igb_main.c revision cbc8e55f6fdae27b667051b36040f66768ef79f2
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include "igb.h"
61
62#define MAJ 4
63#define MIN 0
64#define BUILD 1
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72
73static const struct e1000_info *igb_info_tbl[] = {
74	[board_82575] = &e1000_82575_info,
75};
76
77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108	/* required last entry */
109	{0, }
110};
111
112MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114void igb_reset(struct igb_adapter *);
115static int igb_setup_all_tx_resources(struct igb_adapter *);
116static int igb_setup_all_rx_resources(struct igb_adapter *);
117static void igb_free_all_tx_resources(struct igb_adapter *);
118static void igb_free_all_rx_resources(struct igb_adapter *);
119static void igb_setup_mrqc(struct igb_adapter *);
120static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121static void __devexit igb_remove(struct pci_dev *pdev);
122static int igb_sw_init(struct igb_adapter *);
123static int igb_open(struct net_device *);
124static int igb_close(struct net_device *);
125static void igb_configure_tx(struct igb_adapter *);
126static void igb_configure_rx(struct igb_adapter *);
127static void igb_clean_all_tx_rings(struct igb_adapter *);
128static void igb_clean_all_rx_rings(struct igb_adapter *);
129static void igb_clean_tx_ring(struct igb_ring *);
130static void igb_clean_rx_ring(struct igb_ring *);
131static void igb_set_rx_mode(struct net_device *);
132static void igb_update_phy_info(unsigned long);
133static void igb_watchdog(unsigned long);
134static void igb_watchdog_task(struct work_struct *);
135static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137						 struct rtnl_link_stats64 *stats);
138static int igb_change_mtu(struct net_device *, int);
139static int igb_set_mac(struct net_device *, void *);
140static void igb_set_uta(struct igb_adapter *adapter);
141static irqreturn_t igb_intr(int irq, void *);
142static irqreturn_t igb_intr_msi(int irq, void *);
143static irqreturn_t igb_msix_other(int irq, void *);
144static irqreturn_t igb_msix_ring(int irq, void *);
145#ifdef CONFIG_IGB_DCA
146static void igb_update_dca(struct igb_q_vector *);
147static void igb_setup_dca(struct igb_adapter *);
148#endif /* CONFIG_IGB_DCA */
149static int igb_poll(struct napi_struct *, int);
150static bool igb_clean_tx_irq(struct igb_q_vector *);
151static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153static void igb_tx_timeout(struct net_device *);
154static void igb_reset_task(struct work_struct *);
155static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156static int igb_vlan_rx_add_vid(struct net_device *, u16);
157static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158static void igb_restore_vlan(struct igb_adapter *);
159static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160static void igb_ping_all_vfs(struct igb_adapter *);
161static void igb_msg_task(struct igb_adapter *);
162static void igb_vmm_control(struct igb_adapter *);
163static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167			       int vf, u16 vlan, u8 qos);
168static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170				 struct ifla_vf_info *ivi);
171static void igb_check_vf_rate_limit(struct igb_adapter *);
172
173#ifdef CONFIG_PCI_IOV
174static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
176#endif
177
178#ifdef CONFIG_PM
179#ifdef CONFIG_PM_SLEEP
180static int igb_suspend(struct device *);
181#endif
182static int igb_resume(struct device *);
183#ifdef CONFIG_PM_RUNTIME
184static int igb_runtime_suspend(struct device *dev);
185static int igb_runtime_resume(struct device *dev);
186static int igb_runtime_idle(struct device *dev);
187#endif
188static const struct dev_pm_ops igb_pm_ops = {
189	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191			igb_runtime_idle)
192};
193#endif
194static void igb_shutdown(struct pci_dev *);
195#ifdef CONFIG_IGB_DCA
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198	.notifier_call	= igb_notify_dca,
199	.next		= NULL,
200	.priority	= 0
201};
202#endif
203#ifdef CONFIG_NET_POLL_CONTROLLER
204/* for netdump / net console */
205static void igb_netpoll(struct net_device *);
206#endif
207#ifdef CONFIG_PCI_IOV
208static unsigned int max_vfs = 0;
209module_param(max_vfs, uint, 0);
210MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211                 "per physical function");
212#endif /* CONFIG_PCI_IOV */
213
214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215		     pci_channel_state_t);
216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217static void igb_io_resume(struct pci_dev *);
218
219static const struct pci_error_handlers igb_err_handler = {
220	.error_detected = igb_io_error_detected,
221	.slot_reset = igb_io_slot_reset,
222	.resume = igb_io_resume,
223};
224
225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227static struct pci_driver igb_driver = {
228	.name     = igb_driver_name,
229	.id_table = igb_pci_tbl,
230	.probe    = igb_probe,
231	.remove   = __devexit_p(igb_remove),
232#ifdef CONFIG_PM
233	.driver.pm = &igb_pm_ops,
234#endif
235	.shutdown = igb_shutdown,
236	.err_handler = &igb_err_handler
237};
238
239MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241MODULE_LICENSE("GPL");
242MODULE_VERSION(DRV_VERSION);
243
244#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245static int debug = -1;
246module_param(debug, int, 0);
247MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249struct igb_reg_info {
250	u32 ofs;
251	char *name;
252};
253
254static const struct igb_reg_info igb_reg_info_tbl[] = {
255
256	/* General Registers */
257	{E1000_CTRL, "CTRL"},
258	{E1000_STATUS, "STATUS"},
259	{E1000_CTRL_EXT, "CTRL_EXT"},
260
261	/* Interrupt Registers */
262	{E1000_ICR, "ICR"},
263
264	/* RX Registers */
265	{E1000_RCTL, "RCTL"},
266	{E1000_RDLEN(0), "RDLEN"},
267	{E1000_RDH(0), "RDH"},
268	{E1000_RDT(0), "RDT"},
269	{E1000_RXDCTL(0), "RXDCTL"},
270	{E1000_RDBAL(0), "RDBAL"},
271	{E1000_RDBAH(0), "RDBAH"},
272
273	/* TX Registers */
274	{E1000_TCTL, "TCTL"},
275	{E1000_TDBAL(0), "TDBAL"},
276	{E1000_TDBAH(0), "TDBAH"},
277	{E1000_TDLEN(0), "TDLEN"},
278	{E1000_TDH(0), "TDH"},
279	{E1000_TDT(0), "TDT"},
280	{E1000_TXDCTL(0), "TXDCTL"},
281	{E1000_TDFH, "TDFH"},
282	{E1000_TDFT, "TDFT"},
283	{E1000_TDFHS, "TDFHS"},
284	{E1000_TDFPC, "TDFPC"},
285
286	/* List Terminator */
287	{}
288};
289
290/*
291 * igb_regdump - register printout routine
292 */
293static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294{
295	int n = 0;
296	char rname[16];
297	u32 regs[8];
298
299	switch (reginfo->ofs) {
300	case E1000_RDLEN(0):
301		for (n = 0; n < 4; n++)
302			regs[n] = rd32(E1000_RDLEN(n));
303		break;
304	case E1000_RDH(0):
305		for (n = 0; n < 4; n++)
306			regs[n] = rd32(E1000_RDH(n));
307		break;
308	case E1000_RDT(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDT(n));
311		break;
312	case E1000_RXDCTL(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RXDCTL(n));
315		break;
316	case E1000_RDBAL(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDBAL(n));
319		break;
320	case E1000_RDBAH(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RDBAH(n));
323		break;
324	case E1000_TDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_TDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_TDBAH(n));
331		break;
332	case E1000_TDLEN(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_TDLEN(n));
335		break;
336	case E1000_TDH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDH(n));
339		break;
340	case E1000_TDT(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDT(n));
343		break;
344	case E1000_TXDCTL(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TXDCTL(n));
347		break;
348	default:
349		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350		return;
351	}
352
353	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
354	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355		regs[2], regs[3]);
356}
357
358/*
359 * igb_dump - Print registers, tx-rings and rx-rings
360 */
361static void igb_dump(struct igb_adapter *adapter)
362{
363	struct net_device *netdev = adapter->netdev;
364	struct e1000_hw *hw = &adapter->hw;
365	struct igb_reg_info *reginfo;
366	struct igb_ring *tx_ring;
367	union e1000_adv_tx_desc *tx_desc;
368	struct my_u0 { u64 a; u64 b; } *u0;
369	struct igb_ring *rx_ring;
370	union e1000_adv_rx_desc *rx_desc;
371	u32 staterr;
372	u16 i, n;
373
374	if (!netif_msg_hw(adapter))
375		return;
376
377	/* Print netdevice Info */
378	if (netdev) {
379		dev_info(&adapter->pdev->dev, "Net device Info\n");
380		pr_info("Device Name     state            trans_start      "
381			"last_rx\n");
382		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383			netdev->state, netdev->trans_start, netdev->last_rx);
384	}
385
386	/* Print Registers */
387	dev_info(&adapter->pdev->dev, "Register Dump\n");
388	pr_info(" Register Name   Value\n");
389	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390	     reginfo->name; reginfo++) {
391		igb_regdump(hw, reginfo);
392	}
393
394	/* Print TX Ring Summary */
395	if (!netdev || !netif_running(netdev))
396		goto exit;
397
398	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400	for (n = 0; n < adapter->num_tx_queues; n++) {
401		struct igb_tx_buffer *buffer_info;
402		tx_ring = adapter->tx_ring[n];
403		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406			(u64)dma_unmap_addr(buffer_info, dma),
407			dma_unmap_len(buffer_info, len),
408			buffer_info->next_to_watch,
409			(u64)buffer_info->time_stamp);
410	}
411
412	/* Print TX Rings */
413	if (!netif_msg_tx_done(adapter))
414		goto rx_ring_summary;
415
416	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418	/* Transmit Descriptor Formats
419	 *
420	 * Advanced Transmit Descriptor
421	 *   +--------------------------------------------------------------+
422	 * 0 |         Buffer Address [63:0]                                |
423	 *   +--------------------------------------------------------------+
424	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425	 *   +--------------------------------------------------------------+
426	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
427	 */
428
429	for (n = 0; n < adapter->num_tx_queues; n++) {
430		tx_ring = adapter->tx_ring[n];
431		pr_info("------------------------------------\n");
432		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433		pr_info("------------------------------------\n");
434		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
435			"[bi->dma       ] leng  ntw timestamp        "
436			"bi->skb\n");
437
438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439			const char *next_desc;
440			struct igb_tx_buffer *buffer_info;
441			tx_desc = IGB_TX_DESC(tx_ring, i);
442			buffer_info = &tx_ring->tx_buffer_info[i];
443			u0 = (struct my_u0 *)tx_desc;
444			if (i == tx_ring->next_to_use &&
445			    i == tx_ring->next_to_clean)
446				next_desc = " NTC/U";
447			else if (i == tx_ring->next_to_use)
448				next_desc = " NTU";
449			else if (i == tx_ring->next_to_clean)
450				next_desc = " NTC";
451			else
452				next_desc = "";
453
454			pr_info("T [0x%03X]    %016llX %016llX %016llX"
455				" %04X  %p %016llX %p%s\n", i,
456				le64_to_cpu(u0->a),
457				le64_to_cpu(u0->b),
458				(u64)dma_unmap_addr(buffer_info, dma),
459				dma_unmap_len(buffer_info, len),
460				buffer_info->next_to_watch,
461				(u64)buffer_info->time_stamp,
462				buffer_info->skb, next_desc);
463
464			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465				print_hex_dump(KERN_INFO, "",
466					DUMP_PREFIX_ADDRESS,
467					16, 1, buffer_info->skb->data,
468					dma_unmap_len(buffer_info, len),
469					true);
470		}
471	}
472
473	/* Print RX Rings Summary */
474rx_ring_summary:
475	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476	pr_info("Queue [NTU] [NTC]\n");
477	for (n = 0; n < adapter->num_rx_queues; n++) {
478		rx_ring = adapter->rx_ring[n];
479		pr_info(" %5d %5X %5X\n",
480			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481	}
482
483	/* Print RX Rings */
484	if (!netif_msg_rx_status(adapter))
485		goto exit;
486
487	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489	/* Advanced Receive Descriptor (Read) Format
490	 *    63                                           1        0
491	 *    +-----------------------------------------------------+
492	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493	 *    +----------------------------------------------+------+
494	 *  8 |       Header Buffer Address [63:1]           |  DD  |
495	 *    +-----------------------------------------------------+
496	 *
497	 *
498	 * Advanced Receive Descriptor (Write-Back) Format
499	 *
500	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
501	 *   +------------------------------------------------------+
502	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503	 *   | Checksum   Ident  |   |           |    | Type | Type |
504	 *   +------------------------------------------------------+
505	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506	 *   +------------------------------------------------------+
507	 *   63       48 47    32 31            20 19               0
508	 */
509
510	for (n = 0; n < adapter->num_rx_queues; n++) {
511		rx_ring = adapter->rx_ring[n];
512		pr_info("------------------------------------\n");
513		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514		pr_info("------------------------------------\n");
515		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
516			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
517		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520		for (i = 0; i < rx_ring->count; i++) {
521			const char *next_desc;
522			struct igb_rx_buffer *buffer_info;
523			buffer_info = &rx_ring->rx_buffer_info[i];
524			rx_desc = IGB_RX_DESC(rx_ring, i);
525			u0 = (struct my_u0 *)rx_desc;
526			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528			if (i == rx_ring->next_to_use)
529				next_desc = " NTU";
530			else if (i == rx_ring->next_to_clean)
531				next_desc = " NTC";
532			else
533				next_desc = "";
534
535			if (staterr & E1000_RXD_STAT_DD) {
536				/* Descriptor Done */
537				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538					"RWB", i,
539					le64_to_cpu(u0->a),
540					le64_to_cpu(u0->b),
541					next_desc);
542			} else {
543				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544					"R  ", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					(u64)buffer_info->dma,
548					next_desc);
549
550				if (netif_msg_pktdata(adapter) &&
551				    buffer_info->dma && buffer_info->page) {
552					print_hex_dump(KERN_INFO, "",
553					  DUMP_PREFIX_ADDRESS,
554					  16, 1,
555					  page_address(buffer_info->page) +
556						      buffer_info->page_offset,
557					  PAGE_SIZE/2, true);
558				}
559			}
560		}
561	}
562
563exit:
564	return;
565}
566
567/**
568 * igb_get_hw_dev - return device
569 * used by hardware layer to print debugging information
570 **/
571struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572{
573	struct igb_adapter *adapter = hw->back;
574	return adapter->netdev;
575}
576
577/**
578 * igb_init_module - Driver Registration Routine
579 *
580 * igb_init_module is the first routine called when the driver is
581 * loaded. All it does is register with the PCI subsystem.
582 **/
583static int __init igb_init_module(void)
584{
585	int ret;
586	pr_info("%s - version %s\n",
587	       igb_driver_string, igb_driver_version);
588
589	pr_info("%s\n", igb_copyright);
590
591#ifdef CONFIG_IGB_DCA
592	dca_register_notify(&dca_notifier);
593#endif
594	ret = pci_register_driver(&igb_driver);
595	return ret;
596}
597
598module_init(igb_init_module);
599
600/**
601 * igb_exit_module - Driver Exit Cleanup Routine
602 *
603 * igb_exit_module is called just before the driver is removed
604 * from memory.
605 **/
606static void __exit igb_exit_module(void)
607{
608#ifdef CONFIG_IGB_DCA
609	dca_unregister_notify(&dca_notifier);
610#endif
611	pci_unregister_driver(&igb_driver);
612}
613
614module_exit(igb_exit_module);
615
616#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
617/**
618 * igb_cache_ring_register - Descriptor ring to register mapping
619 * @adapter: board private structure to initialize
620 *
621 * Once we know the feature-set enabled for the device, we'll cache
622 * the register offset the descriptor ring is assigned to.
623 **/
624static void igb_cache_ring_register(struct igb_adapter *adapter)
625{
626	int i = 0, j = 0;
627	u32 rbase_offset = adapter->vfs_allocated_count;
628
629	switch (adapter->hw.mac.type) {
630	case e1000_82576:
631		/* The queues are allocated for virtualization such that VF 0
632		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
633		 * In order to avoid collision we start at the first free queue
634		 * and continue consuming queues in the same sequence
635		 */
636		if (adapter->vfs_allocated_count) {
637			for (; i < adapter->rss_queues; i++)
638				adapter->rx_ring[i]->reg_idx = rbase_offset +
639				                               Q_IDX_82576(i);
640		}
641	case e1000_82575:
642	case e1000_82580:
643	case e1000_i350:
644	case e1000_i210:
645	case e1000_i211:
646	default:
647		for (; i < adapter->num_rx_queues; i++)
648			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649		for (; j < adapter->num_tx_queues; j++)
650			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651		break;
652	}
653}
654
655static void igb_free_queues(struct igb_adapter *adapter)
656{
657	int i;
658
659	for (i = 0; i < adapter->num_tx_queues; i++) {
660		kfree(adapter->tx_ring[i]);
661		adapter->tx_ring[i] = NULL;
662	}
663	for (i = 0; i < adapter->num_rx_queues; i++) {
664		kfree(adapter->rx_ring[i]);
665		adapter->rx_ring[i] = NULL;
666	}
667	adapter->num_rx_queues = 0;
668	adapter->num_tx_queues = 0;
669}
670
671/**
672 * igb_alloc_queues - Allocate memory for all rings
673 * @adapter: board private structure to initialize
674 *
675 * We allocate one ring per queue at run-time since we don't know the
676 * number of queues at compile-time.
677 **/
678static int igb_alloc_queues(struct igb_adapter *adapter)
679{
680	struct igb_ring *ring;
681	int i;
682
683	for (i = 0; i < adapter->num_tx_queues; i++) {
684		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
685		if (!ring)
686			goto err;
687		ring->count = adapter->tx_ring_count;
688		ring->queue_index = i;
689		ring->dev = &adapter->pdev->dev;
690		ring->netdev = adapter->netdev;
691		/* For 82575, context index must be unique per ring. */
692		if (adapter->hw.mac.type == e1000_82575)
693			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
694		adapter->tx_ring[i] = ring;
695	}
696
697	for (i = 0; i < adapter->num_rx_queues; i++) {
698		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
699		if (!ring)
700			goto err;
701		ring->count = adapter->rx_ring_count;
702		ring->queue_index = i;
703		ring->dev = &adapter->pdev->dev;
704		ring->netdev = adapter->netdev;
705		/* set flag indicating ring supports SCTP checksum offload */
706		if (adapter->hw.mac.type >= e1000_82576)
707			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
708
709		/*
710		 * On i350, i210, and i211, loopback VLAN packets
711		 * have the tag byte-swapped.
712		 * */
713		if (adapter->hw.mac.type >= e1000_i350)
714			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
715
716		adapter->rx_ring[i] = ring;
717	}
718
719	igb_cache_ring_register(adapter);
720
721	return 0;
722
723err:
724	igb_free_queues(adapter);
725
726	return -ENOMEM;
727}
728
729/**
730 *  igb_write_ivar - configure ivar for given MSI-X vector
731 *  @hw: pointer to the HW structure
732 *  @msix_vector: vector number we are allocating to a given ring
733 *  @index: row index of IVAR register to write within IVAR table
734 *  @offset: column offset of in IVAR, should be multiple of 8
735 *
736 *  This function is intended to handle the writing of the IVAR register
737 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
738 *  each containing an cause allocation for an Rx and Tx ring, and a
739 *  variable number of rows depending on the number of queues supported.
740 **/
741static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
742			   int index, int offset)
743{
744	u32 ivar = array_rd32(E1000_IVAR0, index);
745
746	/* clear any bits that are currently set */
747	ivar &= ~((u32)0xFF << offset);
748
749	/* write vector and valid bit */
750	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
751
752	array_wr32(E1000_IVAR0, index, ivar);
753}
754
755#define IGB_N0_QUEUE -1
756static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
757{
758	struct igb_adapter *adapter = q_vector->adapter;
759	struct e1000_hw *hw = &adapter->hw;
760	int rx_queue = IGB_N0_QUEUE;
761	int tx_queue = IGB_N0_QUEUE;
762	u32 msixbm = 0;
763
764	if (q_vector->rx.ring)
765		rx_queue = q_vector->rx.ring->reg_idx;
766	if (q_vector->tx.ring)
767		tx_queue = q_vector->tx.ring->reg_idx;
768
769	switch (hw->mac.type) {
770	case e1000_82575:
771		/* The 82575 assigns vectors using a bitmask, which matches the
772		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
773		   or more queues to a vector, we write the appropriate bits
774		   into the MSIXBM register for that vector. */
775		if (rx_queue > IGB_N0_QUEUE)
776			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
777		if (tx_queue > IGB_N0_QUEUE)
778			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
779		if (!adapter->msix_entries && msix_vector == 0)
780			msixbm |= E1000_EIMS_OTHER;
781		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
782		q_vector->eims_value = msixbm;
783		break;
784	case e1000_82576:
785		/*
786		 * 82576 uses a table that essentially consists of 2 columns
787		 * with 8 rows.  The ordering is column-major so we use the
788		 * lower 3 bits as the row index, and the 4th bit as the
789		 * column offset.
790		 */
791		if (rx_queue > IGB_N0_QUEUE)
792			igb_write_ivar(hw, msix_vector,
793				       rx_queue & 0x7,
794				       (rx_queue & 0x8) << 1);
795		if (tx_queue > IGB_N0_QUEUE)
796			igb_write_ivar(hw, msix_vector,
797				       tx_queue & 0x7,
798				       ((tx_queue & 0x8) << 1) + 8);
799		q_vector->eims_value = 1 << msix_vector;
800		break;
801	case e1000_82580:
802	case e1000_i350:
803	case e1000_i210:
804	case e1000_i211:
805		/*
806		 * On 82580 and newer adapters the scheme is similar to 82576
807		 * however instead of ordering column-major we have things
808		 * ordered row-major.  So we traverse the table by using
809		 * bit 0 as the column offset, and the remaining bits as the
810		 * row index.
811		 */
812		if (rx_queue > IGB_N0_QUEUE)
813			igb_write_ivar(hw, msix_vector,
814				       rx_queue >> 1,
815				       (rx_queue & 0x1) << 4);
816		if (tx_queue > IGB_N0_QUEUE)
817			igb_write_ivar(hw, msix_vector,
818				       tx_queue >> 1,
819				       ((tx_queue & 0x1) << 4) + 8);
820		q_vector->eims_value = 1 << msix_vector;
821		break;
822	default:
823		BUG();
824		break;
825	}
826
827	/* add q_vector eims value to global eims_enable_mask */
828	adapter->eims_enable_mask |= q_vector->eims_value;
829
830	/* configure q_vector to set itr on first interrupt */
831	q_vector->set_itr = 1;
832}
833
834/**
835 * igb_configure_msix - Configure MSI-X hardware
836 *
837 * igb_configure_msix sets up the hardware to properly
838 * generate MSI-X interrupts.
839 **/
840static void igb_configure_msix(struct igb_adapter *adapter)
841{
842	u32 tmp;
843	int i, vector = 0;
844	struct e1000_hw *hw = &adapter->hw;
845
846	adapter->eims_enable_mask = 0;
847
848	/* set vector for other causes, i.e. link changes */
849	switch (hw->mac.type) {
850	case e1000_82575:
851		tmp = rd32(E1000_CTRL_EXT);
852		/* enable MSI-X PBA support*/
853		tmp |= E1000_CTRL_EXT_PBA_CLR;
854
855		/* Auto-Mask interrupts upon ICR read. */
856		tmp |= E1000_CTRL_EXT_EIAME;
857		tmp |= E1000_CTRL_EXT_IRCA;
858
859		wr32(E1000_CTRL_EXT, tmp);
860
861		/* enable msix_other interrupt */
862		array_wr32(E1000_MSIXBM(0), vector++,
863		                      E1000_EIMS_OTHER);
864		adapter->eims_other = E1000_EIMS_OTHER;
865
866		break;
867
868	case e1000_82576:
869	case e1000_82580:
870	case e1000_i350:
871	case e1000_i210:
872	case e1000_i211:
873		/* Turn on MSI-X capability first, or our settings
874		 * won't stick.  And it will take days to debug. */
875		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
876		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
877		                E1000_GPIE_NSICR);
878
879		/* enable msix_other interrupt */
880		adapter->eims_other = 1 << vector;
881		tmp = (vector++ | E1000_IVAR_VALID) << 8;
882
883		wr32(E1000_IVAR_MISC, tmp);
884		break;
885	default:
886		/* do nothing, since nothing else supports MSI-X */
887		break;
888	} /* switch (hw->mac.type) */
889
890	adapter->eims_enable_mask |= adapter->eims_other;
891
892	for (i = 0; i < adapter->num_q_vectors; i++)
893		igb_assign_vector(adapter->q_vector[i], vector++);
894
895	wrfl();
896}
897
898/**
899 * igb_request_msix - Initialize MSI-X interrupts
900 *
901 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
902 * kernel.
903 **/
904static int igb_request_msix(struct igb_adapter *adapter)
905{
906	struct net_device *netdev = adapter->netdev;
907	struct e1000_hw *hw = &adapter->hw;
908	int i, err = 0, vector = 0;
909
910	err = request_irq(adapter->msix_entries[vector].vector,
911	                  igb_msix_other, 0, netdev->name, adapter);
912	if (err)
913		goto out;
914	vector++;
915
916	for (i = 0; i < adapter->num_q_vectors; i++) {
917		struct igb_q_vector *q_vector = adapter->q_vector[i];
918
919		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
920
921		if (q_vector->rx.ring && q_vector->tx.ring)
922			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
923				q_vector->rx.ring->queue_index);
924		else if (q_vector->tx.ring)
925			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
926				q_vector->tx.ring->queue_index);
927		else if (q_vector->rx.ring)
928			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
929				q_vector->rx.ring->queue_index);
930		else
931			sprintf(q_vector->name, "%s-unused", netdev->name);
932
933		err = request_irq(adapter->msix_entries[vector].vector,
934		                  igb_msix_ring, 0, q_vector->name,
935		                  q_vector);
936		if (err)
937			goto out;
938		vector++;
939	}
940
941	igb_configure_msix(adapter);
942	return 0;
943out:
944	return err;
945}
946
947static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
948{
949	if (adapter->msix_entries) {
950		pci_disable_msix(adapter->pdev);
951		kfree(adapter->msix_entries);
952		adapter->msix_entries = NULL;
953	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
954		pci_disable_msi(adapter->pdev);
955	}
956}
957
958/**
959 * igb_free_q_vectors - Free memory allocated for interrupt vectors
960 * @adapter: board private structure to initialize
961 *
962 * This function frees the memory allocated to the q_vectors.  In addition if
963 * NAPI is enabled it will delete any references to the NAPI struct prior
964 * to freeing the q_vector.
965 **/
966static void igb_free_q_vectors(struct igb_adapter *adapter)
967{
968	int v_idx;
969
970	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
971		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
972		adapter->q_vector[v_idx] = NULL;
973		if (!q_vector)
974			continue;
975		netif_napi_del(&q_vector->napi);
976		kfree(q_vector);
977	}
978	adapter->num_q_vectors = 0;
979}
980
981/**
982 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
983 *
984 * This function resets the device so that it has 0 rx queues, tx queues, and
985 * MSI-X interrupts allocated.
986 */
987static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
988{
989	igb_free_queues(adapter);
990	igb_free_q_vectors(adapter);
991	igb_reset_interrupt_capability(adapter);
992}
993
994/**
995 * igb_set_interrupt_capability - set MSI or MSI-X if supported
996 *
997 * Attempt to configure interrupts using the best available
998 * capabilities of the hardware and kernel.
