter->hw;
5870	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5871	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5872	int err = 0;
5873
5874	/* If in promiscuous mode we need to make sure the PF also has
5875	 * the VLAN filter set.
5876	 */
5877	if (add && (adapter->netdev->flags & IFF_PROMISC))
5878		err = igb_vlvf_set(adapter, vid, add,
5879				   adapter->vfs_allocated_count);
5880	if (err)
5881		goto out;
5882
5883	err = igb_vlvf_set(adapter, vid, add, vf);
5884
5885	if (err)
5886		goto out;
5887
5888	/* Go through all the checks to see if the VLAN filter should
5889	 * be wiped completely.
5890	 */
5891	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5892		u32 vlvf, bits;
5893
5894		int regndx = igb_find_vlvf_entry(adapter, vid);
5895		if (regndx < 0)
5896			goto out;
5897		/* See if any other pools are set for this VLAN filter
5898		 * entry other than the PF.
5899		 */
5900		vlvf = bits = rd32(E1000_VLVF(regndx));
5901		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5902			      adapter->vfs_allocated_count);
5903		/* If the filter was removed then ensure PF pool bit
5904		 * is cleared if the PF only added itself to the pool
5905		 * because the PF is in promiscuous mode.
5906		 */
5907		if ((vlvf & VLAN_VID_MASK) == vid &&
5908		    !test_bit(vid, adapter->active_vlans) &&
5909		    !bits)
5910			igb_vlvf_set(adapter, vid, add,
5911				     adapter->vfs_allocated_count);
5912	}
5913
5914out:
5915	return err;
5916}
5917
5918static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5919{
5920	/* clear flags - except flag that indicates PF has set the MAC */
5921	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5922	adapter->vf_data[vf].last_nack = jiffies;
5923
5924	/* reset offloads to defaults */
5925	igb_set_vmolr(adapter, vf, true);
5926
5927	/* reset vlans for device */
5928	igb_clear_vf_vfta(adapter, vf);
5929	if (adapter->vf_data[vf].pf_vlan)
5930		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5931				    adapter->vf_data[vf].pf_vlan,
5932				    adapter->vf_data[vf].pf_qos);
5933	else
5934		igb_clear_vf_vfta(adapter, vf);
5935
5936	/* reset multicast table array for vf */
5937	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5938
5939	/* Flush and reset the mta with the new values */
5940	igb_set_rx_mode(adapter->netdev);
5941}
5942
5943static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5944{
5945	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5946
5947	/* clear mac address as we were hotplug removed/added */
5948	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5949		eth_zero_addr(vf_mac);
5950
5951	/* process remaining reset events */
5952	igb_vf_reset(adapter, vf);
5953}
5954
5955static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5956{
5957	struct e1000_hw *hw = &adapter->hw;
5958	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5959	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5960	u32 reg, msgbuf[3];
5961	u8 *addr = (u8 *)(&msgbuf[1]);
5962
5963	/* process all the same items cleared in a function level reset */
5964	igb_vf_reset(adapter, vf);
5965
5966	/* set vf mac address */
5967	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5968
5969	/* enable transmit and receive for vf */
5970	reg = rd32(E1000_VFTE);
5971	wr32(E1000_VFTE, reg | (1 << vf));
5972	reg = rd32(E1000_VFRE);
5973	wr32(E1000_VFRE, reg | (1 << vf));
5974
5975	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5976
5977	/* reply to reset with ack and vf mac address */
5978	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5979	memcpy(addr, vf_mac, ETH_ALEN);
5980	igb_write_mbx(hw, msgbuf, 3, vf);
5981}
5982
5983static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5984{
5985	/* The VF MAC Address is stored in a packed array of bytes
5986	 * starting at the second 32 bit word of the msg array
5987	 */
5988	unsigned char *addr = (char *)&msg[1];
5989	int err = -1;
5990
5991	if (is_valid_ether_addr(addr))
5992		err = igb_set_vf_mac(adapter, vf, addr);
5993
5994	return err;
5995}
5996
5997static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5998{
5999	struct e1000_hw *hw = &adapter->hw;
6000	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6001	u32 msg = E1000_VT_MSGTYPE_NACK;
6002
6003	/* if device isn't clear to send it shouldn't be reading either */
6004	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6005	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6006		igb_write_mbx(hw, &msg, 1, vf);
6007		vf_data->last_nack = jiffies;
6008	}
6009}
6010
6011static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6012{
6013	struct pci_dev *pdev = adapter->pdev;
6014	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6015	struct e1000_hw *hw = &adapter->hw;
6016	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6017	s32 retval;
6018
6019	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6020
6021	if (retval) {
6022		/* if receive failed revoke VF CTS stats and restart init */
6023		dev_err(&pdev->dev, "Error receiving message from VF\n");
6024		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6025		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6026			return;
6027		goto out;
6028	}
6029
6030	/* this is a message we already processed, do nothing */
6031	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6032		return;
6033
6034	/* until the vf completes a reset it should not be
6035	 * allowed to start any configuration.
6036	 */
6037	if (msgbuf[0] == E1000_VF_RESET) {
6038		igb_vf_reset_msg(adapter, vf);
6039		return;
6040	}
6041
6042	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6043		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6044			return;
6045		retval = -1;
6046		goto out;
6047	}
6048
6049	switch ((msgbuf[0] & 0xFFFF)) {
6050	case E1000_VF_SET_MAC_ADDR:
6051		retval = -EINVAL;
6052		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6053			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6054		else
6055			dev_warn(&pdev->dev,
6056				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6057				 vf);
6058		break;
6059	case E1000_VF_SET_PROMISC:
6060		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6061		break;
6062	case E1000_VF_SET_MULTICAST:
6063		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6064		break;
6065	case E1000_VF_SET_LPE:
6066		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6067		break;
6068	case E1000_VF_SET_VLAN:
6069		retval = -1;
6070		if (vf_data->pf_vlan)
6071			dev_warn(&pdev->dev,
6072				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6073				 vf);
6074		else
6075			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6076		break;
6077	default:
6078		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6079		retval = -1;
6080		break;
6081	}
6082
6083	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6084out:
6085	/* notify the VF of the results of what it sent us */
6086	if (retval)
6087		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6088	else
6089		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6090
6091	igb_write_mbx(hw, msgbuf, 1, vf);
6092}
6093
6094static void igb_msg_task(struct igb_adapter *adapter)
6095{
6096	struct e1000_hw *hw = &adapter->hw;
6097	u32 vf;
6098
6099	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6100		/* process any reset requests */
6101		if (!igb_check_for_rst(hw, vf))
6102			igb_vf_reset_event(adapter, vf);
6103
6104		/* process any messages pending */
6105		if (!igb_check_for_msg(hw, vf))
6106			igb_rcv_msg_from_vf(adapter, vf);
6107
6108		/* process any acks */
6109		if (!igb_check_for_ack(hw, vf))
6110			igb_rcv_ack_from_vf(adapter, vf);
6111	}
6112}
6113
6114/**
6115 *  igb_set_uta - Set unicast filter table address
6116 *  @adapter: board private structure
6117 *
6118 *  The unicast table address is a register array of 32-bit registers.
