igb_main.c revision d458cdf712e0c671e8e819abb16ecd6e44f9daec
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 5
64#define MIN 0
65#define BUILD 5
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115	/* required last entry */
116	{0, }
117};
118
119MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121void igb_reset(struct igb_adapter *);
122static int igb_setup_all_tx_resources(struct igb_adapter *);
123static int igb_setup_all_rx_resources(struct igb_adapter *);
124static void igb_free_all_tx_resources(struct igb_adapter *);
125static void igb_free_all_rx_resources(struct igb_adapter *);
126static void igb_setup_mrqc(struct igb_adapter *);
127static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128static void igb_remove(struct pci_dev *pdev);
129static int igb_sw_init(struct igb_adapter *);
130static int igb_open(struct net_device *);
131static int igb_close(struct net_device *);
132static void igb_configure(struct igb_adapter *);
133static void igb_configure_tx(struct igb_adapter *);
134static void igb_configure_rx(struct igb_adapter *);
135static void igb_clean_all_tx_rings(struct igb_adapter *);
136static void igb_clean_all_rx_rings(struct igb_adapter *);
137static void igb_clean_tx_ring(struct igb_ring *);
138static void igb_clean_rx_ring(struct igb_ring *);
139static void igb_set_rx_mode(struct net_device *);
140static void igb_update_phy_info(unsigned long);
141static void igb_watchdog(unsigned long);
142static void igb_watchdog_task(struct work_struct *);
143static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145						 struct rtnl_link_stats64 *stats);
146static int igb_change_mtu(struct net_device *, int);
147static int igb_set_mac(struct net_device *, void *);
148static void igb_set_uta(struct igb_adapter *adapter);
149static irqreturn_t igb_intr(int irq, void *);
150static irqreturn_t igb_intr_msi(int irq, void *);
151static irqreturn_t igb_msix_other(int irq, void *);
152static irqreturn_t igb_msix_ring(int irq, void *);
153#ifdef CONFIG_IGB_DCA
154static void igb_update_dca(struct igb_q_vector *);
155static void igb_setup_dca(struct igb_adapter *);
156#endif /* CONFIG_IGB_DCA */
157static int igb_poll(struct napi_struct *, int);
158static bool igb_clean_tx_irq(struct igb_q_vector *);
159static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161static void igb_tx_timeout(struct net_device *);
162static void igb_reset_task(struct work_struct *);
163static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166static void igb_restore_vlan(struct igb_adapter *);
167static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168static void igb_ping_all_vfs(struct igb_adapter *);
169static void igb_msg_task(struct igb_adapter *);
170static void igb_vmm_control(struct igb_adapter *);
171static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175			       int vf, u16 vlan, u8 qos);
176static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178				   bool setting);
179static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180				 struct ifla_vf_info *ivi);
181static void igb_check_vf_rate_limit(struct igb_adapter *);
182
183#ifdef CONFIG_PCI_IOV
184static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200			igb_runtime_idle)
201};
202#endif
203static void igb_shutdown(struct pci_dev *);
204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205#ifdef CONFIG_IGB_DCA
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208	.notifier_call	= igb_notify_dca,
209	.next		= NULL,
210	.priority	= 0
211};
212#endif
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
217#ifdef CONFIG_PCI_IOV
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225		     pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
229static const struct pci_error_handlers igb_err_handler = {
230	.error_detected = igb_io_error_detected,
231	.slot_reset = igb_io_slot_reset,
232	.resume = igb_io_resume,
233};
234
235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237static struct pci_driver igb_driver = {
238	.name     = igb_driver_name,
239	.id_table = igb_pci_tbl,
240	.probe    = igb_probe,
241	.remove   = igb_remove,
242#ifdef CONFIG_PM
243	.driver.pm = &igb_pm_ops,
244#endif
245	.shutdown = igb_shutdown,
246	.sriov_configure = igb_pci_sriov_configure,
247	.err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260struct igb_reg_info {
261	u32 ofs;
262	char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267	/* General Registers */
268	{E1000_CTRL, "CTRL"},
269	{E1000_STATUS, "STATUS"},
270	{E1000_CTRL_EXT, "CTRL_EXT"},
271
272	/* Interrupt Registers */
273	{E1000_ICR, "ICR"},
274
275	/* RX Registers */
276	{E1000_RCTL, "RCTL"},
277	{E1000_RDLEN(0), "RDLEN"},
278	{E1000_RDH(0), "RDH"},
279	{E1000_RDT(0), "RDT"},
280	{E1000_RXDCTL(0), "RXDCTL"},
281	{E1000_RDBAL(0), "RDBAL"},
282	{E1000_RDBAH(0), "RDBAH"},
283
284	/* TX Registers */
285	{E1000_TCTL, "TCTL"},
286	{E1000_TDBAL(0), "TDBAL"},
287	{E1000_TDBAH(0), "TDBAH"},
288	{E1000_TDLEN(0), "TDLEN"},
289	{E1000_TDH(0), "TDH"},
290	{E1000_TDT(0), "TDT"},
291	{E1000_TXDCTL(0), "TXDCTL"},
292	{E1000_TDFH, "TDFH"},
293	{E1000_TDFT, "TDFT"},
294	{E1000_TDFHS, "TDFHS"},
295	{E1000_TDFPC, "TDFPC"},
296
297	/* List Terminator */
298	{}
299};
300
301/* igb_regdump - register printout routine */
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304	int n = 0;
305	char rname[16];
306	u32 regs[8];
307
308	switch (reginfo->ofs) {
309	case E1000_RDLEN(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDLEN(n));
312		break;
313	case E1000_RDH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDH(n));
316		break;
317	case E1000_RDT(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDT(n));
320		break;
321	case E1000_RXDCTL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RXDCTL(n));
324		break;
325	case E1000_RDBAL(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAL(n));
328		break;
329	case E1000_RDBAH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAH(n));
332		break;
333	case E1000_TDBAL(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_RDBAL(n));
336		break;
337	case E1000_TDBAH(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDBAH(n));
340		break;
341	case E1000_TDLEN(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDLEN(n));
344		break;
345	case E1000_TDH(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDH(n));
348		break;
349	case E1000_TDT(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TDT(n));
352		break;
353	case E1000_TXDCTL(0):
354		for (n = 0; n < 4; n++)
355			regs[n] = rd32(E1000_TXDCTL(n));
356		break;
357	default:
358		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359		return;
360	}
361
362	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364		regs[2], regs[3]);
365}
366
367/* igb_dump - Print registers, Tx-rings and Rx-rings */
368static void igb_dump(struct igb_adapter *adapter)
369{
370	struct net_device *netdev = adapter->netdev;
371	struct e1000_hw *hw = &adapter->hw;
372	struct igb_reg_info *reginfo;
373	struct igb_ring *tx_ring;
374	union e1000_adv_tx_desc *tx_desc;
375	struct my_u0 { u64 a; u64 b; } *u0;
376	struct igb_ring *rx_ring;
377	union e1000_adv_rx_desc *rx_desc;
378	u32 staterr;
379	u16 i, n;
380
381	if (!netif_msg_hw(adapter))
382		return;
383
384	/* Print netdevice Info */
385	if (netdev) {
386		dev_info(&adapter->pdev->dev, "Net device Info\n");
387		pr_info("Device Name     state            trans_start      "
388			"last_rx\n");
389		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390			netdev->state, netdev->trans_start, netdev->last_rx);
391	}
392
393	/* Print Registers */
394	dev_info(&adapter->pdev->dev, "Register Dump\n");
395	pr_info(" Register Name   Value\n");
396	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397	     reginfo->name; reginfo++) {
398		igb_regdump(hw, reginfo);
399	}
400
401	/* Print TX Ring Summary */
402	if (!netdev || !netif_running(netdev))
403		goto exit;
404
405	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407	for (n = 0; n < adapter->num_tx_queues; n++) {
408		struct igb_tx_buffer *buffer_info;
409		tx_ring = adapter->tx_ring[n];
410		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413			(u64)dma_unmap_addr(buffer_info, dma),
414			dma_unmap_len(buffer_info, len),
415			buffer_info->next_to_watch,
416			(u64)buffer_info->time_stamp);
417	}
418
419	/* Print TX Rings */
420	if (!netif_msg_tx_done(adapter))
421		goto rx_ring_summary;
422
423	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425	/* Transmit Descriptor Formats
426	 *
427	 * Advanced Transmit Descriptor
428	 *   +--------------------------------------------------------------+
429	 * 0 |         Buffer Address [63:0]                                |
430	 *   +--------------------------------------------------------------+
431	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432	 *   +--------------------------------------------------------------+
433	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434	 */
435
436	for (n = 0; n < adapter->num_tx_queues; n++) {
437		tx_ring = adapter->tx_ring[n];
438		pr_info("------------------------------------\n");
439		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440		pr_info("------------------------------------\n");
441		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442			"[bi->dma       ] leng  ntw timestamp        "
443			"bi->skb\n");
444
445		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446			const char *next_desc;
447			struct igb_tx_buffer *buffer_info;
448			tx_desc = IGB_TX_DESC(tx_ring, i);
449			buffer_info = &tx_ring->tx_buffer_info[i];
450			u0 = (struct my_u0 *)tx_desc;
451			if (i == tx_ring->next_to_use &&
452			    i == tx_ring->next_to_clean)
453				next_desc = " NTC/U";
454			else if (i == tx_ring->next_to_use)
455				next_desc = " NTU";
456			else if (i == tx_ring->next_to_clean)
457				next_desc = " NTC";
458			else
459				next_desc = "";
460
461			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462				" %04X  %p %016llX %p%s\n", i,
463				le64_to_cpu(u0->a),
464				le64_to_cpu(u0->b),
465				(u64)dma_unmap_addr(buffer_info, dma),
466				dma_unmap_len(buffer_info, len),
467				buffer_info->next_to_watch,
468				(u64)buffer_info->time_stamp,
469				buffer_info->skb, next_desc);
470
471			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472				print_hex_dump(KERN_INFO, "",
473					DUMP_PREFIX_ADDRESS,
474					16, 1, buffer_info->skb->data,
475					dma_unmap_len(buffer_info, len),
476					true);
477		}
478	}
479
480	/* Print RX Rings Summary */
481rx_ring_summary:
482	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483	pr_info("Queue [NTU] [NTC]\n");
484	for (n = 0; n < adapter->num_rx_queues; n++) {
485		rx_ring = adapter->rx_ring[n];
486		pr_info(" %5d %5X %5X\n",
487			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488	}
489
490	/* Print RX Rings */
491	if (!netif_msg_rx_status(adapter))
492		goto exit;
493
494	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496	/* Advanced Receive Descriptor (Read) Format
497	 *    63                                           1        0
498	 *    +-----------------------------------------------------+
499	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500	 *    +----------------------------------------------+------+
501	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502	 *    +-----------------------------------------------------+
503	 *
504	 *
505	 * Advanced Receive Descriptor (Write-Back) Format
506	 *
507	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508	 *   +------------------------------------------------------+
509	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510	 *   | Checksum   Ident  |   |           |    | Type | Type |
511	 *   +------------------------------------------------------+
512	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513	 *   +------------------------------------------------------+
514	 *   63       48 47    32 31            20 19               0
515	 */
516
517	for (n = 0; n < adapter->num_rx_queues; n++) {
518		rx_ring = adapter->rx_ring[n];
519		pr_info("------------------------------------\n");
520		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521		pr_info("------------------------------------\n");
522		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527		for (i = 0; i < rx_ring->count; i++) {
528			const char *next_desc;
529			struct igb_rx_buffer *buffer_info;
530			buffer_info = &rx_ring->rx_buffer_info[i];
531			rx_desc = IGB_RX_DESC(rx_ring, i);
532			u0 = (struct my_u0 *)rx_desc;
533			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535			if (i == rx_ring->next_to_use)
536				next_desc = " NTU";
537			else if (i == rx_ring->next_to_clean)
538				next_desc = " NTC";
539			else
540				next_desc = "";
541
542			if (staterr & E1000_RXD_STAT_DD) {
543				/* Descriptor Done */
544				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545					"RWB", i,
546					le64_to_cpu(u0->a),
547					le64_to_cpu(u0->b),
548					next_desc);
549			} else {
550				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551					"R  ", i,
552					le64_to_cpu(u0->a),
553					le64_to_cpu(u0->b),
554					(u64)buffer_info->dma,
555					next_desc);
556
557				if (netif_msg_pktdata(adapter) &&
558				    buffer_info->dma && buffer_info->page) {
559					print_hex_dump(KERN_INFO, "",
560					  DUMP_PREFIX_ADDRESS,
561					  16, 1,
562					  page_address(buffer_info->page) +
563						      buffer_info->page_offset,
564					  IGB_RX_BUFSZ, true);
565				}
566			}
567		}
568	}
569
570exit:
571	return;
572}
573
574/**
575 *  igb_get_i2c_data - Reads the I2C SDA data bit
576 *  @hw: pointer to hardware structure
577 *  @i2cctl: Current value of I2CCTL register
578 *
579 *  Returns the I2C data bit value
580 **/
581static int igb_get_i2c_data(void *data)
582{
583	struct igb_adapter *adapter = (struct igb_adapter *)data;
584	struct e1000_hw *hw = &adapter->hw;
585	s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
590/**
591 *  igb_set_i2c_data - Sets the I2C data bit
592 *  @data: pointer to hardware structure
593 *  @state: I2C data value (0 or 1) to set
594 *
595 *  Sets the I2C data bit
596 **/
597static void igb_set_i2c_data(void *data, int state)
598{
599	struct igb_adapter *adapter = (struct igb_adapter *)data;
600	struct e1000_hw *hw = &adapter->hw;
601	s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603	if (state)
604		i2cctl |= E1000_I2C_DATA_OUT;
605	else
606		i2cctl &= ~E1000_I2C_DATA_OUT;
607
608	i2cctl &= ~E1000_I2C_DATA_OE_N;
609	i2cctl |= E1000_I2C_CLK_OE_N;
610	wr32(E1000_I2CPARAMS, i2cctl);
611	wrfl();
612
613}
614
615/**
616 *  igb_set_i2c_clk - Sets the I2C SCL clock
617 *  @data: pointer to hardware structure
618 *  @state: state to set clock
619 *
620 *  Sets the I2C clock line to state
621 **/
622static void igb_set_i2c_clk(void *data, int state)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	if (state) {
629		i2cctl |= E1000_I2C_CLK_OUT;
630		i2cctl &= ~E1000_I2C_CLK_OE_N;
631	} else {
632		i2cctl &= ~E1000_I2C_CLK_OUT;
633		i2cctl &= ~E1000_I2C_CLK_OE_N;
634	}
635	wr32(E1000_I2CPARAMS, i2cctl);
636	wrfl();
637}
638
639/**
640 *  igb_get_i2c_clk - Gets the I2C SCL clock state
641 *  @data: pointer to hardware structure
642 *
643 *  Gets the I2C clock state
644 **/
645static int igb_get_i2c_clk(void *data)
646{
647	struct igb_adapter *adapter = (struct igb_adapter *)data;
648	struct e1000_hw *hw = &adapter->hw;
649	s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655	.setsda		= igb_set_i2c_data,
656	.setscl		= igb_set_i2c_clk,
657	.getsda		= igb_get_i2c_data,
658	.getscl		= igb_get_i2c_clk,
659	.udelay		= 5,
660	.timeout	= 20,
661};
662
663/**
664 *  igb_get_hw_dev - return device
665 *  @hw: pointer to hardware structure
666 *
667 *  used by hardware layer to print debugging information
668 **/
669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670{
671	struct igb_adapter *adapter = hw->back;
672	return adapter->netdev;
673}
674
675/**
676 *  igb_init_module - Driver Registration Routine
677 *
678 *  igb_init_module is the first routine called when the driver is
679 *  loaded. All it does is register with the PCI subsystem.
680 **/
681static int __init igb_init_module(void)
682{
683	int ret;
684	pr_info("%s - version %s\n",
685	       igb_driver_string, igb_driver_version);
686
687	pr_info("%s\n", igb_copyright);
688
689#ifdef CONFIG_IGB_DCA
690	dca_register_notify(&dca_notifier);
691#endif
692	ret = pci_register_driver(&igb_driver);
693	return ret;
694}
695
696module_init(igb_init_module);
697
698/**
699 *  igb_exit_module - Driver Exit Cleanup Routine
700 *
701 *  igb_exit_module is called just before the driver is removed
702 *  from memory.
703 **/
704static void __exit igb_exit_module(void)
705{
706#ifdef CONFIG_IGB_DCA
707	dca_unregister_notify(&dca_notifier);
708#endif
709	pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
716 *  igb_cache_ring_register - Descriptor ring to register mapping
717 *  @adapter: board private structure to initialize
718 *
719 *  Once we know the feature-set enabled for the device, we'll cache
720 *  the register offset the descriptor ring is assigned to.
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
724	int i = 0, j = 0;
725	u32 rbase_offset = adapter->vfs_allocated_count;
726
727	switch (adapter->hw.mac.type) {
728	case e1000_82576:
729		/* The queues are allocated for virtualization such that VF 0
730		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731		 * In order to avoid collision we start at the first free queue
732		 * and continue consuming queues in the same sequence
733		 */
734		if (adapter->vfs_allocated_count) {
735			for (; i < adapter->rss_queues; i++)
736				adapter->rx_ring[i]->reg_idx = rbase_offset +
737							       Q_IDX_82576(i);
738		}
739	case e1000_82575:
740	case e1000_82580:
741	case e1000_i350:
742	case e1000_i354:
743	case e1000_i210:
744	case e1000_i211:
745	default:
746		for (; i < adapter->num_rx_queues; i++)
747			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748		for (; j < adapter->num_tx_queues; j++)
749			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750		break;
751	}
752}
753
754/**
755 *  igb_write_ivar - configure ivar for given MSI-X vector
756 *  @hw: pointer to the HW structure
757 *  @msix_vector: vector number we are allocating to a given ring
758 *  @index: row index of IVAR register to write within IVAR table
759 *  @offset: column offset of in IVAR, should be multiple of 8
760 *
761 *  This function is intended to handle the writing of the IVAR register
762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763 *  each containing an cause allocation for an Rx and Tx ring, and a
764 *  variable number of rows depending on the number of queues supported.
765 **/
766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767			   int index, int offset)
768{
769	u32 ivar = array_rd32(E1000_IVAR0, index);
770
771	/* clear any bits that are currently set */
772	ivar &= ~((u32)0xFF << offset);
773
774	/* write vector and valid bit */
775	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777	array_wr32(E1000_IVAR0, index, ivar);
778}
779
780#define IGB_N0_QUEUE -1
781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782{
783	struct igb_adapter *adapter = q_vector->adapter;
784	struct e1000_hw *hw = &adapter->hw;
785	int rx_queue = IGB_N0_QUEUE;
786	int tx_queue = IGB_N0_QUEUE;
787	u32 msixbm = 0;
788
789	if (q_vector->rx.ring)
790		rx_queue = q_vector->rx.ring->reg_idx;
791	if (q_vector->tx.ring)
792		tx_queue = q_vector->tx.ring->reg_idx;
793
794	switch (hw->mac.type) {
795	case e1000_82575:
796		/* The 82575 assigns vectors using a bitmask, which matches the
797		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798		 * or more queues to a vector, we write the appropriate bits
799		 * into the MSIXBM register for that vector.
800		 */
801		if (rx_queue > IGB_N0_QUEUE)
802			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803		if (tx_queue > IGB_N0_QUEUE)
804			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805		if (!adapter->msix_entries && msix_vector == 0)
806			msixbm |= E1000_EIMS_OTHER;
807		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808		q_vector->eims_value = msixbm;
809		break;
810	case e1000_82576:
811		/* 82576 uses a table that essentially consists of 2 columns
812		 * with 8 rows.  The ordering is column-major so we use the
813		 * lower 3 bits as the row index, and the 4th bit as the
814		 * column offset.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			igb_write_ivar(hw, msix_vector,
818				       rx_queue & 0x7,
819				       (rx_queue & 0x8) << 1);
820		if (tx_queue > IGB_N0_QUEUE)
821			igb_write_ivar(hw, msix_vector,
822				       tx_queue & 0x7,
823				       ((tx_queue & 0x8) << 1) + 8);
824		q_vector->eims_value = 1 << msix_vector;
825		break;
826	case e1000_82580:
827	case e1000_i350:
828	case e1000_i354:
829	case e1000_i210:
830	case e1000_i211:
831		/* On 82580 and newer adapters the scheme is similar to 82576
832		 * however instead of ordering column-major we have things
833		 * ordered row-major.  So we traverse the table by using
834		 * bit 0 as the column offset, and the remaining bits as the
835		 * row index.
836		 */
837		if (rx_queue > IGB_N0_QUEUE)
838			igb_write_ivar(hw, msix_vector,
839				       rx_queue >> 1,
840				       (rx_queue & 0x1) << 4);
841		if (tx_queue > IGB_N0_QUEUE)
842			igb_write_ivar(hw, msix_vector,
843				       tx_queue >> 1,
844				       ((tx_queue & 0x1) << 4) + 8);
845		q_vector->eims_value = 1 << msix_vector;
846		break;
847	default:
848		BUG();
849		break;
850	}
851
852	/* add q_vector eims value to global eims_enable_mask */
853	adapter->eims_enable_mask |= q_vector->eims_value;
854
855	/* configure q_vector to set itr on first interrupt */
856	q_vector->set_itr = 1;
857}
858
859/**
860 *  igb_configure_msix - Configure MSI-X hardware
861 *  @adapter: board private structure to initialize
862 *
863 *  igb_configure_msix sets up the hardware to properly
864 *  generate MSI-X interrupts.