999 **/
1000static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1001{
1002	int err;
1003	int numvecs, i;
1004
1005	/* Number of supported queues. */
1006	adapter->num_rx_queues = adapter->rss_queues;
1007	if (adapter->vfs_allocated_count)
1008		adapter->num_tx_queues = 1;
1009	else
1010		adapter->num_tx_queues = adapter->rss_queues;
1011
1012	/* start with one vector for every rx queue */
1013	numvecs = adapter->num_rx_queues;
1014
1015	/* if tx handler is separate add 1 for every tx queue */
1016	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1017		numvecs += adapter->num_tx_queues;
1018
1019	/* store the number of vectors reserved for queues */
1020	adapter->num_q_vectors = numvecs;
1021
1022	/* add 1 vector for link status interrupts */
1023	numvecs++;
1024	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1025					GFP_KERNEL);
1026
1027	if (!adapter->msix_entries)
1028		goto msi_only;
1029
1030	for (i = 0; i < numvecs; i++)
1031		adapter->msix_entries[i].entry = i;
1032
1033	err = pci_enable_msix(adapter->pdev,
1034			      adapter->msix_entries,
1035			      numvecs);
1036	if (err == 0)
1037		goto out;
1038
1039	igb_reset_interrupt_capability(adapter);
1040
1041	/* If we can't do MSI-X, try MSI */
1042msi_only:
1043#ifdef CONFIG_PCI_IOV
1044	/* disable SR-IOV for non MSI-X configurations */
1045	if (adapter->vf_data) {
1046		struct e1000_hw *hw = &adapter->hw;
1047		/* disable iov and allow time for transactions to clear */
1048		pci_disable_sriov(adapter->pdev);
1049		msleep(500);
1050
1051		kfree(adapter->vf_data);
1052		adapter->vf_data = NULL;
1053		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1054		wrfl();
1055		msleep(100);
1056		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1057	}
1058#endif
1059	adapter->vfs_allocated_count = 0;
1060	adapter->rss_queues = 1;
1061	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1062	adapter->num_rx_queues = 1;
1063	adapter->num_tx_queues = 1;
1064	adapter->num_q_vectors = 1;
1065	if (!pci_enable_msi(adapter->pdev))
1066		adapter->flags |= IGB_FLAG_HAS_MSI;
1067out:
1068	/* Notify the stack of the (possibly) reduced queue counts. */
1069	rtnl_lock();
1070	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1071	err = netif_set_real_num_rx_queues(adapter->netdev,
1072		adapter->num_rx_queues);
1073	rtnl_unlock();
1074	return err;
1075}
1076
1077/**
1078 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1079 * @adapter: board private structure to initialize
1080 *
1081 * We allocate one q_vector per queue interrupt.  If allocation fails we
1082 * return -ENOMEM.
1083 **/
1084static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1085{
1086	struct igb_q_vector *q_vector;
1087	struct e1000_hw *hw = &adapter->hw;
1088	int v_idx;
1089
1090	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1091		q_vector = kzalloc(sizeof(struct igb_q_vector),
1092				   GFP_KERNEL);
1093		if (!q_vector)
1094			goto err_out;
1095		q_vector->adapter = adapter;
1096		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1097		q_vector->itr_val = IGB_START_ITR;
1098		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1099		adapter->q_vector[v_idx] = q_vector;
1100	}
1101
1102	return 0;
1103
1104err_out:
1105	igb_free_q_vectors(adapter);
1106	return -ENOMEM;
1107}
1108
1109static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1110                                      int ring_idx, int v_idx)
1111{
1112	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1113
1114	q_vector->rx.ring = adapter->rx_ring[ring_idx];
1115	q_vector->rx.ring->q_vector = q_vector;
1116	q_vector->rx.count++;
1117	q_vector->itr_val = adapter->rx_itr_setting;
1118	if (q_vector->itr_val && q_vector->itr_val <= 3)
1119		q_vector->itr_val = IGB_START_ITR;
1120}
1121
1122static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1123                                      int ring_idx, int v_idx)
1124{
1125	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1126
1127	q_vector->tx.ring = adapter->tx_ring[ring_idx];
1128	q_vector->tx.ring->q_vector = q_vector;
1129	q_vector->tx.count++;
1130	q_vector->itr_val = adapter->tx_itr_setting;
1131	q_vector->tx.work_limit = adapter->tx_work_limit;
1132	if (q_vector->itr_val && q_vector->itr_val <= 3)
1133		q_vector->itr_val = IGB_START_ITR;
1134}
1135
1136/**
1137 * igb_map_ring_to_vector - maps allocated queues to vectors
1138 *
1139 * This function maps the recently allocated queues to vectors.
1140 **/
1141static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1142{
1143	int i;
1144	int v_idx = 0;
1145
1146	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1147	    (adapter->num_q_vectors < adapter->num_tx_queues))
1148		return -ENOMEM;
1149
1150	if (adapter->num_q_vectors >=
1151	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
1152		for (i = 0; i < adapter->num_rx_queues; i++)
1153			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1154		for (i = 0; i < adapter->num_tx_queues; i++)
1155			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1156	} else {
1157		for (i = 0; i < adapter->num_rx_queues; i++) {
1158			if (i < adapter->num_tx_queues)
1159				igb_map_tx_ring_to_vector(adapter, i, v_idx);
1160			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1161		}
1162		for (; i < adapter->num_tx_queues; i++)
1163			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1164	}
1165	return 0;
1166}
1167
1168/**
1169 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1170 *
1171 * This function initializes the interrupts and allocates all of the queues.
1172 **/
1173static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1174{
1175	struct pci_dev *pdev = adapter->pdev;
1176	int err;
1177
1178	err = igb_set_interrupt_capability(adapter);
1179	if (err)
1180		return err;
1181
1182	err = igb_alloc_q_vectors(adapter);
1183	if (err) {
1184		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1185		goto err_alloc_q_vectors;
1186	}
1187
1188	err = igb_alloc_queues(adapter);
1189	if (err) {
1190		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1191		goto err_alloc_queues;
1192	}
1193
1194	err = igb_map_ring_to_vector(adapter);
1195	if (err) {
1196		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1197		goto err_map_queues;
1198	}
1199
1200
1201	return 0;
1202err_map_queues:
1203	igb_free_queues(adapter);
1204err_alloc_queues:
1205	igb_free_q_vectors(adapter);
1206err_alloc_q_vectors:
1207	igb_reset_interrupt_capability(adapter);
1208	return err;
1209}
1210
1211/**
1212 * igb_request_irq - initialize interrupts
1213 *
1214 * Attempts to configure interrupts using the best available
1215 * capabilities of the hardware and kernel.
1216 **/
1217static int igb_request_irq(struct igb_adapter *adapter)
1218{
1219	struct net_device *netdev = adapter->netdev;
1220	struct pci_dev *pdev = adapter->pdev;
1221	int err = 0;
1222
1223	if (adapter->msix_entries) {
1224		err = igb_request_msix(adapter);
1225		if (!err)
1226			goto request_done;
1227		/* fall back to MSI */
1228		igb_clear_interrupt_scheme(adapter);
1229		if (!pci_enable_msi(pdev))
1230			adapter->flags |= IGB_FLAG_HAS_MSI;
1231		igb_free_all_tx_resources(adapter);
1232		igb_free_all_rx_resources(adapter);
1233		adapter->num_tx_queues = 1;
1234		adapter->num_rx_queues = 1;
1235		adapter->num_q_vectors = 1;
1236		err = igb_alloc_q_vectors(adapter);
1237		if (err) {
1238			dev_err(&pdev->dev,
1239			        "Unable to allocate memory for vectors\n");
1240			goto request_done;
1241		}
1242		err = igb_alloc_queues(adapter);
1243		if (err) {
1244			dev_err(&pdev->dev,
1245			        "Unable to allocate memory for queues\n");
1246			igb_free_q_vectors(adapter);
1247			goto request_done;
1248		}
1249		igb_setup_all_tx_resources(adapter);
1250		igb_setup_all_rx_resources(adapter);
1251	}
1252
1253	igb_assign_vector(adapter->q_vector[0], 0);
1254
1255	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1256		err = request_irq(pdev->irq, igb_intr_msi, 0,
1257				  netdev->name, adapter);
1258		if (!err)
1259			goto request_done;
1260
1261		/* fall back to legacy interrupts */
1262		igb_reset_interrupt_capability(adapter);
1263		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1264	}
1265
1266	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1267			  netdev->name, adapter);
1268
1269	if (err)
1270		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1271			err);
1272
1273request_done:
1274	return err;
1275}
1276
1277static void igb_free_irq(struct igb_adapter *adapter)
1278{
1279	if (adapter->msix_entries) {
1280		int vector = 0, i;
1281
1282		free_irq(adapter->msix_entries[vector++].vector, adapter);
1283
1284		for (i = 0; i < adapter->num_q_vectors; i++)
1285			free_irq(adapter->msix_entries[vector++].vector,
1286				 adapter->q_vector[i]);
1287	} else {
1288		free_irq(adapter->pdev->irq, adapter);
1289	}
1290}
1291
1292/**
1293 * igb_irq_disable - Mask off interrupt generation on the NIC
1294 * @adapter: board private structure
1295 **/
1296static void igb_irq_disable(struct igb_adapter *adapter)
1297{
1298	struct e1000_hw *hw = &adapter->hw;
1299
1300	/*
1301	 * we need to be careful when disabling interrupts.  The VFs are also
1302	 * mapped into these registers and so clearing the bits can cause
1303	 * issues on the VF drivers so we only need to clear what we set
1304	 */
1305	if (adapter->msix_entries) {
1306		u32 regval = rd32(E1000_EIAM);
1307		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1308		wr32(E1000_EIMC, adapter->eims_enable_mask);
1309		regval = rd32(E1000_EIAC);
1310		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1311	}
1312
1313	wr32(E1000_IAM, 0);
1314	wr32(E1000_IMC, ~0);
1315	wrfl();
1316	if (adapter->msix_entries) {
1317		int i;
1318		for (i = 0; i < adapter->num_q_vectors; i++)
1319			synchronize_irq(adapter->msix_entries[i].vector);
1320	} else {
1321		synchronize_irq(adapter->pdev->irq);
1322	}
1323}
1324
1325/**
1326 * igb_irq_enable - Enable default interrupt generation settings
1327 * @adapter: board private structure
1328 **/
1329static void igb_irq_enable(struct igb_adapter *adapter)
1330{
1331	struct e1000_hw *hw = &adapter->hw;
1332
1333	if (adapter->msix_entries) {
1334		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1335		u32 regval = rd32(E1000_EIAC);
1336		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1337		regval = rd32(E1000_EIAM);
1338		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1339		wr32(E1000_EIMS, adapter->eims_enable_mask);
1340		if (adapter->vfs_allocated_count) {
1341			wr32(E1000_MBVFIMR, 0xFF);
1342			ims |= E1000_IMS_VMMB;
1343		}
1344		wr32(E1000_IMS, ims);
1345	} else {
1346		wr32(E1000_IMS, IMS_ENABLE_MASK |
1347				E1000_IMS_DRSTA);
1348		wr32(E1000_IAM, IMS_ENABLE_MASK |
1349				E1000_IMS_DRSTA);
1350	}
1351}
1352
1353static void igb_update_mng_vlan(struct igb_adapter *adapter)
1354{
1355	struct e1000_hw *hw = &adapter->hw;
1356	u16 vid = adapter->hw.mng_cookie.vlan_id;
1357	u16 old_vid = adapter->mng_vlan_id;
1358
1359	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1360		/* add VID to filter table */
1361		igb_vfta_set(hw, vid, true);
1362		adapter->mng_vlan_id = vid;
1363	} else {
1364		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1365	}
1366
1367	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1368	    (vid != old_vid) &&
1369	    !test_bit(old_vid, adapter->active_vlans)) {
1370		/* remove VID from filter table */
1371		igb_vfta_set(hw, old_vid, false);
1372	}
1373}
1374
1375/**
1376 * igb_release_hw_control - release control of the h/w to f/w
1377 * @adapter: address of board private structure
1378 *
1379 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1380 * For ASF and Pass Through versions of f/w this means that the
1381 * driver is no longer loaded.
1382 *
1383 **/
1384static void igb_release_hw_control(struct igb_adapter *adapter)
1385{
1386	struct e1000_hw *hw = &adapter->hw;
1387	u32 ctrl_ext;
1388
1389	/* Let firmware take over control of h/w */
1390	ctrl_ext = rd32(E1000_CTRL_EXT);
1391	wr32(E1000_CTRL_EXT,
1392			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1393}
1394
1395/**
1396 * igb_get_hw_control - get control of the h/w from f/w
1397 * @adapter: address of board private structure
1398 *
1399 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1400 * For ASF and Pass Through versions of f/w this means that
1401 * the driver is loaded.
1402 *
1403 **/
1404static void igb_get_hw_control(struct igb_adapter *adapter)
1405{
1406	struct e1000_hw *hw = &adapter->hw;
1407	u32 ctrl_ext;
1408
1409	/* Let firmware know the driver has taken over */
1410	ctrl_ext = rd32(E1000_CTRL_EXT);
1411	wr32(E1000_CTRL_EXT,
1412			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1413}
1414
1415/**
1416 * igb_configure - configure the hardware for RX and TX
1417 * @adapter: private board structure
1418 **/
1419static void igb_configure(struct igb_adapter *adapter)
1420{
1421	struct net_device *netdev = adapter->netdev;
1422	int i;
1423
1424	igb_get_hw_control(adapter);
1425	igb_set_rx_mode(netdev);
1426
1427	igb_restore_vlan(adapter);
1428
1429	igb_setup_tctl(adapter);
1430	igb_setup_mrqc(adapter);
1431	igb_setup_rctl(adapter);
1432
1433	igb_configure_tx(adapter);
1434	igb_configure_rx(adapter);
1435
1436	igb_rx_fifo_flush_82575(&adapter->hw);
1437
1438	/* call igb_desc_unused which always leaves
1439	 * at least 1 descriptor unused to make sure
1440	 * next_to_use != next_to_clean */
1441	for (i = 0; i < adapter->num_rx_queues; i++) {
1442		struct igb_ring *ring = adapter->rx_ring[i];
1443		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1444	}
1445}
1446
1447/**
1448 * igb_power_up_link - Power up the phy/serdes link
1449 * @adapter: address of board private structure
1450 **/
1451void igb_power_up_link(struct igb_adapter *adapter)
1452{
1453	igb_reset_phy(&adapter->hw);
1454
1455	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1456		igb_power_up_phy_copper(&adapter->hw);
1457	else
1458		igb_power_up_serdes_link_82575(&adapter->hw);
1459}
1460
1461/**
1462 * igb_power_down_link - Power down the phy/serdes link
1463 * @adapter: address of board private structure
1464 */
1465static void igb_power_down_link(struct igb_adapter *adapter)
1466{
1467	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1468		igb_power_down_phy_copper_82575(&adapter->hw);
1469	else
1470		igb_shutdown_serdes_link_82575(&adapter->hw);
1471}
1472
1473/**
1474 * igb_up - Open the interface and prepare it to handle traffic
1475 * @adapter: board private structure
1476 **/
1477int igb_up(struct igb_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	int i;
1481
1482	/* hardware has been reset, we need to reload some things */
1483	igb_configure(adapter);
1484
1485	clear_bit(__IGB_DOWN, &adapter->state);
1486
1487	for (i = 0; i < adapter->num_q_vectors; i++)
1488		napi_enable(&(adapter->q_vector[i]->napi));
1489
1490	if (adapter->msix_entries)
1491		igb_configure_msix(adapter);
1492	else
1493		igb_assign_vector(adapter->q_vector[0], 0);
1494
1495	/* Clear any pending interrupts. */
1496	rd32(E1000_ICR);
1497	igb_irq_enable(adapter);
1498
1499	/* notify VFs that reset has been completed */
1500	if (adapter->vfs_allocated_count) {
1501		u32 reg_data = rd32(E1000_CTRL_EXT);
1502		reg_data |= E1000_CTRL_EXT_PFRSTD;
1503		wr32(E1000_CTRL_EXT, reg_data);
1504	}
1505
1506	netif_tx_start_all_queues(adapter->netdev);
1507
1508	/* start the watchdog. */
1509	hw->mac.get_link_status = 1;
1510	schedule_work(&adapter->watchdog_task);
1511
1512	return 0;
1513}
1514
1515void igb_down(struct igb_adapter *adapter)
1516{
1517	struct net_device *netdev = adapter->netdev;
1518	struct e1000_hw *hw = &adapter->hw;
1519	u32 tctl, rctl;
1520	int i;
1521
1522	/* signal that we're down so the interrupt handler does not
1523	 * reschedule our watchdog timer */
1524	set_bit(__IGB_DOWN, &adapter->state);
1525
1526	/* disable receives in the hardware */
1527	rctl = rd32(E1000_RCTL);
1528	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1529	/* flush and sleep below */
1530
1531	netif_tx_stop_all_queues(netdev);
1532
1533	/* disable transmits in the hardware */
1534	tctl = rd32(E1000_TCTL);
1535	tctl &= ~E1000_TCTL_EN;
1536	wr32(E1000_TCTL, tctl);
1537	/* flush both disables and wait for them to finish */
1538	wrfl();
1539	msleep(10);
1540
1541	for (i = 0; i < adapter->num_q_vectors; i++)
1542		napi_disable(&(adapter->q_vector[i]->napi));
1543
1544	igb_irq_disable(adapter);
1545
1546	del_timer_sync(&adapter->watchdog_timer);
1547	del_timer_sync(&adapter->phy_info_timer);
1548
1549	netif_carrier_off(netdev);
1550
1551	/* record the stats before reset*/
1552	spin_lock(&adapter->stats64_lock);
1553	igb_update_stats(adapter, &adapter->stats64);
1554	spin_unlock(&adapter->stats64_lock);
1555
1556	adapter->link_speed = 0;
1557	adapter->link_duplex = 0;
1558
1559	if (!pci_channel_offline(adapter->pdev))
1560		igb_reset(adapter);
1561	igb_clean_all_tx_rings(adapter);
1562	igb_clean_all_rx_rings(adapter);
1563#ifdef CONFIG_IGB_DCA
1564
1565	/* since we reset the hardware DCA settings were cleared */
1566	igb_setup_dca(adapter);
1567#endif
1568}
1569
1570void igb_reinit_locked(struct igb_adapter *adapter)
1571{
1572	WARN_ON(in_interrupt());
1573	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1574		msleep(1);
1575	igb_down(adapter);
1576	igb_up(adapter);
1577	clear_bit(__IGB_RESETTING, &adapter->state);
1578}
1579
1580void igb_reset(struct igb_adapter *adapter)
1581{
1582	struct pci_dev *pdev = adapter->pdev;
1583	struct e1000_hw *hw = &adapter->hw;
1584	struct e1000_mac_info *mac = &hw->mac;
1585	struct e1000_fc_info *fc = &hw->fc;
1586	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1587	u16 hwm;
1588
1589	/* Repartition Pba for greater than 9k mtu
1590	 * To take effect CTRL.RST is required.
1591	 */
1592	switch (mac->type) {
1593	case e1000_i350:
1594	case e1000_82580:
1595		pba = rd32(E1000_RXPBS);
1596		pba = igb_rxpbs_adjust_82580(pba);
1597		break;
1598	case e1000_82576:
1599		pba = rd32(E1000_RXPBS);
1600		pba &= E1000_RXPBS_SIZE_MASK_82576;
1601		break;
1602	case e1000_82575:
1603	case e1000_i210:
1604	case e1000_i211:
1605	default:
1606		pba = E1000_PBA_34K;
1607		break;
1608	}
1609
1610	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1611	    (mac->type < e1000_82576)) {
1612		/* adjust PBA for jumbo frames */
1613		wr32(E1000_PBA, pba);
1614
1615		/* To maintain wire speed transmits, the Tx FIFO should be
1616		 * large enough to accommodate two full transmit packets,
1617		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1618		 * the Rx FIFO should be large enough to accommodate at least
1619		 * one full receive packet and is similarly rounded up and
1620		 * expressed in KB. */
1621		pba = rd32(E1000_PBA);
1622		/* upper 16 bits has Tx packet buffer allocation size in KB */
1623		tx_space = pba >> 16;
1624		/* lower 16 bits has Rx packet buffer allocation size in KB */
1625		pba &= 0xffff;
1626		/* the tx fifo also stores 16 bytes of information about the tx
1627		 * but don't include ethernet FCS because hardware appends it */
1628		min_tx_space = (adapter->max_frame_size +
1629				sizeof(union e1000_adv_tx_desc) -
1630				ETH_FCS_LEN) * 2;
1631		min_tx_space = ALIGN(min_tx_space, 1024);
1632		min_tx_space >>= 10;
1633		/* software strips receive CRC, so leave room for it */
1634		min_rx_space = adapter->max_frame_size;
1635		min_rx_space = ALIGN(min_rx_space, 1024);
1636		min_rx_space >>= 10;
1637
1638		/* If current Tx allocation is less than the min Tx FIFO size,
1639		 * and the min Tx FIFO size is less than the current Rx FIFO
1640		 * allocation, take space away from current Rx allocation */
1641		if (tx_space < min_tx_space &&
1642		    ((min_tx_space - tx_space) < pba)) {
1643			pba = pba - (min_tx_space - tx_space);
1644
1645			/* if short on rx space, rx wins and must trump tx
1646			 * adjustment */
1647			if (pba < min_rx_space)
1648				pba = min_rx_space;
1649		}
1650		wr32(E1000_PBA, pba);
1651	}
1652
1653	/* flow control settings */
1654	/* The high water mark must be low enough to fit one full frame
1655	 * (or the size used for early receive) above it in the Rx FIFO.
1656	 * Set it to the lower of:
1657	 * - 90% of the Rx FIFO size, or
1658	 * - the full Rx FIFO size minus one full frame */
1659	hwm = min(((pba << 10) * 9 / 10),
1660			((pba << 10) - 2 * adapter->max_frame_size));
1661
1662	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
1663	fc->low_water = fc->high_water - 16;
1664	fc->pause_time = 0xFFFF;
1665	fc->send_xon = 1;
1666	fc->current_mode = fc->requested_mode;
1667
1668	/* disable receive for all VFs and wait one second */
1669	if (adapter->vfs_allocated_count) {
1670		int i;
1671		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1672			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1673
1674		/* ping all the active vfs to let them know we are going down */
1675		igb_ping_all_vfs(adapter);
1676
1677		/* disable transmits and receives */
1678		wr32(E1000_VFRE, 0);
1679		wr32(E1000_VFTE, 0);
1680	}
1681
1682	/* Allow time for pending master requests to run */
1683	hw->mac.ops.reset_hw(hw);
1684	wr32(E1000_WUC, 0);
1685
1686	if (hw->mac.ops.init_hw(hw))
1687		dev_err(&pdev->dev, "Hardware Error\n");
1688
1689	/*
1690	 * Flow control settings reset on hardware reset, so guarantee flow
1691	 * control is off when forcing speed.
1692	 */
1693	if (!hw->mac.autoneg)
1694		igb_force_mac_fc(hw);
1695
1696	igb_init_dmac(adapter, pba);
1697	if (!netif_running(adapter->netdev))
1698		igb_power_down_link(adapter);
1699
1700	igb_update_mng_vlan(adapter);
1701
1702	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1703	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1704
1705#ifdef CONFIG_IGB_PTP
1706	/* Re-enable PTP, where applicable. */
1707	igb_ptp_reset(adapter);
1708#endif /* CONFIG_IGB_PTP */
1709
1710	igb_get_phy_info(hw);
1711}
1712
1713static netdev_features_t igb_fix_features(struct net_device *netdev,
1714	netdev_features_t features)
1715{
1716	/*
1717	 * Since there is no support for separate rx/tx vlan accel
1718	 * enable/disable make sure tx flag is always in same state as rx.
1719	 */
1720	if (features & NETIF_F_HW_VLAN_RX)
1721		features |= NETIF_F_HW_VLAN_TX;
1722	else
1723		features &= ~NETIF_F_HW_VLAN_TX;
1724
1725	return features;
1726}
1727
1728static int igb_set_features(struct net_device *netdev,
1729	netdev_features_t features)
1730{
1731	netdev_features_t changed = netdev->features ^ features;
1732	struct igb_adapter *adapter = netdev_priv(netdev);
1733
1734	if (changed & NETIF_F_HW_VLAN_RX)
1735		igb_vlan_mode(netdev, features);
1736
1737	if (!(changed & NETIF_F_RXALL))
1738		return 0;
1739
1740	netdev->features = features;
1741
1742	if (netif_running(netdev))
1743		igb_reinit_locked(adapter);
1744	else
1745		igb_reset(adapter);
1746
1747	return 0;
1748}
1749
1750static const struct net_device_ops igb_netdev_ops = {
1751	.ndo_open		= igb_open,
1752	.ndo_stop		= igb_close,
1753	.ndo_start_xmit		= igb_xmit_frame,
1754	.ndo_get_stats64	= igb_get_stats64,
1755	.ndo_set_rx_mode	= igb_set_rx_mode,
1756	.ndo_set_mac_address	= igb_set_mac,
1757	.ndo_change_mtu		= igb_change_mtu,
1758	.ndo_do_ioctl		= igb_ioctl,
1759	.ndo_tx_timeout		= igb_tx_timeout,
1760	.ndo_validate_addr	= eth_validate_addr,
1761	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1762	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1763	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1764	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1765	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1766	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1767#ifdef CONFIG_NET_POLL_CONTROLLER
1768	.ndo_poll_controller	= igb_netpoll,
1769#endif
1770	.ndo_fix_features	= igb_fix_features,
1771	.ndo_set_features	= igb_set_features,
1772};
1773
1774/**
1775 * igb_set_fw_version - Configure version string for ethtool
1776 * @adapter: adapter struct
1777 *
1778 **/
1779void igb_set_fw_version(struct igb_adapter *adapter)
1780{
1781	struct e1000_hw *hw = &adapter->hw;
1782	u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1783	u16 major, build, patch, fw_version;
1784	u32 etrack_id;
1785
1786	hw->nvm.ops.read(hw, 5, 1, &fw_version);
1787	if (adapter->hw.mac.type != e1000_i211) {
1788		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1789		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1790		etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1791
1792		/* combo image version needs to be found */
1793		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1794		if ((comb_offset != 0x0) &&
1795		    (comb_offset != IGB_NVM_VER_INVALID)) {
1796			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1797					 + 1), 1, &comb_verh);
1798			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1799					 1, &comb_verl);
1800
1801			/* Only display Option Rom if it exists and is valid */
1802			if ((comb_verh && comb_verl) &&
1803			    ((comb_verh != IGB_NVM_VER_INVALID) &&
1804			     (comb_verl != IGB_NVM_VER_INVALID))) {
1805				major = comb_verl >> IGB_COMB_VER_SHFT;
1806				build = (comb_verl << IGB_COMB_VER_SHFT) |
1807					(comb_verh >> IGB_COMB_VER_SHFT);
1808				patch = comb_verh & IGB_COMB_VER_MASK;
1809				snprintf(adapter->fw_version,
1810					 sizeof(adapter->fw_version),
1811					 "%d.%d%d, 0x%08x, %d.%d.%d",
1812					 (fw_version & IGB_MAJOR_MASK) >>
1813					 IGB_MAJOR_SHIFT,
1814					 (fw_version & IGB_MINOR_MASK) >>
1815					 IGB_MINOR_SHIFT,
1816					 (fw_version & IGB_BUILD_MASK),
1817					 etrack_id, major, build, patch);
1818				goto out;
1819			}
1820		}
1821		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1822			 "%d.%d%d, 0x%08x",
1823			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1824			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1825			 (fw_version & IGB_BUILD_MASK), etrack_id);
1826	} else {
1827		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1828			 "%d.%d%d",
1829			 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1830			 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1831			 (fw_version & IGB_BUILD_MASK));
1832	}
1833out:
1834	return;
1835}
1836
1837/**
1838 * igb_probe - Device Initialization Routine
1839 * @pdev: PCI device information struct
1840 * @ent: entry in igb_pci_tbl
1841 *
1842 * Returns 0 on success, negative on failure
1843 *
1844 * igb_probe initializes an adapter identified by a pci_dev structure.
1845 * The OS initialization, configuring of the adapter private structure,
1846 * and a hardware reset occur.
1847 **/
1848static int __devinit igb_probe(struct pci_dev *pdev,
1849			       const struct pci_device_id *ent)
1850{
1851	struct net_device *netdev;
1852	struct igb_adapter *adapter;
1853	struct e1000_hw *hw;
1854	u16 eeprom_data = 0;
1855	s32 ret_val;
1856	static int global_quad_port_a; /* global quad port a indication */
1857	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1858	unsigned long mmio_start, mmio_len;
1859	int err, pci_using_dac;
1860	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1861	u8 part_str[E1000_PBANUM_LENGTH];
1862
1863	/* Catch broken hardware that put the wrong VF device ID in
1864	 * the PCIe SR-IOV capability.