6119 *  The table is meant to be used in a way similar to how the MTA is used
6120 *  however due to certain limitations in the hardware it is necessary to
6121 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6122 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6123 **/
6124static void igb_set_uta(struct igb_adapter *adapter)
6125{
6126	struct e1000_hw *hw = &adapter->hw;
6127	int i;
6128
6129	/* The UTA table only exists on 82576 hardware and newer */
6130	if (hw->mac.type < e1000_82576)
6131		return;
6132
6133	/* we only need to do this if VMDq is enabled */
6134	if (!adapter->vfs_allocated_count)
6135		return;
6136
6137	for (i = 0; i < hw->mac.uta_reg_count; i++)
6138		array_wr32(E1000_UTA, i, ~0);
6139}
6140
6141/**
6142 *  igb_intr_msi - Interrupt Handler
6143 *  @irq: interrupt number
6144 *  @data: pointer to a network interface device structure
6145 **/
6146static irqreturn_t igb_intr_msi(int irq, void *data)
6147{
6148	struct igb_adapter *adapter = data;
6149	struct igb_q_vector *q_vector = adapter->q_vector[0];
6150	struct e1000_hw *hw = &adapter->hw;
6151	/* read ICR disables interrupts using IAM */
6152	u32 icr = rd32(E1000_ICR);
6153
6154	igb_write_itr(q_vector);
6155
6156	if (icr & E1000_ICR_DRSTA)
6157		schedule_work(&adapter->reset_task);
6158
6159	if (icr & E1000_ICR_DOUTSYNC) {
6160		/* HW is reporting DMA is out of sync */
6161		adapter->stats.doosync++;
6162	}
6163
6164	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6165		hw->mac.get_link_status = 1;
6166		if (!test_bit(__IGB_DOWN, &adapter->state))
6167			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6168	}
6169
6170	if (icr & E1000_ICR_TS) {
6171		u32 tsicr = rd32(E1000_TSICR);
6172
6173		if (tsicr & E1000_TSICR_TXTS) {
6174			/* acknowledge the interrupt */
6175			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6176			/* retrieve hardware timestamp */
6177			schedule_work(&adapter->ptp_tx_work);
6178		}
6179	}
6180
6181	napi_schedule(&q_vector->napi);
6182
6183	return IRQ_HANDLED;
6184}
6185
6186/**
6187 *  igb_intr - Legacy Interrupt Handler
6188 *  @irq: interrupt number
6189 *  @data: pointer to a network interface device structure
6190 **/
6191static irqreturn_t igb_intr(int irq, void *data)
6192{
6193	struct igb_adapter *adapter = data;
6194	struct igb_q_vector *q_vector = adapter->q_vector[0];
6195	struct e1000_hw *hw = &adapter->hw;
6196	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6197	 * need for the IMC write
6198	 */
6199	u32 icr = rd32(E1000_ICR);
6200
6201	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6202	 * not set, then the adapter didn't send an interrupt
6203	 */
6204	if (!(icr & E1000_ICR_INT_ASSERTED))
6205		return IRQ_NONE;
6206
6207	igb_write_itr(q_vector);
6208
6209	if (icr & E1000_ICR_DRSTA)
6210		schedule_work(&adapter->reset_task);
6211
6212	if (icr & E1000_ICR_DOUTSYNC) {
6213		/* HW is reporting DMA is out of sync */
6214		adapter->stats.doosync++;
6215	}
6216
6217	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6218		hw->mac.get_link_status = 1;
6219		/* guard against interrupt when we're going down */
6220		if (!test_bit(__IGB_DOWN, &adapter->state))
6221			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6222	}
6223
6224	if (icr & E1000_ICR_TS) {
6225		u32 tsicr = rd32(E1000_TSICR);
6226
6227		if (tsicr & E1000_TSICR_TXTS) {
6228			/* acknowledge the interrupt */
6229			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6230			/* retrieve hardware timestamp */
6231			schedule_work(&adapter->ptp_tx_work);
6232		}
6233	}
6234
6235	napi_schedule(&q_vector->napi);
6236
6237	return IRQ_HANDLED;
6238}
6239
6240static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6241{
6242	struct igb_adapter *adapter = q_vector->adapter;
6243	struct e1000_hw *hw = &adapter->hw;
6244
6245	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6246	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6247		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6248			igb_set_itr(q_vector);
6249		else
6250			igb_update_ring_itr(q_vector);
6251	}
6252
6253	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6254		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6255			wr32(E1000_EIMS, q_vector->eims_value);
6256		else
6257			igb_irq_enable(adapter);
6258	}
6259}
6260
6261/**
6262 *  igb_poll - NAPI Rx polling callback
6263 *  @napi: napi polling structure
6264 *  @budget: count of how many packets we should handle
6265 **/
6266static int igb_poll(struct napi_struct *napi, int budget)
6267{
6268	struct igb_q_vector *q_vector = container_of(napi,
6269						     struct igb_q_vector,
6270						     napi);
6271	bool clean_complete = true;
6272
6273#ifdef CONFIG_IGB_DCA
6274	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6275		igb_update_dca(q_vector);
6276#endif
6277	if (q_vector->tx.ring)
6278		clean_complete = igb_clean_tx_irq(q_vector);
6279
6280	if (q_vector->rx.ring)
6281		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6282
6283	/* If all work not completed, return budget and keep polling */
6284	if (!clean_complete)
6285		return budget;
6286
6287	/* If not enough Rx work done, exit the polling mode */
6288	napi_complete(napi);
6289	igb_ring_irq_enable(q_vector);
6290
6291	return 0;
6292}
6293
6294/**
6295 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6296 *  @q_vector: pointer to q_vector containing needed info
6297 *
6298 *  returns true if ring is completely cleaned
6299 **/
6300static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6301{
6302	struct igb_adapter *adapter = q_vector->adapter;
6303	struct igb_ring *tx_ring = q_vector->tx.ring;
6304	struct igb_tx_buffer *tx_buffer;
6305	union e1000_adv_tx_desc *tx_desc;
6306	unsigned int total_bytes = 0, total_packets = 0;
6307	unsigned int budget = q_vector->tx.work_limit;
6308	unsigned int i = tx_ring->next_to_clean;
6309
6310	if (test_bit(__IGB_DOWN, &adapter->state))
6311		return true;
6312
6313	tx_buffer = &tx_ring->tx_buffer_info[i];
6314	tx_desc = IGB_TX_DESC(tx_ring, i);
6315	i -= tx_ring->count;
6316
6317	do {
6318		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6319
6320		/* if next_to_watch is not set then there is no work pending */
6321		if (!eop_desc)
6322			break;
6323
6324		/* prevent any other reads prior to eop_desc */
6325		read_barrier_depends();
6326
6327		/* if DD is not set pending work has not been completed */
6328		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6329			break;
6330
6331		/* clear next_to_watch to prevent false hangs */
6332		tx_buffer->next_to_watch = NULL;
6333
6334		/* update the statistics for this packet */
6335		total_bytes += tx_buffer->bytecount;
6336		total_packets += tx_buffer->gso_segs;
6337
6338		/* free the skb */
6339		dev_kfree_skb_any(tx_buffer->skb);
6340
6341		/* unmap skb header data */
6342		dma_unmap_single(tx_ring->dev,
6343				 dma_unmap_addr(tx_buffer, dma),
6344				 dma_unmap_len(tx_buffer, len),
6345				 DMA_TO_DEVICE);
6346
6347		/* clear tx_buffer data */
6348		tx_buffer->skb = NULL;
6349		dma_unmap_len_set(tx_buffer, len, 0);
6350
6351		/* clear last DMA location and unmap remaining buffers */
6352		while (tx_desc != eop_desc) {
6353			tx_buffer++;
6354			tx_desc++;
6355			i++;
6356			if (unlikely(!i)) {
6357				i -= tx_ring->count;
6358				tx_buffer = tx_ring->tx_buffer_info;
6359				tx_desc = IGB_TX_DESC(tx_ring, 0);
6360			}
6361
6362			/* unmap any remaining paged data */
6363			if (dma_unmap_len(tx_buffer, len)) {
6364				dma_unmap_page(tx_ring->dev,
6365					       dma_unmap_addr(tx_buffer, dma),
6366					       dma_unmap_len(tx_buffer, len),
6367					       DMA_TO_DEVICE);
6368				dma_unmap_len_set(tx_buffer, len, 0);
6369			}
6370		}
6371
6372		/* move us one more past the eop_desc for start of next pkt */
6373		tx_buffer++;
6374		tx_desc++;
6375		i++;
6376		if (unlikely(!i)) {
6377			i -= tx_ring->count;
6378			tx_buffer = tx_ring->tx_buffer_info;
6379			tx_desc = IGB_TX_DESC(tx_ring, 0);
6380		}
6381
6382		/* issue prefetch for next Tx descriptor */
6383		prefetch(tx_desc);
6384
6385		/* update budget accounting */
6386		budget--;
6387	} while (likely(budget));
6388
6389	netdev_tx_completed_queue(txring_txq(tx_ring),
6390				  total_packets, total_bytes);
6391	i += tx_ring->count;
6392	tx_ring->next_to_clean = i;
6393	u64_stats_update_begin(&tx_ring->tx_syncp);
6394	tx_ring->tx_stats.bytes += total_bytes;
6395	tx_ring->tx_stats.packets += total_packets;
6396	u64_stats_update_end(&tx_ring->tx_syncp);
6397	q_vector->tx.total_bytes += total_bytes;
6398	q_vector->tx.total_packets += total_packets;
6399
6400	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6401		struct e1000_hw *hw = &adapter->hw;
6402
6403		/* Detect a transmit hang in hardware, this serializes the
6404		 * check with the clearing of time_stamp and movement of i
6405		 */
6406		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6407		if (tx_buffer->next_to_watch &&
6408		    time_after(jiffies, tx_buffer->time_stamp +
6409			       (adapter->tx_timeout_factor * HZ)) &&
6410		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6411
6412			/* detected Tx unit hang */
6413			dev_err(tx_ring->dev,
6414				"Detected Tx Unit Hang\n"
6415				"  Tx Queue             <%d>\n"
6416				"  TDH                  <%x>\n"
6417				"  TDT                  <%x>\n"
6418				"  next_to_use          <%x>\n"
6419				"  next_to_clean        <%x>\n"
6420				"buffer_info[next_to_clean]\n"
6421				"  time_stamp           <%lx>\n"
6422				"  next_to_watch        <%p>\n"
6423				"  jiffies              <%lx>\n"
6424				"  desc.status          <%x>\n",
6425				tx_ring->queue_index,
6426				rd32(E1000_TDH(tx_ring->reg_idx)),
6427				readl(tx_ring->tail),
6428				tx_ring->next_to_use,
6429				tx_ring->next_to_clean,
6430				tx_buffer->time_stamp,
6431				tx_buffer->next_to_watch,
6432				jiffies,
6433				tx_buffer->next_to_watch->wb.status);
6434			netif_stop_subqueue(tx_ring->netdev,
6435					    tx_ring->queue_index);
6436
6437			/* we are about to reset, no point in enabling stuff */
6438			return true;
6439		}
6440	}
6441
6442#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6443	if (unlikely(total_packets &&
6444	    netif_carrier_ok(tx_ring->netdev) &&
6445	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6446		/* Make sure that anybody stopping the queue after this
6447		 * sees the new next_to_clean.
