igb_main.c revision d34a15abfe370252de83e14e763cf7fcb8c84585
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/bitops.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
36#include <linux/ipv6.h>
37#include <linux/slab.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/net_tstamp.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if.h>
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
46#include <linux/pci-aspm.h>
47#include <linux/delay.h>
48#include <linux/interrupt.h>
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
52#include <linux/if_ether.h>
53#include <linux/aer.h>
54#include <linux/prefetch.h>
55#include <linux/pm_runtime.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 0
64#define BUILD 5
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70				"Intel(R) Gigabit Ethernet Network Driver";
71static const char igb_copyright[] =
72				"Copyright (c) 2007-2014 Intel Corporation.";
73
74static const struct e1000_info *igb_info_tbl[] = {
75	[board_82575] = &e1000_82575_info,
76};
77
78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114	/* required last entry */
115	{0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
125static void igb_setup_mrqc(struct igb_adapter *);
126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127static void igb_remove(struct pci_dev *pdev);
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
131static void igb_configure(struct igb_adapter *);
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
138static void igb_set_rx_mode(struct net_device *);
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144						 struct rtnl_link_stats64 *stats);
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
147static void igb_set_uta(struct igb_adapter *adapter);
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
151static irqreturn_t igb_msix_ring(int irq, void *);
152#ifdef CONFIG_IGB_DCA
153static void igb_update_dca(struct igb_q_vector *);
154static void igb_setup_dca(struct igb_adapter *);
155#endif /* CONFIG_IGB_DCA */
156static int igb_poll(struct napi_struct *, int);
157static bool igb_clean_tx_irq(struct igb_q_vector *);
158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165static void igb_restore_vlan(struct igb_adapter *);
166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
169static void igb_vmm_control(struct igb_adapter *);
170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174			       int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177				   bool setting);
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179				 struct ifla_vf_info *ivi);
180static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182#ifdef CONFIG_PCI_IOV
183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221#endif /* CONFIG_PCI_IOV */
222
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224		     pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
228static const struct pci_error_handlers igb_err_handler = {
229	.error_detected = igb_io_error_detected,
230	.slot_reset = igb_io_slot_reset,
231	.resume = igb_io_resume,
232};
233
234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236static struct pci_driver igb_driver = {
237	.name     = igb_driver_name,
238	.id_table = igb_pci_tbl,
239	.probe    = igb_probe,
240	.remove   = igb_remove,
241#ifdef CONFIG_PM
242	.driver.pm = &igb_pm_ops,
243#endif
244	.shutdown = igb_shutdown,
245	.sriov_configure = igb_pci_sriov_configure,
246	.err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259struct igb_reg_info {
260	u32 ofs;
261	char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266	/* General Registers */
267	{E1000_CTRL, "CTRL"},
268	{E1000_STATUS, "STATUS"},
269	{E1000_CTRL_EXT, "CTRL_EXT"},
270
271	/* Interrupt Registers */
272	{E1000_ICR, "ICR"},
273
274	/* RX Registers */
275	{E1000_RCTL, "RCTL"},
276	{E1000_RDLEN(0), "RDLEN"},
277	{E1000_RDH(0), "RDH"},
278	{E1000_RDT(0), "RDT"},
279	{E1000_RXDCTL(0), "RXDCTL"},
280	{E1000_RDBAL(0), "RDBAL"},
281	{E1000_RDBAH(0), "RDBAH"},
282
283	/* TX Registers */
284	{E1000_TCTL, "TCTL"},
285	{E1000_TDBAL(0), "TDBAL"},
286	{E1000_TDBAH(0), "TDBAH"},
287	{E1000_TDLEN(0), "TDLEN"},
288	{E1000_TDH(0), "TDH"},
289	{E1000_TDT(0), "TDT"},
290	{E1000_TXDCTL(0), "TXDCTL"},
291	{E1000_TDFH, "TDFH"},
292	{E1000_TDFT, "TDFT"},
293	{E1000_TDFHS, "TDFHS"},
294	{E1000_TDFPC, "TDFPC"},
295
296	/* List Terminator */
297	{}
298};
299
300/* igb_regdump - register printout routine */
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303	int n = 0;
304	char rname[16];
305	u32 regs[8];
306
307	switch (reginfo->ofs) {
308	case E1000_RDLEN(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDLEN(n));
311		break;
312	case E1000_RDH(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RDH(n));
315		break;
316	case E1000_RDT(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDT(n));
319		break;
320	case E1000_RXDCTL(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RXDCTL(n));
323		break;
324	case E1000_RDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_RDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_RDBAH(n));
331		break;
332	case E1000_TDBAL(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_RDBAL(n));
335		break;
336	case E1000_TDBAH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDBAH(n));
339		break;
340	case E1000_TDLEN(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDLEN(n));
343		break;
344	case E1000_TDH(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TDH(n));
347		break;
348	case E1000_TDT(0):
349		for (n = 0; n < 4; n++)
350			regs[n] = rd32(E1000_TDT(n));
351		break;
352	case E1000_TXDCTL(0):
353		for (n = 0; n < 4; n++)
354			regs[n] = rd32(E1000_TXDCTL(n));
355		break;
356	default:
357		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358		return;
359	}
360
361	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363		regs[2], regs[3]);
364}
365
366/* igb_dump - Print registers, Tx-rings and Rx-rings */
367static void igb_dump(struct igb_adapter *adapter)
368{
369	struct net_device *netdev = adapter->netdev;
370	struct e1000_hw *hw = &adapter->hw;
371	struct igb_reg_info *reginfo;
372	struct igb_ring *tx_ring;
373	union e1000_adv_tx_desc *tx_desc;
374	struct my_u0 { u64 a; u64 b; } *u0;
375	struct igb_ring *rx_ring;
376	union e1000_adv_rx_desc *rx_desc;
377	u32 staterr;
378	u16 i, n;
379
380	if (!netif_msg_hw(adapter))
381		return;
382
383	/* Print netdevice Info */
384	if (netdev) {
385		dev_info(&adapter->pdev->dev, "Net device Info\n");
386		pr_info("Device Name     state            trans_start      last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440
441		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442			const char *next_desc;
443			struct igb_tx_buffer *buffer_info;
444			tx_desc = IGB_TX_DESC(tx_ring, i);
445			buffer_info = &tx_ring->tx_buffer_info[i];
446			u0 = (struct my_u0 *)tx_desc;
447			if (i == tx_ring->next_to_use &&
448			    i == tx_ring->next_to_clean)
449				next_desc = " NTC/U";
450			else if (i == tx_ring->next_to_use)
451				next_desc = " NTU";
452			else if (i == tx_ring->next_to_clean)
453				next_desc = " NTC";
454			else
455				next_desc = "";
456
457			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458				i, le64_to_cpu(u0->a),
459				le64_to_cpu(u0->b),
460				(u64)dma_unmap_addr(buffer_info, dma),
461				dma_unmap_len(buffer_info, len),
462				buffer_info->next_to_watch,
463				(u64)buffer_info->time_stamp,
464				buffer_info->skb, next_desc);
465
466			if (netif_msg_pktdata(adapter) && buffer_info->skb)
467				print_hex_dump(KERN_INFO, "",
468					DUMP_PREFIX_ADDRESS,
469					16, 1, buffer_info->skb->data,
470					dma_unmap_len(buffer_info, len),
471					true);
472		}
473	}
474
475	/* Print RX Rings Summary */
476rx_ring_summary:
477	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478	pr_info("Queue [NTU] [NTC]\n");
479	for (n = 0; n < adapter->num_rx_queues; n++) {
480		rx_ring = adapter->rx_ring[n];
481		pr_info(" %5d %5X %5X\n",
482			n, rx_ring->next_to_use, rx_ring->next_to_clean);
483	}
484
485	/* Print RX Rings */
486	if (!netif_msg_rx_status(adapter))
487		goto exit;
488
489	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491	/* Advanced Receive Descriptor (Read) Format
492	 *    63                                           1        0
493	 *    +-----------------------------------------------------+
494	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495	 *    +----------------------------------------------+------+
496	 *  8 |       Header Buffer Address [63:1]           |  DD  |
497	 *    +-----------------------------------------------------+
498	 *
499	 *
500	 * Advanced Receive Descriptor (Write-Back) Format
501	 *
502	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
503	 *   +------------------------------------------------------+
504	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505	 *   | Checksum   Ident  |   |           |    | Type | Type |
506	 *   +------------------------------------------------------+
507	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508	 *   +------------------------------------------------------+
509	 *   63       48 47    32 31            20 19               0
510	 */
511
512	for (n = 0; n < adapter->num_rx_queues; n++) {
513		rx_ring = adapter->rx_ring[n];
514		pr_info("------------------------------------\n");
515		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516		pr_info("------------------------------------\n");
517		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520		for (i = 0; i < rx_ring->count; i++) {
521			const char *next_desc;
522			struct igb_rx_buffer *buffer_info;
523			buffer_info = &rx_ring->rx_buffer_info[i];
524			rx_desc = IGB_RX_DESC(rx_ring, i);
525			u0 = (struct my_u0 *)rx_desc;
526			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528			if (i == rx_ring->next_to_use)
529				next_desc = " NTU";
530			else if (i == rx_ring->next_to_clean)
531				next_desc = " NTC";
532			else
533				next_desc = "";
534
535			if (staterr & E1000_RXD_STAT_DD) {
536				/* Descriptor Done */
537				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538					"RWB", i,
539					le64_to_cpu(u0->a),
540					le64_to_cpu(u0->b),
541					next_desc);
542			} else {
543				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544					"R  ", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					(u64)buffer_info->dma,
548					next_desc);
549
550				if (netif_msg_pktdata(adapter) &&
551				    buffer_info->dma && buffer_info->page) {
552					print_hex_dump(KERN_INFO, "",
553					  DUMP_PREFIX_ADDRESS,
554					  16, 1,
555					  page_address(buffer_info->page) +
556						      buffer_info->page_offset,
557					  IGB_RX_BUFSZ, true);
558				}
559			}
560		}
561	}
562
563exit:
564	return;
565}
566
567/**
568 *  igb_get_i2c_data - Reads the I2C SDA data bit
569 *  @hw: pointer to hardware structure
570 *  @i2cctl: Current value of I2CCTL register
571 *
572 *  Returns the I2C data bit value
573 **/
574static int igb_get_i2c_data(void *data)
575{
576	struct igb_adapter *adapter = (struct igb_adapter *)data;
577	struct e1000_hw *hw = &adapter->hw;
578	s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
581}
582
583/**
584 *  igb_set_i2c_data - Sets the I2C data bit
585 *  @data: pointer to hardware structure
586 *  @state: I2C data value (0 or 1) to set
587 *
588 *  Sets the I2C data bit
589 **/
590static void igb_set_i2c_data(void *data, int state)
591{
592	struct igb_adapter *adapter = (struct igb_adapter *)data;
593	struct e1000_hw *hw = &adapter->hw;
594	s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596	if (state)
597		i2cctl |= E1000_I2C_DATA_OUT;
598	else
599		i2cctl &= ~E1000_I2C_DATA_OUT;
600
601	i2cctl &= ~E1000_I2C_DATA_OE_N;
602	i2cctl |= E1000_I2C_CLK_OE_N;
603	wr32(E1000_I2CPARAMS, i2cctl);
604	wrfl();
605
606}
607
608/**
609 *  igb_set_i2c_clk - Sets the I2C SCL clock
610 *  @data: pointer to hardware structure
611 *  @state: state to set clock
612 *
613 *  Sets the I2C clock line to state
614 **/
615static void igb_set_i2c_clk(void *data, int state)
616{
617	struct igb_adapter *adapter = (struct igb_adapter *)data;
618	struct e1000_hw *hw = &adapter->hw;
619	s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621	if (state) {
622		i2cctl |= E1000_I2C_CLK_OUT;
623		i2cctl &= ~E1000_I2C_CLK_OE_N;
624	} else {
625		i2cctl &= ~E1000_I2C_CLK_OUT;
626		i2cctl &= ~E1000_I2C_CLK_OE_N;
627	}
628	wr32(E1000_I2CPARAMS, i2cctl);
629	wrfl();
630}
631
632/**
633 *  igb_get_i2c_clk - Gets the I2C SCL clock state
634 *  @data: pointer to hardware structure
635 *
636 *  Gets the I2C clock state
637 **/
638static int igb_get_i2c_clk(void *data)
639{
640	struct igb_adapter *adapter = (struct igb_adapter *)data;
641	struct e1000_hw *hw = &adapter->hw;
642	s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645}
646
647static const struct i2c_algo_bit_data igb_i2c_algo = {
648	.setsda		= igb_set_i2c_data,
649	.setscl		= igb_set_i2c_clk,
650	.getsda		= igb_get_i2c_data,
651	.getscl		= igb_get_i2c_clk,
652	.udelay		= 5,
653	.timeout	= 20,
654};
655
656/**
657 *  igb_get_hw_dev - return device
658 *  @hw: pointer to hardware structure
659 *
660 *  used by hardware layer to print debugging information
661 **/
662struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663{
664	struct igb_adapter *adapter = hw->back;
665	return adapter->netdev;
666}
667
668/**
669 *  igb_init_module - Driver Registration Routine
670 *
671 *  igb_init_module is the first routine called when the driver is
672 *  loaded. All it does is register with the PCI subsystem.
673 **/
674static int __init igb_init_module(void)
675{
676	int ret;
677	pr_info("%s - version %s\n",
678	       igb_driver_string, igb_driver_version);
679
680	pr_info("%s\n", igb_copyright);
681
682#ifdef CONFIG_IGB_DCA
683	dca_register_notify(&dca_notifier);
684#endif
685	ret = pci_register_driver(&igb_driver);
686	return ret;
687}
688
689module_init(igb_init_module);
690
691/**
692 *  igb_exit_module - Driver Exit Cleanup Routine
693 *
694 *  igb_exit_module is called just before the driver is removed
695 *  from memory.
696 **/
697static void __exit igb_exit_module(void)
698{
699#ifdef CONFIG_IGB_DCA
700	dca_unregister_notify(&dca_notifier);
701#endif
702	pci_unregister_driver(&igb_driver);
703}
704
705module_exit(igb_exit_module);
706
707#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708/**
709 *  igb_cache_ring_register - Descriptor ring to register mapping
710 *  @adapter: board private structure to initialize
711 *
712 *  Once we know the feature-set enabled for the device, we'll cache
713 *  the register offset the descriptor ring is assigned to.
714 **/
715static void igb_cache_ring_register(struct igb_adapter *adapter)
716{
717	int i = 0, j = 0;
718	u32 rbase_offset = adapter->vfs_allocated_count;
719
720	switch (adapter->hw.mac.type) {
721	case e1000_82576:
722		/* The queues are allocated for virtualization such that VF 0
723		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724		 * In order to avoid collision we start at the first free queue
725		 * and continue consuming queues in the same sequence
726		 */
727		if (adapter->vfs_allocated_count) {
728			for (; i < adapter->rss_queues; i++)
729				adapter->rx_ring[i]->reg_idx = rbase_offset +
730							       Q_IDX_82576(i);
731		}
732	case e1000_82575:
733	case e1000_82580:
734	case e1000_i350:
735	case e1000_i354:
736	case e1000_i210:
737	case e1000_i211:
738	default:
739		for (; i < adapter->num_rx_queues; i++)
740			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741		for (; j < adapter->num_tx_queues; j++)
742			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743		break;
744	}
745}
746
747u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748{
749	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751	u32 value = 0;
752
753	if (E1000_REMOVED(hw_addr))
754		return ~value;
755
756	value = readl(&hw_addr[reg]);
757
758	/* reads should not return all F's */
759	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760		struct net_device *netdev = igb->netdev;
761		hw->hw_addr = NULL;
762		netif_device_detach(netdev);
763		netdev_err(netdev, "PCIe link lost, device now detached\n");
764	}
765
766	return value;
767}
768
769/**
770 *  igb_write_ivar - configure ivar for given MSI-X vector
771 *  @hw: pointer to the HW structure
772 *  @msix_vector: vector number we are allocating to a given ring
773 *  @index: row index of IVAR register to write within IVAR table
774 *  @offset: column offset of in IVAR, should be multiple of 8
775 *
776 *  This function is intended to handle the writing of the IVAR register
777 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778 *  each containing an cause allocation for an Rx and Tx ring, and a
779 *  variable number of rows depending on the number of queues supported.
780 **/
781static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782			   int index, int offset)
783{
784	u32 ivar = array_rd32(E1000_IVAR0, index);
785
786	/* clear any bits that are currently set */
787	ivar &= ~((u32)0xFF << offset);
788
789	/* write vector and valid bit */
790	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792	array_wr32(E1000_IVAR0, index, ivar);
793}
794
795#define IGB_N0_QUEUE -1
796static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797{
798	struct igb_adapter *adapter = q_vector->adapter;
799	struct e1000_hw *hw = &adapter->hw;
800	int rx_queue = IGB_N0_QUEUE;
801	int tx_queue = IGB_N0_QUEUE;
802	u32 msixbm = 0;
803
804	if (q_vector->rx.ring)
805		rx_queue = q_vector->rx.ring->reg_idx;
806	if (q_vector->tx.ring)
807		tx_queue = q_vector->tx.ring->reg_idx;
808
809	switch (hw->mac.type) {
810	case e1000_82575:
811		/* The 82575 assigns vectors using a bitmask, which matches the
812		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813		 * or more queues to a vector, we write the appropriate bits
814		 * into the MSIXBM register for that vector.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818		if (tx_queue > IGB_N0_QUEUE)
819			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821			msixbm |= E1000_EIMS_OTHER;
822		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823		q_vector->eims_value = msixbm;
824		break;
825	case e1000_82576:
826		/* 82576 uses a table that essentially consists of 2 columns
827		 * with 8 rows.  The ordering is column-major so we use the
828		 * lower 3 bits as the row index, and the 4th bit as the
829		 * column offset.
830		 */
831		if (rx_queue > IGB_N0_QUEUE)
832			igb_write_ivar(hw, msix_vector,
833				       rx_queue & 0x7,
834				       (rx_queue & 0x8) << 1);
835		if (tx_queue > IGB_N0_QUEUE)
836			igb_write_ivar(hw, msix_vector,
837				       tx_queue & 0x7,
838				       ((tx_queue & 0x8) << 1) + 8);
839		q_vector->eims_value = 1 << msix_vector;
840		break;
841	case e1000_82580:
842	case e1000_i350:
843	case e1000_i354:
844	case e1000_i210:
845	case e1000_i211:
846		/* On 82580 and newer adapters the scheme is similar to 82576
847		 * however instead of ordering column-major we have things
848		 * ordered row-major.  So we traverse the table by using
849		 * bit 0 as the column offset, and the remaining bits as the
850		 * row index.
851		 */
852		if (rx_queue > IGB_N0_QUEUE)
853			igb_write_ivar(hw, msix_vector,
854				       rx_queue >> 1,
855				       (rx_queue & 0x1) << 4);
856		if (tx_queue > IGB_N0_QUEUE)
857			igb_write_ivar(hw, msix_vector,
858				       tx_queue >> 1,
859				       ((tx_queue & 0x1) << 4) + 8);
860		q_vector->eims_value = 1 << msix_vector;
861		break;
862	default:
863		BUG();
864		break;
865	}
866
867	/* add q_vector eims value to global eims_enable_mask */
868	adapter->eims_enable_mask |= q_vector->eims_value;
869
870	/* configure q_vector to set itr on first interrupt */
871	q_vector->set_itr = 1;
872}
873
874/**
875 *  igb_configure_msix - Configure MSI-X hardware
876 *  @adapter: board private structure to initialize
877 *
878 *  igb_configure_msix sets up the hardware to properly
879 *  generate MSI-X interrupts.
880 **/
881static void igb_configure_msix(struct igb_adapter *adapter)
882{
883	u32 tmp;
884	int i, vector = 0;
885	struct e1000_hw *hw = &adapter->hw;
886
887	adapter->eims_enable_mask = 0;
888
889	/* set vector for other causes, i.e. link changes */
890	switch (hw->mac.type) {
891	case e1000_82575:
892		tmp = rd32(E1000_CTRL_EXT);
893		/* enable MSI-X PBA support*/
894		tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896		/* Auto-Mask interrupts upon ICR read. */
897		tmp |= E1000_CTRL_EXT_EIAME;
898		tmp |= E1000_CTRL_EXT_IRCA;
899
900		wr32(E1000_CTRL_EXT, tmp);
901
902		/* enable msix_other interrupt */
903		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904		adapter->eims_other = E1000_EIMS_OTHER;
905
906		break;
907
908	case e1000_82576:
909	case e1000_82580:
910	case e1000_i350:
911	case e1000_i354:
912	case e1000_i210:
913	case e1000_i211:
914		/* Turn on MSI-X capability first, or our settings
915		 * won't stick.  And it will take days to debug.
916		 */
917		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
919		     E1000_GPIE_NSICR);
920
921		/* enable msix_other interrupt */
922		adapter->eims_other = 1 << vector;
923		tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925		wr32(E1000_IVAR_MISC, tmp);
926		break;
927	default:
928		/* do nothing, since nothing else supports MSI-X */
929		break;
930	} /* switch (hw->mac.type) */
931
932	adapter->eims_enable_mask |= adapter->eims_other;
933
934	for (i = 0; i < adapter->num_q_vectors; i++)
935		igb_assign_vector(adapter->q_vector[i], vector++);
936
937	wrfl();
938}
939
940/**
941 *  igb_request_msix - Initialize MSI-X interrupts
942 *  @adapter: board private structure to initialize
943 *
944 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 *  kernel.
946 **/
947static int igb_request_msix(struct igb_adapter *adapter)
948{
949	struct net_device *netdev = adapter->netdev;
950	struct e1000_hw *hw = &adapter->hw;
951	int i, err = 0, vector = 0, free_vector = 0;
952
953	err = request_irq(adapter->msix_entries[vector].vector,
954			  igb_msix_other, 0, netdev->name, adapter);
955	if (err)
956		goto err_out;
957
958	for (i = 0; i < adapter->num_q_vectors; i++) {
959		struct igb_q_vector *q_vector = adapter->q_vector[i];
960
961		vector++;
962
963		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
964
965		if (q_vector->rx.ring && q_vector->tx.ring)
966			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
967				q_vector->rx.ring->queue_index);
968		else if (q_vector->tx.ring)
969			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
970				q_vector->tx.ring->queue_index);
971		else if (q_vector->rx.ring)
972			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
973				q_vector->rx.ring->queue_index);
974		else
975			sprintf(q_vector->name, "%s-unused", netdev->name);
976
977		err = request_irq(adapter->msix_entries[vector].vector,
978				  igb_msix_ring, 0, q_vector->name,
979				  q_vector);
980		if (err)
981			goto err_free;
982	}
983
984	igb_configure_msix(adapter);
985	return 0;
986
987err_free:
988	/* free already assigned IRQs */
989	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
990
991	vector--;
992	for (i = 0; i < vector; i++) {
993		free_irq(adapter->msix_entries[free_vector++].vector,
994			 adapter->q_vector[i]);
995	}
996err_out:
997	return err;
998}
999
1000/**
1001 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1002 *  @adapter: board private structure to initialize
1003 *  @v_idx: Index of vector to be freed
1004 *
1005 *  This function frees the memory allocated to the q_vector.
1006 **/
1007static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1008{
1009	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1010
1011	adapter->q_vector[v_idx] = NULL;
1012
1013	/* igb_get_stats64() might access the rings on this vector,
1014	 * we must wait a grace period before freeing it.
1015	 */
1016	kfree_rcu(q_vector, rcu);
1017}
1018
1019/**
1020 *  igb_reset_q_vector - Reset config for interrupt vector
1021 *  @adapter: board private structure to initialize
1022 *  @v_idx: Index of vector to be reset
1023 *
1024 *  If NAPI is enabled it will delete any references to the
1025 *  NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028{
1029	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1032	 * allocated. So, q_vector is NULL so we should stop here.
1033	 */
1034	if (!q_vector)
1035		return;
1036
1037	if (q_vector->tx.ring)
1038		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040	if (q_vector->rx.ring)
1041		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043	netif_napi_del(&q_vector->napi);
1044
1045}
1046
1047static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048{
1049	int v_idx = adapter->num_q_vectors;
1050
1051	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052		pci_disable_msix(adapter->pdev);
1053	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054		pci_disable_msi(adapter->pdev);
1055
1056	while (v_idx--)
1057		igb_reset_q_vector(adapter, v_idx);
1058}
1059
1060/**
1061 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 *  @adapter: board private structure to initialize
1063 *
1064 *  This function frees the memory allocated to the q_vectors.  In addition if
1065 *  NAPI is enabled it will delete any references to the NAPI struct prior
1066 *  to freeing the q_vector.
1067 **/
1068static void igb_free_q_vectors(struct igb_adapter *adapter)
1069{
1070	int v_idx = adapter->num_q_vectors;
1071
1072	adapter->num_tx_queues = 0;
1073	adapter->num_rx_queues = 0;
1074	adapter->num_q_vectors = 0;
1075
1076	while (v_idx--) {
1077		igb_reset_q_vector(adapter, v_idx);
1078		igb_free_q_vector(adapter, v_idx);
1079	}
1080}
1081
1082/**
1083 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 *  @adapter: board private structure to initialize
1085 *
1086 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 *  MSI-X interrupts allocated.
1088 */
1089static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090{
1091	igb_free_q_vectors(adapter);
1092	igb_reset_interrupt_capability(adapter);
1093}
1094
1095/**
1096 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 *  @adapter: board private structure to initialize
1098 *  @msix: boolean value of MSIX capability
1099 *
1100 *  Attempt to configure interrupts using the best available
1101 *  capabilities of the hardware and kernel.
1102 **/
1103static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104{
1105	int err;
1106	int numvecs, i;
1107
1108	if (!msix)
1109		goto msi_only;
1110	adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112	/* Number of supported queues. */
1113	adapter->num_rx_queues = adapter->rss_queues;
1114	if (adapter->vfs_allocated_count)
1115		adapter->num_tx_queues = 1;
1116	else
1117		adapter->num_tx_queues = adapter->rss_queues;
1118
1119	/* start with one vector for every Rx queue */
1120	numvecs = adapter->num_rx_queues;
1121
1122	/* if Tx handler is separate add 1 for every Tx queue */
1123	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124		numvecs += adapter->num_tx_queues;
1125
1126	/* store the number of vectors reserved for queues */
1127	adapter->num_q_vectors = numvecs;
1128
1129	/* add 1 vector for link status interrupts */
1130	numvecs++;
1131	for (i = 0; i < numvecs; i++)
1132		adapter->msix_entries[i].entry = i;
1133
1134	err = pci_enable_msix_range(adapter->pdev,
1135				    adapter->msix_entries,
1136				    numvecs,
1137				    numvecs);
1138	if (err > 0)
1139		return;
1140
1141	igb_reset_interrupt_capability(adapter);
1142
1143	/* If we can't do MSI-X, try MSI */
1144msi_only:
1145	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146#ifdef CONFIG_PCI_IOV
1147	/* disable SR-IOV for non MSI-X configurations */
1148	if (adapter->vf_data) {
1149		struct e1000_hw *hw = &adapter->hw;
1150		/* disable iov and allow time for transactions to clear */
1151		pci_disable_sriov(adapter->pdev);
1152		msleep(500);
1153
1154		kfree(adapter->vf_data);
1155		adapter->vf_data = NULL;
1156		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157		wrfl();
1158		msleep(100);
1159		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160	}
1161#endif
1162	adapter->vfs_allocated_count = 0;
1163	adapter->rss_queues = 1;
1164	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165	adapter->num_rx_queues = 1;
1166	adapter->num_tx_queues = 1;
1167	adapter->num_q_vectors = 1;
1168	if (!pci_enable_msi(adapter->pdev))
1169		adapter->flags |= IGB_FLAG_HAS_MSI;
1170}
1171
1172static void igb_add_ring(struct igb_ring *ring,
1173			 struct igb_ring_container *head)
1174{
1175	head->ring = ring;
1176	head->count++;
1177}
1178
1179/**
1180 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 *  @adapter: board private structure to initialize
1182 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 *  @v_idx: index of vector in adapter struct
1184 *  @txr_count: total number of Tx rings to allocate
1185 *  @txr_idx: index of first Tx ring to allocate
1186 *  @rxr_count: total number of Rx rings to allocate
1187 *  @rxr_idx: index of first Rx ring to allocate
1188 *
1189 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190 **/
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192			      int v_count, int v_idx,
1193			      int txr_count, int txr_idx,
1194			      int rxr_count, int rxr_idx)
1195{
1196	struct igb_q_vector *q_vector;
1197	struct igb_ring *ring;
1198	int ring_count, size;
1199
1200	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201	if (txr_count > 1 || rxr_count > 1)
1202		return -ENOMEM;
1203
1204	ring_count = txr_count + rxr_count;
1205	size = sizeof(struct igb_q_vector) +
1206	       (sizeof(struct igb_ring) * ring_count);
1207
1208	/* allocate q_vector and rings */
1209	q_vector = adapter->q_vector[v_idx];
1210	if (!q_vector)
1211		q_vector = kzalloc(size, GFP_KERNEL);
1212	if (!q_vector)
1213		return -ENOMEM;
1214
1215	/* initialize NAPI */
1216	netif_napi_add(adapter->netdev, &q_vector->napi,
1217		       igb_poll, 64);
1218
1219	/* tie q_vector and adapter together */
1220	adapter->q_vector[v_idx] = q_vector;
1221	q_vector->adapter = adapter;
1222
1223	/* initialize work limits */
1224	q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226	/* initialize ITR configuration */
1227	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228	q_vector->itr_val = IGB_START_ITR;
1229
1230	/* initialize pointer to rings */
1231	ring = q_vector->ring;
1232
1233	/* intialize ITR */
1234	if (rxr_count) {
1235		/* rx or rx/tx vector */
1236		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237			q_vector->itr_val = adapter->rx_itr_setting;
1238	} else {
1239		/* tx only vector */
1240		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241			q_vector->itr_val = adapter->tx_itr_setting;
1242	}
1243
1244	if (txr_count) {
1245		/* assign generic ring traits */
1246		ring->dev = &adapter->pdev->dev;
1247		ring->netdev = adapter->netdev;
1248
1249		/* configure backlink on ring */
1250		ring->q_vector = q_vector;
1251
1252		/* update q_vector Tx values */
1253		igb_add_ring(ring, &q_vector->tx);
1254
1255		/* For 82575, context index must be unique per ring. */
1256		if (adapter->hw.mac.type == e1000_82575)
1257			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259		/* apply Tx specific ring traits */
1260		ring->count = adapter->tx_ring_count;
1261		ring->queue_index = txr_idx;
1262
1263		u64_stats_init(&ring->tx_syncp);
1264		u64_stats_init(&ring->tx_syncp2);
1265
1266		/* assign ring to adapter */
1267		adapter->tx_ring[txr_idx] = ring;
1268
1269		/* push pointer to next ring */
1270		ring++;
1271	}
1272
1273	if (rxr_count) {
1274		/* assign generic ring traits */
1275		ring->dev = &adapter->pdev->dev;
1276		ring->netdev = adapter->netdev;
1277
1278		/* configure backlink on ring */
1279		ring->q_vector = q_vector;
1280
1281		/* update q_vector Rx values */
1282		igb_add_ring(ring, &q_vector->rx);
1283
1284		/* set flag indicating ring supports SCTP checksum offload */
1285		if (adapter->hw.mac.type >= e1000_82576)
1286			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288		/*
1289		 * On i350, i354, i210, and i211, loopback VLAN packets
1290		 * have the tag byte-swapped.