1865	 */
1866	if (pdev->is_virtfn) {
1867		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1868			pci_name(pdev), pdev->vendor, pdev->device);
1869		return -EINVAL;
1870	}
1871
1872	err = pci_enable_device_mem(pdev);
1873	if (err)
1874		return err;
1875
1876	pci_using_dac = 0;
1877	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1878	if (!err) {
1879		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1880		if (!err)
1881			pci_using_dac = 1;
1882	} else {
1883		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1884		if (err) {
1885			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1886			if (err) {
1887				dev_err(&pdev->dev, "No usable DMA "
1888					"configuration, aborting\n");
1889				goto err_dma;
1890			}
1891		}
1892	}
1893
1894	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1895	                                   IORESOURCE_MEM),
1896	                                   igb_driver_name);
1897	if (err)
1898		goto err_pci_reg;
1899
1900	pci_enable_pcie_error_reporting(pdev);
1901
1902	pci_set_master(pdev);
1903	pci_save_state(pdev);
1904
1905	err = -ENOMEM;
1906	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1907				   IGB_MAX_TX_QUEUES);
1908	if (!netdev)
1909		goto err_alloc_etherdev;
1910
1911	SET_NETDEV_DEV(netdev, &pdev->dev);
1912
1913	pci_set_drvdata(pdev, netdev);
1914	adapter = netdev_priv(netdev);
1915	adapter->netdev = netdev;
1916	adapter->pdev = pdev;
1917	hw = &adapter->hw;
1918	hw->back = adapter;
1919	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1920
1921	mmio_start = pci_resource_start(pdev, 0);
1922	mmio_len = pci_resource_len(pdev, 0);
1923
1924	err = -EIO;
1925	hw->hw_addr = ioremap(mmio_start, mmio_len);
1926	if (!hw->hw_addr)
1927		goto err_ioremap;
1928
1929	netdev->netdev_ops = &igb_netdev_ops;
1930	igb_set_ethtool_ops(netdev);
1931	netdev->watchdog_timeo = 5 * HZ;
1932
1933	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1934
1935	netdev->mem_start = mmio_start;
1936	netdev->mem_end = mmio_start + mmio_len;
1937
1938	/* PCI config space info */
1939	hw->vendor_id = pdev->vendor;
1940	hw->device_id = pdev->device;
1941	hw->revision_id = pdev->revision;
1942	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1943	hw->subsystem_device_id = pdev->subsystem_device;
1944
1945	/* Copy the default MAC, PHY and NVM function pointers */
1946	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1947	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1948	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1949	/* Initialize skew-specific constants */
1950	err = ei->get_invariants(hw);
1951	if (err)
1952		goto err_sw_init;
1953
1954	/* setup the private structure */
1955	err = igb_sw_init(adapter);
1956	if (err)
1957		goto err_sw_init;
1958
1959	igb_get_bus_info_pcie(hw);
1960
1961	hw->phy.autoneg_wait_to_complete = false;
1962
1963	/* Copper options */
1964	if (hw->phy.media_type == e1000_media_type_copper) {
1965		hw->phy.mdix = AUTO_ALL_MODES;
1966		hw->phy.disable_polarity_correction = false;
1967		hw->phy.ms_type = e1000_ms_hw_default;
1968	}
1969
1970	if (igb_check_reset_block(hw))
1971		dev_info(&pdev->dev,
1972			"PHY reset is blocked due to SOL/IDER session.\n");
1973
1974	/*
1975	 * features is initialized to 0 in allocation, it might have bits
1976	 * set by igb_sw_init so we should use an or instead of an
1977	 * assignment.
1978	 */
1979	netdev->features |= NETIF_F_SG |
1980			    NETIF_F_IP_CSUM |
1981			    NETIF_F_IPV6_CSUM |
1982			    NETIF_F_TSO |
1983			    NETIF_F_TSO6 |
1984			    NETIF_F_RXHASH |
1985			    NETIF_F_RXCSUM |
1986			    NETIF_F_HW_VLAN_RX |
1987			    NETIF_F_HW_VLAN_TX;
1988
1989	/* copy netdev features into list of user selectable features */
1990	netdev->hw_features |= netdev->features;
1991	netdev->hw_features |= NETIF_F_RXALL;
1992
1993	/* set this bit last since it cannot be part of hw_features */
1994	netdev->features |= NETIF_F_HW_VLAN_FILTER;
1995
1996	netdev->vlan_features |= NETIF_F_TSO |
1997				 NETIF_F_TSO6 |
1998				 NETIF_F_IP_CSUM |
1999				 NETIF_F_IPV6_CSUM |
2000				 NETIF_F_SG;
2001
2002	netdev->priv_flags |= IFF_SUPP_NOFCS;
2003
2004	if (pci_using_dac) {
2005		netdev->features |= NETIF_F_HIGHDMA;
2006		netdev->vlan_features |= NETIF_F_HIGHDMA;
2007	}
2008
2009	if (hw->mac.type >= e1000_82576) {
2010		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2011		netdev->features |= NETIF_F_SCTP_CSUM;
2012	}
2013
2014	netdev->priv_flags |= IFF_UNICAST_FLT;
2015
2016	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2017
2018	/* before reading the NVM, reset the controller to put the device in a
2019	 * known good starting state */
2020	hw->mac.ops.reset_hw(hw);
2021
2022	/*
2023	 * make sure the NVM is good , i211 parts have special NVM that
2024	 * doesn't contain a checksum
2025	 */
2026	if (hw->mac.type != e1000_i211) {
2027		if (hw->nvm.ops.validate(hw) < 0) {
2028			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2029			err = -EIO;
2030			goto err_eeprom;
2031		}
2032	}
2033
2034	/* copy the MAC address out of the NVM */
2035	if (hw->mac.ops.read_mac_addr(hw))
2036		dev_err(&pdev->dev, "NVM Read Error\n");
2037
2038	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2039	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2040
2041	if (!is_valid_ether_addr(netdev->perm_addr)) {
2042		dev_err(&pdev->dev, "Invalid MAC Address\n");
2043		err = -EIO;
2044		goto err_eeprom;
2045	}
2046
2047	/* get firmware version for ethtool -i */
2048	igb_set_fw_version(adapter);
2049
2050	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2051	            (unsigned long) adapter);
2052	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2053	            (unsigned long) adapter);
2054
2055	INIT_WORK(&adapter->reset_task, igb_reset_task);
2056	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2057
2058	/* Initialize link properties that are user-changeable */
2059	adapter->fc_autoneg = true;
2060	hw->mac.autoneg = true;
2061	hw->phy.autoneg_advertised = 0x2f;
2062
2063	hw->fc.requested_mode = e1000_fc_default;
2064	hw->fc.current_mode = e1000_fc_default;
2065
2066	igb_validate_mdi_setting(hw);
2067
2068	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2069	 * enable the ACPI Magic Packet filter
2070	 */
2071
2072	if (hw->bus.func == 0)
2073		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2074	else if (hw->mac.type >= e1000_82580)
2075		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2076		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2077		                 &eeprom_data);
2078	else if (hw->bus.func == 1)
2079		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2080
2081	if (eeprom_data & eeprom_apme_mask)
2082		adapter->eeprom_wol |= E1000_WUFC_MAG;
2083
2084	/* now that we have the eeprom settings, apply the special cases where
2085	 * the eeprom may be wrong or the board simply won't support wake on
2086	 * lan on a particular port */
2087	switch (pdev->device) {
2088	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2089		adapter->eeprom_wol = 0;
2090		break;
2091	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2092	case E1000_DEV_ID_82576_FIBER:
2093	case E1000_DEV_ID_82576_SERDES:
2094		/* Wake events only supported on port A for dual fiber
2095		 * regardless of eeprom setting */
2096		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2097			adapter->eeprom_wol = 0;
2098		break;
2099	case E1000_DEV_ID_82576_QUAD_COPPER:
2100	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2101		/* if quad port adapter, disable WoL on all but port A */
2102		if (global_quad_port_a != 0)
2103			adapter->eeprom_wol = 0;
2104		else
2105			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2106		/* Reset for multiple quad port adapters */
2107		if (++global_quad_port_a == 4)
2108			global_quad_port_a = 0;
2109		break;
2110	}
2111
2112	/* initialize the wol settings based on the eeprom settings */
2113	adapter->wol = adapter->eeprom_wol;
2114	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2115
2116	/* reset the hardware with the new settings */
2117	igb_reset(adapter);
2118
2119	/* let the f/w know that the h/w is now under the control of the
2120	 * driver. */
2121	igb_get_hw_control(adapter);
2122
2123	strcpy(netdev->name, "eth%d");
2124	err = register_netdev(netdev);
2125	if (err)
2126		goto err_register;
2127
2128	/* carrier off reporting is important to ethtool even BEFORE open */
2129	netif_carrier_off(netdev);
2130
2131#ifdef CONFIG_IGB_DCA
2132	if (dca_add_requester(&pdev->dev) == 0) {
2133		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2134		dev_info(&pdev->dev, "DCA enabled\n");
2135		igb_setup_dca(adapter);
2136	}
2137
2138#endif
2139
2140#ifdef CONFIG_IGB_PTP
2141	/* do hw tstamp init after resetting */
2142	igb_ptp_init(adapter);
2143#endif /* CONFIG_IGB_PTP */
2144
2145	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2146	/* print bus type/speed/width info */
2147	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2148		 netdev->name,
2149		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2150		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2151		                                            "unknown"),
2152		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2153		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2154		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2155		   "unknown"),
2156		 netdev->dev_addr);
2157
2158	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2159	if (ret_val)
2160		strcpy(part_str, "Unknown");
2161	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2162	dev_info(&pdev->dev,
2163		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2164		adapter->msix_entries ? "MSI-X" :
2165		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2166		adapter->num_rx_queues, adapter->num_tx_queues);
2167	switch (hw->mac.type) {
2168	case e1000_i350:
2169	case e1000_i210:
2170	case e1000_i211:
2171		igb_set_eee_i350(hw);
2172		break;
2173	default:
2174		break;
2175	}
2176
2177	pm_runtime_put_noidle(&pdev->dev);
2178	return 0;
2179
2180err_register:
2181	igb_release_hw_control(adapter);
2182err_eeprom:
2183	if (!igb_check_reset_block(hw))
2184		igb_reset_phy(hw);
2185
2186	if (hw->flash_address)
2187		iounmap(hw->flash_address);
2188err_sw_init:
2189	igb_clear_interrupt_scheme(adapter);
2190	iounmap(hw->hw_addr);
2191err_ioremap:
2192	free_netdev(netdev);
2193err_alloc_etherdev:
2194	pci_release_selected_regions(pdev,
2195	                             pci_select_bars(pdev, IORESOURCE_MEM));
2196err_pci_reg:
2197err_dma:
2198	pci_disable_device(pdev);
2199	return err;
2200}
2201
2202/**
2203 * igb_remove - Device Removal Routine
2204 * @pdev: PCI device information struct
2205 *
2206 * igb_remove is called by the PCI subsystem to alert the driver
2207 * that it should release a PCI device.  The could be caused by a
2208 * Hot-Plug event, or because the driver is going to be removed from
2209 * memory.
2210 **/
2211static void __devexit igb_remove(struct pci_dev *pdev)
2212{
2213	struct net_device *netdev = pci_get_drvdata(pdev);
2214	struct igb_adapter *adapter = netdev_priv(netdev);
2215	struct e1000_hw *hw = &adapter->hw;
2216
2217	pm_runtime_get_noresume(&pdev->dev);
2218#ifdef CONFIG_IGB_PTP
2219	igb_ptp_stop(adapter);
2220#endif /* CONFIG_IGB_PTP */
2221
2222	/*
2223	 * The watchdog timer may be rescheduled, so explicitly
2224	 * disable watchdog from being rescheduled.
2225	 */
2226	set_bit(__IGB_DOWN, &adapter->state);
2227	del_timer_sync(&adapter->watchdog_timer);
2228	del_timer_sync(&adapter->phy_info_timer);
2229
2230	cancel_work_sync(&adapter->reset_task);
2231	cancel_work_sync(&adapter->watchdog_task);
2232
2233#ifdef CONFIG_IGB_DCA
2234	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2235		dev_info(&pdev->dev, "DCA disabled\n");
2236		dca_remove_requester(&pdev->dev);
2237		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2238		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2239	}
2240#endif
2241
2242	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2243	 * would have already happened in close and is redundant. */
2244	igb_release_hw_control(adapter);
2245
2246	unregister_netdev(netdev);
2247
2248	igb_clear_interrupt_scheme(adapter);
2249
2250#ifdef CONFIG_PCI_IOV
2251	/* reclaim resources allocated to VFs */
2252	if (adapter->vf_data) {
2253		/* disable iov and allow time for transactions to clear */
2254		if (igb_vfs_are_assigned(adapter)) {
2255			dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2256		} else {
2257			pci_disable_sriov(pdev);
2258			msleep(500);
2259		}
2260
2261		kfree(adapter->vf_data);
2262		adapter->vf_data = NULL;
2263		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2264		wrfl();
2265		msleep(100);
2266		dev_info(&pdev->dev, "IOV Disabled\n");
2267	}
2268#endif
2269
2270	iounmap(hw->hw_addr);
2271	if (hw->flash_address)
2272		iounmap(hw->flash_address);
2273	pci_release_selected_regions(pdev,
2274	                             pci_select_bars(pdev, IORESOURCE_MEM));
2275
2276	kfree(adapter->shadow_vfta);
2277	free_netdev(netdev);
2278
2279	pci_disable_pcie_error_reporting(pdev);
2280
2281	pci_disable_device(pdev);
2282}
2283
2284/**
2285 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2286 * @adapter: board private structure to initialize
2287 *
2288 * This function initializes the vf specific data storage and then attempts to
2289 * allocate the VFs.  The reason for ordering it this way is because it is much
2290 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2291 * the memory for the VFs.
2292 **/
2293static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2294{
2295#ifdef CONFIG_PCI_IOV
2296	struct pci_dev *pdev = adapter->pdev;
2297	struct e1000_hw *hw = &adapter->hw;
2298	int old_vfs = pci_num_vf(adapter->pdev);
2299	int i;
2300
2301	/* Virtualization features not supported on i210 family. */
2302	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2303		return;
2304
2305	if (old_vfs) {
2306		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2307			 "max_vfs setting of %d\n", old_vfs, max_vfs);
2308		adapter->vfs_allocated_count = old_vfs;
2309	}
2310
2311	if (!adapter->vfs_allocated_count)
2312		return;
2313
2314	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2315				sizeof(struct vf_data_storage), GFP_KERNEL);
2316
2317	/* if allocation failed then we do not support SR-IOV */
2318	if (!adapter->vf_data) {
2319		adapter->vfs_allocated_count = 0;
2320		dev_err(&pdev->dev, "Unable to allocate memory for VF "
2321			"Data Storage\n");
2322		goto out;
2323	}
2324
2325	if (!old_vfs) {
2326		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2327			goto err_out;
2328	}
2329	dev_info(&pdev->dev, "%d VFs allocated\n",
2330		 adapter->vfs_allocated_count);
2331	for (i = 0; i < adapter->vfs_allocated_count; i++)
2332		igb_vf_configure(adapter, i);
2333
2334	/* DMA Coalescing is not supported in IOV mode. */
2335	adapter->flags &= ~IGB_FLAG_DMAC;
2336	goto out;
2337err_out:
2338	kfree(adapter->vf_data);
2339	adapter->vf_data = NULL;
2340	adapter->vfs_allocated_count = 0;
2341out:
2342	return;
2343#endif /* CONFIG_PCI_IOV */
2344}
2345
2346/**
2347 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2348 * @adapter: board private structure to initialize
2349 *
2350 * igb_sw_init initializes the Adapter private data structure.
2351 * Fields are initialized based on PCI device information and
2352 * OS network device settings (MTU size).
2353 **/
2354static int __devinit igb_sw_init(struct igb_adapter *adapter)
2355{
2356	struct e1000_hw *hw = &adapter->hw;
2357	struct net_device *netdev = adapter->netdev;
2358	struct pci_dev *pdev = adapter->pdev;
2359	u32 max_rss_queues;
2360
2361	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2362
2363	/* set default ring sizes */
2364	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2365	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2366
2367	/* set default ITR values */
2368	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2369	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2370
2371	/* set default work limits */
2372	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2373
2374	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2375				  VLAN_HLEN;
2376	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2377
2378	spin_lock_init(&adapter->stats64_lock);
2379#ifdef CONFIG_PCI_IOV
2380	switch (hw->mac.type) {
2381	case e1000_82576:
2382	case e1000_i350:
2383		if (max_vfs > 7) {
2384			dev_warn(&pdev->dev,
2385				 "Maximum of 7 VFs per PF, using max\n");
2386			adapter->vfs_allocated_count = 7;
2387		} else
2388			adapter->vfs_allocated_count = max_vfs;
2389		break;
2390	default:
2391		break;
2392	}
2393#endif /* CONFIG_PCI_IOV */
2394
2395	/* Determine the maximum number of RSS queues supported. */
2396	switch (hw->mac.type) {
2397	case e1000_i211:
2398		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2399		break;
2400	case e1000_82575:
2401	case e1000_i210:
2402		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2403		break;
2404	case e1000_i350:
2405		/* I350 cannot do RSS and SR-IOV at the same time */
2406		if (!!adapter->vfs_allocated_count) {
2407			max_rss_queues = 1;
2408			break;
2409		}
2410		/* fall through */
2411	case e1000_82576:
2412		if (!!adapter->vfs_allocated_count) {
2413			max_rss_queues = 2;
2414			break;
2415		}
2416		/* fall through */
2417	case e1000_82580:
2418	default:
2419		max_rss_queues = IGB_MAX_RX_QUEUES;
2420		break;
2421	}
2422
2423	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2424
2425	/* Determine if we need to pair queues. */
2426	switch (hw->mac.type) {
2427	case e1000_82575:
2428	case e1000_i211:
2429		/* Device supports enough interrupts without queue pairing. */
2430		break;
2431	case e1000_82576:
2432		/*
2433		 * If VFs are going to be allocated with RSS queues then we
2434		 * should pair the queues in order to conserve interrupts due
2435		 * to limited supply.
2436		 */
2437		if ((adapter->rss_queues > 1) &&
2438		    (adapter->vfs_allocated_count > 6))
2439			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2440		/* fall through */
2441	case e1000_82580:
2442	case e1000_i350:
2443	case e1000_i210:
2444	default:
2445		/*
2446		 * If rss_queues > half of max_rss_queues, pair the queues in
2447		 * order to conserve interrupts due to limited supply.
2448		 */
2449		if (adapter->rss_queues > (max_rss_queues / 2))
2450			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2451		break;
2452	}
2453
2454	/* Setup and initialize a copy of the hw vlan table array */
2455	adapter->shadow_vfta = kzalloc(sizeof(u32) *
2456				E1000_VLAN_FILTER_TBL_SIZE,
2457				GFP_ATOMIC);
2458
2459	/* This call may decrease the number of queues */
2460	if (igb_init_interrupt_scheme(adapter)) {
2461		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2462		return -ENOMEM;
2463	}
2464
2465	igb_probe_vfs(adapter);
2466
2467	/* Explicitly disable IRQ since the NIC can be in any state. */
2468	igb_irq_disable(adapter);
2469
2470	if (hw->mac.type >= e1000_i350)
2471		adapter->flags &= ~IGB_FLAG_DMAC;
2472
2473	set_bit(__IGB_DOWN, &adapter->state);
2474	return 0;
2475}
2476
2477/**
2478 * igb_open - Called when a network interface is made active
2479 * @netdev: network interface device structure
2480 *
2481 * Returns 0 on success, negative value on failure
2482 *
2483 * The open entry point is called when a network interface is made
2484 * active by the system (IFF_UP).  At this point all resources needed
2485 * for transmit and receive operations are allocated, the interrupt
2486 * handler is registered with the OS, the watchdog timer is started,
2487 * and the stack is notified that the interface is ready.
2488 **/
2489static int __igb_open(struct net_device *netdev, bool resuming)
2490{
2491	struct igb_adapter *adapter = netdev_priv(netdev);
2492	struct e1000_hw *hw = &adapter->hw;
2493	struct pci_dev *pdev = adapter->pdev;
2494	int err;
2495	int i;
2496
2497	/* disallow open during test */
2498	if (test_bit(__IGB_TESTING, &adapter->state)) {
2499		WARN_ON(resuming);
2500		return -EBUSY;
2501	}
2502
2503	if (!resuming)
2504		pm_runtime_get_sync(&pdev->dev);
2505
2506	netif_carrier_off(netdev);
2507
2508	/* allocate transmit descriptors */
2509	err = igb_setup_all_tx_resources(adapter);
2510	if (err)
2511		goto err_setup_tx;
2512
2513	/* allocate receive descriptors */
2514	err = igb_setup_all_rx_resources(adapter);
2515	if (err)
2516		goto err_setup_rx;
2517
2518	igb_power_up_link(adapter);
2519
2520	/* before we allocate an interrupt, we must be ready to handle it.
2521	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2522	 * as soon as we call pci_request_irq, so we have to setup our
2523	 * clean_rx handler before we do so.  */
2524	igb_configure(adapter);
2525
2526	err = igb_request_irq(adapter);
2527	if (err)
2528		goto err_req_irq;
2529
2530	/* From here on the code is the same as igb_up() */
2531	clear_bit(__IGB_DOWN, &adapter->state);
2532
2533	for (i = 0; i < adapter->num_q_vectors; i++)
2534		napi_enable(&(adapter->q_vector[i]->napi));
2535
2536	/* Clear any pending interrupts. */
2537	rd32(E1000_ICR);
2538
2539	igb_irq_enable(adapter);
2540
2541	/* notify VFs that reset has been completed */
2542	if (adapter->vfs_allocated_count) {
2543		u32 reg_data = rd32(E1000_CTRL_EXT);
2544		reg_data |= E1000_CTRL_EXT_PFRSTD;
2545		wr32(E1000_CTRL_EXT, reg_data);
2546	}
2547
2548	netif_tx_start_all_queues(netdev);
2549
2550	if (!resuming)
2551		pm_runtime_put(&pdev->dev);
2552
2553	/* start the watchdog. */
2554	hw->mac.get_link_status = 1;
2555	schedule_work(&adapter->watchdog_task);
2556
2557	return 0;
2558
2559err_req_irq:
2560	igb_release_hw_control(adapter);
2561	igb_power_down_link(adapter);
2562	igb_free_all_rx_resources(adapter);
2563err_setup_rx:
2564	igb_free_all_tx_resources(adapter);
2565err_setup_tx:
2566	igb_reset(adapter);
2567	if (!resuming)
2568		pm_runtime_put(&pdev->dev);
2569
2570	return err;
2571}
2572
2573static int igb_open(struct net_device *netdev)
2574{
2575	return __igb_open(netdev, false);
2576}
2577
2578/**
2579 * igb_close - Disables a network interface
2580 * @netdev: network interface device structure
2581 *
2582 * Returns 0, this is not allowed to fail
2583 *
2584 * The close entry point is called when an interface is de-activated
2585 * by the OS.  The hardware is still under the driver's control, but
2586 * needs to be disabled.  A global MAC reset is issued to stop the
2587 * hardware, and all transmit and receive resources are freed.
2588 **/
2589static int __igb_close(struct net_device *netdev, bool suspending)
2590{
2591	struct igb_adapter *adapter = netdev_priv(netdev);
2592	struct pci_dev *pdev = adapter->pdev;
2593
2594	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2595
2596	if (!suspending)
2597		pm_runtime_get_sync(&pdev->dev);
2598
2599	igb_down(adapter);
2600	igb_free_irq(adapter);
2601
2602	igb_free_all_tx_resources(adapter);
2603	igb_free_all_rx_resources(adapter);
2604
2605	if (!suspending)
2606		pm_runtime_put_sync(&pdev->dev);
2607	return 0;
2608}
2609
2610static int igb_close(struct net_device *netdev)
2611{
2612	return __igb_close(netdev, false);
2613}
2614
2615/**
2616 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2617 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2618 *
2619 * Return 0 on success, negative on failure
2620 **/
2621int igb_setup_tx_resources(struct igb_ring *tx_ring)
2622{
2623	struct device *dev = tx_ring->dev;
2624	int size;
2625
2626	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2627
2628	tx_ring->tx_buffer_info = vzalloc(size);
2629	if (!tx_ring->tx_buffer_info)
2630		goto err;
2631
2632	/* round up to nearest 4K */
2633	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2634	tx_ring->size = ALIGN(tx_ring->size, 4096);
2635
2636	tx_ring->desc = dma_alloc_coherent(dev,
2637					   tx_ring->size,
2638					   &tx_ring->dma,
2639					   GFP_KERNEL);
2640	if (!tx_ring->desc)
2641		goto err;
2642
2643	tx_ring->next_to_use = 0;
2644	tx_ring->next_to_clean = 0;
2645
2646	return 0;
2647
2648err:
2649	vfree(tx_ring->tx_buffer_info);
2650	tx_ring->tx_buffer_info = NULL;
2651	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2652	return -ENOMEM;
2653}
2654
2655/**
2656 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2657 *				  (Descriptors) for all queues
2658 * @adapter: board private structure
2659 *
2660 * Return 0 on success, negative on failure
2661 **/
2662static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2663{
2664	struct pci_dev *pdev = adapter->pdev;
2665	int i, err = 0;
2666
2667	for (i = 0; i < adapter->num_tx_queues; i++) {
2668		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2669		if (err) {
2670			dev_err(&pdev->dev,
2671				"Allocation for Tx Queue %u failed\n", i);
2672			for (i--; i >= 0; i--)
2673				igb_free_tx_resources(adapter->tx_ring[i]);
2674			break;
2675		}
2676	}
2677
2678	return err;
2679}
2680
2681/**
2682 * igb_setup_tctl - configure the transmit control registers
2683 * @adapter: Board private structure
2684 **/
2685void igb_setup_tctl(struct igb_adapter *adapter)
2686{
2687	struct e1000_hw *hw = &adapter->hw;
2688	u32 tctl;
2689
2690	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2691	wr32(E1000_TXDCTL(0), 0);
2692
2693	/* Program the Transmit Control Register */
2694	tctl = rd32(E1000_TCTL);
2695	tctl &= ~E1000_TCTL_CT;
2696	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2697		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2698
2699	igb_config_collision_dist(hw);
2700
2701	/* Enable transmits */
2702	tctl |= E1000_TCTL_EN;
2703
2704	wr32(E1000_TCTL, tctl);
2705}
2706
2707/**
2708 * igb_configure_tx_ring - Configure transmit ring after Reset
2709 * @adapter: board private structure
2710 * @ring: tx ring to configure
2711 *
2712 * Configure a transmit ring after a reset.
2713 **/
2714void igb_configure_tx_ring(struct igb_adapter *adapter,
2715                           struct igb_ring *ring)
2716{
2717	struct e1000_hw *hw = &adapter->hw;
2718	u32 txdctl = 0;
2719	u64 tdba = ring->dma;
2720	int reg_idx = ring->reg_idx;
2721
2722	/* disable the queue */
2723	wr32(E1000_TXDCTL(reg_idx), 0);
2724	wrfl();
2725	mdelay(10);
2726
2727	wr32(E1000_TDLEN(reg_idx),
2728	                ring->count * sizeof(union e1000_adv_tx_desc));
2729	wr32(E1000_TDBAL(reg_idx),
2730	                tdba & 0x00000000ffffffffULL);
2731	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2732
2733	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2734	wr32(E1000_TDH(reg_idx), 0);
2735	writel(0, ring->tail);
2736
2737	txdctl |= IGB_TX_PTHRESH;
2738	txdctl |= IGB_TX_HTHRESH << 8;
2739	txdctl |= IGB_TX_WTHRESH << 16;
2740
2741	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2742	wr32(E1000_TXDCTL(reg_idx), txdctl);
2743}
2744
2745/**
2746 * igb_configure_tx - Configure transmit Unit after Reset
2747 * @adapter: board private structure
2748 *
2749 * Configure the Tx unit of the MAC after a reset.