6448		 */
6449		smp_mb();
6450		if (__netif_subqueue_stopped(tx_ring->netdev,
6451					     tx_ring->queue_index) &&
6452		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6453			netif_wake_subqueue(tx_ring->netdev,
6454					    tx_ring->queue_index);
6455
6456			u64_stats_update_begin(&tx_ring->tx_syncp);
6457			tx_ring->tx_stats.restart_queue++;
6458			u64_stats_update_end(&tx_ring->tx_syncp);
6459		}
6460	}
6461
6462	return !!budget;
6463}
6464
6465/**
6466 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6467 *  @rx_ring: rx descriptor ring to store buffers on
6468 *  @old_buff: donor buffer to have page reused
6469 *
6470 *  Synchronizes page for reuse by the adapter
6471 **/
6472static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6473			      struct igb_rx_buffer *old_buff)
6474{
6475	struct igb_rx_buffer *new_buff;
6476	u16 nta = rx_ring->next_to_alloc;
6477
6478	new_buff = &rx_ring->rx_buffer_info[nta];
6479
6480	/* update, and store next to alloc */
6481	nta++;
6482	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6483
6484	/* transfer page from old buffer to new buffer */
6485	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6486
6487	/* sync the buffer for use by the device */
6488	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6489					 old_buff->page_offset,
6490					 IGB_RX_BUFSZ,
6491					 DMA_FROM_DEVICE);
6492}
6493
6494static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6495				  struct page *page,
6496				  unsigned int truesize)
6497{
6498	/* avoid re-using remote pages */
6499	if (unlikely(page_to_nid(page) != numa_node_id()))
6500		return false;
6501
6502#if (PAGE_SIZE < 8192)
6503	/* if we are only owner of page we can reuse it */
6504	if (unlikely(page_count(page) != 1))
6505		return false;
6506
6507	/* flip page offset to other buffer */
6508	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6509
6510	/* since we are the only owner of the page and we need to
6511	 * increment it, just set the value to 2 in order to avoid
6512	 * an unnecessary locked operation
6513	 */
6514	atomic_set(&page->_count, 2);
6515#else
6516	/* move offset up to the next cache line */
6517	rx_buffer->page_offset += truesize;
6518
6519	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6520		return false;
6521
6522	/* bump ref count on page before it is given to the stack */
6523	get_page(page);
6524#endif
6525
6526	return true;
6527}
6528
6529/**
6530 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6531 *  @rx_ring: rx descriptor ring to transact packets on
6532 *  @rx_buffer: buffer containing page to add
6533 *  @rx_desc: descriptor containing length of buffer written by hardware
6534 *  @skb: sk_buff to place the data into
6535 *
6536 *  This function will add the data contained in rx_buffer->page to the skb.
6537 *  This is done either through a direct copy if the data in the buffer is
6538 *  less than the skb header size, otherwise it will just attach the page as
6539 *  a frag to the skb.
6540 *
6541 *  The function will then update the page offset if necessary and return
6542 *  true if the buffer can be reused by the adapter.
6543 **/
6544static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6545			    struct igb_rx_buffer *rx_buffer,
6546			    union e1000_adv_rx_desc *rx_desc,
6547			    struct sk_buff *skb)
6548{
6549	struct page *page = rx_buffer->page;
6550	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6551#if (PAGE_SIZE < 8192)
6552	unsigned int truesize = IGB_RX_BUFSZ;
6553#else
6554	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6555#endif
6556
6557	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6558		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6559
6560		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6561			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6562			va += IGB_TS_HDR_LEN;
6563			size -= IGB_TS_HDR_LEN;
6564		}
6565
6566		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6567
6568		/* we can reuse buffer as-is, just make sure it is local */
6569		if (likely(page_to_nid(page) == numa_node_id()))
6570			return true;
6571
6572		/* this page cannot be reused so discard it */
6573		put_page(page);
6574		return false;
6575	}
6576
6577	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6578			rx_buffer->page_offset, size, truesize);
6579
6580	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6581}
6582
6583static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6584					   union e1000_adv_rx_desc *rx_desc,
6585					   struct sk_buff *skb)
6586{
6587	struct igb_rx_buffer *rx_buffer;
6588	struct page *page;
6589
6590	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6591
6592	page = rx_buffer->page;
6593	prefetchw(page);
6594
6595	if (likely(!skb)) {
6596		void *page_addr = page_address(page) +
6597				  rx_buffer->page_offset;
6598
6599		/* prefetch first cache line of first page */
6600		prefetch(page_addr);
6601#if L1_CACHE_BYTES < 128
6602		prefetch(page_addr + L1_CACHE_BYTES);
6603#endif
6604
6605		/* allocate a skb to store the frags */
6606		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6607						IGB_RX_HDR_LEN);
6608		if (unlikely(!skb)) {
6609			rx_ring->rx_stats.alloc_failed++;
6610			return NULL;
6611		}
6612
6613		/* we will be copying header into skb->data in
6614		 * pskb_may_pull so it is in our interest to prefetch
6615		 * it now to avoid a possible cache miss
6616		 */
6617		prefetchw(skb->data);
6618	}
6619
6620	/* we are reusing so sync this buffer for CPU use */
6621	dma_sync_single_range_for_cpu(rx_ring->dev,
6622				      rx_buffer->dma,
6623				      rx_buffer->page_offset,
6624				      IGB_RX_BUFSZ,
6625				      DMA_FROM_DEVICE);
6626
6627	/* pull page into skb */
6628	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6629		/* hand second half of page back to the ring */
6630		igb_reuse_rx_page(rx_ring, rx_buffer);
6631	} else {
6632		/* we are not reusing the buffer so unmap it */
6633		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6634			       PAGE_SIZE, DMA_FROM_DEVICE);
6635	}
6636
6637	/* clear contents of rx_buffer */
6638	rx_buffer->page = NULL;
6639
6640	return skb;
6641}
6642
6643static inline void igb_rx_checksum(struct igb_ring *ring,
6644				   union e1000_adv_rx_desc *rx_desc,
6645				   struct sk_buff *skb)
6646{
6647	skb_checksum_none_assert(skb);
6648
6649	/* Ignore Checksum bit is set */
6650	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6651		return;
6652
6653	/* Rx checksum disabled via ethtool */
6654	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6655		return;
6656
6657	/* TCP/UDP checksum error bit is set */
6658	if (igb_test_staterr(rx_desc,
6659			     E1000_RXDEXT_STATERR_TCPE |
6660			     E1000_RXDEXT_STATERR_IPE)) {
6661		/* work around errata with sctp packets where the TCPE aka
6662		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6663		 * packets, (aka let the stack check the crc32c)
6664		 */
6665		if (!((skb->len == 60) &&
6666		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6667			u64_stats_update_begin(&ring->rx_syncp);
6668			ring->rx_stats.csum_err++;
6669			u64_stats_update_end(&ring->rx_syncp);
6670		}
6671		/* let the stack verify checksum errors */
6672		return;
6673	}
6674	/* It must be a TCP or UDP packet with a valid checksum */
6675	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6676				      E1000_RXD_STAT_UDPCS))
6677		skb->ip_summed = CHECKSUM_UNNECESSARY;
6678
6679	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6680		le32_to_cpu(rx_desc->wb.upper.status_error));
6681}
6682
6683static inline void igb_rx_hash(struct igb_ring *ring,
6684			       union e1000_adv_rx_desc *rx_desc,
6685			       struct sk_buff *skb)
6686{
6687	if (ring->netdev->features & NETIF_F_RXHASH)
6688		skb_set_hash(skb,
6689			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6690			     PKT_HASH_TYPE_L3);
6691}
6692
6693/**
6694 *  igb_is_non_eop - process handling of non-EOP buffers
6695 *  @rx_ring: Rx ring being processed
6696 *  @rx_desc: Rx descriptor for current buffer
6697 *  @skb: current socket buffer containing buffer in progress
6698 *
6699 *  This function updates next to clean.  If the buffer is an EOP buffer
6700 *  this function exits returning false, otherwise it will place the
6701 *  sk_buff in the next buffer to be chained and return true indicating
6702 *  that this is in fact a non-EOP buffer.