1291		 */
1292		if (adapter->hw.mac.type >= e1000_i350)
1293			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294
1295		/* apply Rx specific ring traits */
1296		ring->count = adapter->rx_ring_count;
1297		ring->queue_index = rxr_idx;
1298
1299		u64_stats_init(&ring->rx_syncp);
1300
1301		/* assign ring to adapter */
1302		adapter->rx_ring[rxr_idx] = ring;
1303	}
1304
1305	return 0;
1306}
1307
1308
1309/**
1310 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1311 *  @adapter: board private structure to initialize
1312 *
1313 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1314 *  return -ENOMEM.
1315 **/
1316static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317{
1318	int q_vectors = adapter->num_q_vectors;
1319	int rxr_remaining = adapter->num_rx_queues;
1320	int txr_remaining = adapter->num_tx_queues;
1321	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1322	int err;
1323
1324	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1325		for (; rxr_remaining; v_idx++) {
1326			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1327						 0, 0, 1, rxr_idx);
1328
1329			if (err)
1330				goto err_out;
1331
1332			/* update counts and index */
1333			rxr_remaining--;
1334			rxr_idx++;
1335		}
1336	}
1337
1338	for (; v_idx < q_vectors; v_idx++) {
1339		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1340		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342					 tqpv, txr_idx, rqpv, rxr_idx);
1343
1344		if (err)
1345			goto err_out;
1346
1347		/* update counts and index */
1348		rxr_remaining -= rqpv;
1349		txr_remaining -= tqpv;
1350		rxr_idx++;
1351		txr_idx++;
1352	}
1353
1354	return 0;
1355
1356err_out:
1357	adapter->num_tx_queues = 0;
1358	adapter->num_rx_queues = 0;
1359	adapter->num_q_vectors = 0;
1360
1361	while (v_idx--)
1362		igb_free_q_vector(adapter, v_idx);
1363
1364	return -ENOMEM;
1365}
1366
1367/**
1368 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 *  @adapter: board private structure to initialize
1370 *  @msix: boolean value of MSIX capability
1371 *
1372 *  This function initializes the interrupts and allocates all of the queues.
1373 **/
1374static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375{
1376	struct pci_dev *pdev = adapter->pdev;
1377	int err;
1378
1379	igb_set_interrupt_capability(adapter, msix);
1380
1381	err = igb_alloc_q_vectors(adapter);
1382	if (err) {
1383		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384		goto err_alloc_q_vectors;
1385	}
1386
1387	igb_cache_ring_register(adapter);
1388
1389	return 0;
1390
1391err_alloc_q_vectors:
1392	igb_reset_interrupt_capability(adapter);
1393	return err;
1394}
1395
1396/**
1397 *  igb_request_irq - initialize interrupts
1398 *  @adapter: board private structure to initialize
1399 *
1400 *  Attempts to configure interrupts using the best available
1401 *  capabilities of the hardware and kernel.
1402 **/
1403static int igb_request_irq(struct igb_adapter *adapter)
1404{
1405	struct net_device *netdev = adapter->netdev;
1406	struct pci_dev *pdev = adapter->pdev;
1407	int err = 0;
1408
1409	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410		err = igb_request_msix(adapter);
1411		if (!err)
1412			goto request_done;
1413		/* fall back to MSI */
1414		igb_free_all_tx_resources(adapter);
1415		igb_free_all_rx_resources(adapter);
1416
1417		igb_clear_interrupt_scheme(adapter);
1418		err = igb_init_interrupt_scheme(adapter, false);
1419		if (err)
1420			goto request_done;
1421
1422		igb_setup_all_tx_resources(adapter);
1423		igb_setup_all_rx_resources(adapter);
1424		igb_configure(adapter);
1425	}
1426
1427	igb_assign_vector(adapter->q_vector[0], 0);
1428
1429	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430		err = request_irq(pdev->irq, igb_intr_msi, 0,
1431				  netdev->name, adapter);
1432		if (!err)
1433			goto request_done;
1434
1435		/* fall back to legacy interrupts */
1436		igb_reset_interrupt_capability(adapter);
1437		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438	}
1439
1440	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441			  netdev->name, adapter);
1442
1443	if (err)
1444		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445			err);
1446
1447request_done:
1448	return err;
1449}
1450
1451static void igb_free_irq(struct igb_adapter *adapter)
1452{
1453	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454		int vector = 0, i;
1455
1456		free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458		for (i = 0; i < adapter->num_q_vectors; i++)
1459			free_irq(adapter->msix_entries[vector++].vector,
1460				 adapter->q_vector[i]);
1461	} else {
1462		free_irq(adapter->pdev->irq, adapter);
1463	}
1464}
1465
1466/**
1467 *  igb_irq_disable - Mask off interrupt generation on the NIC
1468 *  @adapter: board private structure
1469 **/
1470static void igb_irq_disable(struct igb_adapter *adapter)
1471{
1472	struct e1000_hw *hw = &adapter->hw;
1473
1474	/* we need to be careful when disabling interrupts.  The VFs are also
1475	 * mapped into these registers and so clearing the bits can cause
1476	 * issues on the VF drivers so we only need to clear what we set
1477	 */
1478	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479		u32 regval = rd32(E1000_EIAM);
1480		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482		regval = rd32(E1000_EIAC);
1483		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484	}
1485
1486	wr32(E1000_IAM, 0);
1487	wr32(E1000_IMC, ~0);
1488	wrfl();
1489	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490		int i;
1491		for (i = 0; i < adapter->num_q_vectors; i++)
1492			synchronize_irq(adapter->msix_entries[i].vector);
1493	} else {
1494		synchronize_irq(adapter->pdev->irq);
1495	}
1496}
1497
1498/**
1499 *  igb_irq_enable - Enable default interrupt generation settings
1500 *  @adapter: board private structure
1501 **/
1502static void igb_irq_enable(struct igb_adapter *adapter)
1503{
1504	struct e1000_hw *hw = &adapter->hw;
1505
1506	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508		u32 regval = rd32(E1000_EIAC);
1509		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1510		regval = rd32(E1000_EIAM);
1511		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1512		wr32(E1000_EIMS, adapter->eims_enable_mask);
1513		if (adapter->vfs_allocated_count) {
1514			wr32(E1000_MBVFIMR, 0xFF);
1515			ims |= E1000_IMS_VMMB;
1516		}
1517		wr32(E1000_IMS, ims);
1518	} else {
1519		wr32(E1000_IMS, IMS_ENABLE_MASK |
1520				E1000_IMS_DRSTA);
1521		wr32(E1000_IAM, IMS_ENABLE_MASK |
1522				E1000_IMS_DRSTA);
1523	}
1524}
1525
1526static void igb_update_mng_vlan(struct igb_adapter *adapter)
1527{
1528	struct e1000_hw *hw = &adapter->hw;
1529	u16 vid = adapter->hw.mng_cookie.vlan_id;
1530	u16 old_vid = adapter->mng_vlan_id;
1531
1532	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1533		/* add VID to filter table */
1534		igb_vfta_set(hw, vid, true);
1535		adapter->mng_vlan_id = vid;
1536	} else {
1537		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1538	}
1539
1540	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1541	    (vid != old_vid) &&
1542	    !test_bit(old_vid, adapter->active_vlans)) {
1543		/* remove VID from filter table */
1544		igb_vfta_set(hw, old_vid, false);
1545	}
1546}
1547
1548/**
1549 *  igb_release_hw_control - release control of the h/w to f/w
1550 *  @adapter: address of board private structure
1551 *
1552 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1553 *  For ASF and Pass Through versions of f/w this means that the
1554 *  driver is no longer loaded.
1555 **/
1556static void igb_release_hw_control(struct igb_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559	u32 ctrl_ext;
1560
1561	/* Let firmware take over control of h/w */
1562	ctrl_ext = rd32(E1000_CTRL_EXT);
1563	wr32(E1000_CTRL_EXT,
1564			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1565}
1566
1567/**
1568 *  igb_get_hw_control - get control of the h/w from f/w
1569 *  @adapter: address of board private structure
1570 *
1571 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1572 *  For ASF and Pass Through versions of f/w this means that
1573 *  the driver is loaded.
1574 **/
1575static void igb_get_hw_control(struct igb_adapter *adapter)
1576{
1577	struct e1000_hw *hw = &adapter->hw;
1578	u32 ctrl_ext;
1579
1580	/* Let firmware know the driver has taken over */
1581	ctrl_ext = rd32(E1000_CTRL_EXT);
1582	wr32(E1000_CTRL_EXT,
1583			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1584}
1585
1586/**
1587 *  igb_configure - configure the hardware for RX and TX
1588 *  @adapter: private board structure
1589 **/
1590static void igb_configure(struct igb_adapter *adapter)
1591{
1592	struct net_device *netdev = adapter->netdev;
1593	int i;
1594
1595	igb_get_hw_control(adapter);
1596	igb_set_rx_mode(netdev);
1597
1598	igb_restore_vlan(adapter);
1599
1600	igb_setup_tctl(adapter);
1601	igb_setup_mrqc(adapter);
1602	igb_setup_rctl(adapter);
1603
1604	igb_configure_tx(adapter);
1605	igb_configure_rx(adapter);
1606
1607	igb_rx_fifo_flush_82575(&adapter->hw);
1608
1609	/* call igb_desc_unused which always leaves
1610	 * at least 1 descriptor unused to make sure
1611	 * next_to_use != next_to_clean
1612	 */
1613	for (i = 0; i < adapter->num_rx_queues; i++) {
1614		struct igb_ring *ring = adapter->rx_ring[i];
1615		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1616	}
1617}
1618
1619/**
1620 *  igb_power_up_link - Power up the phy/serdes link
1621 *  @adapter: address of board private structure
1622 **/
1623void igb_power_up_link(struct igb_adapter *adapter)
1624{
1625	igb_reset_phy(&adapter->hw);
1626
1627	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1628		igb_power_up_phy_copper(&adapter->hw);
1629	else
1630		igb_power_up_serdes_link_82575(&adapter->hw);
1631}
1632
1633/**
1634 *  igb_power_down_link - Power down the phy/serdes link
1635 *  @adapter: address of board private structure
1636 */
1637static void igb_power_down_link(struct igb_adapter *adapter)
1638{
1639	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1640		igb_power_down_phy_copper_82575(&adapter->hw);
1641	else
1642		igb_shutdown_serdes_link_82575(&adapter->hw);
1643}
1644
1645/**
1646 * Detect and switch function for Media Auto Sense
1647 * @adapter: address of the board private structure
1648 **/
1649static void igb_check_swap_media(struct igb_adapter *adapter)
1650{
1651	struct e1000_hw *hw = &adapter->hw;
1652	u32 ctrl_ext, connsw;
1653	bool swap_now = false;
1654
1655	ctrl_ext = rd32(E1000_CTRL_EXT);
1656	connsw = rd32(E1000_CONNSW);
1657
1658	/* need to live swap if current media is copper and we have fiber/serdes
1659	 * to go to.
1660	 */
1661
1662	if ((hw->phy.media_type == e1000_media_type_copper) &&
1663	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1664		swap_now = true;
1665	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1666		/* copper signal takes time to appear */
1667		if (adapter->copper_tries < 4) {
1668			adapter->copper_tries++;
1669			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1670			wr32(E1000_CONNSW, connsw);
1671			return;
1672		} else {
1673			adapter->copper_tries = 0;
1674			if ((connsw & E1000_CONNSW_PHYSD) &&
1675			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1676				swap_now = true;
1677				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1678				wr32(E1000_CONNSW, connsw);
1679			}
1680		}
1681	}
1682
1683	if (!swap_now)
1684		return;
1685
1686	switch (hw->phy.media_type) {
1687	case e1000_media_type_copper:
1688		netdev_info(adapter->netdev,
1689			"MAS: changing media to fiber/serdes\n");
1690		ctrl_ext |=
1691			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1692		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1693		adapter->copper_tries = 0;
1694		break;
1695	case e1000_media_type_internal_serdes:
1696	case e1000_media_type_fiber:
1697		netdev_info(adapter->netdev,
1698			"MAS: changing media to copper\n");
1699		ctrl_ext &=
1700			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702		break;
1703	default:
1704		/* shouldn't get here during regular operation */
1705		netdev_err(adapter->netdev,
1706			"AMS: Invalid media type found, returning\n");
1707		break;
1708	}
1709	wr32(E1000_CTRL_EXT, ctrl_ext);
1710}
1711
1712/**
1713 *  igb_up - Open the interface and prepare it to handle traffic
1714 *  @adapter: board private structure
1715 **/
1716int igb_up(struct igb_adapter *adapter)
1717{
1718	struct e1000_hw *hw = &adapter->hw;
1719	int i;
1720
1721	/* hardware has been reset, we need to reload some things */
1722	igb_configure(adapter);
1723
1724	clear_bit(__IGB_DOWN, &adapter->state);
1725
1726	for (i = 0; i < adapter->num_q_vectors; i++)
1727		napi_enable(&(adapter->q_vector[i]->napi));
1728
1729	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1730		igb_configure_msix(adapter);
1731	else
1732		igb_assign_vector(adapter->q_vector[0], 0);
1733
1734	/* Clear any pending interrupts. */
1735	rd32(E1000_ICR);
1736	igb_irq_enable(adapter);
1737
1738	/* notify VFs that reset has been completed */
1739	if (adapter->vfs_allocated_count) {
1740		u32 reg_data = rd32(E1000_CTRL_EXT);
1741		reg_data |= E1000_CTRL_EXT_PFRSTD;
1742		wr32(E1000_CTRL_EXT, reg_data);
1743	}
1744
1745	netif_tx_start_all_queues(adapter->netdev);
1746
1747	/* start the watchdog. */
1748	hw->mac.get_link_status = 1;
1749	schedule_work(&adapter->watchdog_task);
1750
1751	if ((adapter->flags & IGB_FLAG_EEE) &&
1752	    (!hw->dev_spec._82575.eee_disable))
1753		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1754
1755	return 0;
1756}
1757
1758void igb_down(struct igb_adapter *adapter)
1759{
1760	struct net_device *netdev = adapter->netdev;
1761	struct e1000_hw *hw = &adapter->hw;
1762	u32 tctl, rctl;
1763	int i;
1764
1765	/* signal that we're down so the interrupt handler does not
1766	 * reschedule our watchdog timer
1767	 */
1768	set_bit(__IGB_DOWN, &adapter->state);
1769
1770	/* disable receives in the hardware */
1771	rctl = rd32(E1000_RCTL);
1772	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1773	/* flush and sleep below */
1774
1775	netif_tx_stop_all_queues(netdev);
1776
1777	/* disable transmits in the hardware */
1778	tctl = rd32(E1000_TCTL);
1779	tctl &= ~E1000_TCTL_EN;
1780	wr32(E1000_TCTL, tctl);
1781	/* flush both disables and wait for them to finish */
1782	wrfl();
1783	msleep(10);
1784
1785	igb_irq_disable(adapter);
1786
1787	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1788
1789	for (i = 0; i < adapter->num_q_vectors; i++) {
1790		napi_synchronize(&(adapter->q_vector[i]->napi));
1791		napi_disable(&(adapter->q_vector[i]->napi));
1792	}
1793
1794
1795	del_timer_sync(&adapter->watchdog_timer);
1796	del_timer_sync(&adapter->phy_info_timer);
1797
1798	netif_carrier_off(netdev);
1799
1800	/* record the stats before reset*/
1801	spin_lock(&adapter->stats64_lock);
1802	igb_update_stats(adapter, &adapter->stats64);
1803	spin_unlock(&adapter->stats64_lock);
1804
1805	adapter->link_speed = 0;
1806	adapter->link_duplex = 0;
1807
1808	if (!pci_channel_offline(adapter->pdev))
1809		igb_reset(adapter);
1810	igb_clean_all_tx_rings(adapter);
1811	igb_clean_all_rx_rings(adapter);
1812#ifdef CONFIG_IGB_DCA
1813
1814	/* since we reset the hardware DCA settings were cleared */
1815	igb_setup_dca(adapter);
1816#endif
1817}
1818
1819void igb_reinit_locked(struct igb_adapter *adapter)
1820{
1821	WARN_ON(in_interrupt());
1822	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1823		msleep(1);
1824	igb_down(adapter);
1825	igb_up(adapter);
1826	clear_bit(__IGB_RESETTING, &adapter->state);
1827}
1828
1829/** igb_enable_mas - Media Autosense re-enable after swap
1830 *
1831 * @adapter: adapter struct
1832 **/
1833static s32 igb_enable_mas(struct igb_adapter *adapter)
1834{
1835	struct e1000_hw *hw = &adapter->hw;
1836	u32 connsw;
1837	s32 ret_val = 0;
1838
1839	connsw = rd32(E1000_CONNSW);
1840	if (!(hw->phy.media_type == e1000_media_type_copper))
1841		return ret_val;
1842
1843	/* configure for SerDes media detect */
1844	if (!(connsw & E1000_CONNSW_SERDESD)) {
1845		connsw |= E1000_CONNSW_ENRGSRC;
1846		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1847		wr32(E1000_CONNSW, connsw);
1848		wrfl();
1849	} else if (connsw & E1000_CONNSW_SERDESD) {
1850		/* already SerDes, no need to enable anything */
1851		return ret_val;
1852	} else {
1853		netdev_info(adapter->netdev,
1854			"MAS: Unable to configure feature, disabling..\n");
1855		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1856	}
1857	return ret_val;
1858}
1859
1860void igb_reset(struct igb_adapter *adapter)
1861{
1862	struct pci_dev *pdev = adapter->pdev;
1863	struct e1000_hw *hw = &adapter->hw;
1864	struct e1000_mac_info *mac = &hw->mac;
1865	struct e1000_fc_info *fc = &hw->fc;
1866	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1867
1868	/* Repartition Pba for greater than 9k mtu
1869	 * To take effect CTRL.RST is required.
1870	 */
1871	switch (mac->type) {
1872	case e1000_i350:
1873	case e1000_i354:
1874	case e1000_82580:
1875		pba = rd32(E1000_RXPBS);
1876		pba = igb_rxpbs_adjust_82580(pba);
1877		break;
1878	case e1000_82576:
1879		pba = rd32(E1000_RXPBS);
1880		pba &= E1000_RXPBS_SIZE_MASK_82576;
1881		break;
1882	case e1000_82575:
1883	case e1000_i210:
1884	case e1000_i211:
1885	default:
1886		pba = E1000_PBA_34K;
1887		break;
1888	}
1889
1890	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1891	    (mac->type < e1000_82576)) {
1892		/* adjust PBA for jumbo frames */
1893		wr32(E1000_PBA, pba);
1894
1895		/* To maintain wire speed transmits, the Tx FIFO should be
1896		 * large enough to accommodate two full transmit packets,
1897		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1898		 * the Rx FIFO should be large enough to accommodate at least
1899		 * one full receive packet and is similarly rounded up and
1900		 * expressed in KB.
1901		 */
1902		pba = rd32(E1000_PBA);
1903		/* upper 16 bits has Tx packet buffer allocation size in KB */
1904		tx_space = pba >> 16;
1905		/* lower 16 bits has Rx packet buffer allocation size in KB */
1906		pba &= 0xffff;
1907		/* the Tx fifo also stores 16 bytes of information about the Tx
1908		 * but don't include ethernet FCS because hardware appends it
1909		 */
1910		min_tx_space = (adapter->max_frame_size +
1911				sizeof(union e1000_adv_tx_desc) -
1912				ETH_FCS_LEN) * 2;
1913		min_tx_space = ALIGN(min_tx_space, 1024);
1914		min_tx_space >>= 10;
1915		/* software strips receive CRC, so leave room for it */
1916		min_rx_space = adapter->max_frame_size;
1917		min_rx_space = ALIGN(min_rx_space, 1024);
1918		min_rx_space >>= 10;
1919
1920		/* If current Tx allocation is less than the min Tx FIFO size,
1921		 * and the min Tx FIFO size is less than the current Rx FIFO
1922		 * allocation, take space away from current Rx allocation
1923		 */
1924		if (tx_space < min_tx_space &&
1925		    ((min_tx_space - tx_space) < pba)) {
1926			pba = pba - (min_tx_space - tx_space);
1927
1928			/* if short on Rx space, Rx wins and must trump Tx
1929			 * adjustment
1930			 */
1931			if (pba < min_rx_space)
1932				pba = min_rx_space;
1933		}
1934		wr32(E1000_PBA, pba);
1935	}
1936
1937	/* flow control settings */
1938	/* The high water mark must be low enough to fit one full frame
1939	 * (or the size used for early receive) above it in the Rx FIFO.
1940	 * Set it to the lower of:
1941	 * - 90% of the Rx FIFO size, or
1942	 * - the full Rx FIFO size minus one full frame
1943	 */
1944	hwm = min(((pba << 10) * 9 / 10),
1945			((pba << 10) - 2 * adapter->max_frame_size));
1946
1947	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1948	fc->low_water = fc->high_water - 16;
1949	fc->pause_time = 0xFFFF;
1950	fc->send_xon = 1;
1951	fc->current_mode = fc->requested_mode;
1952
1953	/* disable receive for all VFs and wait one second */
1954	if (adapter->vfs_allocated_count) {
1955		int i;
1956		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1957			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1958
1959		/* ping all the active vfs to let them know we are going down */
1960		igb_ping_all_vfs(adapter);
1961
1962		/* disable transmits and receives */
1963		wr32(E1000_VFRE, 0);
1964		wr32(E1000_VFTE, 0);
1965	}
1966
1967	/* Allow time for pending master requests to run */
1968	hw->mac.ops.reset_hw(hw);
1969	wr32(E1000_WUC, 0);
1970
1971	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1972		/* need to resetup here after media swap */
1973		adapter->ei.get_invariants(hw);
1974		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1975	}
1976	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1977		if (igb_enable_mas(adapter))
1978			dev_err(&pdev->dev,
1979				"Error enabling Media Auto Sense\n");
1980	}
1981	if (hw->mac.ops.init_hw(hw))
1982		dev_err(&pdev->dev, "Hardware Error\n");
1983
1984	/* Flow control settings reset on hardware reset, so guarantee flow
1985	 * control is off when forcing speed.
1986	 */
1987	if (!hw->mac.autoneg)
1988		igb_force_mac_fc(hw);
1989
1990	igb_init_dmac(adapter, pba);
1991#ifdef CONFIG_IGB_HWMON
1992	/* Re-initialize the thermal sensor on i350 devices. */
1993	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1994		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1995			/* If present, re-initialize the external thermal sensor
1996			 * interface.
1997			 */
1998			if (adapter->ets)
1999				mac->ops.init_thermal_sensor_thresh(hw);
2000		}
2001	}
2002#endif
2003	/* Re-establish EEE setting */
2004	if (hw->phy.media_type == e1000_media_type_copper) {
2005		switch (mac->type) {
2006		case e1000_i350:
2007		case e1000_i210:
2008		case e1000_i211:
2009			igb_set_eee_i350(hw);
2010			break;
2011		case e1000_i354:
2012			igb_set_eee_i354(hw);
2013			break;
2014		default:
2015			break;
2016		}
2017	}
2018	if (!netif_running(adapter->netdev))
2019		igb_power_down_link(adapter);
2020
2021	igb_update_mng_vlan(adapter);
2022
2023	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2024	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2025
2026	/* Re-enable PTP, where applicable. */
2027	igb_ptp_reset(adapter);
2028
2029	igb_get_phy_info(hw);
2030}
2031
2032static netdev_features_t igb_fix_features(struct net_device *netdev,
2033	netdev_features_t features)
2034{
2035	/* Since there is no support for separate Rx/Tx vlan accel
2036	 * enable/disable make sure Tx flag is always in same state as Rx.
2037	 */
2038	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2039		features |= NETIF_F_HW_VLAN_CTAG_TX;
2040	else
2041		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2042
2043	return features;
2044}
2045
2046static int igb_set_features(struct net_device *netdev,
2047	netdev_features_t features)
2048{
2049	netdev_features_t changed = netdev->features ^ features;
2050	struct igb_adapter *adapter = netdev_priv(netdev);
2051
2052	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2053		igb_vlan_mode(netdev, features);
2054
2055	if (!(changed & NETIF_F_RXALL))
2056		return 0;
2057
2058	netdev->features = features;
2059
2060	if (netif_running(netdev))
2061		igb_reinit_locked(adapter);
2062	else
2063		igb_reset(adapter);
2064
2065	return 0;
2066}
2067
2068static const struct net_device_ops igb_netdev_ops = {
2069	.ndo_open		= igb_open,
2070	.ndo_stop		= igb_close,
2071	.ndo_start_xmit		= igb_xmit_frame,
2072	.ndo_get_stats64	= igb_get_stats64,
2073	.ndo_set_rx_mode	= igb_set_rx_mode,
2074	.ndo_set_mac_address	= igb_set_mac,
2075	.ndo_change_mtu		= igb_change_mtu,
2076	.ndo_do_ioctl		= igb_ioctl,
2077	.ndo_tx_timeout		= igb_tx_timeout,
2078	.ndo_validate_addr	= eth_validate_addr,
2079	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2080	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2081	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2082	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2083	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2084	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2085	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2086#ifdef CONFIG_NET_POLL_CONTROLLER
2087	.ndo_poll_controller	= igb_netpoll,
2088#endif
2089	.ndo_fix_features	= igb_fix_features,
2090	.ndo_set_features	= igb_set_features,
2091};
2092
2093/**
2094 * igb_set_fw_version - Configure version string for ethtool
2095 * @adapter: adapter struct
2096 **/
2097void igb_set_fw_version(struct igb_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100	struct e1000_fw_version fw;
2101
2102	igb_get_fw_version(hw, &fw);
2103
2104	switch (hw->mac.type) {
2105	case e1000_i210:
2106	case e1000_i211:
2107		if (!(igb_get_flash_presence_i210(hw))) {
2108			snprintf(adapter->fw_version,
2109				 sizeof(adapter->fw_version),
2110				 "%2d.%2d-%d",
2111				 fw.invm_major, fw.invm_minor,
2112				 fw.invm_img_type);
2113			break;
2114		}
2115		/* fall through */
2116	default:
2117		/* if option is rom valid, display its version too */
2118		if (fw.or_valid) {
2119			snprintf(adapter->fw_version,
2120				 sizeof(adapter->fw_version),
2121				 "%d.%d, 0x%08x, %d.%d.%d",
2122				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2123				 fw.or_major, fw.or_build, fw.or_patch);
2124		/* no option rom */
2125		} else if (fw.etrack_id != 0X0000) {
2126			snprintf(adapter->fw_version,
2127			    sizeof(adapter->fw_version),
2128			    "%d.%d, 0x%08x",
2129			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2130		} else {
2131		snprintf(adapter->fw_version,
2132		    sizeof(adapter->fw_version),
2133		    "%d.%d.%d",
2134		    fw.eep_major, fw.eep_minor, fw.eep_build);
2135		}
2136		break;
2137	}
2138	return;
2139}
2140
2141/**
2142 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2143 *
2144 * @adapter: adapter struct
2145 **/
2146static void igb_init_mas(struct igb_adapter *adapter)
2147{
2148	struct e1000_hw *hw = &adapter->hw;
2149	u16 eeprom_data;
2150
2151	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2152	switch (hw->bus.func) {
2153	case E1000_FUNC_0:
2154		if (eeprom_data & IGB_MAS_ENABLE_0) {
2155			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2156			netdev_info(adapter->netdev,
2157				"MAS: Enabling Media Autosense for port %d\n",
2158				hw->bus.func);
2159		}
2160		break;
2161	case E1000_FUNC_1:
2162		if (eeprom_data & IGB_MAS_ENABLE_1) {
2163			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164			netdev_info(adapter->netdev,
2165				"MAS: Enabling Media Autosense for port %d\n",
2166				hw->bus.func);
2167		}
2168		break;
2169	case E1000_FUNC_2:
2170		if (eeprom_data & IGB_MAS_ENABLE_2) {
2171			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172			netdev_info(adapter->netdev,
2173				"MAS: Enabling Media Autosense for port %d\n",
2174				hw->bus.func);
2175		}
2176		break;
2177	case E1000_FUNC_3:
2178		if (eeprom_data & IGB_MAS_ENABLE_3) {
2179			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180			netdev_info(adapter->netdev,
2181				"MAS: Enabling Media Autosense for port %d\n",
2182				hw->bus.func);
2183		}
2184		break;
2185	default:
2186		/* Shouldn't get here */
2187		netdev_err(adapter->netdev,
2188			"MAS: Invalid port configuration, returning\n");
2189		break;
2190	}
2191}
2192
2193/**
2194 *  igb_init_i2c - Init I2C interface
2195 *  @adapter: pointer to adapter structure
2196 **/
2197static s32 igb_init_i2c(struct igb_adapter *adapter)
2198{
2199	s32 status = E1000_SUCCESS;
2200
2201	/* I2C interface supported on i350 devices */
2202	if (adapter->hw.mac.type != e1000_i350)
2203		return E1000_SUCCESS;
2204
2205	/* Initialize the i2c bus which is controlled by the registers.
2206	 * This bus will use the i2c_algo_bit structue that implements
2207	 * the protocol through toggling of the 4 bits in the register.
2208	 */
2209	adapter->i2c_adap.owner = THIS_MODULE;
2210	adapter->i2c_algo = igb_i2c_algo;
2211	adapter->i2c_algo.data = adapter;
2212	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2213	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2214	strlcpy(adapter->i2c_adap.name, "igb BB",
2215		sizeof(adapter->i2c_adap.name));
2216	status = i2c_bit_add_bus(&adapter->i2c_adap);
2217	return status;
2218}
2219
2220/**
2221 *  igb_probe - Device Initialization Routine
2222 *  @pdev: PCI device information struct
2223 *  @ent: entry in igb_pci_tbl
2224 *
2225 *  Returns 0 on success, negative on failure
2226 *
2227 *  igb_probe initializes an adapter identified by a pci_dev structure.