865 **/
866static void igb_configure_msix(struct igb_adapter *adapter)
867{
868	u32 tmp;
869	int i, vector = 0;
870	struct e1000_hw *hw = &adapter->hw;
871
872	adapter->eims_enable_mask = 0;
873
874	/* set vector for other causes, i.e. link changes */
875	switch (hw->mac.type) {
876	case e1000_82575:
877		tmp = rd32(E1000_CTRL_EXT);
878		/* enable MSI-X PBA support*/
879		tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881		/* Auto-Mask interrupts upon ICR read. */
882		tmp |= E1000_CTRL_EXT_EIAME;
883		tmp |= E1000_CTRL_EXT_IRCA;
884
885		wr32(E1000_CTRL_EXT, tmp);
886
887		/* enable msix_other interrupt */
888		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889		adapter->eims_other = E1000_EIMS_OTHER;
890
891		break;
892
893	case e1000_82576:
894	case e1000_82580:
895	case e1000_i350:
896	case e1000_i354:
897	case e1000_i210:
898	case e1000_i211:
899		/* Turn on MSI-X capability first, or our settings
900		 * won't stick.  And it will take days to debug.
901		 */
902		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904		     E1000_GPIE_NSICR);
905
906		/* enable msix_other interrupt */
907		adapter->eims_other = 1 << vector;
908		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910		wr32(E1000_IVAR_MISC, tmp);
911		break;
912	default:
913		/* do nothing, since nothing else supports MSI-X */
914		break;
915	} /* switch (hw->mac.type) */
916
917	adapter->eims_enable_mask |= adapter->eims_other;
918
919	for (i = 0; i < adapter->num_q_vectors; i++)
920		igb_assign_vector(adapter->q_vector[i], vector++);
921
922	wrfl();
923}
924
925/**
926 *  igb_request_msix - Initialize MSI-X interrupts
927 *  @adapter: board private structure to initialize
928 *
929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 *  kernel.
931 **/
932static int igb_request_msix(struct igb_adapter *adapter)
933{
934	struct net_device *netdev = adapter->netdev;
935	struct e1000_hw *hw = &adapter->hw;
936	int i, err = 0, vector = 0, free_vector = 0;
937
938	err = request_irq(adapter->msix_entries[vector].vector,
939			  igb_msix_other, 0, netdev->name, adapter);
940	if (err)
941		goto err_out;
942
943	for (i = 0; i < adapter->num_q_vectors; i++) {
944		struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946		vector++;
947
948		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950		if (q_vector->rx.ring && q_vector->tx.ring)
951			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952				q_vector->rx.ring->queue_index);
953		else if (q_vector->tx.ring)
954			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955				q_vector->tx.ring->queue_index);
956		else if (q_vector->rx.ring)
957			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958				q_vector->rx.ring->queue_index);
959		else
960			sprintf(q_vector->name, "%s-unused", netdev->name);
961
962		err = request_irq(adapter->msix_entries[vector].vector,
963				  igb_msix_ring, 0, q_vector->name,
964				  q_vector);
965		if (err)
966			goto err_free;
967	}
968
969	igb_configure_msix(adapter);
970	return 0;
971
972err_free:
973	/* free already assigned IRQs */
974	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976	vector--;
977	for (i = 0; i < vector; i++) {
978		free_irq(adapter->msix_entries[free_vector++].vector,
979			 adapter->q_vector[i]);
980	}
981err_out:
982	return err;
983}
984
985static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
986{
987	if (adapter->msix_entries) {
988		pci_disable_msix(adapter->pdev);
989		kfree(adapter->msix_entries);
990		adapter->msix_entries = NULL;
991	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992		pci_disable_msi(adapter->pdev);
993	}
994}
995
996/**
997 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
998 *  @adapter: board private structure to initialize
999 *  @v_idx: Index of vector to be freed
1000 *
1001 *  This function frees the memory allocated to the q_vector.  In addition if
1002 *  NAPI is enabled it will delete any references to the NAPI struct prior
1003 *  to freeing the q_vector.
1004 **/
1005static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006{
1007	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009	if (q_vector->tx.ring)
1010		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012	if (q_vector->rx.ring)
1013		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015	adapter->q_vector[v_idx] = NULL;
1016	netif_napi_del(&q_vector->napi);
1017
1018	/* igb_get_stats64() might access the rings on this vector,
1019	 * we must wait a grace period before freeing it.
1020	 */
1021	kfree_rcu(q_vector, rcu);
1022}
1023
1024/**
1025 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1026 *  @adapter: board private structure to initialize
1027 *
1028 *  This function frees the memory allocated to the q_vectors.  In addition if
1029 *  NAPI is enabled it will delete any references to the NAPI struct prior
1030 *  to freeing the q_vector.
1031 **/
1032static void igb_free_q_vectors(struct igb_adapter *adapter)
1033{
1034	int v_idx = adapter->num_q_vectors;
1035
1036	adapter->num_tx_queues = 0;
1037	adapter->num_rx_queues = 0;
1038	adapter->num_q_vectors = 0;
1039
1040	while (v_idx--)
1041		igb_free_q_vector(adapter, v_idx);
1042}
1043
1044/**
1045 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1046 *  @adapter: board private structure to initialize
1047 *
1048 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1049 *  MSI-X interrupts allocated.
1050 */
1051static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1052{
1053	igb_free_q_vectors(adapter);
1054	igb_reset_interrupt_capability(adapter);
1055}
1056
1057/**
1058 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1059 *  @adapter: board private structure to initialize
1060 *  @msix: boolean value of MSIX capability
1061 *
1062 *  Attempt to configure interrupts using the best available
1063 *  capabilities of the hardware and kernel.
1064 **/
1065static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066{
1067	int err;
1068	int numvecs, i;
1069
1070	if (!msix)
1071		goto msi_only;
1072
1073	/* Number of supported queues. */
1074	adapter->num_rx_queues = adapter->rss_queues;
1075	if (adapter->vfs_allocated_count)
1076		adapter->num_tx_queues = 1;
1077	else
1078		adapter->num_tx_queues = adapter->rss_queues;
1079
1080	/* start with one vector for every Rx queue */
1081	numvecs = adapter->num_rx_queues;
1082
1083	/* if Tx handler is separate add 1 for every Tx queue */
1084	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1085		numvecs += adapter->num_tx_queues;
1086
1087	/* store the number of vectors reserved for queues */
1088	adapter->num_q_vectors = numvecs;
1089
1090	/* add 1 vector for link status interrupts */
1091	numvecs++;
1092	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1093					GFP_KERNEL);
1094
1095	if (!adapter->msix_entries)
1096		goto msi_only;
1097
1098	for (i = 0; i < numvecs; i++)
1099		adapter->msix_entries[i].entry = i;
1100
1101	err = pci_enable_msix(adapter->pdev,
1102			      adapter->msix_entries,
1103			      numvecs);
1104	if (err == 0)
1105		return;
1106
1107	igb_reset_interrupt_capability(adapter);
1108
1109	/* If we can't do MSI-X, try MSI */
1110msi_only:
1111#ifdef CONFIG_PCI_IOV
1112	/* disable SR-IOV for non MSI-X configurations */
1113	if (adapter->vf_data) {
1114		struct e1000_hw *hw = &adapter->hw;
1115		/* disable iov and allow time for transactions to clear */
1116		pci_disable_sriov(adapter->pdev);
1117		msleep(500);
1118
1119		kfree(adapter->vf_data);
1120		adapter->vf_data = NULL;
1121		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122		wrfl();
1123		msleep(100);
1124		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125	}
1126#endif
1127	adapter->vfs_allocated_count = 0;
1128	adapter->rss_queues = 1;
1129	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130	adapter->num_rx_queues = 1;
1131	adapter->num_tx_queues = 1;
1132	adapter->num_q_vectors = 1;
1133	if (!pci_enable_msi(adapter->pdev))
1134		adapter->flags |= IGB_FLAG_HAS_MSI;
1135}
1136
1137static void igb_add_ring(struct igb_ring *ring,
1138			 struct igb_ring_container *head)
1139{
1140	head->ring = ring;
1141	head->count++;
1142}
1143
1144/**
1145 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146 *  @adapter: board private structure to initialize
1147 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1148 *  @v_idx: index of vector in adapter struct
1149 *  @txr_count: total number of Tx rings to allocate
1150 *  @txr_idx: index of first Tx ring to allocate
1151 *  @rxr_count: total number of Rx rings to allocate
1152 *  @rxr_idx: index of first Rx ring to allocate
1153 *
1154 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155 **/
1156static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157			      int v_count, int v_idx,
1158			      int txr_count, int txr_idx,
1159			      int rxr_count, int rxr_idx)
1160{
1161	struct igb_q_vector *q_vector;
1162	struct igb_ring *ring;
1163	int ring_count, size;
1164
1165	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1166	if (txr_count > 1 || rxr_count > 1)
1167		return -ENOMEM;
1168
1169	ring_count = txr_count + rxr_count;
1170	size = sizeof(struct igb_q_vector) +
1171	       (sizeof(struct igb_ring) * ring_count);
1172
1173	/* allocate q_vector and rings */
1174	q_vector = kzalloc(size, GFP_KERNEL);
1175	if (!q_vector)
1176		return -ENOMEM;
1177
1178	/* initialize NAPI */
1179	netif_napi_add(adapter->netdev, &q_vector->napi,
1180		       igb_poll, 64);
1181
1182	/* tie q_vector and adapter together */
1183	adapter->q_vector[v_idx] = q_vector;
1184	q_vector->adapter = adapter;
1185
1186	/* initialize work limits */
1187	q_vector->tx.work_limit = adapter->tx_work_limit;
1188
1189	/* initialize ITR configuration */
1190	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1191	q_vector->itr_val = IGB_START_ITR;
1192
1193	/* initialize pointer to rings */
1194	ring = q_vector->ring;
1195
1196	/* intialize ITR */
1197	if (rxr_count) {
1198		/* rx or rx/tx vector */
1199		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1200			q_vector->itr_val = adapter->rx_itr_setting;
1201	} else {
1202		/* tx only vector */
1203		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1204			q_vector->itr_val = adapter->tx_itr_setting;
1205	}
1206
1207	if (txr_count) {
1208		/* assign generic ring traits */
1209		ring->dev = &adapter->pdev->dev;
1210		ring->netdev = adapter->netdev;
1211
1212		/* configure backlink on ring */
1213		ring->q_vector = q_vector;
1214
1215		/* update q_vector Tx values */
1216		igb_add_ring(ring, &q_vector->tx);
1217
1218		/* For 82575, context index must be unique per ring. */
1219		if (adapter->hw.mac.type == e1000_82575)
1220			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1221
1222		/* apply Tx specific ring traits */
1223		ring->count = adapter->tx_ring_count;
1224		ring->queue_index = txr_idx;
1225
1226		/* assign ring to adapter */
1227		adapter->tx_ring[txr_idx] = ring;
1228
1229		/* push pointer to next ring */
1230		ring++;
1231	}
1232
1233	if (rxr_count) {
1234		/* assign generic ring traits */
1235		ring->dev = &adapter->pdev->dev;
1236		ring->netdev = adapter->netdev;
1237
1238		/* configure backlink on ring */
1239		ring->q_vector = q_vector;
1240
1241		/* update q_vector Rx values */
1242		igb_add_ring(ring, &q_vector->rx);
1243
1244		/* set flag indicating ring supports SCTP checksum offload */
1245		if (adapter->hw.mac.type >= e1000_82576)
1246			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247
1248		/*
1249		 * On i350, i354, i210, and i211, loopback VLAN packets
1250		 * have the tag byte-swapped.
1251		 */
1252		if (adapter->hw.mac.type >= e1000_i350)
1253			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254
1255		/* apply Rx specific ring traits */
1256		ring->count = adapter->rx_ring_count;
1257		ring->queue_index = rxr_idx;
1258
1259		/* assign ring to adapter */
1260		adapter->rx_ring[rxr_idx] = ring;
1261	}
1262
1263	return 0;
1264}
1265
1266
1267/**
1268 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1269 *  @adapter: board private structure to initialize
1270 *
1271 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1272 *  return -ENOMEM.
1273 **/
1274static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275{
1276	int q_vectors = adapter->num_q_vectors;
1277	int rxr_remaining = adapter->num_rx_queues;
1278	int txr_remaining = adapter->num_tx_queues;
1279	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1280	int err;
1281
1282	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1283		for (; rxr_remaining; v_idx++) {
1284			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1285						 0, 0, 1, rxr_idx);
1286
1287			if (err)
1288				goto err_out;
1289
1290			/* update counts and index */
1291			rxr_remaining--;
1292			rxr_idx++;
1293		}
1294	}
1295
1296	for (; v_idx < q_vectors; v_idx++) {
1297		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1298		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1299		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1300					 tqpv, txr_idx, rqpv, rxr_idx);
1301
1302		if (err)
1303			goto err_out;
1304
1305		/* update counts and index */
1306		rxr_remaining -= rqpv;
1307		txr_remaining -= tqpv;
1308		rxr_idx++;
1309		txr_idx++;
1310	}
1311
1312	return 0;
1313
1314err_out:
1315	adapter->num_tx_queues = 0;
1316	adapter->num_rx_queues = 0;
1317	adapter->num_q_vectors = 0;
1318
1319	while (v_idx--)
1320		igb_free_q_vector(adapter, v_idx);
1321
1322	return -ENOMEM;
1323}
1324
1325/**
1326 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1327 *  @adapter: board private structure to initialize
1328 *  @msix: boolean value of MSIX capability
1329 *
1330 *  This function initializes the interrupts and allocates all of the queues.
1331 **/
1332static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333{
1334	struct pci_dev *pdev = adapter->pdev;
1335	int err;
1336
1337	igb_set_interrupt_capability(adapter, msix);
1338
1339	err = igb_alloc_q_vectors(adapter);
1340	if (err) {
1341		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1342		goto err_alloc_q_vectors;
1343	}
1344
1345	igb_cache_ring_register(adapter);
1346
1347	return 0;
1348
1349err_alloc_q_vectors:
1350	igb_reset_interrupt_capability(adapter);
1351	return err;
1352}
1353
1354/**
1355 *  igb_request_irq - initialize interrupts
1356 *  @adapter: board private structure to initialize
1357 *
1358 *  Attempts to configure interrupts using the best available
1359 *  capabilities of the hardware and kernel.
1360 **/
1361static int igb_request_irq(struct igb_adapter *adapter)
1362{
1363	struct net_device *netdev = adapter->netdev;
1364	struct pci_dev *pdev = adapter->pdev;
1365	int err = 0;
1366
1367	if (adapter->msix_entries) {
1368		err = igb_request_msix(adapter);
1369		if (!err)
1370			goto request_done;
1371		/* fall back to MSI */
1372		igb_free_all_tx_resources(adapter);
1373		igb_free_all_rx_resources(adapter);
1374
1375		igb_clear_interrupt_scheme(adapter);
1376		err = igb_init_interrupt_scheme(adapter, false);
1377		if (err)
1378			goto request_done;
1379
1380		igb_setup_all_tx_resources(adapter);
1381		igb_setup_all_rx_resources(adapter);
1382		igb_configure(adapter);
1383	}
1384
1385	igb_assign_vector(adapter->q_vector[0], 0);
1386
1387	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388		err = request_irq(pdev->irq, igb_intr_msi, 0,
1389				  netdev->name, adapter);
1390		if (!err)
1391			goto request_done;
1392
1393		/* fall back to legacy interrupts */
1394		igb_reset_interrupt_capability(adapter);
1395		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396	}
1397
1398	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399			  netdev->name, adapter);
1400
1401	if (err)
1402		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403			err);
1404
1405request_done:
1406	return err;
1407}
1408
1409static void igb_free_irq(struct igb_adapter *adapter)
1410{
1411	if (adapter->msix_entries) {
1412		int vector = 0, i;
1413
1414		free_irq(adapter->msix_entries[vector++].vector, adapter);
1415
1416		for (i = 0; i < adapter->num_q_vectors; i++)
1417			free_irq(adapter->msix_entries[vector++].vector,
1418				 adapter->q_vector[i]);
1419	} else {
1420		free_irq(adapter->pdev->irq, adapter);
1421	}
1422}
1423
1424/**
1425 *  igb_irq_disable - Mask off interrupt generation on the NIC
1426 *  @adapter: board private structure
1427 **/
1428static void igb_irq_disable(struct igb_adapter *adapter)
1429{
1430	struct e1000_hw *hw = &adapter->hw;
1431
1432	/* we need to be careful when disabling interrupts.  The VFs are also
1433	 * mapped into these registers and so clearing the bits can cause
1434	 * issues on the VF drivers so we only need to clear what we set
1435	 */
1436	if (adapter->msix_entries) {
1437		u32 regval = rd32(E1000_EIAM);
1438		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1439		wr32(E1000_EIMC, adapter->eims_enable_mask);
1440		regval = rd32(E1000_EIAC);
1441		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442	}
1443
1444	wr32(E1000_IAM, 0);
1445	wr32(E1000_IMC, ~0);
1446	wrfl();
1447	if (adapter->msix_entries) {
1448		int i;
1449		for (i = 0; i < adapter->num_q_vectors; i++)
1450			synchronize_irq(adapter->msix_entries[i].vector);
1451	} else {
1452		synchronize_irq(adapter->pdev->irq);
1453	}
1454}
1455
1456/**
1457 *  igb_irq_enable - Enable default interrupt generation settings
1458 *  @adapter: board private structure
1459 **/
1460static void igb_irq_enable(struct igb_adapter *adapter)
1461{
1462	struct e1000_hw *hw = &adapter->hw;
1463
1464	if (adapter->msix_entries) {
1465		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466		u32 regval = rd32(E1000_EIAC);
1467		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1468		regval = rd32(E1000_EIAM);
1469		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1470		wr32(E1000_EIMS, adapter->eims_enable_mask);
1471		if (adapter->vfs_allocated_count) {
1472			wr32(E1000_MBVFIMR, 0xFF);
1473			ims |= E1000_IMS_VMMB;
1474		}
1475		wr32(E1000_IMS, ims);
1476	} else {
1477		wr32(E1000_IMS, IMS_ENABLE_MASK |
1478				E1000_IMS_DRSTA);
1479		wr32(E1000_IAM, IMS_ENABLE_MASK |
1480				E1000_IMS_DRSTA);
1481	}
1482}
1483
1484static void igb_update_mng_vlan(struct igb_adapter *adapter)
1485{
1486	struct e1000_hw *hw = &adapter->hw;
1487	u16 vid = adapter->hw.mng_cookie.vlan_id;
1488	u16 old_vid = adapter->mng_vlan_id;
1489
1490	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1491		/* add VID to filter table */
1492		igb_vfta_set(hw, vid, true);
1493		adapter->mng_vlan_id = vid;
1494	} else {
1495		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1496	}
1497
1498	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1499	    (vid != old_vid) &&
1500	    !test_bit(old_vid, adapter->active_vlans)) {
1501		/* remove VID from filter table */
1502		igb_vfta_set(hw, old_vid, false);
1503	}
1504}
1505
1506/**
1507 *  igb_release_hw_control - release control of the h/w to f/w
1508 *  @adapter: address of board private structure
1509 *
1510 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1511 *  For ASF and Pass Through versions of f/w this means that the
1512 *  driver is no longer loaded.
1513 **/
1514static void igb_release_hw_control(struct igb_adapter *adapter)
1515{
1516	struct e1000_hw *hw = &adapter->hw;
1517	u32 ctrl_ext;
1518
1519	/* Let firmware take over control of h/w */
1520	ctrl_ext = rd32(E1000_CTRL_EXT);
1521	wr32(E1000_CTRL_EXT,
1522			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1523}
1524
1525/**
1526 *  igb_get_hw_control - get control of the h/w from f/w
1527 *  @adapter: address of board private structure
1528 *
1529 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1530 *  For ASF and Pass Through versions of f/w this means that
1531 *  the driver is loaded.