2750 **/
2751static void igb_configure_tx(struct igb_adapter *adapter)
2752{
2753	int i;
2754
2755	for (i = 0; i < adapter->num_tx_queues; i++)
2756		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2757}
2758
2759/**
2760 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2761 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2762 *
2763 * Returns 0 on success, negative on failure
2764 **/
2765int igb_setup_rx_resources(struct igb_ring *rx_ring)
2766{
2767	struct device *dev = rx_ring->dev;
2768	int size;
2769
2770	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2771
2772	rx_ring->rx_buffer_info = vzalloc(size);
2773	if (!rx_ring->rx_buffer_info)
2774		goto err;
2775
2776
2777	/* Round up to nearest 4K */
2778	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2779	rx_ring->size = ALIGN(rx_ring->size, 4096);
2780
2781	rx_ring->desc = dma_alloc_coherent(dev,
2782					   rx_ring->size,
2783					   &rx_ring->dma,
2784					   GFP_KERNEL);
2785	if (!rx_ring->desc)
2786		goto err;
2787
2788	rx_ring->next_to_alloc = 0;
2789	rx_ring->next_to_clean = 0;
2790	rx_ring->next_to_use = 0;
2791
2792	return 0;
2793
2794err:
2795	vfree(rx_ring->rx_buffer_info);
2796	rx_ring->rx_buffer_info = NULL;
2797	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2798	return -ENOMEM;
2799}
2800
2801/**
2802 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2803 *				  (Descriptors) for all queues
2804 * @adapter: board private structure
2805 *
2806 * Return 0 on success, negative on failure
2807 **/
2808static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2809{
2810	struct pci_dev *pdev = adapter->pdev;
2811	int i, err = 0;
2812
2813	for (i = 0; i < adapter->num_rx_queues; i++) {
2814		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2815		if (err) {
2816			dev_err(&pdev->dev,
2817				"Allocation for Rx Queue %u failed\n", i);
2818			for (i--; i >= 0; i--)
2819				igb_free_rx_resources(adapter->rx_ring[i]);
2820			break;
2821		}
2822	}
2823
2824	return err;
2825}
2826
2827/**
2828 * igb_setup_mrqc - configure the multiple receive queue control registers
2829 * @adapter: Board private structure
2830 **/
2831static void igb_setup_mrqc(struct igb_adapter *adapter)
2832{
2833	struct e1000_hw *hw = &adapter->hw;
2834	u32 mrqc, rxcsum;
2835	u32 j, num_rx_queues, shift = 0;
2836	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2837					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2838					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2839					0xFA01ACBE };
2840
2841	/* Fill out hash function seeds */
2842	for (j = 0; j < 10; j++)
2843		wr32(E1000_RSSRK(j), rsskey[j]);
2844
2845	num_rx_queues = adapter->rss_queues;
2846
2847	switch (hw->mac.type) {
2848	case e1000_82575:
2849		shift = 6;
2850		break;
2851	case e1000_82576:
2852		/* 82576 supports 2 RSS queues for SR-IOV */
2853		if (adapter->vfs_allocated_count) {
2854			shift = 3;
2855			num_rx_queues = 2;
2856		}
2857		break;
2858	default:
2859		break;
2860	}
2861
2862	/*
2863	 * Populate the indirection table 4 entries at a time.  To do this
2864	 * we are generating the results for n and n+2 and then interleaving
2865	 * those with the results with n+1 and n+3.
2866	 */
2867	for (j = 0; j < 32; j++) {
2868		/* first pass generates n and n+2 */
2869		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2870		u32 reta = (base & 0x07800780) >> (7 - shift);
2871
2872		/* second pass generates n+1 and n+3 */
2873		base += 0x00010001 * num_rx_queues;
2874		reta |= (base & 0x07800780) << (1 + shift);
2875
2876		wr32(E1000_RETA(j), reta);
2877	}
2878
2879	/*
2880	 * Disable raw packet checksumming so that RSS hash is placed in
2881	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2882	 * offloads as they are enabled by default
2883	 */
2884	rxcsum = rd32(E1000_RXCSUM);
2885	rxcsum |= E1000_RXCSUM_PCSD;
2886
2887	if (adapter->hw.mac.type >= e1000_82576)
2888		/* Enable Receive Checksum Offload for SCTP */
2889		rxcsum |= E1000_RXCSUM_CRCOFL;
2890
2891	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2892	wr32(E1000_RXCSUM, rxcsum);
2893	/*
2894	 * Generate RSS hash based on TCP port numbers and/or
2895	 * IPv4/v6 src and dst addresses since UDP cannot be
2896	 * hashed reliably due to IP fragmentation
2897	 */
2898
2899	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2900	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
2901	       E1000_MRQC_RSS_FIELD_IPV6 |
2902	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
2903	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2904
2905	/* If VMDq is enabled then we set the appropriate mode for that, else
2906	 * we default to RSS so that an RSS hash is calculated per packet even
2907	 * if we are only using one queue */
2908	if (adapter->vfs_allocated_count) {
2909		if (hw->mac.type > e1000_82575) {
2910			/* Set the default pool for the PF's first queue */
2911			u32 vtctl = rd32(E1000_VT_CTL);
2912			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2913				   E1000_VT_CTL_DISABLE_DEF_POOL);
2914			vtctl |= adapter->vfs_allocated_count <<
2915				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2916			wr32(E1000_VT_CTL, vtctl);
2917		}
2918		if (adapter->rss_queues > 1)
2919			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2920		else
2921			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2922	} else {
2923		if (hw->mac.type != e1000_i211)
2924			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2925	}
2926	igb_vmm_control(adapter);
2927
2928	wr32(E1000_MRQC, mrqc);
2929}
2930
2931/**
2932 * igb_setup_rctl - configure the receive control registers
2933 * @adapter: Board private structure
2934 **/
2935void igb_setup_rctl(struct igb_adapter *adapter)
2936{
2937	struct e1000_hw *hw = &adapter->hw;
2938	u32 rctl;
2939
2940	rctl = rd32(E1000_RCTL);
2941
2942	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2943	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2944
2945	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2946		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2947
2948	/*
2949	 * enable stripping of CRC. It's unlikely this will break BMC
2950	 * redirection as it did with e1000. Newer features require
2951	 * that the HW strips the CRC.
2952	 */
2953	rctl |= E1000_RCTL_SECRC;
2954
2955	/* disable store bad packets and clear size bits. */
2956	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2957
2958	/* enable LPE to prevent packets larger than max_frame_size */
2959	rctl |= E1000_RCTL_LPE;
2960
2961	/* disable queue 0 to prevent tail write w/o re-config */
2962	wr32(E1000_RXDCTL(0), 0);
2963
2964	/* Attention!!!  For SR-IOV PF driver operations you must enable
2965	 * queue drop for all VF and PF queues to prevent head of line blocking
2966	 * if an un-trusted VF does not provide descriptors to hardware.
2967	 */
2968	if (adapter->vfs_allocated_count) {
2969		/* set all queue drop enable bits */
2970		wr32(E1000_QDE, ALL_QUEUES);
2971	}
2972
2973	/* This is useful for sniffing bad packets. */
2974	if (adapter->netdev->features & NETIF_F_RXALL) {
2975		/* UPE and MPE will be handled by normal PROMISC logic
2976		 * in e1000e_set_rx_mode */
2977		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2978			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2979			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2980
2981		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2982			  E1000_RCTL_DPF | /* Allow filtered pause */
2983			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2984		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2985		 * and that breaks VLANs.
2986		 */
2987	}
2988
2989	wr32(E1000_RCTL, rctl);
2990}
2991
2992static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2993                                   int vfn)
2994{
2995	struct e1000_hw *hw = &adapter->hw;
2996	u32 vmolr;
2997
2998	/* if it isn't the PF check to see if VFs are enabled and
2999	 * increase the size to support vlan tags */
3000	if (vfn < adapter->vfs_allocated_count &&
3001	    adapter->vf_data[vfn].vlans_enabled)
3002		size += VLAN_TAG_SIZE;
3003
3004	vmolr = rd32(E1000_VMOLR(vfn));
3005	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3006	vmolr |= size | E1000_VMOLR_LPE;
3007	wr32(E1000_VMOLR(vfn), vmolr);
3008
3009	return 0;
3010}
3011
3012/**
3013 * igb_rlpml_set - set maximum receive packet size
3014 * @adapter: board private structure
3015 *
3016 * Configure maximum receivable packet size.
3017 **/
3018static void igb_rlpml_set(struct igb_adapter *adapter)
3019{
3020	u32 max_frame_size = adapter->max_frame_size;
3021	struct e1000_hw *hw = &adapter->hw;
3022	u16 pf_id = adapter->vfs_allocated_count;
3023
3024	if (pf_id) {
3025		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3026		/*
3027		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3028		 * to our max jumbo frame size, in case we need to enable
3029		 * jumbo frames on one of the rings later.
3030		 * This will not pass over-length frames into the default
3031		 * queue because it's gated by the VMOLR.RLPML.
3032		 */
3033		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3034	}
3035
3036	wr32(E1000_RLPML, max_frame_size);
3037}
3038
3039static inline void igb_set_vmolr(struct igb_adapter *adapter,
3040				 int vfn, bool aupe)
3041{
3042	struct e1000_hw *hw = &adapter->hw;
3043	u32 vmolr;
3044
3045	/*
3046	 * This register exists only on 82576 and newer so if we are older then
3047	 * we should exit and do nothing
3048	 */
3049	if (hw->mac.type < e1000_82576)
3050		return;
3051
3052	vmolr = rd32(E1000_VMOLR(vfn));
3053	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3054	if (aupe)
3055		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3056	else
3057		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3058
3059	/* clear all bits that might not be set */
3060	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3061
3062	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3063		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3064	/*
3065	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3066	 * multicast packets
3067	 */
3068	if (vfn <= adapter->vfs_allocated_count)
3069		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3070
3071	wr32(E1000_VMOLR(vfn), vmolr);
3072}
3073
3074/**
3075 * igb_configure_rx_ring - Configure a receive ring after Reset
3076 * @adapter: board private structure
3077 * @ring: receive ring to be configured
3078 *
3079 * Configure the Rx unit of the MAC after a reset.
3080 **/
3081void igb_configure_rx_ring(struct igb_adapter *adapter,
3082                           struct igb_ring *ring)
3083{
3084	struct e1000_hw *hw = &adapter->hw;
3085	u64 rdba = ring->dma;
3086	int reg_idx = ring->reg_idx;
3087	u32 srrctl = 0, rxdctl = 0;
3088
3089	/* disable the queue */
3090	wr32(E1000_RXDCTL(reg_idx), 0);
3091
3092	/* Set DMA base address registers */
3093	wr32(E1000_RDBAL(reg_idx),
3094	     rdba & 0x00000000ffffffffULL);
3095	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3096	wr32(E1000_RDLEN(reg_idx),
3097	               ring->count * sizeof(union e1000_adv_rx_desc));
3098
3099	/* initialize head and tail */
3100	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3101	wr32(E1000_RDH(reg_idx), 0);
3102	writel(0, ring->tail);
3103
3104	/* set descriptor configuration */
3105	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3106#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3107	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3108#else
3109	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3110#endif
3111	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3112#ifdef CONFIG_IGB_PTP
3113	if (hw->mac.type >= e1000_82580)
3114		srrctl |= E1000_SRRCTL_TIMESTAMP;
3115#endif /* CONFIG_IGB_PTP */
3116	/* Only set Drop Enable if we are supporting multiple queues */
3117	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3118		srrctl |= E1000_SRRCTL_DROP_EN;
3119
3120	wr32(E1000_SRRCTL(reg_idx), srrctl);
3121
3122	/* set filtering for VMDQ pools */
3123	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3124
3125	rxdctl |= IGB_RX_PTHRESH;
3126	rxdctl |= IGB_RX_HTHRESH << 8;
3127	rxdctl |= IGB_RX_WTHRESH << 16;
3128
3129	/* enable receive descriptor fetching */
3130	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3131	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3132}
3133
3134/**
3135 * igb_configure_rx - Configure receive Unit after Reset
3136 * @adapter: board private structure
3137 *
3138 * Configure the Rx unit of the MAC after a reset.
3139 **/
3140static void igb_configure_rx(struct igb_adapter *adapter)
3141{
3142	int i;
3143
3144	/* set UTA to appropriate mode */
3145	igb_set_uta(adapter);
3146
3147	/* set the correct pool for the PF default MAC address in entry 0 */
3148	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3149	                 adapter->vfs_allocated_count);
3150
3151	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3152	 * the Base and Length of the Rx Descriptor Ring */
3153	for (i = 0; i < adapter->num_rx_queues; i++)
3154		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3155}
3156
3157/**
3158 * igb_free_tx_resources - Free Tx Resources per Queue
3159 * @tx_ring: Tx descriptor ring for a specific queue
3160 *
3161 * Free all transmit software resources
3162 **/
3163void igb_free_tx_resources(struct igb_ring *tx_ring)
3164{
3165	igb_clean_tx_ring(tx_ring);
3166
3167	vfree(tx_ring->tx_buffer_info);
3168	tx_ring->tx_buffer_info = NULL;
3169
3170	/* if not set, then don't free */
3171	if (!tx_ring->desc)
3172		return;
3173
3174	dma_free_coherent(tx_ring->dev, tx_ring->size,
3175			  tx_ring->desc, tx_ring->dma);
3176
3177	tx_ring->desc = NULL;
3178}
3179
3180/**
3181 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3182 * @adapter: board private structure
3183 *
3184 * Free all transmit software resources
3185 **/
3186static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3187{
3188	int i;
3189
3190	for (i = 0; i < adapter->num_tx_queues; i++)
3191		igb_free_tx_resources(adapter->tx_ring[i]);
3192}
3193
3194void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3195				    struct igb_tx_buffer *tx_buffer)
3196{
3197	if (tx_buffer->skb) {
3198		dev_kfree_skb_any(tx_buffer->skb);
3199		if (dma_unmap_len(tx_buffer, len))
3200			dma_unmap_single(ring->dev,
3201					 dma_unmap_addr(tx_buffer, dma),
3202					 dma_unmap_len(tx_buffer, len),
3203					 DMA_TO_DEVICE);
3204	} else if (dma_unmap_len(tx_buffer, len)) {
3205		dma_unmap_page(ring->dev,
3206			       dma_unmap_addr(tx_buffer, dma),
3207			       dma_unmap_len(tx_buffer, len),
3208			       DMA_TO_DEVICE);
3209	}
3210	tx_buffer->next_to_watch = NULL;
3211	tx_buffer->skb = NULL;
3212	dma_unmap_len_set(tx_buffer, len, 0);
3213	/* buffer_info must be completely set up in the transmit path */
3214}
3215
3216/**
3217 * igb_clean_tx_ring - Free Tx Buffers
3218 * @tx_ring: ring to be cleaned
3219 **/
3220static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3221{
3222	struct igb_tx_buffer *buffer_info;
3223	unsigned long size;
3224	u16 i;
3225
3226	if (!tx_ring->tx_buffer_info)
3227		return;
3228	/* Free all the Tx ring sk_buffs */
3229
3230	for (i = 0; i < tx_ring->count; i++) {
3231		buffer_info = &tx_ring->tx_buffer_info[i];
3232		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3233	}
3234
3235	netdev_tx_reset_queue(txring_txq(tx_ring));
3236
3237	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3238	memset(tx_ring->tx_buffer_info, 0, size);
3239
3240	/* Zero out the descriptor ring */
3241	memset(tx_ring->desc, 0, tx_ring->size);
3242
3243	tx_ring->next_to_use = 0;
3244	tx_ring->next_to_clean = 0;
3245}
3246
3247/**
3248 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3249 * @adapter: board private structure
3250 **/
3251static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3252{
3253	int i;
3254
3255	for (i = 0; i < adapter->num_tx_queues; i++)
3256		igb_clean_tx_ring(adapter->tx_ring[i]);
3257}
3258
3259/**
3260 * igb_free_rx_resources - Free Rx Resources
3261 * @rx_ring: ring to clean the resources from
3262 *
3263 * Free all receive software resources
3264 **/
3265void igb_free_rx_resources(struct igb_ring *rx_ring)
3266{
3267	igb_clean_rx_ring(rx_ring);
3268
3269	vfree(rx_ring->rx_buffer_info);
3270	rx_ring->rx_buffer_info = NULL;
3271
3272	/* if not set, then don't free */
3273	if (!rx_ring->desc)
3274		return;
3275
3276	dma_free_coherent(rx_ring->dev, rx_ring->size,
3277			  rx_ring->desc, rx_ring->dma);
3278
3279	rx_ring->desc = NULL;
3280}
3281
3282/**
3283 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3284 * @adapter: board private structure
3285 *
3286 * Free all receive software resources
3287 **/
3288static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3289{
3290	int i;
3291
3292	for (i = 0; i < adapter->num_rx_queues; i++)
3293		igb_free_rx_resources(adapter->rx_ring[i]);
3294}
3295
3296/**
3297 * igb_clean_rx_ring - Free Rx Buffers per Queue
3298 * @rx_ring: ring to free buffers from
3299 **/
3300static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3301{
3302	unsigned long size;
3303	u16 i;
3304
3305	if (rx_ring->skb)
3306		dev_kfree_skb(rx_ring->skb);
3307	rx_ring->skb = NULL;
3308
3309	if (!rx_ring->rx_buffer_info)
3310		return;
3311
3312	/* Free all the Rx ring sk_buffs */
3313	for (i = 0; i < rx_ring->count; i++) {
3314		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3315
3316		if (!buffer_info->page)
3317			continue;
3318
3319		dma_unmap_page(rx_ring->dev,
3320			       buffer_info->dma,
3321			       PAGE_SIZE,
3322			       DMA_FROM_DEVICE);
3323		__free_page(buffer_info->page);
3324
3325		buffer_info->page = NULL;
3326	}
3327
3328	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3329	memset(rx_ring->rx_buffer_info, 0, size);
3330
3331	/* Zero out the descriptor ring */
3332	memset(rx_ring->desc, 0, rx_ring->size);
3333
3334	rx_ring->next_to_alloc = 0;
3335	rx_ring->next_to_clean = 0;
3336	rx_ring->next_to_use = 0;
3337}
3338
3339/**
3340 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3341 * @adapter: board private structure
3342 **/
3343static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3344{
3345	int i;
3346
3347	for (i = 0; i < adapter->num_rx_queues; i++)
3348		igb_clean_rx_ring(adapter->rx_ring[i]);
3349}
3350
3351/**
3352 * igb_set_mac - Change the Ethernet Address of the NIC
3353 * @netdev: network interface device structure
3354 * @p: pointer to an address structure
3355 *
3356 * Returns 0 on success, negative on failure
3357 **/
3358static int igb_set_mac(struct net_device *netdev, void *p)
3359{
3360	struct igb_adapter *adapter = netdev_priv(netdev);
3361	struct e1000_hw *hw = &adapter->hw;
3362	struct sockaddr *addr = p;
3363
3364	if (!is_valid_ether_addr(addr->sa_data))
3365		return -EADDRNOTAVAIL;
3366
3367	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3368	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3369
3370	/* set the correct pool for the new PF MAC address in entry 0 */
3371	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3372	                 adapter->vfs_allocated_count);
3373
3374	return 0;
3375}
3376
3377/**
3378 * igb_write_mc_addr_list - write multicast addresses to MTA
3379 * @netdev: network interface device structure
3380 *
3381 * Writes multicast address list to the MTA hash table.
3382 * Returns: -ENOMEM on failure
3383 *                0 on no addresses written
3384 *                X on writing X addresses to MTA
3385 **/
3386static int igb_write_mc_addr_list(struct net_device *netdev)
3387{
3388	struct igb_adapter *adapter = netdev_priv(netdev);
3389	struct e1000_hw *hw = &adapter->hw;
3390	struct netdev_hw_addr *ha;
3391	u8  *mta_list;
3392	int i;
3393
3394	if (netdev_mc_empty(netdev)) {
3395		/* nothing to program, so clear mc list */
3396		igb_update_mc_addr_list(hw, NULL, 0);
3397		igb_restore_vf_multicasts(adapter);
3398		return 0;
3399	}
3400
3401	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3402	if (!mta_list)
3403		return -ENOMEM;
3404
3405	/* The shared function expects a packed array of only addresses. */
3406	i = 0;
3407	netdev_for_each_mc_addr(ha, netdev)
3408		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3409
3410	igb_update_mc_addr_list(hw, mta_list, i);
3411	kfree(mta_list);
3412
3413	return netdev_mc_count(netdev);
3414}
3415
3416/**
3417 * igb_write_uc_addr_list - write unicast addresses to RAR table
3418 * @netdev: network interface device structure
3419 *
3420 * Writes unicast address list to the RAR table.
3421 * Returns: -ENOMEM on failure/insufficient address space
3422 *                0 on no addresses written
3423 *                X on writing X addresses to the RAR table
3424 **/
3425static int igb_write_uc_addr_list(struct net_device *netdev)
3426{
3427	struct igb_adapter *adapter = netdev_priv(netdev);
3428	struct e1000_hw *hw = &adapter->hw;
3429	unsigned int vfn = adapter->vfs_allocated_count;
3430	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3431	int count = 0;
3432
3433	/* return ENOMEM indicating insufficient memory for addresses */
3434	if (netdev_uc_count(netdev) > rar_entries)
3435		return -ENOMEM;
3436
3437	if (!netdev_uc_empty(netdev) && rar_entries) {
3438		struct netdev_hw_addr *ha;
3439
3440		netdev_for_each_uc_addr(ha, netdev) {
3441			if (!rar_entries)
3442				break;
3443			igb_rar_set_qsel(adapter, ha->addr,
3444			                 rar_entries--,
3445			                 vfn);
3446			count++;
3447		}
3448	}
3449	/* write the addresses in reverse order to avoid write combining */
3450	for (; rar_entries > 0 ; rar_entries--) {
3451		wr32(E1000_RAH(rar_entries), 0);
3452		wr32(E1000_RAL(rar_entries), 0);
3453	}
3454	wrfl();
3455
3456	return count;
3457}
3458
3459/**
3460 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3461 * @netdev: network interface device structure
3462 *
3463 * The set_rx_mode entry point is called whenever the unicast or multicast
3464 * address lists or the network interface flags are updated.  This routine is
3465 * responsible for configuring the hardware for proper unicast, multicast,
3466 * promiscuous mode, and all-multi behavior.
3467 **/
3468static void igb_set_rx_mode(struct net_device *netdev)
3469{
3470	struct igb_adapter *adapter = netdev_priv(netdev);
3471	struct e1000_hw *hw = &adapter->hw;
3472	unsigned int vfn = adapter->vfs_allocated_count;
3473	u32 rctl, vmolr = 0;
3474	int count;
3475
3476	/* Check for Promiscuous and All Multicast modes */
3477	rctl = rd32(E1000_RCTL);
3478
3479	/* clear the effected bits */
3480	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3481
3482	if (netdev->flags & IFF_PROMISC) {
3483		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3484		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3485	} else {
3486		if (netdev->flags & IFF_ALLMULTI) {
3487			rctl |= E1000_RCTL_MPE;
3488			vmolr |= E1000_VMOLR_MPME;
3489		} else {
3490			/*
3491			 * Write addresses to the MTA, if the attempt fails
3492			 * then we should just turn on promiscuous mode so
3493			 * that we can at least receive multicast traffic
3494			 */
3495			count = igb_write_mc_addr_list(netdev);
3496			if (count < 0) {
3497				rctl |= E1000_RCTL_MPE;
3498				vmolr |= E1000_VMOLR_MPME;
3499			} else if (count) {
3500				vmolr |= E1000_VMOLR_ROMPE;
3501			}
3502		}
3503		/*
3504		 * Write addresses to available RAR registers, if there is not
3505		 * sufficient space to store all the addresses then enable
3506		 * unicast promiscuous mode
3507		 */
3508		count = igb_write_uc_addr_list(netdev);
3509		if (count < 0) {
3510			rctl |= E1000_RCTL_UPE;
3511			vmolr |= E1000_VMOLR_ROPE;
3512		}
3513		rctl |= E1000_RCTL_VFE;
3514	}
3515	wr32(E1000_RCTL, rctl);
3516
3517	/*
3518	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3519	 * the VMOLR to enable the appropriate modes.  Without this workaround
3520	 * we will have issues with VLAN tag stripping not being done for frames
3521	 * that are only arriving because we are the default pool
3522	 */
3523	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3524		return;
3525
3526	vmolr |= rd32(E1000_VMOLR(vfn)) &
3527	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3528	wr32(E1000_VMOLR(vfn), vmolr);
3529	igb_restore_vf_multicasts(adapter);
3530}
3531
3532static void igb_check_wvbr(struct igb_adapter *adapter)
3533{
3534	struct e1000_hw *hw = &adapter->hw;
3535	u32 wvbr = 0;
3536
3537	switch (hw->mac.type) {
3538	case e1000_82576:
3539	case e1000_i350:
3540		if (!(wvbr = rd32(E1000_WVBR)))
3541			return;
3542		break;
3543	default:
3544		break;
3545	}
3546
3547	adapter->wvbr |= wvbr;
3548}
3549
3550#define IGB_STAGGERED_QUEUE_OFFSET 8
3551
3552static void igb_spoof_check(struct igb_adapter *adapter)
3553{
3554	int j;
3555
3556	if (!adapter->wvbr)
3557		return;
3558
3559	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3560		if (adapter->wvbr & (1 << j) ||
3561		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3562			dev_warn(&adapter->pdev->dev,
3563				"Spoof event(s) detected on VF %d\n", j);
3564			adapter->wvbr &=
3565				~((1 << j) |
3566				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3567		}
3568	}
3569}
3570
3571/* Need to wait a few seconds after link up to get diagnostic information from
3572 * the phy */
3573static void igb_update_phy_info(unsigned long data)
3574{
3575	struct igb_adapter *adapter = (struct igb_adapter *) data;
3576	igb_get_phy_info(&adapter->hw);
3577}
3578
3579/**
3580 * igb_has_link - check shared code for link and determine up/down
3581 * @adapter: pointer to driver private info
3582 **/
3583bool igb_has_link(struct igb_adapter *adapter)
3584{
3585	struct e1000_hw *hw = &adapter->hw;
3586	bool link_active = false;
3587	s32 ret_val = 0;
3588
3589	/* get_link_status is set on LSC (link status) interrupt or
3590	 * rx sequence error interrupt.  get_link_status will stay
3591	 * false until the e1000_check_for_link establishes link
3592	 * for copper adapters ONLY
3593	 */
3594	switch (hw->phy.media_type) {
3595	case e1000_media_type_copper:
3596		if (hw->mac.get_link_status) {
3597			ret_val = hw->mac.ops.check_for_link(hw);
3598			link_active = !hw->mac.get_link_status;
3599		} else {
3600			link_active = true;
3601		}
3602		break;
3603	case e1000_media_type_internal_serdes:
3604		ret_val = hw->mac.ops.check_for_link(hw);
3605		link_active = hw->mac.serdes_has_link;
3606		break;
3607	default:
3608	case e1000_media_type_unknown:
3609		break;
3610	}
3611
3612	return link_active;
3613}
3614
3615static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3616{
3617	bool ret = false;
3618	u32 ctrl_ext, thstat;
3619
3620	/* check for thermal sensor event on i350 copper only */
3621	if (hw->mac.type == e1000_i350) {
3622		thstat = rd32(E1000_THSTAT);
3623		ctrl_ext = rd32(E1000_CTRL_EXT);
3624
3625		if ((hw->phy.media_type == e1000_media_type_copper) &&
3626		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3627			ret = !!(thstat & event);
3628		}
3629	}
3630
3631	return ret;
3632}
3633
3634/**
3635 * igb_watchdog - Timer Call-back
3636 * @data: pointer to adapter cast into an unsigned long
3637 **/
3638static void igb_watchdog(unsigned long data)
3639{
3640	struct igb_adapter *adapter = (struct igb_adapter *)data;
3641	/* Do the rest outside of interrupt context */
3642	schedule_work(&adapter->watchdog_task);
3643}
3644
3645static void igb_watchdog_task(struct work_struct *work)
3646{
3647	struct igb_adapter *adapter = container_of(work,
3648	                                           struct igb_adapter,
3649                                                   watchdog_task);
3650	struct e1000_hw *hw = &adapter->hw;
3651	struct net_device *netdev = adapter->netdev;
3652	u32 link;
3653	int i;
3654
3655	link = igb_has_link(adapter);
3656	if (link) {
3657		/* Cancel scheduled suspend requests. */
3658		pm_runtime_resume(netdev->dev.parent);
3659
3660		if (!netif_carrier_ok(netdev)) {
3661			u32 ctrl;
3662			hw->mac.ops.get_speed_and_duplex(hw,
3663			                                 &adapter->link_speed,
3664			                                 &adapter->link_duplex);
3665
3666			ctrl = rd32(E1000_CTRL);
3667			/* Links status message must follow this format */
3668			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3669			       "Duplex, Flow Control: %s\n",
3670			       netdev->name,
3671			       adapter->link_speed,
3672			       adapter->link_duplex == FULL_DUPLEX ?