2228 *  The OS initialization, configuring of the adapter private structure,
2229 *  and a hardware reset occur.
2230 **/
2231static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2232{
2233	struct net_device *netdev;
2234	struct igb_adapter *adapter;
2235	struct e1000_hw *hw;
2236	u16 eeprom_data = 0;
2237	s32 ret_val;
2238	static int global_quad_port_a; /* global quad port a indication */
2239	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2240	int err, pci_using_dac;
2241	u8 part_str[E1000_PBANUM_LENGTH];
2242
2243	/* Catch broken hardware that put the wrong VF device ID in
2244	 * the PCIe SR-IOV capability.
2245	 */
2246	if (pdev->is_virtfn) {
2247		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2248			pci_name(pdev), pdev->vendor, pdev->device);
2249		return -EINVAL;
2250	}
2251
2252	err = pci_enable_device_mem(pdev);
2253	if (err)
2254		return err;
2255
2256	pci_using_dac = 0;
2257	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2258	if (!err) {
2259		pci_using_dac = 1;
2260	} else {
2261		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2262		if (err) {
2263			dev_err(&pdev->dev,
2264				"No usable DMA configuration, aborting\n");
2265			goto err_dma;
2266		}
2267	}
2268
2269	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2270					   IORESOURCE_MEM),
2271					   igb_driver_name);
2272	if (err)
2273		goto err_pci_reg;
2274
2275	pci_enable_pcie_error_reporting(pdev);
2276
2277	pci_set_master(pdev);
2278	pci_save_state(pdev);
2279
2280	err = -ENOMEM;
2281	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2282				   IGB_MAX_TX_QUEUES);
2283	if (!netdev)
2284		goto err_alloc_etherdev;
2285
2286	SET_NETDEV_DEV(netdev, &pdev->dev);
2287
2288	pci_set_drvdata(pdev, netdev);
2289	adapter = netdev_priv(netdev);
2290	adapter->netdev = netdev;
2291	adapter->pdev = pdev;
2292	hw = &adapter->hw;
2293	hw->back = adapter;
2294	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2295
2296	err = -EIO;
2297	hw->hw_addr = pci_iomap(pdev, 0, 0);
2298	if (!hw->hw_addr)
2299		goto err_ioremap;
2300
2301	netdev->netdev_ops = &igb_netdev_ops;
2302	igb_set_ethtool_ops(netdev);
2303	netdev->watchdog_timeo = 5 * HZ;
2304
2305	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2306
2307	netdev->mem_start = pci_resource_start(pdev, 0);
2308	netdev->mem_end = pci_resource_end(pdev, 0);
2309
2310	/* PCI config space info */
2311	hw->vendor_id = pdev->vendor;
2312	hw->device_id = pdev->device;
2313	hw->revision_id = pdev->revision;
2314	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2315	hw->subsystem_device_id = pdev->subsystem_device;
2316
2317	/* Copy the default MAC, PHY and NVM function pointers */
2318	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2319	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2320	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2321	/* Initialize skew-specific constants */
2322	err = ei->get_invariants(hw);
2323	if (err)
2324		goto err_sw_init;
2325
2326	/* setup the private structure */
2327	err = igb_sw_init(adapter);
2328	if (err)
2329		goto err_sw_init;
2330
2331	igb_get_bus_info_pcie(hw);
2332
2333	hw->phy.autoneg_wait_to_complete = false;
2334
2335	/* Copper options */
2336	if (hw->phy.media_type == e1000_media_type_copper) {
2337		hw->phy.mdix = AUTO_ALL_MODES;
2338		hw->phy.disable_polarity_correction = false;
2339		hw->phy.ms_type = e1000_ms_hw_default;
2340	}
2341
2342	if (igb_check_reset_block(hw))
2343		dev_info(&pdev->dev,
2344			"PHY reset is blocked due to SOL/IDER session.\n");
2345
2346	/* features is initialized to 0 in allocation, it might have bits
2347	 * set by igb_sw_init so we should use an or instead of an
2348	 * assignment.
2349	 */
2350	netdev->features |= NETIF_F_SG |
2351			    NETIF_F_IP_CSUM |
2352			    NETIF_F_IPV6_CSUM |
2353			    NETIF_F_TSO |
2354			    NETIF_F_TSO6 |
2355			    NETIF_F_RXHASH |
2356			    NETIF_F_RXCSUM |
2357			    NETIF_F_HW_VLAN_CTAG_RX |
2358			    NETIF_F_HW_VLAN_CTAG_TX;
2359
2360	/* copy netdev features into list of user selectable features */
2361	netdev->hw_features |= netdev->features;
2362	netdev->hw_features |= NETIF_F_RXALL;
2363
2364	/* set this bit last since it cannot be part of hw_features */
2365	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2366
2367	netdev->vlan_features |= NETIF_F_TSO |
2368				 NETIF_F_TSO6 |
2369				 NETIF_F_IP_CSUM |
2370				 NETIF_F_IPV6_CSUM |
2371				 NETIF_F_SG;
2372
2373	netdev->priv_flags |= IFF_SUPP_NOFCS;
2374
2375	if (pci_using_dac) {
2376		netdev->features |= NETIF_F_HIGHDMA;
2377		netdev->vlan_features |= NETIF_F_HIGHDMA;
2378	}
2379
2380	if (hw->mac.type >= e1000_82576) {
2381		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2382		netdev->features |= NETIF_F_SCTP_CSUM;
2383	}
2384
2385	netdev->priv_flags |= IFF_UNICAST_FLT;
2386
2387	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2388
2389	/* before reading the NVM, reset the controller to put the device in a
2390	 * known good starting state
2391	 */
2392	hw->mac.ops.reset_hw(hw);
2393
2394	/* make sure the NVM is good , i211/i210 parts can have special NVM
2395	 * that doesn't contain a checksum
2396	 */
2397	switch (hw->mac.type) {
2398	case e1000_i210:
2399	case e1000_i211:
2400		if (igb_get_flash_presence_i210(hw)) {
2401			if (hw->nvm.ops.validate(hw) < 0) {
2402				dev_err(&pdev->dev,
2403					"The NVM Checksum Is Not Valid\n");
2404				err = -EIO;
2405				goto err_eeprom;
2406			}
2407		}
2408		break;
2409	default:
2410		if (hw->nvm.ops.validate(hw) < 0) {
2411			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2412			err = -EIO;
2413			goto err_eeprom;
2414		}
2415		break;
2416	}
2417
2418	/* copy the MAC address out of the NVM */
2419	if (hw->mac.ops.read_mac_addr(hw))
2420		dev_err(&pdev->dev, "NVM Read Error\n");
2421
2422	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2423
2424	if (!is_valid_ether_addr(netdev->dev_addr)) {
2425		dev_err(&pdev->dev, "Invalid MAC Address\n");
2426		err = -EIO;
2427		goto err_eeprom;
2428	}
2429
2430	/* get firmware version for ethtool -i */
2431	igb_set_fw_version(adapter);
2432
2433	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2434		    (unsigned long) adapter);
2435	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2436		    (unsigned long) adapter);
2437
2438	INIT_WORK(&adapter->reset_task, igb_reset_task);
2439	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2440
2441	/* Initialize link properties that are user-changeable */
2442	adapter->fc_autoneg = true;
2443	hw->mac.autoneg = true;
2444	hw->phy.autoneg_advertised = 0x2f;
2445
2446	hw->fc.requested_mode = e1000_fc_default;
2447	hw->fc.current_mode = e1000_fc_default;
2448
2449	igb_validate_mdi_setting(hw);
2450
2451	/* By default, support wake on port A */
2452	if (hw->bus.func == 0)
2453		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2454
2455	/* Check the NVM for wake support on non-port A ports */
2456	if (hw->mac.type >= e1000_82580)
2457		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2458				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2459				 &eeprom_data);
2460	else if (hw->bus.func == 1)
2461		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2462
2463	if (eeprom_data & IGB_EEPROM_APME)
2464		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466	/* now that we have the eeprom settings, apply the special cases where
2467	 * the eeprom may be wrong or the board simply won't support wake on
2468	 * lan on a particular port
2469	 */
2470	switch (pdev->device) {
2471	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2472		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2473		break;
2474	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2475	case E1000_DEV_ID_82576_FIBER:
2476	case E1000_DEV_ID_82576_SERDES:
2477		/* Wake events only supported on port A for dual fiber
2478		 * regardless of eeprom setting
2479		 */
2480		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2481			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482		break;
2483	case E1000_DEV_ID_82576_QUAD_COPPER:
2484	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2485		/* if quad port adapter, disable WoL on all but port A */
2486		if (global_quad_port_a != 0)
2487			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488		else
2489			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2490		/* Reset for multiple quad port adapters */
2491		if (++global_quad_port_a == 4)
2492			global_quad_port_a = 0;
2493		break;
2494	default:
2495		/* If the device can't wake, don't set software support */
2496		if (!device_can_wakeup(&adapter->pdev->dev))
2497			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2498	}
2499
2500	/* initialize the wol settings based on the eeprom settings */
2501	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2502		adapter->wol |= E1000_WUFC_MAG;
2503
2504	/* Some vendors want WoL disabled by default, but still supported */
2505	if ((hw->mac.type == e1000_i350) &&
2506	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2507		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2508		adapter->wol = 0;
2509	}
2510
2511	device_set_wakeup_enable(&adapter->pdev->dev,
2512				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2513
2514	/* reset the hardware with the new settings */
2515	igb_reset(adapter);
2516
2517	/* Init the I2C interface */
2518	err = igb_init_i2c(adapter);
2519	if (err) {
2520		dev_err(&pdev->dev, "failed to init i2c interface\n");
2521		goto err_eeprom;
2522	}
2523
2524	/* let the f/w know that the h/w is now under the control of the
2525	 * driver. */
2526	igb_get_hw_control(adapter);
2527
2528	strcpy(netdev->name, "eth%d");
2529	err = register_netdev(netdev);
2530	if (err)
2531		goto err_register;
2532
2533	/* carrier off reporting is important to ethtool even BEFORE open */
2534	netif_carrier_off(netdev);
2535
2536#ifdef CONFIG_IGB_DCA
2537	if (dca_add_requester(&pdev->dev) == 0) {
2538		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2539		dev_info(&pdev->dev, "DCA enabled\n");
2540		igb_setup_dca(adapter);
2541	}
2542
2543#endif
2544#ifdef CONFIG_IGB_HWMON
2545	/* Initialize the thermal sensor on i350 devices. */
2546	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2547		u16 ets_word;
2548
2549		/* Read the NVM to determine if this i350 device supports an
2550		 * external thermal sensor.
2551		 */
2552		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2553		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2554			adapter->ets = true;
2555		else
2556			adapter->ets = false;
2557		if (igb_sysfs_init(adapter))
2558			dev_err(&pdev->dev,
2559				"failed to allocate sysfs resources\n");
2560	} else {
2561		adapter->ets = false;
2562	}
2563#endif
2564	/* Check if Media Autosense is enabled */
2565	adapter->ei = *ei;
2566	if (hw->dev_spec._82575.mas_capable)
2567		igb_init_mas(adapter);
2568
2569	/* do hw tstamp init after resetting */
2570	igb_ptp_init(adapter);
2571
2572	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2573	/* print bus type/speed/width info, not applicable to i354 */
2574	if (hw->mac.type != e1000_i354) {
2575		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2576			 netdev->name,
2577			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2578			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2579			   "unknown"),
2580			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2581			  "Width x4" :
2582			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2583			  "Width x2" :
2584			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2585			  "Width x1" : "unknown"), netdev->dev_addr);
2586	}
2587
2588	if ((hw->mac.type >= e1000_i210 ||
2589	     igb_get_flash_presence_i210(hw))) {
2590		ret_val = igb_read_part_string(hw, part_str,
2591					       E1000_PBANUM_LENGTH);
2592	} else {
2593		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2594	}
2595
2596	if (ret_val)
2597		strcpy(part_str, "Unknown");
2598	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2599	dev_info(&pdev->dev,
2600		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2601		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2602		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2603		adapter->num_rx_queues, adapter->num_tx_queues);
2604	if (hw->phy.media_type == e1000_media_type_copper) {
2605		switch (hw->mac.type) {
2606		case e1000_i350:
2607		case e1000_i210:
2608		case e1000_i211:
2609			/* Enable EEE for internal copper PHY devices */
2610			err = igb_set_eee_i350(hw);
2611			if ((!err) &&
2612			    (!hw->dev_spec._82575.eee_disable)) {
2613				adapter->eee_advert =
2614					MDIO_EEE_100TX | MDIO_EEE_1000T;
2615				adapter->flags |= IGB_FLAG_EEE;
2616			}
2617			break;
2618		case e1000_i354:
2619			if ((rd32(E1000_CTRL_EXT) &
2620			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2621				err = igb_set_eee_i354(hw);
2622				if ((!err) &&
2623					(!hw->dev_spec._82575.eee_disable)) {
2624					adapter->eee_advert =
2625					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2626					adapter->flags |= IGB_FLAG_EEE;
2627				}
2628			}
2629			break;
2630		default:
2631			break;
2632		}
2633	}
2634	pm_runtime_put_noidle(&pdev->dev);
2635	return 0;
2636
2637err_register:
2638	igb_release_hw_control(adapter);
2639	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2640err_eeprom:
2641	if (!igb_check_reset_block(hw))
2642		igb_reset_phy(hw);
2643
2644	if (hw->flash_address)
2645		iounmap(hw->flash_address);
2646err_sw_init:
2647	igb_clear_interrupt_scheme(adapter);
2648	pci_iounmap(pdev, hw->hw_addr);
2649err_ioremap:
2650	free_netdev(netdev);
2651err_alloc_etherdev:
2652	pci_release_selected_regions(pdev,
2653				     pci_select_bars(pdev, IORESOURCE_MEM));
2654err_pci_reg:
2655err_dma:
2656	pci_disable_device(pdev);
2657	return err;
2658}
2659
2660#ifdef CONFIG_PCI_IOV
2661static int igb_disable_sriov(struct pci_dev *pdev)
2662{
2663	struct net_device *netdev = pci_get_drvdata(pdev);
2664	struct igb_adapter *adapter = netdev_priv(netdev);
2665	struct e1000_hw *hw = &adapter->hw;
2666
2667	/* reclaim resources allocated to VFs */
2668	if (adapter->vf_data) {
2669		/* disable iov and allow time for transactions to clear */
2670		if (pci_vfs_assigned(pdev)) {
2671			dev_warn(&pdev->dev,
2672				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2673			return -EPERM;
2674		} else {
2675			pci_disable_sriov(pdev);
2676			msleep(500);
2677		}
2678
2679		kfree(adapter->vf_data);
2680		adapter->vf_data = NULL;
2681		adapter->vfs_allocated_count = 0;
2682		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2683		wrfl();
2684		msleep(100);
2685		dev_info(&pdev->dev, "IOV Disabled\n");
2686
2687		/* Re-enable DMA Coalescing flag since IOV is turned off */
2688		adapter->flags |= IGB_FLAG_DMAC;
2689	}
2690
2691	return 0;
2692}
2693
2694static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2695{
2696	struct net_device *netdev = pci_get_drvdata(pdev);
2697	struct igb_adapter *adapter = netdev_priv(netdev);
2698	int old_vfs = pci_num_vf(pdev);
2699	int err = 0;
2700	int i;
2701
2702	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2703		err = -EPERM;
2704		goto out;
2705	}
2706	if (!num_vfs)
2707		goto out;
2708
2709	if (old_vfs) {
2710		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2711			 old_vfs, max_vfs);
2712		adapter->vfs_allocated_count = old_vfs;
2713	} else
2714		adapter->vfs_allocated_count = num_vfs;
2715
2716	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2717				sizeof(struct vf_data_storage), GFP_KERNEL);
2718
2719	/* if allocation failed then we do not support SR-IOV */
2720	if (!adapter->vf_data) {
2721		adapter->vfs_allocated_count = 0;
2722		dev_err(&pdev->dev,
2723			"Unable to allocate memory for VF Data Storage\n");
2724		err = -ENOMEM;
2725		goto out;
2726	}
2727
2728	/* only call pci_enable_sriov() if no VFs are allocated already */
2729	if (!old_vfs) {
2730		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2731		if (err)
2732			goto err_out;
2733	}
2734	dev_info(&pdev->dev, "%d VFs allocated\n",
2735		 adapter->vfs_allocated_count);
2736	for (i = 0; i < adapter->vfs_allocated_count; i++)
2737		igb_vf_configure(adapter, i);
2738
2739	/* DMA Coalescing is not supported in IOV mode. */
2740	adapter->flags &= ~IGB_FLAG_DMAC;
2741	goto out;
2742
2743err_out:
2744	kfree(adapter->vf_data);
2745	adapter->vf_data = NULL;
2746	adapter->vfs_allocated_count = 0;
2747out:
2748	return err;
2749}
2750
2751#endif
2752/**
2753 *  igb_remove_i2c - Cleanup  I2C interface
2754 *  @adapter: pointer to adapter structure
2755 **/
2756static void igb_remove_i2c(struct igb_adapter *adapter)
2757{
2758	/* free the adapter bus structure */
2759	i2c_del_adapter(&adapter->i2c_adap);
2760}
2761
2762/**
2763 *  igb_remove - Device Removal Routine
2764 *  @pdev: PCI device information struct
2765 *
2766 *  igb_remove is called by the PCI subsystem to alert the driver
2767 *  that it should release a PCI device.  The could be caused by a
2768 *  Hot-Plug event, or because the driver is going to be removed from
2769 *  memory.
2770 **/
2771static void igb_remove(struct pci_dev *pdev)
2772{
2773	struct net_device *netdev = pci_get_drvdata(pdev);
2774	struct igb_adapter *adapter = netdev_priv(netdev);
2775	struct e1000_hw *hw = &adapter->hw;
2776
2777	pm_runtime_get_noresume(&pdev->dev);
2778#ifdef CONFIG_IGB_HWMON
2779	igb_sysfs_exit(adapter);
2780#endif
2781	igb_remove_i2c(adapter);
2782	igb_ptp_stop(adapter);
2783	/* The watchdog timer may be rescheduled, so explicitly
2784	 * disable watchdog from being rescheduled.
2785	 */
2786	set_bit(__IGB_DOWN, &adapter->state);
2787	del_timer_sync(&adapter->watchdog_timer);
2788	del_timer_sync(&adapter->phy_info_timer);
2789
2790	cancel_work_sync(&adapter->reset_task);
2791	cancel_work_sync(&adapter->watchdog_task);
2792
2793#ifdef CONFIG_IGB_DCA
2794	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2795		dev_info(&pdev->dev, "DCA disabled\n");
2796		dca_remove_requester(&pdev->dev);
2797		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2798		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2799	}
2800#endif
2801
2802	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2803	 * would have already happened in close and is redundant.
2804	 */
2805	igb_release_hw_control(adapter);
2806
2807	unregister_netdev(netdev);
2808
2809	igb_clear_interrupt_scheme(adapter);
2810
2811#ifdef CONFIG_PCI_IOV
2812	igb_disable_sriov(pdev);
2813#endif
2814
2815	pci_iounmap(pdev, hw->hw_addr);
2816	if (hw->flash_address)
2817		iounmap(hw->flash_address);
2818	pci_release_selected_regions(pdev,
2819				     pci_select_bars(pdev, IORESOURCE_MEM));
2820
2821	kfree(adapter->shadow_vfta);
2822	free_netdev(netdev);
2823
2824	pci_disable_pcie_error_reporting(pdev);
2825
2826	pci_disable_device(pdev);
2827}
2828
2829/**
2830 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2831 *  @adapter: board private structure to initialize
2832 *
2833 *  This function initializes the vf specific data storage and then attempts to
2834 *  allocate the VFs.  The reason for ordering it this way is because it is much
2835 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2836 *  the memory for the VFs.
2837 **/
2838static void igb_probe_vfs(struct igb_adapter *adapter)
2839{
2840#ifdef CONFIG_PCI_IOV
2841	struct pci_dev *pdev = adapter->pdev;
2842	struct e1000_hw *hw = &adapter->hw;
2843
2844	/* Virtualization features not supported on i210 family. */
2845	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2846		return;
2847
2848	pci_sriov_set_totalvfs(pdev, 7);
2849	igb_pci_enable_sriov(pdev, max_vfs);
2850
2851#endif /* CONFIG_PCI_IOV */
2852}
2853
2854static void igb_init_queue_configuration(struct igb_adapter *adapter)
2855{
2856	struct e1000_hw *hw = &adapter->hw;
2857	u32 max_rss_queues;
2858
2859	/* Determine the maximum number of RSS queues supported. */
2860	switch (hw->mac.type) {
2861	case e1000_i211:
2862		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2863		break;
2864	case e1000_82575:
2865	case e1000_i210:
2866		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2867		break;
2868	case e1000_i350:
2869		/* I350 cannot do RSS and SR-IOV at the same time */
2870		if (!!adapter->vfs_allocated_count) {
2871			max_rss_queues = 1;
2872			break;
2873		}
2874		/* fall through */
2875	case e1000_82576:
2876		if (!!adapter->vfs_allocated_count) {
2877			max_rss_queues = 2;
2878			break;
2879		}
2880		/* fall through */
2881	case e1000_82580:
2882	case e1000_i354:
2883	default:
2884		max_rss_queues = IGB_MAX_RX_QUEUES;
2885		break;
2886	}
2887
2888	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2889
2890	/* Determine if we need to pair queues. */
2891	switch (hw->mac.type) {
2892	case e1000_82575:
2893	case e1000_i211:
2894		/* Device supports enough interrupts without queue pairing. */
2895		break;
2896	case e1000_82576:
2897		/* If VFs are going to be allocated with RSS queues then we
2898		 * should pair the queues in order to conserve interrupts due
2899		 * to limited supply.
2900		 */
2901		if ((adapter->rss_queues > 1) &&
2902		    (adapter->vfs_allocated_count > 6))
2903			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2904		/* fall through */
2905	case e1000_82580:
2906	case e1000_i350:
2907	case e1000_i354:
2908	case e1000_i210:
2909	default:
2910		/* If rss_queues > half of max_rss_queues, pair the queues in
2911		 * order to conserve interrupts due to limited supply.
2912		 */
2913		if (adapter->rss_queues > (max_rss_queues / 2))
2914			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2915		break;
2916	}
2917}
2918
2919/**
2920 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2921 *  @adapter: board private structure to initialize
2922 *
2923 *  igb_sw_init initializes the Adapter private data structure.
2924 *  Fields are initialized based on PCI device information and
2925 *  OS network device settings (MTU size).
2926 **/
2927static int igb_sw_init(struct igb_adapter *adapter)
2928{
2929	struct e1000_hw *hw = &adapter->hw;
2930	struct net_device *netdev = adapter->netdev;
2931	struct pci_dev *pdev = adapter->pdev;
2932
2933	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2934
2935	/* set default ring sizes */
2936	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2937	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2938
2939	/* set default ITR values */
2940	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2941	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2942
2943	/* set default work limits */
2944	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2945
2946	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2947				  VLAN_HLEN;
2948	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2949
2950	spin_lock_init(&adapter->stats64_lock);
2951#ifdef CONFIG_PCI_IOV
2952	switch (hw->mac.type) {
2953	case e1000_82576:
2954	case e1000_i350:
2955		if (max_vfs > 7) {
2956			dev_warn(&pdev->dev,
2957				 "Maximum of 7 VFs per PF, using max\n");
2958			max_vfs = adapter->vfs_allocated_count = 7;
2959		} else
2960			adapter->vfs_allocated_count = max_vfs;
2961		if (adapter->vfs_allocated_count)
2962			dev_warn(&pdev->dev,
2963				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2964		break;
2965	default:
2966		break;
2967	}
2968#endif /* CONFIG_PCI_IOV */
2969
2970	igb_init_queue_configuration(adapter);
2971
2972	/* Setup and initialize a copy of the hw vlan table array */
2973	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2974				       GFP_ATOMIC);
2975
2976	/* This call may decrease the number of queues */
2977	if (igb_init_interrupt_scheme(adapter, true)) {
2978		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2979		return -ENOMEM;
2980	}
2981
2982	igb_probe_vfs(adapter);
2983
2984	/* Explicitly disable IRQ since the NIC can be in any state. */
2985	igb_irq_disable(adapter);
2986
2987	if (hw->mac.type >= e1000_i350)
2988		adapter->flags &= ~IGB_FLAG_DMAC;
2989
2990	set_bit(__IGB_DOWN, &adapter->state);
2991	return 0;
2992}
2993
2994/**
2995 *  igb_open - Called when a network interface is made active
2996 *  @netdev: network interface device structure
2997 *
2998 *  Returns 0 on success, negative value on failure
2999 *
3000 *  The open entry point is called when a network interface is made
3001 *  active by the system (IFF_UP).  At this point all resources needed
3002 *  for transmit and receive operations are allocated, the interrupt
3003 *  handler is registered with the OS, the watchdog timer is started,
3004 *  and the stack is notified that the interface is ready.
3005 **/
3006static int __igb_open(struct net_device *netdev, bool resuming)
3007{
3008	struct igb_adapter *adapter = netdev_priv(netdev);
3009	struct e1000_hw *hw = &adapter->hw;
3010	struct pci_dev *pdev = adapter->pdev;
3011	int err;
3012	int i;
3013
3014	/* disallow open during test */
3015	if (test_bit(__IGB_TESTING, &adapter->state)) {
3016		WARN_ON(resuming);
3017		return -EBUSY;
3018	}
3019
3020	if (!resuming)
3021		pm_runtime_get_sync(&pdev->dev);
3022
3023	netif_carrier_off(netdev);
3024
3025	/* allocate transmit descriptors */
3026	err = igb_setup_all_tx_resources(adapter);
3027	if (err)
3028		goto err_setup_tx;
3029
3030	/* allocate receive descriptors */
3031	err = igb_setup_all_rx_resources(adapter);
3032	if (err)
3033		goto err_setup_rx;
3034
3035	igb_power_up_link(adapter);
3036
3037	/* before we allocate an interrupt, we must be ready to handle it.
3038	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3039	 * as soon as we call pci_request_irq, so we have to setup our
3040	 * clean_rx handler before we do so.
3041	 */
3042	igb_configure(adapter);
3043
3044	err = igb_request_irq(adapter);
3045	if (err)
3046		goto err_req_irq;
3047
3048	/* Notify the stack of the actual queue counts. */
3049	err = netif_set_real_num_tx_queues(adapter->netdev,
3050					   adapter->num_tx_queues);
3051	if (err)
3052		goto err_set_queues;
3053
3054	err = netif_set_real_num_rx_queues(adapter->netdev,
3055					   adapter->num_rx_queues);
3056	if (err)
3057		goto err_set_queues;
3058
3059	/* From here on the code is the same as igb_up() */
3060	clear_bit(__IGB_DOWN, &adapter->state);
3061
3062	for (i = 0; i < adapter->num_q_vectors; i++)
3063		napi_enable(&(adapter->q_vector[i]->napi));
3064
3065	/* Clear any pending interrupts. */
3066	rd32(E1000_ICR);
3067
3068	igb_irq_enable(adapter);
3069
3070	/* notify VFs that reset has been completed */
3071	if (adapter->vfs_allocated_count) {
3072		u32 reg_data = rd32(E1000_CTRL_EXT);
3073		reg_data |= E1000_CTRL_EXT_PFRSTD;
3074		wr32(E1000_CTRL_EXT, reg_data);
3075	}
3076
3077	netif_tx_start_all_queues(netdev);
3078
3079	if (!resuming)
3080		pm_runtime_put(&pdev->dev);
3081
3082	/* start the watchdog. */
3083	hw->mac.get_link_status = 1;
3084	schedule_work(&adapter->watchdog_task);
3085
3086	return 0;
3087
3088err_set_queues:
3089	igb_free_irq(adapter);
3090err_req_irq:
3091	igb_release_hw_control(adapter);
3092	igb_power_down_link(adapter);
3093	igb_free_all_rx_resources(adapter);
3094err_setup_rx:
3095	igb_free_all_tx_resources(adapter);
3096err_setup_tx:
3097	igb_reset(adapter);
3098	if (!resuming)
3099		pm_runtime_put(&pdev->dev);
3100
3101	return err;
3102}
3103
3104static int igb_open(struct net_device *netdev)
3105{
3106	return __igb_open(netdev, false);
3107}
3108
3109/**
3110 *  igb_close - Disables a network interface
3111 *  @netdev: network interface device structure
3112 *
3113 *  Returns 0, this is not allowed to fail
3114 *
3115 *  The close entry point is called when an interface is de-activated
3116 *  by the OS.  The hardware is still under the driver's control, but
3117 *  needs to be disabled.  A global MAC reset is issued to stop the
3118 *  hardware, and all transmit and receive resources are freed.
3119 **/
3120static int __igb_close(struct net_device *netdev, bool suspending)
3121{
3122	struct igb_adapter *adapter = netdev_priv(netdev);
3123	struct pci_dev *pdev = adapter->pdev;
3124
3125	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3126
3127	if (!suspending)
3128		pm_runtime_get_sync(&pdev->dev);
3129
3130	igb_down(adapter);
3131	igb_free_irq(adapter);
3132
3133	igb_free_all_tx_resources(adapter);
3134	igb_free_all_rx_resources(adapter);
3135
3136	if (!suspending)
3137		pm_runtime_put_sync(&pdev->dev);
3138	return 0;
3139}
3140
3141static int igb_close(struct net_device *netdev)
3142{
3143	return __igb_close(netdev, false);
3144}
3145
3146/**
3147 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3148 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3149 *
3150 *  Return 0 on success, negative on failure
3151 **/
3152int igb_setup_tx_resources(struct igb_ring *tx_ring)
3153{
3154	struct device *dev = tx_ring->dev;
3155	int size;
3156
3157	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3158
3159	tx_ring->tx_buffer_info = vzalloc(size);
3160	if (!tx_ring->tx_buffer_info)
3161		goto err;
3162
3163	/* round up to nearest 4K */
3164	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3165	tx_ring->size = ALIGN(tx_ring->size, 4096);
3166
3167	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3168					   &tx_ring->dma, GFP_KERNEL);
3169	if (!tx_ring->desc)
3170		goto err;
3171
3172	tx_ring->next_to_use = 0;
3173	tx_ring->next_to_clean = 0;
3174
3175	return 0;
3176
3177err:
3178	vfree(tx_ring->tx_buffer_info);
3179	tx_ring->tx_buffer_info = NULL;
3180	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3181	return -ENOMEM;
3182}
3183
3184/**
3185 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3186 *				 (Descriptors) for all queues
3187 *  @adapter: board private structure
3188 *
3189 *  Return 0 on success, negative on failure
3190 **/
3191static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3192{
3193	struct pci_dev *pdev = adapter->pdev;
3194	int i, err = 0;
3195
3196	for (i = 0; i < adapter->num_tx_queues; i++) {
3197		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3198		if (err) {
3199			dev_err(&pdev->dev,
3200				"Allocation for Tx Queue %u failed\n", i);
3201			for (i--; i >= 0; i--)
3202				igb_free_tx_resources(adapter->tx_ring[i]);
3203			break;
3204		}
3205	}
3206
3207	return err;
3208}
3209
3210/**
3211 *  igb_setup_tctl - configure the transmit control registers
3212 *  @adapter: Board private structure
3213 **/
3214void igb_setup_tctl(struct igb_adapter *adapter)
3215{
3216	struct e1000_hw *hw = &adapter->hw;
3217	u32 tctl;
3218
3219	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3220	wr32(E1000_TXDCTL(0), 0);
3221
3222	/* Program the Transmit Control Register */
3223	tctl = rd32(E1000_TCTL);
3224	tctl &= ~E1000_TCTL_CT;
3225	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3226		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3227
3228	igb_config_collision_dist(hw);
3229
3230	/* Enable transmits */
3231	tctl |= E1000_TCTL_EN;
3232
3233	wr32(E1000_TCTL, tctl);
3234}
3235
3236/**
3237 *  igb_configure_tx_ring - Configure transmit ring after Reset
3238 *  @adapter: board private structure
3239 *  @ring: tx ring to configure
3240 *
3241 *  Configure a transmit ring after a reset.