1532 **/
1533static void igb_get_hw_control(struct igb_adapter *adapter)
1534{
1535	struct e1000_hw *hw = &adapter->hw;
1536	u32 ctrl_ext;
1537
1538	/* Let firmware know the driver has taken over */
1539	ctrl_ext = rd32(E1000_CTRL_EXT);
1540	wr32(E1000_CTRL_EXT,
1541			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1542}
1543
1544/**
1545 *  igb_configure - configure the hardware for RX and TX
1546 *  @adapter: private board structure
1547 **/
1548static void igb_configure(struct igb_adapter *adapter)
1549{
1550	struct net_device *netdev = adapter->netdev;
1551	int i;
1552
1553	igb_get_hw_control(adapter);
1554	igb_set_rx_mode(netdev);
1555
1556	igb_restore_vlan(adapter);
1557
1558	igb_setup_tctl(adapter);
1559	igb_setup_mrqc(adapter);
1560	igb_setup_rctl(adapter);
1561
1562	igb_configure_tx(adapter);
1563	igb_configure_rx(adapter);
1564
1565	igb_rx_fifo_flush_82575(&adapter->hw);
1566
1567	/* call igb_desc_unused which always leaves
1568	 * at least 1 descriptor unused to make sure
1569	 * next_to_use != next_to_clean
1570	 */
1571	for (i = 0; i < adapter->num_rx_queues; i++) {
1572		struct igb_ring *ring = adapter->rx_ring[i];
1573		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574	}
1575}
1576
1577/**
1578 *  igb_power_up_link - Power up the phy/serdes link
1579 *  @adapter: address of board private structure
1580 **/
1581void igb_power_up_link(struct igb_adapter *adapter)
1582{
1583	igb_reset_phy(&adapter->hw);
1584
1585	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1586		igb_power_up_phy_copper(&adapter->hw);
1587	else
1588		igb_power_up_serdes_link_82575(&adapter->hw);
1589}
1590
1591/**
1592 *  igb_power_down_link - Power down the phy/serdes link
1593 *  @adapter: address of board private structure
1594 */
1595static void igb_power_down_link(struct igb_adapter *adapter)
1596{
1597	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1598		igb_power_down_phy_copper_82575(&adapter->hw);
1599	else
1600		igb_shutdown_serdes_link_82575(&adapter->hw);
1601}
1602
1603/**
1604 *  igb_up - Open the interface and prepare it to handle traffic
1605 *  @adapter: board private structure
1606 **/
1607int igb_up(struct igb_adapter *adapter)
1608{
1609	struct e1000_hw *hw = &adapter->hw;
1610	int i;
1611
1612	/* hardware has been reset, we need to reload some things */
1613	igb_configure(adapter);
1614
1615	clear_bit(__IGB_DOWN, &adapter->state);
1616
1617	for (i = 0; i < adapter->num_q_vectors; i++)
1618		napi_enable(&(adapter->q_vector[i]->napi));
1619
1620	if (adapter->msix_entries)
1621		igb_configure_msix(adapter);
1622	else
1623		igb_assign_vector(adapter->q_vector[0], 0);
1624
1625	/* Clear any pending interrupts. */
1626	rd32(E1000_ICR);
1627	igb_irq_enable(adapter);
1628
1629	/* notify VFs that reset has been completed */
1630	if (adapter->vfs_allocated_count) {
1631		u32 reg_data = rd32(E1000_CTRL_EXT);
1632		reg_data |= E1000_CTRL_EXT_PFRSTD;
1633		wr32(E1000_CTRL_EXT, reg_data);
1634	}
1635
1636	netif_tx_start_all_queues(adapter->netdev);
1637
1638	/* start the watchdog. */
1639	hw->mac.get_link_status = 1;
1640	schedule_work(&adapter->watchdog_task);
1641
1642	return 0;
1643}
1644
1645void igb_down(struct igb_adapter *adapter)
1646{
1647	struct net_device *netdev = adapter->netdev;
1648	struct e1000_hw *hw = &adapter->hw;
1649	u32 tctl, rctl;
1650	int i;
1651
1652	/* signal that we're down so the interrupt handler does not
1653	 * reschedule our watchdog timer
1654	 */
1655	set_bit(__IGB_DOWN, &adapter->state);
1656
1657	/* disable receives in the hardware */
1658	rctl = rd32(E1000_RCTL);
1659	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1660	/* flush and sleep below */
1661
1662	netif_tx_stop_all_queues(netdev);
1663
1664	/* disable transmits in the hardware */
1665	tctl = rd32(E1000_TCTL);
1666	tctl &= ~E1000_TCTL_EN;
1667	wr32(E1000_TCTL, tctl);
1668	/* flush both disables and wait for them to finish */
1669	wrfl();
1670	msleep(10);
1671
1672	igb_irq_disable(adapter);
1673
1674	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1675
1676	for (i = 0; i < adapter->num_q_vectors; i++) {
1677		napi_synchronize(&(adapter->q_vector[i]->napi));
1678		napi_disable(&(adapter->q_vector[i]->napi));
1679	}
1680
1681
1682	del_timer_sync(&adapter->watchdog_timer);
1683	del_timer_sync(&adapter->phy_info_timer);
1684
1685	netif_carrier_off(netdev);
1686
1687	/* record the stats before reset*/
1688	spin_lock(&adapter->stats64_lock);
1689	igb_update_stats(adapter, &adapter->stats64);
1690	spin_unlock(&adapter->stats64_lock);
1691
1692	adapter->link_speed = 0;
1693	adapter->link_duplex = 0;
1694
1695	if (!pci_channel_offline(adapter->pdev))
1696		igb_reset(adapter);
1697	igb_clean_all_tx_rings(adapter);
1698	igb_clean_all_rx_rings(adapter);
1699#ifdef CONFIG_IGB_DCA
1700
1701	/* since we reset the hardware DCA settings were cleared */
1702	igb_setup_dca(adapter);
1703#endif
1704}
1705
1706void igb_reinit_locked(struct igb_adapter *adapter)
1707{
1708	WARN_ON(in_interrupt());
1709	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1710		msleep(1);
1711	igb_down(adapter);
1712	igb_up(adapter);
1713	clear_bit(__IGB_RESETTING, &adapter->state);
1714}
1715
1716void igb_reset(struct igb_adapter *adapter)
1717{
1718	struct pci_dev *pdev = adapter->pdev;
1719	struct e1000_hw *hw = &adapter->hw;
1720	struct e1000_mac_info *mac = &hw->mac;
1721	struct e1000_fc_info *fc = &hw->fc;
1722	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1723
1724	/* Repartition Pba for greater than 9k mtu
1725	 * To take effect CTRL.RST is required.
1726	 */
1727	switch (mac->type) {
1728	case e1000_i350:
1729	case e1000_i354:
1730	case e1000_82580:
1731		pba = rd32(E1000_RXPBS);
1732		pba = igb_rxpbs_adjust_82580(pba);
1733		break;
1734	case e1000_82576:
1735		pba = rd32(E1000_RXPBS);
1736		pba &= E1000_RXPBS_SIZE_MASK_82576;
1737		break;
1738	case e1000_82575:
1739	case e1000_i210:
1740	case e1000_i211:
1741	default:
1742		pba = E1000_PBA_34K;
1743		break;
1744	}
1745
1746	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1747	    (mac->type < e1000_82576)) {
1748		/* adjust PBA for jumbo frames */
1749		wr32(E1000_PBA, pba);
1750
1751		/* To maintain wire speed transmits, the Tx FIFO should be
1752		 * large enough to accommodate two full transmit packets,
1753		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1754		 * the Rx FIFO should be large enough to accommodate at least
1755		 * one full receive packet and is similarly rounded up and
1756		 * expressed in KB.
1757		 */
1758		pba = rd32(E1000_PBA);
1759		/* upper 16 bits has Tx packet buffer allocation size in KB */
1760		tx_space = pba >> 16;
1761		/* lower 16 bits has Rx packet buffer allocation size in KB */
1762		pba &= 0xffff;
1763		/* the Tx fifo also stores 16 bytes of information about the Tx
1764		 * but don't include ethernet FCS because hardware appends it
1765		 */
1766		min_tx_space = (adapter->max_frame_size +
1767				sizeof(union e1000_adv_tx_desc) -
1768				ETH_FCS_LEN) * 2;
1769		min_tx_space = ALIGN(min_tx_space, 1024);
1770		min_tx_space >>= 10;
1771		/* software strips receive CRC, so leave room for it */
1772		min_rx_space = adapter->max_frame_size;
1773		min_rx_space = ALIGN(min_rx_space, 1024);
1774		min_rx_space >>= 10;
1775
1776		/* If current Tx allocation is less than the min Tx FIFO size,
1777		 * and the min Tx FIFO size is less than the current Rx FIFO
1778		 * allocation, take space away from current Rx allocation
1779		 */
1780		if (tx_space < min_tx_space &&
1781		    ((min_tx_space - tx_space) < pba)) {
1782			pba = pba - (min_tx_space - tx_space);
1783
1784			/* if short on Rx space, Rx wins and must trump Tx
1785			 * adjustment
1786			 */
1787			if (pba < min_rx_space)
1788				pba = min_rx_space;
1789		}
1790		wr32(E1000_PBA, pba);
1791	}
1792
1793	/* flow control settings */
1794	/* The high water mark must be low enough to fit one full frame
1795	 * (or the size used for early receive) above it in the Rx FIFO.
1796	 * Set it to the lower of:
1797	 * - 90% of the Rx FIFO size, or
1798	 * - the full Rx FIFO size minus one full frame
1799	 */
1800	hwm = min(((pba << 10) * 9 / 10),
1801			((pba << 10) - 2 * adapter->max_frame_size));
1802
1803	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1804	fc->low_water = fc->high_water - 16;
1805	fc->pause_time = 0xFFFF;
1806	fc->send_xon = 1;
1807	fc->current_mode = fc->requested_mode;
1808
1809	/* disable receive for all VFs and wait one second */
1810	if (adapter->vfs_allocated_count) {
1811		int i;
1812		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1813			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1814
1815		/* ping all the active vfs to let them know we are going down */
1816		igb_ping_all_vfs(adapter);
1817
1818		/* disable transmits and receives */
1819		wr32(E1000_VFRE, 0);
1820		wr32(E1000_VFTE, 0);
1821	}
1822
1823	/* Allow time for pending master requests to run */
1824	hw->mac.ops.reset_hw(hw);
1825	wr32(E1000_WUC, 0);
1826
1827	if (hw->mac.ops.init_hw(hw))
1828		dev_err(&pdev->dev, "Hardware Error\n");
1829
1830	/* Flow control settings reset on hardware reset, so guarantee flow
1831	 * control is off when forcing speed.
1832	 */
1833	if (!hw->mac.autoneg)
1834		igb_force_mac_fc(hw);
1835
1836	igb_init_dmac(adapter, pba);
1837#ifdef CONFIG_IGB_HWMON
1838	/* Re-initialize the thermal sensor on i350 devices. */
1839	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1840		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1841			/* If present, re-initialize the external thermal sensor
1842			 * interface.
1843			 */
1844			if (adapter->ets)
1845				mac->ops.init_thermal_sensor_thresh(hw);
1846		}
1847	}
1848#endif
1849	if (!netif_running(adapter->netdev))
1850		igb_power_down_link(adapter);
1851
1852	igb_update_mng_vlan(adapter);
1853
1854	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1855	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1856
1857	/* Re-enable PTP, where applicable. */
1858	igb_ptp_reset(adapter);
1859
1860	igb_get_phy_info(hw);
1861}
1862
1863static netdev_features_t igb_fix_features(struct net_device *netdev,
1864	netdev_features_t features)
1865{
1866	/* Since there is no support for separate Rx/Tx vlan accel
1867	 * enable/disable make sure Tx flag is always in same state as Rx.
1868	 */
1869	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1870		features |= NETIF_F_HW_VLAN_CTAG_TX;
1871	else
1872		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1873
1874	return features;
1875}
1876
1877static int igb_set_features(struct net_device *netdev,
1878	netdev_features_t features)
1879{
1880	netdev_features_t changed = netdev->features ^ features;
1881	struct igb_adapter *adapter = netdev_priv(netdev);
1882
1883	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1884		igb_vlan_mode(netdev, features);
1885
1886	if (!(changed & NETIF_F_RXALL))
1887		return 0;
1888
1889	netdev->features = features;
1890
1891	if (netif_running(netdev))
1892		igb_reinit_locked(adapter);
1893	else
1894		igb_reset(adapter);
1895
1896	return 0;
1897}
1898
1899static const struct net_device_ops igb_netdev_ops = {
1900	.ndo_open		= igb_open,
1901	.ndo_stop		= igb_close,
1902	.ndo_start_xmit		= igb_xmit_frame,
1903	.ndo_get_stats64	= igb_get_stats64,
1904	.ndo_set_rx_mode	= igb_set_rx_mode,
1905	.ndo_set_mac_address	= igb_set_mac,
1906	.ndo_change_mtu		= igb_change_mtu,
1907	.ndo_do_ioctl		= igb_ioctl,
1908	.ndo_tx_timeout		= igb_tx_timeout,
1909	.ndo_validate_addr	= eth_validate_addr,
1910	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1911	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1912	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1913	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1914	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1915	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1916	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1917#ifdef CONFIG_NET_POLL_CONTROLLER
1918	.ndo_poll_controller	= igb_netpoll,
1919#endif
1920	.ndo_fix_features	= igb_fix_features,
1921	.ndo_set_features	= igb_set_features,
1922};
1923
1924/**
1925 * igb_set_fw_version - Configure version string for ethtool
1926 * @adapter: adapter struct
1927 **/
1928void igb_set_fw_version(struct igb_adapter *adapter)
1929{
1930	struct e1000_hw *hw = &adapter->hw;
1931	struct e1000_fw_version fw;
1932
1933	igb_get_fw_version(hw, &fw);
1934
1935	switch (hw->mac.type) {
1936	case e1000_i210:
1937	case e1000_i211:
1938		if (!(igb_get_flash_presence_i210(hw))) {
1939			snprintf(adapter->fw_version,
1940				 sizeof(adapter->fw_version),
1941				 "%2d.%2d-%d",
1942				 fw.invm_major, fw.invm_minor,
1943				 fw.invm_img_type);
1944			break;
1945		}
1946		/* fall through */
1947	default:
1948		/* if option is rom valid, display its version too */
1949		if (fw.or_valid) {
1950			snprintf(adapter->fw_version,
1951				 sizeof(adapter->fw_version),
1952				 "%d.%d, 0x%08x, %d.%d.%d",
1953				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1954				 fw.or_major, fw.or_build, fw.or_patch);
1955		/* no option rom */
1956		} else if (fw.etrack_id != 0X0000) {
1957			snprintf(adapter->fw_version,
1958			    sizeof(adapter->fw_version),
1959			    "%d.%d, 0x%08x",
1960			    fw.eep_major, fw.eep_minor, fw.etrack_id);
1961		} else {
1962		snprintf(adapter->fw_version,
1963		    sizeof(adapter->fw_version),
1964		    "%d.%d.%d",
1965		    fw.eep_major, fw.eep_minor, fw.eep_build);
1966		}
1967		break;
1968	}
1969	return;
1970}
1971
1972/**
1973 *  igb_init_i2c - Init I2C interface
1974 *  @adapter: pointer to adapter structure
1975 **/
1976static s32 igb_init_i2c(struct igb_adapter *adapter)
1977{
1978	s32 status = E1000_SUCCESS;
1979
1980	/* I2C interface supported on i350 devices */
1981	if (adapter->hw.mac.type != e1000_i350)
1982		return E1000_SUCCESS;
1983
1984	/* Initialize the i2c bus which is controlled by the registers.
1985	 * This bus will use the i2c_algo_bit structue that implements
1986	 * the protocol through toggling of the 4 bits in the register.
1987	 */
1988	adapter->i2c_adap.owner = THIS_MODULE;
1989	adapter->i2c_algo = igb_i2c_algo;
1990	adapter->i2c_algo.data = adapter;
1991	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1992	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1993	strlcpy(adapter->i2c_adap.name, "igb BB",
1994		sizeof(adapter->i2c_adap.name));
1995	status = i2c_bit_add_bus(&adapter->i2c_adap);
1996	return status;
1997}
1998
1999/**
2000 *  igb_probe - Device Initialization Routine
2001 *  @pdev: PCI device information struct
2002 *  @ent: entry in igb_pci_tbl
2003 *
2004 *  Returns 0 on success, negative on failure
2005 *
2006 *  igb_probe initializes an adapter identified by a pci_dev structure.
2007 *  The OS initialization, configuring of the adapter private structure,
2008 *  and a hardware reset occur.
2009 **/
2010static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2011{
2012	struct net_device *netdev;
2013	struct igb_adapter *adapter;
2014	struct e1000_hw *hw;
2015	u16 eeprom_data = 0;
2016	s32 ret_val;
2017	static int global_quad_port_a; /* global quad port a indication */
2018	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2019	unsigned long mmio_start, mmio_len;
2020	int err, pci_using_dac;
2021	u8 part_str[E1000_PBANUM_LENGTH];
2022
2023	/* Catch broken hardware that put the wrong VF device ID in
2024	 * the PCIe SR-IOV capability.
2025	 */
2026	if (pdev->is_virtfn) {
2027		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2028			pci_name(pdev), pdev->vendor, pdev->device);
2029		return -EINVAL;
2030	}
2031
2032	err = pci_enable_device_mem(pdev);
2033	if (err)
2034		return err;
2035
2036	pci_using_dac = 0;
2037	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2038	if (!err) {
2039		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2040		if (!err)
2041			pci_using_dac = 1;
2042	} else {
2043		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2044		if (err) {
2045			err = dma_set_coherent_mask(&pdev->dev,
2046						    DMA_BIT_MASK(32));
2047			if (err) {
2048				dev_err(&pdev->dev,
2049					"No usable DMA configuration, aborting\n");
2050				goto err_dma;
2051			}
2052		}
2053	}
2054
2055	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2056					   IORESOURCE_MEM),
2057					   igb_driver_name);
2058	if (err)
2059		goto err_pci_reg;
2060
2061	pci_enable_pcie_error_reporting(pdev);
2062
2063	pci_set_master(pdev);
2064	pci_save_state(pdev);
2065
2066	err = -ENOMEM;
2067	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2068				   IGB_MAX_TX_QUEUES);
2069	if (!netdev)
2070		goto err_alloc_etherdev;
2071
2072	SET_NETDEV_DEV(netdev, &pdev->dev);
2073
2074	pci_set_drvdata(pdev, netdev);
2075	adapter = netdev_priv(netdev);
2076	adapter->netdev = netdev;
2077	adapter->pdev = pdev;
2078	hw = &adapter->hw;
2079	hw->back = adapter;
2080	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2081
2082	mmio_start = pci_resource_start(pdev, 0);
2083	mmio_len = pci_resource_len(pdev, 0);
2084
2085	err = -EIO;
2086	hw->hw_addr = ioremap(mmio_start, mmio_len);
2087	if (!hw->hw_addr)
2088		goto err_ioremap;
2089
2090	netdev->netdev_ops = &igb_netdev_ops;
2091	igb_set_ethtool_ops(netdev);
2092	netdev->watchdog_timeo = 5 * HZ;
2093
2094	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2095
2096	netdev->mem_start = mmio_start;
2097	netdev->mem_end = mmio_start + mmio_len;
2098
2099	/* PCI config space info */
2100	hw->vendor_id = pdev->vendor;
2101	hw->device_id = pdev->device;
2102	hw->revision_id = pdev->revision;
2103	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2104	hw->subsystem_device_id = pdev->subsystem_device;
2105
2106	/* Copy the default MAC, PHY and NVM function pointers */
2107	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2108	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2109	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2110	/* Initialize skew-specific constants */
2111	err = ei->get_invariants(hw);
2112	if (err)
2113		goto err_sw_init;
2114
2115	/* setup the private structure */
2116	err = igb_sw_init(adapter);
2117	if (err)
2118		goto err_sw_init;
2119
2120	igb_get_bus_info_pcie(hw);
2121
2122	hw->phy.autoneg_wait_to_complete = false;
2123
2124	/* Copper options */
2125	if (hw->phy.media_type == e1000_media_type_copper) {
2126		hw->phy.mdix = AUTO_ALL_MODES;
2127		hw->phy.disable_polarity_correction = false;
2128		hw->phy.ms_type = e1000_ms_hw_default;
2129	}
2130
2131	if (igb_check_reset_block(hw))
2132		dev_info(&pdev->dev,
2133			"PHY reset is blocked due to SOL/IDER session.\n");
2134
2135	/* features is initialized to 0 in allocation, it might have bits
2136	 * set by igb_sw_init so we should use an or instead of an
2137	 * assignment.
2138	 */
2139	netdev->features |= NETIF_F_SG |
2140			    NETIF_F_IP_CSUM |
2141			    NETIF_F_IPV6_CSUM |
2142			    NETIF_F_TSO |
2143			    NETIF_F_TSO6 |
2144			    NETIF_F_RXHASH |
2145			    NETIF_F_RXCSUM |
2146			    NETIF_F_HW_VLAN_CTAG_RX |
2147			    NETIF_F_HW_VLAN_CTAG_TX;
2148
2149	/* copy netdev features into list of user selectable features */
2150	netdev->hw_features |= netdev->features;
2151	netdev->hw_features |= NETIF_F_RXALL;
2152
2153	/* set this bit last since it cannot be part of hw_features */
2154	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2155
2156	netdev->vlan_features |= NETIF_F_TSO |
2157				 NETIF_F_TSO6 |
2158				 NETIF_F_IP_CSUM |
2159				 NETIF_F_IPV6_CSUM |
2160				 NETIF_F_SG;
2161
2162	netdev->priv_flags |= IFF_SUPP_NOFCS;
2163
2164	if (pci_using_dac) {
2165		netdev->features |= NETIF_F_HIGHDMA;
2166		netdev->vlan_features |= NETIF_F_HIGHDMA;
2167	}
2168
2169	if (hw->mac.type >= e1000_82576) {
2170		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2171		netdev->features |= NETIF_F_SCTP_CSUM;
2172	}
2173
2174	netdev->priv_flags |= IFF_UNICAST_FLT;
2175
2176	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2177
2178	/* before reading the NVM, reset the controller to put the device in a
2179	 * known good starting state
2180	 */
2181	hw->mac.ops.reset_hw(hw);
2182
2183	/* make sure the NVM is good , i211/i210 parts can have special NVM
2184	 * that doesn't contain a checksum
2185	 */
2186	switch (hw->mac.type) {
2187	case e1000_i210:
2188	case e1000_i211:
2189		if (igb_get_flash_presence_i210(hw)) {
2190			if (hw->nvm.ops.validate(hw) < 0) {
2191				dev_err(&pdev->dev,
2192					"The NVM Checksum Is Not Valid\n");
2193				err = -EIO;
2194				goto err_eeprom;
2195			}
2196		}
2197		break;
2198	default:
2199		if (hw->nvm.ops.validate(hw) < 0) {
2200			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2201			err = -EIO;
2202			goto err_eeprom;
2203		}
2204		break;
2205	}
2206
2207	/* copy the MAC address out of the NVM */
2208	if (hw->mac.ops.read_mac_addr(hw))
2209		dev_err(&pdev->dev, "NVM Read Error\n");
2210
2211	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2212
2213	if (!is_valid_ether_addr(netdev->dev_addr)) {
2214		dev_err(&pdev->dev, "Invalid MAC Address\n");
2215		err = -EIO;
2216		goto err_eeprom;
2217	}
2218
2219	/* get firmware version for ethtool -i */
2220	igb_set_fw_version(adapter);
2221
2222	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2223		    (unsigned long) adapter);
2224	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2225		    (unsigned long) adapter);
2226
2227	INIT_WORK(&adapter->reset_task, igb_reset_task);
2228	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2229
2230	/* Initialize link properties that are user-changeable */
2231	adapter->fc_autoneg = true;
2232	hw->mac.autoneg = true;
2233	hw->phy.autoneg_advertised = 0x2f;
2234
2235	hw->fc.requested_mode = e1000_fc_default;
2236	hw->fc.current_mode = e1000_fc_default;
2237
2238	igb_validate_mdi_setting(hw);
2239
2240	/* By default, support wake on port A */
2241	if (hw->bus.func == 0)
2242		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2243
2244	/* Check the NVM for wake support on non-port A ports */
2245	if (hw->mac.type >= e1000_82580)
2246		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2247				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2248				 &eeprom_data);
2249	else if (hw->bus.func == 1)
2250		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2251
2252	if (eeprom_data & IGB_EEPROM_APME)
2253		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2254
2255	/* now that we have the eeprom settings, apply the special cases where
2256	 * the eeprom may be wrong or the board simply won't support wake on
2257	 * lan on a particular port
2258	 */
2259	switch (pdev->device) {
2260	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2261		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2262		break;
2263	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2264	case E1000_DEV_ID_82576_FIBER:
2265	case E1000_DEV_ID_82576_SERDES:
2266		/* Wake events only supported on port A for dual fiber
2267		 * regardless of eeprom setting
2268		 */
2269		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2270			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2271		break;
2272	case E1000_DEV_ID_82576_QUAD_COPPER:
2273	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2274		/* if quad port adapter, disable WoL on all but port A */
2275		if (global_quad_port_a != 0)
2276			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2277		else
2278			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2279		/* Reset for multiple quad port adapters */
2280		if (++global_quad_port_a == 4)
2281			global_quad_port_a = 0;
2282		break;
2283	default:
2284		/* If the device can't wake, don't set software support */
2285		if (!device_can_wakeup(&adapter->pdev->dev))
2286			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2287	}
2288
2289	/* initialize the wol settings based on the eeprom settings */
2290	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2291		adapter->wol |= E1000_WUFC_MAG;
2292
2293	/* Some vendors want WoL disabled by default, but still supported */
2294	if ((hw->mac.type == e1000_i350) &&
2295	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2296		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2297		adapter->wol = 0;
2298	}
2299
2300	device_set_wakeup_enable(&adapter->pdev->dev,
2301				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2302
2303	/* reset the hardware with the new settings */
2304	igb_reset(adapter);
2305
2306	/* Init the I2C interface */
2307	err = igb_init_i2c(adapter);
2308	if (err) {
2309		dev_err(&pdev->dev, "failed to init i2c interface\n");
2310		goto err_eeprom;
2311	}
2312
2313	/* let the f/w know that the h/w is now under the control of the
2314	 * driver. */
2315	igb_get_hw_control(adapter);
2316
2317	strcpy(netdev->name, "eth%d");
2318	err = register_netdev(netdev);
2319	if (err)
2320		goto err_register;
2321
2322	/* carrier off reporting is important to ethtool even BEFORE open */
2323	netif_carrier_off(netdev);
2324
2325#ifdef CONFIG_IGB_DCA
2326	if (dca_add_requester(&pdev->dev) == 0) {
2327		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2328		dev_info(&pdev->dev, "DCA enabled\n");
2329		igb_setup_dca(adapter);
2330	}
2331
2332#endif
2333#ifdef CONFIG_IGB_HWMON
2334	/* Initialize the thermal sensor on i350 devices. */
2335	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2336		u16 ets_word;
2337
2338		/* Read the NVM to determine if this i350 device supports an
2339		 * external thermal sensor.