6703 **/
6704static bool igb_is_non_eop(struct igb_ring *rx_ring,
6705			   union e1000_adv_rx_desc *rx_desc)
6706{
6707	u32 ntc = rx_ring->next_to_clean + 1;
6708
6709	/* fetch, update, and store next to clean */
6710	ntc = (ntc < rx_ring->count) ? ntc : 0;
6711	rx_ring->next_to_clean = ntc;
6712
6713	prefetch(IGB_RX_DESC(rx_ring, ntc));
6714
6715	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6716		return false;
6717
6718	return true;
6719}
6720
6721/**
6722 *  igb_get_headlen - determine size of header for LRO/GRO
6723 *  @data: pointer to the start of the headers
6724 *  @max_len: total length of section to find headers in
6725 *
6726 *  This function is meant to determine the length of headers that will
6727 *  be recognized by hardware for LRO, and GRO offloads.  The main
6728 *  motivation of doing this is to only perform one pull for IPv4 TCP
6729 *  packets so that we can do basic things like calculating the gso_size
6730 *  based on the average data per packet.
6731 **/
6732static unsigned int igb_get_headlen(unsigned char *data,
6733				    unsigned int max_len)
6734{
6735	union {
6736		unsigned char *network;
6737		/* l2 headers */
6738		struct ethhdr *eth;
6739		struct vlan_hdr *vlan;
6740		/* l3 headers */
6741		struct iphdr *ipv4;
6742		struct ipv6hdr *ipv6;
6743	} hdr;
6744	__be16 protocol;
6745	u8 nexthdr = 0;	/* default to not TCP */
6746	u8 hlen;
6747
6748	/* this should never happen, but better safe than sorry */
6749	if (max_len < ETH_HLEN)
6750		return max_len;
6751
6752	/* initialize network frame pointer */
6753	hdr.network = data;
6754
6755	/* set first protocol and move network header forward */
6756	protocol = hdr.eth->h_proto;
6757	hdr.network += ETH_HLEN;
6758
6759	/* handle any vlan tag if present */
6760	if (protocol == htons(ETH_P_8021Q)) {
6761		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6762			return max_len;
6763
6764		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6765		hdr.network += VLAN_HLEN;
6766	}
6767
6768	/* handle L3 protocols */
6769	if (protocol == htons(ETH_P_IP)) {
6770		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6771			return max_len;
6772
6773		/* access ihl as a u8 to avoid unaligned access on ia64 */
6774		hlen = (hdr.network[0] & 0x0F) << 2;
6775
6776		/* verify hlen meets minimum size requirements */
6777		if (hlen < sizeof(struct iphdr))
6778			return hdr.network - data;
6779
6780		/* record next protocol if header is present */
6781		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6782			nexthdr = hdr.ipv4->protocol;
6783	} else if (protocol == htons(ETH_P_IPV6)) {
6784		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6785			return max_len;
6786
6787		/* record next protocol */
6788		nexthdr = hdr.ipv6->nexthdr;
6789		hlen = sizeof(struct ipv6hdr);
6790	} else {
6791		return hdr.network - data;
6792	}
6793
6794	/* relocate pointer to start of L4 header */
6795	hdr.network += hlen;
6796
6797	/* finally sort out TCP */
6798	if (nexthdr == IPPROTO_TCP) {
6799		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6800			return max_len;
6801
6802		/* access doff as a u8 to avoid unaligned access on ia64 */
6803		hlen = (hdr.network[12] & 0xF0) >> 2;
6804
6805		/* verify hlen meets minimum size requirements */
6806		if (hlen < sizeof(struct tcphdr))
6807			return hdr.network - data;
6808
6809		hdr.network += hlen;
6810	} else if (nexthdr == IPPROTO_UDP) {
6811		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6812			return max_len;
6813
6814		hdr.network += sizeof(struct udphdr);
6815	}
6816
6817	/* If everything has gone correctly hdr.network should be the
6818	 * data section of the packet and will be the end of the header.
6819	 * If not then it probably represents the end of the last recognized
6820	 * header.
6821	 */
6822	if ((hdr.network - data) < max_len)
6823		return hdr.network - data;
6824	else
6825		return max_len;
6826}
6827
6828/**
6829 *  igb_pull_tail - igb specific version of skb_pull_tail
6830 *  @rx_ring: rx descriptor ring packet is being transacted on
6831 *  @rx_desc: pointer to the EOP Rx descriptor
6832 *  @skb: pointer to current skb being adjusted
6833 *
6834 *  This function is an igb specific version of __pskb_pull_tail.  The
6835 *  main difference between this version and the original function is that
6836 *  this function can make several assumptions about the state of things
6837 *  that allow for significant optimizations versus the standard function.
6838 *  As a result we can do things like drop a frag and maintain an accurate
6839 *  truesize for the skb.
6840 */
6841static void igb_pull_tail(struct igb_ring *rx_ring,
6842			  union e1000_adv_rx_desc *rx_desc,
6843			  struct sk_buff *skb)
6844{
6845	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6846	unsigned char *va;
6847	unsigned int pull_len;
6848
6849	/* it is valid to use page_address instead of kmap since we are
6850	 * working with pages allocated out of the lomem pool per
6851	 * alloc_page(GFP_ATOMIC)
6852	 */
6853	va = skb_frag_address(frag);
6854
6855	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6856		/* retrieve timestamp from buffer */
6857		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6858
6859		/* update pointers to remove timestamp header */
6860		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6861		frag->page_offset += IGB_TS_HDR_LEN;
6862		skb->data_len -= IGB_TS_HDR_LEN;
6863		skb->len -= IGB_TS_HDR_LEN;
6864
6865		/* move va to start of packet data */
6866		va += IGB_TS_HDR_LEN;
6867	}
6868
6869	/* we need the header to contain the greater of either ETH_HLEN or
6870	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6871	 */
6872	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6873
6874	/* align pull length to size of long to optimize memcpy performance */
6875	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6876
6877	/* update all of the pointers */
6878	skb_frag_size_sub(frag, pull_len);
6879	frag->page_offset += pull_len;
6880	skb->data_len -= pull_len;
6881	skb->tail += pull_len;
6882}
6883
6884/**
6885 *  igb_cleanup_headers - Correct corrupted or empty headers
6886 *  @rx_ring: rx descriptor ring packet is being transacted on
6887 *  @rx_desc: pointer to the EOP Rx descriptor
6888 *  @skb: pointer to current skb being fixed
6889 *
6890 *  Address the case where we are pulling data in on pages only
6891 *  and as such no data is present in the skb header.
6892 *
6893 *  In addition if skb is not at least 60 bytes we need to pad it so that
6894 *  it is large enough to qualify as a valid Ethernet frame.
6895 *
6896 *  Returns true if an error was encountered and skb was freed.
6897 **/
6898static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6899				union e1000_adv_rx_desc *rx_desc,
6900				struct sk_buff *skb)
6901{
6902	if (unlikely((igb_test_staterr(rx_desc,
6903				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6904		struct net_device *netdev = rx_ring->netdev;
6905		if (!(netdev->features & NETIF_F_RXALL)) {
6906			dev_kfree_skb_any(skb);
6907			return true;
6908		}
6909	}
6910
6911	/* place header in linear portion of buffer */
6912	if (skb_is_nonlinear(skb))
6913		igb_pull_tail(rx_ring, rx_desc, skb);
6914
6915	/* if skb_pad returns an error the skb was freed */
6916	if (unlikely(skb->len < 60)) {
6917		int pad_len = 60 - skb->len;
6918
6919		if (skb_pad(skb, pad_len))
6920			return true;
6921		__skb_put(skb, pad_len);
6922	}
6923
6924	return false;
6925}
6926
6927/**
6928 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6929 *  @rx_ring: rx descriptor ring packet is being transacted on
6930 *  @rx_desc: pointer to the EOP Rx descriptor
6931 *  @skb: pointer to current skb being populated
6932 *
6933 *  This function checks the ring, descriptor, and packet information in
6934 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6935 *  other fields within the skb.