3673			       "Full" : "Half",
3674			       (ctrl & E1000_CTRL_TFCE) &&
3675			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3676			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3677			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3678
3679			/* check for thermal sensor event */
3680			if (igb_thermal_sensor_event(hw,
3681			    E1000_THSTAT_LINK_THROTTLE)) {
3682				netdev_info(netdev, "The network adapter link "
3683					    "speed was downshifted because it "
3684					    "overheated\n");
3685			}
3686
3687			/* adjust timeout factor according to speed/duplex */
3688			adapter->tx_timeout_factor = 1;
3689			switch (adapter->link_speed) {
3690			case SPEED_10:
3691				adapter->tx_timeout_factor = 14;
3692				break;
3693			case SPEED_100:
3694				/* maybe add some timeout factor ? */
3695				break;
3696			}
3697
3698			netif_carrier_on(netdev);
3699
3700			igb_ping_all_vfs(adapter);
3701			igb_check_vf_rate_limit(adapter);
3702
3703			/* link state has changed, schedule phy info update */
3704			if (!test_bit(__IGB_DOWN, &adapter->state))
3705				mod_timer(&adapter->phy_info_timer,
3706					  round_jiffies(jiffies + 2 * HZ));
3707		}
3708	} else {
3709		if (netif_carrier_ok(netdev)) {
3710			adapter->link_speed = 0;
3711			adapter->link_duplex = 0;
3712
3713			/* check for thermal sensor event */
3714			if (igb_thermal_sensor_event(hw,
3715			    E1000_THSTAT_PWR_DOWN)) {
3716				netdev_err(netdev, "The network adapter was "
3717					   "stopped because it overheated\n");
3718			}
3719
3720			/* Links status message must follow this format */
3721			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3722			       netdev->name);
3723			netif_carrier_off(netdev);
3724
3725			igb_ping_all_vfs(adapter);
3726
3727			/* link state has changed, schedule phy info update */
3728			if (!test_bit(__IGB_DOWN, &adapter->state))
3729				mod_timer(&adapter->phy_info_timer,
3730					  round_jiffies(jiffies + 2 * HZ));
3731
3732			pm_schedule_suspend(netdev->dev.parent,
3733					    MSEC_PER_SEC * 5);
3734		}
3735	}
3736
3737	spin_lock(&adapter->stats64_lock);
3738	igb_update_stats(adapter, &adapter->stats64);
3739	spin_unlock(&adapter->stats64_lock);
3740
3741	for (i = 0; i < adapter->num_tx_queues; i++) {
3742		struct igb_ring *tx_ring = adapter->tx_ring[i];
3743		if (!netif_carrier_ok(netdev)) {
3744			/* We've lost link, so the controller stops DMA,
3745			 * but we've got queued Tx work that's never going
3746			 * to get done, so reset controller to flush Tx.
3747			 * (Do the reset outside of interrupt context). */
3748			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3749				adapter->tx_timeout_count++;
3750				schedule_work(&adapter->reset_task);
3751				/* return immediately since reset is imminent */
3752				return;
3753			}
3754		}
3755
3756		/* Force detection of hung controller every watchdog period */
3757		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3758	}
3759
3760	/* Cause software interrupt to ensure rx ring is cleaned */
3761	if (adapter->msix_entries) {
3762		u32 eics = 0;
3763		for (i = 0; i < adapter->num_q_vectors; i++)
3764			eics |= adapter->q_vector[i]->eims_value;
3765		wr32(E1000_EICS, eics);
3766	} else {
3767		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3768	}
3769
3770	igb_spoof_check(adapter);
3771
3772	/* Reset the timer */
3773	if (!test_bit(__IGB_DOWN, &adapter->state))
3774		mod_timer(&adapter->watchdog_timer,
3775			  round_jiffies(jiffies + 2 * HZ));
3776}
3777
3778enum latency_range {
3779	lowest_latency = 0,
3780	low_latency = 1,
3781	bulk_latency = 2,
3782	latency_invalid = 255
3783};
3784
3785/**
3786 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3787 *
3788 *      Stores a new ITR value based on strictly on packet size.  This
3789 *      algorithm is less sophisticated than that used in igb_update_itr,
3790 *      due to the difficulty of synchronizing statistics across multiple
3791 *      receive rings.  The divisors and thresholds used by this function
3792 *      were determined based on theoretical maximum wire speed and testing
3793 *      data, in order to minimize response time while increasing bulk
3794 *      throughput.
3795 *      This functionality is controlled by the InterruptThrottleRate module
3796 *      parameter (see igb_param.c)
3797 *      NOTE:  This function is called only when operating in a multiqueue
3798 *             receive environment.
3799 * @q_vector: pointer to q_vector
3800 **/
3801static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3802{
3803	int new_val = q_vector->itr_val;
3804	int avg_wire_size = 0;
3805	struct igb_adapter *adapter = q_vector->adapter;
3806	unsigned int packets;
3807
3808	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3809	 * ints/sec - ITR timer value of 120 ticks.
3810	 */
3811	if (adapter->link_speed != SPEED_1000) {
3812		new_val = IGB_4K_ITR;
3813		goto set_itr_val;
3814	}
3815
3816	packets = q_vector->rx.total_packets;
3817	if (packets)
3818		avg_wire_size = q_vector->rx.total_bytes / packets;
3819
3820	packets = q_vector->tx.total_packets;
3821	if (packets)
3822		avg_wire_size = max_t(u32, avg_wire_size,
3823				      q_vector->tx.total_bytes / packets);
3824
3825	/* if avg_wire_size isn't set no work was done */
3826	if (!avg_wire_size)
3827		goto clear_counts;
3828
3829	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3830	avg_wire_size += 24;
3831
3832	/* Don't starve jumbo frames */
3833	avg_wire_size = min(avg_wire_size, 3000);
3834
3835	/* Give a little boost to mid-size frames */
3836	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3837		new_val = avg_wire_size / 3;
3838	else
3839		new_val = avg_wire_size / 2;
3840
3841	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3842	if (new_val < IGB_20K_ITR &&
3843	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3844	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3845		new_val = IGB_20K_ITR;
3846
3847set_itr_val:
3848	if (new_val != q_vector->itr_val) {
3849		q_vector->itr_val = new_val;
3850		q_vector->set_itr = 1;
3851	}
3852clear_counts:
3853	q_vector->rx.total_bytes = 0;
3854	q_vector->rx.total_packets = 0;
3855	q_vector->tx.total_bytes = 0;
3856	q_vector->tx.total_packets = 0;
3857}
3858
3859/**
3860 * igb_update_itr - update the dynamic ITR value based on statistics
3861 *      Stores a new ITR value based on packets and byte
3862 *      counts during the last interrupt.  The advantage of per interrupt
3863 *      computation is faster updates and more accurate ITR for the current
3864 *      traffic pattern.  Constants in this function were computed
3865 *      based on theoretical maximum wire speed and thresholds were set based
3866 *      on testing data as well as attempting to minimize response time
3867 *      while increasing bulk throughput.
3868 *      this functionality is controlled by the InterruptThrottleRate module
3869 *      parameter (see igb_param.c)
3870 *      NOTE:  These calculations are only valid when operating in a single-
3871 *             queue environment.
3872 * @q_vector: pointer to q_vector
3873 * @ring_container: ring info to update the itr for
3874 **/
3875static void igb_update_itr(struct igb_q_vector *q_vector,
3876			   struct igb_ring_container *ring_container)
3877{
3878	unsigned int packets = ring_container->total_packets;
3879	unsigned int bytes = ring_container->total_bytes;
3880	u8 itrval = ring_container->itr;
3881
3882	/* no packets, exit with status unchanged */
3883	if (packets == 0)
3884		return;
3885
3886	switch (itrval) {
3887	case lowest_latency:
3888		/* handle TSO and jumbo frames */
3889		if (bytes/packets > 8000)
3890			itrval = bulk_latency;
3891		else if ((packets < 5) && (bytes > 512))
3892			itrval = low_latency;
3893		break;
3894	case low_latency:  /* 50 usec aka 20000 ints/s */
3895		if (bytes > 10000) {
3896			/* this if handles the TSO accounting */
3897			if (bytes/packets > 8000) {
3898				itrval = bulk_latency;
3899			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3900				itrval = bulk_latency;
3901			} else if ((packets > 35)) {
3902				itrval = lowest_latency;
3903			}
3904		} else if (bytes/packets > 2000) {
3905			itrval = bulk_latency;
3906		} else if (packets <= 2 && bytes < 512) {
3907			itrval = lowest_latency;
3908		}
3909		break;
3910	case bulk_latency: /* 250 usec aka 4000 ints/s */
3911		if (bytes > 25000) {
3912			if (packets > 35)
3913				itrval = low_latency;
3914		} else if (bytes < 1500) {
3915			itrval = low_latency;
3916		}
3917		break;
3918	}
3919
3920	/* clear work counters since we have the values we need */
3921	ring_container->total_bytes = 0;
3922	ring_container->total_packets = 0;
3923
3924	/* write updated itr to ring container */
3925	ring_container->itr = itrval;
3926}
3927
3928static void igb_set_itr(struct igb_q_vector *q_vector)
3929{
3930	struct igb_adapter *adapter = q_vector->adapter;
3931	u32 new_itr = q_vector->itr_val;
3932	u8 current_itr = 0;
3933
3934	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3935	if (adapter->link_speed != SPEED_1000) {
3936		current_itr = 0;
3937		new_itr = IGB_4K_ITR;
3938		goto set_itr_now;
3939	}
3940
3941	igb_update_itr(q_vector, &q_vector->tx);
3942	igb_update_itr(q_vector, &q_vector->rx);
3943
3944	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3945
3946	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3947	if (current_itr == lowest_latency &&
3948	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3949	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3950		current_itr = low_latency;
3951
3952	switch (current_itr) {
3953	/* counts and packets in update_itr are dependent on these numbers */
3954	case lowest_latency:
3955		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3956		break;
3957	case low_latency:
3958		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3959		break;
3960	case bulk_latency:
3961		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3962		break;
3963	default:
3964		break;
3965	}
3966
3967set_itr_now:
3968	if (new_itr != q_vector->itr_val) {
3969		/* this attempts to bias the interrupt rate towards Bulk
3970		 * by adding intermediate steps when interrupt rate is
3971		 * increasing */
3972		new_itr = new_itr > q_vector->itr_val ?
3973		             max((new_itr * q_vector->itr_val) /
3974		                 (new_itr + (q_vector->itr_val >> 2)),
3975				 new_itr) :
3976			     new_itr;
3977		/* Don't write the value here; it resets the adapter's
3978		 * internal timer, and causes us to delay far longer than
3979		 * we should between interrupts.  Instead, we write the ITR
3980		 * value at the beginning of the next interrupt so the timing
3981		 * ends up being correct.
3982		 */
3983		q_vector->itr_val = new_itr;
3984		q_vector->set_itr = 1;
3985	}
3986}
3987
3988static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3989			    u32 type_tucmd, u32 mss_l4len_idx)
3990{
3991	struct e1000_adv_tx_context_desc *context_desc;
3992	u16 i = tx_ring->next_to_use;
3993
3994	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3995
3996	i++;
3997	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3998
3999	/* set bits to identify this as an advanced context descriptor */
4000	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4001
4002	/* For 82575, context index must be unique per ring. */
4003	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4004		mss_l4len_idx |= tx_ring->reg_idx << 4;
4005
4006	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4007	context_desc->seqnum_seed	= 0;
4008	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4009	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4010}
4011
4012static int igb_tso(struct igb_ring *tx_ring,
4013		   struct igb_tx_buffer *first,
4014		   u8 *hdr_len)
4015{
4016	struct sk_buff *skb = first->skb;
4017	u32 vlan_macip_lens, type_tucmd;
4018	u32 mss_l4len_idx, l4len;
4019
4020	if (!skb_is_gso(skb))
4021		return 0;
4022
4023	if (skb_header_cloned(skb)) {
4024		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4025		if (err)
4026			return err;
4027	}
4028
4029	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4030	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4031
4032	if (first->protocol == __constant_htons(ETH_P_IP)) {
4033		struct iphdr *iph = ip_hdr(skb);
4034		iph->tot_len = 0;
4035		iph->check = 0;
4036		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4037							 iph->daddr, 0,
4038							 IPPROTO_TCP,
4039							 0);
4040		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4041		first->tx_flags |= IGB_TX_FLAGS_TSO |
4042				   IGB_TX_FLAGS_CSUM |
4043				   IGB_TX_FLAGS_IPV4;
4044	} else if (skb_is_gso_v6(skb)) {
4045		ipv6_hdr(skb)->payload_len = 0;
4046		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4047						       &ipv6_hdr(skb)->daddr,
4048						       0, IPPROTO_TCP, 0);
4049		first->tx_flags |= IGB_TX_FLAGS_TSO |
4050				   IGB_TX_FLAGS_CSUM;
4051	}
4052
4053	/* compute header lengths */
4054	l4len = tcp_hdrlen(skb);
4055	*hdr_len = skb_transport_offset(skb) + l4len;
4056
4057	/* update gso size and bytecount with header size */
4058	first->gso_segs = skb_shinfo(skb)->gso_segs;
4059	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4060
4061	/* MSS L4LEN IDX */
4062	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4063	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4064
4065	/* VLAN MACLEN IPLEN */
4066	vlan_macip_lens = skb_network_header_len(skb);
4067	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4068	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4069
4070	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4071
4072	return 1;
4073}
4074
4075static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4076{
4077	struct sk_buff *skb = first->skb;
4078	u32 vlan_macip_lens = 0;
4079	u32 mss_l4len_idx = 0;
4080	u32 type_tucmd = 0;
4081
4082	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4083		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4084			return;
4085	} else {
4086		u8 l4_hdr = 0;
4087		switch (first->protocol) {
4088		case __constant_htons(ETH_P_IP):
4089			vlan_macip_lens |= skb_network_header_len(skb);
4090			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4091			l4_hdr = ip_hdr(skb)->protocol;
4092			break;
4093		case __constant_htons(ETH_P_IPV6):
4094			vlan_macip_lens |= skb_network_header_len(skb);
4095			l4_hdr = ipv6_hdr(skb)->nexthdr;
4096			break;
4097		default:
4098			if (unlikely(net_ratelimit())) {
4099				dev_warn(tx_ring->dev,
4100				 "partial checksum but proto=%x!\n",
4101				 first->protocol);
4102			}
4103			break;
4104		}
4105
4106		switch (l4_hdr) {
4107		case IPPROTO_TCP:
4108			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4109			mss_l4len_idx = tcp_hdrlen(skb) <<
4110					E1000_ADVTXD_L4LEN_SHIFT;
4111			break;
4112		case IPPROTO_SCTP:
4113			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4114			mss_l4len_idx = sizeof(struct sctphdr) <<
4115					E1000_ADVTXD_L4LEN_SHIFT;
4116			break;
4117		case IPPROTO_UDP:
4118			mss_l4len_idx = sizeof(struct udphdr) <<
4119					E1000_ADVTXD_L4LEN_SHIFT;
4120			break;
4121		default:
4122			if (unlikely(net_ratelimit())) {
4123				dev_warn(tx_ring->dev,
4124				 "partial checksum but l4 proto=%x!\n",
4125				 l4_hdr);
4126			}
4127			break;
4128		}
4129
4130		/* update TX checksum flag */
4131		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4132	}
4133
4134	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4135	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4136
4137	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4138}
4139
4140static __le32 igb_tx_cmd_type(u32 tx_flags)
4141{
4142	/* set type for advanced descriptor with frame checksum insertion */
4143	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4144				      E1000_ADVTXD_DCMD_IFCS |
4145				      E1000_ADVTXD_DCMD_DEXT);
4146
4147	/* set HW vlan bit if vlan is present */
4148	if (tx_flags & IGB_TX_FLAGS_VLAN)
4149		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4150
4151#ifdef CONFIG_IGB_PTP
4152	/* set timestamp bit if present */
4153	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4154		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4155#endif /* CONFIG_IGB_PTP */
4156
4157	/* set segmentation bits for TSO */
4158	if (tx_flags & IGB_TX_FLAGS_TSO)
4159		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4160
4161	return cmd_type;
4162}
4163
4164static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4165				 union e1000_adv_tx_desc *tx_desc,
4166				 u32 tx_flags, unsigned int paylen)
4167{
4168	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4169
4170	/* 82575 requires a unique index per ring if any offload is enabled */
4171	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4172	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4173		olinfo_status |= tx_ring->reg_idx << 4;
4174
4175	/* insert L4 checksum */
4176	if (tx_flags & IGB_TX_FLAGS_CSUM) {
4177		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4178
4179		/* insert IPv4 checksum */
4180		if (tx_flags & IGB_TX_FLAGS_IPV4)
4181			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4182	}
4183
4184	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4185}
4186
4187/*
4188 * The largest size we can write to the descriptor is 65535.  In order to
4189 * maintain a power of two alignment we have to limit ourselves to 32K.
4190 */
4191#define IGB_MAX_TXD_PWR	15
4192#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4193
4194static void igb_tx_map(struct igb_ring *tx_ring,
4195		       struct igb_tx_buffer *first,
4196		       const u8 hdr_len)
4197{
4198	struct sk_buff *skb = first->skb;
4199	struct igb_tx_buffer *tx_buffer;
4200	union e1000_adv_tx_desc *tx_desc;
4201	dma_addr_t dma;
4202	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4203	unsigned int data_len = skb->data_len;
4204	unsigned int size = skb_headlen(skb);
4205	unsigned int paylen = skb->len - hdr_len;
4206	__le32 cmd_type;
4207	u32 tx_flags = first->tx_flags;
4208	u16 i = tx_ring->next_to_use;
4209
4210	tx_desc = IGB_TX_DESC(tx_ring, i);
4211
4212	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4213	cmd_type = igb_tx_cmd_type(tx_flags);
4214
4215	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4216	if (dma_mapping_error(tx_ring->dev, dma))
4217		goto dma_error;
4218
4219	/* record length, and DMA address */
4220	dma_unmap_len_set(first, len, size);
4221	dma_unmap_addr_set(first, dma, dma);
4222	tx_desc->read.buffer_addr = cpu_to_le64(dma);
4223
4224	for (;;) {
4225		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4226			tx_desc->read.cmd_type_len =
4227				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4228
4229			i++;
4230			tx_desc++;
4231			if (i == tx_ring->count) {
4232				tx_desc = IGB_TX_DESC(tx_ring, 0);
4233				i = 0;
4234			}
4235
4236			dma += IGB_MAX_DATA_PER_TXD;
4237			size -= IGB_MAX_DATA_PER_TXD;
4238
4239			tx_desc->read.olinfo_status = 0;
4240			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4241		}
4242
4243		if (likely(!data_len))
4244			break;
4245
4246		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4247
4248		i++;
4249		tx_desc++;
4250		if (i == tx_ring->count) {
4251			tx_desc = IGB_TX_DESC(tx_ring, 0);
4252			i = 0;
4253		}
4254
4255		size = skb_frag_size(frag);
4256		data_len -= size;
4257
4258		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4259				   size, DMA_TO_DEVICE);
4260		if (dma_mapping_error(tx_ring->dev, dma))
4261			goto dma_error;
4262
4263		tx_buffer = &tx_ring->tx_buffer_info[i];
4264		dma_unmap_len_set(tx_buffer, len, size);
4265		dma_unmap_addr_set(tx_buffer, dma, dma);
4266
4267		tx_desc->read.olinfo_status = 0;
4268		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4269
4270		frag++;
4271	}
4272
4273	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4274
4275	/* write last descriptor with RS and EOP bits */
4276	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4277	if (unlikely(skb->no_fcs))
4278		cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4279	tx_desc->read.cmd_type_len = cmd_type;
4280
4281	/* set the timestamp */
4282	first->time_stamp = jiffies;
4283
4284	/*
4285	 * Force memory writes to complete before letting h/w know there
4286	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4287	 * memory model archs, such as IA-64).
4288	 *
4289	 * We also need this memory barrier to make certain all of the
4290	 * status bits have been updated before next_to_watch is written.
4291	 */
4292	wmb();
4293
4294	/* set next_to_watch value indicating a packet is present */
4295	first->next_to_watch = tx_desc;
4296
4297	i++;
4298	if (i == tx_ring->count)
4299		i = 0;
4300
4301	tx_ring->next_to_use = i;
4302
4303	writel(i, tx_ring->tail);
4304
4305	/* we need this if more than one processor can write to our tail
4306	 * at a time, it syncronizes IO on IA64/Altix systems */
4307	mmiowb();
4308
4309	return;
4310
4311dma_error:
4312	dev_err(tx_ring->dev, "TX DMA map failed\n");
4313
4314	/* clear dma mappings for failed tx_buffer_info map */
4315	for (;;) {
4316		tx_buffer = &tx_ring->tx_buffer_info[i];
4317		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4318		if (tx_buffer == first)
4319			break;
4320		if (i == 0)
4321			i = tx_ring->count;
4322		i--;
4323	}
4324
4325	tx_ring->next_to_use = i;
4326}
4327
4328static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4329{
4330	struct net_device *netdev = tx_ring->netdev;
4331
4332	netif_stop_subqueue(netdev, tx_ring->queue_index);
4333
4334	/* Herbert's original patch had:
4335	 *  smp_mb__after_netif_stop_queue();
4336	 * but since that doesn't exist yet, just open code it. */
4337	smp_mb();
4338
4339	/* We need to check again in a case another CPU has just
4340	 * made room available. */
4341	if (igb_desc_unused(tx_ring) < size)
4342		return -EBUSY;
4343
4344	/* A reprieve! */
4345	netif_wake_subqueue(netdev, tx_ring->queue_index);
4346
4347	u64_stats_update_begin(&tx_ring->tx_syncp2);
4348	tx_ring->tx_stats.restart_queue2++;
4349	u64_stats_update_end(&tx_ring->tx_syncp2);
4350
4351	return 0;
4352}
4353
4354static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4355{
4356	if (igb_desc_unused(tx_ring) >= size)
4357		return 0;
4358	return __igb_maybe_stop_tx(tx_ring, size);
4359}
4360
4361netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4362				struct igb_ring *tx_ring)
4363{
4364#ifdef CONFIG_IGB_PTP
4365	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4366#endif /* CONFIG_IGB_PTP */
4367	struct igb_tx_buffer *first;
4368	int tso;
4369	u32 tx_flags = 0;
4370	__be16 protocol = vlan_get_protocol(skb);
4371	u8 hdr_len = 0;
4372
4373	/* need: 1 descriptor per page,
4374	 *       + 2 desc gap to keep tail from touching head,
4375	 *       + 1 desc for skb->data,
4376	 *       + 1 desc for context descriptor,
4377	 * otherwise try next time */
4378	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4379		/* this is a hard error */
4380		return NETDEV_TX_BUSY;
4381	}
4382
4383	/* record the location of the first descriptor for this packet */
4384	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4385	first->skb = skb;
4386	first->bytecount = skb->len;
4387	first->gso_segs = 1;
4388
4389#ifdef CONFIG_IGB_PTP
4390	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4391		     !(adapter->ptp_tx_skb))) {
4392		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4393		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4394
4395		adapter->ptp_tx_skb = skb_get(skb);
4396		if (adapter->hw.mac.type == e1000_82576)
4397			schedule_work(&adapter->ptp_tx_work);
4398	}
4399#endif /* CONFIG_IGB_PTP */
4400
4401	if (vlan_tx_tag_present(skb)) {
4402		tx_flags |= IGB_TX_FLAGS_VLAN;
4403		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4404	}
4405
4406	/* record initial flags and protocol */
4407	first->tx_flags = tx_flags;
4408	first->protocol = protocol;
4409
4410	tso = igb_tso(tx_ring, first, &hdr_len);
4411	if (tso < 0)
4412		goto out_drop;
4413	else if (!tso)
4414		igb_tx_csum(tx_ring, first);
4415
4416	igb_tx_map(tx_ring, first, hdr_len);
4417
4418	/* Make sure there is space in the ring for the next send. */
4419	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4420
4421	return NETDEV_TX_OK;
4422
4423out_drop:
4424	igb_unmap_and_free_tx_resource(tx_ring, first);
4425
4426	return NETDEV_TX_OK;
4427}
4428
4429static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4430						    struct sk_buff *skb)
4431{
4432	unsigned int r_idx = skb->queue_mapping;
4433
4434	if (r_idx >= adapter->num_tx_queues)
4435		r_idx = r_idx % adapter->num_tx_queues;
4436
4437	return adapter->tx_ring[r_idx];
4438}
4439
4440static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4441				  struct net_device *netdev)
4442{
4443	struct igb_adapter *adapter = netdev_priv(netdev);
4444
4445	if (test_bit(__IGB_DOWN, &adapter->state)) {
4446		dev_kfree_skb_any(skb);
4447		return NETDEV_TX_OK;
4448	}
4449
4450	if (skb->len <= 0) {
4451		dev_kfree_skb_any(skb);
4452		return NETDEV_TX_OK;
4453	}
4454
4455	/*
4456	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4457	 * in order to meet this minimum size requirement.
4458	 */
4459	if (unlikely(skb->len < 17)) {
4460		if (skb_pad(skb, 17 - skb->len))
4461			return NETDEV_TX_OK;
4462		skb->len = 17;
4463		skb_set_tail_pointer(skb, 17);
4464	}
4465
4466	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4467}
4468
4469/**
4470 * igb_tx_timeout - Respond to a Tx Hang
4471 * @netdev: network interface device structure
4472 **/
4473static void igb_tx_timeout(struct net_device *netdev)
4474{
4475	struct igb_adapter *adapter = netdev_priv(netdev);
4476	struct e1000_hw *hw = &adapter->hw;
4477
4478	/* Do the reset outside of interrupt context */
4479	adapter->tx_timeout_count++;
4480
4481	if (hw->mac.type >= e1000_82580)
4482		hw->dev_spec._82575.global_device_reset = true;
4483
4484	schedule_work(&adapter->reset_task);
4485	wr32(E1000_EICS,
4486	     (adapter->eims_enable_mask & ~adapter->eims_other));
4487}
4488
4489static void igb_reset_task(struct work_struct *work)
4490{
4491	struct igb_adapter *adapter;
4492	adapter = container_of(work, struct igb_adapter, reset_task);
4493
4494	igb_dump(adapter);
4495	netdev_err(adapter->netdev, "Reset adapter\n");
4496	igb_reinit_locked(adapter);
4497}
4498
4499/**
4500 * igb_get_stats64 - Get System Network Statistics
4501 * @netdev: network interface device structure
4502 * @stats: rtnl_link_stats64 pointer
4503 *
4504 **/
4505static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4506						 struct rtnl_link_stats64 *stats)
4507{
4508	struct igb_adapter *adapter = netdev_priv(netdev);
4509
4510	spin_lock(&adapter->stats64_lock);
4511	igb_update_stats(adapter, &adapter->stats64);
4512	memcpy(stats, &adapter->stats64, sizeof(*stats));
4513	spin_unlock(&adapter->stats64_lock);
4514
4515	return stats;
4516}
4517
4518/**
4519 * igb_change_mtu - Change the Maximum Transfer Unit
4520 * @netdev: network interface device structure
4521 * @new_mtu: new value for maximum frame size
4522 *
4523 * Returns 0 on success, negative on failure
4524 **/
4525static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4526{
4527	struct igb_adapter *adapter = netdev_priv(netdev);
4528	struct pci_dev *pdev = adapter->pdev;
4529	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4530
4531	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4532		dev_err(&pdev->dev, "Invalid MTU setting\n");
4533		return -EINVAL;
4534	}
4535
4536#define MAX_STD_JUMBO_FRAME_SIZE 9238
4537	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4538		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4539		return -EINVAL;
4540	}
4541
4542	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4543		msleep(1);
4544
4545	/* igb_down has a dependency on max_frame_size */
4546	adapter->max_frame_size = max_frame;
4547
4548	if (netif_running(netdev))
4549		igb_down(adapter);
4550
4551	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4552		 netdev->mtu, new_mtu);
4553	netdev->mtu = new_mtu;
4554
4555	if (netif_running(netdev))
4556		igb_up(adapter);
4557	else
4558		igb_reset(adapter);
4559
4560	clear_bit(__IGB_RESETTING, &adapter->state);
4561
4562	return 0;
4563}
4564
4565/**
4566 * igb_update_stats - Update the board statistics counters
4567 * @adapter: board private structure
4568 **/
4569
4570void igb_update_stats(struct igb_adapter *adapter,
4571		      struct rtnl_link_stats64 *net_stats)
4572{
4573	struct e1000_hw *hw = &adapter->hw;
4574	struct pci_dev *pdev = adapter->pdev;
4575	u32 reg, mpc;
4576	u16 phy_tmp;
4577	int i;
4578	u64 bytes, packets;
4579	unsigned int start;
4580	u64 _bytes, _packets;
4581
4582#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4583
4584	/*
4585	 * Prevent stats update while adapter is being reset, or if the pci
4586	 * connection is down.