2340		 */
2341		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2342		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2343			adapter->ets = true;
2344		else
2345			adapter->ets = false;
2346		if (igb_sysfs_init(adapter))
2347			dev_err(&pdev->dev,
2348				"failed to allocate sysfs resources\n");
2349	} else {
2350		adapter->ets = false;
2351	}
2352#endif
2353	/* do hw tstamp init after resetting */
2354	igb_ptp_init(adapter);
2355
2356	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2357	/* print bus type/speed/width info, not applicable to i354 */
2358	if (hw->mac.type != e1000_i354) {
2359		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2360			 netdev->name,
2361			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2362			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2363			   "unknown"),
2364			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2365			  "Width x4" :
2366			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2367			  "Width x2" :
2368			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2369			  "Width x1" : "unknown"), netdev->dev_addr);
2370	}
2371
2372	if ((hw->mac.type >= e1000_i210 ||
2373	     igb_get_flash_presence_i210(hw))) {
2374		ret_val = igb_read_part_string(hw, part_str,
2375					       E1000_PBANUM_LENGTH);
2376	} else {
2377		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2378	}
2379
2380	if (ret_val)
2381		strcpy(part_str, "Unknown");
2382	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2383	dev_info(&pdev->dev,
2384		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2385		adapter->msix_entries ? "MSI-X" :
2386		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2387		adapter->num_rx_queues, adapter->num_tx_queues);
2388	switch (hw->mac.type) {
2389	case e1000_i350:
2390	case e1000_i210:
2391	case e1000_i211:
2392		igb_set_eee_i350(hw);
2393		break;
2394	case e1000_i354:
2395		if (hw->phy.media_type == e1000_media_type_copper) {
2396			if ((rd32(E1000_CTRL_EXT) &
2397			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2398				igb_set_eee_i354(hw);
2399		}
2400		break;
2401	default:
2402		break;
2403	}
2404
2405	pm_runtime_put_noidle(&pdev->dev);
2406	return 0;
2407
2408err_register:
2409	igb_release_hw_control(adapter);
2410	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2411err_eeprom:
2412	if (!igb_check_reset_block(hw))
2413		igb_reset_phy(hw);
2414
2415	if (hw->flash_address)
2416		iounmap(hw->flash_address);
2417err_sw_init:
2418	igb_clear_interrupt_scheme(adapter);
2419	iounmap(hw->hw_addr);
2420err_ioremap:
2421	free_netdev(netdev);
2422err_alloc_etherdev:
2423	pci_release_selected_regions(pdev,
2424				     pci_select_bars(pdev, IORESOURCE_MEM));
2425err_pci_reg:
2426err_dma:
2427	pci_disable_device(pdev);
2428	return err;
2429}
2430
2431#ifdef CONFIG_PCI_IOV
2432static int  igb_disable_sriov(struct pci_dev *pdev)
2433{
2434	struct net_device *netdev = pci_get_drvdata(pdev);
2435	struct igb_adapter *adapter = netdev_priv(netdev);
2436	struct e1000_hw *hw = &adapter->hw;
2437
2438	/* reclaim resources allocated to VFs */
2439	if (adapter->vf_data) {
2440		/* disable iov and allow time for transactions to clear */
2441		if (pci_vfs_assigned(pdev)) {
2442			dev_warn(&pdev->dev,
2443				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2444			return -EPERM;
2445		} else {
2446			pci_disable_sriov(pdev);
2447			msleep(500);
2448		}
2449
2450		kfree(adapter->vf_data);
2451		adapter->vf_data = NULL;
2452		adapter->vfs_allocated_count = 0;
2453		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2454		wrfl();
2455		msleep(100);
2456		dev_info(&pdev->dev, "IOV Disabled\n");
2457
2458		/* Re-enable DMA Coalescing flag since IOV is turned off */
2459		adapter->flags |= IGB_FLAG_DMAC;
2460	}
2461
2462	return 0;
2463}
2464
2465static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2466{
2467	struct net_device *netdev = pci_get_drvdata(pdev);
2468	struct igb_adapter *adapter = netdev_priv(netdev);
2469	int old_vfs = pci_num_vf(pdev);
2470	int err = 0;
2471	int i;
2472
2473	if (!adapter->msix_entries) {
2474		err = -EPERM;
2475		goto out;
2476	}
2477
2478	if (!num_vfs)
2479		goto out;
2480	else if (old_vfs && old_vfs == num_vfs)
2481		goto out;
2482	else if (old_vfs && old_vfs != num_vfs)
2483		err = igb_disable_sriov(pdev);
2484
2485	if (err)
2486		goto out;
2487
2488	if (num_vfs > 7) {
2489		err = -EPERM;
2490		goto out;
2491	}
2492
2493	adapter->vfs_allocated_count = num_vfs;
2494
2495	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2496				sizeof(struct vf_data_storage), GFP_KERNEL);
2497
2498	/* if allocation failed then we do not support SR-IOV */
2499	if (!adapter->vf_data) {
2500		adapter->vfs_allocated_count = 0;
2501		dev_err(&pdev->dev,
2502			"Unable to allocate memory for VF Data Storage\n");
2503		err = -ENOMEM;
2504		goto out;
2505	}
2506
2507	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2508	if (err)
2509		goto err_out;
2510
2511	dev_info(&pdev->dev, "%d VFs allocated\n",
2512		 adapter->vfs_allocated_count);
2513	for (i = 0; i < adapter->vfs_allocated_count; i++)
2514		igb_vf_configure(adapter, i);
2515
2516	/* DMA Coalescing is not supported in IOV mode. */
2517	adapter->flags &= ~IGB_FLAG_DMAC;
2518	goto out;
2519
2520err_out:
2521	kfree(adapter->vf_data);
2522	adapter->vf_data = NULL;
2523	adapter->vfs_allocated_count = 0;
2524out:
2525	return err;
2526}
2527
2528#endif
2529/**
2530 *  igb_remove_i2c - Cleanup  I2C interface
2531 *  @adapter: pointer to adapter structure
2532 **/
2533static void igb_remove_i2c(struct igb_adapter *adapter)
2534{
2535	/* free the adapter bus structure */
2536	i2c_del_adapter(&adapter->i2c_adap);
2537}
2538
2539/**
2540 *  igb_remove - Device Removal Routine
2541 *  @pdev: PCI device information struct
2542 *
2543 *  igb_remove is called by the PCI subsystem to alert the driver
2544 *  that it should release a PCI device.  The could be caused by a
2545 *  Hot-Plug event, or because the driver is going to be removed from
2546 *  memory.
2547 **/
2548static void igb_remove(struct pci_dev *pdev)
2549{
2550	struct net_device *netdev = pci_get_drvdata(pdev);
2551	struct igb_adapter *adapter = netdev_priv(netdev);
2552	struct e1000_hw *hw = &adapter->hw;
2553
2554	pm_runtime_get_noresume(&pdev->dev);
2555#ifdef CONFIG_IGB_HWMON
2556	igb_sysfs_exit(adapter);
2557#endif
2558	igb_remove_i2c(adapter);
2559	igb_ptp_stop(adapter);
2560	/* The watchdog timer may be rescheduled, so explicitly
2561	 * disable watchdog from being rescheduled.
2562	 */
2563	set_bit(__IGB_DOWN, &adapter->state);
2564	del_timer_sync(&adapter->watchdog_timer);
2565	del_timer_sync(&adapter->phy_info_timer);
2566
2567	cancel_work_sync(&adapter->reset_task);
2568	cancel_work_sync(&adapter->watchdog_task);
2569
2570#ifdef CONFIG_IGB_DCA
2571	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2572		dev_info(&pdev->dev, "DCA disabled\n");
2573		dca_remove_requester(&pdev->dev);
2574		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2575		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2576	}
2577#endif
2578
2579	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2580	 * would have already happened in close and is redundant.
2581	 */
2582	igb_release_hw_control(adapter);
2583
2584	unregister_netdev(netdev);
2585
2586	igb_clear_interrupt_scheme(adapter);
2587
2588#ifdef CONFIG_PCI_IOV
2589	igb_disable_sriov(pdev);
2590#endif
2591
2592	iounmap(hw->hw_addr);
2593	if (hw->flash_address)
2594		iounmap(hw->flash_address);
2595	pci_release_selected_regions(pdev,
2596				     pci_select_bars(pdev, IORESOURCE_MEM));
2597
2598	kfree(adapter->shadow_vfta);
2599	free_netdev(netdev);
2600
2601	pci_disable_pcie_error_reporting(pdev);
2602
2603	pci_disable_device(pdev);
2604}
2605
2606/**
2607 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2608 *  @adapter: board private structure to initialize
2609 *
2610 *  This function initializes the vf specific data storage and then attempts to
2611 *  allocate the VFs.  The reason for ordering it this way is because it is much
2612 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2613 *  the memory for the VFs.
2614 **/
2615static void igb_probe_vfs(struct igb_adapter *adapter)
2616{
2617#ifdef CONFIG_PCI_IOV
2618	struct pci_dev *pdev = adapter->pdev;
2619	struct e1000_hw *hw = &adapter->hw;
2620
2621	/* Virtualization features not supported on i210 family. */
2622	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2623		return;
2624
2625	pci_sriov_set_totalvfs(pdev, 7);
2626	igb_enable_sriov(pdev, max_vfs);
2627
2628#endif /* CONFIG_PCI_IOV */
2629}
2630
2631static void igb_init_queue_configuration(struct igb_adapter *adapter)
2632{
2633	struct e1000_hw *hw = &adapter->hw;
2634	u32 max_rss_queues;
2635
2636	/* Determine the maximum number of RSS queues supported. */
2637	switch (hw->mac.type) {
2638	case e1000_i211:
2639		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2640		break;
2641	case e1000_82575:
2642	case e1000_i210:
2643		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2644		break;
2645	case e1000_i350:
2646		/* I350 cannot do RSS and SR-IOV at the same time */
2647		if (!!adapter->vfs_allocated_count) {
2648			max_rss_queues = 1;
2649			break;
2650		}
2651		/* fall through */
2652	case e1000_82576:
2653		if (!!adapter->vfs_allocated_count) {
2654			max_rss_queues = 2;
2655			break;
2656		}
2657		/* fall through */
2658	case e1000_82580:
2659	case e1000_i354:
2660	default:
2661		max_rss_queues = IGB_MAX_RX_QUEUES;
2662		break;
2663	}
2664
2665	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2666
2667	/* Determine if we need to pair queues. */
2668	switch (hw->mac.type) {
2669	case e1000_82575:
2670	case e1000_i211:
2671		/* Device supports enough interrupts without queue pairing. */
2672		break;
2673	case e1000_82576:
2674		/* If VFs are going to be allocated with RSS queues then we
2675		 * should pair the queues in order to conserve interrupts due
2676		 * to limited supply.
2677		 */
2678		if ((adapter->rss_queues > 1) &&
2679		    (adapter->vfs_allocated_count > 6))
2680			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2681		/* fall through */
2682	case e1000_82580:
2683	case e1000_i350:
2684	case e1000_i354:
2685	case e1000_i210:
2686	default:
2687		/* If rss_queues > half of max_rss_queues, pair the queues in
2688		 * order to conserve interrupts due to limited supply.
2689		 */
2690		if (adapter->rss_queues > (max_rss_queues / 2))
2691			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2692		break;
2693	}
2694}
2695
2696/**
2697 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2698 *  @adapter: board private structure to initialize
2699 *
2700 *  igb_sw_init initializes the Adapter private data structure.
2701 *  Fields are initialized based on PCI device information and
2702 *  OS network device settings (MTU size).
2703 **/
2704static int igb_sw_init(struct igb_adapter *adapter)
2705{
2706	struct e1000_hw *hw = &adapter->hw;
2707	struct net_device *netdev = adapter->netdev;
2708	struct pci_dev *pdev = adapter->pdev;
2709
2710	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2711
2712	/* set default ring sizes */
2713	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2714	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2715
2716	/* set default ITR values */
2717	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2718	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2719
2720	/* set default work limits */
2721	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2722
2723	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2724				  VLAN_HLEN;
2725	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2726
2727	spin_lock_init(&adapter->stats64_lock);
2728#ifdef CONFIG_PCI_IOV
2729	switch (hw->mac.type) {
2730	case e1000_82576:
2731	case e1000_i350:
2732		if (max_vfs > 7) {
2733			dev_warn(&pdev->dev,
2734				 "Maximum of 7 VFs per PF, using max\n");
2735			max_vfs = adapter->vfs_allocated_count = 7;
2736		} else
2737			adapter->vfs_allocated_count = max_vfs;
2738		if (adapter->vfs_allocated_count)
2739			dev_warn(&pdev->dev,
2740				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2741		break;
2742	default:
2743		break;
2744	}
2745#endif /* CONFIG_PCI_IOV */
2746
2747	igb_init_queue_configuration(adapter);
2748
2749	/* Setup and initialize a copy of the hw vlan table array */
2750	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2751				       GFP_ATOMIC);
2752
2753	/* This call may decrease the number of queues */
2754	if (igb_init_interrupt_scheme(adapter, true)) {
2755		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2756		return -ENOMEM;
2757	}
2758
2759	igb_probe_vfs(adapter);
2760
2761	/* Explicitly disable IRQ since the NIC can be in any state. */
2762	igb_irq_disable(adapter);
2763
2764	if (hw->mac.type >= e1000_i350)
2765		adapter->flags &= ~IGB_FLAG_DMAC;
2766
2767	set_bit(__IGB_DOWN, &adapter->state);
2768	return 0;
2769}
2770
2771/**
2772 *  igb_open - Called when a network interface is made active
2773 *  @netdev: network interface device structure
2774 *
2775 *  Returns 0 on success, negative value on failure
2776 *
2777 *  The open entry point is called when a network interface is made
2778 *  active by the system (IFF_UP).  At this point all resources needed
2779 *  for transmit and receive operations are allocated, the interrupt
2780 *  handler is registered with the OS, the watchdog timer is started,
2781 *  and the stack is notified that the interface is ready.
2782 **/
2783static int __igb_open(struct net_device *netdev, bool resuming)
2784{
2785	struct igb_adapter *adapter = netdev_priv(netdev);
2786	struct e1000_hw *hw = &adapter->hw;
2787	struct pci_dev *pdev = adapter->pdev;
2788	int err;
2789	int i;
2790
2791	/* disallow open during test */
2792	if (test_bit(__IGB_TESTING, &adapter->state)) {
2793		WARN_ON(resuming);
2794		return -EBUSY;
2795	}
2796
2797	if (!resuming)
2798		pm_runtime_get_sync(&pdev->dev);
2799
2800	netif_carrier_off(netdev);
2801
2802	/* allocate transmit descriptors */
2803	err = igb_setup_all_tx_resources(adapter);
2804	if (err)
2805		goto err_setup_tx;
2806
2807	/* allocate receive descriptors */
2808	err = igb_setup_all_rx_resources(adapter);
2809	if (err)
2810		goto err_setup_rx;
2811
2812	igb_power_up_link(adapter);
2813
2814	/* before we allocate an interrupt, we must be ready to handle it.
2815	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2816	 * as soon as we call pci_request_irq, so we have to setup our
2817	 * clean_rx handler before we do so.
2818	 */
2819	igb_configure(adapter);
2820
2821	err = igb_request_irq(adapter);
2822	if (err)
2823		goto err_req_irq;
2824
2825	/* Notify the stack of the actual queue counts. */
2826	err = netif_set_real_num_tx_queues(adapter->netdev,
2827					   adapter->num_tx_queues);
2828	if (err)
2829		goto err_set_queues;
2830
2831	err = netif_set_real_num_rx_queues(adapter->netdev,
2832					   adapter->num_rx_queues);
2833	if (err)
2834		goto err_set_queues;
2835
2836	/* From here on the code is the same as igb_up() */
2837	clear_bit(__IGB_DOWN, &adapter->state);
2838
2839	for (i = 0; i < adapter->num_q_vectors; i++)
2840		napi_enable(&(adapter->q_vector[i]->napi));
2841
2842	/* Clear any pending interrupts. */
2843	rd32(E1000_ICR);
2844
2845	igb_irq_enable(adapter);
2846
2847	/* notify VFs that reset has been completed */
2848	if (adapter->vfs_allocated_count) {
2849		u32 reg_data = rd32(E1000_CTRL_EXT);
2850		reg_data |= E1000_CTRL_EXT_PFRSTD;
2851		wr32(E1000_CTRL_EXT, reg_data);
2852	}
2853
2854	netif_tx_start_all_queues(netdev);
2855
2856	if (!resuming)
2857		pm_runtime_put(&pdev->dev);
2858
2859	/* start the watchdog. */
2860	hw->mac.get_link_status = 1;
2861	schedule_work(&adapter->watchdog_task);
2862
2863	return 0;
2864
2865err_set_queues:
2866	igb_free_irq(adapter);
2867err_req_irq:
2868	igb_release_hw_control(adapter);
2869	igb_power_down_link(adapter);
2870	igb_free_all_rx_resources(adapter);
2871err_setup_rx:
2872	igb_free_all_tx_resources(adapter);
2873err_setup_tx:
2874	igb_reset(adapter);
2875	if (!resuming)
2876		pm_runtime_put(&pdev->dev);
2877
2878	return err;
2879}
2880
2881static int igb_open(struct net_device *netdev)
2882{
2883	return __igb_open(netdev, false);
2884}
2885
2886/**
2887 *  igb_close - Disables a network interface
2888 *  @netdev: network interface device structure
2889 *
2890 *  Returns 0, this is not allowed to fail
2891 *
2892 *  The close entry point is called when an interface is de-activated
2893 *  by the OS.  The hardware is still under the driver's control, but
2894 *  needs to be disabled.  A global MAC reset is issued to stop the
2895 *  hardware, and all transmit and receive resources are freed.