3242 **/
3243void igb_configure_tx_ring(struct igb_adapter *adapter,
3244                           struct igb_ring *ring)
3245{
3246	struct e1000_hw *hw = &adapter->hw;
3247	u32 txdctl = 0;
3248	u64 tdba = ring->dma;
3249	int reg_idx = ring->reg_idx;
3250
3251	/* disable the queue */
3252	wr32(E1000_TXDCTL(reg_idx), 0);
3253	wrfl();
3254	mdelay(10);
3255
3256	wr32(E1000_TDLEN(reg_idx),
3257	     ring->count * sizeof(union e1000_adv_tx_desc));
3258	wr32(E1000_TDBAL(reg_idx),
3259	     tdba & 0x00000000ffffffffULL);
3260	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3261
3262	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3263	wr32(E1000_TDH(reg_idx), 0);
3264	writel(0, ring->tail);
3265
3266	txdctl |= IGB_TX_PTHRESH;
3267	txdctl |= IGB_TX_HTHRESH << 8;
3268	txdctl |= IGB_TX_WTHRESH << 16;
3269
3270	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3271	wr32(E1000_TXDCTL(reg_idx), txdctl);
3272}
3273
3274/**
3275 *  igb_configure_tx - Configure transmit Unit after Reset
3276 *  @adapter: board private structure
3277 *
3278 *  Configure the Tx unit of the MAC after a reset.
3279 **/
3280static void igb_configure_tx(struct igb_adapter *adapter)
3281{
3282	int i;
3283
3284	for (i = 0; i < adapter->num_tx_queues; i++)
3285		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3286}
3287
3288/**
3289 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3290 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3291 *
3292 *  Returns 0 on success, negative on failure
3293 **/
3294int igb_setup_rx_resources(struct igb_ring *rx_ring)
3295{
3296	struct device *dev = rx_ring->dev;
3297	int size;
3298
3299	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3300
3301	rx_ring->rx_buffer_info = vzalloc(size);
3302	if (!rx_ring->rx_buffer_info)
3303		goto err;
3304
3305	/* Round up to nearest 4K */
3306	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3307	rx_ring->size = ALIGN(rx_ring->size, 4096);
3308
3309	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3310					   &rx_ring->dma, GFP_KERNEL);
3311	if (!rx_ring->desc)
3312		goto err;
3313
3314	rx_ring->next_to_alloc = 0;
3315	rx_ring->next_to_clean = 0;
3316	rx_ring->next_to_use = 0;
3317
3318	return 0;
3319
3320err:
3321	vfree(rx_ring->rx_buffer_info);
3322	rx_ring->rx_buffer_info = NULL;
3323	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3324	return -ENOMEM;
3325}
3326
3327/**
3328 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3329 *				 (Descriptors) for all queues
3330 *  @adapter: board private structure
3331 *
3332 *  Return 0 on success, negative on failure
3333 **/
3334static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3335{
3336	struct pci_dev *pdev = adapter->pdev;
3337	int i, err = 0;
3338
3339	for (i = 0; i < adapter->num_rx_queues; i++) {
3340		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3341		if (err) {
3342			dev_err(&pdev->dev,
3343				"Allocation for Rx Queue %u failed\n", i);
3344			for (i--; i >= 0; i--)
3345				igb_free_rx_resources(adapter->rx_ring[i]);
3346			break;
3347		}
3348	}
3349
3350	return err;
3351}
3352
3353/**
3354 *  igb_setup_mrqc - configure the multiple receive queue control registers
3355 *  @adapter: Board private structure
3356 **/
3357static void igb_setup_mrqc(struct igb_adapter *adapter)
3358{
3359	struct e1000_hw *hw = &adapter->hw;
3360	u32 mrqc, rxcsum;
3361	u32 j, num_rx_queues;
3362	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3363					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3364					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3365					0xFA01ACBE };
3366
3367	/* Fill out hash function seeds */
3368	for (j = 0; j < 10; j++)
3369		wr32(E1000_RSSRK(j), rsskey[j]);
3370
3371	num_rx_queues = adapter->rss_queues;
3372
3373	switch (hw->mac.type) {
3374	case e1000_82576:
3375		/* 82576 supports 2 RSS queues for SR-IOV */
3376		if (adapter->vfs_allocated_count)
3377			num_rx_queues = 2;
3378		break;
3379	default:
3380		break;
3381	}
3382
3383	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3384		for (j = 0; j < IGB_RETA_SIZE; j++)
3385			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3386		adapter->rss_indir_tbl_init = num_rx_queues;
3387	}
3388	igb_write_rss_indir_tbl(adapter);
3389
3390	/* Disable raw packet checksumming so that RSS hash is placed in
3391	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3392	 * offloads as they are enabled by default
3393	 */
3394	rxcsum = rd32(E1000_RXCSUM);
3395	rxcsum |= E1000_RXCSUM_PCSD;
3396
3397	if (adapter->hw.mac.type >= e1000_82576)
3398		/* Enable Receive Checksum Offload for SCTP */
3399		rxcsum |= E1000_RXCSUM_CRCOFL;
3400
3401	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3402	wr32(E1000_RXCSUM, rxcsum);
3403
3404	/* Generate RSS hash based on packet types, TCP/UDP
3405	 * port numbers and/or IPv4/v6 src and dst addresses
3406	 */
3407	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3408	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3409	       E1000_MRQC_RSS_FIELD_IPV6 |
3410	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3411	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3412
3413	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3414		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3415	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3416		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3417
3418	/* If VMDq is enabled then we set the appropriate mode for that, else
3419	 * we default to RSS so that an RSS hash is calculated per packet even
3420	 * if we are only using one queue
3421	 */
3422	if (adapter->vfs_allocated_count) {
3423		if (hw->mac.type > e1000_82575) {
3424			/* Set the default pool for the PF's first queue */
3425			u32 vtctl = rd32(E1000_VT_CTL);
3426			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3427				   E1000_VT_CTL_DISABLE_DEF_POOL);
3428			vtctl |= adapter->vfs_allocated_count <<
3429				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3430			wr32(E1000_VT_CTL, vtctl);
3431		}
3432		if (adapter->rss_queues > 1)
3433			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3434		else
3435			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3436	} else {
3437		if (hw->mac.type != e1000_i211)
3438			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3439	}
3440	igb_vmm_control(adapter);
3441
3442	wr32(E1000_MRQC, mrqc);
3443}
3444
3445/**
3446 *  igb_setup_rctl - configure the receive control registers
3447 *  @adapter: Board private structure
3448 **/
3449void igb_setup_rctl(struct igb_adapter *adapter)
3450{
3451	struct e1000_hw *hw = &adapter->hw;
3452	u32 rctl;
3453
3454	rctl = rd32(E1000_RCTL);
3455
3456	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3457	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3458
3459	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3460		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3461
3462	/* enable stripping of CRC. It's unlikely this will break BMC
3463	 * redirection as it did with e1000. Newer features require
3464	 * that the HW strips the CRC.
3465	 */
3466	rctl |= E1000_RCTL_SECRC;
3467
3468	/* disable store bad packets and clear size bits. */
3469	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3470
3471	/* enable LPE to prevent packets larger than max_frame_size */
3472	rctl |= E1000_RCTL_LPE;
3473
3474	/* disable queue 0 to prevent tail write w/o re-config */
3475	wr32(E1000_RXDCTL(0), 0);
3476
3477	/* Attention!!!  For SR-IOV PF driver operations you must enable
3478	 * queue drop for all VF and PF queues to prevent head of line blocking
3479	 * if an un-trusted VF does not provide descriptors to hardware.
3480	 */
3481	if (adapter->vfs_allocated_count) {
3482		/* set all queue drop enable bits */
3483		wr32(E1000_QDE, ALL_QUEUES);
3484	}
3485
3486	/* This is useful for sniffing bad packets. */
3487	if (adapter->netdev->features & NETIF_F_RXALL) {
3488		/* UPE and MPE will be handled by normal PROMISC logic
3489		 * in e1000e_set_rx_mode
3490		 */
3491		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3492			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3493			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3494
3495		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3496			  E1000_RCTL_DPF | /* Allow filtered pause */
3497			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3498		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3499		 * and that breaks VLANs.
3500		 */
3501	}
3502
3503	wr32(E1000_RCTL, rctl);
3504}
3505
3506static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3507                                   int vfn)
3508{
3509	struct e1000_hw *hw = &adapter->hw;
3510	u32 vmolr;
3511
3512	/* if it isn't the PF check to see if VFs are enabled and
3513	 * increase the size to support vlan tags
3514	 */
3515	if (vfn < adapter->vfs_allocated_count &&
3516	    adapter->vf_data[vfn].vlans_enabled)
3517		size += VLAN_TAG_SIZE;
3518
3519	vmolr = rd32(E1000_VMOLR(vfn));
3520	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3521	vmolr |= size | E1000_VMOLR_LPE;
3522	wr32(E1000_VMOLR(vfn), vmolr);
3523
3524	return 0;
3525}
3526
3527/**
3528 *  igb_rlpml_set - set maximum receive packet size
3529 *  @adapter: board private structure
3530 *
3531 *  Configure maximum receivable packet size.
3532 **/
3533static void igb_rlpml_set(struct igb_adapter *adapter)
3534{
3535	u32 max_frame_size = adapter->max_frame_size;
3536	struct e1000_hw *hw = &adapter->hw;
3537	u16 pf_id = adapter->vfs_allocated_count;
3538
3539	if (pf_id) {
3540		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3541		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3542		 * to our max jumbo frame size, in case we need to enable
3543		 * jumbo frames on one of the rings later.
3544		 * This will not pass over-length frames into the default
3545		 * queue because it's gated by the VMOLR.RLPML.
3546		 */
3547		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3548	}
3549
3550	wr32(E1000_RLPML, max_frame_size);
3551}
3552
3553static inline void igb_set_vmolr(struct igb_adapter *adapter,
3554				 int vfn, bool aupe)
3555{
3556	struct e1000_hw *hw = &adapter->hw;
3557	u32 vmolr;
3558
3559	/* This register exists only on 82576 and newer so if we are older then
3560	 * we should exit and do nothing
3561	 */
3562	if (hw->mac.type < e1000_82576)
3563		return;
3564
3565	vmolr = rd32(E1000_VMOLR(vfn));
3566	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3567	if (hw->mac.type == e1000_i350) {
3568		u32 dvmolr;
3569
3570		dvmolr = rd32(E1000_DVMOLR(vfn));
3571		dvmolr |= E1000_DVMOLR_STRVLAN;
3572		wr32(E1000_DVMOLR(vfn), dvmolr);
3573	}
3574	if (aupe)
3575		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3576	else
3577		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3578
3579	/* clear all bits that might not be set */
3580	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3581
3582	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3583		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3584	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3585	 * multicast packets
3586	 */
3587	if (vfn <= adapter->vfs_allocated_count)
3588		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3589
3590	wr32(E1000_VMOLR(vfn), vmolr);
3591}
3592
3593/**
3594 *  igb_configure_rx_ring - Configure a receive ring after Reset
3595 *  @adapter: board private structure
3596 *  @ring: receive ring to be configured
3597 *
3598 *  Configure the Rx unit of the MAC after a reset.
3599 **/
3600void igb_configure_rx_ring(struct igb_adapter *adapter,
3601			   struct igb_ring *ring)
3602{
3603	struct e1000_hw *hw = &adapter->hw;
3604	u64 rdba = ring->dma;
3605	int reg_idx = ring->reg_idx;
3606	u32 srrctl = 0, rxdctl = 0;
3607
3608	/* disable the queue */
3609	wr32(E1000_RXDCTL(reg_idx), 0);
3610
3611	/* Set DMA base address registers */
3612	wr32(E1000_RDBAL(reg_idx),
3613	     rdba & 0x00000000ffffffffULL);
3614	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3615	wr32(E1000_RDLEN(reg_idx),
3616	     ring->count * sizeof(union e1000_adv_rx_desc));
3617
3618	/* initialize head and tail */
3619	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3620	wr32(E1000_RDH(reg_idx), 0);
3621	writel(0, ring->tail);
3622
3623	/* set descriptor configuration */
3624	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3625	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3626	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3627	if (hw->mac.type >= e1000_82580)
3628		srrctl |= E1000_SRRCTL_TIMESTAMP;
3629	/* Only set Drop Enable if we are supporting multiple queues */
3630	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3631		srrctl |= E1000_SRRCTL_DROP_EN;
3632
3633	wr32(E1000_SRRCTL(reg_idx), srrctl);
3634
3635	/* set filtering for VMDQ pools */
3636	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3637
3638	rxdctl |= IGB_RX_PTHRESH;
3639	rxdctl |= IGB_RX_HTHRESH << 8;
3640	rxdctl |= IGB_RX_WTHRESH << 16;
3641
3642	/* enable receive descriptor fetching */
3643	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3644	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3645}
3646
3647/**
3648 *  igb_configure_rx - Configure receive Unit after Reset
3649 *  @adapter: board private structure
3650 *
3651 *  Configure the Rx unit of the MAC after a reset.
3652 **/
3653static void igb_configure_rx(struct igb_adapter *adapter)
3654{
3655	int i;
3656
3657	/* set UTA to appropriate mode */
3658	igb_set_uta(adapter);
3659
3660	/* set the correct pool for the PF default MAC address in entry 0 */
3661	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3662			 adapter->vfs_allocated_count);
3663
3664	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3665	 * the Base and Length of the Rx Descriptor Ring
3666	 */
3667	for (i = 0; i < adapter->num_rx_queues; i++)
3668		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3669}
3670
3671/**
3672 *  igb_free_tx_resources - Free Tx Resources per Queue
3673 *  @tx_ring: Tx descriptor ring for a specific queue
3674 *
3675 *  Free all transmit software resources
3676 **/
3677void igb_free_tx_resources(struct igb_ring *tx_ring)
3678{
3679	igb_clean_tx_ring(tx_ring);
3680
3681	vfree(tx_ring->tx_buffer_info);
3682	tx_ring->tx_buffer_info = NULL;
3683
3684	/* if not set, then don't free */
3685	if (!tx_ring->desc)
3686		return;
3687
3688	dma_free_coherent(tx_ring->dev, tx_ring->size,
3689			  tx_ring->desc, tx_ring->dma);
3690
3691	tx_ring->desc = NULL;
3692}
3693
3694/**
3695 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3696 *  @adapter: board private structure
3697 *
3698 *  Free all transmit software resources
3699 **/
3700static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3701{
3702	int i;
3703
3704	for (i = 0; i < adapter->num_tx_queues; i++)
3705		igb_free_tx_resources(adapter->tx_ring[i]);
3706}
3707
3708void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3709				    struct igb_tx_buffer *tx_buffer)
3710{
3711	if (tx_buffer->skb) {
3712		dev_kfree_skb_any(tx_buffer->skb);
3713		if (dma_unmap_len(tx_buffer, len))
3714			dma_unmap_single(ring->dev,
3715					 dma_unmap_addr(tx_buffer, dma),
3716					 dma_unmap_len(tx_buffer, len),
3717					 DMA_TO_DEVICE);
3718	} else if (dma_unmap_len(tx_buffer, len)) {
3719		dma_unmap_page(ring->dev,
3720			       dma_unmap_addr(tx_buffer, dma),
3721			       dma_unmap_len(tx_buffer, len),
3722			       DMA_TO_DEVICE);
3723	}
3724	tx_buffer->next_to_watch = NULL;
3725	tx_buffer->skb = NULL;
3726	dma_unmap_len_set(tx_buffer, len, 0);
3727	/* buffer_info must be completely set up in the transmit path */
3728}
3729
3730/**
3731 *  igb_clean_tx_ring - Free Tx Buffers
3732 *  @tx_ring: ring to be cleaned
3733 **/
3734static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3735{
3736	struct igb_tx_buffer *buffer_info;
3737	unsigned long size;
3738	u16 i;
3739
3740	if (!tx_ring->tx_buffer_info)
3741		return;
3742	/* Free all the Tx ring sk_buffs */
3743
3744	for (i = 0; i < tx_ring->count; i++) {
3745		buffer_info = &tx_ring->tx_buffer_info[i];
3746		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3747	}
3748
3749	netdev_tx_reset_queue(txring_txq(tx_ring));
3750
3751	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3752	memset(tx_ring->tx_buffer_info, 0, size);
3753
3754	/* Zero out the descriptor ring */
3755	memset(tx_ring->desc, 0, tx_ring->size);
3756
3757	tx_ring->next_to_use = 0;
3758	tx_ring->next_to_clean = 0;
3759}
3760
3761/**
3762 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3763 *  @adapter: board private structure
3764 **/
3765static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3766{
3767	int i;
3768
3769	for (i = 0; i < adapter->num_tx_queues; i++)
3770		igb_clean_tx_ring(adapter->tx_ring[i]);
3771}
3772
3773/**
3774 *  igb_free_rx_resources - Free Rx Resources
3775 *  @rx_ring: ring to clean the resources from
3776 *
3777 *  Free all receive software resources
3778 **/
3779void igb_free_rx_resources(struct igb_ring *rx_ring)
3780{
3781	igb_clean_rx_ring(rx_ring);
3782
3783	vfree(rx_ring->rx_buffer_info);
3784	rx_ring->rx_buffer_info = NULL;
3785
3786	/* if not set, then don't free */
3787	if (!rx_ring->desc)
3788		return;
3789
3790	dma_free_coherent(rx_ring->dev, rx_ring->size,
3791			  rx_ring->desc, rx_ring->dma);
3792
3793	rx_ring->desc = NULL;
3794}
3795
3796/**
3797 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3798 *  @adapter: board private structure
3799 *
3800 *  Free all receive software resources
3801 **/
3802static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3803{
3804	int i;
3805
3806	for (i = 0; i < adapter->num_rx_queues; i++)
3807		igb_free_rx_resources(adapter->rx_ring[i]);
3808}
3809
3810/**
3811 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3812 *  @rx_ring: ring to free buffers from
3813 **/
3814static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3815{
3816	unsigned long size;
3817	u16 i;
3818
3819	if (rx_ring->skb)
3820		dev_kfree_skb(rx_ring->skb);
3821	rx_ring->skb = NULL;
3822
3823	if (!rx_ring->rx_buffer_info)
3824		return;
3825
3826	/* Free all the Rx ring sk_buffs */
3827	for (i = 0; i < rx_ring->count; i++) {
3828		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3829
3830		if (!buffer_info->page)
3831			continue;
3832
3833		dma_unmap_page(rx_ring->dev,
3834			       buffer_info->dma,
3835			       PAGE_SIZE,
3836			       DMA_FROM_DEVICE);
3837		__free_page(buffer_info->page);
3838
3839		buffer_info->page = NULL;
3840	}
3841
3842	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3843	memset(rx_ring->rx_buffer_info, 0, size);
3844
3845	/* Zero out the descriptor ring */
3846	memset(rx_ring->desc, 0, rx_ring->size);
3847
3848	rx_ring->next_to_alloc = 0;
3849	rx_ring->next_to_clean = 0;
3850	rx_ring->next_to_use = 0;
3851}
3852
3853/**
3854 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3855 *  @adapter: board private structure
3856 **/
3857static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3858{
3859	int i;
3860
3861	for (i = 0; i < adapter->num_rx_queues; i++)
3862		igb_clean_rx_ring(adapter->rx_ring[i]);
3863}
3864
3865/**
3866 *  igb_set_mac - Change the Ethernet Address of the NIC
3867 *  @netdev: network interface device structure
3868 *  @p: pointer to an address structure
3869 *
3870 *  Returns 0 on success, negative on failure
3871 **/
3872static int igb_set_mac(struct net_device *netdev, void *p)
3873{
3874	struct igb_adapter *adapter = netdev_priv(netdev);
3875	struct e1000_hw *hw = &adapter->hw;
3876	struct sockaddr *addr = p;
3877
3878	if (!is_valid_ether_addr(addr->sa_data))
3879		return -EADDRNOTAVAIL;
3880
3881	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3882	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3883
3884	/* set the correct pool for the new PF MAC address in entry 0 */
3885	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3886			 adapter->vfs_allocated_count);
3887
3888	return 0;
3889}
3890
3891/**
3892 *  igb_write_mc_addr_list - write multicast addresses to MTA
3893 *  @netdev: network interface device structure
3894 *
3895 *  Writes multicast address list to the MTA hash table.
3896 *  Returns: -ENOMEM on failure
3897 *           0 on no addresses written
3898 *           X on writing X addresses to MTA
3899 **/
3900static int igb_write_mc_addr_list(struct net_device *netdev)
3901{
3902	struct igb_adapter *adapter = netdev_priv(netdev);
3903	struct e1000_hw *hw = &adapter->hw;
3904	struct netdev_hw_addr *ha;
3905	u8  *mta_list;
3906	int i;
3907
3908	if (netdev_mc_empty(netdev)) {
3909		/* nothing to program, so clear mc list */
3910		igb_update_mc_addr_list(hw, NULL, 0);
3911		igb_restore_vf_multicasts(adapter);
3912		return 0;
3913	}
3914
3915	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3916	if (!mta_list)
3917		return -ENOMEM;
3918
3919	/* The shared function expects a packed array of only addresses. */
3920	i = 0;
3921	netdev_for_each_mc_addr(ha, netdev)
3922		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3923
3924	igb_update_mc_addr_list(hw, mta_list, i);
3925	kfree(mta_list);
3926
3927	return netdev_mc_count(netdev);
3928}
3929
3930/**
3931 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3932 *  @netdev: network interface device structure
3933 *
3934 *  Writes unicast address list to the RAR table.
3935 *  Returns: -ENOMEM on failure/insufficient address space
3936 *           0 on no addresses written
3937 *           X on writing X addresses to the RAR table
3938 **/
3939static int igb_write_uc_addr_list(struct net_device *netdev)
3940{
3941	struct igb_adapter *adapter = netdev_priv(netdev);
3942	struct e1000_hw *hw = &adapter->hw;
3943	unsigned int vfn = adapter->vfs_allocated_count;
3944	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3945	int count = 0;
3946
3947	/* return ENOMEM indicating insufficient memory for addresses */
3948	if (netdev_uc_count(netdev) > rar_entries)
3949		return -ENOMEM;
3950
3951	if (!netdev_uc_empty(netdev) && rar_entries) {
3952		struct netdev_hw_addr *ha;
3953
3954		netdev_for_each_uc_addr(ha, netdev) {
3955			if (!rar_entries)
3956				break;
3957			igb_rar_set_qsel(adapter, ha->addr,
3958					 rar_entries--,
3959					 vfn);
3960			count++;
3961		}
3962	}
3963	/* write the addresses in reverse order to avoid write combining */
3964	for (; rar_entries > 0 ; rar_entries--) {
3965		wr32(E1000_RAH(rar_entries), 0);
3966		wr32(E1000_RAL(rar_entries), 0);
3967	}
3968	wrfl();
3969
3970	return count;
3971}
3972
3973/**
3974 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3975 *  @netdev: network interface device structure
3976 *
3977 *  The set_rx_mode entry point is called whenever the unicast or multicast
3978 *  address lists or the network interface flags are updated.  This routine is
3979 *  responsible for configuring the hardware for proper unicast, multicast,
3980 *  promiscuous mode, and all-multi behavior.
3981 **/
3982static void igb_set_rx_mode(struct net_device *netdev)
3983{
3984	struct igb_adapter *adapter = netdev_priv(netdev);
3985	struct e1000_hw *hw = &adapter->hw;
3986	unsigned int vfn = adapter->vfs_allocated_count;
3987	u32 rctl, vmolr = 0;
3988	int count;
3989
3990	/* Check for Promiscuous and All Multicast modes */
3991	rctl = rd32(E1000_RCTL);
3992
3993	/* clear the effected bits */
3994	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3995
3996	if (netdev->flags & IFF_PROMISC) {
3997		/* retain VLAN HW filtering if in VT mode */
3998		if (adapter->vfs_allocated_count)
3999			rctl |= E1000_RCTL_VFE;
4000		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4001		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4002	} else {
4003		if (netdev->flags & IFF_ALLMULTI) {
4004			rctl |= E1000_RCTL_MPE;
4005			vmolr |= E1000_VMOLR_MPME;
4006		} else {
4007			/* Write addresses to the MTA, if the attempt fails
4008			 * then we should just turn on promiscuous mode so
4009			 * that we can at least receive multicast traffic
4010			 */
4011			count = igb_write_mc_addr_list(netdev);
4012			if (count < 0) {
4013				rctl |= E1000_RCTL_MPE;
4014				vmolr |= E1000_VMOLR_MPME;
4015			} else if (count) {
4016				vmolr |= E1000_VMOLR_ROMPE;
4017			}
4018		}
4019		/* Write addresses to available RAR registers, if there is not
4020		 * sufficient space to store all the addresses then enable
4021		 * unicast promiscuous mode
4022		 */
4023		count = igb_write_uc_addr_list(netdev);
4024		if (count < 0) {
4025			rctl |= E1000_RCTL_UPE;
4026			vmolr |= E1000_VMOLR_ROPE;
4027		}
4028		rctl |= E1000_RCTL_VFE;
4029	}
4030	wr32(E1000_RCTL, rctl);
4031
4032	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4033	 * the VMOLR to enable the appropriate modes.  Without this workaround
4034	 * we will have issues with VLAN tag stripping not being done for frames
4035	 * that are only arriving because we are the default pool
4036	 */
4037	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4038		return;
4039
4040	vmolr |= rd32(E1000_VMOLR(vfn)) &
4041		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4042	wr32(E1000_VMOLR(vfn), vmolr);
4043	igb_restore_vf_multicasts(adapter);
4044}
4045
4046static void igb_check_wvbr(struct igb_adapter *adapter)
4047{
4048	struct e1000_hw *hw = &adapter->hw;
4049	u32 wvbr = 0;
4050
4051	switch (hw->mac.type) {
4052	case e1000_82576:
4053	case e1000_i350:
4054		if (!(wvbr = rd32(E1000_WVBR)))
4055			return;
4056		break;
4057	default:
4058		break;
4059	}
4060
4061	adapter->wvbr |= wvbr;
4062}
4063
4064#define IGB_STAGGERED_QUEUE_OFFSET 8
4065
4066static void igb_spoof_check(struct igb_adapter *adapter)
4067{
4068	int j;
4069
4070	if (!adapter->wvbr)
4071		return;
4072
4073	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4074		if (adapter->wvbr & (1 << j) ||
4075		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4076			dev_warn(&adapter->pdev->dev,
4077				"Spoof event(s) detected on VF %d\n", j);
4078			adapter->wvbr &=
4079				~((1 << j) |
4080				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4081		}
4082	}
4083}
4084
4085/* Need to wait a few seconds after link up to get diagnostic information from
4086 * the phy
4087 */
4088static void igb_update_phy_info(unsigned long data)
4089{
4090	struct igb_adapter *adapter = (struct igb_adapter *) data;
4091	igb_get_phy_info(&adapter->hw);
4092}
4093
4094/**
4095 *  igb_has_link - check shared code for link and determine up/down
4096 *  @adapter: pointer to driver private info
4097 **/
4098bool igb_has_link(struct igb_adapter *adapter)
4099{
4100	struct e1000_hw *hw = &adapter->hw;
4101	bool link_active = false;
4102
4103	/* get_link_status is set on LSC (link status) interrupt or
4104	 * rx sequence error interrupt.  get_link_status will stay
4105	 * false until the e1000_check_for_link establishes link
4106	 * for copper adapters ONLY
4107	 */
4108	switch (hw->phy.media_type) {
4109	case e1000_media_type_copper:
4110		if (!hw->mac.get_link_status)
4111			return true;
4112	case e1000_media_type_internal_serdes:
4113		hw->mac.ops.check_for_link(hw);
4114		link_active = !hw->mac.get_link_status;
4115		break;
4116	default:
4117	case e1000_media_type_unknown:
4118		break;
4119	}
4120
4121	if (((hw->mac.type == e1000_i210) ||
4122	     (hw->mac.type == e1000_i211)) &&
4123	     (hw->phy.id == I210_I_PHY_ID)) {
4124		if (!netif_carrier_ok(adapter->netdev)) {
4125			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4126		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4127			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4128			adapter->link_check_timeout = jiffies;
4129		}
4130	}
4131
4132	return link_active;
4133}
4134
4135static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4136{
4137	bool ret = false;
4138	u32 ctrl_ext, thstat;
4139
4140	/* check for thermal sensor event on i350 copper only */
4141	if (hw->mac.type == e1000_i350) {
4142		thstat = rd32(E1000_THSTAT);
4143		ctrl_ext = rd32(E1000_CTRL_EXT);
4144
4145		if ((hw->phy.media_type == e1000_media_type_copper) &&
4146		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4147			ret = !!(thstat & event);
4148	}
4149
4150	return ret;
4151}
4152
4153/**
4154 *  igb_watchdog - Timer Call-back
4155 *  @data: pointer to adapter cast into an unsigned long
4156 **/
4157static void igb_watchdog(unsigned long data)
4158{
4159	struct igb_adapter *adapter = (struct igb_adapter *)data;
4160	/* Do the rest outside of interrupt context */
4161	schedule_work(&adapter->watchdog_task);
4162}
4163
4164static void igb_watchdog_task(struct work_struct *work)
4165{
4166	struct igb_adapter *adapter = container_of(work,
4167						   struct igb_adapter,
4168						   watchdog_task);
4169	struct e1000_hw *hw = &adapter->hw;
4170	struct e1000_phy_info *phy = &hw->phy;
4171	struct net_device *netdev = adapter->netdev;
4172	u32 link;
4173	int i;
4174	u32 connsw;
4175
4176	link = igb_has_link(adapter);
4177
4178	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4179		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4180			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4181		else
4182			link = false;
4183	}
4184
4185	/* Force link down if we have fiber to swap to */
4186	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4187		if (hw->phy.media_type == e1000_media_type_copper) {
4188			connsw = rd32(E1000_CONNSW);
4189			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4190				link = 0;
4191		}
4192	}
4193	if (link) {
4194		/* Perform a reset if the media type changed. */
4195		if (hw->dev_spec._82575.media_changed) {
4196			hw->dev_spec._82575.media_changed = false;
4197			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4198			igb_reset(adapter);
4199		}
4200		/* Cancel scheduled suspend requests. */
4201		pm_runtime_resume(netdev->dev.parent);
4202
4203		if (!netif_carrier_ok(netdev)) {
4204			u32 ctrl;
4205			hw->mac.ops.get_speed_and_duplex(hw,
4206							 &adapter->link_speed,
4207							 &adapter->link_duplex);
4208
4209			ctrl = rd32(E1000_CTRL);
4210			/* Links status message must follow this format */
4211			netdev_info(netdev,
4212			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4213			       netdev->name,
4214			       adapter->link_speed,
4215			       adapter->link_duplex == FULL_DUPLEX ?