6936 **/
6937static void igb_process_skb_fields(struct igb_ring *rx_ring,
6938				   union e1000_adv_rx_desc *rx_desc,
6939				   struct sk_buff *skb)
6940{
6941	struct net_device *dev = rx_ring->netdev;
6942
6943	igb_rx_hash(rx_ring, rx_desc, skb);
6944
6945	igb_rx_checksum(rx_ring, rx_desc, skb);
6946
6947	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6948	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6949		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6950
6951	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6952	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6953		u16 vid;
6954		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6955		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6956			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6957		else
6958			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6959
6960		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6961	}
6962
6963	skb_record_rx_queue(skb, rx_ring->queue_index);
6964
6965	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6966}
6967
6968static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6969{
6970	struct igb_ring *rx_ring = q_vector->rx.ring;
6971	struct sk_buff *skb = rx_ring->skb;
6972	unsigned int total_bytes = 0, total_packets = 0;
6973	u16 cleaned_count = igb_desc_unused(rx_ring);
6974
6975	while (likely(total_packets < budget)) {
6976		union e1000_adv_rx_desc *rx_desc;
6977
6978		/* return some buffers to hardware, one at a time is too slow */
6979		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6980			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6981			cleaned_count = 0;
6982		}
6983
6984		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6985
6986		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6987			break;
6988
6989		/* This memory barrier is needed to keep us from reading
6990		 * any other fields out of the rx_desc until we know the
6991		 * RXD_STAT_DD bit is set
6992		 */
6993		rmb();
6994
6995		/* retrieve a buffer from the ring */
6996		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6997
6998		/* exit if we failed to retrieve a buffer */
6999		if (!skb)
7000			break;
7001
7002		cleaned_count++;
7003
7004		/* fetch next buffer in frame if non-eop */
7005		if (igb_is_non_eop(rx_ring, rx_desc))
7006			continue;
7007
7008		/* verify the packet layout is correct */
7009		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7010			skb = NULL;
7011			continue;
7012		}
7013
7014		/* probably a little skewed due to removing CRC */
7015		total_bytes += skb->len;
7016
7017		/* populate checksum, timestamp, VLAN, and protocol */
7018		igb_process_skb_fields(rx_ring, rx_desc, skb);
7019
7020		napi_gro_receive(&q_vector->napi, skb);
7021
7022		/* reset skb pointer */
7023		skb = NULL;
7024
7025		/* update budget accounting */
7026		total_packets++;
7027	}
7028
7029	/* place incomplete frames back on ring for completion */
7030	rx_ring->skb = skb;
7031
7032	u64_stats_update_begin(&rx_ring->rx_syncp);
7033	rx_ring->rx_stats.packets += total_packets;
7034	rx_ring->rx_stats.bytes += total_bytes;
7035	u64_stats_update_end(&rx_ring->rx_syncp);
7036	q_vector->rx.total_packets += total_packets;
7037	q_vector->rx.total_bytes += total_bytes;
7038
7039	if (cleaned_count)
7040		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7041
7042	return (total_packets < budget);
7043}
7044
7045static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7046				  struct igb_rx_buffer *bi)
7047{
7048	struct page *page = bi->page;
7049	dma_addr_t dma;
7050
7051	/* since we are recycling buffers we should seldom need to alloc */
7052	if (likely(page))
7053		return true;
7054
7055	/* alloc new page for storage */
7056	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7057	if (unlikely(!page)) {
7058		rx_ring->rx_stats.alloc_failed++;
7059		return false;
7060	}
7061
7062	/* map page for use */
7063	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7064
7065	/* if mapping failed free memory back to system since
7066	 * there isn't much point in holding memory we can't use
7067	 */
7068	if (dma_mapping_error(rx_ring->dev, dma)) {
7069		__free_page(page);
7070
7071		rx_ring->rx_stats.alloc_failed++;
7072		return false;
7073	}
7074
7075	bi->dma = dma;
7076	bi->page = page;
7077	bi->page_offset = 0;
7078
7079	return true;
7080}
7081
7082/**
7083 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7084 *  @adapter: address of board private structure
7085 **/
7086void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7087{
7088	union e1000_adv_rx_desc *rx_desc;
7089	struct igb_rx_buffer *bi;
7090	u16 i = rx_ring->next_to_use;
7091
7092	/* nothing to do */
7093	if (!cleaned_count)
7094		return;
7095
7096	rx_desc = IGB_RX_DESC(rx_ring, i);
7097	bi = &rx_ring->rx_buffer_info[i];
7098	i -= rx_ring->count;
7099
7100	do {
7101		if (!igb_alloc_mapped_page(rx_ring, bi))
7102			break;
7103
7104		/* Refresh the desc even if buffer_addrs didn't change
7105		 * because each write-back erases this info.
7106		 */
7107		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7108
7109		rx_desc++;
7110		bi++;
7111		i++;
7112		if (unlikely(!i)) {
7113			rx_desc = IGB_RX_DESC(rx_ring, 0);
7114			bi = rx_ring->rx_buffer_info;
7115			i -= rx_ring->count;
7116		}
7117
7118		/* clear the hdr_addr for the next_to_use descriptor */
7119		rx_desc->read.hdr_addr = 0;
7120
7121		cleaned_count--;
7122	} while (cleaned_count);
7123
7124	i += rx_ring->count;
7125
7126	if (rx_ring->next_to_use != i) {
7127		/* record the next descriptor to use */
7128		rx_ring->next_to_use = i;
7129
7130		/* update next to alloc since we have filled the ring */
7131		rx_ring->next_to_alloc = i;
7132
7133		/* Force memory writes to complete before letting h/w
7134		 * know there are new descriptors to fetch.  (Only
7135		 * applicable for weak-ordered memory model archs,
7136		 * such as IA-64).
7137		 */
7138		wmb();
7139		writel(i, rx_ring->tail);
7140	}
7141}
7142
7143/**
7144 * igb_mii_ioctl -
7145 * @netdev:
7146 * @ifreq:
7147 * @cmd:
7148 **/
7149static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7150{
7151	struct igb_adapter *adapter = netdev_priv(netdev);
7152	struct mii_ioctl_data *data = if_mii(ifr);
7153
7154	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7155		return -EOPNOTSUPP;
7156
7157	switch (cmd) {
7158	case SIOCGMIIPHY:
7159		data->phy_id = adapter->hw.phy.addr;
7160		break;
7161	case SIOCGMIIREG:
7162		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7163		                     &data->val_out))
7164			return -EIO;
7165		break;
7166	case SIOCSMIIREG:
7167	default:
7168		return -EOPNOTSUPP;
7169	}
7170	return 0;
7171}
7172
7173/**
7174 * igb_ioctl -
7175 * @netdev:
7176 * @ifreq:
7177 * @cmd:
7178 **/
7179static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7180{
7181	switch (cmd) {
7182	case SIOCGMIIPHY:
7183	case SIOCGMIIREG:
7184	case SIOCSMIIREG:
7185		return igb_mii_ioctl(netdev, ifr, cmd);
7186	case SIOCGHWTSTAMP:
7187		return igb_ptp_get_ts_config(netdev, ifr);
7188	case SIOCSHWTSTAMP:
7189		return igb_ptp_set_ts_config(netdev, ifr);
7190	default:
7191		return -EOPNOTSUPP;
7192	}
7193}
7194
7195s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7196{
7197	struct igb_adapter *adapter = hw->back;
7198
7199	if (pcie_capability_read_word(adapter->pdev, reg, value))
7200		return -E1000_ERR_CONFIG;
7201
7202	return 0;
7203}
7204
7205s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7206{
7207	struct igb_adapter *adapter = hw->back;
7208
7209	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7210		return -E1000_ERR_CONFIG;
7211
7212	return 0;
7213}
7214
7215static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7216{
7217	struct igb_adapter *adapter = netdev_priv(netdev);
7218	struct e1000_hw *hw = &adapter->hw;
7219	u32 ctrl, rctl;
7220	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7221
7222	if (enable) {
7223		/* enable VLAN tag insert/strip */
7224		ctrl = rd32(E1000_CTRL);
7225		ctrl |= E1000_CTRL_VME;
7226		wr32(E1000_CTRL, ctrl);
7227
7228		/* Disable CFI check */
7229		rctl = rd32(E1000_RCTL);
7230		rctl &= ~E1000_RCTL_CFIEN;
7231		wr32(E1000_RCTL, rctl);
7232	} else {
7233		/* disable VLAN tag insert/strip */
7234		ctrl = rd32(E1000_CTRL);
7235		ctrl &= ~E1000_CTRL_VME;
7236		wr32(E1000_CTRL, ctrl);
7237	}
7238
7239	igb_rlpml_set(adapter);
7240}
7241
7242static int igb_vlan_rx_add_vid(struct net_device *netdev,
7243			       __be16 proto, u16 vid)
7244{
7245	struct igb_adapter *adapter = netdev_priv(netdev);
7246	struct e1000_hw *hw = &adapter->hw;
7247	int pf_id = adapter->vfs_allocated_count;
7248
7249	/* attempt to add filter to vlvf array */
7250	igb_vlvf_set(adapter, vid, true, pf_id);
7251
7252	/* add the filter since PF can receive vlans w/o entry in vlvf */
7253	igb_vfta_set(hw, vid, true);
7254
7255	set_bit(vid, adapter->active_vlans);
7256
7257	return 0;
7258}
7259
7260static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7261				__be16 proto, u16 vid)