2896 **/
2897static int __igb_close(struct net_device *netdev, bool suspending)
2898{
2899	struct igb_adapter *adapter = netdev_priv(netdev);
2900	struct pci_dev *pdev = adapter->pdev;
2901
2902	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2903
2904	if (!suspending)
2905		pm_runtime_get_sync(&pdev->dev);
2906
2907	igb_down(adapter);
2908	igb_free_irq(adapter);
2909
2910	igb_free_all_tx_resources(adapter);
2911	igb_free_all_rx_resources(adapter);
2912
2913	if (!suspending)
2914		pm_runtime_put_sync(&pdev->dev);
2915	return 0;
2916}
2917
2918static int igb_close(struct net_device *netdev)
2919{
2920	return __igb_close(netdev, false);
2921}
2922
2923/**
2924 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2925 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2926 *
2927 *  Return 0 on success, negative on failure
2928 **/
2929int igb_setup_tx_resources(struct igb_ring *tx_ring)
2930{
2931	struct device *dev = tx_ring->dev;
2932	int size;
2933
2934	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2935
2936	tx_ring->tx_buffer_info = vzalloc(size);
2937	if (!tx_ring->tx_buffer_info)
2938		goto err;
2939
2940	/* round up to nearest 4K */
2941	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2942	tx_ring->size = ALIGN(tx_ring->size, 4096);
2943
2944	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2945					   &tx_ring->dma, GFP_KERNEL);
2946	if (!tx_ring->desc)
2947		goto err;
2948
2949	tx_ring->next_to_use = 0;
2950	tx_ring->next_to_clean = 0;
2951
2952	return 0;
2953
2954err:
2955	vfree(tx_ring->tx_buffer_info);
2956	tx_ring->tx_buffer_info = NULL;
2957	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2958	return -ENOMEM;
2959}
2960
2961/**
2962 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2963 *				 (Descriptors) for all queues
2964 *  @adapter: board private structure
2965 *
2966 *  Return 0 on success, negative on failure
2967 **/
2968static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2969{
2970	struct pci_dev *pdev = adapter->pdev;
2971	int i, err = 0;
2972
2973	for (i = 0; i < adapter->num_tx_queues; i++) {
2974		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2975		if (err) {
2976			dev_err(&pdev->dev,
2977				"Allocation for Tx Queue %u failed\n", i);
2978			for (i--; i >= 0; i--)
2979				igb_free_tx_resources(adapter->tx_ring[i]);
2980			break;
2981		}
2982	}
2983
2984	return err;
2985}
2986
2987/**
2988 *  igb_setup_tctl - configure the transmit control registers
2989 *  @adapter: Board private structure
2990 **/
2991void igb_setup_tctl(struct igb_adapter *adapter)
2992{
2993	struct e1000_hw *hw = &adapter->hw;
2994	u32 tctl;
2995
2996	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2997	wr32(E1000_TXDCTL(0), 0);
2998
2999	/* Program the Transmit Control Register */
3000	tctl = rd32(E1000_TCTL);
3001	tctl &= ~E1000_TCTL_CT;
3002	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3003		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3004
3005	igb_config_collision_dist(hw);
3006
3007	/* Enable transmits */
3008	tctl |= E1000_TCTL_EN;
3009
3010	wr32(E1000_TCTL, tctl);
3011}
3012
3013/**
3014 *  igb_configure_tx_ring - Configure transmit ring after Reset
3015 *  @adapter: board private structure
3016 *  @ring: tx ring to configure
3017 *
3018 *  Configure a transmit ring after a reset.
3019 **/
3020void igb_configure_tx_ring(struct igb_adapter *adapter,
3021                           struct igb_ring *ring)
3022{
3023	struct e1000_hw *hw = &adapter->hw;
3024	u32 txdctl = 0;
3025	u64 tdba = ring->dma;
3026	int reg_idx = ring->reg_idx;
3027
3028	/* disable the queue */
3029	wr32(E1000_TXDCTL(reg_idx), 0);
3030	wrfl();
3031	mdelay(10);
3032
3033	wr32(E1000_TDLEN(reg_idx),
3034	     ring->count * sizeof(union e1000_adv_tx_desc));
3035	wr32(E1000_TDBAL(reg_idx),
3036	     tdba & 0x00000000ffffffffULL);
3037	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3038
3039	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3040	wr32(E1000_TDH(reg_idx), 0);
3041	writel(0, ring->tail);
3042
3043	txdctl |= IGB_TX_PTHRESH;
3044	txdctl |= IGB_TX_HTHRESH << 8;
3045	txdctl |= IGB_TX_WTHRESH << 16;
3046
3047	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3048	wr32(E1000_TXDCTL(reg_idx), txdctl);
3049}
3050
3051/**
3052 *  igb_configure_tx - Configure transmit Unit after Reset
3053 *  @adapter: board private structure
3054 *
3055 *  Configure the Tx unit of the MAC after a reset.
3056 **/
3057static void igb_configure_tx(struct igb_adapter *adapter)
3058{
3059	int i;
3060
3061	for (i = 0; i < adapter->num_tx_queues; i++)
3062		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3063}
3064
3065/**
3066 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3067 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3068 *
3069 *  Returns 0 on success, negative on failure
3070 **/
3071int igb_setup_rx_resources(struct igb_ring *rx_ring)
3072{
3073	struct device *dev = rx_ring->dev;
3074	int size;
3075
3076	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3077
3078	rx_ring->rx_buffer_info = vzalloc(size);
3079	if (!rx_ring->rx_buffer_info)
3080		goto err;
3081
3082	/* Round up to nearest 4K */
3083	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3084	rx_ring->size = ALIGN(rx_ring->size, 4096);
3085
3086	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3087					   &rx_ring->dma, GFP_KERNEL);
3088	if (!rx_ring->desc)
3089		goto err;
3090
3091	rx_ring->next_to_alloc = 0;
3092	rx_ring->next_to_clean = 0;
3093	rx_ring->next_to_use = 0;
3094
3095	return 0;
3096
3097err:
3098	vfree(rx_ring->rx_buffer_info);
3099	rx_ring->rx_buffer_info = NULL;
3100	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3101	return -ENOMEM;
3102}
3103
3104/**
3105 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3106 *				 (Descriptors) for all queues
3107 *  @adapter: board private structure
3108 *
3109 *  Return 0 on success, negative on failure
3110 **/
3111static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3112{
3113	struct pci_dev *pdev = adapter->pdev;
3114	int i, err = 0;
3115
3116	for (i = 0; i < adapter->num_rx_queues; i++) {
3117		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3118		if (err) {
3119			dev_err(&pdev->dev,
3120				"Allocation for Rx Queue %u failed\n", i);
3121			for (i--; i >= 0; i--)
3122				igb_free_rx_resources(adapter->rx_ring[i]);
3123			break;
3124		}
3125	}
3126
3127	return err;
3128}
3129
3130/**
3131 *  igb_setup_mrqc - configure the multiple receive queue control registers
3132 *  @adapter: Board private structure
3133 **/
3134static void igb_setup_mrqc(struct igb_adapter *adapter)
3135{
3136	struct e1000_hw *hw = &adapter->hw;
3137	u32 mrqc, rxcsum;
3138	u32 j, num_rx_queues;
3139	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3140					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3141					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3142					0xFA01ACBE };
3143
3144	/* Fill out hash function seeds */
3145	for (j = 0; j < 10; j++)
3146		wr32(E1000_RSSRK(j), rsskey[j]);
3147
3148	num_rx_queues = adapter->rss_queues;
3149
3150	switch (hw->mac.type) {
3151	case e1000_82576:
3152		/* 82576 supports 2 RSS queues for SR-IOV */
3153		if (adapter->vfs_allocated_count)
3154			num_rx_queues = 2;
3155		break;
3156	default:
3157		break;
3158	}
3159
3160	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3161		for (j = 0; j < IGB_RETA_SIZE; j++)
3162			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3163		adapter->rss_indir_tbl_init = num_rx_queues;
3164	}
3165	igb_write_rss_indir_tbl(adapter);
3166
3167	/* Disable raw packet checksumming so that RSS hash is placed in
3168	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3169	 * offloads as they are enabled by default
3170	 */
3171	rxcsum = rd32(E1000_RXCSUM);
3172	rxcsum |= E1000_RXCSUM_PCSD;
3173
3174	if (adapter->hw.mac.type >= e1000_82576)
3175		/* Enable Receive Checksum Offload for SCTP */
3176		rxcsum |= E1000_RXCSUM_CRCOFL;
3177
3178	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3179	wr32(E1000_RXCSUM, rxcsum);
3180
3181	/* Generate RSS hash based on packet types, TCP/UDP
3182	 * port numbers and/or IPv4/v6 src and dst addresses
3183	 */
3184	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3185	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3186	       E1000_MRQC_RSS_FIELD_IPV6 |
3187	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3188	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3189
3190	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3191		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3192	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3193		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3194
3195	/* If VMDq is enabled then we set the appropriate mode for that, else
3196	 * we default to RSS so that an RSS hash is calculated per packet even
3197	 * if we are only using one queue
3198	 */
3199	if (adapter->vfs_allocated_count) {
3200		if (hw->mac.type > e1000_82575) {
3201			/* Set the default pool for the PF's first queue */
3202			u32 vtctl = rd32(E1000_VT_CTL);
3203			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3204				   E1000_VT_CTL_DISABLE_DEF_POOL);
3205			vtctl |= adapter->vfs_allocated_count <<
3206				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3207			wr32(E1000_VT_CTL, vtctl);
3208		}
3209		if (adapter->rss_queues > 1)
3210			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3211		else
3212			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3213	} else {
3214		if (hw->mac.type != e1000_i211)
3215			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3216	}
3217	igb_vmm_control(adapter);
3218
3219	wr32(E1000_MRQC, mrqc);
3220}
3221
3222/**
3223 *  igb_setup_rctl - configure the receive control registers
3224 *  @adapter: Board private structure
3225 **/
3226void igb_setup_rctl(struct igb_adapter *adapter)
3227{
3228	struct e1000_hw *hw = &adapter->hw;
3229	u32 rctl;
3230
3231	rctl = rd32(E1000_RCTL);
3232
3233	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3234	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3235
3236	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3237		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3238
3239	/* enable stripping of CRC. It's unlikely this will break BMC
3240	 * redirection as it did with e1000. Newer features require
3241	 * that the HW strips the CRC.
3242	 */
3243	rctl |= E1000_RCTL_SECRC;
3244
3245	/* disable store bad packets and clear size bits. */
3246	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3247
3248	/* enable LPE to prevent packets larger than max_frame_size */
3249	rctl |= E1000_RCTL_LPE;
3250
3251	/* disable queue 0 to prevent tail write w/o re-config */
3252	wr32(E1000_RXDCTL(0), 0);
3253
3254	/* Attention!!!  For SR-IOV PF driver operations you must enable
3255	 * queue drop for all VF and PF queues to prevent head of line blocking
3256	 * if an un-trusted VF does not provide descriptors to hardware.
3257	 */
3258	if (adapter->vfs_allocated_count) {
3259		/* set all queue drop enable bits */
3260		wr32(E1000_QDE, ALL_QUEUES);
3261	}
3262
3263	/* This is useful for sniffing bad packets. */
3264	if (adapter->netdev->features & NETIF_F_RXALL) {
3265		/* UPE and MPE will be handled by normal PROMISC logic
3266		 * in e1000e_set_rx_mode
3267		 */
3268		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3269			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3270			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3271
3272		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3273			  E1000_RCTL_DPF | /* Allow filtered pause */
3274			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3275		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3276		 * and that breaks VLANs.
3277		 */
3278	}
3279
3280	wr32(E1000_RCTL, rctl);
3281}
3282
3283static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3284                                   int vfn)
3285{
3286	struct e1000_hw *hw = &adapter->hw;
3287	u32 vmolr;
3288
3289	/* if it isn't the PF check to see if VFs are enabled and
3290	 * increase the size to support vlan tags
3291	 */
3292	if (vfn < adapter->vfs_allocated_count &&
3293	    adapter->vf_data[vfn].vlans_enabled)
3294		size += VLAN_TAG_SIZE;
3295
3296	vmolr = rd32(E1000_VMOLR(vfn));
3297	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3298	vmolr |= size | E1000_VMOLR_LPE;
3299	wr32(E1000_VMOLR(vfn), vmolr);
3300
3301	return 0;
3302}
3303
3304/**
3305 *  igb_rlpml_set - set maximum receive packet size
3306 *  @adapter: board private structure
3307 *
3308 *  Configure maximum receivable packet size.
3309 **/
3310static void igb_rlpml_set(struct igb_adapter *adapter)
3311{
3312	u32 max_frame_size = adapter->max_frame_size;
3313	struct e1000_hw *hw = &adapter->hw;
3314	u16 pf_id = adapter->vfs_allocated_count;
3315
3316	if (pf_id) {
3317		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3318		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3319		 * to our max jumbo frame size, in case we need to enable
3320		 * jumbo frames on one of the rings later.
3321		 * This will not pass over-length frames into the default
3322		 * queue because it's gated by the VMOLR.RLPML.
3323		 */
3324		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3325	}
3326
3327	wr32(E1000_RLPML, max_frame_size);
3328}
3329
3330static inline void igb_set_vmolr(struct igb_adapter *adapter,
3331				 int vfn, bool aupe)
3332{
3333	struct e1000_hw *hw = &adapter->hw;
3334	u32 vmolr;
3335
3336	/* This register exists only on 82576 and newer so if we are older then
3337	 * we should exit and do nothing
3338	 */
3339	if (hw->mac.type < e1000_82576)
3340		return;
3341
3342	vmolr = rd32(E1000_VMOLR(vfn));
3343	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3344	if (aupe)
3345		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3346	else
3347		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3348
3349	/* clear all bits that might not be set */
3350	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3351
3352	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3353		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3354	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3355	 * multicast packets
3356	 */
3357	if (vfn <= adapter->vfs_allocated_count)
3358		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3359
3360	wr32(E1000_VMOLR(vfn), vmolr);
3361}
3362
3363/**
3364 *  igb_configure_rx_ring - Configure a receive ring after Reset
3365 *  @adapter: board private structure
3366 *  @ring: receive ring to be configured
3367 *
3368 *  Configure the Rx unit of the MAC after a reset.
3369 **/
3370void igb_configure_rx_ring(struct igb_adapter *adapter,
3371			   struct igb_ring *ring)
3372{
3373	struct e1000_hw *hw = &adapter->hw;
3374	u64 rdba = ring->dma;
3375	int reg_idx = ring->reg_idx;
3376	u32 srrctl = 0, rxdctl = 0;
3377
3378	/* disable the queue */
3379	wr32(E1000_RXDCTL(reg_idx), 0);
3380
3381	/* Set DMA base address registers */
3382	wr32(E1000_RDBAL(reg_idx),
3383	     rdba & 0x00000000ffffffffULL);
3384	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3385	wr32(E1000_RDLEN(reg_idx),
3386	     ring->count * sizeof(union e1000_adv_rx_desc));
3387
3388	/* initialize head and tail */
3389	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3390	wr32(E1000_RDH(reg_idx), 0);
3391	writel(0, ring->tail);
3392
3393	/* set descriptor configuration */
3394	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3395	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3396	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3397	if (hw->mac.type >= e1000_82580)
3398		srrctl |= E1000_SRRCTL_TIMESTAMP;
3399	/* Only set Drop Enable if we are supporting multiple queues */
3400	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3401		srrctl |= E1000_SRRCTL_DROP_EN;
3402
3403	wr32(E1000_SRRCTL(reg_idx), srrctl);
3404
3405	/* set filtering for VMDQ pools */
3406	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3407
3408	rxdctl |= IGB_RX_PTHRESH;
3409	rxdctl |= IGB_RX_HTHRESH << 8;
3410	rxdctl |= IGB_RX_WTHRESH << 16;
3411
3412	/* enable receive descriptor fetching */
3413	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3414	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3415}
3416
3417/**
3418 *  igb_configure_rx - Configure receive Unit after Reset
3419 *  @adapter: board private structure
3420 *
3421 *  Configure the Rx unit of the MAC after a reset.
3422 **/
3423static void igb_configure_rx(struct igb_adapter *adapter)
3424{
3425	int i;
3426
3427	/* set UTA to appropriate mode */
3428	igb_set_uta(adapter);
3429
3430	/* set the correct pool for the PF default MAC address in entry 0 */
3431	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3432			 adapter->vfs_allocated_count);
3433
3434	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3435	 * the Base and Length of the Rx Descriptor Ring
3436	 */
3437	for (i = 0; i < adapter->num_rx_queues; i++)
3438		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3439}
3440
3441/**
3442 *  igb_free_tx_resources - Free Tx Resources per Queue
3443 *  @tx_ring: Tx descriptor ring for a specific queue
3444 *
3445 *  Free all transmit software resources
3446 **/
3447void igb_free_tx_resources(struct igb_ring *tx_ring)
3448{
3449	igb_clean_tx_ring(tx_ring);
3450
3451	vfree(tx_ring->tx_buffer_info);
3452	tx_ring->tx_buffer_info = NULL;
3453
3454	/* if not set, then don't free */
3455	if (!tx_ring->desc)
3456		return;
3457
3458	dma_free_coherent(tx_ring->dev, tx_ring->size,
3459			  tx_ring->desc, tx_ring->dma);
3460
3461	tx_ring->desc = NULL;
3462}
3463
3464/**
3465 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3466 *  @adapter: board private structure
3467 *
3468 *  Free all transmit software resources
3469 **/
3470static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3471{
3472	int i;
3473
3474	for (i = 0; i < adapter->num_tx_queues; i++)
3475		igb_free_tx_resources(adapter->tx_ring[i]);
3476}
3477
3478void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3479				    struct igb_tx_buffer *tx_buffer)
3480{
3481	if (tx_buffer->skb) {
3482		dev_kfree_skb_any(tx_buffer->skb);
3483		if (dma_unmap_len(tx_buffer, len))
3484			dma_unmap_single(ring->dev,
3485					 dma_unmap_addr(tx_buffer, dma),
3486					 dma_unmap_len(tx_buffer, len),
3487					 DMA_TO_DEVICE);
3488	} else if (dma_unmap_len(tx_buffer, len)) {
3489		dma_unmap_page(ring->dev,
3490			       dma_unmap_addr(tx_buffer, dma),
3491			       dma_unmap_len(tx_buffer, len),
3492			       DMA_TO_DEVICE);
3493	}
3494	tx_buffer->next_to_watch = NULL;
3495	tx_buffer->skb = NULL;
3496	dma_unmap_len_set(tx_buffer, len, 0);
3497	/* buffer_info must be completely set up in the transmit path */
3498}
3499
3500/**
3501 *  igb_clean_tx_ring - Free Tx Buffers
3502 *  @tx_ring: ring to be cleaned
3503 **/
3504static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3505{
3506	struct igb_tx_buffer *buffer_info;
3507	unsigned long size;
3508	u16 i;
3509
3510	if (!tx_ring->tx_buffer_info)
3511		return;
3512	/* Free all the Tx ring sk_buffs */
3513
3514	for (i = 0; i < tx_ring->count; i++) {
3515		buffer_info = &tx_ring->tx_buffer_info[i];
3516		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3517	}
3518
3519	netdev_tx_reset_queue(txring_txq(tx_ring));
3520
3521	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3522	memset(tx_ring->tx_buffer_info, 0, size);
3523
3524	/* Zero out the descriptor ring */
3525	memset(tx_ring->desc, 0, tx_ring->size);
3526
3527	tx_ring->next_to_use = 0;
3528	tx_ring->next_to_clean = 0;
3529}
3530
3531/**
3532 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3533 *  @adapter: board private structure
3534 **/
3535static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3536{
3537	int i;
3538
3539	for (i = 0; i < adapter->num_tx_queues; i++)
3540		igb_clean_tx_ring(adapter->tx_ring[i]);
3541}
3542
3543/**
3544 *  igb_free_rx_resources - Free Rx Resources
3545 *  @rx_ring: ring to clean the resources from
3546 *
3547 *  Free all receive software resources
3548 **/
3549void igb_free_rx_resources(struct igb_ring *rx_ring)
3550{
3551	igb_clean_rx_ring(rx_ring);
3552
3553	vfree(rx_ring->rx_buffer_info);
3554	rx_ring->rx_buffer_info = NULL;
3555
3556	/* if not set, then don't free */
3557	if (!rx_ring->desc)
3558		return;
3559
3560	dma_free_coherent(rx_ring->dev, rx_ring->size,
3561			  rx_ring->desc, rx_ring->dma);
3562
3563	rx_ring->desc = NULL;
3564}
3565
3566/**
3567 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3568 *  @adapter: board private structure
3569 *
3570 *  Free all receive software resources
3571 **/
3572static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3573{
3574	int i;
3575
3576	for (i = 0; i < adapter->num_rx_queues; i++)
3577		igb_free_rx_resources(adapter->rx_ring[i]);
3578}
3579
3580/**
3581 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3582 *  @rx_ring: ring to free buffers from
3583 **/
3584static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3585{
3586	unsigned long size;
3587	u16 i;
3588
3589	if (rx_ring->skb)
3590		dev_kfree_skb(rx_ring->skb);
3591	rx_ring->skb = NULL;
3592
3593	if (!rx_ring->rx_buffer_info)
3594		return;
3595
3596	/* Free all the Rx ring sk_buffs */
3597	for (i = 0; i < rx_ring->count; i++) {
3598		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3599
3600		if (!buffer_info->page)
3601			continue;
3602
3603		dma_unmap_page(rx_ring->dev,
3604			       buffer_info->dma,
3605			       PAGE_SIZE,
3606			       DMA_FROM_DEVICE);
3607		__free_page(buffer_info->page);
3608
3609		buffer_info->page = NULL;
3610	}
3611
3612	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3613	memset(rx_ring->rx_buffer_info, 0, size);
3614
3615	/* Zero out the descriptor ring */
3616	memset(rx_ring->desc, 0, rx_ring->size);
3617
3618	rx_ring->next_to_alloc = 0;
3619	rx_ring->next_to_clean = 0;
3620	rx_ring->next_to_use = 0;
3621}
3622
3623/**
3624 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3625 *  @adapter: board private structure
3626 **/
3627static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3628{
3629	int i;
3630
3631	for (i = 0; i < adapter->num_rx_queues; i++)
3632		igb_clean_rx_ring(adapter->rx_ring[i]);
3633}
3634
3635/**
3636 *  igb_set_mac - Change the Ethernet Address of the NIC
3637 *  @netdev: network interface device structure
3638 *  @p: pointer to an address structure
3639 *
3640 *  Returns 0 on success, negative on failure
3641 **/
3642static int igb_set_mac(struct net_device *netdev, void *p)
3643{
3644	struct igb_adapter *adapter = netdev_priv(netdev);
3645	struct e1000_hw *hw = &adapter->hw;
3646	struct sockaddr *addr = p;
3647
3648	if (!is_valid_ether_addr(addr->sa_data))
3649		return -EADDRNOTAVAIL;
3650
3651	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3652	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3653
3654	/* set the correct pool for the new PF MAC address in entry 0 */
3655	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3656			 adapter->vfs_allocated_count);
3657
3658	return 0;
3659}
3660
3661/**
3662 *  igb_write_mc_addr_list - write multicast addresses to MTA
3663 *  @netdev: network interface device structure
3664 *
3665 *  Writes multicast address list to the MTA hash table.