4216			       "Full" : "Half",
4217			       (ctrl & E1000_CTRL_TFCE) &&
4218			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4219			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4220			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4221
4222			/* disable EEE if enabled */
4223			if ((adapter->flags & IGB_FLAG_EEE) &&
4224				(adapter->link_duplex == HALF_DUPLEX)) {
4225				dev_info(&adapter->pdev->dev,
4226				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4227				adapter->hw.dev_spec._82575.eee_disable = true;
4228				adapter->flags &= ~IGB_FLAG_EEE;
4229			}
4230
4231			/* check if SmartSpeed worked */
4232			igb_check_downshift(hw);
4233			if (phy->speed_downgraded)
4234				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4235
4236			/* check for thermal sensor event */
4237			if (igb_thermal_sensor_event(hw,
4238			    E1000_THSTAT_LINK_THROTTLE))
4239				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4240
4241			/* adjust timeout factor according to speed/duplex */
4242			adapter->tx_timeout_factor = 1;
4243			switch (adapter->link_speed) {
4244			case SPEED_10:
4245				adapter->tx_timeout_factor = 14;
4246				break;
4247			case SPEED_100:
4248				/* maybe add some timeout factor ? */
4249				break;
4250			}
4251
4252			netif_carrier_on(netdev);
4253
4254			igb_ping_all_vfs(adapter);
4255			igb_check_vf_rate_limit(adapter);
4256
4257			/* link state has changed, schedule phy info update */
4258			if (!test_bit(__IGB_DOWN, &adapter->state))
4259				mod_timer(&adapter->phy_info_timer,
4260					  round_jiffies(jiffies + 2 * HZ));
4261		}
4262	} else {
4263		if (netif_carrier_ok(netdev)) {
4264			adapter->link_speed = 0;
4265			adapter->link_duplex = 0;
4266
4267			/* check for thermal sensor event */
4268			if (igb_thermal_sensor_event(hw,
4269			    E1000_THSTAT_PWR_DOWN)) {
4270				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4271			}
4272
4273			/* Links status message must follow this format */
4274			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4275			       netdev->name);
4276			netif_carrier_off(netdev);
4277
4278			igb_ping_all_vfs(adapter);
4279
4280			/* link state has changed, schedule phy info update */
4281			if (!test_bit(__IGB_DOWN, &adapter->state))
4282				mod_timer(&adapter->phy_info_timer,
4283					  round_jiffies(jiffies + 2 * HZ));
4284
4285			/* link is down, time to check for alternate media */
4286			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4287				igb_check_swap_media(adapter);
4288				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4289					schedule_work(&adapter->reset_task);
4290					/* return immediately */
4291					return;
4292				}
4293			}
4294			pm_schedule_suspend(netdev->dev.parent,
4295					    MSEC_PER_SEC * 5);
4296
4297		/* also check for alternate media here */
4298		} else if (!netif_carrier_ok(netdev) &&
4299			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4300			igb_check_swap_media(adapter);
4301			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4302				schedule_work(&adapter->reset_task);
4303				/* return immediately */
4304				return;
4305			}
4306		}
4307	}
4308
4309	spin_lock(&adapter->stats64_lock);
4310	igb_update_stats(adapter, &adapter->stats64);
4311	spin_unlock(&adapter->stats64_lock);
4312
4313	for (i = 0; i < adapter->num_tx_queues; i++) {
4314		struct igb_ring *tx_ring = adapter->tx_ring[i];
4315		if (!netif_carrier_ok(netdev)) {
4316			/* We've lost link, so the controller stops DMA,
4317			 * but we've got queued Tx work that's never going
4318			 * to get done, so reset controller to flush Tx.
4319			 * (Do the reset outside of interrupt context).
4320			 */
4321			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4322				adapter->tx_timeout_count++;
4323				schedule_work(&adapter->reset_task);
4324				/* return immediately since reset is imminent */
4325				return;
4326			}
4327		}
4328
4329		/* Force detection of hung controller every watchdog period */
4330		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4331	}
4332
4333	/* Cause software interrupt to ensure Rx ring is cleaned */
4334	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4335		u32 eics = 0;
4336		for (i = 0; i < adapter->num_q_vectors; i++)
4337			eics |= adapter->q_vector[i]->eims_value;
4338		wr32(E1000_EICS, eics);
4339	} else {
4340		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4341	}
4342
4343	igb_spoof_check(adapter);
4344	igb_ptp_rx_hang(adapter);
4345
4346	/* Reset the timer */
4347	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4348		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4349			mod_timer(&adapter->watchdog_timer,
4350				  round_jiffies(jiffies +  HZ));
4351		else
4352			mod_timer(&adapter->watchdog_timer,
4353				  round_jiffies(jiffies + 2 * HZ));
4354	}
4355}
4356
4357enum latency_range {
4358	lowest_latency = 0,
4359	low_latency = 1,
4360	bulk_latency = 2,
4361	latency_invalid = 255
4362};
4363
4364/**
4365 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4366 *  @q_vector: pointer to q_vector
4367 *
4368 *  Stores a new ITR value based on strictly on packet size.  This
4369 *  algorithm is less sophisticated than that used in igb_update_itr,
4370 *  due to the difficulty of synchronizing statistics across multiple
4371 *  receive rings.  The divisors and thresholds used by this function
4372 *  were determined based on theoretical maximum wire speed and testing
4373 *  data, in order to minimize response time while increasing bulk
4374 *  throughput.
4375 *  This functionality is controlled by ethtool's coalescing settings.
4376 *  NOTE:  This function is called only when operating in a multiqueue
4377 *         receive environment.
4378 **/
4379static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4380{
4381	int new_val = q_vector->itr_val;
4382	int avg_wire_size = 0;
4383	struct igb_adapter *adapter = q_vector->adapter;
4384	unsigned int packets;
4385
4386	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4387	 * ints/sec - ITR timer value of 120 ticks.
4388	 */
4389	if (adapter->link_speed != SPEED_1000) {
4390		new_val = IGB_4K_ITR;
4391		goto set_itr_val;
4392	}
4393
4394	packets = q_vector->rx.total_packets;
4395	if (packets)
4396		avg_wire_size = q_vector->rx.total_bytes / packets;
4397
4398	packets = q_vector->tx.total_packets;
4399	if (packets)
4400		avg_wire_size = max_t(u32, avg_wire_size,
4401				      q_vector->tx.total_bytes / packets);
4402
4403	/* if avg_wire_size isn't set no work was done */
4404	if (!avg_wire_size)
4405		goto clear_counts;
4406
4407	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4408	avg_wire_size += 24;
4409
4410	/* Don't starve jumbo frames */
4411	avg_wire_size = min(avg_wire_size, 3000);
4412
4413	/* Give a little boost to mid-size frames */
4414	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4415		new_val = avg_wire_size / 3;
4416	else
4417		new_val = avg_wire_size / 2;
4418
4419	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4420	if (new_val < IGB_20K_ITR &&
4421	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4422	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4423		new_val = IGB_20K_ITR;
4424
4425set_itr_val:
4426	if (new_val != q_vector->itr_val) {
4427		q_vector->itr_val = new_val;
4428		q_vector->set_itr = 1;
4429	}
4430clear_counts:
4431	q_vector->rx.total_bytes = 0;
4432	q_vector->rx.total_packets = 0;
4433	q_vector->tx.total_bytes = 0;
4434	q_vector->tx.total_packets = 0;
4435}
4436
4437/**
4438 *  igb_update_itr - update the dynamic ITR value based on statistics
4439 *  @q_vector: pointer to q_vector
4440 *  @ring_container: ring info to update the itr for
4441 *
4442 *  Stores a new ITR value based on packets and byte
4443 *  counts during the last interrupt.  The advantage of per interrupt
4444 *  computation is faster updates and more accurate ITR for the current
4445 *  traffic pattern.  Constants in this function were computed
4446 *  based on theoretical maximum wire speed and thresholds were set based
4447 *  on testing data as well as attempting to minimize response time
4448 *  while increasing bulk throughput.
4449 *  This functionality is controlled by ethtool's coalescing settings.
4450 *  NOTE:  These calculations are only valid when operating in a single-
4451 *         queue environment.
4452 **/
4453static void igb_update_itr(struct igb_q_vector *q_vector,
4454			   struct igb_ring_container *ring_container)
4455{
4456	unsigned int packets = ring_container->total_packets;
4457	unsigned int bytes = ring_container->total_bytes;
4458	u8 itrval = ring_container->itr;
4459
4460	/* no packets, exit with status unchanged */
4461	if (packets == 0)
4462		return;
4463
4464	switch (itrval) {
4465	case lowest_latency:
4466		/* handle TSO and jumbo frames */
4467		if (bytes/packets > 8000)
4468			itrval = bulk_latency;
4469		else if ((packets < 5) && (bytes > 512))
4470			itrval = low_latency;
4471		break;
4472	case low_latency:  /* 50 usec aka 20000 ints/s */
4473		if (bytes > 10000) {
4474			/* this if handles the TSO accounting */
4475			if (bytes/packets > 8000)
4476				itrval = bulk_latency;
4477			else if ((packets < 10) || ((bytes/packets) > 1200))
4478				itrval = bulk_latency;
4479			else if ((packets > 35))
4480				itrval = lowest_latency;
4481		} else if (bytes/packets > 2000) {
4482			itrval = bulk_latency;
4483		} else if (packets <= 2 && bytes < 512) {
4484			itrval = lowest_latency;
4485		}
4486		break;
4487	case bulk_latency: /* 250 usec aka 4000 ints/s */
4488		if (bytes > 25000) {
4489			if (packets > 35)
4490				itrval = low_latency;
4491		} else if (bytes < 1500) {
4492			itrval = low_latency;
4493		}
4494		break;
4495	}
4496
4497	/* clear work counters since we have the values we need */
4498	ring_container->total_bytes = 0;
4499	ring_container->total_packets = 0;
4500
4501	/* write updated itr to ring container */
4502	ring_container->itr = itrval;
4503}
4504
4505static void igb_set_itr(struct igb_q_vector *q_vector)
4506{
4507	struct igb_adapter *adapter = q_vector->adapter;
4508	u32 new_itr = q_vector->itr_val;
4509	u8 current_itr = 0;
4510
4511	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4512	if (adapter->link_speed != SPEED_1000) {
4513		current_itr = 0;
4514		new_itr = IGB_4K_ITR;
4515		goto set_itr_now;
4516	}
4517
4518	igb_update_itr(q_vector, &q_vector->tx);
4519	igb_update_itr(q_vector, &q_vector->rx);
4520
4521	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4522
4523	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4524	if (current_itr == lowest_latency &&
4525	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4526	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4527		current_itr = low_latency;
4528
4529	switch (current_itr) {
4530	/* counts and packets in update_itr are dependent on these numbers */
4531	case lowest_latency:
4532		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4533		break;
4534	case low_latency:
4535		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4536		break;
4537	case bulk_latency:
4538		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4539		break;
4540	default:
4541		break;
4542	}
4543
4544set_itr_now:
4545	if (new_itr != q_vector->itr_val) {
4546		/* this attempts to bias the interrupt rate towards Bulk
4547		 * by adding intermediate steps when interrupt rate is
4548		 * increasing
4549		 */
4550		new_itr = new_itr > q_vector->itr_val ?
4551			  max((new_itr * q_vector->itr_val) /
4552			  (new_itr + (q_vector->itr_val >> 2)),
4553			  new_itr) : new_itr;
4554		/* Don't write the value here; it resets the adapter's
4555		 * internal timer, and causes us to delay far longer than
4556		 * we should between interrupts.  Instead, we write the ITR
4557		 * value at the beginning of the next interrupt so the timing
4558		 * ends up being correct.
4559		 */
4560		q_vector->itr_val = new_itr;
4561		q_vector->set_itr = 1;
4562	}
4563}
4564
4565static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4566			    u32 type_tucmd, u32 mss_l4len_idx)
4567{
4568	struct e1000_adv_tx_context_desc *context_desc;
4569	u16 i = tx_ring->next_to_use;
4570
4571	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4572
4573	i++;
4574	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4575
4576	/* set bits to identify this as an advanced context descriptor */
4577	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4578
4579	/* For 82575, context index must be unique per ring. */
4580	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4581		mss_l4len_idx |= tx_ring->reg_idx << 4;
4582
4583	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4584	context_desc->seqnum_seed	= 0;
4585	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4586	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4587}
4588
4589static int igb_tso(struct igb_ring *tx_ring,
4590		   struct igb_tx_buffer *first,
4591		   u8 *hdr_len)
4592{
4593	struct sk_buff *skb = first->skb;
4594	u32 vlan_macip_lens, type_tucmd;
4595	u32 mss_l4len_idx, l4len;
4596	int err;
4597
4598	if (skb->ip_summed != CHECKSUM_PARTIAL)
4599		return 0;
4600
4601	if (!skb_is_gso(skb))
4602		return 0;
4603
4604	err = skb_cow_head(skb, 0);
4605	if (err < 0)
4606		return err;
4607
4608	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4609	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4610
4611	if (first->protocol == htons(ETH_P_IP)) {
4612		struct iphdr *iph = ip_hdr(skb);
4613		iph->tot_len = 0;
4614		iph->check = 0;
4615		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4616							 iph->daddr, 0,
4617							 IPPROTO_TCP,
4618							 0);
4619		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4620		first->tx_flags |= IGB_TX_FLAGS_TSO |
4621				   IGB_TX_FLAGS_CSUM |
4622				   IGB_TX_FLAGS_IPV4;
4623	} else if (skb_is_gso_v6(skb)) {
4624		ipv6_hdr(skb)->payload_len = 0;
4625		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4626						       &ipv6_hdr(skb)->daddr,
4627						       0, IPPROTO_TCP, 0);
4628		first->tx_flags |= IGB_TX_FLAGS_TSO |
4629				   IGB_TX_FLAGS_CSUM;
4630	}
4631
4632	/* compute header lengths */
4633	l4len = tcp_hdrlen(skb);
4634	*hdr_len = skb_transport_offset(skb) + l4len;
4635
4636	/* update gso size and bytecount with header size */
4637	first->gso_segs = skb_shinfo(skb)->gso_segs;
4638	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4639
4640	/* MSS L4LEN IDX */
4641	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4642	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4643
4644	/* VLAN MACLEN IPLEN */
4645	vlan_macip_lens = skb_network_header_len(skb);
4646	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4647	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4648
4649	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4650
4651	return 1;
4652}
4653
4654static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4655{
4656	struct sk_buff *skb = first->skb;
4657	u32 vlan_macip_lens = 0;
4658	u32 mss_l4len_idx = 0;
4659	u32 type_tucmd = 0;
4660
4661	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4662		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4663			return;
4664	} else {
4665		u8 l4_hdr = 0;
4666		switch (first->protocol) {
4667		case htons(ETH_P_IP):
4668			vlan_macip_lens |= skb_network_header_len(skb);
4669			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4670			l4_hdr = ip_hdr(skb)->protocol;
4671			break;
4672		case htons(ETH_P_IPV6):
4673			vlan_macip_lens |= skb_network_header_len(skb);
4674			l4_hdr = ipv6_hdr(skb)->nexthdr;
4675			break;
4676		default:
4677			if (unlikely(net_ratelimit())) {
4678				dev_warn(tx_ring->dev,
4679					 "partial checksum but proto=%x!\n",
4680					 first->protocol);
4681			}
4682			break;
4683		}
4684
4685		switch (l4_hdr) {
4686		case IPPROTO_TCP:
4687			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4688			mss_l4len_idx = tcp_hdrlen(skb) <<
4689					E1000_ADVTXD_L4LEN_SHIFT;
4690			break;
4691		case IPPROTO_SCTP:
4692			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4693			mss_l4len_idx = sizeof(struct sctphdr) <<
4694					E1000_ADVTXD_L4LEN_SHIFT;
4695			break;
4696		case IPPROTO_UDP:
4697			mss_l4len_idx = sizeof(struct udphdr) <<
4698					E1000_ADVTXD_L4LEN_SHIFT;
4699			break;
4700		default:
4701			if (unlikely(net_ratelimit())) {
4702				dev_warn(tx_ring->dev,
4703					 "partial checksum but l4 proto=%x!\n",
4704					 l4_hdr);
4705			}
4706			break;
4707		}
4708
4709		/* update TX checksum flag */
4710		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4711	}
4712
4713	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4714	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4715
4716	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4717}
4718
4719#define IGB_SET_FLAG(_input, _flag, _result) \
4720	((_flag <= _result) ? \
4721	 ((u32)(_input & _flag) * (_result / _flag)) : \
4722	 ((u32)(_input & _flag) / (_flag / _result)))
4723
4724static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4725{
4726	/* set type for advanced descriptor with frame checksum insertion */
4727	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4728		       E1000_ADVTXD_DCMD_DEXT |
4729		       E1000_ADVTXD_DCMD_IFCS;
4730
4731	/* set HW vlan bit if vlan is present */
4732	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4733				 (E1000_ADVTXD_DCMD_VLE));
4734
4735	/* set segmentation bits for TSO */
4736	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4737				 (E1000_ADVTXD_DCMD_TSE));
4738
4739	/* set timestamp bit if present */
4740	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4741				 (E1000_ADVTXD_MAC_TSTAMP));
4742
4743	/* insert frame checksum */
4744	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4745
4746	return cmd_type;
4747}
4748
4749static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4750				 union e1000_adv_tx_desc *tx_desc,
4751				 u32 tx_flags, unsigned int paylen)
4752{
4753	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4754
4755	/* 82575 requires a unique index per ring */
4756	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4757		olinfo_status |= tx_ring->reg_idx << 4;
4758
4759	/* insert L4 checksum */
4760	olinfo_status |= IGB_SET_FLAG(tx_flags,
4761				      IGB_TX_FLAGS_CSUM,
4762				      (E1000_TXD_POPTS_TXSM << 8));
4763
4764	/* insert IPv4 checksum */
4765	olinfo_status |= IGB_SET_FLAG(tx_flags,
4766				      IGB_TX_FLAGS_IPV4,
4767				      (E1000_TXD_POPTS_IXSM << 8));
4768
4769	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4770}
4771
4772static void igb_tx_map(struct igb_ring *tx_ring,
4773		       struct igb_tx_buffer *first,
4774		       const u8 hdr_len)
4775{
4776	struct sk_buff *skb = first->skb;
4777	struct igb_tx_buffer *tx_buffer;
4778	union e1000_adv_tx_desc *tx_desc;
4779	struct skb_frag_struct *frag;
4780	dma_addr_t dma;
4781	unsigned int data_len, size;
4782	u32 tx_flags = first->tx_flags;
4783	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4784	u16 i = tx_ring->next_to_use;
4785
4786	tx_desc = IGB_TX_DESC(tx_ring, i);
4787
4788	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4789
4790	size = skb_headlen(skb);
4791	data_len = skb->data_len;
4792
4793	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4794
4795	tx_buffer = first;
4796
4797	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4798		if (dma_mapping_error(tx_ring->dev, dma))
4799			goto dma_error;
4800
4801		/* record length, and DMA address */
4802		dma_unmap_len_set(tx_buffer, len, size);
4803		dma_unmap_addr_set(tx_buffer, dma, dma);
4804
4805		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4806
4807		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4808			tx_desc->read.cmd_type_len =
4809				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4810
4811			i++;
4812			tx_desc++;
4813			if (i == tx_ring->count) {
4814				tx_desc = IGB_TX_DESC(tx_ring, 0);
4815				i = 0;
4816			}
4817			tx_desc->read.olinfo_status = 0;
4818
4819			dma += IGB_MAX_DATA_PER_TXD;
4820			size -= IGB_MAX_DATA_PER_TXD;
4821
4822			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4823		}
4824
4825		if (likely(!data_len))
4826			break;
4827
4828		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4829
4830		i++;
4831		tx_desc++;
4832		if (i == tx_ring->count) {
4833			tx_desc = IGB_TX_DESC(tx_ring, 0);
4834			i = 0;
4835		}
4836		tx_desc->read.olinfo_status = 0;
4837
4838		size = skb_frag_size(frag);
4839		data_len -= size;
4840
4841		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4842				       size, DMA_TO_DEVICE);
4843
4844		tx_buffer = &tx_ring->tx_buffer_info[i];
4845	}
4846
4847	/* write last descriptor with RS and EOP bits */
4848	cmd_type |= size | IGB_TXD_DCMD;
4849	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4850
4851	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4852
4853	/* set the timestamp */
4854	first->time_stamp = jiffies;
4855
4856	/* Force memory writes to complete before letting h/w know there
4857	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4858	 * memory model archs, such as IA-64).
4859	 *
4860	 * We also need this memory barrier to make certain all of the
4861	 * status bits have been updated before next_to_watch is written.
4862	 */
4863	wmb();
4864
4865	/* set next_to_watch value indicating a packet is present */
4866	first->next_to_watch = tx_desc;
4867
4868	i++;
4869	if (i == tx_ring->count)
4870		i = 0;
4871
4872	tx_ring->next_to_use = i;
4873
4874	writel(i, tx_ring->tail);
4875
4876	/* we need this if more than one processor can write to our tail
4877	 * at a time, it synchronizes IO on IA64/Altix systems
4878	 */
4879	mmiowb();
4880
4881	return;
4882
4883dma_error:
4884	dev_err(tx_ring->dev, "TX DMA map failed\n");
4885
4886	/* clear dma mappings for failed tx_buffer_info map */
4887	for (;;) {
4888		tx_buffer = &tx_ring->tx_buffer_info[i];
4889		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4890		if (tx_buffer == first)
4891			break;
4892		if (i == 0)
4893			i = tx_ring->count;
4894		i--;
4895	}
4896
4897	tx_ring->next_to_use = i;
4898}
4899
4900static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4901{
4902	struct net_device *netdev = tx_ring->netdev;
4903
4904	netif_stop_subqueue(netdev, tx_ring->queue_index);
4905
4906	/* Herbert's original patch had:
4907	 *  smp_mb__after_netif_stop_queue();
4908	 * but since that doesn't exist yet, just open code it.
4909	 */
4910	smp_mb();
4911
4912	/* We need to check again in a case another CPU has just
4913	 * made room available.
4914	 */
4915	if (igb_desc_unused(tx_ring) < size)
4916		return -EBUSY;
4917
4918	/* A reprieve! */
4919	netif_wake_subqueue(netdev, tx_ring->queue_index);
4920
4921	u64_stats_update_begin(&tx_ring->tx_syncp2);
4922	tx_ring->tx_stats.restart_queue2++;
4923	u64_stats_update_end(&tx_ring->tx_syncp2);
4924
4925	return 0;
4926}
4927
4928static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4929{
4930	if (igb_desc_unused(tx_ring) >= size)
4931		return 0;
4932	return __igb_maybe_stop_tx(tx_ring, size);
4933}
4934
4935netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4936				struct igb_ring *tx_ring)
4937{
4938	struct igb_tx_buffer *first;
4939	int tso;
4940	u32 tx_flags = 0;
4941	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4942	__be16 protocol = vlan_get_protocol(skb);
4943	u8 hdr_len = 0;
4944
4945	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4946	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4947	 *       + 2 desc gap to keep tail from touching head,
4948	 *       + 1 desc for context descriptor,
4949	 * otherwise try next time
4950	 */
4951	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4952		unsigned short f;
4953		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4954			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4955	} else {
4956		count += skb_shinfo(skb)->nr_frags;
4957	}
4958
4959	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4960		/* this is a hard error */
4961		return NETDEV_TX_BUSY;
4962	}
4963
4964	/* record the location of the first descriptor for this packet */
4965	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4966	first->skb = skb;
4967	first->bytecount = skb->len;
4968	first->gso_segs = 1;
4969
4970	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4971		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4972
4973		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4974					   &adapter->state)) {
4975			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4976			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4977
4978			adapter->ptp_tx_skb = skb_get(skb);
4979			adapter->ptp_tx_start = jiffies;
4980			if (adapter->hw.mac.type == e1000_82576)
4981				schedule_work(&adapter->ptp_tx_work);
4982		}
4983	}
4984
4985	skb_tx_timestamp(skb);
4986
4987	if (vlan_tx_tag_present(skb)) {
4988		tx_flags |= IGB_TX_FLAGS_VLAN;
4989		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4990	}
4991
4992	/* record initial flags and protocol */
4993	first->tx_flags = tx_flags;
4994	first->protocol = protocol;
4995
4996	tso = igb_tso(tx_ring, first, &hdr_len);
4997	if (tso < 0)
4998		goto out_drop;
4999	else if (!tso)
5000		igb_tx_csum(tx_ring, first);
5001
5002	igb_tx_map(tx_ring, first, hdr_len);
5003
5004	/* Make sure there is space in the ring for the next send. */
5005	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5006
5007	return NETDEV_TX_OK;
5008
5009out_drop:
5010	igb_unmap_and_free_tx_resource(tx_ring, first);
5011
5012	return NETDEV_TX_OK;
5013}
5014
5015static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5016						    struct sk_buff *skb)
5017{
5018	unsigned int r_idx = skb->queue_mapping;
5019
5020	if (r_idx >= adapter->num_tx_queues)
5021		r_idx = r_idx % adapter->num_tx_queues;
5022
5023	return adapter->tx_ring[r_idx];
5024}
5025
5026static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5027				  struct net_device *netdev)
5028{
5029	struct igb_adapter *adapter = netdev_priv(netdev);
5030
5031	if (test_bit(__IGB_DOWN, &adapter->state)) {
5032		dev_kfree_skb_any(skb);
5033		return NETDEV_TX_OK;
5034	}
5035
5036	if (skb->len <= 0) {
5037		dev_kfree_skb_any(skb);
5038		return NETDEV_TX_OK;
5039	}
5040
5041	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5042	 * in order to meet this minimum size requirement.
5043	 */
5044	if (unlikely(skb->len < 17)) {
5045		if (skb_pad(skb, 17 - skb->len))
5046			return NETDEV_TX_OK;
5047		skb->len = 17;
5048		skb_set_tail_pointer(skb, 17);
5049	}
5050
5051	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5052}
5053
5054/**
5055 *  igb_tx_timeout - Respond to a Tx Hang
5056 *  @netdev: network interface device structure
5057 **/
5058static void igb_tx_timeout(struct net_device *netdev)
5059{
5060	struct igb_adapter *adapter = netdev_priv(netdev);
5061	struct e1000_hw *hw = &adapter->hw;
5062
5063	/* Do the reset outside of interrupt context */
5064	adapter->tx_timeout_count++;
5065
5066	if (hw->mac.type >= e1000_82580)
5067		hw->dev_spec._82575.global_device_reset = true;
5068
5069	schedule_work(&adapter->reset_task);
5070	wr32(E1000_EICS,
5071	     (adapter->eims_enable_mask & ~adapter->eims_other));
5072}
5073
5074static void igb_reset_task(struct work_struct *work)
5075{
5076	struct igb_adapter *adapter;
5077	adapter = container_of(work, struct igb_adapter, reset_task);
5078
5079	igb_dump(adapter);
5080	netdev_err(adapter->netdev, "Reset adapter\n");
5081	igb_reinit_locked(adapter);
5082}
5083
5084/**
5085 *  igb_get_stats64 - Get System Network Statistics
5086 *  @netdev: network interface device structure
5087 *  @stats: rtnl_link_stats64 pointer
5088 **/
5089static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5090						struct rtnl_link_stats64 *stats)
5091{
5092	struct igb_adapter *adapter = netdev_priv(netdev);
5093
5094	spin_lock(&adapter->stats64_lock);
5095	igb_update_stats(adapter, &adapter->stats64);
5096	memcpy(stats, &adapter->stats64, sizeof(*stats));
5097	spin_unlock(&adapter->stats64_lock);
5098
5099	return stats;
5100}
5101
5102/**
5103 *  igb_change_mtu - Change the Maximum Transfer Unit
5104 *  @netdev: network interface device structure
5105 *  @new_mtu: new value for maximum frame size
5106 *
5107 *  Returns 0 on success, negative on failure
5108 **/
5109static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5110{
5111	struct igb_adapter *adapter = netdev_priv(netdev);
5112	struct pci_dev *pdev = adapter->pdev;
5113	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5114
5115	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5116		dev_err(&pdev->dev, "Invalid MTU setting\n");
5117		return -EINVAL;
5118	}
5119
5120#define MAX_STD_JUMBO_FRAME_SIZE 9238
5121	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5122		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5123		return -EINVAL;
5124	}
5125
5126	/* adjust max frame to be at least the size of a standard frame */
5127	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5128		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5129
5130	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5131		msleep(1);
5132
5133	/* igb_down has a dependency on max_frame_size */
5134	adapter->max_frame_size = max_frame;
5135
5136	if (netif_running(netdev))
5137		igb_down(adapter);
5138
5139	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5140		 netdev->mtu, new_mtu);
5141	netdev->mtu = new_mtu;
5142
5143	if (netif_running(netdev))
5144		igb_up(adapter);
5145	else
5146		igb_reset(adapter);
5147
5148	clear_bit(__IGB_RESETTING, &adapter->state);
5149
5150	return 0;
5151}
5152
5153/**
5154 *  igb_update_stats - Update the board statistics counters
5155 *  @adapter: board private structure
5156 **/
5157void igb_update_stats(struct igb_adapter *adapter,
5158		      struct rtnl_link_stats64 *net_stats)
5159{
5160	struct e1000_hw *hw = &adapter->hw;
5161	struct pci_dev *pdev = adapter->pdev;
5162	u32 reg, mpc;
5163	u16 phy_tmp;
5164	int i;
5165	u64 bytes, packets;
5166	unsigned int start;
5167	u64 _bytes, _packets;
5168
5169#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5170
5171	/* Prevent stats update while adapter is being reset, or if the pci
5172	 * connection is down.