7262{
7263	struct igb_adapter *adapter = netdev_priv(netdev);
7264	struct e1000_hw *hw = &adapter->hw;
7265	int pf_id = adapter->vfs_allocated_count;
7266	s32 err;
7267
7268	/* remove vlan from VLVF table array */
7269	err = igb_vlvf_set(adapter, vid, false, pf_id);
7270
7271	/* if vid was not present in VLVF just remove it from table */
7272	if (err)
7273		igb_vfta_set(hw, vid, false);
7274
7275	clear_bit(vid, adapter->active_vlans);
7276
7277	return 0;
7278}
7279
7280static void igb_restore_vlan(struct igb_adapter *adapter)
7281{
7282	u16 vid;
7283
7284	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7285
7286	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7287		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7288}
7289
7290int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7291{
7292	struct pci_dev *pdev = adapter->pdev;
7293	struct e1000_mac_info *mac = &adapter->hw.mac;
7294
7295	mac->autoneg = 0;
7296
7297	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7298	 * for the switch() below to work
7299	 */
7300	if ((spd & 1) || (dplx & ~1))
7301		goto err_inval;
7302
7303	/* Fiber NIC's only allow 1000 gbps Full duplex
7304	 * and 100Mbps Full duplex for 100baseFx sfp
7305	 */
7306	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7307		switch (spd + dplx) {
7308		case SPEED_10 + DUPLEX_HALF:
7309		case SPEED_10 + DUPLEX_FULL:
7310		case SPEED_100 + DUPLEX_HALF:
7311			goto err_inval;
7312		default:
7313			break;
7314		}
7315	}
7316
7317	switch (spd + dplx) {
7318	case SPEED_10 + DUPLEX_HALF:
7319		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7320		break;
7321	case SPEED_10 + DUPLEX_FULL:
7322		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7323		break;
7324	case SPEED_100 + DUPLEX_HALF:
7325		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7326		break;
7327	case SPEED_100 + DUPLEX_FULL:
7328		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7329		break;
7330	case SPEED_1000 + DUPLEX_FULL:
7331		mac->autoneg = 1;
7332		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7333		break;
7334	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7335	default:
7336		goto err_inval;
7337	}
7338
7339	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7340	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7341
7342	return 0;
7343
7344err_inval:
7345	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7346	return -EINVAL;
7347}
7348
7349static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7350			  bool runtime)
7351{
7352	struct net_device *netdev = pci_get_drvdata(pdev);
7353	struct igb_adapter *adapter = netdev_priv(netdev);
7354	struct e1000_hw *hw = &adapter->hw;
7355	u32 ctrl, rctl, status;
7356	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7357#ifdef CONFIG_PM
7358	int retval = 0;
7359#endif
7360
7361	netif_device_detach(netdev);
7362
7363	if (netif_running(netdev))
7364		__igb_close(netdev, true);
7365
7366	igb_clear_interrupt_scheme(adapter);
7367
7368#ifdef CONFIG_PM
7369	retval = pci_save_state(pdev);
7370	if (retval)
7371		return retval;
7372#endif
7373
7374	status = rd32(E1000_STATUS);
7375	if (status & E1000_STATUS_LU)
7376		wufc &= ~E1000_WUFC_LNKC;
7377
7378	if (wufc) {
7379		igb_setup_rctl(adapter);
7380		igb_set_rx_mode(netdev);
7381
7382		/* turn on all-multi mode if wake on multicast is enabled */
7383		if (wufc & E1000_WUFC_MC) {
7384			rctl = rd32(E1000_RCTL);
7385			rctl |= E1000_RCTL_MPE;
7386			wr32(E1000_RCTL, rctl);
7387		}
7388
7389		ctrl = rd32(E1000_CTRL);
7390		/* advertise wake from D3Cold */
7391		#define E1000_CTRL_ADVD3WUC 0x00100000
7392		/* phy power management enable */
7393		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7394		ctrl |= E1000_CTRL_ADVD3WUC;
7395		wr32(E1000_CTRL, ctrl);
7396
7397		/* Allow time for pending master requests to run */
7398		igb_disable_pcie_master(hw);
7399
7400		wr32(E1000_WUC, E1000_WUC_PME_EN);
7401		wr32(E1000_WUFC, wufc);
7402	} else {
7403		wr32(E1000_WUC, 0);
7404		wr32(E1000_WUFC, 0);
7405	}
7406
7407	*enable_wake = wufc || adapter->en_mng_pt;
7408	if (!*enable_wake)
7409		igb_power_down_link(adapter);
7410	else
7411		igb_power_up_link(adapter);
7412
7413	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7414	 * would have already happened in close and is redundant.
7415	 */
7416	igb_release_hw_control(adapter);
7417
7418	pci_disable_device(pdev);
7419
7420	return 0;
7421}
7422
7423#ifdef CONFIG_PM
7424#ifdef CONFIG_PM_SLEEP
7425static int igb_suspend(struct device *dev)
7426{
7427	int retval;
7428	bool wake;
7429	struct pci_dev *pdev = to_pci_dev(dev);
7430
7431	retval = __igb_shutdown(pdev, &wake, 0);
7432	if (retval)
7433		return retval;
7434
7435	if (wake) {
7436		pci_prepare_to_sleep(pdev);
7437	} else {
7438		pci_wake_from_d3(pdev, false);
7439		pci_set_power_state(pdev, PCI_D3hot);
7440	}
7441
7442	return 0;
7443}
7444#endif /* CONFIG_PM_SLEEP */
7445
7446static int igb_resume(struct device *dev)
7447{
7448	struct pci_dev *pdev = to_pci_dev(dev);
7449	struct net_device *netdev = pci_get_drvdata(pdev);
7450	struct igb_adapter *adapter = netdev_priv(netdev);
7451	struct e1000_hw *hw = &adapter->hw;
7452	u32 err;
7453
7454	pci_set_power_state(pdev, PCI_D0);
7455	pci_restore_state(pdev);
7456	pci_save_state(pdev);
7457
7458	err = pci_enable_device_mem(pdev);
7459	if (err) {
7460		dev_err(&pdev->dev,
7461			"igb: Cannot enable PCI device from suspend\n");
7462		return err;
7463	}
7464	pci_set_master(pdev);
7465
7466	pci_enable_wake(pdev, PCI_D3hot, 0);
7467	pci_enable_wake(pdev, PCI_D3cold, 0);
7468
7469	if (igb_init_interrupt_scheme(adapter, true)) {
7470		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7471		return -ENOMEM;
7472	}
7473
7474	igb_reset(adapter);
7475
7476	/* let the f/w know that the h/w is now under the control of the
7477	 * driver.
7478	 */
7479	igb_get_hw_control(adapter);
7480
7481	wr32(E1000_WUS, ~0);
7482
7483	if (netdev->flags & IFF_UP) {
7484		rtnl_lock();
7485		err = __igb_open(netdev, true);
7486		rtnl_unlock();
7487		if (err)
7488			return err;
7489	}
7490
7491	netif_device_attach(netdev);
7492	return 0;
7493}
7494
7495#ifdef CONFIG_PM_RUNTIME
7496static int igb_runtime_idle(struct device *dev)
7497{
7498	struct pci_dev *pdev = to_pci_dev(dev);
7499	struct net_device *netdev = pci_get_drvdata(pdev);
7500	struct igb_adapter *adapter = netdev_priv(netdev);
7501
7502	if (!igb_has_link(adapter))
7503		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7504
7505	return -EBUSY;
7506}
7507
7508static int igb_runtime_suspend(struct device *dev)
7509{
7510	struct pci_dev *pdev = to_pci_dev(dev);
7511	int retval;
7512	bool wake;
7513
7514	retval = __igb_shutdown(pdev, &wake, 1);
7515	if (retval)
7516		return retval;
7517
7518	if (wake) {
7519		pci_prepare_to_sleep(pdev);
7520	} else {
7521		pci_wake_from_d3(pdev, false);
7522		pci_set_power_state(pdev, PCI_D3hot);
7523	}
7524
7525	return 0;
7526}
7527
7528static int igb_runtime_resume(struct device *dev)
7529{
7530	return igb_resume(dev);
7531}
7532#endif /* CONFIG_PM_RUNTIME */
7533#endif
7534
7535static void igb_shutdown(struct pci_dev *pdev)
7536{
7537	bool wake;
7538
7539	__igb_shutdown(pdev, &wake, 0);
7540
7541	if (system_state == SYSTEM_POWER_OFF) {
7542		pci_wake_from_d3(pdev, wake);
7543		pci_set_power_state(pdev, PCI_D3hot);
7544	}
7545}
7546
7547#ifdef CONFIG_PCI_IOV
7548static int igb_sriov_reinit(struct pci_dev *dev)
7549{
7550	struct net_device *netdev = pci_get_drvdata(dev);
7551	struct igb_adapter *adapter = netdev_priv(netdev);
7552	struct pci_dev *pdev = adapter->pdev;
7553
7554	rtnl_lock();
7555
7556	if (netif_running(netdev))
7557		igb_close(netdev);
7558
7559	igb_clear_interrupt_scheme(adapter);
7560
7561	igb_init_queue_configuration(adapter);
7562
7563	if (igb_init_interrupt_scheme(adapter, true)) {
7564		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7565		return -ENOMEM;
7566	}
7567
7568	if (netif_running(netdev))
7569		igb_open(netdev);
7570
7571	rtnl_unlock();
7572
7573	return 0;
7574}
7575
7576static int igb_pci_disable_sriov(struct pci_dev *dev)
7577{
7578	int err = igb_disable_sriov(dev);
7579
7580	if (!err)
7581		err = igb_sriov_reinit(dev);
7582
7583	return err;
7584}
7585
7586static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7587{
7588	int err = igb_enable_sriov(dev, num_vfs);
7589
7590	if (err)
7591		goto out;
7592
7593	err = igb_sriov_reinit(dev);
7594	if (!err)
7595		return num_vfs;
7596
7597out:
7598	return err;
7599}
7600
7601#endif
7602static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7603{
7604#ifdef CONFIG_PCI_IOV
7605	if (num_vfs == 0)
7606		return igb_pci_disable_sriov(dev);
7607	else
7608		return igb_pci_enable_sriov(dev, num_vfs);
7609#endif
7610	return 0;
7611}
7612
7613#ifdef CONFIG_NET_POLL_CONTROLLER
7614/* Polling 'interrupt' - used by things like netconsole to send skbs
7615 * without having to re-enable interrupts. It's not called while
7616 * the interrupt routine is executing.