3666 *  Returns: -ENOMEM on failure
3667 *           0 on no addresses written
3668 *           X on writing X addresses to MTA
3669 **/
3670static int igb_write_mc_addr_list(struct net_device *netdev)
3671{
3672	struct igb_adapter *adapter = netdev_priv(netdev);
3673	struct e1000_hw *hw = &adapter->hw;
3674	struct netdev_hw_addr *ha;
3675	u8  *mta_list;
3676	int i;
3677
3678	if (netdev_mc_empty(netdev)) {
3679		/* nothing to program, so clear mc list */
3680		igb_update_mc_addr_list(hw, NULL, 0);
3681		igb_restore_vf_multicasts(adapter);
3682		return 0;
3683	}
3684
3685	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3686	if (!mta_list)
3687		return -ENOMEM;
3688
3689	/* The shared function expects a packed array of only addresses. */
3690	i = 0;
3691	netdev_for_each_mc_addr(ha, netdev)
3692		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3693
3694	igb_update_mc_addr_list(hw, mta_list, i);
3695	kfree(mta_list);
3696
3697	return netdev_mc_count(netdev);
3698}
3699
3700/**
3701 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3702 *  @netdev: network interface device structure
3703 *
3704 *  Writes unicast address list to the RAR table.
3705 *  Returns: -ENOMEM on failure/insufficient address space
3706 *           0 on no addresses written
3707 *           X on writing X addresses to the RAR table
3708 **/
3709static int igb_write_uc_addr_list(struct net_device *netdev)
3710{
3711	struct igb_adapter *adapter = netdev_priv(netdev);
3712	struct e1000_hw *hw = &adapter->hw;
3713	unsigned int vfn = adapter->vfs_allocated_count;
3714	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3715	int count = 0;
3716
3717	/* return ENOMEM indicating insufficient memory for addresses */
3718	if (netdev_uc_count(netdev) > rar_entries)
3719		return -ENOMEM;
3720
3721	if (!netdev_uc_empty(netdev) && rar_entries) {
3722		struct netdev_hw_addr *ha;
3723
3724		netdev_for_each_uc_addr(ha, netdev) {
3725			if (!rar_entries)
3726				break;
3727			igb_rar_set_qsel(adapter, ha->addr,
3728					 rar_entries--,
3729					 vfn);
3730			count++;
3731		}
3732	}
3733	/* write the addresses in reverse order to avoid write combining */
3734	for (; rar_entries > 0 ; rar_entries--) {
3735		wr32(E1000_RAH(rar_entries), 0);
3736		wr32(E1000_RAL(rar_entries), 0);
3737	}
3738	wrfl();
3739
3740	return count;
3741}
3742
3743/**
3744 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3745 *  @netdev: network interface device structure
3746 *
3747 *  The set_rx_mode entry point is called whenever the unicast or multicast
3748 *  address lists or the network interface flags are updated.  This routine is
3749 *  responsible for configuring the hardware for proper unicast, multicast,
3750 *  promiscuous mode, and all-multi behavior.
3751 **/
3752static void igb_set_rx_mode(struct net_device *netdev)
3753{
3754	struct igb_adapter *adapter = netdev_priv(netdev);
3755	struct e1000_hw *hw = &adapter->hw;
3756	unsigned int vfn = adapter->vfs_allocated_count;
3757	u32 rctl, vmolr = 0;
3758	int count;
3759
3760	/* Check for Promiscuous and All Multicast modes */
3761	rctl = rd32(E1000_RCTL);
3762
3763	/* clear the effected bits */
3764	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3765
3766	if (netdev->flags & IFF_PROMISC) {
3767		/* retain VLAN HW filtering if in VT mode */
3768		if (adapter->vfs_allocated_count)
3769			rctl |= E1000_RCTL_VFE;
3770		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3771		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3772	} else {
3773		if (netdev->flags & IFF_ALLMULTI) {
3774			rctl |= E1000_RCTL_MPE;
3775			vmolr |= E1000_VMOLR_MPME;
3776		} else {
3777			/* Write addresses to the MTA, if the attempt fails
3778			 * then we should just turn on promiscuous mode so
3779			 * that we can at least receive multicast traffic
3780			 */
3781			count = igb_write_mc_addr_list(netdev);
3782			if (count < 0) {
3783				rctl |= E1000_RCTL_MPE;
3784				vmolr |= E1000_VMOLR_MPME;
3785			} else if (count) {
3786				vmolr |= E1000_VMOLR_ROMPE;
3787			}
3788		}
3789		/* Write addresses to available RAR registers, if there is not
3790		 * sufficient space to store all the addresses then enable
3791		 * unicast promiscuous mode
3792		 */
3793		count = igb_write_uc_addr_list(netdev);
3794		if (count < 0) {
3795			rctl |= E1000_RCTL_UPE;
3796			vmolr |= E1000_VMOLR_ROPE;
3797		}
3798		rctl |= E1000_RCTL_VFE;
3799	}
3800	wr32(E1000_RCTL, rctl);
3801
3802	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3803	 * the VMOLR to enable the appropriate modes.  Without this workaround
3804	 * we will have issues with VLAN tag stripping not being done for frames
3805	 * that are only arriving because we are the default pool
3806	 */
3807	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3808		return;
3809
3810	vmolr |= rd32(E1000_VMOLR(vfn)) &
3811		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3812	wr32(E1000_VMOLR(vfn), vmolr);
3813	igb_restore_vf_multicasts(adapter);
3814}
3815
3816static void igb_check_wvbr(struct igb_adapter *adapter)
3817{
3818	struct e1000_hw *hw = &adapter->hw;
3819	u32 wvbr = 0;
3820
3821	switch (hw->mac.type) {
3822	case e1000_82576:
3823	case e1000_i350:
3824		if (!(wvbr = rd32(E1000_WVBR)))
3825			return;
3826		break;
3827	default:
3828		break;
3829	}
3830
3831	adapter->wvbr |= wvbr;
3832}
3833
3834#define IGB_STAGGERED_QUEUE_OFFSET 8
3835
3836static void igb_spoof_check(struct igb_adapter *adapter)
3837{
3838	int j;
3839
3840	if (!adapter->wvbr)
3841		return;
3842
3843	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3844		if (adapter->wvbr & (1 << j) ||
3845		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3846			dev_warn(&adapter->pdev->dev,
3847				"Spoof event(s) detected on VF %d\n", j);
3848			adapter->wvbr &=
3849				~((1 << j) |
3850				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3851		}
3852	}
3853}
3854
3855/* Need to wait a few seconds after link up to get diagnostic information from
3856 * the phy
3857 */
3858static void igb_update_phy_info(unsigned long data)
3859{
3860	struct igb_adapter *adapter = (struct igb_adapter *) data;
3861	igb_get_phy_info(&adapter->hw);
3862}
3863
3864/**
3865 *  igb_has_link - check shared code for link and determine up/down
3866 *  @adapter: pointer to driver private info
3867 **/
3868bool igb_has_link(struct igb_adapter *adapter)
3869{
3870	struct e1000_hw *hw = &adapter->hw;
3871	bool link_active = false;
3872
3873	/* get_link_status is set on LSC (link status) interrupt or
3874	 * rx sequence error interrupt.  get_link_status will stay
3875	 * false until the e1000_check_for_link establishes link
3876	 * for copper adapters ONLY
3877	 */
3878	switch (hw->phy.media_type) {
3879	case e1000_media_type_copper:
3880		if (!hw->mac.get_link_status)
3881			return true;
3882	case e1000_media_type_internal_serdes:
3883		hw->mac.ops.check_for_link(hw);
3884		link_active = !hw->mac.get_link_status;
3885		break;
3886	default:
3887	case e1000_media_type_unknown:
3888		break;
3889	}
3890
3891	if (((hw->mac.type == e1000_i210) ||
3892	     (hw->mac.type == e1000_i211)) &&
3893	     (hw->phy.id == I210_I_PHY_ID)) {
3894		if (!netif_carrier_ok(adapter->netdev)) {
3895			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3896		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
3897			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
3898			adapter->link_check_timeout = jiffies;
3899		}
3900	}
3901
3902	return link_active;
3903}
3904
3905static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3906{
3907	bool ret = false;
3908	u32 ctrl_ext, thstat;
3909
3910	/* check for thermal sensor event on i350 copper only */
3911	if (hw->mac.type == e1000_i350) {
3912		thstat = rd32(E1000_THSTAT);
3913		ctrl_ext = rd32(E1000_CTRL_EXT);
3914
3915		if ((hw->phy.media_type == e1000_media_type_copper) &&
3916		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3917			ret = !!(thstat & event);
3918	}
3919
3920	return ret;
3921}
3922
3923/**
3924 *  igb_watchdog - Timer Call-back
3925 *  @data: pointer to adapter cast into an unsigned long
3926 **/
3927static void igb_watchdog(unsigned long data)
3928{
3929	struct igb_adapter *adapter = (struct igb_adapter *)data;
3930	/* Do the rest outside of interrupt context */
3931	schedule_work(&adapter->watchdog_task);
3932}
3933
3934static void igb_watchdog_task(struct work_struct *work)
3935{
3936	struct igb_adapter *adapter = container_of(work,
3937						   struct igb_adapter,
3938						   watchdog_task);
3939	struct e1000_hw *hw = &adapter->hw;
3940	struct e1000_phy_info *phy = &hw->phy;
3941	struct net_device *netdev = adapter->netdev;
3942	u32 link;
3943	int i;
3944
3945	link = igb_has_link(adapter);
3946
3947	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
3948		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
3949			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3950		else
3951			link = false;
3952	}
3953
3954	if (link) {
3955		/* Cancel scheduled suspend requests. */
3956		pm_runtime_resume(netdev->dev.parent);
3957
3958		if (!netif_carrier_ok(netdev)) {
3959			u32 ctrl;
3960			hw->mac.ops.get_speed_and_duplex(hw,
3961							 &adapter->link_speed,
3962							 &adapter->link_duplex);
3963
3964			ctrl = rd32(E1000_CTRL);
3965			/* Links status message must follow this format */
3966			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3967			       "Duplex, Flow Control: %s\n",
3968			       netdev->name,
3969			       adapter->link_speed,
3970			       adapter->link_duplex == FULL_DUPLEX ?
3971			       "Full" : "Half",
3972			       (ctrl & E1000_CTRL_TFCE) &&
3973			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3974			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3975			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3976
3977			/* check if SmartSpeed worked */
3978			igb_check_downshift(hw);
3979			if (phy->speed_downgraded)
3980				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3981
3982			/* check for thermal sensor event */
3983			if (igb_thermal_sensor_event(hw,
3984			    E1000_THSTAT_LINK_THROTTLE)) {
3985				netdev_info(netdev, "The network adapter link "
3986					    "speed was downshifted because it "
3987					    "overheated\n");
3988			}
3989
3990			/* adjust timeout factor according to speed/duplex */
3991			adapter->tx_timeout_factor = 1;
3992			switch (adapter->link_speed) {
3993			case SPEED_10:
3994				adapter->tx_timeout_factor = 14;
3995				break;
3996			case SPEED_100:
3997				/* maybe add some timeout factor ? */
3998				break;
3999			}
4000
4001			netif_carrier_on(netdev);
4002
4003			igb_ping_all_vfs(adapter);
4004			igb_check_vf_rate_limit(adapter);
4005
4006			/* link state has changed, schedule phy info update */
4007			if (!test_bit(__IGB_DOWN, &adapter->state))
4008				mod_timer(&adapter->phy_info_timer,
4009					  round_jiffies(jiffies + 2 * HZ));
4010		}
4011	} else {
4012		if (netif_carrier_ok(netdev)) {
4013			adapter->link_speed = 0;
4014			adapter->link_duplex = 0;
4015
4016			/* check for thermal sensor event */
4017			if (igb_thermal_sensor_event(hw,
4018			    E1000_THSTAT_PWR_DOWN)) {
4019				netdev_err(netdev, "The network adapter was "
4020					   "stopped because it overheated\n");
4021			}
4022
4023			/* Links status message must follow this format */
4024			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4025			       netdev->name);
4026			netif_carrier_off(netdev);
4027
4028			igb_ping_all_vfs(adapter);
4029
4030			/* link state has changed, schedule phy info update */
4031			if (!test_bit(__IGB_DOWN, &adapter->state))
4032				mod_timer(&adapter->phy_info_timer,
4033					  round_jiffies(jiffies + 2 * HZ));
4034
4035			pm_schedule_suspend(netdev->dev.parent,
4036					    MSEC_PER_SEC * 5);
4037		}
4038	}
4039
4040	spin_lock(&adapter->stats64_lock);
4041	igb_update_stats(adapter, &adapter->stats64);
4042	spin_unlock(&adapter->stats64_lock);
4043
4044	for (i = 0; i < adapter->num_tx_queues; i++) {
4045		struct igb_ring *tx_ring = adapter->tx_ring[i];
4046		if (!netif_carrier_ok(netdev)) {
4047			/* We've lost link, so the controller stops DMA,
4048			 * but we've got queued Tx work that's never going
4049			 * to get done, so reset controller to flush Tx.
4050			 * (Do the reset outside of interrupt context).
4051			 */
4052			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4053				adapter->tx_timeout_count++;
4054				schedule_work(&adapter->reset_task);
4055				/* return immediately since reset is imminent */
4056				return;
4057			}
4058		}
4059
4060		/* Force detection of hung controller every watchdog period */
4061		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4062	}
4063
4064	/* Cause software interrupt to ensure Rx ring is cleaned */
4065	if (adapter->msix_entries) {
4066		u32 eics = 0;
4067		for (i = 0; i < adapter->num_q_vectors; i++)
4068			eics |= adapter->q_vector[i]->eims_value;
4069		wr32(E1000_EICS, eics);
4070	} else {
4071		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4072	}
4073
4074	igb_spoof_check(adapter);
4075	igb_ptp_rx_hang(adapter);
4076
4077	/* Reset the timer */
4078	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4079		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4080			mod_timer(&adapter->watchdog_timer,
4081				  round_jiffies(jiffies +  HZ));
4082		else
4083			mod_timer(&adapter->watchdog_timer,
4084				  round_jiffies(jiffies + 2 * HZ));
4085	}
4086}
4087
4088enum latency_range {
4089	lowest_latency = 0,
4090	low_latency = 1,
4091	bulk_latency = 2,
4092	latency_invalid = 255
4093};
4094
4095/**
4096 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4097 *  @q_vector: pointer to q_vector
4098 *
4099 *  Stores a new ITR value based on strictly on packet size.  This
4100 *  algorithm is less sophisticated than that used in igb_update_itr,
4101 *  due to the difficulty of synchronizing statistics across multiple
4102 *  receive rings.  The divisors and thresholds used by this function
4103 *  were determined based on theoretical maximum wire speed and testing
4104 *  data, in order to minimize response time while increasing bulk
4105 *  throughput.
4106 *  This functionality is controlled by the InterruptThrottleRate module
4107 *  parameter (see igb_param.c)
4108 *  NOTE:  This function is called only when operating in a multiqueue
4109 *         receive environment.
4110 **/
4111static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4112{
4113	int new_val = q_vector->itr_val;
4114	int avg_wire_size = 0;
4115	struct igb_adapter *adapter = q_vector->adapter;
4116	unsigned int packets;
4117
4118	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4119	 * ints/sec - ITR timer value of 120 ticks.
4120	 */
4121	if (adapter->link_speed != SPEED_1000) {
4122		new_val = IGB_4K_ITR;
4123		goto set_itr_val;
4124	}
4125
4126	packets = q_vector->rx.total_packets;
4127	if (packets)
4128		avg_wire_size = q_vector->rx.total_bytes / packets;
4129
4130	packets = q_vector->tx.total_packets;
4131	if (packets)
4132		avg_wire_size = max_t(u32, avg_wire_size,
4133				      q_vector->tx.total_bytes / packets);
4134
4135	/* if avg_wire_size isn't set no work was done */
4136	if (!avg_wire_size)
4137		goto clear_counts;
4138
4139	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4140	avg_wire_size += 24;
4141
4142	/* Don't starve jumbo frames */
4143	avg_wire_size = min(avg_wire_size, 3000);
4144
4145	/* Give a little boost to mid-size frames */
4146	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4147		new_val = avg_wire_size / 3;
4148	else
4149		new_val = avg_wire_size / 2;
4150
4151	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4152	if (new_val < IGB_20K_ITR &&
4153	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4154	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4155		new_val = IGB_20K_ITR;
4156
4157set_itr_val:
4158	if (new_val != q_vector->itr_val) {
4159		q_vector->itr_val = new_val;
4160		q_vector->set_itr = 1;
4161	}
4162clear_counts:
4163	q_vector->rx.total_bytes = 0;
4164	q_vector->rx.total_packets = 0;
4165	q_vector->tx.total_bytes = 0;
4166	q_vector->tx.total_packets = 0;
4167}
4168
4169/**
4170 *  igb_update_itr - update the dynamic ITR value based on statistics
4171 *  @q_vector: pointer to q_vector
4172 *  @ring_container: ring info to update the itr for
4173 *
4174 *  Stores a new ITR value based on packets and byte
4175 *  counts during the last interrupt.  The advantage of per interrupt
4176 *  computation is faster updates and more accurate ITR for the current
4177 *  traffic pattern.  Constants in this function were computed
4178 *  based on theoretical maximum wire speed and thresholds were set based
4179 *  on testing data as well as attempting to minimize response time
4180 *  while increasing bulk throughput.
4181 *  this functionality is controlled by the InterruptThrottleRate module
4182 *  parameter (see igb_param.c)
4183 *  NOTE:  These calculations are only valid when operating in a single-
4184 *         queue environment.
4185 **/
4186static void igb_update_itr(struct igb_q_vector *q_vector,
4187			   struct igb_ring_container *ring_container)
4188{
4189	unsigned int packets = ring_container->total_packets;
4190	unsigned int bytes = ring_container->total_bytes;
4191	u8 itrval = ring_container->itr;
4192
4193	/* no packets, exit with status unchanged */
4194	if (packets == 0)
4195		return;
4196
4197	switch (itrval) {
4198	case lowest_latency:
4199		/* handle TSO and jumbo frames */
4200		if (bytes/packets > 8000)
4201			itrval = bulk_latency;
4202		else if ((packets < 5) && (bytes > 512))
4203			itrval = low_latency;
4204		break;
4205	case low_latency:  /* 50 usec aka 20000 ints/s */
4206		if (bytes > 10000) {
4207			/* this if handles the TSO accounting */
4208			if (bytes/packets > 8000) {
4209				itrval = bulk_latency;
4210			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4211				itrval = bulk_latency;
4212			} else if ((packets > 35)) {
4213				itrval = lowest_latency;
4214			}
4215		} else if (bytes/packets > 2000) {
4216			itrval = bulk_latency;
4217		} else if (packets <= 2 && bytes < 512) {
4218			itrval = lowest_latency;
4219		}
4220		break;
4221	case bulk_latency: /* 250 usec aka 4000 ints/s */
4222		if (bytes > 25000) {
4223			if (packets > 35)
4224				itrval = low_latency;
4225		} else if (bytes < 1500) {
4226			itrval = low_latency;
4227		}
4228		break;
4229	}
4230
4231	/* clear work counters since we have the values we need */
4232	ring_container->total_bytes = 0;
4233	ring_container->total_packets = 0;
4234
4235	/* write updated itr to ring container */
4236	ring_container->itr = itrval;
4237}
4238
4239static void igb_set_itr(struct igb_q_vector *q_vector)
4240{
4241	struct igb_adapter *adapter = q_vector->adapter;
4242	u32 new_itr = q_vector->itr_val;
4243	u8 current_itr = 0;
4244
4245	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4246	if (adapter->link_speed != SPEED_1000) {
4247		current_itr = 0;
4248		new_itr = IGB_4K_ITR;
4249		goto set_itr_now;
4250	}
4251
4252	igb_update_itr(q_vector, &q_vector->tx);
4253	igb_update_itr(q_vector, &q_vector->rx);
4254
4255	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4256
4257	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4258	if (current_itr == lowest_latency &&
4259	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4260	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4261		current_itr = low_latency;
4262
4263	switch (current_itr) {
4264	/* counts and packets in update_itr are dependent on these numbers */
4265	case lowest_latency:
4266		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4267		break;
4268	case low_latency:
4269		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4270		break;
4271	case bulk_latency:
4272		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4273		break;
4274	default:
4275		break;
4276	}
4277
4278set_itr_now:
4279	if (new_itr != q_vector->itr_val) {
4280		/* this attempts to bias the interrupt rate towards Bulk
4281		 * by adding intermediate steps when interrupt rate is
4282		 * increasing
4283		 */
4284		new_itr = new_itr > q_vector->itr_val ?
4285			  max((new_itr * q_vector->itr_val) /
4286			  (new_itr + (q_vector->itr_val >> 2)),
4287			  new_itr) : new_itr;
4288		/* Don't write the value here; it resets the adapter's
4289		 * internal timer, and causes us to delay far longer than
4290		 * we should between interrupts.  Instead, we write the ITR
4291		 * value at the beginning of the next interrupt so the timing
4292		 * ends up being correct.