5173	 */
5174	if (adapter->link_speed == 0)
5175		return;
5176	if (pci_channel_offline(pdev))
5177		return;
5178
5179	bytes = 0;
5180	packets = 0;
5181
5182	rcu_read_lock();
5183	for (i = 0; i < adapter->num_rx_queues; i++) {
5184		u32 rqdpc = rd32(E1000_RQDPC(i));
5185		struct igb_ring *ring = adapter->rx_ring[i];
5186
5187		if (rqdpc) {
5188			ring->rx_stats.drops += rqdpc;
5189			net_stats->rx_fifo_errors += rqdpc;
5190		}
5191
5192		do {
5193			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5194			_bytes = ring->rx_stats.bytes;
5195			_packets = ring->rx_stats.packets;
5196		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5197		bytes += _bytes;
5198		packets += _packets;
5199	}
5200
5201	net_stats->rx_bytes = bytes;
5202	net_stats->rx_packets = packets;
5203
5204	bytes = 0;
5205	packets = 0;
5206	for (i = 0; i < adapter->num_tx_queues; i++) {
5207		struct igb_ring *ring = adapter->tx_ring[i];
5208		do {
5209			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5210			_bytes = ring->tx_stats.bytes;
5211			_packets = ring->tx_stats.packets;
5212		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5213		bytes += _bytes;
5214		packets += _packets;
5215	}
5216	net_stats->tx_bytes = bytes;
5217	net_stats->tx_packets = packets;
5218	rcu_read_unlock();
5219
5220	/* read stats registers */
5221	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5222	adapter->stats.gprc += rd32(E1000_GPRC);
5223	adapter->stats.gorc += rd32(E1000_GORCL);
5224	rd32(E1000_GORCH); /* clear GORCL */
5225	adapter->stats.bprc += rd32(E1000_BPRC);
5226	adapter->stats.mprc += rd32(E1000_MPRC);
5227	adapter->stats.roc += rd32(E1000_ROC);
5228
5229	adapter->stats.prc64 += rd32(E1000_PRC64);
5230	adapter->stats.prc127 += rd32(E1000_PRC127);
5231	adapter->stats.prc255 += rd32(E1000_PRC255);
5232	adapter->stats.prc511 += rd32(E1000_PRC511);
5233	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5234	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5235	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5236	adapter->stats.sec += rd32(E1000_SEC);
5237
5238	mpc = rd32(E1000_MPC);
5239	adapter->stats.mpc += mpc;
5240	net_stats->rx_fifo_errors += mpc;
5241	adapter->stats.scc += rd32(E1000_SCC);
5242	adapter->stats.ecol += rd32(E1000_ECOL);
5243	adapter->stats.mcc += rd32(E1000_MCC);
5244	adapter->stats.latecol += rd32(E1000_LATECOL);
5245	adapter->stats.dc += rd32(E1000_DC);
5246	adapter->stats.rlec += rd32(E1000_RLEC);
5247	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5248	adapter->stats.xontxc += rd32(E1000_XONTXC);
5249	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5250	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5251	adapter->stats.fcruc += rd32(E1000_FCRUC);
5252	adapter->stats.gptc += rd32(E1000_GPTC);
5253	adapter->stats.gotc += rd32(E1000_GOTCL);
5254	rd32(E1000_GOTCH); /* clear GOTCL */
5255	adapter->stats.rnbc += rd32(E1000_RNBC);
5256	adapter->stats.ruc += rd32(E1000_RUC);
5257	adapter->stats.rfc += rd32(E1000_RFC);
5258	adapter->stats.rjc += rd32(E1000_RJC);
5259	adapter->stats.tor += rd32(E1000_TORH);
5260	adapter->stats.tot += rd32(E1000_TOTH);
5261	adapter->stats.tpr += rd32(E1000_TPR);
5262
5263	adapter->stats.ptc64 += rd32(E1000_PTC64);
5264	adapter->stats.ptc127 += rd32(E1000_PTC127);
5265	adapter->stats.ptc255 += rd32(E1000_PTC255);
5266	adapter->stats.ptc511 += rd32(E1000_PTC511);
5267	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5268	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5269
5270	adapter->stats.mptc += rd32(E1000_MPTC);
5271	adapter->stats.bptc += rd32(E1000_BPTC);
5272
5273	adapter->stats.tpt += rd32(E1000_TPT);
5274	adapter->stats.colc += rd32(E1000_COLC);
5275
5276	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5277	/* read internal phy specific stats */
5278	reg = rd32(E1000_CTRL_EXT);
5279	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5280		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5281
5282		/* this stat has invalid values on i210/i211 */
5283		if ((hw->mac.type != e1000_i210) &&
5284		    (hw->mac.type != e1000_i211))
5285			adapter->stats.tncrs += rd32(E1000_TNCRS);
5286	}
5287
5288	adapter->stats.tsctc += rd32(E1000_TSCTC);
5289	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5290
5291	adapter->stats.iac += rd32(E1000_IAC);
5292	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5293	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5294	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5295	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5296	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5297	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5298	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5299	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5300
5301	/* Fill out the OS statistics structure */
5302	net_stats->multicast = adapter->stats.mprc;
5303	net_stats->collisions = adapter->stats.colc;
5304
5305	/* Rx Errors */
5306
5307	/* RLEC on some newer hardware can be incorrect so build
5308	 * our own version based on RUC and ROC
5309	 */
5310	net_stats->rx_errors = adapter->stats.rxerrc +
5311		adapter->stats.crcerrs + adapter->stats.algnerrc +
5312		adapter->stats.ruc + adapter->stats.roc +
5313		adapter->stats.cexterr;
5314	net_stats->rx_length_errors = adapter->stats.ruc +
5315				      adapter->stats.roc;
5316	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5317	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5318	net_stats->rx_missed_errors = adapter->stats.mpc;
5319
5320	/* Tx Errors */
5321	net_stats->tx_errors = adapter->stats.ecol +
5322			       adapter->stats.latecol;
5323	net_stats->tx_aborted_errors = adapter->stats.ecol;
5324	net_stats->tx_window_errors = adapter->stats.latecol;
5325	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5326
5327	/* Tx Dropped needs to be maintained elsewhere */
5328
5329	/* Phy Stats */
5330	if (hw->phy.media_type == e1000_media_type_copper) {
5331		if ((adapter->link_speed == SPEED_1000) &&
5332		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5333			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5334			adapter->phy_stats.idle_errors += phy_tmp;
5335		}
5336	}
5337
5338	/* Management Stats */
5339	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5340	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5341	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5342
5343	/* OS2BMC Stats */
5344	reg = rd32(E1000_MANC);
5345	if (reg & E1000_MANC_EN_BMC2OS) {
5346		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5347		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5348		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5349		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5350	}
5351}
5352
5353static irqreturn_t igb_msix_other(int irq, void *data)
5354{
5355	struct igb_adapter *adapter = data;
5356	struct e1000_hw *hw = &adapter->hw;
5357	u32 icr = rd32(E1000_ICR);
5358	/* reading ICR causes bit 31 of EICR to be cleared */
5359
5360	if (icr & E1000_ICR_DRSTA)
5361		schedule_work(&adapter->reset_task);
5362
5363	if (icr & E1000_ICR_DOUTSYNC) {
5364		/* HW is reporting DMA is out of sync */
5365		adapter->stats.doosync++;
5366		/* The DMA Out of Sync is also indication of a spoof event
5367		 * in IOV mode. Check the Wrong VM Behavior register to
5368		 * see if it is really a spoof event.
5369		 */
5370		igb_check_wvbr(adapter);
5371	}
5372
5373	/* Check for a mailbox event */
5374	if (icr & E1000_ICR_VMMB)
5375		igb_msg_task(adapter);
5376
5377	if (icr & E1000_ICR_LSC) {
5378		hw->mac.get_link_status = 1;
5379		/* guard against interrupt when we're going down */
5380		if (!test_bit(__IGB_DOWN, &adapter->state))
5381			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5382	}
5383
5384	if (icr & E1000_ICR_TS) {
5385		u32 tsicr = rd32(E1000_TSICR);
5386
5387		if (tsicr & E1000_TSICR_TXTS) {
5388			/* acknowledge the interrupt */
5389			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5390			/* retrieve hardware timestamp */
5391			schedule_work(&adapter->ptp_tx_work);
5392		}
5393	}
5394
5395	wr32(E1000_EIMS, adapter->eims_other);
5396
5397	return IRQ_HANDLED;
5398}
5399
5400static void igb_write_itr(struct igb_q_vector *q_vector)
5401{
5402	struct igb_adapter *adapter = q_vector->adapter;
5403	u32 itr_val = q_vector->itr_val & 0x7FFC;
5404
5405	if (!q_vector->set_itr)
5406		return;
5407
5408	if (!itr_val)
5409		itr_val = 0x4;
5410
5411	if (adapter->hw.mac.type == e1000_82575)
5412		itr_val |= itr_val << 16;
5413	else
5414		itr_val |= E1000_EITR_CNT_IGNR;
5415
5416	writel(itr_val, q_vector->itr_register);
5417	q_vector->set_itr = 0;
5418}
5419
5420static irqreturn_t igb_msix_ring(int irq, void *data)
5421{
5422	struct igb_q_vector *q_vector = data;
5423
5424	/* Write the ITR value calculated from the previous interrupt. */
5425	igb_write_itr(q_vector);
5426
5427	napi_schedule(&q_vector->napi);
5428
5429	return IRQ_HANDLED;
5430}
5431
5432#ifdef CONFIG_IGB_DCA
5433static void igb_update_tx_dca(struct igb_adapter *adapter,
5434			      struct igb_ring *tx_ring,
5435			      int cpu)
5436{
5437	struct e1000_hw *hw = &adapter->hw;
5438	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5439
5440	if (hw->mac.type != e1000_82575)
5441		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5442
5443	/* We can enable relaxed ordering for reads, but not writes when
5444	 * DCA is enabled.  This is due to a known issue in some chipsets
5445	 * which will cause the DCA tag to be cleared.
5446	 */
5447	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5448		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5449		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5450
5451	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5452}
5453
5454static void igb_update_rx_dca(struct igb_adapter *adapter,
5455			      struct igb_ring *rx_ring,
5456			      int cpu)
5457{
5458	struct e1000_hw *hw = &adapter->hw;
5459	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5460
5461	if (hw->mac.type != e1000_82575)
5462		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5463
5464	/* We can enable relaxed ordering for reads, but not writes when
5465	 * DCA is enabled.  This is due to a known issue in some chipsets
5466	 * which will cause the DCA tag to be cleared.
5467	 */
5468	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5469		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5470
5471	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5472}
5473
5474static void igb_update_dca(struct igb_q_vector *q_vector)
5475{
5476	struct igb_adapter *adapter = q_vector->adapter;
5477	int cpu = get_cpu();
5478
5479	if (q_vector->cpu == cpu)
5480		goto out_no_update;
5481
5482	if (q_vector->tx.ring)
5483		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5484
5485	if (q_vector->rx.ring)
5486		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5487
5488	q_vector->cpu = cpu;
5489out_no_update:
5490	put_cpu();
5491}
5492
5493static void igb_setup_dca(struct igb_adapter *adapter)
5494{
5495	struct e1000_hw *hw = &adapter->hw;
5496	int i;
5497
5498	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5499		return;
5500
5501	/* Always use CB2 mode, difference is masked in the CB driver. */
5502	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5503
5504	for (i = 0; i < adapter->num_q_vectors; i++) {
5505		adapter->q_vector[i]->cpu = -1;
5506		igb_update_dca(adapter->q_vector[i]);
5507	}
5508}
5509
5510static int __igb_notify_dca(struct device *dev, void *data)
5511{
5512	struct net_device *netdev = dev_get_drvdata(dev);
5513	struct igb_adapter *adapter = netdev_priv(netdev);
5514	struct pci_dev *pdev = adapter->pdev;
5515	struct e1000_hw *hw = &adapter->hw;
5516	unsigned long event = *(unsigned long *)data;
5517
5518	switch (event) {
5519	case DCA_PROVIDER_ADD:
5520		/* if already enabled, don't do it again */
5521		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5522			break;
5523		if (dca_add_requester(dev) == 0) {
5524			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5525			dev_info(&pdev->dev, "DCA enabled\n");
5526			igb_setup_dca(adapter);
5527			break;
5528		}
5529		/* Fall Through since DCA is disabled. */
5530	case DCA_PROVIDER_REMOVE:
5531		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5532			/* without this a class_device is left
5533			 * hanging around in the sysfs model
5534			 */
5535			dca_remove_requester(dev);
5536			dev_info(&pdev->dev, "DCA disabled\n");
5537			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5538			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5539		}
5540		break;
5541	}
5542
5543	return 0;
5544}
5545
5546static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5547			  void *p)
5548{
5549	int ret_val;
5550
5551	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5552					 __igb_notify_dca);
5553
5554	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5555}
5556#endif /* CONFIG_IGB_DCA */
5557
5558#ifdef CONFIG_PCI_IOV
5559static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5560{
5561	unsigned char mac_addr[ETH_ALEN];
5562
5563	eth_zero_addr(mac_addr);
5564	igb_set_vf_mac(adapter, vf, mac_addr);
5565
5566	/* By default spoof check is enabled for all VFs */
5567	adapter->vf_data[vf].spoofchk_enabled = true;
5568
5569	return 0;
5570}
5571
5572#endif
5573static void igb_ping_all_vfs(struct igb_adapter *adapter)
5574{
5575	struct e1000_hw *hw = &adapter->hw;
5576	u32 ping;
5577	int i;
5578
5579	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5580		ping = E1000_PF_CONTROL_MSG;
5581		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5582			ping |= E1000_VT_MSGTYPE_CTS;
5583		igb_write_mbx(hw, &ping, 1, i);
5584	}
5585}
5586
5587static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5588{
5589	struct e1000_hw *hw = &adapter->hw;
5590	u32 vmolr = rd32(E1000_VMOLR(vf));
5591	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5592
5593	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5594			    IGB_VF_FLAG_MULTI_PROMISC);
5595	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5596
5597	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5598		vmolr |= E1000_VMOLR_MPME;
5599		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5600		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5601	} else {
5602		/* if we have hashes and we are clearing a multicast promisc
5603		 * flag we need to write the hashes to the MTA as this step
5604		 * was previously skipped
5605		 */
5606		if (vf_data->num_vf_mc_hashes > 30) {
5607			vmolr |= E1000_VMOLR_MPME;
5608		} else if (vf_data->num_vf_mc_hashes) {
5609			int j;
5610			vmolr |= E1000_VMOLR_ROMPE;
5611			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5612				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5613		}
5614	}
5615
5616	wr32(E1000_VMOLR(vf), vmolr);
5617
5618	/* there are flags left unprocessed, likely not supported */
5619	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5620		return -EINVAL;
5621
5622	return 0;
5623}
5624
5625static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5626				  u32 *msgbuf, u32 vf)
5627{
5628	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5629	u16 *hash_list = (u16 *)&msgbuf[1];
5630	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5631	int i;
5632
5633	/* salt away the number of multicast addresses assigned
5634	 * to this VF for later use to restore when the PF multi cast
5635	 * list changes
5636	 */
5637	vf_data->num_vf_mc_hashes = n;
5638
5639	/* only up to 30 hash values supported */
5640	if (n > 30)
5641		n = 30;
5642
5643	/* store the hashes for later use */
5644	for (i = 0; i < n; i++)
5645		vf_data->vf_mc_hashes[i] = hash_list[i];
5646
5647	/* Flush and reset the mta with the new values */
5648	igb_set_rx_mode(adapter->netdev);
5649
5650	return 0;
5651}
5652
5653static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5654{
5655	struct e1000_hw *hw = &adapter->hw;
5656	struct vf_data_storage *vf_data;
5657	int i, j;
5658
5659	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5660		u32 vmolr = rd32(E1000_VMOLR(i));
5661		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5662
5663		vf_data = &adapter->vf_data[i];
5664
5665		if ((vf_data->num_vf_mc_hashes > 30) ||
5666		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5667			vmolr |= E1000_VMOLR_MPME;
5668		} else if (vf_data->num_vf_mc_hashes) {
5669			vmolr |= E1000_VMOLR_ROMPE;
5670			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5671				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5672		}
5673		wr32(E1000_VMOLR(i), vmolr);
5674	}
5675}
5676
5677static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5678{
5679	struct e1000_hw *hw = &adapter->hw;
5680	u32 pool_mask, reg, vid;
5681	int i;
5682
5683	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5684
5685	/* Find the vlan filter for this id */
5686	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5687		reg = rd32(E1000_VLVF(i));
5688
5689		/* remove the vf from the pool */
5690		reg &= ~pool_mask;
5691
5692		/* if pool is empty then remove entry from vfta */
5693		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5694		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5695			reg = 0;
5696			vid = reg & E1000_VLVF_VLANID_MASK;
5697			igb_vfta_set(hw, vid, false);
5698		}
5699
5700		wr32(E1000_VLVF(i), reg);
5701	}
5702
5703	adapter->vf_data[vf].vlans_enabled = 0;
5704}
5705
5706static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5707{
5708	struct e1000_hw *hw = &adapter->hw;
5709	u32 reg, i;
5710
5711	/* The vlvf table only exists on 82576 hardware and newer */
5712	if (hw->mac.type < e1000_82576)
5713		return -1;
5714
5715	/* we only need to do this if VMDq is enabled */
5716	if (!adapter->vfs_allocated_count)
5717		return -1;
5718
5719	/* Find the vlan filter for this id */
5720	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5721		reg = rd32(E1000_VLVF(i));
5722		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5723		    vid == (reg & E1000_VLVF_VLANID_MASK))
5724			break;
5725	}
5726
5727	if (add) {
5728		if (i == E1000_VLVF_ARRAY_SIZE) {
5729			/* Did not find a matching VLAN ID entry that was
5730			 * enabled.  Search for a free filter entry, i.e.
5731			 * one without the enable bit set
5732			 */
5733			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5734				reg = rd32(E1000_VLVF(i));
5735				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5736					break;
5737			}
5738		}
5739		if (i < E1000_VLVF_ARRAY_SIZE) {
5740			/* Found an enabled/available entry */
5741			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5742
5743			/* if !enabled we need to set this up in vfta */
5744			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5745				/* add VID to filter table */
5746				igb_vfta_set(hw, vid, true);
5747				reg |= E1000_VLVF_VLANID_ENABLE;
5748			}
5749			reg &= ~E1000_VLVF_VLANID_MASK;
5750			reg |= vid;
5751			wr32(E1000_VLVF(i), reg);
5752
5753			/* do not modify RLPML for PF devices */
5754			if (vf >= adapter->vfs_allocated_count)
5755				return 0;
5756
5757			if (!adapter->vf_data[vf].vlans_enabled) {
5758				u32 size;
5759				reg = rd32(E1000_VMOLR(vf));
5760				size = reg & E1000_VMOLR_RLPML_MASK;
5761				size += 4;
5762				reg &= ~E1000_VMOLR_RLPML_MASK;
5763				reg |= size;
5764				wr32(E1000_VMOLR(vf), reg);
5765			}
5766
5767			adapter->vf_data[vf].vlans_enabled++;
5768		}
5769	} else {
5770		if (i < E1000_VLVF_ARRAY_SIZE) {
5771			/* remove vf from the pool */
5772			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5773			/* if pool is empty then remove entry from vfta */
5774			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5775				reg = 0;
5776				igb_vfta_set(hw, vid, false);
5777			}
5778			wr32(E1000_VLVF(i), reg);
5779
5780			/* do not modify RLPML for PF devices */
5781			if (vf >= adapter->vfs_allocated_count)
5782				return 0;
5783
5784			adapter->vf_data[vf].vlans_enabled--;
5785			if (!adapter->vf_data[vf].vlans_enabled) {
5786				u32 size;
5787				reg = rd32(E1000_VMOLR(vf));
5788				size = reg & E1000_VMOLR_RLPML_MASK;
5789				size -= 4;
5790				reg &= ~E1000_VMOLR_RLPML_MASK;
5791				reg |= size;
5792				wr32(E1000_VMOLR(vf), reg);
5793			}
5794		}
5795	}
5796	return 0;
5797}
5798
5799static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5800{
5801	struct e1000_hw *hw = &adapter->hw;
5802
5803	if (vid)
5804		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5805	else
5806		wr32(E1000_VMVIR(vf), 0);
5807}
5808
5809static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5810			       int vf, u16 vlan, u8 qos)
5811{
5812	int err = 0;
5813	struct igb_adapter *adapter = netdev_priv(netdev);
5814
5815	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5816		return -EINVAL;
5817	if (vlan || qos) {
5818		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5819		if (err)
5820			goto out;
5821		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5822		igb_set_vmolr(adapter, vf, !vlan);
5823		adapter->vf_data[vf].pf_vlan = vlan;
5824		adapter->vf_data[vf].pf_qos = qos;
5825		dev_info(&adapter->pdev->dev,
5826			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5827		if (test_bit(__IGB_DOWN, &adapter->state)) {
5828			dev_warn(&adapter->pdev->dev,
5829				 "The VF VLAN has been set, but the PF device is not up.\n");
5830			dev_warn(&adapter->pdev->dev,
5831				 "Bring the PF device up before attempting to use the VF device.\n");
5832		}
5833	} else {
5834		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5835			     false, vf);
5836		igb_set_vmvir(adapter, vlan, vf);
5837		igb_set_vmolr(adapter, vf, true);
5838		adapter->vf_data[vf].pf_vlan = 0;
5839		adapter->vf_data[vf].pf_qos = 0;
5840	}
5841out:
5842	return err;
5843}
5844
5845static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5846{
5847	struct e1000_hw *hw = &adapter->hw;
5848	int i;
5849	u32 reg;
5850
5851	/* Find the vlan filter for this id */
5852	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5853		reg = rd32(E1000_VLVF(i));
5854		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5855		    vid == (reg & E1000_VLVF_VLANID_MASK))
5856			break;
5857	}
5858
5859	if (i >= E1000_VLVF_ARRAY_SIZE)
5860		i = -1;
5861
5862	return i;
5863}
5864
5865static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5866{
5867	struct e1000_hw *hw = &adapter->hw;
5868	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5869	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5870	int err = 0;
5871
5872	/* If in promiscuous mode we need to make sure the PF also has
5873	 * the VLAN filter set.
5874	 */
5875	if (add && (adapter->netdev->flags & IFF_PROMISC))
5876		err = igb_vlvf_set(adapter, vid, add,
5877				   adapter->vfs_allocated_count);
5878	if (err)
5879		goto out;
5880
5881	err = igb_vlvf_set(adapter, vid, add, vf);
5882
5883	if (err)
5884		goto out;
5885
5886	/* Go through all the checks to see if the VLAN filter should
5887	 * be wiped completely.
5888	 */
5889	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5890		u32 vlvf, bits;
5891
5892		int regndx = igb_find_vlvf_entry(adapter, vid);
5893		if (regndx < 0)
5894			goto out;
5895		/* See if any other pools are set for this VLAN filter
5896		 * entry other than the PF.
5897		 */
5898		vlvf = bits = rd32(E1000_VLVF(regndx));
5899		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5900			      adapter->vfs_allocated_count);
5901		/* If the filter was removed then ensure PF pool bit
5902		 * is cleared if the PF only added itself to the pool
5903		 * because the PF is in promiscuous mode.
5904		 */
5905		if ((vlvf & VLAN_VID_MASK) == vid &&
5906		    !test_bit(vid, adapter->active_vlans) &&
5907		    !bits)
5908			igb_vlvf_set(adapter, vid, add,
5909				     adapter->vfs_allocated_count);
5910	}
5911
5912out:
5913	return err;
5914}
5915
5916static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5917{
5918	/* clear flags - except flag that indicates PF has set the MAC */
5919	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5920	adapter->vf_data[vf].last_nack = jiffies;
5921
5922	/* reset offloads to defaults */
5923	igb_set_vmolr(adapter, vf, true);
5924
5925	/* reset vlans for device */
5926	igb_clear_vf_vfta(adapter, vf);
5927	if (adapter->vf_data[vf].pf_vlan)
5928		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5929				    adapter->vf_data[vf].pf_vlan,
5930				    adapter->vf_data[vf].pf_qos);
5931	else
5932		igb_clear_vf_vfta(adapter, vf);
5933
5934	/* reset multicast table array for vf */
5935	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5936
5937	/* Flush and reset the mta with the new values */
5938	igb_set_rx_mode(adapter->netdev);
5939}
5940
5941static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5942{
5943	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5944
5945	/* clear mac address as we were hotplug removed/added */
5946	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5947		eth_zero_addr(vf_mac);
5948
5949	/* process remaining reset events */
5950	igb_vf_reset(adapter, vf);
5951}
5952
5953static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5954{
5955	struct e1000_hw *hw = &adapter->hw;
5956	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5957	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5958	u32 reg, msgbuf[3];
5959	u8 *addr = (u8 *)(&msgbuf[1]);
5960
5961	/* process all the same items cleared in a function level reset */
5962	igb_vf_reset(adapter, vf);
5963
5964	/* set vf mac address */
5965	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5966
5967	/* enable transmit and receive for vf */
5968	reg = rd32(E1000_VFTE);
5969	wr32(E1000_VFTE, reg | (1 << vf));
5970	reg = rd32(E1000_VFRE);
5971	wr32(E1000_VFRE, reg | (1 << vf));
5972
5973	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5974
5975	/* reply to reset with ack and vf mac address */
5976	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5977	memcpy(addr, vf_mac, ETH_ALEN);
5978	igb_write_mbx(hw, msgbuf, 3, vf);
5979}
5980
5981static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5982{
5983	/* The VF MAC Address is stored in a packed array of bytes
5984	 * starting at the second 32 bit word of the msg array
5985	 */
5986	unsigned char *addr = (char *)&msg[1];
5987	int err = -1;
5988
5989	if (is_valid_ether_addr(addr))
5990		err = igb_set_vf_mac(adapter, vf, addr);
5991
5992	return err;
5993}
5994
5995static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5996{
5997	struct e1000_hw *hw = &adapter->hw;
5998	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5999	u32 msg = E1000_VT_MSGTYPE_NACK;
6000
6001	/* if device isn't clear to send it shouldn't be reading either */
6002	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6003	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6004		igb_write_mbx(hw, &msg, 1, vf);
6005		vf_data->last_nack = jiffies;
6006	}
6007}
6008
6009static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6010{
6011	struct pci_dev *pdev = adapter->pdev;
6012	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6013	struct e1000_hw *hw = &adapter->hw;
6014	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6015	s32 retval;
6016
6017	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6018
6019	if (retval) {
6020		/* if receive failed revoke VF CTS stats and restart init */
6021		dev_err(&pdev->dev, "Error receiving message from VF\n");
6022		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6023		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6024			return;
6025		goto out;
6026	}
6027
6028	/* this is a message we already processed, do nothing */
6029	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6030		return;
6031
6032	/* until the vf completes a reset it should not be
6033	 * allowed to start any configuration.
6034	 */
6035	if (msgbuf[0] == E1000_VF_RESET) {
6036		igb_vf_reset_msg(adapter, vf);
6037		return;
6038	}
6039
6040	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6041		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6042			return;
6043		retval = -1;
6044		goto out;
6045	}
6046
6047	switch ((msgbuf[0] & 0xFFFF)) {
6048	case E1000_VF_SET_MAC_ADDR:
6049		retval = -EINVAL;
6050		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6051			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6052		else
6053			dev_warn(&pdev->dev,
6054				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6055				 vf);
6056		break;
6057	case E1000_VF_SET_PROMISC:
6058		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6059		break;
6060	case E1000_VF_SET_MULTICAST:
6061		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6062		break;
6063	case E1000_VF_SET_LPE:
6064		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6065		break;
6066	case E1000_VF_SET_VLAN:
6067		retval = -1;
6068		if (vf_data->pf_vlan)
6069			dev_warn(&pdev->dev,
6070				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6071				 vf);
6072		else
6073			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6074		break;
6075	default:
6076		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6077		retval = -1;
6078		break;
6079	}
6080
6081	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6082out:
6083	/* notify the VF of the results of what it sent us */
6084	if (retval)
6085		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6086	else
6087		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6088
6089	igb_write_mbx(hw, msgbuf, 1, vf);
6090}
6091
6092static void igb_msg_task(struct igb_adapter *adapter)
6093{
6094	struct e1000_hw *hw = &adapter->hw;
6095	u32 vf;
6096
6097	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6098		/* process any reset requests */
6099		if (!igb_check_for_rst(hw, vf))
6100			igb_vf_reset_event(adapter, vf);
6101
6102		/* process any messages pending */
6103		if (!igb_check_for_msg(hw, vf))
6104			igb_rcv_msg_from_vf(adapter, vf);
6105
6106		/* process any acks */
6107		if (!igb_check_for_ack(hw, vf))
6108			igb_rcv_ack_from_vf(adapter, vf);
6109	}
6110}
6111
6112/**
6113 *  igb_set_uta - Set unicast filter table address
6114 *  @adapter: board private structure
6115 *
6116 *  The unicast table address is a register array of 32-bit registers.