4587	 */
4588	if (adapter->link_speed == 0)
4589		return;
4590	if (pci_channel_offline(pdev))
4591		return;
4592
4593	bytes = 0;
4594	packets = 0;
4595	for (i = 0; i < adapter->num_rx_queues; i++) {
4596		u32 rqdpc = rd32(E1000_RQDPC(i));
4597		struct igb_ring *ring = adapter->rx_ring[i];
4598
4599		if (rqdpc) {
4600			ring->rx_stats.drops += rqdpc;
4601			net_stats->rx_fifo_errors += rqdpc;
4602		}
4603
4604		do {
4605			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4606			_bytes = ring->rx_stats.bytes;
4607			_packets = ring->rx_stats.packets;
4608		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4609		bytes += _bytes;
4610		packets += _packets;
4611	}
4612
4613	net_stats->rx_bytes = bytes;
4614	net_stats->rx_packets = packets;
4615
4616	bytes = 0;
4617	packets = 0;
4618	for (i = 0; i < adapter->num_tx_queues; i++) {
4619		struct igb_ring *ring = adapter->tx_ring[i];
4620		do {
4621			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4622			_bytes = ring->tx_stats.bytes;
4623			_packets = ring->tx_stats.packets;
4624		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4625		bytes += _bytes;
4626		packets += _packets;
4627	}
4628	net_stats->tx_bytes = bytes;
4629	net_stats->tx_packets = packets;
4630
4631	/* read stats registers */
4632	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4633	adapter->stats.gprc += rd32(E1000_GPRC);
4634	adapter->stats.gorc += rd32(E1000_GORCL);
4635	rd32(E1000_GORCH); /* clear GORCL */
4636	adapter->stats.bprc += rd32(E1000_BPRC);
4637	adapter->stats.mprc += rd32(E1000_MPRC);
4638	adapter->stats.roc += rd32(E1000_ROC);
4639
4640	adapter->stats.prc64 += rd32(E1000_PRC64);
4641	adapter->stats.prc127 += rd32(E1000_PRC127);
4642	adapter->stats.prc255 += rd32(E1000_PRC255);
4643	adapter->stats.prc511 += rd32(E1000_PRC511);
4644	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4645	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4646	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4647	adapter->stats.sec += rd32(E1000_SEC);
4648
4649	mpc = rd32(E1000_MPC);
4650	adapter->stats.mpc += mpc;
4651	net_stats->rx_fifo_errors += mpc;
4652	adapter->stats.scc += rd32(E1000_SCC);
4653	adapter->stats.ecol += rd32(E1000_ECOL);
4654	adapter->stats.mcc += rd32(E1000_MCC);
4655	adapter->stats.latecol += rd32(E1000_LATECOL);
4656	adapter->stats.dc += rd32(E1000_DC);
4657	adapter->stats.rlec += rd32(E1000_RLEC);
4658	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4659	adapter->stats.xontxc += rd32(E1000_XONTXC);
4660	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4661	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4662	adapter->stats.fcruc += rd32(E1000_FCRUC);
4663	adapter->stats.gptc += rd32(E1000_GPTC);
4664	adapter->stats.gotc += rd32(E1000_GOTCL);
4665	rd32(E1000_GOTCH); /* clear GOTCL */
4666	adapter->stats.rnbc += rd32(E1000_RNBC);
4667	adapter->stats.ruc += rd32(E1000_RUC);
4668	adapter->stats.rfc += rd32(E1000_RFC);
4669	adapter->stats.rjc += rd32(E1000_RJC);
4670	adapter->stats.tor += rd32(E1000_TORH);
4671	adapter->stats.tot += rd32(E1000_TOTH);
4672	adapter->stats.tpr += rd32(E1000_TPR);
4673
4674	adapter->stats.ptc64 += rd32(E1000_PTC64);
4675	adapter->stats.ptc127 += rd32(E1000_PTC127);
4676	adapter->stats.ptc255 += rd32(E1000_PTC255);
4677	adapter->stats.ptc511 += rd32(E1000_PTC511);
4678	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4679	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4680
4681	adapter->stats.mptc += rd32(E1000_MPTC);
4682	adapter->stats.bptc += rd32(E1000_BPTC);
4683
4684	adapter->stats.tpt += rd32(E1000_TPT);
4685	adapter->stats.colc += rd32(E1000_COLC);
4686
4687	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4688	/* read internal phy specific stats */
4689	reg = rd32(E1000_CTRL_EXT);
4690	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4691		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4692
4693		/* this stat has invalid values on i210/i211 */
4694		if ((hw->mac.type != e1000_i210) &&
4695		    (hw->mac.type != e1000_i211))
4696			adapter->stats.tncrs += rd32(E1000_TNCRS);
4697	}
4698
4699	adapter->stats.tsctc += rd32(E1000_TSCTC);
4700	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4701
4702	adapter->stats.iac += rd32(E1000_IAC);
4703	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4704	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4705	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4706	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4707	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4708	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4709	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4710	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4711
4712	/* Fill out the OS statistics structure */
4713	net_stats->multicast = adapter->stats.mprc;
4714	net_stats->collisions = adapter->stats.colc;
4715
4716	/* Rx Errors */
4717
4718	/* RLEC on some newer hardware can be incorrect so build
4719	 * our own version based on RUC and ROC */
4720	net_stats->rx_errors = adapter->stats.rxerrc +
4721		adapter->stats.crcerrs + adapter->stats.algnerrc +
4722		adapter->stats.ruc + adapter->stats.roc +
4723		adapter->stats.cexterr;
4724	net_stats->rx_length_errors = adapter->stats.ruc +
4725				      adapter->stats.roc;
4726	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4727	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4728	net_stats->rx_missed_errors = adapter->stats.mpc;
4729
4730	/* Tx Errors */
4731	net_stats->tx_errors = adapter->stats.ecol +
4732			       adapter->stats.latecol;
4733	net_stats->tx_aborted_errors = adapter->stats.ecol;
4734	net_stats->tx_window_errors = adapter->stats.latecol;
4735	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4736
4737	/* Tx Dropped needs to be maintained elsewhere */
4738
4739	/* Phy Stats */
4740	if (hw->phy.media_type == e1000_media_type_copper) {
4741		if ((adapter->link_speed == SPEED_1000) &&
4742		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4743			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4744			adapter->phy_stats.idle_errors += phy_tmp;
4745		}
4746	}
4747
4748	/* Management Stats */
4749	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4750	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4751	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4752
4753	/* OS2BMC Stats */
4754	reg = rd32(E1000_MANC);
4755	if (reg & E1000_MANC_EN_BMC2OS) {
4756		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4757		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4758		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4759		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4760	}
4761}
4762
4763static irqreturn_t igb_msix_other(int irq, void *data)
4764{
4765	struct igb_adapter *adapter = data;
4766	struct e1000_hw *hw = &adapter->hw;
4767	u32 icr = rd32(E1000_ICR);
4768	/* reading ICR causes bit 31 of EICR to be cleared */
4769
4770	if (icr & E1000_ICR_DRSTA)
4771		schedule_work(&adapter->reset_task);
4772
4773	if (icr & E1000_ICR_DOUTSYNC) {
4774		/* HW is reporting DMA is out of sync */
4775		adapter->stats.doosync++;
4776		/* The DMA Out of Sync is also indication of a spoof event
4777		 * in IOV mode. Check the Wrong VM Behavior register to
4778		 * see if it is really a spoof event. */
4779		igb_check_wvbr(adapter);
4780	}
4781
4782	/* Check for a mailbox event */
4783	if (icr & E1000_ICR_VMMB)
4784		igb_msg_task(adapter);
4785
4786	if (icr & E1000_ICR_LSC) {
4787		hw->mac.get_link_status = 1;
4788		/* guard against interrupt when we're going down */
4789		if (!test_bit(__IGB_DOWN, &adapter->state))
4790			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4791	}
4792
4793#ifdef CONFIG_IGB_PTP
4794	if (icr & E1000_ICR_TS) {
4795		u32 tsicr = rd32(E1000_TSICR);
4796
4797		if (tsicr & E1000_TSICR_TXTS) {
4798			/* acknowledge the interrupt */
4799			wr32(E1000_TSICR, E1000_TSICR_TXTS);
4800			/* retrieve hardware timestamp */
4801			schedule_work(&adapter->ptp_tx_work);
4802		}
4803	}
4804#endif /* CONFIG_IGB_PTP */
4805
4806	wr32(E1000_EIMS, adapter->eims_other);
4807
4808	return IRQ_HANDLED;
4809}
4810
4811static void igb_write_itr(struct igb_q_vector *q_vector)
4812{
4813	struct igb_adapter *adapter = q_vector->adapter;
4814	u32 itr_val = q_vector->itr_val & 0x7FFC;
4815
4816	if (!q_vector->set_itr)
4817		return;
4818
4819	if (!itr_val)
4820		itr_val = 0x4;
4821
4822	if (adapter->hw.mac.type == e1000_82575)
4823		itr_val |= itr_val << 16;
4824	else
4825		itr_val |= E1000_EITR_CNT_IGNR;
4826
4827	writel(itr_val, q_vector->itr_register);
4828	q_vector->set_itr = 0;
4829}
4830
4831static irqreturn_t igb_msix_ring(int irq, void *data)
4832{
4833	struct igb_q_vector *q_vector = data;
4834
4835	/* Write the ITR value calculated from the previous interrupt. */
4836	igb_write_itr(q_vector);
4837
4838	napi_schedule(&q_vector->napi);
4839
4840	return IRQ_HANDLED;
4841}
4842
4843#ifdef CONFIG_IGB_DCA
4844static void igb_update_dca(struct igb_q_vector *q_vector)
4845{
4846	struct igb_adapter *adapter = q_vector->adapter;
4847	struct e1000_hw *hw = &adapter->hw;
4848	int cpu = get_cpu();
4849
4850	if (q_vector->cpu == cpu)
4851		goto out_no_update;
4852
4853	if (q_vector->tx.ring) {
4854		int q = q_vector->tx.ring->reg_idx;
4855		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4856		if (hw->mac.type == e1000_82575) {
4857			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4858			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4859		} else {
4860			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4861			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4862			              E1000_DCA_TXCTRL_CPUID_SHIFT;
4863		}
4864		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4865		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4866	}
4867	if (q_vector->rx.ring) {
4868		int q = q_vector->rx.ring->reg_idx;
4869		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4870		if (hw->mac.type == e1000_82575) {
4871			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4872			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4873		} else {
4874			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4875			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4876			              E1000_DCA_RXCTRL_CPUID_SHIFT;
4877		}
4878		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4879		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4880		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4881		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4882	}
4883	q_vector->cpu = cpu;
4884out_no_update:
4885	put_cpu();
4886}
4887
4888static void igb_setup_dca(struct igb_adapter *adapter)
4889{
4890	struct e1000_hw *hw = &adapter->hw;
4891	int i;
4892
4893	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4894		return;
4895
4896	/* Always use CB2 mode, difference is masked in the CB driver. */
4897	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4898
4899	for (i = 0; i < adapter->num_q_vectors; i++) {
4900		adapter->q_vector[i]->cpu = -1;
4901		igb_update_dca(adapter->q_vector[i]);
4902	}
4903}
4904
4905static int __igb_notify_dca(struct device *dev, void *data)
4906{
4907	struct net_device *netdev = dev_get_drvdata(dev);
4908	struct igb_adapter *adapter = netdev_priv(netdev);
4909	struct pci_dev *pdev = adapter->pdev;
4910	struct e1000_hw *hw = &adapter->hw;
4911	unsigned long event = *(unsigned long *)data;
4912
4913	switch (event) {
4914	case DCA_PROVIDER_ADD:
4915		/* if already enabled, don't do it again */
4916		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4917			break;
4918		if (dca_add_requester(dev) == 0) {
4919			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4920			dev_info(&pdev->dev, "DCA enabled\n");
4921			igb_setup_dca(adapter);
4922			break;
4923		}
4924		/* Fall Through since DCA is disabled. */
4925	case DCA_PROVIDER_REMOVE:
4926		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4927			/* without this a class_device is left
4928			 * hanging around in the sysfs model */
4929			dca_remove_requester(dev);
4930			dev_info(&pdev->dev, "DCA disabled\n");
4931			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4932			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4933		}
4934		break;
4935	}
4936
4937	return 0;
4938}
4939
4940static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4941                          void *p)
4942{
4943	int ret_val;
4944
4945	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4946	                                 __igb_notify_dca);
4947
4948	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4949}
4950#endif /* CONFIG_IGB_DCA */
4951
4952#ifdef CONFIG_PCI_IOV
4953static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4954{
4955	unsigned char mac_addr[ETH_ALEN];
4956
4957	eth_random_addr(mac_addr);
4958	igb_set_vf_mac(adapter, vf, mac_addr);
4959
4960	return 0;
4961}
4962
4963static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4964{
4965	struct pci_dev *pdev = adapter->pdev;
4966	struct pci_dev *vfdev;
4967	int dev_id;
4968
4969	switch (adapter->hw.mac.type) {
4970	case e1000_82576:
4971		dev_id = IGB_82576_VF_DEV_ID;
4972		break;
4973	case e1000_i350:
4974		dev_id = IGB_I350_VF_DEV_ID;
4975		break;
4976	default:
4977		return false;
4978	}
4979
4980	/* loop through all the VFs to see if we own any that are assigned */
4981	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4982	while (vfdev) {
4983		/* if we don't own it we don't care */
4984		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
4985			/* if it is assigned we cannot release it */
4986			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
4987				return true;
4988		}
4989
4990		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
4991	}
4992
4993	return false;
4994}
4995
4996#endif
4997static void igb_ping_all_vfs(struct igb_adapter *adapter)
4998{
4999	struct e1000_hw *hw = &adapter->hw;
5000	u32 ping;
5001	int i;
5002
5003	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5004		ping = E1000_PF_CONTROL_MSG;
5005		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5006			ping |= E1000_VT_MSGTYPE_CTS;
5007		igb_write_mbx(hw, &ping, 1, i);
5008	}
5009}
5010
5011static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5012{
5013	struct e1000_hw *hw = &adapter->hw;
5014	u32 vmolr = rd32(E1000_VMOLR(vf));
5015	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5016
5017	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5018	                    IGB_VF_FLAG_MULTI_PROMISC);
5019	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5020
5021	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5022		vmolr |= E1000_VMOLR_MPME;
5023		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5024		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5025	} else {
5026		/*
5027		 * if we have hashes and we are clearing a multicast promisc
5028		 * flag we need to write the hashes to the MTA as this step
5029		 * was previously skipped
5030		 */
5031		if (vf_data->num_vf_mc_hashes > 30) {
5032			vmolr |= E1000_VMOLR_MPME;
5033		} else if (vf_data->num_vf_mc_hashes) {
5034			int j;
5035			vmolr |= E1000_VMOLR_ROMPE;
5036			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5037				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5038		}
5039	}
5040
5041	wr32(E1000_VMOLR(vf), vmolr);
5042
5043	/* there are flags left unprocessed, likely not supported */
5044	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5045		return -EINVAL;
5046
5047	return 0;
5048
5049}
5050
5051static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5052				  u32 *msgbuf, u32 vf)
5053{
5054	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5055	u16 *hash_list = (u16 *)&msgbuf[1];
5056	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5057	int i;
5058
5059	/* salt away the number of multicast addresses assigned
5060	 * to this VF for later use to restore when the PF multi cast
5061	 * list changes
5062	 */
5063	vf_data->num_vf_mc_hashes = n;
5064
5065	/* only up to 30 hash values supported */
5066	if (n > 30)
5067		n = 30;
5068
5069	/* store the hashes for later use */
5070	for (i = 0; i < n; i++)
5071		vf_data->vf_mc_hashes[i] = hash_list[i];
5072
5073	/* Flush and reset the mta with the new values */
5074	igb_set_rx_mode(adapter->netdev);
5075
5076	return 0;
5077}
5078
5079static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5080{
5081	struct e1000_hw *hw = &adapter->hw;
5082	struct vf_data_storage *vf_data;
5083	int i, j;
5084
5085	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5086		u32 vmolr = rd32(E1000_VMOLR(i));
5087		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5088
5089		vf_data = &adapter->vf_data[i];
5090
5091		if ((vf_data->num_vf_mc_hashes > 30) ||
5092		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5093			vmolr |= E1000_VMOLR_MPME;
5094		} else if (vf_data->num_vf_mc_hashes) {
5095			vmolr |= E1000_VMOLR_ROMPE;
5096			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5097				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5098		}
5099		wr32(E1000_VMOLR(i), vmolr);
5100	}
5101}
5102
5103static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5104{
5105	struct e1000_hw *hw = &adapter->hw;
5106	u32 pool_mask, reg, vid;
5107	int i;
5108
5109	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5110
5111	/* Find the vlan filter for this id */
5112	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5113		reg = rd32(E1000_VLVF(i));
5114
5115		/* remove the vf from the pool */
5116		reg &= ~pool_mask;
5117
5118		/* if pool is empty then remove entry from vfta */
5119		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5120		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5121			reg = 0;
5122			vid = reg & E1000_VLVF_VLANID_MASK;
5123			igb_vfta_set(hw, vid, false);
5124		}
5125
5126		wr32(E1000_VLVF(i), reg);
5127	}
5128
5129	adapter->vf_data[vf].vlans_enabled = 0;
5130}
5131
5132static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5133{
5134	struct e1000_hw *hw = &adapter->hw;
5135	u32 reg, i;
5136
5137	/* The vlvf table only exists on 82576 hardware and newer */
5138	if (hw->mac.type < e1000_82576)
5139		return -1;
5140
5141	/* we only need to do this if VMDq is enabled */
5142	if (!adapter->vfs_allocated_count)
5143		return -1;
5144
5145	/* Find the vlan filter for this id */
5146	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5147		reg = rd32(E1000_VLVF(i));
5148		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5149		    vid == (reg & E1000_VLVF_VLANID_MASK))
5150			break;
5151	}
5152
5153	if (add) {
5154		if (i == E1000_VLVF_ARRAY_SIZE) {
5155			/* Did not find a matching VLAN ID entry that was
5156			 * enabled.  Search for a free filter entry, i.e.
5157			 * one without the enable bit set
5158			 */
5159			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5160				reg = rd32(E1000_VLVF(i));
5161				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5162					break;
5163			}
5164		}
5165		if (i < E1000_VLVF_ARRAY_SIZE) {
5166			/* Found an enabled/available entry */
5167			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5168
5169			/* if !enabled we need to set this up in vfta */
5170			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5171				/* add VID to filter table */
5172				igb_vfta_set(hw, vid, true);
5173				reg |= E1000_VLVF_VLANID_ENABLE;
5174			}
5175			reg &= ~E1000_VLVF_VLANID_MASK;
5176			reg |= vid;
5177			wr32(E1000_VLVF(i), reg);
5178
5179			/* do not modify RLPML for PF devices */
5180			if (vf >= adapter->vfs_allocated_count)
5181				return 0;
5182
5183			if (!adapter->vf_data[vf].vlans_enabled) {
5184				u32 size;
5185				reg = rd32(E1000_VMOLR(vf));
5186				size = reg & E1000_VMOLR_RLPML_MASK;
5187				size += 4;
5188				reg &= ~E1000_VMOLR_RLPML_MASK;
5189				reg |= size;
5190				wr32(E1000_VMOLR(vf), reg);
5191			}
5192
5193			adapter->vf_data[vf].vlans_enabled++;
5194		}
5195	} else {
5196		if (i < E1000_VLVF_ARRAY_SIZE) {
5197			/* remove vf from the pool */
5198			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5199			/* if pool is empty then remove entry from vfta */
5200			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5201				reg = 0;
5202				igb_vfta_set(hw, vid, false);
5203			}
5204			wr32(E1000_VLVF(i), reg);
5205
5206			/* do not modify RLPML for PF devices */
5207			if (vf >= adapter->vfs_allocated_count)
5208				return 0;
5209
5210			adapter->vf_data[vf].vlans_enabled--;
5211			if (!adapter->vf_data[vf].vlans_enabled) {
5212				u32 size;
5213				reg = rd32(E1000_VMOLR(vf));
5214				size = reg & E1000_VMOLR_RLPML_MASK;
5215				size -= 4;
5216				reg &= ~E1000_VMOLR_RLPML_MASK;
5217				reg |= size;
5218				wr32(E1000_VMOLR(vf), reg);
5219			}
5220		}
5221	}
5222	return 0;
5223}
5224
5225static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5226{
5227	struct e1000_hw *hw = &adapter->hw;
5228
5229	if (vid)
5230		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5231	else
5232		wr32(E1000_VMVIR(vf), 0);
5233}
5234
5235static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5236			       int vf, u16 vlan, u8 qos)
5237{
5238	int err = 0;
5239	struct igb_adapter *adapter = netdev_priv(netdev);
5240
5241	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5242		return -EINVAL;
5243	if (vlan || qos) {
5244		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5245		if (err)
5246			goto out;
5247		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5248		igb_set_vmolr(adapter, vf, !vlan);
5249		adapter->vf_data[vf].pf_vlan = vlan;
5250		adapter->vf_data[vf].pf_qos = qos;
5251		dev_info(&adapter->pdev->dev,
5252			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5253		if (test_bit(__IGB_DOWN, &adapter->state)) {
5254			dev_warn(&adapter->pdev->dev,
5255				 "The VF VLAN has been set,"
5256				 " but the PF device is not up.\n");
5257			dev_warn(&adapter->pdev->dev,
5258				 "Bring the PF device up before"
5259				 " attempting to use the VF device.\n");
5260		}
5261	} else {
5262		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5263				   false, vf);
5264		igb_set_vmvir(adapter, vlan, vf);
5265		igb_set_vmolr(adapter, vf, true);
5266		adapter->vf_data[vf].pf_vlan = 0;
5267		adapter->vf_data[vf].pf_qos = 0;
5268       }
5269out:
5270       return err;
5271}
5272
5273static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5274{
5275	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5276	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5277
5278	return igb_vlvf_set(adapter, vid, add, vf);
5279}
5280
5281static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5282{
5283	/* clear flags - except flag that indicates PF has set the MAC */
5284	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5285	adapter->vf_data[vf].last_nack = jiffies;
5286
5287	/* reset offloads to defaults */
5288	igb_set_vmolr(adapter, vf, true);
5289
5290	/* reset vlans for device */
5291	igb_clear_vf_vfta(adapter, vf);
5292	if (adapter->vf_data[vf].pf_vlan)
5293		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5294				    adapter->vf_data[vf].pf_vlan,
5295				    adapter->vf_data[vf].pf_qos);
5296	else
5297		igb_clear_vf_vfta(adapter, vf);
5298
5299	/* reset multicast table array for vf */
5300	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5301
5302	/* Flush and reset the mta with the new values */
5303	igb_set_rx_mode(adapter->netdev);
5304}
5305
5306static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5307{
5308	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5309
5310	/* generate a new mac address as we were hotplug removed/added */
5311	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5312		eth_random_addr(vf_mac);
5313
5314	/* process remaining reset events */
5315	igb_vf_reset(adapter, vf);
5316}
5317
5318static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5319{
5320	struct e1000_hw *hw = &adapter->hw;
5321	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5322	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5323	u32 reg, msgbuf[3];
5324	u8 *addr = (u8 *)(&msgbuf[1]);
5325
5326	/* process all the same items cleared in a function level reset */
5327	igb_vf_reset(adapter, vf);
5328
5329	/* set vf mac address */
5330	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5331
5332	/* enable transmit and receive for vf */
5333	reg = rd32(E1000_VFTE);
5334	wr32(E1000_VFTE, reg | (1 << vf));
5335	reg = rd32(E1000_VFRE);
5336	wr32(E1000_VFRE, reg | (1 << vf));
5337
5338	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5339
5340	/* reply to reset with ack and vf mac address */
5341	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5342	memcpy(addr, vf_mac, 6);
5343	igb_write_mbx(hw, msgbuf, 3, vf);
5344}
5345
5346static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5347{
5348	/*
5349	 * The VF MAC Address is stored in a packed array of bytes
5350	 * starting at the second 32 bit word of the msg array
5351	 */
5352	unsigned char *addr = (char *)&msg[1];
5353	int err = -1;
5354
5355	if (is_valid_ether_addr(addr))
5356		err = igb_set_vf_mac(adapter, vf, addr);
5357
5358	return err;
5359}
5360
5361static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5362{
5363	struct e1000_hw *hw = &adapter->hw;
5364	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5365	u32 msg = E1000_VT_MSGTYPE_NACK;
5366
5367	/* if device isn't clear to send it shouldn't be reading either */
5368	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5369	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5370		igb_write_mbx(hw, &msg, 1, vf);
5371		vf_data->last_nack = jiffies;
5372	}
5373}
5374
5375static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5376{
5377	struct pci_dev *pdev = adapter->pdev;
5378	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5379	struct e1000_hw *hw = &adapter->hw;
5380	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5381	s32 retval;
5382
5383	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5384
5385	if (retval) {
5386		/* if receive failed revoke VF CTS stats and restart init */
5387		dev_err(&pdev->dev, "Error receiving message from VF\n");
5388		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5389		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5390			return;
5391		goto out;
5392	}
5393
5394	/* this is a message we already processed, do nothing */
5395	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5396		return;
5397
5398	/*
5399	 * until the vf completes a reset it should not be
5400	 * allowed to start any configuration.
5401	 */
5402
5403	if (msgbuf[0] == E1000_VF_RESET) {
5404		igb_vf_reset_msg(adapter, vf);
5405		return;
5406	}
5407
5408	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5409		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5410			return;
5411		retval = -1;
5412		goto out;
5413	}
5414
5415	switch ((msgbuf[0] & 0xFFFF)) {
5416	case E1000_VF_SET_MAC_ADDR:
5417		retval = -EINVAL;
5418		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5419			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5420		else
5421			dev_warn(&pdev->dev,
5422				 "VF %d attempted to override administratively "
5423				 "set MAC address\nReload the VF driver to "
5424				 "resume operations\n", vf);
5425		break;
5426	case E1000_VF_SET_PROMISC:
5427		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5428		break;
5429	case E1000_VF_SET_MULTICAST:
5430		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5431		break;
5432	case E1000_VF_SET_LPE:
5433		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5434		break;
5435	case E1000_VF_SET_VLAN:
5436		retval = -1;
5437		if (vf_data->pf_vlan)
5438			dev_warn(&pdev->dev,
5439				 "VF %d attempted to override administratively "
5440				 "set VLAN tag\nReload the VF driver to "
5441				 "resume operations\n", vf);
5442		else
5443			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5444		break;
5445	default:
5446		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5447		retval = -1;
5448		break;
5449	}
5450
5451	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5452out:
5453	/* notify the VF of the results of what it sent us */
5454	if (retval)
5455		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5456	else
5457		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5458
5459	igb_write_mbx(hw, msgbuf, 1, vf);
5460}
5461
5462static void igb_msg_task(struct igb_adapter *adapter)
5463{
5464	struct e1000_hw *hw = &adapter->hw;
5465	u32 vf;
5466
5467	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5468		/* process any reset requests */
5469		if (!igb_check_for_rst(hw, vf))
5470			igb_vf_reset_event(adapter, vf);
5471
5472		/* process any messages pending */
5473		if (!igb_check_for_msg(hw, vf))
5474			igb_rcv_msg_from_vf(adapter, vf);
5475
5476		/* process any acks */
5477		if (!igb_check_for_ack(hw, vf))
5478			igb_rcv_ack_from_vf(adapter, vf);
5479	}
5480}
5481
5482/**
5483 *  igb_set_uta - Set unicast filter table address
5484 *  @adapter: board private structure
5485 *
5486 *  The unicast table address is a register array of 32-bit registers.