4293		 */
4294		q_vector->itr_val = new_itr;
4295		q_vector->set_itr = 1;
4296	}
4297}
4298
4299static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4300			    u32 type_tucmd, u32 mss_l4len_idx)
4301{
4302	struct e1000_adv_tx_context_desc *context_desc;
4303	u16 i = tx_ring->next_to_use;
4304
4305	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4306
4307	i++;
4308	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4309
4310	/* set bits to identify this as an advanced context descriptor */
4311	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4312
4313	/* For 82575, context index must be unique per ring. */
4314	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4315		mss_l4len_idx |= tx_ring->reg_idx << 4;
4316
4317	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4318	context_desc->seqnum_seed	= 0;
4319	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4320	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4321}
4322
4323static int igb_tso(struct igb_ring *tx_ring,
4324		   struct igb_tx_buffer *first,
4325		   u8 *hdr_len)
4326{
4327	struct sk_buff *skb = first->skb;
4328	u32 vlan_macip_lens, type_tucmd;
4329	u32 mss_l4len_idx, l4len;
4330
4331	if (skb->ip_summed != CHECKSUM_PARTIAL)
4332		return 0;
4333
4334	if (!skb_is_gso(skb))
4335		return 0;
4336
4337	if (skb_header_cloned(skb)) {
4338		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4339		if (err)
4340			return err;
4341	}
4342
4343	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4344	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4345
4346	if (first->protocol == __constant_htons(ETH_P_IP)) {
4347		struct iphdr *iph = ip_hdr(skb);
4348		iph->tot_len = 0;
4349		iph->check = 0;
4350		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4351							 iph->daddr, 0,
4352							 IPPROTO_TCP,
4353							 0);
4354		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4355		first->tx_flags |= IGB_TX_FLAGS_TSO |
4356				   IGB_TX_FLAGS_CSUM |
4357				   IGB_TX_FLAGS_IPV4;
4358	} else if (skb_is_gso_v6(skb)) {
4359		ipv6_hdr(skb)->payload_len = 0;
4360		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4361						       &ipv6_hdr(skb)->daddr,
4362						       0, IPPROTO_TCP, 0);
4363		first->tx_flags |= IGB_TX_FLAGS_TSO |
4364				   IGB_TX_FLAGS_CSUM;
4365	}
4366
4367	/* compute header lengths */
4368	l4len = tcp_hdrlen(skb);
4369	*hdr_len = skb_transport_offset(skb) + l4len;
4370
4371	/* update gso size and bytecount with header size */
4372	first->gso_segs = skb_shinfo(skb)->gso_segs;
4373	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4374
4375	/* MSS L4LEN IDX */
4376	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4377	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4378
4379	/* VLAN MACLEN IPLEN */
4380	vlan_macip_lens = skb_network_header_len(skb);
4381	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4382	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4383
4384	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4385
4386	return 1;
4387}
4388
4389static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4390{
4391	struct sk_buff *skb = first->skb;
4392	u32 vlan_macip_lens = 0;
4393	u32 mss_l4len_idx = 0;
4394	u32 type_tucmd = 0;
4395
4396	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4397		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4398			return;
4399	} else {
4400		u8 l4_hdr = 0;
4401		switch (first->protocol) {
4402		case __constant_htons(ETH_P_IP):
4403			vlan_macip_lens |= skb_network_header_len(skb);
4404			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4405			l4_hdr = ip_hdr(skb)->protocol;
4406			break;
4407		case __constant_htons(ETH_P_IPV6):
4408			vlan_macip_lens |= skb_network_header_len(skb);
4409			l4_hdr = ipv6_hdr(skb)->nexthdr;
4410			break;
4411		default:
4412			if (unlikely(net_ratelimit())) {
4413				dev_warn(tx_ring->dev,
4414					 "partial checksum but proto=%x!\n",
4415					 first->protocol);
4416			}
4417			break;
4418		}
4419
4420		switch (l4_hdr) {
4421		case IPPROTO_TCP:
4422			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4423			mss_l4len_idx = tcp_hdrlen(skb) <<
4424					E1000_ADVTXD_L4LEN_SHIFT;
4425			break;
4426		case IPPROTO_SCTP:
4427			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4428			mss_l4len_idx = sizeof(struct sctphdr) <<
4429					E1000_ADVTXD_L4LEN_SHIFT;
4430			break;
4431		case IPPROTO_UDP:
4432			mss_l4len_idx = sizeof(struct udphdr) <<
4433					E1000_ADVTXD_L4LEN_SHIFT;
4434			break;
4435		default:
4436			if (unlikely(net_ratelimit())) {
4437				dev_warn(tx_ring->dev,
4438					 "partial checksum but l4 proto=%x!\n",
4439					 l4_hdr);
4440			}
4441			break;
4442		}
4443
4444		/* update TX checksum flag */
4445		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4446	}
4447
4448	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4449	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4450
4451	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4452}
4453
4454#define IGB_SET_FLAG(_input, _flag, _result) \
4455	((_flag <= _result) ? \
4456	 ((u32)(_input & _flag) * (_result / _flag)) : \
4457	 ((u32)(_input & _flag) / (_flag / _result)))
4458
4459static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4460{
4461	/* set type for advanced descriptor with frame checksum insertion */
4462	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4463		       E1000_ADVTXD_DCMD_DEXT |
4464		       E1000_ADVTXD_DCMD_IFCS;
4465
4466	/* set HW vlan bit if vlan is present */
4467	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4468				 (E1000_ADVTXD_DCMD_VLE));
4469
4470	/* set segmentation bits for TSO */
4471	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4472				 (E1000_ADVTXD_DCMD_TSE));
4473
4474	/* set timestamp bit if present */
4475	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4476				 (E1000_ADVTXD_MAC_TSTAMP));
4477
4478	/* insert frame checksum */
4479	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4480
4481	return cmd_type;
4482}
4483
4484static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4485				 union e1000_adv_tx_desc *tx_desc,
4486				 u32 tx_flags, unsigned int paylen)
4487{
4488	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4489
4490	/* 82575 requires a unique index per ring */
4491	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4492		olinfo_status |= tx_ring->reg_idx << 4;
4493
4494	/* insert L4 checksum */
4495	olinfo_status |= IGB_SET_FLAG(tx_flags,
4496				      IGB_TX_FLAGS_CSUM,
4497				      (E1000_TXD_POPTS_TXSM << 8));
4498
4499	/* insert IPv4 checksum */
4500	olinfo_status |= IGB_SET_FLAG(tx_flags,
4501				      IGB_TX_FLAGS_IPV4,
4502				      (E1000_TXD_POPTS_IXSM << 8));
4503
4504	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4505}
4506
4507static void igb_tx_map(struct igb_ring *tx_ring,
4508		       struct igb_tx_buffer *first,
4509		       const u8 hdr_len)
4510{
4511	struct sk_buff *skb = first->skb;
4512	struct igb_tx_buffer *tx_buffer;
4513	union e1000_adv_tx_desc *tx_desc;
4514	struct skb_frag_struct *frag;
4515	dma_addr_t dma;
4516	unsigned int data_len, size;
4517	u32 tx_flags = first->tx_flags;
4518	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4519	u16 i = tx_ring->next_to_use;
4520
4521	tx_desc = IGB_TX_DESC(tx_ring, i);
4522
4523	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4524
4525	size = skb_headlen(skb);
4526	data_len = skb->data_len;
4527
4528	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4529
4530	tx_buffer = first;
4531
4532	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4533		if (dma_mapping_error(tx_ring->dev, dma))
4534			goto dma_error;
4535
4536		/* record length, and DMA address */
4537		dma_unmap_len_set(tx_buffer, len, size);
4538		dma_unmap_addr_set(tx_buffer, dma, dma);
4539
4540		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4541
4542		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4543			tx_desc->read.cmd_type_len =
4544				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4545
4546			i++;
4547			tx_desc++;
4548			if (i == tx_ring->count) {
4549				tx_desc = IGB_TX_DESC(tx_ring, 0);
4550				i = 0;
4551			}
4552			tx_desc->read.olinfo_status = 0;
4553
4554			dma += IGB_MAX_DATA_PER_TXD;
4555			size -= IGB_MAX_DATA_PER_TXD;
4556
4557			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4558		}
4559
4560		if (likely(!data_len))
4561			break;
4562
4563		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4564
4565		i++;
4566		tx_desc++;
4567		if (i == tx_ring->count) {
4568			tx_desc = IGB_TX_DESC(tx_ring, 0);
4569			i = 0;
4570		}
4571		tx_desc->read.olinfo_status = 0;
4572
4573		size = skb_frag_size(frag);
4574		data_len -= size;
4575
4576		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4577				       size, DMA_TO_DEVICE);
4578
4579		tx_buffer = &tx_ring->tx_buffer_info[i];
4580	}
4581
4582	/* write last descriptor with RS and EOP bits */
4583	cmd_type |= size | IGB_TXD_DCMD;
4584	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4585
4586	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4587
4588	/* set the timestamp */
4589	first->time_stamp = jiffies;
4590
4591	/* Force memory writes to complete before letting h/w know there
4592	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4593	 * memory model archs, such as IA-64).
4594	 *
4595	 * We also need this memory barrier to make certain all of the
4596	 * status bits have been updated before next_to_watch is written.
4597	 */
4598	wmb();
4599
4600	/* set next_to_watch value indicating a packet is present */
4601	first->next_to_watch = tx_desc;
4602
4603	i++;
4604	if (i == tx_ring->count)
4605		i = 0;
4606
4607	tx_ring->next_to_use = i;
4608
4609	writel(i, tx_ring->tail);
4610
4611	/* we need this if more than one processor can write to our tail
4612	 * at a time, it synchronizes IO on IA64/Altix systems
4613	 */
4614	mmiowb();
4615
4616	return;
4617
4618dma_error:
4619	dev_err(tx_ring->dev, "TX DMA map failed\n");
4620
4621	/* clear dma mappings for failed tx_buffer_info map */
4622	for (;;) {
4623		tx_buffer = &tx_ring->tx_buffer_info[i];
4624		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4625		if (tx_buffer == first)
4626			break;
4627		if (i == 0)
4628			i = tx_ring->count;
4629		i--;
4630	}
4631
4632	tx_ring->next_to_use = i;
4633}
4634
4635static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4636{
4637	struct net_device *netdev = tx_ring->netdev;
4638
4639	netif_stop_subqueue(netdev, tx_ring->queue_index);
4640
4641	/* Herbert's original patch had:
4642	 *  smp_mb__after_netif_stop_queue();
4643	 * but since that doesn't exist yet, just open code it.
4644	 */
4645	smp_mb();
4646
4647	/* We need to check again in a case another CPU has just
4648	 * made room available.
4649	 */
4650	if (igb_desc_unused(tx_ring) < size)
4651		return -EBUSY;
4652
4653	/* A reprieve! */
4654	netif_wake_subqueue(netdev, tx_ring->queue_index);
4655
4656	u64_stats_update_begin(&tx_ring->tx_syncp2);
4657	tx_ring->tx_stats.restart_queue2++;
4658	u64_stats_update_end(&tx_ring->tx_syncp2);
4659
4660	return 0;
4661}
4662
4663static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4664{
4665	if (igb_desc_unused(tx_ring) >= size)
4666		return 0;
4667	return __igb_maybe_stop_tx(tx_ring, size);
4668}
4669
4670netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4671				struct igb_ring *tx_ring)
4672{
4673	struct igb_tx_buffer *first;
4674	int tso;
4675	u32 tx_flags = 0;
4676	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4677	__be16 protocol = vlan_get_protocol(skb);
4678	u8 hdr_len = 0;
4679
4680	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4681	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4682	 *       + 2 desc gap to keep tail from touching head,
4683	 *       + 1 desc for context descriptor,
4684	 * otherwise try next time
4685	 */
4686	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4687		unsigned short f;
4688		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4689			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4690	} else {
4691		count += skb_shinfo(skb)->nr_frags;
4692	}
4693
4694	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4695		/* this is a hard error */
4696		return NETDEV_TX_BUSY;
4697	}
4698
4699	/* record the location of the first descriptor for this packet */
4700	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4701	first->skb = skb;
4702	first->bytecount = skb->len;
4703	first->gso_segs = 1;
4704
4705	skb_tx_timestamp(skb);
4706
4707	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4708		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4709
4710		if (!(adapter->ptp_tx_skb)) {
4711			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4712			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4713
4714			adapter->ptp_tx_skb = skb_get(skb);
4715			adapter->ptp_tx_start = jiffies;
4716			if (adapter->hw.mac.type == e1000_82576)
4717				schedule_work(&adapter->ptp_tx_work);
4718		}
4719	}
4720
4721	if (vlan_tx_tag_present(skb)) {
4722		tx_flags |= IGB_TX_FLAGS_VLAN;
4723		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4724	}
4725
4726	/* record initial flags and protocol */
4727	first->tx_flags = tx_flags;
4728	first->protocol = protocol;
4729
4730	tso = igb_tso(tx_ring, first, &hdr_len);
4731	if (tso < 0)
4732		goto out_drop;
4733	else if (!tso)
4734		igb_tx_csum(tx_ring, first);
4735
4736	igb_tx_map(tx_ring, first, hdr_len);
4737
4738	/* Make sure there is space in the ring for the next send. */
4739	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4740
4741	return NETDEV_TX_OK;
4742
4743out_drop:
4744	igb_unmap_and_free_tx_resource(tx_ring, first);
4745
4746	return NETDEV_TX_OK;
4747}
4748
4749static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4750						    struct sk_buff *skb)
4751{
4752	unsigned int r_idx = skb->queue_mapping;
4753
4754	if (r_idx >= adapter->num_tx_queues)
4755		r_idx = r_idx % adapter->num_tx_queues;
4756
4757	return adapter->tx_ring[r_idx];
4758}
4759
4760static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4761				  struct net_device *netdev)
4762{
4763	struct igb_adapter *adapter = netdev_priv(netdev);
4764
4765	if (test_bit(__IGB_DOWN, &adapter->state)) {
4766		dev_kfree_skb_any(skb);
4767		return NETDEV_TX_OK;
4768	}
4769
4770	if (skb->len <= 0) {
4771		dev_kfree_skb_any(skb);
4772		return NETDEV_TX_OK;
4773	}
4774
4775	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4776	 * in order to meet this minimum size requirement.
4777	 */
4778	if (unlikely(skb->len < 17)) {
4779		if (skb_pad(skb, 17 - skb->len))
4780			return NETDEV_TX_OK;
4781		skb->len = 17;
4782		skb_set_tail_pointer(skb, 17);
4783	}
4784
4785	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4786}
4787
4788/**
4789 *  igb_tx_timeout - Respond to a Tx Hang
4790 *  @netdev: network interface device structure
4791 **/
4792static void igb_tx_timeout(struct net_device *netdev)
4793{
4794	struct igb_adapter *adapter = netdev_priv(netdev);
4795	struct e1000_hw *hw = &adapter->hw;
4796
4797	/* Do the reset outside of interrupt context */
4798	adapter->tx_timeout_count++;
4799
4800	if (hw->mac.type >= e1000_82580)
4801		hw->dev_spec._82575.global_device_reset = true;
4802
4803	schedule_work(&adapter->reset_task);
4804	wr32(E1000_EICS,
4805	     (adapter->eims_enable_mask & ~adapter->eims_other));
4806}
4807
4808static void igb_reset_task(struct work_struct *work)
4809{
4810	struct igb_adapter *adapter;
4811	adapter = container_of(work, struct igb_adapter, reset_task);
4812
4813	igb_dump(adapter);
4814	netdev_err(adapter->netdev, "Reset adapter\n");
4815	igb_reinit_locked(adapter);
4816}
4817
4818/**
4819 *  igb_get_stats64 - Get System Network Statistics
4820 *  @netdev: network interface device structure
4821 *  @stats: rtnl_link_stats64 pointer
4822 **/
4823static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4824						struct rtnl_link_stats64 *stats)
4825{
4826	struct igb_adapter *adapter = netdev_priv(netdev);
4827
4828	spin_lock(&adapter->stats64_lock);
4829	igb_update_stats(adapter, &adapter->stats64);
4830	memcpy(stats, &adapter->stats64, sizeof(*stats));
4831	spin_unlock(&adapter->stats64_lock);
4832
4833	return stats;
4834}
4835
4836/**
4837 *  igb_change_mtu - Change the Maximum Transfer Unit
4838 *  @netdev: network interface device structure
4839 *  @new_mtu: new value for maximum frame size
4840 *
4841 *  Returns 0 on success, negative on failure
4842 **/
4843static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4844{
4845	struct igb_adapter *adapter = netdev_priv(netdev);
4846	struct pci_dev *pdev = adapter->pdev;
4847	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4848
4849	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4850		dev_err(&pdev->dev, "Invalid MTU setting\n");
4851		return -EINVAL;
4852	}
4853
4854#define MAX_STD_JUMBO_FRAME_SIZE 9238
4855	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4856		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4857		return -EINVAL;
4858	}
4859
4860	/* adjust max frame to be at least the size of a standard frame */
4861	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4862		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4863
4864	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4865		msleep(1);
4866
4867	/* igb_down has a dependency on max_frame_size */
4868	adapter->max_frame_size = max_frame;
4869
4870	if (netif_running(netdev))
4871		igb_down(adapter);
4872
4873	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4874		 netdev->mtu, new_mtu);
4875	netdev->mtu = new_mtu;
4876
4877	if (netif_running(netdev))
4878		igb_up(adapter);
4879	else
4880		igb_reset(adapter);
4881
4882	clear_bit(__IGB_RESETTING, &adapter->state);
4883
4884	return 0;
4885}
4886
4887/**
4888 *  igb_update_stats - Update the board statistics counters
4889 *  @adapter: board private structure
4890 **/
4891void igb_update_stats(struct igb_adapter *adapter,
4892		      struct rtnl_link_stats64 *net_stats)
4893{
4894	struct e1000_hw *hw = &adapter->hw;
4895	struct pci_dev *pdev = adapter->pdev;
4896	u32 reg, mpc;
4897	u16 phy_tmp;
4898	int i;
4899	u64 bytes, packets;
4900	unsigned int start;
4901	u64 _bytes, _packets;
4902
4903#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4904
4905	/* Prevent stats update while adapter is being reset, or if the pci
4906	 * connection is down.
4907	 */
4908	if (adapter->link_speed == 0)
4909		return;
4910	if (pci_channel_offline(pdev))
4911		return;
4912
4913	bytes = 0;
4914	packets = 0;
4915
4916	rcu_read_lock();
4917	for (i = 0; i < adapter->num_rx_queues; i++) {
4918		u32 rqdpc = rd32(E1000_RQDPC(i));
4919		struct igb_ring *ring = adapter->rx_ring[i];
4920
4921		if (rqdpc) {
4922			ring->rx_stats.drops += rqdpc;
4923			net_stats->rx_fifo_errors += rqdpc;
4924		}
4925
4926		do {
4927			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4928			_bytes = ring->rx_stats.bytes;
4929			_packets = ring->rx_stats.packets;
4930		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4931		bytes += _bytes;
4932		packets += _packets;
4933	}
4934
4935	net_stats->rx_bytes = bytes;
4936	net_stats->rx_packets = packets;
4937
4938	bytes = 0;
4939	packets = 0;
4940	for (i = 0; i < adapter->num_tx_queues; i++) {
4941		struct igb_ring *ring = adapter->tx_ring[i];
4942		do {
4943			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4944			_bytes = ring->tx_stats.bytes;
4945			_packets = ring->tx_stats.packets;
4946		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4947		bytes += _bytes;
4948		packets += _packets;
4949	}
4950	net_stats->tx_bytes = bytes;
4951	net_stats->tx_packets = packets;
4952	rcu_read_unlock();
4953
4954	/* read stats registers */
4955	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4956	adapter->stats.gprc += rd32(E1000_GPRC);
4957	adapter->stats.gorc += rd32(E1000_GORCL);
4958	rd32(E1000_GORCH); /* clear GORCL */
4959	adapter->stats.bprc += rd32(E1000_BPRC);
4960	adapter->stats.mprc += rd32(E1000_MPRC);
4961	adapter->stats.roc += rd32(E1000_ROC);
4962
4963	adapter->stats.prc64 += rd32(E1000_PRC64);
4964	adapter->stats.prc127 += rd32(E1000_PRC127);
4965	adapter->stats.prc255 += rd32(E1000_PRC255);
4966	adapter->stats.prc511 += rd32(E1000_PRC511);
4967	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4968	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4969	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4970	adapter->stats.sec += rd32(E1000_SEC);
4971
4972	mpc = rd32(E1000_MPC);
4973	adapter->stats.mpc += mpc;
4974	net_stats->rx_fifo_errors += mpc;
4975	adapter->stats.scc += rd32(E1000_SCC);
4976	adapter->stats.ecol += rd32(E1000_ECOL);
4977	adapter->stats.mcc += rd32(E1000_MCC);
4978	adapter->stats.latecol += rd32(E1000_LATECOL);
4979	adapter->stats.dc += rd32(E1000_DC);
4980	adapter->stats.rlec += rd32(E1000_RLEC);
4981	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4982	adapter->stats.xontxc += rd32(E1000_XONTXC);
4983	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4984	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4985	adapter->stats.fcruc += rd32(E1000_FCRUC);
4986	adapter->stats.gptc += rd32(E1000_GPTC);
4987	adapter->stats.gotc += rd32(E1000_GOTCL);
4988	rd32(E1000_GOTCH); /* clear GOTCL */
4989	adapter->stats.rnbc += rd32(E1000_RNBC);
4990	adapter->stats.ruc += rd32(E1000_RUC);
4991	adapter->stats.rfc += rd32(E1000_RFC);
4992	adapter->stats.rjc += rd32(E1000_RJC);
4993	adapter->stats.tor += rd32(E1000_TORH);
4994	adapter->stats.tot += rd32(E1000_TOTH);
4995	adapter->stats.tpr += rd32(E1000_TPR);
4996
4997	adapter->stats.ptc64 += rd32(E1000_PTC64);
4998	adapter->stats.ptc127 += rd32(E1000_PTC127);
4999	adapter->stats.ptc255 += rd32(E1000_PTC255);
5000	adapter->stats.ptc511 += rd32(E1000_PTC511);
5001	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5002	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5003
5004	adapter->stats.mptc += rd32(E1000_MPTC);
5005	adapter->stats.bptc += rd32(E1000_BPTC);
5006
5007	adapter->stats.tpt += rd32(E1000_TPT);
5008	adapter->stats.colc += rd32(E1000_COLC);
5009
5010	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5011	/* read internal phy specific stats */
5012	reg = rd32(E1000_CTRL_EXT);
5013	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5014		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5015
5016		/* this stat has invalid values on i210/i211 */
5017		if ((hw->mac.type != e1000_i210) &&
5018		    (hw->mac.type != e1000_i211))
5019			adapter->stats.tncrs += rd32(E1000_TNCRS);
5020	}
5021
5022	adapter->stats.tsctc += rd32(E1000_TSCTC);
5023	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5024
5025	adapter->stats.iac += rd32(E1000_IAC);
5026	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5027	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5028	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5029	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5030	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5031	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5032	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5033	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5034
5035	/* Fill out the OS statistics structure */
5036	net_stats->multicast = adapter->stats.mprc;
5037	net_stats->collisions = adapter->stats.colc;
5038
5039	/* Rx Errors */
5040
5041	/* RLEC on some newer hardware can be incorrect so build
5042	 * our own version based on RUC and ROC
5043	 */
5044	net_stats->rx_errors = adapter->stats.rxerrc +
5045		adapter->stats.crcerrs + adapter->stats.algnerrc +
5046		adapter->stats.ruc + adapter->stats.roc +
5047		adapter->stats.cexterr;
5048	net_stats->rx_length_errors = adapter->stats.ruc +
5049				      adapter->stats.roc;
5050	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5051	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5052	net_stats->rx_missed_errors = adapter->stats.mpc;
5053
5054	/* Tx Errors */
5055	net_stats->tx_errors = adapter->stats.ecol +
5056			       adapter->stats.latecol;
5057	net_stats->tx_aborted_errors = adapter->stats.ecol;
5058	net_stats->tx_window_errors = adapter->stats.latecol;
5059	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5060
5061	/* Tx Dropped needs to be maintained elsewhere */
5062
5063	/* Phy Stats */
5064	if (hw->phy.media_type == e1000_media_type_copper) {
5065		if ((adapter->link_speed == SPEED_1000) &&
5066		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5067			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5068			adapter->phy_stats.idle_errors += phy_tmp;
5069		}
5070	}
5071
5072	/* Management Stats */
5073	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5074	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5075	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5076
5077	/* OS2BMC Stats */
5078	reg = rd32(E1000_MANC);
5079	if (reg & E1000_MANC_EN_BMC2OS) {
5080		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5081		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5082		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5083		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5084	}
5085}
5086
5087static irqreturn_t igb_msix_other(int irq, void *data)
5088{
5089	struct igb_adapter *adapter = data;
5090	struct e1000_hw *hw = &adapter->hw;
5091	u32 icr = rd32(E1000_ICR);
5092	/* reading ICR causes bit 31 of EICR to be cleared */
5093
5094	if (icr & E1000_ICR_DRSTA)
5095		schedule_work(&adapter->reset_task);
5096
5097	if (icr & E1000_ICR_DOUTSYNC) {
5098		/* HW is reporting DMA is out of sync */
5099		adapter->stats.doosync++;
5100		/* The DMA Out of Sync is also indication of a spoof event
5101		 * in IOV mode. Check the Wrong VM Behavior register to
5102		 * see if it is really a spoof event.