6117 *  The table is meant to be used in a way similar to how the MTA is used
6118 *  however due to certain limitations in the hardware it is necessary to
6119 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6120 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6121 **/
6122static void igb_set_uta(struct igb_adapter *adapter)
6123{
6124	struct e1000_hw *hw = &adapter->hw;
6125	int i;
6126
6127	/* The UTA table only exists on 82576 hardware and newer */
6128	if (hw->mac.type < e1000_82576)
6129		return;
6130
6131	/* we only need to do this if VMDq is enabled */
6132	if (!adapter->vfs_allocated_count)
6133		return;
6134
6135	for (i = 0; i < hw->mac.uta_reg_count; i++)
6136		array_wr32(E1000_UTA, i, ~0);
6137}
6138
6139/**
6140 *  igb_intr_msi - Interrupt Handler
6141 *  @irq: interrupt number
6142 *  @data: pointer to a network interface device structure
6143 **/
6144static irqreturn_t igb_intr_msi(int irq, void *data)
6145{
6146	struct igb_adapter *adapter = data;
6147	struct igb_q_vector *q_vector = adapter->q_vector[0];
6148	struct e1000_hw *hw = &adapter->hw;
6149	/* read ICR disables interrupts using IAM */
6150	u32 icr = rd32(E1000_ICR);
6151
6152	igb_write_itr(q_vector);
6153
6154	if (icr & E1000_ICR_DRSTA)
6155		schedule_work(&adapter->reset_task);
6156
6157	if (icr & E1000_ICR_DOUTSYNC) {
6158		/* HW is reporting DMA is out of sync */
6159		adapter->stats.doosync++;
6160	}
6161
6162	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6163		hw->mac.get_link_status = 1;
6164		if (!test_bit(__IGB_DOWN, &adapter->state))
6165			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6166	}
6167
6168	if (icr & E1000_ICR_TS) {
6169		u32 tsicr = rd32(E1000_TSICR);
6170
6171		if (tsicr & E1000_TSICR_TXTS) {
6172			/* acknowledge the interrupt */
6173			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6174			/* retrieve hardware timestamp */
6175			schedule_work(&adapter->ptp_tx_work);
6176		}
6177	}
6178
6179	napi_schedule(&q_vector->napi);
6180
6181	return IRQ_HANDLED;
6182}
6183
6184/**
6185 *  igb_intr - Legacy Interrupt Handler
6186 *  @irq: interrupt number
6187 *  @data: pointer to a network interface device structure
6188 **/
6189static irqreturn_t igb_intr(int irq, void *data)
6190{
6191	struct igb_adapter *adapter = data;
6192	struct igb_q_vector *q_vector = adapter->q_vector[0];
6193	struct e1000_hw *hw = &adapter->hw;
6194	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6195	 * need for the IMC write
6196	 */
6197	u32 icr = rd32(E1000_ICR);
6198
6199	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6200	 * not set, then the adapter didn't send an interrupt
6201	 */
6202	if (!(icr & E1000_ICR_INT_ASSERTED))
6203		return IRQ_NONE;
6204
6205	igb_write_itr(q_vector);
6206
6207	if (icr & E1000_ICR_DRSTA)
6208		schedule_work(&adapter->reset_task);
6209
6210	if (icr & E1000_ICR_DOUTSYNC) {
6211		/* HW is reporting DMA is out of sync */
6212		adapter->stats.doosync++;
6213	}
6214
6215	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6216		hw->mac.get_link_status = 1;
6217		/* guard against interrupt when we're going down */
6218		if (!test_bit(__IGB_DOWN, &adapter->state))
6219			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6220	}
6221
6222	if (icr & E1000_ICR_TS) {
6223		u32 tsicr = rd32(E1000_TSICR);
6224
6225		if (tsicr & E1000_TSICR_TXTS) {
6226			/* acknowledge the interrupt */
6227			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6228			/* retrieve hardware timestamp */
6229			schedule_work(&adapter->ptp_tx_work);
6230		}
6231	}
6232
6233	napi_schedule(&q_vector->napi);
6234
6235	return IRQ_HANDLED;
6236}
6237
6238static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6239{
6240	struct igb_adapter *adapter = q_vector->adapter;
6241	struct e1000_hw *hw = &adapter->hw;
6242
6243	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6244	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6245		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6246			igb_set_itr(q_vector);
6247		else
6248			igb_update_ring_itr(q_vector);
6249	}
6250
6251	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6252		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6253			wr32(E1000_EIMS, q_vector->eims_value);
6254		else
6255			igb_irq_enable(adapter);
6256	}
6257}
6258
6259/**
6260 *  igb_poll - NAPI Rx polling callback
6261 *  @napi: napi polling structure
6262 *  @budget: count of how many packets we should handle
6263 **/
6264static int igb_poll(struct napi_struct *napi, int budget)
6265{
6266	struct igb_q_vector *q_vector = container_of(napi,
6267						     struct igb_q_vector,
6268						     napi);
6269	bool clean_complete = true;
6270
6271#ifdef CONFIG_IGB_DCA
6272	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6273		igb_update_dca(q_vector);
6274#endif
6275	if (q_vector->tx.ring)
6276		clean_complete = igb_clean_tx_irq(q_vector);
6277
6278	if (q_vector->rx.ring)
6279		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6280
6281	/* If all work not completed, return budget and keep polling */
6282	if (!clean_complete)
6283		return budget;
6284
6285	/* If not enough Rx work done, exit the polling mode */
6286	napi_complete(napi);
6287	igb_ring_irq_enable(q_vector);
6288
6289	return 0;
6290}
6291
6292/**
6293 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6294 *  @q_vector: pointer to q_vector containing needed info
6295 *
6296 *  returns true if ring is completely cleaned
6297 **/
6298static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6299{
6300	struct igb_adapter *adapter = q_vector->adapter;
6301	struct igb_ring *tx_ring = q_vector->tx.ring;
6302	struct igb_tx_buffer *tx_buffer;
6303	union e1000_adv_tx_desc *tx_desc;
6304	unsigned int total_bytes = 0, total_packets = 0;
6305	unsigned int budget = q_vector->tx.work_limit;
6306	unsigned int i = tx_ring->next_to_clean;
6307
6308	if (test_bit(__IGB_DOWN, &adapter->state))
6309		return true;
6310
6311	tx_buffer = &tx_ring->tx_buffer_info[i];
6312	tx_desc = IGB_TX_DESC(tx_ring, i);
6313	i -= tx_ring->count;
6314
6315	do {
6316		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6317
6318		/* if next_to_watch is not set then there is no work pending */
6319		if (!eop_desc)
6320			break;
6321
6322		/* prevent any other reads prior to eop_desc */
6323		read_barrier_depends();
6324
6325		/* if DD is not set pending work has not been completed */
6326		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6327			break;
6328
6329		/* clear next_to_watch to prevent false hangs */
6330		tx_buffer->next_to_watch = NULL;
6331
6332		/* update the statistics for this packet */
6333		total_bytes += tx_buffer->bytecount;
6334		total_packets += tx_buffer->gso_segs;
6335
6336		/* free the skb */
6337		dev_kfree_skb_any(tx_buffer->skb);
6338
6339		/* unmap skb header data */
6340		dma_unmap_single(tx_ring->dev,
6341				 dma_unmap_addr(tx_buffer, dma),
6342				 dma_unmap_len(tx_buffer, len),
6343				 DMA_TO_DEVICE);
6344
6345		/* clear tx_buffer data */
6346		tx_buffer->skb = NULL;
6347		dma_unmap_len_set(tx_buffer, len, 0);
6348
6349		/* clear last DMA location and unmap remaining buffers */
6350		while (tx_desc != eop_desc) {
6351			tx_buffer++;
6352			tx_desc++;
6353			i++;
6354			if (unlikely(!i)) {
6355				i -= tx_ring->count;
6356				tx_buffer = tx_ring->tx_buffer_info;
6357				tx_desc = IGB_TX_DESC(tx_ring, 0);
6358			}
6359
6360			/* unmap any remaining paged data */
6361			if (dma_unmap_len(tx_buffer, len)) {
6362				dma_unmap_page(tx_ring->dev,
6363					       dma_unmap_addr(tx_buffer, dma),
6364					       dma_unmap_len(tx_buffer, len),
6365					       DMA_TO_DEVICE);
6366				dma_unmap_len_set(tx_buffer, len, 0);
6367			}
6368		}
6369
6370		/* move us one more past the eop_desc for start of next pkt */
6371		tx_buffer++;
6372		tx_desc++;
6373		i++;
6374		if (unlikely(!i)) {
6375			i -= tx_ring->count;
6376			tx_buffer = tx_ring->tx_buffer_info;
6377			tx_desc = IGB_TX_DESC(tx_ring, 0);
6378		}
6379
6380		/* issue prefetch for next Tx descriptor */
6381		prefetch(tx_desc);
6382
6383		/* update budget accounting */
6384		budget--;
6385	} while (likely(budget));
6386
6387	netdev_tx_completed_queue(txring_txq(tx_ring),
6388				  total_packets, total_bytes);
6389	i += tx_ring->count;
6390	tx_ring->next_to_clean = i;
6391	u64_stats_update_begin(&tx_ring->tx_syncp);
6392	tx_ring->tx_stats.bytes += total_bytes;
6393	tx_ring->tx_stats.packets += total_packets;
6394	u64_stats_update_end(&tx_ring->tx_syncp);
6395	q_vector->tx.total_bytes += total_bytes;
6396	q_vector->tx.total_packets += total_packets;
6397
6398	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6399		struct e1000_hw *hw = &adapter->hw;
6400
6401		/* Detect a transmit hang in hardware, this serializes the
6402		 * check with the clearing of time_stamp and movement of i
6403		 */
6404		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6405		if (tx_buffer->next_to_watch &&
6406		    time_after(jiffies, tx_buffer->time_stamp +
6407			       (adapter->tx_timeout_factor * HZ)) &&
6408		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6409
6410			/* detected Tx unit hang */
6411			dev_err(tx_ring->dev,
6412				"Detected Tx Unit Hang\n"
6413				"  Tx Queue             <%d>\n"
6414				"  TDH                  <%x>\n"
6415				"  TDT                  <%x>\n"
6416				"  next_to_use          <%x>\n"
6417				"  next_to_clean        <%x>\n"
6418				"buffer_info[next_to_clean]\n"
6419				"  time_stamp           <%lx>\n"
6420				"  next_to_watch        <%p>\n"
6421				"  jiffies              <%lx>\n"
6422				"  desc.status          <%x>\n",
6423				tx_ring->queue_index,
6424				rd32(E1000_TDH(tx_ring->reg_idx)),
6425				readl(tx_ring->tail),
6426				tx_ring->next_to_use,
6427				tx_ring->next_to_clean,
6428				tx_buffer->time_stamp,
6429				tx_buffer->next_to_watch,
6430				jiffies,
6431				tx_buffer->next_to_watch->wb.status);
6432			netif_stop_subqueue(tx_ring->netdev,
6433					    tx_ring->queue_index);
6434
6435			/* we are about to reset, no point in enabling stuff */
6436			return true;
6437		}
6438	}
6439
6440#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6441	if (unlikely(total_packets &&
6442	    netif_carrier_ok(tx_ring->netdev) &&
6443	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6444		/* Make sure that anybody stopping the queue after this
6445		 * sees the new next_to_clean.
6446		 */
6447		smp_mb();
6448		if (__netif_subqueue_stopped(tx_ring->netdev,
6449					     tx_ring->queue_index) &&
6450		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6451			netif_wake_subqueue(tx_ring->netdev,
6452					    tx_ring->queue_index);
6453
6454			u64_stats_update_begin(&tx_ring->tx_syncp);
6455			tx_ring->tx_stats.restart_queue++;
6456			u64_stats_update_end(&tx_ring->tx_syncp);
6457		}
6458	}
6459
6460	return !!budget;
6461}
6462
6463/**
6464 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6465 *  @rx_ring: rx descriptor ring to store buffers on
6466 *  @old_buff: donor buffer to have page reused
6467 *
6468 *  Synchronizes page for reuse by the adapter
6469 **/
6470static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6471			      struct igb_rx_buffer *old_buff)
6472{
6473	struct igb_rx_buffer *new_buff;
6474	u16 nta = rx_ring->next_to_alloc;
6475
6476	new_buff = &rx_ring->rx_buffer_info[nta];
6477
6478	/* update, and store next to alloc */
6479	nta++;
6480	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6481
6482	/* transfer page from old buffer to new buffer */
6483	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6484
6485	/* sync the buffer for use by the device */
6486	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6487					 old_buff->page_offset,
6488					 IGB_RX_BUFSZ,
6489					 DMA_FROM_DEVICE);
6490}
6491
6492static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6493				  struct page *page,
6494				  unsigned int truesize)
6495{
6496	/* avoid re-using remote pages */
6497	if (unlikely(page_to_nid(page) != numa_node_id()))
6498		return false;
6499
6500#if (PAGE_SIZE < 8192)
6501	/* if we are only owner of page we can reuse it */
6502	if (unlikely(page_count(page) != 1))
6503		return false;
6504
6505	/* flip page offset to other buffer */
6506	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6507
6508	/* since we are the only owner of the page and we need to
6509	 * increment it, just set the value to 2 in order to avoid
6510	 * an unnecessary locked operation
6511	 */
6512	atomic_set(&page->_count, 2);
6513#else
6514	/* move offset up to the next cache line */
6515	rx_buffer->page_offset += truesize;
6516
6517	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6518		return false;
6519
6520	/* bump ref count on page before it is given to the stack */
6521	get_page(page);
6522#endif
6523
6524	return true;
6525}
6526
6527/**
6528 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6529 *  @rx_ring: rx descriptor ring to transact packets on
6530 *  @rx_buffer: buffer containing page to add
6531 *  @rx_desc: descriptor containing length of buffer written by hardware
6532 *  @skb: sk_buff to place the data into
6533 *
6534 *  This function will add the data contained in rx_buffer->page to the skb.
6535 *  This is done either through a direct copy if the data in the buffer is
6536 *  less than the skb header size, otherwise it will just attach the page as
6537 *  a frag to the skb.
6538 *
6539 *  The function will then update the page offset if necessary and return
6540 *  true if the buffer can be reused by the adapter.
6541 **/
6542static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6543			    struct igb_rx_buffer *rx_buffer,
6544			    union e1000_adv_rx_desc *rx_desc,
6545			    struct sk_buff *skb)
6546{
6547	struct page *page = rx_buffer->page;
6548	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6549#if (PAGE_SIZE < 8192)
6550	unsigned int truesize = IGB_RX_BUFSZ;
6551#else
6552	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6553#endif
6554
6555	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6556		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6557
6558		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6559			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6560			va += IGB_TS_HDR_LEN;
6561			size -= IGB_TS_HDR_LEN;
6562		}
6563
6564		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6565
6566		/* we can reuse buffer as-is, just make sure it is local */
6567		if (likely(page_to_nid(page) == numa_node_id()))
6568			return true;
6569
6570		/* this page cannot be reused so discard it */
6571		put_page(page);
6572		return false;
6573	}
6574
6575	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6576			rx_buffer->page_offset, size, truesize);
6577
6578	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6579}
6580
6581static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6582					   union e1000_adv_rx_desc *rx_desc,
6583					   struct sk_buff *skb)
6584{
6585	struct igb_rx_buffer *rx_buffer;
6586	struct page *page;
6587
6588	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6589
6590	page = rx_buffer->page;
6591	prefetchw(page);
6592
6593	if (likely(!skb)) {
6594		void *page_addr = page_address(page) +
6595				  rx_buffer->page_offset;
6596
6597		/* prefetch first cache line of first page */
6598		prefetch(page_addr);
6599#if L1_CACHE_BYTES < 128
6600		prefetch(page_addr + L1_CACHE_BYTES);
6601#endif
6602
6603		/* allocate a skb to store the frags */
6604		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6605						IGB_RX_HDR_LEN);
6606		if (unlikely(!skb)) {
6607			rx_ring->rx_stats.alloc_failed++;
6608			return NULL;
6609		}
6610
6611		/* we will be copying header into skb->data in
6612		 * pskb_may_pull so it is in our interest to prefetch
6613		 * it now to avoid a possible cache miss
6614		 */
6615		prefetchw(skb->data);
6616	}
6617
6618	/* we are reusing so sync this buffer for CPU use */
6619	dma_sync_single_range_for_cpu(rx_ring->dev,
6620				      rx_buffer->dma,
6621				      rx_buffer->page_offset,
6622				      IGB_RX_BUFSZ,
6623				      DMA_FROM_DEVICE);
6624
6625	/* pull page into skb */
6626	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6627		/* hand second half of page back to the ring */
6628		igb_reuse_rx_page(rx_ring, rx_buffer);
6629	} else {
6630		/* we are not reusing the buffer so unmap it */
6631		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6632			       PAGE_SIZE, DMA_FROM_DEVICE);
6633	}
6634
6635	/* clear contents of rx_buffer */
6636	rx_buffer->page = NULL;
6637
6638	return skb;
6639}
6640
6641static inline void igb_rx_checksum(struct igb_ring *ring,
6642				   union e1000_adv_rx_desc *rx_desc,
6643				   struct sk_buff *skb)
6644{
6645	skb_checksum_none_assert(skb);
6646
6647	/* Ignore Checksum bit is set */
6648	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6649		return;
6650
6651	/* Rx checksum disabled via ethtool */
6652	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6653		return;
6654
6655	/* TCP/UDP checksum error bit is set */
6656	if (igb_test_staterr(rx_desc,
6657			     E1000_RXDEXT_STATERR_TCPE |
6658			     E1000_RXDEXT_STATERR_IPE)) {
6659		/* work around errata with sctp packets where the TCPE aka
6660		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6661		 * packets, (aka let the stack check the crc32c)
6662		 */
6663		if (!((skb->len == 60) &&
6664		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6665			u64_stats_update_begin(&ring->rx_syncp);
6666			ring->rx_stats.csum_err++;
6667			u64_stats_update_end(&ring->rx_syncp);
6668		}
6669		/* let the stack verify checksum errors */
6670		return;
6671	}
6672	/* It must be a TCP or UDP packet with a valid checksum */
6673	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6674				      E1000_RXD_STAT_UDPCS))
6675		skb->ip_summed = CHECKSUM_UNNECESSARY;
6676
6677	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6678		le32_to_cpu(rx_desc->wb.upper.status_error));
6679}
6680
6681static inline void igb_rx_hash(struct igb_ring *ring,
6682			       union e1000_adv_rx_desc *rx_desc,
6683			       struct sk_buff *skb)
6684{
6685	if (ring->netdev->features & NETIF_F_RXHASH)
6686		skb_set_hash(skb,
6687			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6688			     PKT_HASH_TYPE_L3);
6689}
6690
6691/**
6692 *  igb_is_non_eop - process handling of non-EOP buffers
6693 *  @rx_ring: Rx ring being processed
6694 *  @rx_desc: Rx descriptor for current buffer
6695 *  @skb: current socket buffer containing buffer in progress
6696 *
6697 *  This function updates next to clean.  If the buffer is an EOP buffer
6698 *  this function exits returning false, otherwise it will place the
6699 *  sk_buff in the next buffer to be chained and return true indicating
6700 *  that this is in fact a non-EOP buffer.
6701 **/
6702static bool igb_is_non_eop(struct igb_ring *rx_ring,
6703			   union e1000_adv_rx_desc *rx_desc)
6704{
6705	u32 ntc = rx_ring->next_to_clean + 1;
6706
6707	/* fetch, update, and store next to clean */
6708	ntc = (ntc < rx_ring->count) ? ntc : 0;
6709	rx_ring->next_to_clean = ntc;
6710
6711	prefetch(IGB_RX_DESC(rx_ring, ntc));
6712
6713	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6714		return false;
6715
6716	return true;
6717}
6718
6719/**
6720 *  igb_get_headlen - determine size of header for LRO/GRO
6721 *  @data: pointer to the start of the headers
6722 *  @max_len: total length of section to find headers in
6723 *
6724 *  This function is meant to determine the length of headers that will
6725 *  be recognized by hardware for LRO, and GRO offloads.  The main
6726 *  motivation of doing this is to only perform one pull for IPv4 TCP
6727 *  packets so that we can do basic things like calculating the gso_size
6728 *  based on the average data per packet.
6729 **/
6730static unsigned int igb_get_headlen(unsigned char *data,
6731				    unsigned int max_len)
6732{
6733	union {
6734		unsigned char *network;
6735		/* l2 headers */
6736		struct ethhdr *eth;
6737		struct vlan_hdr *vlan;
6738		/* l3 headers */
6739		struct iphdr *ipv4;
6740		struct ipv6hdr *ipv6;
6741	} hdr;
6742	__be16 protocol;
6743	u8 nexthdr = 0;	/* default to not TCP */
6744	u8 hlen;
6745
6746	/* this should never happen, but better safe than sorry */
6747	if (max_len < ETH_HLEN)
6748		return max_len;
6749
6750	/* initialize network frame pointer */
6751	hdr.network = data;
6752
6753	/* set first protocol and move network header forward */
6754	protocol = hdr.eth->h_proto;
6755	hdr.network += ETH_HLEN;
6756
6757	/* handle any vlan tag if present */
6758	if (protocol == htons(ETH_P_8021Q)) {
6759		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6760			return max_len;
6761
6762		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6763		hdr.network += VLAN_HLEN;
6764	}
6765
6766	/* handle L3 protocols */
6767	if (protocol == htons(ETH_P_IP)) {
6768		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6769			return max_len;
6770
6771		/* access ihl as a u8 to avoid unaligned access on ia64 */
6772		hlen = (hdr.network[0] & 0x0F) << 2;
6773
6774		/* verify hlen meets minimum size requirements */
6775		if (hlen < sizeof(struct iphdr))
6776			return hdr.network - data;
6777
6778		/* record next protocol if header is present */
6779		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6780			nexthdr = hdr.ipv4->protocol;
6781	} else if (protocol == htons(ETH_P_IPV6)) {
6782		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6783			return max_len;
6784
6785		/* record next protocol */
6786		nexthdr = hdr.ipv6->nexthdr;
6787		hlen = sizeof(struct ipv6hdr);
6788	} else {
6789		return hdr.network - data;
6790	}
6791
6792	/* relocate pointer to start of L4 header */
6793	hdr.network += hlen;
6794
6795	/* finally sort out TCP */
6796	if (nexthdr == IPPROTO_TCP) {
6797		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6798			return max_len;
6799
6800		/* access doff as a u8 to avoid unaligned access on ia64 */
6801		hlen = (hdr.network[12] & 0xF0) >> 2;
6802
6803		/* verify hlen meets minimum size requirements */
6804		if (hlen < sizeof(struct tcphdr))
6805			return hdr.network - data;
6806
6807		hdr.network += hlen;
6808	} else if (nexthdr == IPPROTO_UDP) {
6809		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6810			return max_len;
6811
6812		hdr.network += sizeof(struct udphdr);
6813	}
6814
6815	/* If everything has gone correctly hdr.network should be the
6816	 * data section of the packet and will be the end of the header.
6817	 * If not then it probably represents the end of the last recognized
6818	 * header.
6819	 */
6820	if ((hdr.network - data) < max_len)
6821		return hdr.network - data;
6822	else
6823		return max_len;
6824}
6825
6826/**
6827 *  igb_pull_tail - igb specific version of skb_pull_tail
6828 *  @rx_ring: rx descriptor ring packet is being transacted on
6829 *  @rx_desc: pointer to the EOP Rx descriptor
6830 *  @skb: pointer to current skb being adjusted
6831 *
6832 *  This function is an igb specific version of __pskb_pull_tail.  The
6833 *  main difference between this version and the original function is that
6834 *  this function can make several assumptions about the state of things
6835 *  that allow for significant optimizations versus the standard function.
6836 *  As a result we can do things like drop a frag and maintain an accurate
6837 *  truesize for the skb.
6838 */
6839static void igb_pull_tail(struct igb_ring *rx_ring,
6840			  union e1000_adv_rx_desc *rx_desc,
6841			  struct sk_buff *skb)
6842{
6843	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6844	unsigned char *va;
6845	unsigned int pull_len;
6846
6847	/* it is valid to use page_address instead of kmap since we are
6848	 * working with pages allocated out of the lomem pool per
6849	 * alloc_page(GFP_ATOMIC)
6850	 */
6851	va = skb_frag_address(frag);
6852
6853	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6854		/* retrieve timestamp from buffer */
6855		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6856
6857		/* update pointers to remove timestamp header */
6858		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6859		frag->page_offset += IGB_TS_HDR_LEN;
6860		skb->data_len -= IGB_TS_HDR_LEN;
6861		skb->len -= IGB_TS_HDR_LEN;
6862
6863		/* move va to start of packet data */
6864		va += IGB_TS_HDR_LEN;
6865	}
6866
6867	/* we need the header to contain the greater of either ETH_HLEN or
6868	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6869	 */
6870	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6871
6872	/* align pull length to size of long to optimize memcpy performance */
6873	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6874
6875	/* update all of the pointers */
6876	skb_frag_size_sub(frag, pull_len);
6877	frag->page_offset += pull_len;
6878	skb->data_len -= pull_len;
6879	skb->tail += pull_len;
6880}
6881
6882/**
6883 *  igb_cleanup_headers - Correct corrupted or empty headers
6884 *  @rx_ring: rx descriptor ring packet is being transacted on
6885 *  @rx_desc: pointer to the EOP Rx descriptor
6886 *  @skb: pointer to current skb being fixed
6887 *
6888 *  Address the case where we are pulling data in on pages only
6889 *  and as such no data is present in the skb header.
6890 *
6891 *  In addition if skb is not at least 60 bytes we need to pad it so that
6892 *  it is large enough to qualify as a valid Ethernet frame.
6893 *
6894 *  Returns true if an error was encountered and skb was freed.
6895 **/
6896static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6897				union e1000_adv_rx_desc *rx_desc,
6898				struct sk_buff *skb)
6899{
6900	if (unlikely((igb_test_staterr(rx_desc,
6901				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6902		struct net_device *netdev = rx_ring->netdev;
6903		if (!(netdev->features & NETIF_F_RXALL)) {
6904			dev_kfree_skb_any(skb);
6905			return true;
6906		}
6907	}
6908
6909	/* place header in linear portion of buffer */
6910	if (skb_is_nonlinear(skb))
6911		igb_pull_tail(rx_ring, rx_desc, skb);
6912
6913	/* if skb_pad returns an error the skb was freed */
6914	if (unlikely(skb->len < 60)) {
6915		int pad_len = 60 - skb->len;
6916
6917		if (skb_pad(skb, pad_len))
6918			return true;
6919		__skb_put(skb, pad_len);
6920	}
6921
6922	return false;
6923}
6924
6925/**
6926 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6927 *  @rx_ring: rx descriptor ring packet is being transacted on
6928 *  @rx_desc: pointer to the EOP Rx descriptor
6929 *  @skb: pointer to current skb being populated
6930 *
6931 *  This function checks the ring, descriptor, and packet information in
6932 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6933 *  other fields within the skb.
6934 **/
6935static void igb_process_skb_fields(struct igb_ring *rx_ring,
6936				   union e1000_adv_rx_desc *rx_desc,
6937				   struct sk_buff *skb)
6938{
6939	struct net_device *dev = rx_ring->netdev;
6940
6941	igb_rx_hash(rx_ring, rx_desc, skb);
6942
6943	igb_rx_checksum(rx_ring, rx_desc, skb);
6944
6945	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6946	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6947		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6948
6949	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6950	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6951		u16 vid;
6952		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6953		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6954			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6955		else
6956			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6957
6958		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6959	}
6960
6961	skb_record_rx_queue(skb, rx_ring->queue_index);
6962
6963	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6964}
6965
6966static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6967{
6968	struct igb_ring *rx_ring = q_vector->rx.ring;
6969	struct sk_buff *skb = rx_ring->skb;
6970	unsigned int total_bytes = 0, total_packets = 0;
6971	u16 cleaned_count = igb_desc_unused(rx_ring);
6972
6973	while (likely(total_packets < budget)) {
6974		union e1000_adv_rx_desc *rx_desc;
6975
6976		/* return some buffers to hardware, one at a time is too slow */
6977		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6978			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6979			cleaned_count = 0;
6980		}
6981
6982		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6983
6984		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6985			break;
6986
6987		/* This memory barrier is needed to keep us from reading
6988		 * any other fields out of the rx_desc until we know the
6989		 * RXD_STAT_DD bit is set
6990		 */
6991		rmb();
6992
6993		/* retrieve a buffer from the ring */
6994		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6995
6996		/* exit if we failed to retrieve a buffer */
6997		if (!skb)
6998			break;
6999
7000		cleaned_count++;
7001
7002		/* fetch next buffer in frame if non-eop */
7003		if (igb_is_non_eop(rx_ring, rx_desc))
7004			continue;
7005
7006		/* verify the packet layout is correct */
7007		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7008			skb = NULL;
7009			continue;
7010		}
7011
7012		/* probably a little skewed due to removing CRC */
7013		total_bytes += skb->len;
7014
7015		/* populate checksum, timestamp, VLAN, and protocol */
7016		igb_process_skb_fields(rx_ring, rx_desc, skb);
7017
7018		napi_gro_receive(&q_vector->napi, skb);
7019
7020		/* reset skb pointer */
7021		skb = NULL;
7022
7023		/* update budget accounting */
7024		total_packets++;
7025	}
7026
7027	/* place incomplete frames back on ring for completion */
7028	rx_ring->skb = skb;
7029
7030	u64_stats_update_begin(&rx_ring->rx_syncp);
7031	rx_ring->rx_stats.packets += total_packets;
7032	rx_ring->rx_stats.bytes += total_bytes;
7033	u64_stats_update_end(&rx_ring->rx_syncp);
7034	q_vector->rx.total_packets += total_packets;
7035	q_vector->rx.total_bytes += total_bytes;
7036
7037	if (cleaned_count)
7038		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7039
7040	return (total_packets < budget);
7041}
7042
7043static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7044				  struct igb_rx_buffer *bi)
7045{
7046	struct page *page = bi->page;
7047	dma_addr_t dma;
7048
7049	/* since we are recycling buffers we should seldom need to alloc */
7050	if (likely(page))
7051		return true;
7052
7053	/* alloc new page for storage */
7054	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7055	if (unlikely(!page)) {
7056		rx_ring->rx_stats.alloc_failed++;
7057		return false;
7058	}
7059
7060	/* map page for use */
7061	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7062
7063	/* if mapping failed free memory back to system since
7064	 * there isn't much point in holding memory we can't use
7065	 */
7066	if (dma_mapping_error(rx_ring->dev, dma)) {
7067		__free_page(page);
7068
7069		rx_ring->rx_stats.alloc_failed++;
7070		return false;
7071	}
7072
7073	bi->dma = dma;
7074	bi->page = page;
7075	bi->page_offset = 0;
7076
7077	return true;
7078}
7079
7080/**
7081 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7082 *  @adapter: address of board private structure
7083 **/
7084void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7085{
7086	union e1000_adv_rx_desc *rx_desc;
7087	struct igb_rx_buffer *bi;
7088	u16 i = rx_ring->next_to_use;
7089
7090	/* nothing to do */
7091	if (!cleaned_count)
7092		return;
7093
7094	rx_desc = IGB_RX_DESC(rx_ring, i);
7095	bi = &rx_ring->rx_buffer_info[i];
7096	i -= rx_ring->count;
7097
7098	do {
7099		if (!igb_alloc_mapped_page(rx_ring, bi))
7100			break;
7101
7102		/* Refresh the desc even if buffer_addrs didn't change
7103		 * because each write-back erases this info.