7617 */
7618static void igb_netpoll(struct net_device *netdev)
7619{
7620	struct igb_adapter *adapter = netdev_priv(netdev);
7621	struct e1000_hw *hw = &adapter->hw;
7622	struct igb_q_vector *q_vector;
7623	int i;
7624
7625	for (i = 0; i < adapter->num_q_vectors; i++) {
7626		q_vector = adapter->q_vector[i];
7627		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7628			wr32(E1000_EIMC, q_vector->eims_value);
7629		else
7630			igb_irq_disable(adapter);
7631		napi_schedule(&q_vector->napi);
7632	}
7633}
7634#endif /* CONFIG_NET_POLL_CONTROLLER */
7635
7636/**
7637 *  igb_io_error_detected - called when PCI error is detected
7638 *  @pdev: Pointer to PCI device
7639 *  @state: The current pci connection state
7640 *
7641 *  This function is called after a PCI bus error affecting
7642 *  this device has been detected.
7643 **/
7644static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7645					      pci_channel_state_t state)
7646{
7647	struct net_device *netdev = pci_get_drvdata(pdev);
7648	struct igb_adapter *adapter = netdev_priv(netdev);
7649
7650	netif_device_detach(netdev);
7651
7652	if (state == pci_channel_io_perm_failure)
7653		return PCI_ERS_RESULT_DISCONNECT;
7654
7655	if (netif_running(netdev))
7656		igb_down(adapter);
7657	pci_disable_device(pdev);
7658
7659	/* Request a slot slot reset. */
7660	return PCI_ERS_RESULT_NEED_RESET;
7661}
7662
7663/**
7664 *  igb_io_slot_reset - called after the pci bus has been reset.
7665 *  @pdev: Pointer to PCI device
7666 *
7667 *  Restart the card from scratch, as if from a cold-boot. Implementation
7668 *  resembles the first-half of the igb_resume routine.
7669 **/
7670static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7671{
7672	struct net_device *netdev = pci_get_drvdata(pdev);
7673	struct igb_adapter *adapter = netdev_priv(netdev);
7674	struct e1000_hw *hw = &adapter->hw;
7675	pci_ers_result_t result;
7676	int err;
7677
7678	if (pci_enable_device_mem(pdev)) {
7679		dev_err(&pdev->dev,
7680			"Cannot re-enable PCI device after reset.\n");
7681		result = PCI_ERS_RESULT_DISCONNECT;
7682	} else {
7683		pci_set_master(pdev);
7684		pci_restore_state(pdev);
7685		pci_save_state(pdev);
7686
7687		pci_enable_wake(pdev, PCI_D3hot, 0);
7688		pci_enable_wake(pdev, PCI_D3cold, 0);
7689
7690		igb_reset(adapter);
7691		wr32(E1000_WUS, ~0);
7692		result = PCI_ERS_RESULT_RECOVERED;
7693	}
7694
7695	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7696	if (err) {
7697		dev_err(&pdev->dev,
7698			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7699			err);
7700		/* non-fatal, continue */
7701	}
7702
7703	return result;
7704}
7705
7706/**
7707 *  igb_io_resume - called when traffic can start flowing again.
7708 *  @pdev: Pointer to PCI device
7709 *
7710 *  This callback is called when the error recovery driver tells us that
7711 *  its OK to resume normal operation. Implementation resembles the
7712 *  second-half of the igb_resume routine.
7713 */
7714static void igb_io_resume(struct pci_dev *pdev)
7715{
7716	struct net_device *netdev = pci_get_drvdata(pdev);
7717	struct igb_adapter *adapter = netdev_priv(netdev);
7718
7719	if (netif_running(netdev)) {
7720		if (igb_up(adapter)) {
7721			dev_err(&pdev->dev, "igb_up failed after reset\n");
7722			return;
7723		}
7724	}
7725
7726	netif_device_attach(netdev);
7727
7728	/* let the f/w know that the h/w is now under the control of the
7729	 * driver.
7730	 */
7731	igb_get_hw_control(adapter);
7732}
7733
7734static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7735			     u8 qsel)
7736{
7737	u32 rar_low, rar_high;
7738	struct e1000_hw *hw = &adapter->hw;
7739
7740	/* HW expects these in little endian so we reverse the byte order
7741	 * from network order (big endian) to little endian
7742	 */
7743	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7744		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7745	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7746
7747	/* Indicate to hardware the Address is Valid. */
7748	rar_high |= E1000_RAH_AV;
7749
7750	if (hw->mac.type == e1000_82575)
7751		rar_high |= E1000_RAH_POOL_1 * qsel;
7752	else
7753		rar_high |= E1000_RAH_POOL_1 << qsel;
7754
7755	wr32(E1000_RAL(index), rar_low);
7756	wrfl();
7757	wr32(E1000_RAH(index), rar_high);
7758	wrfl();
7759}
7760
7761static int igb_set_vf_mac(struct igb_adapter *adapter,
7762			  int vf, unsigned char *mac_addr)
7763{
7764	struct e1000_hw *hw = &adapter->hw;
7765	/* VF MAC addresses start at end of receive addresses and moves
7766	 * towards the first, as a result a collision should not be possible
7767	 */
7768	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7769
7770	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7771
7772	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7773
7774	return 0;
7775}
7776
7777static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7778{
7779	struct igb_adapter *adapter = netdev_priv(netdev);
7780	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7781		return -EINVAL;
7782	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7783	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7784	dev_info(&adapter->pdev->dev,
7785		 "Reload the VF driver to make this change effective.");
7786	if (test_bit(__IGB_DOWN, &adapter->state)) {
7787		dev_warn(&adapter->pdev->dev,
7788			 "The VF MAC address has been set, but the PF device is not up.\n");
7789		dev_warn(&adapter->pdev->dev,
7790			 "Bring the PF device up before attempting to use the VF device.\n");
7791	}
7792	return igb_set_vf_mac(adapter, vf, mac);
7793}
7794
7795static int igb_link_mbps(int internal_link_speed)
7796{
7797	switch (internal_link_speed) {
7798	case SPEED_100:
7799		return 100;
7800	case SPEED_1000:
7801		return 1000;
7802	default:
7803		return 0;
7804	}
7805}
7806
7807static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7808				  int link_speed)
7809{
7810	int rf_dec, rf_int;
7811	u32 bcnrc_val;
7812
7813	if (tx_rate != 0) {
7814		/* Calculate the rate factor values to set */
7815		rf_int = link_speed / tx_rate;
7816		rf_dec = (link_speed - (rf_int * tx_rate));
7817		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7818			 tx_rate;
7819
7820		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7821		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7822			      E1000_RTTBCNRC_RF_INT_MASK);
7823		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7824	} else {
7825		bcnrc_val = 0;
7826	}
7827
7828	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7829	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7830	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7831	 */
7832	wr32(E1000_RTTBCNRM, 0x14);
7833	wr32(E1000_RTTBCNRC, bcnrc_val);
7834}
7835
7836static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7837{
7838	int actual_link_speed, i;
7839	bool reset_rate = false;
7840
7841	/* VF TX rate limit was not set or not supported */
7842	if ((adapter->vf_rate_link_speed == 0) ||
7843	    (adapter->hw.mac.type != e1000_82576))
7844		return;
7845
7846	actual_link_speed = igb_link_mbps(adapter->link_speed);
7847	if (actual_link_speed != adapter->vf_rate_link_speed) {
7848		reset_rate = true;
7849		adapter->vf_rate_link_speed = 0;
7850		dev_info(&adapter->pdev->dev,
7851			 "Link speed has been changed. VF Transmit rate is disabled\n");
7852	}
7853
7854	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7855		if (reset_rate)
7856			adapter->vf_data[i].tx_rate = 0;
7857
7858		igb_set_vf_rate_limit(&adapter->hw, i,
7859				      adapter->vf_data[i].tx_rate,
7860				      actual_link_speed);
7861	}
7862}
7863
7864static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7865{
7866	struct igb_adapter *adapter = netdev_priv(netdev);
7867	struct e1000_hw *hw = &adapter->hw;
7868	int actual_link_speed;
7869
7870	if (hw->mac.type != e1000_82576)
7871		return -EOPNOTSUPP;
7872
7873	actual_link_speed = igb_link_mbps(adapter->link_speed);
7874	if ((vf >= adapter->vfs_allocated_count) ||