5487 *  The table is meant to be used in a way similar to how the MTA is used
5488 *  however due to certain limitations in the hardware it is necessary to
5489 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5490 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5491 **/
5492static void igb_set_uta(struct igb_adapter *adapter)
5493{
5494	struct e1000_hw *hw = &adapter->hw;
5495	int i;
5496
5497	/* The UTA table only exists on 82576 hardware and newer */
5498	if (hw->mac.type < e1000_82576)
5499		return;
5500
5501	/* we only need to do this if VMDq is enabled */
5502	if (!adapter->vfs_allocated_count)
5503		return;
5504
5505	for (i = 0; i < hw->mac.uta_reg_count; i++)
5506		array_wr32(E1000_UTA, i, ~0);
5507}
5508
5509/**
5510 * igb_intr_msi - Interrupt Handler
5511 * @irq: interrupt number
5512 * @data: pointer to a network interface device structure
5513 **/
5514static irqreturn_t igb_intr_msi(int irq, void *data)
5515{
5516	struct igb_adapter *adapter = data;
5517	struct igb_q_vector *q_vector = adapter->q_vector[0];
5518	struct e1000_hw *hw = &adapter->hw;
5519	/* read ICR disables interrupts using IAM */
5520	u32 icr = rd32(E1000_ICR);
5521
5522	igb_write_itr(q_vector);
5523
5524	if (icr & E1000_ICR_DRSTA)
5525		schedule_work(&adapter->reset_task);
5526
5527	if (icr & E1000_ICR_DOUTSYNC) {
5528		/* HW is reporting DMA is out of sync */
5529		adapter->stats.doosync++;
5530	}
5531
5532	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5533		hw->mac.get_link_status = 1;
5534		if (!test_bit(__IGB_DOWN, &adapter->state))
5535			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5536	}
5537
5538#ifdef CONFIG_IGB_PTP
5539	if (icr & E1000_ICR_TS) {
5540		u32 tsicr = rd32(E1000_TSICR);
5541
5542		if (tsicr & E1000_TSICR_TXTS) {
5543			/* acknowledge the interrupt */
5544			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5545			/* retrieve hardware timestamp */
5546			schedule_work(&adapter->ptp_tx_work);
5547		}
5548	}
5549#endif /* CONFIG_IGB_PTP */
5550
5551	napi_schedule(&q_vector->napi);
5552
5553	return IRQ_HANDLED;
5554}
5555
5556/**
5557 * igb_intr - Legacy Interrupt Handler
5558 * @irq: interrupt number
5559 * @data: pointer to a network interface device structure
5560 **/
5561static irqreturn_t igb_intr(int irq, void *data)
5562{
5563	struct igb_adapter *adapter = data;
5564	struct igb_q_vector *q_vector = adapter->q_vector[0];
5565	struct e1000_hw *hw = &adapter->hw;
5566	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5567	 * need for the IMC write */
5568	u32 icr = rd32(E1000_ICR);
5569
5570	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5571	 * not set, then the adapter didn't send an interrupt */
5572	if (!(icr & E1000_ICR_INT_ASSERTED))
5573		return IRQ_NONE;
5574
5575	igb_write_itr(q_vector);
5576
5577	if (icr & E1000_ICR_DRSTA)
5578		schedule_work(&adapter->reset_task);
5579
5580	if (icr & E1000_ICR_DOUTSYNC) {
5581		/* HW is reporting DMA is out of sync */
5582		adapter->stats.doosync++;
5583	}
5584
5585	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5586		hw->mac.get_link_status = 1;
5587		/* guard against interrupt when we're going down */
5588		if (!test_bit(__IGB_DOWN, &adapter->state))
5589			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5590	}
5591
5592#ifdef CONFIG_IGB_PTP
5593	if (icr & E1000_ICR_TS) {
5594		u32 tsicr = rd32(E1000_TSICR);
5595
5596		if (tsicr & E1000_TSICR_TXTS) {
5597			/* acknowledge the interrupt */
5598			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5599			/* retrieve hardware timestamp */
5600			schedule_work(&adapter->ptp_tx_work);
5601		}
5602	}
5603#endif /* CONFIG_IGB_PTP */
5604
5605	napi_schedule(&q_vector->napi);
5606
5607	return IRQ_HANDLED;
5608}
5609
5610static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5611{
5612	struct igb_adapter *adapter = q_vector->adapter;
5613	struct e1000_hw *hw = &adapter->hw;
5614
5615	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5616	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5617		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5618			igb_set_itr(q_vector);
5619		else
5620			igb_update_ring_itr(q_vector);
5621	}
5622
5623	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5624		if (adapter->msix_entries)
5625			wr32(E1000_EIMS, q_vector->eims_value);
5626		else
5627			igb_irq_enable(adapter);
5628	}
5629}
5630
5631/**
5632 * igb_poll - NAPI Rx polling callback
5633 * @napi: napi polling structure
5634 * @budget: count of how many packets we should handle
5635 **/
5636static int igb_poll(struct napi_struct *napi, int budget)
5637{
5638	struct igb_q_vector *q_vector = container_of(napi,
5639	                                             struct igb_q_vector,
5640	                                             napi);
5641	bool clean_complete = true;
5642
5643#ifdef CONFIG_IGB_DCA
5644	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5645		igb_update_dca(q_vector);
5646#endif
5647	if (q_vector->tx.ring)
5648		clean_complete = igb_clean_tx_irq(q_vector);
5649
5650	if (q_vector->rx.ring)
5651		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5652
5653	/* If all work not completed, return budget and keep polling */
5654	if (!clean_complete)
5655		return budget;
5656
5657	/* If not enough Rx work done, exit the polling mode */
5658	napi_complete(napi);
5659	igb_ring_irq_enable(q_vector);
5660
5661	return 0;
5662}
5663
5664/**
5665 * igb_clean_tx_irq - Reclaim resources after transmit completes
5666 * @q_vector: pointer to q_vector containing needed info
5667 *
5668 * returns true if ring is completely cleaned
5669 **/
5670static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5671{
5672	struct igb_adapter *adapter = q_vector->adapter;
5673	struct igb_ring *tx_ring = q_vector->tx.ring;
5674	struct igb_tx_buffer *tx_buffer;
5675	union e1000_adv_tx_desc *tx_desc;
5676	unsigned int total_bytes = 0, total_packets = 0;
5677	unsigned int budget = q_vector->tx.work_limit;
5678	unsigned int i = tx_ring->next_to_clean;
5679
5680	if (test_bit(__IGB_DOWN, &adapter->state))
5681		return true;
5682
5683	tx_buffer = &tx_ring->tx_buffer_info[i];
5684	tx_desc = IGB_TX_DESC(tx_ring, i);
5685	i -= tx_ring->count;
5686
5687	do {
5688		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5689
5690		/* if next_to_watch is not set then there is no work pending */
5691		if (!eop_desc)
5692			break;
5693
5694		/* prevent any other reads prior to eop_desc */
5695		rmb();
5696
5697		/* if DD is not set pending work has not been completed */
5698		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5699			break;
5700
5701		/* clear next_to_watch to prevent false hangs */
5702		tx_buffer->next_to_watch = NULL;
5703
5704		/* update the statistics for this packet */
5705		total_bytes += tx_buffer->bytecount;
5706		total_packets += tx_buffer->gso_segs;
5707
5708		/* free the skb */
5709		dev_kfree_skb_any(tx_buffer->skb);
5710
5711		/* unmap skb header data */
5712		dma_unmap_single(tx_ring->dev,
5713				 dma_unmap_addr(tx_buffer, dma),
5714				 dma_unmap_len(tx_buffer, len),
5715				 DMA_TO_DEVICE);
5716
5717		/* clear tx_buffer data */
5718		tx_buffer->skb = NULL;
5719		dma_unmap_len_set(tx_buffer, len, 0);
5720
5721		/* clear last DMA location and unmap remaining buffers */
5722		while (tx_desc != eop_desc) {
5723			tx_buffer++;
5724			tx_desc++;
5725			i++;
5726			if (unlikely(!i)) {
5727				i -= tx_ring->count;
5728				tx_buffer = tx_ring->tx_buffer_info;
5729				tx_desc = IGB_TX_DESC(tx_ring, 0);
5730			}
5731
5732			/* unmap any remaining paged data */
5733			if (dma_unmap_len(tx_buffer, len)) {
5734				dma_unmap_page(tx_ring->dev,
5735					       dma_unmap_addr(tx_buffer, dma),
5736					       dma_unmap_len(tx_buffer, len),
5737					       DMA_TO_DEVICE);
5738				dma_unmap_len_set(tx_buffer, len, 0);
5739			}
5740		}
5741
5742		/* move us one more past the eop_desc for start of next pkt */
5743		tx_buffer++;
5744		tx_desc++;
5745		i++;
5746		if (unlikely(!i)) {
5747			i -= tx_ring->count;
5748			tx_buffer = tx_ring->tx_buffer_info;
5749			tx_desc = IGB_TX_DESC(tx_ring, 0);
5750		}
5751
5752		/* issue prefetch for next Tx descriptor */
5753		prefetch(tx_desc);
5754
5755		/* update budget accounting */
5756		budget--;
5757	} while (likely(budget));
5758
5759	netdev_tx_completed_queue(txring_txq(tx_ring),
5760				  total_packets, total_bytes);
5761	i += tx_ring->count;
5762	tx_ring->next_to_clean = i;
5763	u64_stats_update_begin(&tx_ring->tx_syncp);
5764	tx_ring->tx_stats.bytes += total_bytes;
5765	tx_ring->tx_stats.packets += total_packets;
5766	u64_stats_update_end(&tx_ring->tx_syncp);
5767	q_vector->tx.total_bytes += total_bytes;
5768	q_vector->tx.total_packets += total_packets;
5769
5770	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5771		struct e1000_hw *hw = &adapter->hw;
5772
5773		/* Detect a transmit hang in hardware, this serializes the
5774		 * check with the clearing of time_stamp and movement of i */
5775		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5776		if (tx_buffer->next_to_watch &&
5777		    time_after(jiffies, tx_buffer->time_stamp +
5778			       (adapter->tx_timeout_factor * HZ)) &&
5779		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5780
5781			/* detected Tx unit hang */
5782			dev_err(tx_ring->dev,
5783				"Detected Tx Unit Hang\n"
5784				"  Tx Queue             <%d>\n"
5785				"  TDH                  <%x>\n"
5786				"  TDT                  <%x>\n"
5787				"  next_to_use          <%x>\n"
5788				"  next_to_clean        <%x>\n"
5789				"buffer_info[next_to_clean]\n"
5790				"  time_stamp           <%lx>\n"
5791				"  next_to_watch        <%p>\n"
5792				"  jiffies              <%lx>\n"
5793				"  desc.status          <%x>\n",
5794				tx_ring->queue_index,
5795				rd32(E1000_TDH(tx_ring->reg_idx)),
5796				readl(tx_ring->tail),
5797				tx_ring->next_to_use,
5798				tx_ring->next_to_clean,
5799				tx_buffer->time_stamp,
5800				tx_buffer->next_to_watch,
5801				jiffies,
5802				tx_buffer->next_to_watch->wb.status);
5803			netif_stop_subqueue(tx_ring->netdev,
5804					    tx_ring->queue_index);
5805
5806			/* we are about to reset, no point in enabling stuff */
5807			return true;
5808		}
5809	}
5810
5811	if (unlikely(total_packets &&
5812		     netif_carrier_ok(tx_ring->netdev) &&
5813		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5814		/* Make sure that anybody stopping the queue after this
5815		 * sees the new next_to_clean.
5816		 */
5817		smp_mb();
5818		if (__netif_subqueue_stopped(tx_ring->netdev,
5819					     tx_ring->queue_index) &&
5820		    !(test_bit(__IGB_DOWN, &adapter->state))) {
5821			netif_wake_subqueue(tx_ring->netdev,
5822					    tx_ring->queue_index);
5823
5824			u64_stats_update_begin(&tx_ring->tx_syncp);
5825			tx_ring->tx_stats.restart_queue++;
5826			u64_stats_update_end(&tx_ring->tx_syncp);
5827		}
5828	}
5829
5830	return !!budget;
5831}
5832
5833/**
5834 * igb_reuse_rx_page - page flip buffer and store it back on the ring
5835 * @rx_ring: rx descriptor ring to store buffers on
5836 * @old_buff: donor buffer to have page reused
5837 *
5838 * Synchronizes page for reuse by the adapter
5839 **/
5840static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5841			      struct igb_rx_buffer *old_buff)
5842{
5843	struct igb_rx_buffer *new_buff;
5844	u16 nta = rx_ring->next_to_alloc;
5845
5846	new_buff = &rx_ring->rx_buffer_info[nta];
5847
5848	/* update, and store next to alloc */
5849	nta++;
5850	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5851
5852	/* transfer page from old buffer to new buffer */
5853	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5854
5855	/* sync the buffer for use by the device */
5856	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5857					 old_buff->page_offset,
5858					 PAGE_SIZE / 2,
5859					 DMA_FROM_DEVICE);
5860}
5861
5862/**
5863 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5864 * @rx_ring: rx descriptor ring to transact packets on
5865 * @rx_buffer: buffer containing page to add
5866 * @rx_desc: descriptor containing length of buffer written by hardware
5867 * @skb: sk_buff to place the data into
5868 *
5869 * This function will add the data contained in rx_buffer->page to the skb.
5870 * This is done either through a direct copy if the data in the buffer is
5871 * less than the skb header size, otherwise it will just attach the page as
5872 * a frag to the skb.
5873 *
5874 * The function will then update the page offset if necessary and return
5875 * true if the buffer can be reused by the adapter.
5876 **/
5877static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5878			    struct igb_rx_buffer *rx_buffer,
5879			    union e1000_adv_rx_desc *rx_desc,
5880			    struct sk_buff *skb)
5881{
5882	struct page *page = rx_buffer->page;
5883	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5884
5885	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5886		unsigned char *va = page_address(page) + rx_buffer->page_offset;
5887
5888#ifdef CONFIG_IGB_PTP
5889		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5890			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5891			va += IGB_TS_HDR_LEN;
5892			size -= IGB_TS_HDR_LEN;
5893		}
5894
5895#endif
5896		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5897
5898		/* we can reuse buffer as-is, just make sure it is local */
5899		if (likely(page_to_nid(page) == numa_node_id()))
5900			return true;
5901
5902		/* this page cannot be reused so discard it */
5903		put_page(page);
5904		return false;
5905	}
5906
5907	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5908			rx_buffer->page_offset, size, PAGE_SIZE / 2);
5909
5910	/* avoid re-using remote pages */
5911	if (unlikely(page_to_nid(page) != numa_node_id()))
5912		return false;
5913
5914	/* if we are only owner of page we can reuse it */
5915	if (unlikely(page_count(page) != 1))
5916		return false;
5917
5918	/* flip page offset to other buffer */
5919	rx_buffer->page_offset ^= PAGE_SIZE / 2;
5920
5921	/*
5922	 * since we are the only owner of the page and we need to
5923	 * increment it, just set the value to 2 in order to avoid
5924	 * an unnecessary locked operation
5925	 */
5926	atomic_set(&page->_count, 2);
5927
5928	return true;
5929}
5930
5931static inline void igb_rx_checksum(struct igb_ring *ring,
5932				   union e1000_adv_rx_desc *rx_desc,
5933				   struct sk_buff *skb)
5934{
5935	skb_checksum_none_assert(skb);
5936
5937	/* Ignore Checksum bit is set */
5938	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5939		return;
5940
5941	/* Rx checksum disabled via ethtool */
5942	if (!(ring->netdev->features & NETIF_F_RXCSUM))
5943		return;
5944
5945	/* TCP/UDP checksum error bit is set */
5946	if (igb_test_staterr(rx_desc,
5947			     E1000_RXDEXT_STATERR_TCPE |
5948			     E1000_RXDEXT_STATERR_IPE)) {
5949		/*
5950		 * work around errata with sctp packets where the TCPE aka
5951		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5952		 * packets, (aka let the stack check the crc32c)
5953		 */
5954		if (!((skb->len == 60) &&
5955		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
5956			u64_stats_update_begin(&ring->rx_syncp);
5957			ring->rx_stats.csum_err++;
5958			u64_stats_update_end(&ring->rx_syncp);
5959		}
5960		/* let the stack verify checksum errors */
5961		return;
5962	}
5963	/* It must be a TCP or UDP packet with a valid checksum */
5964	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5965				      E1000_RXD_STAT_UDPCS))
5966		skb->ip_summed = CHECKSUM_UNNECESSARY;
5967
5968	dev_dbg(ring->dev, "cksum success: bits %08X\n",
5969		le32_to_cpu(rx_desc->wb.upper.status_error));
5970}
5971
5972static inline void igb_rx_hash(struct igb_ring *ring,
5973			       union e1000_adv_rx_desc *rx_desc,
5974			       struct sk_buff *skb)
5975{
5976	if (ring->netdev->features & NETIF_F_RXHASH)
5977		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5978}
5979
5980/**
5981 * igb_get_headlen - determine size of header for LRO/GRO
5982 * @data: pointer to the start of the headers
5983 * @max_len: total length of section to find headers in
5984 *
5985 * This function is meant to determine the length of headers that will
5986 * be recognized by hardware for LRO, and GRO offloads.  The main
5987 * motivation of doing this is to only perform one pull for IPv4 TCP
5988 * packets so that we can do basic things like calculating the gso_size
5989 * based on the average data per packet.
5990 **/
5991static unsigned int igb_get_headlen(unsigned char *data,
5992				    unsigned int max_len)
5993{
5994	union {
5995		unsigned char *network;
5996		/* l2 headers */
5997		struct ethhdr *eth;
5998		struct vlan_hdr *vlan;
5999		/* l3 headers */
6000		struct iphdr *ipv4;
6001		struct ipv6hdr *ipv6;
6002	} hdr;
6003	__be16 protocol;
6004	u8 nexthdr = 0;	/* default to not TCP */
6005	u8 hlen;
6006
6007	/* this should never happen, but better safe than sorry */
6008	if (max_len < ETH_HLEN)
6009		return max_len;
6010
6011	/* initialize network frame pointer */
6012	hdr.network = data;
6013
6014	/* set first protocol and move network header forward */
6015	protocol = hdr.eth->h_proto;
6016	hdr.network += ETH_HLEN;
6017
6018	/* handle any vlan tag if present */
6019	if (protocol == __constant_htons(ETH_P_8021Q)) {
6020		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6021			return max_len;
6022
6023		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6024		hdr.network += VLAN_HLEN;
6025	}
6026
6027	/* handle L3 protocols */
6028	if (protocol == __constant_htons(ETH_P_IP)) {
6029		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6030			return max_len;
6031
6032		/* access ihl as a u8 to avoid unaligned access on ia64 */
6033		hlen = (hdr.network[0] & 0x0F) << 2;
6034
6035		/* verify hlen meets minimum size requirements */
6036		if (hlen < sizeof(struct iphdr))
6037			return hdr.network - data;
6038
6039		/* record next protocol */
6040		nexthdr = hdr.ipv4->protocol;
6041		hdr.network += hlen;
6042	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6043		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6044			return max_len;
6045
6046		/* record next protocol */
6047		nexthdr = hdr.ipv6->nexthdr;
6048		hdr.network += sizeof(struct ipv6hdr);
6049	} else {
6050		return hdr.network - data;
6051	}
6052
6053	/* finally sort out TCP */
6054	if (nexthdr == IPPROTO_TCP) {
6055		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6056			return max_len;
6057
6058		/* access doff as a u8 to avoid unaligned access on ia64 */
6059		hlen = (hdr.network[12] & 0xF0) >> 2;
6060
6061		/* verify hlen meets minimum size requirements */
6062		if (hlen < sizeof(struct tcphdr))
6063			return hdr.network - data;
6064
6065		hdr.network += hlen;
6066	} else if (nexthdr == IPPROTO_UDP) {
6067		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6068			return max_len;
6069
6070		hdr.network += sizeof(struct udphdr);
6071	}
6072
6073	/*
6074	 * If everything has gone correctly hdr.network should be the
6075	 * data section of the packet and will be the end of the header.
6076	 * If not then it probably represents the end of the last recognized
6077	 * header.
6078	 */
6079	if ((hdr.network - data) < max_len)
6080		return hdr.network - data;
6081	else
6082		return max_len;
6083}
6084
6085/**
6086 * igb_pull_tail - igb specific version of skb_pull_tail
6087 * @rx_ring: rx descriptor ring packet is being transacted on
6088 * @rx_desc: pointer to the EOP Rx descriptor
6089 * @skb: pointer to current skb being adjusted
6090 *
6091 * This function is an igb specific version of __pskb_pull_tail.  The
6092 * main difference between this version and the original function is that
6093 * this function can make several assumptions about the state of things
6094 * that allow for significant optimizations versus the standard function.
6095 * As a result we can do things like drop a frag and maintain an accurate
6096 * truesize for the skb.
6097 */
6098static void igb_pull_tail(struct igb_ring *rx_ring,
6099			  union e1000_adv_rx_desc *rx_desc,
6100			  struct sk_buff *skb)
6101{
6102	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6103	unsigned char *va;
6104	unsigned int pull_len;
6105
6106	/*
6107	 * it is valid to use page_address instead of kmap since we are
6108	 * working with pages allocated out of the lomem pool per
6109	 * alloc_page(GFP_ATOMIC)
6110	 */
6111	va = skb_frag_address(frag);
6112
6113#ifdef CONFIG_IGB_PTP
6114	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6115		/* retrieve timestamp from buffer */
6116		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6117
6118		/* update pointers to remove timestamp header */
6119		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6120		frag->page_offset += IGB_TS_HDR_LEN;
6121		skb->data_len -= IGB_TS_HDR_LEN;
6122		skb->len -= IGB_TS_HDR_LEN;
6123
6124		/* move va to start of packet data */
6125		va += IGB_TS_HDR_LEN;
6126	}
6127
6128#endif
6129	/*
6130	 * we need the header to contain the greater of either ETH_HLEN or
6131	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6132	 */
6133	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6134
6135	/* align pull length to size of long to optimize memcpy performance */
6136	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6137
6138	/* update all of the pointers */
6139	skb_frag_size_sub(frag, pull_len);
6140	frag->page_offset += pull_len;
6141	skb->data_len -= pull_len;
6142	skb->tail += pull_len;
6143}
6144
6145/**
6146 * igb_cleanup_headers - Correct corrupted or empty headers
6147 * @rx_ring: rx descriptor ring packet is being transacted on
6148 * @rx_desc: pointer to the EOP Rx descriptor
6149 * @skb: pointer to current skb being fixed
6150 *
6151 * Address the case where we are pulling data in on pages only
6152 * and as such no data is present in the skb header.
6153 *
6154 * In addition if skb is not at least 60 bytes we need to pad it so that
6155 * it is large enough to qualify as a valid Ethernet frame.
6156 *
6157 * Returns true if an error was encountered and skb was freed.
6158 **/
6159static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6160				union e1000_adv_rx_desc *rx_desc,
6161				struct sk_buff *skb)
6162{
6163
6164	if (unlikely((igb_test_staterr(rx_desc,
6165				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6166		struct net_device *netdev = rx_ring->netdev;
6167		if (!(netdev->features & NETIF_F_RXALL)) {
6168			dev_kfree_skb_any(skb);
6169			return true;
6170		}
6171	}
6172
6173	/* place header in linear portion of buffer */
6174	if (skb_is_nonlinear(skb))
6175		igb_pull_tail(rx_ring, rx_desc, skb);
6176
6177	/* if skb_pad returns an error the skb was freed */
6178	if (unlikely(skb->len < 60)) {
6179		int pad_len = 60 - skb->len;
6180
6181		if (skb_pad(skb, pad_len))
6182			return true;
6183		__skb_put(skb, pad_len);
6184	}
6185
6186	return false;
6187}
6188
6189/**
6190 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6191 * @rx_ring: rx descriptor ring packet is being transacted on
6192 * @rx_desc: pointer to the EOP Rx descriptor
6193 * @skb: pointer to current skb being populated
6194 *
6195 * This function checks the ring, descriptor, and packet information in
6196 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6197 * other fields within the skb.
6198 **/
6199static void igb_process_skb_fields(struct igb_ring *rx_ring,
6200				   union e1000_adv_rx_desc *rx_desc,
6201				   struct sk_buff *skb)
6202{
6203	struct net_device *dev = rx_ring->netdev;
6204
6205	igb_rx_hash(rx_ring, rx_desc, skb);
6206
6207	igb_rx_checksum(rx_ring, rx_desc, skb);
6208
6209#ifdef CONFIG_IGB_PTP
6210	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6211#endif /* CONFIG_IGB_PTP */
6212
6213	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6214	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6215		u16 vid;
6216		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6217		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6218			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6219		else
6220			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6221
6222		__vlan_hwaccel_put_tag(skb, vid);
6223	}
6224
6225	skb_record_rx_queue(skb, rx_ring->queue_index);
6226
6227	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6228}
6229
6230static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
6231{
6232	struct igb_ring *rx_ring = q_vector->rx.ring;
6233	union e1000_adv_rx_desc *rx_desc;
6234	struct sk_buff *skb = rx_ring->skb;
6235	unsigned int total_bytes = 0, total_packets = 0;
6236	u16 cleaned_count = igb_desc_unused(rx_ring);
6237	u16 i = rx_ring->next_to_clean;
6238
6239	rx_desc = IGB_RX_DESC(rx_ring, i);
6240
6241	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
6242		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
6243		struct page *page;
6244		union e1000_adv_rx_desc *next_rxd;
6245
6246		i++;
6247		if (i == rx_ring->count)
6248			i = 0;
6249
6250		next_rxd = IGB_RX_DESC(rx_ring, i);
6251		prefetch(next_rxd);
6252
6253		/*
6254		 * This memory barrier is needed to keep us from reading
6255		 * any other fields out of the rx_desc until we know the
6256		 * RXD_STAT_DD bit is set
6257		 */
6258		rmb();
6259
6260		page = buffer_info->page;
6261		prefetchw(page);
6262
6263		if (likely(!skb)) {
6264			void *page_addr = page_address(page) +
6265					  buffer_info->page_offset;
6266
6267			/* prefetch first cache line of first page */
6268			prefetch(page_addr);
6269#if L1_CACHE_BYTES < 128
6270			prefetch(page_addr + L1_CACHE_BYTES);
6271#endif
6272
6273			/* allocate a skb to store the frags */
6274			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6275							IGB_RX_HDR_LEN);
6276			if (unlikely(!skb)) {
6277				rx_ring->rx_stats.alloc_failed++;
6278				break;
6279			}
6280
6281			/*
6282			 * we will be copying header into skb->data in
6283			 * pskb_may_pull so it is in our interest to prefetch
6284			 * it now to avoid a possible cache miss
6285			 */
6286			prefetchw(skb->data);
6287		}
6288
6289		/* we are reusing so sync this buffer for CPU use */
6290		dma_sync_single_range_for_cpu(rx_ring->dev,
6291					      buffer_info->dma,
6292					      buffer_info->page_offset,
6293					      PAGE_SIZE / 2,
6294					      DMA_FROM_DEVICE);
6295
6296		/* pull page into skb */
6297		if (igb_add_rx_frag(rx_ring, buffer_info, rx_desc, skb)) {
6298			/* hand second half of page back to the ring */
6299			igb_reuse_rx_page(rx_ring, buffer_info);
6300		} else {
6301			/* we are not reusing the buffer so unmap it */
6302			dma_unmap_page(rx_ring->dev, buffer_info->dma,
6303				       PAGE_SIZE, DMA_FROM_DEVICE);
6304		}
6305
6306		/* clear contents of buffer_info */
6307		buffer_info->page = NULL;
6308
6309		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))
6310			goto next_desc;
6311
6312		/* verify the packet layout is correct */
6313		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6314			skb = NULL;
6315			continue;
6316		}
6317
6318		/* probably a little skewed due to removing CRC */
6319		total_bytes += skb->len;
6320		total_packets++;
6321
6322		/* populate checksum, timestamp, VLAN, and protocol */
6323		igb_process_skb_fields(rx_ring, rx_desc, skb);
6324
6325		napi_gro_receive(&q_vector->napi, skb);
6326
6327		/* reset skb pointer */
6328		skb = NULL;
6329
6330		budget--;
6331next_desc:
6332		if (!budget)
6333			break;
6334
6335		cleaned_count++;
6336		/* return some buffers to hardware, one at a time is too slow */
6337		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6338			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6339			cleaned_count = 0;
6340		}
6341
6342		/* use prefetched values */
6343		rx_desc = next_rxd;
6344	}
6345
6346	/* place incomplete frames back on ring for completion */
6347	rx_ring->skb = skb;
6348
6349	rx_ring->next_to_clean = i;
6350	u64_stats_update_begin(&rx_ring->rx_syncp);
6351	rx_ring->rx_stats.packets += total_packets;
6352	rx_ring->rx_stats.bytes += total_bytes;
6353	u64_stats_update_end(&rx_ring->rx_syncp);
6354	q_vector->rx.total_packets += total_packets;
6355	q_vector->rx.total_bytes += total_bytes;
6356
6357	if (cleaned_count)
6358		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6359
6360	return !!budget;
6361}
6362
6363static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6364				  struct igb_rx_buffer *bi)
6365{
6366	struct page *page = bi->page;
6367	dma_addr_t dma;
6368
6369	/* since we are recycling buffers we should seldom need to alloc */
6370	if (likely(page))
6371		return true;
6372
6373	/* alloc new page for storage */
6374	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6375	if (unlikely(!page)) {
6376		rx_ring->rx_stats.alloc_failed++;
6377		return false;
6378	}
6379
6380	/* map page for use */
6381	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6382
6383	/*
6384	 * if mapping failed free memory back to system since
6385	 * there isn't much point in holding memory we can't use
6386	 */
6387	if (dma_mapping_error(rx_ring->dev, dma)) {
6388		__free_page(page);
6389
6390		rx_ring->rx_stats.alloc_failed++;
6391		return false;
6392	}
6393
6394	bi->dma = dma;
6395	bi->page = page;
6396	bi->page_offset = 0;
6397
6398	return true;
6399}
6400
6401/**
6402 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6403 * @adapter: address of board private structure
6404 **/
6405void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6406{
6407	union e1000_adv_rx_desc *rx_desc;
6408	struct igb_rx_buffer *bi;
6409	u16 i = rx_ring->next_to_use;
6410
6411	/* nothing to do */
6412	if (!cleaned_count)
6413		return;
6414
6415	rx_desc = IGB_RX_DESC(rx_ring, i);
6416	bi = &rx_ring->rx_buffer_info[i];
6417	i -= rx_ring->count;
6418
6419	do {
6420		if (!igb_alloc_mapped_page(rx_ring, bi))
6421			break;
6422
6423		/*
6424		 * Refresh the desc even if buffer_addrs didn't change
6425		 * because each write-back erases this info.