7104		 */
7105		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7106
7107		rx_desc++;
7108		bi++;
7109		i++;
7110		if (unlikely(!i)) {
7111			rx_desc = IGB_RX_DESC(rx_ring, 0);
7112			bi = rx_ring->rx_buffer_info;
7113			i -= rx_ring->count;
7114		}
7115
7116		/* clear the hdr_addr for the next_to_use descriptor */
7117		rx_desc->read.hdr_addr = 0;
7118
7119		cleaned_count--;
7120	} while (cleaned_count);
7121
7122	i += rx_ring->count;
7123
7124	if (rx_ring->next_to_use != i) {
7125		/* record the next descriptor to use */
7126		rx_ring->next_to_use = i;
7127
7128		/* update next to alloc since we have filled the ring */
7129		rx_ring->next_to_alloc = i;
7130
7131		/* Force memory writes to complete before letting h/w
7132		 * know there are new descriptors to fetch.  (Only
7133		 * applicable for weak-ordered memory model archs,
7134		 * such as IA-64).
7135		 */
7136		wmb();
7137		writel(i, rx_ring->tail);
7138	}
7139}
7140
7141/**
7142 * igb_mii_ioctl -
7143 * @netdev:
7144 * @ifreq:
7145 * @cmd:
7146 **/
7147static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7148{
7149	struct igb_adapter *adapter = netdev_priv(netdev);
7150	struct mii_ioctl_data *data = if_mii(ifr);
7151
7152	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7153		return -EOPNOTSUPP;
7154
7155	switch (cmd) {
7156	case SIOCGMIIPHY:
7157		data->phy_id = adapter->hw.phy.addr;
7158		break;
7159	case SIOCGMIIREG:
7160		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7161		                     &data->val_out))
7162			return -EIO;
7163		break;
7164	case SIOCSMIIREG:
7165	default:
7166		return -EOPNOTSUPP;
7167	}
7168	return 0;
7169}
7170
7171/**
7172 * igb_ioctl -
7173 * @netdev:
7174 * @ifreq:
7175 * @cmd:
7176 **/
7177static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7178{
7179	switch (cmd) {
7180	case SIOCGMIIPHY:
7181	case SIOCGMIIREG:
7182	case SIOCSMIIREG:
7183		return igb_mii_ioctl(netdev, ifr, cmd);
7184	case SIOCGHWTSTAMP:
7185		return igb_ptp_get_ts_config(netdev, ifr);
7186	case SIOCSHWTSTAMP:
7187		return igb_ptp_set_ts_config(netdev, ifr);
7188	default:
7189		return -EOPNOTSUPP;
7190	}
7191}
7192
7193s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7194{
7195	struct igb_adapter *adapter = hw->back;
7196
7197	if (pcie_capability_read_word(adapter->pdev, reg, value))
7198		return -E1000_ERR_CONFIG;
7199
7200	return 0;
7201}
7202
7203s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7204{
7205	struct igb_adapter *adapter = hw->back;
7206
7207	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7208		return -E1000_ERR_CONFIG;
7209
7210	return 0;
7211}
7212
7213static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7214{
7215	struct igb_adapter *adapter = netdev_priv(netdev);
7216	struct e1000_hw *hw = &adapter->hw;
7217	u32 ctrl, rctl;
7218	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7219
7220	if (enable) {
7221		/* enable VLAN tag insert/strip */
7222		ctrl = rd32(E1000_CTRL);
7223		ctrl |= E1000_CTRL_VME;
7224		wr32(E1000_CTRL, ctrl);
7225
7226		/* Disable CFI check */
7227		rctl = rd32(E1000_RCTL);
7228		rctl &= ~E1000_RCTL_CFIEN;
7229		wr32(E1000_RCTL, rctl);
7230	} else {
7231		/* disable VLAN tag insert/strip */
7232		ctrl = rd32(E1000_CTRL);
7233		ctrl &= ~E1000_CTRL_VME;
7234		wr32(E1000_CTRL, ctrl);
7235	}
7236
7237	igb_rlpml_set(adapter);
7238}
7239
7240static int igb_vlan_rx_add_vid(struct net_device *netdev,
7241			       __be16 proto, u16 vid)
7242{
7243	struct igb_adapter *adapter = netdev_priv(netdev);
7244	struct e1000_hw *hw = &adapter->hw;
7245	int pf_id = adapter->vfs_allocated_count;
7246
7247	/* attempt to add filter to vlvf array */
7248	igb_vlvf_set(adapter, vid, true, pf_id);
7249
7250	/* add the filter since PF can receive vlans w/o entry in vlvf */
7251	igb_vfta_set(hw, vid, true);
7252
7253	set_bit(vid, adapter->active_vlans);
7254
7255	return 0;
7256}
7257
7258static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7259				__be16 proto, u16 vid)
7260{
7261	struct igb_adapter *adapter = netdev_priv(netdev);
7262	struct e1000_hw *hw = &adapter->hw;
7263	int pf_id = adapter->vfs_allocated_count;
7264	s32 err;
7265
7266	/* remove vlan from VLVF table array */
7267	err = igb_vlvf_set(adapter, vid, false, pf_id);
7268
7269	/* if vid was not present in VLVF just remove it from table */
7270	if (err)
7271		igb_vfta_set(hw, vid, false);
7272
7273	clear_bit(vid, adapter->active_vlans);
7274
7275	return 0;
7276}
7277
7278static void igb_restore_vlan(struct igb_adapter *adapter)
7279{
7280	u16 vid;
7281
7282	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7283
7284	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7285		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7286}
7287
7288int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7289{
7290	struct pci_dev *pdev = adapter->pdev;
7291	struct e1000_mac_info *mac = &adapter->hw.mac;
7292
7293	mac->autoneg = 0;
7294
7295	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7296	 * for the switch() below to work
7297	 */
7298	if ((spd & 1) || (dplx & ~1))
7299		goto err_inval;
7300
7301	/* Fiber NIC's only allow 1000 gbps Full duplex
7302	 * and 100Mbps Full duplex for 100baseFx sfp
7303	 */
7304	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7305		switch (spd + dplx) {
7306		case SPEED_10 + DUPLEX_HALF:
7307		case SPEED_10 + DUPLEX_FULL:
7308		case SPEED_100 + DUPLEX_HALF:
7309			goto err_inval;
7310		default:
7311			break;
7312		}
7313	}
7314
7315	switch (spd + dplx) {
7316	case SPEED_10 + DUPLEX_HALF:
7317		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7318		break;
7319	case SPEED_10 + DUPLEX_FULL:
7320		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7321		break;
7322	case SPEED_100 + DUPLEX_HALF:
7323		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7324		break;
7325	case SPEED_100 + DUPLEX_FULL:
7326		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7327		break;
7328	case SPEED_1000 + DUPLEX_FULL:
7329		mac->autoneg = 1;
7330		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7331		break;
7332	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7333	default:
7334		goto err_inval;
7335	}
7336
7337	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7338	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7339
7340	return 0;
7341
7342err_inval:
7343	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7344	return -EINVAL;
7345}
7346
7347static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7348			  bool runtime)
7349{
7350	struct net_device *netdev = pci_get_drvdata(pdev);
7351	struct igb_adapter *adapter = netdev_priv(netdev);
7352	struct e1000_hw *hw = &adapter->hw;
7353	u32 ctrl, rctl, status;
7354	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7355#ifdef CONFIG_PM
7356	int retval = 0;
7357#endif
7358
7359	netif_device_detach(netdev);
7360
7361	if (netif_running(netdev))
7362		__igb_close(netdev, true);
7363
7364	igb_clear_interrupt_scheme(adapter);
7365
7366#ifdef CONFIG_PM
7367	retval = pci_save_state(pdev);
7368	if (retval)
7369		return retval;
7370#endif
7371
7372	status = rd32(E1000_STATUS);
7373	if (status & E1000_STATUS_LU)
7374		wufc &= ~E1000_WUFC_LNKC;
7375
7376	if (wufc) {
7377		igb_setup_rctl(adapter);
7378		igb_set_rx_mode(netdev);
7379
7380		/* turn on all-multi mode if wake on multicast is enabled */
7381		if (wufc & E1000_WUFC_MC) {
7382			rctl = rd32(E1000_RCTL);
7383			rctl |= E1000_RCTL_MPE;
7384			wr32(E1000_RCTL, rctl);
7385		}
7386
7387		ctrl = rd32(E1000_CTRL);
7388		/* advertise wake from D3Cold */
7389		#define E1000_CTRL_ADVD3WUC 0x00100000
7390		/* phy power management enable */
7391		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7392		ctrl |= E1000_CTRL_ADVD3WUC;
7393		wr32(E1000_CTRL, ctrl);
7394
7395		/* Allow time for pending master requests to run */
7396		igb_disable_pcie_master(hw);
7397
7398		wr32(E1000_WUC, E1000_WUC_PME_EN);
7399		wr32(E1000_WUFC, wufc);
7400	} else {
7401		wr32(E1000_WUC, 0);
7402		wr32(E1000_WUFC, 0);
7403	}
7404
7405	*enable_wake = wufc || adapter->en_mng_pt;
7406	if (!*enable_wake)
7407		igb_power_down_link(adapter);
7408	else
7409		igb_power_up_link(adapter);
7410
7411	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7412	 * would have already happened in close and is redundant.
7413	 */
7414	igb_release_hw_control(adapter);
7415
7416	pci_disable_device(pdev);
7417
7418	return 0;
7419}
7420
7421#ifdef CONFIG_PM
7422#ifdef CONFIG_PM_SLEEP
7423static int igb_suspend(struct device *dev)
7424{
7425	int retval;
7426	bool wake;
7427	struct pci_dev *pdev = to_pci_dev(dev);
7428
7429	retval = __igb_shutdown(pdev, &wake, 0);
7430	if (retval)
7431		return retval;
7432
7433	if (wake) {
7434		pci_prepare_to_sleep(pdev);
7435	} else {
7436		pci_wake_from_d3(pdev, false);
7437		pci_set_power_state(pdev, PCI_D3hot);
7438	}
7439
7440	return 0;
7441}
7442#endif /* CONFIG_PM_SLEEP */
7443
7444static int igb_resume(struct device *dev)
7445{
7446	struct pci_dev *pdev = to_pci_dev(dev);
7447	struct net_device *netdev = pci_get_drvdata(pdev);
7448	struct igb_adapter *adapter = netdev_priv(netdev);
7449	struct e1000_hw *hw = &adapter->hw;
7450	u32 err;
7451
7452	pci_set_power_state(pdev, PCI_D0);
7453	pci_restore_state(pdev);
7454	pci_save_state(pdev);
7455
7456	err = pci_enable_device_mem(pdev);
7457	if (err) {
7458		dev_err(&pdev->dev,
7459			"igb: Cannot enable PCI device from suspend\n");
7460		return err;
7461	}
7462	pci_set_master(pdev);
7463
7464	pci_enable_wake(pdev, PCI_D3hot, 0);
7465	pci_enable_wake(pdev, PCI_D3cold, 0);
7466
7467	if (igb_init_interrupt_scheme(adapter, true)) {
7468		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7469		return -ENOMEM;
7470	}
7471
7472	igb_reset(adapter);
7473
7474	/* let the f/w know that the h/w is now under the control of the
7475	 * driver.
7476	 */
7477	igb_get_hw_control(adapter);
7478
7479	wr32(E1000_WUS, ~0);
7480
7481	if (netdev->flags & IFF_UP) {
7482		rtnl_lock();
7483		err = __igb_open(netdev, true);
7484		rtnl_unlock();
7485		if (err)
7486			return err;
7487	}
7488
7489	netif_device_attach(netdev);
7490	return 0;
7491}
7492
7493#ifdef CONFIG_PM_RUNTIME
7494static int igb_runtime_idle(struct device *dev)
7495{
7496	struct pci_dev *pdev = to_pci_dev(dev);
7497	struct net_device *netdev = pci_get_drvdata(pdev);
7498	struct igb_adapter *adapter = netdev_priv(netdev);
7499
7500	if (!igb_has_link(adapter))
7501		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7502
7503	return -EBUSY;
7504}
7505
7506static int igb_runtime_suspend(struct device *dev)
7507{
7508	struct pci_dev *pdev = to_pci_dev(dev);
7509	int retval;
7510	bool wake;
7511
7512	retval = __igb_shutdown(pdev, &wake, 1);
7513	if (retval)
7514		return retval;
7515
7516	if (wake) {
7517		pci_prepare_to_sleep(pdev);
7518	} else {
7519		pci_wake_from_d3(pdev, false);
7520		pci_set_power_state(pdev, PCI_D3hot);
7521	}
7522
7523	return 0;
7524}
7525
7526static int igb_runtime_resume(struct device *dev)
7527{
7528	return igb_resume(dev);
7529}
7530#endif /* CONFIG_PM_RUNTIME */
7531#endif
7532
7533static void igb_shutdown(struct pci_dev *pdev)
7534{
7535	bool wake;
7536
7537	__igb_shutdown(pdev, &wake, 0);
7538
7539	if (system_state == SYSTEM_POWER_OFF) {
7540		pci_wake_from_d3(pdev, wake);
7541		pci_set_power_state(pdev, PCI_D3hot);
7542	}
7543}
7544
7545#ifdef CONFIG_PCI_IOV
7546static int igb_sriov_reinit(struct pci_dev *dev)
7547{
7548	struct net_device *netdev = pci_get_drvdata(dev);
7549	struct igb_adapter *adapter = netdev_priv(netdev);
7550	struct pci_dev *pdev = adapter->pdev;
7551
7552	rtnl_lock();
7553
7554	if (netif_running(netdev))
7555		igb_close(netdev);
7556
7557	igb_clear_interrupt_scheme(adapter);
7558
7559	igb_init_queue_configuration(adapter);
7560
7561	if (igb_init_interrupt_scheme(adapter, true)) {
7562		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7563		return -ENOMEM;
7564	}
7565
7566	if (netif_running(netdev))
7567		igb_open(netdev);
7568
7569	rtnl_unlock();
7570
7571	return 0;
7572}
7573
7574static int igb_pci_disable_sriov(struct pci_dev *dev)
7575{
7576	int err = igb_disable_sriov(dev);
7577
7578	if (!err)
7579		err = igb_sriov_reinit(dev);
7580
7581	return err;
7582}
7583
7584static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7585{
7586	int err = igb_enable_sriov(dev, num_vfs);
7587
7588	if (err)
7589		goto out;
7590
7591	err = igb_sriov_reinit(dev);
7592	if (!err)
7593		return num_vfs;
7594
7595out:
7596	return err;
7597}
7598
7599#endif
7600static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7601{
7602#ifdef CONFIG_PCI_IOV
7603	if (num_vfs == 0)
7604		return igb_pci_disable_sriov(dev);
7605	else
7606		return igb_pci_enable_sriov(dev, num_vfs);
7607#endif
7608	return 0;
7609}
7610
7611#ifdef CONFIG_NET_POLL_CONTROLLER
7612/* Polling 'interrupt' - used by things like netconsole to send skbs
7613 * without having to re-enable interrupts. It's not called while
7614 * the interrupt routine is executing.
7615 */
7616static void igb_netpoll(struct net_device *netdev)
7617{
7618	struct igb_adapter *adapter = netdev_priv(netdev);
7619	struct e1000_hw *hw = &adapter->hw;
7620	struct igb_q_vector *q_vector;
7621	int i;
7622
7623	for (i = 0; i < adapter->num_q_vectors; i++) {
7624		q_vector = adapter->q_vector[i];
7625		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7626			wr32(E1000_EIMC, q_vector->eims_value);
7627		else
7628			igb_irq_disable(adapter);
7629		napi_schedule(&q_vector->napi);
7630	}
7631}
7632#endif /* CONFIG_NET_POLL_CONTROLLER */
7633
7634/**
7635 *  igb_io_error_detected - called when PCI error is detected
7636 *  @pdev: Pointer to PCI device
7637 *  @state: The current pci connection state
7638 *
7639 *  This function is called after a PCI bus error affecting
7640 *  this device has been detected.
7641 **/
7642static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7643					      pci_channel_state_t state)
7644{
7645	struct net_device *netdev = pci_get_drvdata(pdev);
7646	struct igb_adapter *adapter = netdev_priv(netdev);
7647
7648	netif_device_detach(netdev);
7649
7650	if (state == pci_channel_io_perm_failure)
7651		return PCI_ERS_RESULT_DISCONNECT;
7652
7653	if (netif_running(netdev))
7654		igb_down(adapter);
7655	pci_disable_device(pdev);
7656
7657	/* Request a slot slot reset. */
7658	return PCI_ERS_RESULT_NEED_RESET;
7659}
7660
7661/**
7662 *  igb_io_slot_reset - called after the pci bus has been reset.
7663 *  @pdev: Pointer to PCI device
7664 *
7665 *  Restart the card from scratch, as if from a cold-boot. Implementation
7666 *  resembles the first-half of the igb_resume routine.
7667 **/
7668static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7669{
7670	struct net_device *netdev = pci_get_drvdata(pdev);
7671	struct igb_adapter *adapter = netdev_priv(netdev);
7672	struct e1000_hw *hw = &adapter->hw;
7673	pci_ers_result_t result;
7674	int err;
7675
7676	if (pci_enable_device_mem(pdev)) {
7677		dev_err(&pdev->dev,
7678			"Cannot re-enable PCI device after reset.\n");
7679		result = PCI_ERS_RESULT_DISCONNECT;
7680	} else {
7681		pci_set_master(pdev);
7682		pci_restore_state(pdev);
7683		pci_save_state(pdev);
7684
7685		pci_enable_wake(pdev, PCI_D3hot, 0);
7686		pci_enable_wake(pdev, PCI_D3cold, 0);
7687
7688		igb_reset(adapter);
7689		wr32(E1000_WUS, ~0);
7690		result = PCI_ERS_RESULT_RECOVERED;
7691	}
7692
7693	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7694	if (err) {
7695		dev_err(&pdev->dev,
7696			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7697			err);
7698		/* non-fatal, continue */
7699	}
7700
7701	return result;
7702}
7703
7704/**
7705 *  igb_io_resume - called when traffic can start flowing again.
7706 *  @pdev: Pointer to PCI device
7707 *
7708 *  This callback is called when the error recovery driver tells us that
7709 *  its OK to resume normal operation. Implementation resembles the
7710 *  second-half of the igb_resume routine.
7711 */
7712static void igb_io_resume(struct pci_dev *pdev)
7713{
7714	struct net_device *netdev = pci_get_drvdata(pdev);
7715	struct igb_adapter *adapter = netdev_priv(netdev);
7716
7717	if (netif_running(netdev)) {
7718		if (igb_up(adapter)) {
7719			dev_err(&pdev->dev, "igb_up failed after reset\n");
7720			return;
7721		}
7722	}
7723
7724	netif_device_attach(netdev);
7725
7726	/* let the f/w know that the h/w is now under the control of the
7727	 * driver.
7728	 */
7729	igb_get_hw_control(adapter);
7730}
7731
7732static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7733			     u8 qsel)
7734{
7735	u32 rar_low, rar_high;
7736	struct e1000_hw *hw = &adapter->hw;
7737
7738	/* HW expects these in little endian so we reverse the byte order
7739	 * from network order (big endian) to little endian
7740	 */
7741	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7742		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7743	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7744
7745	/* Indicate to hardware the Address is Valid. */
7746	rar_high |= E1000_RAH_AV;
7747
7748	if (hw->mac.type == e1000_82575)
7749		rar_high |= E1000_RAH_POOL_1 * qsel;
7750	else
7751		rar_high |= E1000_RAH_POOL_1 << qsel;
7752
7753	wr32(E1000_RAL(index), rar_low);
7754	wrfl();
7755	wr32(E1000_RAH(index), rar_high);
7756	wrfl();
7757}
7758
7759static int igb_set_vf_mac(struct igb_adapter *adapter,
7760			  int vf, unsigned char *mac_addr)
7761{
7762	struct e1000_hw *hw = &adapter->hw;
7763	/* VF MAC addresses start at end of receive addresses and moves
7764	 * towards the first, as a result a collision should not be possible
7765	 */
7766	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7767
7768	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7769
7770	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7771
7772	return 0;
7773}
7774
7775static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7776{
7777	struct igb_adapter *adapter = netdev_priv(netdev);
7778	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7779		return -EINVAL;
7780	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7781	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7782	dev_info(&adapter->pdev->dev,
7783		 "Reload the VF driver to make this change effective.");
7784	if (test_bit(__IGB_DOWN, &adapter->state)) {
7785		dev_warn(&adapter->pdev->dev,
7786			 "The VF MAC address has been set, but the PF device is not up.\n");
7787		dev_warn(&adapter->pdev->dev,
7788			 "Bring the PF device up before attempting to use the VF device.\n");
7789	}
7790	return igb_set_vf_mac(adapter, vf, mac);
7791}
7792
7793static int igb_link_mbps(int internal_link_speed)
7794{
7795	switch (internal_link_speed) {
7796	case SPEED_100:
7797		return 100;
7798	case SPEED_1000:
7799		return 1000;
7800	default:
7801		return 0;
7802	}
7803}
7804
7805static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7806				  int link_speed)
7807{
7808	int rf_dec, rf_int;
7809	u32 bcnrc_val;
7810
7811	if (tx_rate != 0) {
7812		/* Calculate the rate factor values to set */
7813		rf_int = link_speed / tx_rate;
7814		rf_dec = (link_speed - (rf_int * tx_rate));
7815		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7816			 tx_rate;
7817
7818		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7819		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7820			      E1000_RTTBCNRC_RF_INT_MASK);
7821		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7822	} else {
7823		bcnrc_val = 0;
7824	}
7825
7826	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7827	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7828	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7829	 */
7830	wr32(E1000_RTTBCNRM, 0x14);
7831	wr32(E1000_RTTBCNRC, bcnrc_val);
7832}
7833
7834static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7835{
7836	int actual_link_speed, i;
7837	bool reset_rate = false;
7838
7839	/* VF TX rate limit was not set or not supported */
7840	if ((adapter->vf_rate_link_speed == 0) ||
7841	    (adapter->hw.mac.type != e1000_82576))
7842		return;
7843
7844	actual_link_speed = igb_link_mbps(adapter->link_speed);
7845	if (actual_link_speed != adapter->vf_rate_link_speed) {
7846		reset_rate = true;
7847		adapter->vf_rate_link_speed = 0;
7848		dev_info(&adapter->pdev->dev,
7849			 "Link speed has been changed. VF Transmit rate is disabled\n");
7850	}
7851
7852	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7853		if (reset_rate)
7854			adapter->vf_data[i].tx_rate = 0;
7855
7856		igb_set_vf_rate_limit(&adapter->hw, i,
7857				      adapter->vf_data[i].tx_rate,
7858				      actual_link_speed);
7859	}
7860}
7861
7862static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7863{
7864	struct igb_adapter *adapter = netdev_priv(netdev);
7865	struct e1000_hw *hw = &adapter->hw;
7866	int actual_link_speed;
7867
7868	if (hw->mac.type != e1000_82576)
7869		return -EOPNOTSUPP;
7870
7871	actual_link_speed = igb_link_mbps(adapter->link_speed);
7872	if ((vf >= adapter->vfs_allocated_count) ||
7873	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7874	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7875		return -EINVAL;
7876
7877	adapter->vf_rate_link_speed = actual_link_speed;
7878	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7879	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7880
7881	return 0;
7882}
7883
7884static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7885				   bool setting)
7886{
7887	struct igb_adapter *adapter = netdev_priv(netdev);
7888	struct e1000_hw *hw = &adapter->hw;
7889	u32 reg_val, reg_offset;
7890
7891	if (!adapter->vfs_allocated_count)
7892		return -EOPNOTSUPP;
7893
7894	if (vf >= adapter->vfs_allocated_count)
7895		return -EINVAL;
7896
7897	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7898	reg_val = rd32(reg_offset);
7899	if (setting)
7900		reg_val |= ((1 << vf) |
7901			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7902	else
7903		reg_val &= ~((1 << vf) |
7904			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7905	wr32(reg_offset, reg_val);
7906
7907	adapter->vf_data[vf].spoofchk_enabled = setting;
7908	return E1000_SUCCESS;
7909}
7910
7911static int igb_ndo_get_vf_config(struct net_device *netdev,
7912				 int vf, struct ifla_vf_info *ivi)
7913{
7914	struct igb_adapter *adapter = netdev_priv(netdev);
7915	if (vf >= adapter->vfs_allocated_count)
7916		return -EINVAL;
7917	ivi->vf = vf;
7918	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7919	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7920	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7921	ivi->qos = adapter->vf_data[vf].pf_qos;
7922	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7923	return 0;
7924}
7925
7926static void igb_vmm_control(struct igb_adapter *adapter)
7927{
7928	struct e1000_hw *hw = &adapter->hw;
7929	u32 reg;
7930
7931	switch (hw->mac.type) {
7932	case e1000_82575:
7933	case e1000_i210:
7934	case e1000_i211:
7935	case e1000_i354:
7936	default:
7937		/* replication is not supported for 82575 */
7938		return;
7939	case e1000_82576:
7940		/* notify HW that the MAC is adding vlan tags */
7941		reg = rd32(E1000_DTXCTL);
7942		reg |= E1000_DTXCTL_VLAN_ADDED;
7943		wr32(E1000_DTXCTL, reg);
7944	case e1000_82580:
7945		/* enable replication vlan tag stripping */
7946		reg = rd32(E1000_RPLOLR);
7947		reg |= E1000_RPLOLR_STRVLAN;
7948		wr32(E1000_RPLOLR, reg);
7949	case e1000_i350:
7950		/* none of the above registers are supported by i350 */
7951		break;
7952	}
7953
7954	if (adapter->vfs_allocated_count) {
7955		igb_vmdq_set_loopback_pf(hw, true);
7956		igb_vmdq_set_replication_pf(hw, true);
7957		igb_vmdq_set_anti_spoofing_pf(hw, true,
7958					      adapter->vfs_allocated_count);
7959	} else {
7960		igb_vmdq_set_loopback_pf(hw, false);
7961		igb_vmdq_set_replication_pf(hw, false);
7962	}
7963}
7964
7965static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7966{
7967	struct e1000_hw *hw = &adapter->hw;
7968	u32 dmac_thr;
7969	u16 hwm;
7970
7971	if (hw->mac.type > e1000_82580) {
7972		if (adapter->flags & IGB_FLAG_DMAC) {
7973			u32 reg;
7974
7975			/* force threshold to 0. */
7976			wr32(E1000_DMCTXTH, 0);
7977
7978			/* DMA Coalescing high water mark needs to be greater
7979			 * than the Rx threshold. Set hwm to PBA - max frame
7980			 * size in 16B units, capping it at PBA - 6KB.
7981			 */
7982			hwm = 64 * pba - adapter->max_frame_size / 16;
7983			if (hwm < 64 * (pba - 6))
7984				hwm = 64 * (pba - 6);
7985			reg = rd32(E1000_FCRTC);
7986			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7987			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7988				& E1000_FCRTC_RTH_COAL_MASK);
7989			wr32(E1000_FCRTC, reg);
7990
7991			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7992			 * frame size, capping it at PBA - 10KB.
7993			 */
7994			dmac_thr = pba - adapter->max_frame_size / 512;
7995			if (dmac_thr < pba - 10)
7996				dmac_thr = pba - 10;
7997			reg = rd32(E1000_DMACR);
7998			reg &= ~E1000_DMACR_DMACTHR_MASK;
7999			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8000				& E1000_DMACR_DMACTHR_MASK);
8001
8002			/* transition to L0x or L1 if available..*/
8003			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8004
8005			/* watchdog timer= +-1000 usec in 32usec intervals */
8006			reg |= (1000 >> 5);
8007
8008			/* Disable BMC-to-OS Watchdog Enable */
8009			if (hw->mac.type != e1000_i354)
8010				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8011
8012			wr32(E1000_DMACR, reg);
8013
8014			/* no lower threshold to disable
8015			 * coalescing(smart fifb)-UTRESH=0
8016			 */
8017			wr32(E1000_DMCRTRH, 0);
8018
8019			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8020
8021			wr32(E1000_DMCTLX, reg);
8022
8023			/* free space in tx packet buffer to wake from
8024			 * DMA coal
8025			 */
8026			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8027			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8028
8029			/* make low power state decision controlled
8030			 * by DMA coal
8031			 */
8032			reg = rd32(E1000_PCIEMISC);
8033			reg &= ~E1000_PCIEMISC_LX_DECISION;
8034			wr32(E1000_PCIEMISC, reg);
8035		} /* endif adapter->dmac is not disabled */
8036	} else if (hw->mac.type == e1000_82580) {
8037		u32 reg = rd32(E1000_PCIEMISC);
8038		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8039		wr32(E1000_DMACR, 0);
8040	}
8041}
8042
8043/**
8044 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8045 *  @hw: pointer to hardware structure
8046 *  @byte_offset: byte offset to read
8047 *  @dev_addr: device address
8048 *  @data: value read
8049 *
8050 *  Performs byte read operation over I2C interface at
8051 *  a specified device address.
8052 **/
8053s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8054		      u8 dev_addr, u8 *data)
8055{
8056	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8057	struct i2c_client *this_client = adapter->i2c_client;
8058	s32 status;
8059	u16 swfw_mask = 0;
8060
8061	if (!this_client)
8062		return E1000_ERR_I2C;
8063
8064	swfw_mask = E1000_SWFW_PHY0_SM;
8065
8066	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8067	    != E1000_SUCCESS)
8068		return E1000_ERR_SWFW_SYNC;
8069
8070	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8071	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8072
8073	if (status < 0)
8074		return E1000_ERR_I2C;
8075	else {
8076		*data = status;
8077		return E1000_SUCCESS;
8078	}
8079}
8080
8081/**
8082 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8083 *  @hw: pointer to hardware structure
8084 *  @byte_offset: byte offset to write
8085 *  @dev_addr: device address
8086 *  @data: value to write
8087 *
8088 *  Performs byte write operation over I2C interface at
8089 *  a specified device address.
8090 **/
8091s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8092		       u8 dev_addr, u8 data)
8093{
8094	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8095	struct i2c_client *this_client = adapter->i2c_client;
8096	s32 status;
8097	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8098
8099	if (!this_client)
8100		return E1000_ERR_I2C;
8101
8102	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8103		return E1000_ERR_SWFW_SYNC;
8104	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8105	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8106
8107	if (status)
8108		return E1000_ERR_I2C;
8109	else
8110		return E1000_SUCCESS;
8111
8112}
8113
8114int igb_reinit_queues(struct igb_adapter *adapter)
8115{
8116	struct net_device *netdev = adapter->netdev;
8117	struct pci_dev *pdev = adapter->pdev;
8118	int err = 0;
8119
8120	if (netif_running(netdev))
8121		igb_close(netdev);
8122
8123	igb_reset_interrupt_capability(adapter);
8124
8125	if (igb_init_interrupt_scheme(adapter, true)) {
8126		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8127		return -ENOMEM;
8128	}
8129
8130	if (netif_running(netdev))
8131		err = igb_open(netdev);
8132
8133	return err;
8134}
8135/* igb_main.c */
8136