7875	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7876	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7877		return -EINVAL;
7878
7879	adapter->vf_rate_link_speed = actual_link_speed;
7880	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7881	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7882
7883	return 0;
7884}
7885
7886static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7887				   bool setting)
7888{
7889	struct igb_adapter *adapter = netdev_priv(netdev);
7890	struct e1000_hw *hw = &adapter->hw;
7891	u32 reg_val, reg_offset;
7892
7893	if (!adapter->vfs_allocated_count)
7894		return -EOPNOTSUPP;
7895
7896	if (vf >= adapter->vfs_allocated_count)
7897		return -EINVAL;
7898
7899	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7900	reg_val = rd32(reg_offset);
7901	if (setting)
7902		reg_val |= ((1 << vf) |
7903			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7904	else
7905		reg_val &= ~((1 << vf) |
7906			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7907	wr32(reg_offset, reg_val);
7908
7909	adapter->vf_data[vf].spoofchk_enabled = setting;
7910	return E1000_SUCCESS;
7911}
7912
7913static int igb_ndo_get_vf_config(struct net_device *netdev,
7914				 int vf, struct ifla_vf_info *ivi)
7915{
7916	struct igb_adapter *adapter = netdev_priv(netdev);
7917	if (vf >= adapter->vfs_allocated_count)
7918		return -EINVAL;
7919	ivi->vf = vf;
7920	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7921	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7922	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7923	ivi->qos = adapter->vf_data[vf].pf_qos;
7924	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7925	return 0;
7926}
7927
7928static void igb_vmm_control(struct igb_adapter *adapter)
7929{
7930	struct e1000_hw *hw = &adapter->hw;
7931	u32 reg;
7932
7933	switch (hw->mac.type) {
7934	case e1000_82575:
7935	case e1000_i210:
7936	case e1000_i211:
7937	case e1000_i354:
7938	default:
7939		/* replication is not supported for 82575 */
7940		return;
7941	case e1000_82576:
7942		/* notify HW that the MAC is adding vlan tags */
7943		reg = rd32(E1000_DTXCTL);
7944		reg |= E1000_DTXCTL_VLAN_ADDED;
7945		wr32(E1000_DTXCTL, reg);
7946	case e1000_82580:
7947		/* enable replication vlan tag stripping */
7948		reg = rd32(E1000_RPLOLR);
7949		reg |= E1000_RPLOLR_STRVLAN;
7950		wr32(E1000_RPLOLR, reg);
7951	case e1000_i350:
7952		/* none of the above registers are supported by i350 */
7953		break;
7954	}
7955
7956	if (adapter->vfs_allocated_count) {
7957		igb_vmdq_set_loopback_pf(hw, true);
7958		igb_vmdq_set_replication_pf(hw, true);
7959		igb_vmdq_set_anti_spoofing_pf(hw, true,
7960					      adapter->vfs_allocated_count);
7961	} else {
7962		igb_vmdq_set_loopback_pf(hw, false);
7963		igb_vmdq_set_replication_pf(hw, false);
7964	}
7965}
7966
7967static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7968{
7969	struct e1000_hw *hw = &adapter->hw;
7970	u32 dmac_thr;
7971	u16 hwm;
7972
7973	if (hw->mac.type > e1000_82580) {
7974		if (adapter->flags & IGB_FLAG_DMAC) {
7975			u32 reg;
7976
7977			/* force threshold to 0. */
7978			wr32(E1000_DMCTXTH, 0);
7979
7980			/* DMA Coalescing high water mark needs to be greater
7981			 * than the Rx threshold. Set hwm to PBA - max frame
7982			 * size in 16B units, capping it at PBA - 6KB.
7983			 */
7984			hwm = 64 * pba - adapter->max_frame_size / 16;
7985			if (hwm < 64 * (pba - 6))
7986				hwm = 64 * (pba - 6);
7987			reg = rd32(E1000_FCRTC);
7988			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7989			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7990				& E1000_FCRTC_RTH_COAL_MASK);
7991			wr32(E1000_FCRTC, reg);
7992
7993			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7994			 * frame size, capping it at PBA - 10KB.
7995			 */
7996			dmac_thr = pba - adapter->max_frame_size / 512;
7997			if (dmac_thr < pba - 10)
7998				dmac_thr = pba - 10;
7999			reg = rd32(E1000_DMACR);
8000			reg &= ~E1000_DMACR_DMACTHR_MASK;
8001			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8002				& E1000_DMACR_DMACTHR_MASK);
8003
8004			/* transition to L0x or L1 if available..*/
8005			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8006
8007			/* watchdog timer= +-1000 usec in 32usec intervals */
8008			reg |= (1000 >> 5);
8009
8010			/* Disable BMC-to-OS Watchdog Enable */
8011			if (hw->mac.type != e1000_i354)
8012				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8013
8014			wr32(E1000_DMACR, reg);
8015
8016			/* no lower threshold to disable
8017			 * coalescing(smart fifb)-UTRESH=0
8018			 */
8019			wr32(E1000_DMCRTRH, 0);
8020
8021			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8022
8023			wr32(E1000_DMCTLX, reg);
8024
8025			/* free space in tx packet buffer to wake from
8026			 * DMA coal
8027			 */
8028			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8029			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8030
8031			/* make low power state decision controlled
8032			 * by DMA coal
8033			 */
8034			reg = rd32(E1000_PCIEMISC);
8035			reg &= ~E1000_PCIEMISC_LX_DECISION;
8036			wr32(E1000_PCIEMISC, reg);
8037		} /* endif adapter->dmac is not disabled */
8038	} else if (hw->mac.type == e1000_82580) {
8039		u32 reg = rd32(E1000_PCIEMISC);
8040		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8041		wr32(E1000_DMACR, 0);
8042	}
8043}
8044
8045/**
8046 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8047 *  @hw: pointer to hardware structure
8048 *  @byte_offset: byte offset to read
8049 *  @dev_addr: device address
8050 *  @data: value read
8051 *
8052 *  Performs byte read operation over I2C interface at
8053 *  a specified device address.
8054 **/
8055s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8056		      u8 dev_addr, u8 *data)
8057{
8058	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8059	struct i2c_client *this_client = adapter->i2c_client;
8060	s32 status;
8061	u16 swfw_mask = 0;
8062
8063	if (!this_client)
8064		return E1000_ERR_I2C;
8065
8066	swfw_mask = E1000_SWFW_PHY0_SM;
8067
8068	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8069	    != E1000_SUCCESS)
8070		return E1000_ERR_SWFW_SYNC;
8071
8072	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8073	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8074
8075	if (status < 0)
8076		return E1000_ERR_I2C;
8077	else {
8078		*data = status;
8079		return E1000_SUCCESS;
8080	}
8081}
8082
8083/**
8084 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8085 *  @hw: pointer to hardware structure
8086 *  @byte_offset: byte offset to write
8087 *  @dev_addr: device address
8088 *  @data: value to write
8089 *
8090 *  Performs byte write operation over I2C interface at
8091 *  a specified device address.
8092 **/
8093s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8094		       u8 dev_addr, u8 data)
8095{
8096	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8097	struct i2c_client *this_client = adapter->i2c_client;
8098	s32 status;
8099	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8100
8101	if (!this_client)
8102		return E1000_ERR_I2C;
8103
8104	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8105		return E1000_ERR_SWFW_SYNC;
8106	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8107	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8108
8109	if (status)
8110		return E1000_ERR_I2C;
8111	else
8112		return E1000_SUCCESS;
8113
8114}
8115
8116int igb_reinit_queues(struct igb_adapter *adapter)
8117{
8118	struct net_device *netdev = adapter->netdev;
8119	struct pci_dev *pdev = adapter->pdev;
8120	int err = 0;
8121
8122	if (netif_running(netdev))
8123		igb_close(netdev);
8124
8125	igb_reset_interrupt_capability(adapter);
8126
8127	if (igb_init_interrupt_scheme(adapter, true)) {
8128		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8129		return -ENOMEM;
8130	}
8131
8132	if (netif_running(netdev))
8133		err = igb_open(netdev);
8134
8135	return err;
8136}
8137/* igb_main.c */
8138