6426		 */
6427		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6428
6429		rx_desc++;
6430		bi++;
6431		i++;
6432		if (unlikely(!i)) {
6433			rx_desc = IGB_RX_DESC(rx_ring, 0);
6434			bi = rx_ring->rx_buffer_info;
6435			i -= rx_ring->count;
6436		}
6437
6438		/* clear the hdr_addr for the next_to_use descriptor */
6439		rx_desc->read.hdr_addr = 0;
6440
6441		cleaned_count--;
6442	} while (cleaned_count);
6443
6444	i += rx_ring->count;
6445
6446	if (rx_ring->next_to_use != i) {
6447		/* record the next descriptor to use */
6448		rx_ring->next_to_use = i;
6449
6450		/* update next to alloc since we have filled the ring */
6451		rx_ring->next_to_alloc = i;
6452
6453		/*
6454		 * Force memory writes to complete before letting h/w
6455		 * know there are new descriptors to fetch.  (Only
6456		 * applicable for weak-ordered memory model archs,
6457		 * such as IA-64).
6458		 */
6459		wmb();
6460		writel(i, rx_ring->tail);
6461	}
6462}
6463
6464/**
6465 * igb_mii_ioctl -
6466 * @netdev:
6467 * @ifreq:
6468 * @cmd:
6469 **/
6470static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6471{
6472	struct igb_adapter *adapter = netdev_priv(netdev);
6473	struct mii_ioctl_data *data = if_mii(ifr);
6474
6475	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6476		return -EOPNOTSUPP;
6477
6478	switch (cmd) {
6479	case SIOCGMIIPHY:
6480		data->phy_id = adapter->hw.phy.addr;
6481		break;
6482	case SIOCGMIIREG:
6483		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6484		                     &data->val_out))
6485			return -EIO;
6486		break;
6487	case SIOCSMIIREG:
6488	default:
6489		return -EOPNOTSUPP;
6490	}
6491	return 0;
6492}
6493
6494/**
6495 * igb_ioctl -
6496 * @netdev:
6497 * @ifreq:
6498 * @cmd:
6499 **/
6500static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6501{
6502	switch (cmd) {
6503	case SIOCGMIIPHY:
6504	case SIOCGMIIREG:
6505	case SIOCSMIIREG:
6506		return igb_mii_ioctl(netdev, ifr, cmd);
6507#ifdef CONFIG_IGB_PTP
6508	case SIOCSHWTSTAMP:
6509		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6510#endif /* CONFIG_IGB_PTP */
6511	default:
6512		return -EOPNOTSUPP;
6513	}
6514}
6515
6516s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6517{
6518	struct igb_adapter *adapter = hw->back;
6519
6520	if (pcie_capability_read_word(adapter->pdev, reg, value))
6521		return -E1000_ERR_CONFIG;
6522
6523	return 0;
6524}
6525
6526s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6527{
6528	struct igb_adapter *adapter = hw->back;
6529
6530	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6531		return -E1000_ERR_CONFIG;
6532
6533	return 0;
6534}
6535
6536static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6537{
6538	struct igb_adapter *adapter = netdev_priv(netdev);
6539	struct e1000_hw *hw = &adapter->hw;
6540	u32 ctrl, rctl;
6541	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6542
6543	if (enable) {
6544		/* enable VLAN tag insert/strip */
6545		ctrl = rd32(E1000_CTRL);
6546		ctrl |= E1000_CTRL_VME;
6547		wr32(E1000_CTRL, ctrl);
6548
6549		/* Disable CFI check */
6550		rctl = rd32(E1000_RCTL);
6551		rctl &= ~E1000_RCTL_CFIEN;
6552		wr32(E1000_RCTL, rctl);
6553	} else {
6554		/* disable VLAN tag insert/strip */
6555		ctrl = rd32(E1000_CTRL);
6556		ctrl &= ~E1000_CTRL_VME;
6557		wr32(E1000_CTRL, ctrl);
6558	}
6559
6560	igb_rlpml_set(adapter);
6561}
6562
6563static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6564{
6565	struct igb_adapter *adapter = netdev_priv(netdev);
6566	struct e1000_hw *hw = &adapter->hw;
6567	int pf_id = adapter->vfs_allocated_count;
6568
6569	/* attempt to add filter to vlvf array */
6570	igb_vlvf_set(adapter, vid, true, pf_id);
6571
6572	/* add the filter since PF can receive vlans w/o entry in vlvf */
6573	igb_vfta_set(hw, vid, true);
6574
6575	set_bit(vid, adapter->active_vlans);
6576
6577	return 0;
6578}
6579
6580static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6581{
6582	struct igb_adapter *adapter = netdev_priv(netdev);
6583	struct e1000_hw *hw = &adapter->hw;
6584	int pf_id = adapter->vfs_allocated_count;
6585	s32 err;
6586
6587	/* remove vlan from VLVF table array */
6588	err = igb_vlvf_set(adapter, vid, false, pf_id);
6589
6590	/* if vid was not present in VLVF just remove it from table */
6591	if (err)
6592		igb_vfta_set(hw, vid, false);
6593
6594	clear_bit(vid, adapter->active_vlans);
6595
6596	return 0;
6597}
6598
6599static void igb_restore_vlan(struct igb_adapter *adapter)
6600{
6601	u16 vid;
6602
6603	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6604
6605	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6606		igb_vlan_rx_add_vid(adapter->netdev, vid);
6607}
6608
6609int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6610{
6611	struct pci_dev *pdev = adapter->pdev;
6612	struct e1000_mac_info *mac = &adapter->hw.mac;
6613
6614	mac->autoneg = 0;
6615
6616	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6617	 * for the switch() below to work */
6618	if ((spd & 1) || (dplx & ~1))
6619		goto err_inval;
6620
6621	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6622	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6623	    spd != SPEED_1000 &&
6624	    dplx != DUPLEX_FULL)
6625		goto err_inval;
6626
6627	switch (spd + dplx) {
6628	case SPEED_10 + DUPLEX_HALF:
6629		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6630		break;
6631	case SPEED_10 + DUPLEX_FULL:
6632		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6633		break;
6634	case SPEED_100 + DUPLEX_HALF:
6635		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6636		break;
6637	case SPEED_100 + DUPLEX_FULL:
6638		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6639		break;
6640	case SPEED_1000 + DUPLEX_FULL:
6641		mac->autoneg = 1;
6642		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6643		break;
6644	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6645	default:
6646		goto err_inval;
6647	}
6648
6649	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6650	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6651
6652	return 0;
6653
6654err_inval:
6655	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6656	return -EINVAL;
6657}
6658
6659static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6660			  bool runtime)
6661{
6662	struct net_device *netdev = pci_get_drvdata(pdev);
6663	struct igb_adapter *adapter = netdev_priv(netdev);
6664	struct e1000_hw *hw = &adapter->hw;
6665	u32 ctrl, rctl, status;
6666	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6667#ifdef CONFIG_PM
6668	int retval = 0;
6669#endif
6670
6671	netif_device_detach(netdev);
6672
6673	if (netif_running(netdev))
6674		__igb_close(netdev, true);
6675
6676	igb_clear_interrupt_scheme(adapter);
6677
6678#ifdef CONFIG_PM
6679	retval = pci_save_state(pdev);
6680	if (retval)
6681		return retval;
6682#endif
6683
6684	status = rd32(E1000_STATUS);
6685	if (status & E1000_STATUS_LU)
6686		wufc &= ~E1000_WUFC_LNKC;
6687
6688	if (wufc) {
6689		igb_setup_rctl(adapter);
6690		igb_set_rx_mode(netdev);
6691
6692		/* turn on all-multi mode if wake on multicast is enabled */
6693		if (wufc & E1000_WUFC_MC) {
6694			rctl = rd32(E1000_RCTL);
6695			rctl |= E1000_RCTL_MPE;
6696			wr32(E1000_RCTL, rctl);
6697		}
6698
6699		ctrl = rd32(E1000_CTRL);
6700		/* advertise wake from D3Cold */
6701		#define E1000_CTRL_ADVD3WUC 0x00100000
6702		/* phy power management enable */
6703		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6704		ctrl |= E1000_CTRL_ADVD3WUC;
6705		wr32(E1000_CTRL, ctrl);
6706
6707		/* Allow time for pending master requests to run */
6708		igb_disable_pcie_master(hw);
6709
6710		wr32(E1000_WUC, E1000_WUC_PME_EN);
6711		wr32(E1000_WUFC, wufc);
6712	} else {
6713		wr32(E1000_WUC, 0);
6714		wr32(E1000_WUFC, 0);
6715	}
6716
6717	*enable_wake = wufc || adapter->en_mng_pt;
6718	if (!*enable_wake)
6719		igb_power_down_link(adapter);
6720	else
6721		igb_power_up_link(adapter);
6722
6723	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6724	 * would have already happened in close and is redundant. */
6725	igb_release_hw_control(adapter);
6726
6727	pci_disable_device(pdev);
6728
6729	return 0;
6730}
6731
6732#ifdef CONFIG_PM
6733#ifdef CONFIG_PM_SLEEP
6734static int igb_suspend(struct device *dev)
6735{
6736	int retval;
6737	bool wake;
6738	struct pci_dev *pdev = to_pci_dev(dev);
6739
6740	retval = __igb_shutdown(pdev, &wake, 0);
6741	if (retval)
6742		return retval;
6743
6744	if (wake) {
6745		pci_prepare_to_sleep(pdev);
6746	} else {
6747		pci_wake_from_d3(pdev, false);
6748		pci_set_power_state(pdev, PCI_D3hot);
6749	}
6750
6751	return 0;
6752}
6753#endif /* CONFIG_PM_SLEEP */
6754
6755static int igb_resume(struct device *dev)
6756{
6757	struct pci_dev *pdev = to_pci_dev(dev);
6758	struct net_device *netdev = pci_get_drvdata(pdev);
6759	struct igb_adapter *adapter = netdev_priv(netdev);
6760	struct e1000_hw *hw = &adapter->hw;
6761	u32 err;
6762
6763	pci_set_power_state(pdev, PCI_D0);
6764	pci_restore_state(pdev);
6765	pci_save_state(pdev);
6766
6767	err = pci_enable_device_mem(pdev);
6768	if (err) {
6769		dev_err(&pdev->dev,
6770			"igb: Cannot enable PCI device from suspend\n");
6771		return err;
6772	}
6773	pci_set_master(pdev);
6774
6775	pci_enable_wake(pdev, PCI_D3hot, 0);
6776	pci_enable_wake(pdev, PCI_D3cold, 0);
6777
6778	if (igb_init_interrupt_scheme(adapter)) {
6779		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6780		return -ENOMEM;
6781	}
6782
6783	igb_reset(adapter);
6784
6785	/* let the f/w know that the h/w is now under the control of the
6786	 * driver. */
6787	igb_get_hw_control(adapter);
6788
6789	wr32(E1000_WUS, ~0);
6790
6791	if (netdev->flags & IFF_UP) {
6792		err = __igb_open(netdev, true);
6793		if (err)
6794			return err;
6795	}
6796
6797	netif_device_attach(netdev);
6798	return 0;
6799}
6800
6801#ifdef CONFIG_PM_RUNTIME
6802static int igb_runtime_idle(struct device *dev)
6803{
6804	struct pci_dev *pdev = to_pci_dev(dev);
6805	struct net_device *netdev = pci_get_drvdata(pdev);
6806	struct igb_adapter *adapter = netdev_priv(netdev);
6807
6808	if (!igb_has_link(adapter))
6809		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6810
6811	return -EBUSY;
6812}
6813
6814static int igb_runtime_suspend(struct device *dev)
6815{
6816	struct pci_dev *pdev = to_pci_dev(dev);
6817	int retval;
6818	bool wake;
6819
6820	retval = __igb_shutdown(pdev, &wake, 1);
6821	if (retval)
6822		return retval;
6823
6824	if (wake) {
6825		pci_prepare_to_sleep(pdev);
6826	} else {
6827		pci_wake_from_d3(pdev, false);
6828		pci_set_power_state(pdev, PCI_D3hot);
6829	}
6830
6831	return 0;
6832}
6833
6834static int igb_runtime_resume(struct device *dev)
6835{
6836	return igb_resume(dev);
6837}
6838#endif /* CONFIG_PM_RUNTIME */
6839#endif
6840
6841static void igb_shutdown(struct pci_dev *pdev)
6842{
6843	bool wake;
6844
6845	__igb_shutdown(pdev, &wake, 0);
6846
6847	if (system_state == SYSTEM_POWER_OFF) {
6848		pci_wake_from_d3(pdev, wake);
6849		pci_set_power_state(pdev, PCI_D3hot);
6850	}
6851}
6852
6853#ifdef CONFIG_NET_POLL_CONTROLLER
6854/*
6855 * Polling 'interrupt' - used by things like netconsole to send skbs
6856 * without having to re-enable interrupts. It's not called while
6857 * the interrupt routine is executing.
6858 */
6859static void igb_netpoll(struct net_device *netdev)
6860{
6861	struct igb_adapter *adapter = netdev_priv(netdev);
6862	struct e1000_hw *hw = &adapter->hw;
6863	struct igb_q_vector *q_vector;
6864	int i;
6865
6866	for (i = 0; i < adapter->num_q_vectors; i++) {
6867		q_vector = adapter->q_vector[i];
6868		if (adapter->msix_entries)
6869			wr32(E1000_EIMC, q_vector->eims_value);
6870		else
6871			igb_irq_disable(adapter);
6872		napi_schedule(&q_vector->napi);
6873	}
6874}
6875#endif /* CONFIG_NET_POLL_CONTROLLER */
6876
6877/**
6878 * igb_io_error_detected - called when PCI error is detected
6879 * @pdev: Pointer to PCI device
6880 * @state: The current pci connection state
6881 *
6882 * This function is called after a PCI bus error affecting
6883 * this device has been detected.
6884 */
6885static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6886					      pci_channel_state_t state)
6887{
6888	struct net_device *netdev = pci_get_drvdata(pdev);
6889	struct igb_adapter *adapter = netdev_priv(netdev);
6890
6891	netif_device_detach(netdev);
6892
6893	if (state == pci_channel_io_perm_failure)
6894		return PCI_ERS_RESULT_DISCONNECT;
6895
6896	if (netif_running(netdev))
6897		igb_down(adapter);
6898	pci_disable_device(pdev);
6899
6900	/* Request a slot slot reset. */
6901	return PCI_ERS_RESULT_NEED_RESET;
6902}
6903
6904/**
6905 * igb_io_slot_reset - called after the pci bus has been reset.
6906 * @pdev: Pointer to PCI device
6907 *
6908 * Restart the card from scratch, as if from a cold-boot. Implementation
6909 * resembles the first-half of the igb_resume routine.
6910 */
6911static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6912{
6913	struct net_device *netdev = pci_get_drvdata(pdev);
6914	struct igb_adapter *adapter = netdev_priv(netdev);
6915	struct e1000_hw *hw = &adapter->hw;
6916	pci_ers_result_t result;
6917	int err;
6918
6919	if (pci_enable_device_mem(pdev)) {
6920		dev_err(&pdev->dev,
6921			"Cannot re-enable PCI device after reset.\n");
6922		result = PCI_ERS_RESULT_DISCONNECT;
6923	} else {
6924		pci_set_master(pdev);
6925		pci_restore_state(pdev);
6926		pci_save_state(pdev);
6927
6928		pci_enable_wake(pdev, PCI_D3hot, 0);
6929		pci_enable_wake(pdev, PCI_D3cold, 0);
6930
6931		igb_reset(adapter);
6932		wr32(E1000_WUS, ~0);
6933		result = PCI_ERS_RESULT_RECOVERED;
6934	}
6935
6936	err = pci_cleanup_aer_uncorrect_error_status(pdev);
6937	if (err) {
6938		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6939		        "failed 0x%0x\n", err);
6940		/* non-fatal, continue */
6941	}
6942
6943	return result;
6944}
6945
6946/**
6947 * igb_io_resume - called when traffic can start flowing again.
6948 * @pdev: Pointer to PCI device
6949 *
6950 * This callback is called when the error recovery driver tells us that
6951 * its OK to resume normal operation. Implementation resembles the
6952 * second-half of the igb_resume routine.
6953 */
6954static void igb_io_resume(struct pci_dev *pdev)
6955{
6956	struct net_device *netdev = pci_get_drvdata(pdev);
6957	struct igb_adapter *adapter = netdev_priv(netdev);
6958
6959	if (netif_running(netdev)) {
6960		if (igb_up(adapter)) {
6961			dev_err(&pdev->dev, "igb_up failed after reset\n");
6962			return;
6963		}
6964	}
6965
6966	netif_device_attach(netdev);
6967
6968	/* let the f/w know that the h/w is now under the control of the
6969	 * driver. */
6970	igb_get_hw_control(adapter);
6971}
6972
6973static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6974                             u8 qsel)
6975{
6976	u32 rar_low, rar_high;
6977	struct e1000_hw *hw = &adapter->hw;
6978
6979	/* HW expects these in little endian so we reverse the byte order
6980	 * from network order (big endian) to little endian
6981	 */
6982	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6983	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6984	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6985
6986	/* Indicate to hardware the Address is Valid. */
6987	rar_high |= E1000_RAH_AV;
6988
6989	if (hw->mac.type == e1000_82575)
6990		rar_high |= E1000_RAH_POOL_1 * qsel;
6991	else
6992		rar_high |= E1000_RAH_POOL_1 << qsel;
6993
6994	wr32(E1000_RAL(index), rar_low);
6995	wrfl();
6996	wr32(E1000_RAH(index), rar_high);
6997	wrfl();
6998}
6999
7000static int igb_set_vf_mac(struct igb_adapter *adapter,
7001                          int vf, unsigned char *mac_addr)
7002{
7003	struct e1000_hw *hw = &adapter->hw;
7004	/* VF MAC addresses start at end of receive addresses and moves
7005	 * torwards the first, as a result a collision should not be possible */
7006	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7007
7008	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7009
7010	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7011
7012	return 0;
7013}
7014
7015static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7016{
7017	struct igb_adapter *adapter = netdev_priv(netdev);
7018	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7019		return -EINVAL;
7020	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7021	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7022	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7023				      " change effective.");
7024	if (test_bit(__IGB_DOWN, &adapter->state)) {
7025		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7026			 " but the PF device is not up.\n");
7027		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7028			 " attempting to use the VF device.\n");
7029	}
7030	return igb_set_vf_mac(adapter, vf, mac);
7031}
7032
7033static int igb_link_mbps(int internal_link_speed)
7034{
7035	switch (internal_link_speed) {
7036	case SPEED_100:
7037		return 100;
7038	case SPEED_1000:
7039		return 1000;
7040	default:
7041		return 0;
7042	}
7043}
7044
7045static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7046				  int link_speed)
7047{
7048	int rf_dec, rf_int;
7049	u32 bcnrc_val;
7050
7051	if (tx_rate != 0) {
7052		/* Calculate the rate factor values to set */
7053		rf_int = link_speed / tx_rate;
7054		rf_dec = (link_speed - (rf_int * tx_rate));
7055		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7056
7057		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7058		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7059		               E1000_RTTBCNRC_RF_INT_MASK);
7060		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7061	} else {
7062		bcnrc_val = 0;
7063	}
7064
7065	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7066	/*
7067	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7068	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7069	 */
7070	wr32(E1000_RTTBCNRM, 0x14);
7071	wr32(E1000_RTTBCNRC, bcnrc_val);
7072}
7073
7074static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7075{
7076	int actual_link_speed, i;
7077	bool reset_rate = false;
7078
7079	/* VF TX rate limit was not set or not supported */
7080	if ((adapter->vf_rate_link_speed == 0) ||
7081	    (adapter->hw.mac.type != e1000_82576))
7082		return;
7083
7084	actual_link_speed = igb_link_mbps(adapter->link_speed);
7085	if (actual_link_speed != adapter->vf_rate_link_speed) {
7086		reset_rate = true;
7087		adapter->vf_rate_link_speed = 0;
7088		dev_info(&adapter->pdev->dev,
7089		         "Link speed has been changed. VF Transmit "
7090		         "rate is disabled\n");
7091	}
7092
7093	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7094		if (reset_rate)
7095			adapter->vf_data[i].tx_rate = 0;
7096
7097		igb_set_vf_rate_limit(&adapter->hw, i,
7098		                      adapter->vf_data[i].tx_rate,
7099		                      actual_link_speed);
7100	}
7101}
7102
7103static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7104{
7105	struct igb_adapter *adapter = netdev_priv(netdev);
7106	struct e1000_hw *hw = &adapter->hw;
7107	int actual_link_speed;
7108
7109	if (hw->mac.type != e1000_82576)
7110		return -EOPNOTSUPP;
7111
7112	actual_link_speed = igb_link_mbps(adapter->link_speed);
7113	if ((vf >= adapter->vfs_allocated_count) ||
7114	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7115	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7116		return -EINVAL;
7117
7118	adapter->vf_rate_link_speed = actual_link_speed;
7119	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7120	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7121
7122	return 0;
7123}
7124
7125static int igb_ndo_get_vf_config(struct net_device *netdev,
7126				 int vf, struct ifla_vf_info *ivi)
7127{
7128	struct igb_adapter *adapter = netdev_priv(netdev);
7129	if (vf >= adapter->vfs_allocated_count)
7130		return -EINVAL;
7131	ivi->vf = vf;
7132	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7133	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7134	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7135	ivi->qos = adapter->vf_data[vf].pf_qos;
7136	return 0;
7137}
7138
7139static void igb_vmm_control(struct igb_adapter *adapter)
7140{
7141	struct e1000_hw *hw = &adapter->hw;
7142	u32 reg;
7143
7144	switch (hw->mac.type) {
7145	case e1000_82575:
7146	case e1000_i210:
7147	case e1000_i211:
7148	default:
7149		/* replication is not supported for 82575 */
7150		return;
7151	case e1000_82576:
7152		/* notify HW that the MAC is adding vlan tags */
7153		reg = rd32(E1000_DTXCTL);
7154		reg |= E1000_DTXCTL_VLAN_ADDED;
7155		wr32(E1000_DTXCTL, reg);
7156	case e1000_82580:
7157		/* enable replication vlan tag stripping */
7158		reg = rd32(E1000_RPLOLR);
7159		reg |= E1000_RPLOLR_STRVLAN;
7160		wr32(E1000_RPLOLR, reg);
7161	case e1000_i350:
7162		/* none of the above registers are supported by i350 */
7163		break;
7164	}
7165
7166	if (adapter->vfs_allocated_count) {
7167		igb_vmdq_set_loopback_pf(hw, true);
7168		igb_vmdq_set_replication_pf(hw, true);
7169		igb_vmdq_set_anti_spoofing_pf(hw, true,
7170						adapter->vfs_allocated_count);
7171	} else {
7172		igb_vmdq_set_loopback_pf(hw, false);
7173		igb_vmdq_set_replication_pf(hw, false);
7174	}
7175}
7176
7177static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7178{
7179	struct e1000_hw *hw = &adapter->hw;
7180	u32 dmac_thr;
7181	u16 hwm;
7182
7183	if (hw->mac.type > e1000_82580) {
7184		if (adapter->flags & IGB_FLAG_DMAC) {
7185			u32 reg;
7186
7187			/* force threshold to 0. */
7188			wr32(E1000_DMCTXTH, 0);
7189
7190			/*
7191			 * DMA Coalescing high water mark needs to be greater
7192			 * than the Rx threshold. Set hwm to PBA - max frame
7193			 * size in 16B units, capping it at PBA - 6KB.
7194			 */
7195			hwm = 64 * pba - adapter->max_frame_size / 16;
7196			if (hwm < 64 * (pba - 6))
7197				hwm = 64 * (pba - 6);
7198			reg = rd32(E1000_FCRTC);
7199			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7200			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7201				& E1000_FCRTC_RTH_COAL_MASK);
7202			wr32(E1000_FCRTC, reg);
7203
7204			/*
7205			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7206			 * frame size, capping it at PBA - 10KB.
7207			 */
7208			dmac_thr = pba - adapter->max_frame_size / 512;
7209			if (dmac_thr < pba - 10)
7210				dmac_thr = pba - 10;
7211			reg = rd32(E1000_DMACR);
7212			reg &= ~E1000_DMACR_DMACTHR_MASK;
7213			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7214				& E1000_DMACR_DMACTHR_MASK);
7215
7216			/* transition to L0x or L1 if available..*/
7217			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7218
7219			/* watchdog timer= +-1000 usec in 32usec intervals */
7220			reg |= (1000 >> 5);
7221
7222			/* Disable BMC-to-OS Watchdog Enable */
7223			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7224			wr32(E1000_DMACR, reg);
7225
7226			/*
7227			 * no lower threshold to disable
7228			 * coalescing(smart fifb)-UTRESH=0
7229			 */
7230			wr32(E1000_DMCRTRH, 0);
7231
7232			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7233
7234			wr32(E1000_DMCTLX, reg);
7235
7236			/*
7237			 * free space in tx packet buffer to wake from
7238			 * DMA coal
7239			 */
7240			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7241			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7242
7243			/*
7244			 * make low power state decision controlled
7245			 * by DMA coal
7246			 */
7247			reg = rd32(E1000_PCIEMISC);
7248			reg &= ~E1000_PCIEMISC_LX_DECISION;
7249			wr32(E1000_PCIEMISC, reg);
7250		} /* endif adapter->dmac is not disabled */
7251	} else if (hw->mac.type == e1000_82580) {
7252		u32 reg = rd32(E1000_PCIEMISC);
7253		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7254		wr32(E1000_DMACR, 0);
7255	}
7256}
7257
7258/* igb_main.c */
7259