5103		 */
5104		igb_check_wvbr(adapter);
5105	}
5106
5107	/* Check for a mailbox event */
5108	if (icr & E1000_ICR_VMMB)
5109		igb_msg_task(adapter);
5110
5111	if (icr & E1000_ICR_LSC) {
5112		hw->mac.get_link_status = 1;
5113		/* guard against interrupt when we're going down */
5114		if (!test_bit(__IGB_DOWN, &adapter->state))
5115			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5116	}
5117
5118	if (icr & E1000_ICR_TS) {
5119		u32 tsicr = rd32(E1000_TSICR);
5120
5121		if (tsicr & E1000_TSICR_TXTS) {
5122			/* acknowledge the interrupt */
5123			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5124			/* retrieve hardware timestamp */
5125			schedule_work(&adapter->ptp_tx_work);
5126		}
5127	}
5128
5129	wr32(E1000_EIMS, adapter->eims_other);
5130
5131	return IRQ_HANDLED;
5132}
5133
5134static void igb_write_itr(struct igb_q_vector *q_vector)
5135{
5136	struct igb_adapter *adapter = q_vector->adapter;
5137	u32 itr_val = q_vector->itr_val & 0x7FFC;
5138
5139	if (!q_vector->set_itr)
5140		return;
5141
5142	if (!itr_val)
5143		itr_val = 0x4;
5144
5145	if (adapter->hw.mac.type == e1000_82575)
5146		itr_val |= itr_val << 16;
5147	else
5148		itr_val |= E1000_EITR_CNT_IGNR;
5149
5150	writel(itr_val, q_vector->itr_register);
5151	q_vector->set_itr = 0;
5152}
5153
5154static irqreturn_t igb_msix_ring(int irq, void *data)
5155{
5156	struct igb_q_vector *q_vector = data;
5157
5158	/* Write the ITR value calculated from the previous interrupt. */
5159	igb_write_itr(q_vector);
5160
5161	napi_schedule(&q_vector->napi);
5162
5163	return IRQ_HANDLED;
5164}
5165
5166#ifdef CONFIG_IGB_DCA
5167static void igb_update_tx_dca(struct igb_adapter *adapter,
5168			      struct igb_ring *tx_ring,
5169			      int cpu)
5170{
5171	struct e1000_hw *hw = &adapter->hw;
5172	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5173
5174	if (hw->mac.type != e1000_82575)
5175		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5176
5177	/* We can enable relaxed ordering for reads, but not writes when
5178	 * DCA is enabled.  This is due to a known issue in some chipsets
5179	 * which will cause the DCA tag to be cleared.
5180	 */
5181	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5182		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5183		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5184
5185	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5186}
5187
5188static void igb_update_rx_dca(struct igb_adapter *adapter,
5189			      struct igb_ring *rx_ring,
5190			      int cpu)
5191{
5192	struct e1000_hw *hw = &adapter->hw;
5193	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5194
5195	if (hw->mac.type != e1000_82575)
5196		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5197
5198	/* We can enable relaxed ordering for reads, but not writes when
5199	 * DCA is enabled.  This is due to a known issue in some chipsets
5200	 * which will cause the DCA tag to be cleared.
5201	 */
5202	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5203		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5204
5205	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5206}
5207
5208static void igb_update_dca(struct igb_q_vector *q_vector)
5209{
5210	struct igb_adapter *adapter = q_vector->adapter;
5211	int cpu = get_cpu();
5212
5213	if (q_vector->cpu == cpu)
5214		goto out_no_update;
5215
5216	if (q_vector->tx.ring)
5217		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5218
5219	if (q_vector->rx.ring)
5220		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5221
5222	q_vector->cpu = cpu;
5223out_no_update:
5224	put_cpu();
5225}
5226
5227static void igb_setup_dca(struct igb_adapter *adapter)
5228{
5229	struct e1000_hw *hw = &adapter->hw;
5230	int i;
5231
5232	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5233		return;
5234
5235	/* Always use CB2 mode, difference is masked in the CB driver. */
5236	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5237
5238	for (i = 0; i < adapter->num_q_vectors; i++) {
5239		adapter->q_vector[i]->cpu = -1;
5240		igb_update_dca(adapter->q_vector[i]);
5241	}
5242}
5243
5244static int __igb_notify_dca(struct device *dev, void *data)
5245{
5246	struct net_device *netdev = dev_get_drvdata(dev);
5247	struct igb_adapter *adapter = netdev_priv(netdev);
5248	struct pci_dev *pdev = adapter->pdev;
5249	struct e1000_hw *hw = &adapter->hw;
5250	unsigned long event = *(unsigned long *)data;
5251
5252	switch (event) {
5253	case DCA_PROVIDER_ADD:
5254		/* if already enabled, don't do it again */
5255		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5256			break;
5257		if (dca_add_requester(dev) == 0) {
5258			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5259			dev_info(&pdev->dev, "DCA enabled\n");
5260			igb_setup_dca(adapter);
5261			break;
5262		}
5263		/* Fall Through since DCA is disabled. */
5264	case DCA_PROVIDER_REMOVE:
5265		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5266			/* without this a class_device is left
5267			 * hanging around in the sysfs model
5268			 */
5269			dca_remove_requester(dev);
5270			dev_info(&pdev->dev, "DCA disabled\n");
5271			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5272			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5273		}
5274		break;
5275	}
5276
5277	return 0;
5278}
5279
5280static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5281			  void *p)
5282{
5283	int ret_val;
5284
5285	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5286					 __igb_notify_dca);
5287
5288	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5289}
5290#endif /* CONFIG_IGB_DCA */
5291
5292#ifdef CONFIG_PCI_IOV
5293static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5294{
5295	unsigned char mac_addr[ETH_ALEN];
5296
5297	eth_zero_addr(mac_addr);
5298	igb_set_vf_mac(adapter, vf, mac_addr);
5299
5300	/* By default spoof check is enabled for all VFs */
5301	adapter->vf_data[vf].spoofchk_enabled = true;
5302
5303	return 0;
5304}
5305
5306#endif
5307static void igb_ping_all_vfs(struct igb_adapter *adapter)
5308{
5309	struct e1000_hw *hw = &adapter->hw;
5310	u32 ping;
5311	int i;
5312
5313	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5314		ping = E1000_PF_CONTROL_MSG;
5315		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5316			ping |= E1000_VT_MSGTYPE_CTS;
5317		igb_write_mbx(hw, &ping, 1, i);
5318	}
5319}
5320
5321static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5322{
5323	struct e1000_hw *hw = &adapter->hw;
5324	u32 vmolr = rd32(E1000_VMOLR(vf));
5325	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5326
5327	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5328			    IGB_VF_FLAG_MULTI_PROMISC);
5329	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5330
5331	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5332		vmolr |= E1000_VMOLR_MPME;
5333		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5334		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5335	} else {
5336		/* if we have hashes and we are clearing a multicast promisc
5337		 * flag we need to write the hashes to the MTA as this step
5338		 * was previously skipped
5339		 */
5340		if (vf_data->num_vf_mc_hashes > 30) {
5341			vmolr |= E1000_VMOLR_MPME;
5342		} else if (vf_data->num_vf_mc_hashes) {
5343			int j;
5344			vmolr |= E1000_VMOLR_ROMPE;
5345			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5346				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5347		}
5348	}
5349
5350	wr32(E1000_VMOLR(vf), vmolr);
5351
5352	/* there are flags left unprocessed, likely not supported */
5353	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5354		return -EINVAL;
5355
5356	return 0;
5357}
5358
5359static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5360				  u32 *msgbuf, u32 vf)
5361{
5362	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5363	u16 *hash_list = (u16 *)&msgbuf[1];
5364	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5365	int i;
5366
5367	/* salt away the number of multicast addresses assigned
5368	 * to this VF for later use to restore when the PF multi cast
5369	 * list changes
5370	 */
5371	vf_data->num_vf_mc_hashes = n;
5372
5373	/* only up to 30 hash values supported */
5374	if (n > 30)
5375		n = 30;
5376
5377	/* store the hashes for later use */
5378	for (i = 0; i < n; i++)
5379		vf_data->vf_mc_hashes[i] = hash_list[i];
5380
5381	/* Flush and reset the mta with the new values */
5382	igb_set_rx_mode(adapter->netdev);
5383
5384	return 0;
5385}
5386
5387static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5388{
5389	struct e1000_hw *hw = &adapter->hw;
5390	struct vf_data_storage *vf_data;
5391	int i, j;
5392
5393	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5394		u32 vmolr = rd32(E1000_VMOLR(i));
5395		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5396
5397		vf_data = &adapter->vf_data[i];
5398
5399		if ((vf_data->num_vf_mc_hashes > 30) ||
5400		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5401			vmolr |= E1000_VMOLR_MPME;
5402		} else if (vf_data->num_vf_mc_hashes) {
5403			vmolr |= E1000_VMOLR_ROMPE;
5404			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5405				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5406		}
5407		wr32(E1000_VMOLR(i), vmolr);
5408	}
5409}
5410
5411static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5412{
5413	struct e1000_hw *hw = &adapter->hw;
5414	u32 pool_mask, reg, vid;
5415	int i;
5416
5417	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5418
5419	/* Find the vlan filter for this id */
5420	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5421		reg = rd32(E1000_VLVF(i));
5422
5423		/* remove the vf from the pool */
5424		reg &= ~pool_mask;
5425
5426		/* if pool is empty then remove entry from vfta */
5427		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5428		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5429			reg = 0;
5430			vid = reg & E1000_VLVF_VLANID_MASK;
5431			igb_vfta_set(hw, vid, false);
5432		}
5433
5434		wr32(E1000_VLVF(i), reg);
5435	}
5436
5437	adapter->vf_data[vf].vlans_enabled = 0;
5438}
5439
5440static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5441{
5442	struct e1000_hw *hw = &adapter->hw;
5443	u32 reg, i;
5444
5445	/* The vlvf table only exists on 82576 hardware and newer */
5446	if (hw->mac.type < e1000_82576)
5447		return -1;
5448
5449	/* we only need to do this if VMDq is enabled */
5450	if (!adapter->vfs_allocated_count)
5451		return -1;
5452
5453	/* Find the vlan filter for this id */
5454	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5455		reg = rd32(E1000_VLVF(i));
5456		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5457		    vid == (reg & E1000_VLVF_VLANID_MASK))
5458			break;
5459	}
5460
5461	if (add) {
5462		if (i == E1000_VLVF_ARRAY_SIZE) {
5463			/* Did not find a matching VLAN ID entry that was
5464			 * enabled.  Search for a free filter entry, i.e.
5465			 * one without the enable bit set
5466			 */
5467			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5468				reg = rd32(E1000_VLVF(i));
5469				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5470					break;
5471			}
5472		}
5473		if (i < E1000_VLVF_ARRAY_SIZE) {
5474			/* Found an enabled/available entry */
5475			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5476
5477			/* if !enabled we need to set this up in vfta */
5478			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5479				/* add VID to filter table */
5480				igb_vfta_set(hw, vid, true);
5481				reg |= E1000_VLVF_VLANID_ENABLE;
5482			}
5483			reg &= ~E1000_VLVF_VLANID_MASK;
5484			reg |= vid;
5485			wr32(E1000_VLVF(i), reg);
5486
5487			/* do not modify RLPML for PF devices */
5488			if (vf >= adapter->vfs_allocated_count)
5489				return 0;
5490
5491			if (!adapter->vf_data[vf].vlans_enabled) {
5492				u32 size;
5493				reg = rd32(E1000_VMOLR(vf));
5494				size = reg & E1000_VMOLR_RLPML_MASK;
5495				size += 4;
5496				reg &= ~E1000_VMOLR_RLPML_MASK;
5497				reg |= size;
5498				wr32(E1000_VMOLR(vf), reg);
5499			}
5500
5501			adapter->vf_data[vf].vlans_enabled++;
5502		}
5503	} else {
5504		if (i < E1000_VLVF_ARRAY_SIZE) {
5505			/* remove vf from the pool */
5506			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5507			/* if pool is empty then remove entry from vfta */
5508			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5509				reg = 0;
5510				igb_vfta_set(hw, vid, false);
5511			}
5512			wr32(E1000_VLVF(i), reg);
5513
5514			/* do not modify RLPML for PF devices */
5515			if (vf >= adapter->vfs_allocated_count)
5516				return 0;
5517
5518			adapter->vf_data[vf].vlans_enabled--;
5519			if (!adapter->vf_data[vf].vlans_enabled) {
5520				u32 size;
5521				reg = rd32(E1000_VMOLR(vf));
5522				size = reg & E1000_VMOLR_RLPML_MASK;
5523				size -= 4;
5524				reg &= ~E1000_VMOLR_RLPML_MASK;
5525				reg |= size;
5526				wr32(E1000_VMOLR(vf), reg);
5527			}
5528		}
5529	}
5530	return 0;
5531}
5532
5533static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5534{
5535	struct e1000_hw *hw = &adapter->hw;
5536
5537	if (vid)
5538		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5539	else
5540		wr32(E1000_VMVIR(vf), 0);
5541}
5542
5543static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5544			       int vf, u16 vlan, u8 qos)
5545{
5546	int err = 0;
5547	struct igb_adapter *adapter = netdev_priv(netdev);
5548
5549	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5550		return -EINVAL;
5551	if (vlan || qos) {
5552		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5553		if (err)
5554			goto out;
5555		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5556		igb_set_vmolr(adapter, vf, !vlan);
5557		adapter->vf_data[vf].pf_vlan = vlan;
5558		adapter->vf_data[vf].pf_qos = qos;
5559		dev_info(&adapter->pdev->dev,
5560			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5561		if (test_bit(__IGB_DOWN, &adapter->state)) {
5562			dev_warn(&adapter->pdev->dev,
5563				 "The VF VLAN has been set, but the PF device is not up.\n");
5564			dev_warn(&adapter->pdev->dev,
5565				 "Bring the PF device up before attempting to use the VF device.\n");
5566		}
5567	} else {
5568		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5569			     false, vf);
5570		igb_set_vmvir(adapter, vlan, vf);
5571		igb_set_vmolr(adapter, vf, true);
5572		adapter->vf_data[vf].pf_vlan = 0;
5573		adapter->vf_data[vf].pf_qos = 0;
5574	}
5575out:
5576	return err;
5577}
5578
5579static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5580{
5581	struct e1000_hw *hw = &adapter->hw;
5582	int i;
5583	u32 reg;
5584
5585	/* Find the vlan filter for this id */
5586	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5587		reg = rd32(E1000_VLVF(i));
5588		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5589		    vid == (reg & E1000_VLVF_VLANID_MASK))
5590			break;
5591	}
5592
5593	if (i >= E1000_VLVF_ARRAY_SIZE)
5594		i = -1;
5595
5596	return i;
5597}
5598
5599static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600{
5601	struct e1000_hw *hw = &adapter->hw;
5602	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5603	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5604	int err = 0;
5605
5606	/* If in promiscuous mode we need to make sure the PF also has
5607	 * the VLAN filter set.
5608	 */
5609	if (add && (adapter->netdev->flags & IFF_PROMISC))
5610		err = igb_vlvf_set(adapter, vid, add,
5611				   adapter->vfs_allocated_count);
5612	if (err)
5613		goto out;
5614
5615	err = igb_vlvf_set(adapter, vid, add, vf);
5616
5617	if (err)
5618		goto out;
5619
5620	/* Go through all the checks to see if the VLAN filter should
5621	 * be wiped completely.
5622	 */
5623	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5624		u32 vlvf, bits;
5625
5626		int regndx = igb_find_vlvf_entry(adapter, vid);
5627		if (regndx < 0)
5628			goto out;
5629		/* See if any other pools are set for this VLAN filter
5630		 * entry other than the PF.
5631		 */
5632		vlvf = bits = rd32(E1000_VLVF(regndx));
5633		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5634			      adapter->vfs_allocated_count);
5635		/* If the filter was removed then ensure PF pool bit
5636		 * is cleared if the PF only added itself to the pool
5637		 * because the PF is in promiscuous mode.
5638		 */
5639		if ((vlvf & VLAN_VID_MASK) == vid &&
5640		    !test_bit(vid, adapter->active_vlans) &&
5641		    !bits)
5642			igb_vlvf_set(adapter, vid, add,
5643				     adapter->vfs_allocated_count);
5644	}
5645
5646out:
5647	return err;
5648}
5649
5650static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5651{
5652	/* clear flags - except flag that indicates PF has set the MAC */
5653	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5654	adapter->vf_data[vf].last_nack = jiffies;
5655
5656	/* reset offloads to defaults */
5657	igb_set_vmolr(adapter, vf, true);
5658
5659	/* reset vlans for device */
5660	igb_clear_vf_vfta(adapter, vf);
5661	if (adapter->vf_data[vf].pf_vlan)
5662		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5663				    adapter->vf_data[vf].pf_vlan,
5664				    adapter->vf_data[vf].pf_qos);
5665	else
5666		igb_clear_vf_vfta(adapter, vf);
5667
5668	/* reset multicast table array for vf */
5669	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5670
5671	/* Flush and reset the mta with the new values */
5672	igb_set_rx_mode(adapter->netdev);
5673}
5674
5675static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5676{
5677	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5678
5679	/* clear mac address as we were hotplug removed/added */
5680	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5681		eth_zero_addr(vf_mac);
5682
5683	/* process remaining reset events */
5684	igb_vf_reset(adapter, vf);
5685}
5686
5687static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5688{
5689	struct e1000_hw *hw = &adapter->hw;
5690	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5691	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5692	u32 reg, msgbuf[3];
5693	u8 *addr = (u8 *)(&msgbuf[1]);
5694
5695	/* process all the same items cleared in a function level reset */
5696	igb_vf_reset(adapter, vf);
5697
5698	/* set vf mac address */
5699	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5700
5701	/* enable transmit and receive for vf */
5702	reg = rd32(E1000_VFTE);
5703	wr32(E1000_VFTE, reg | (1 << vf));
5704	reg = rd32(E1000_VFRE);
5705	wr32(E1000_VFRE, reg | (1 << vf));
5706
5707	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5708
5709	/* reply to reset with ack and vf mac address */
5710	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5711	memcpy(addr, vf_mac, ETH_ALEN);
5712	igb_write_mbx(hw, msgbuf, 3, vf);
5713}
5714
5715static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5716{
5717	/* The VF MAC Address is stored in a packed array of bytes
5718	 * starting at the second 32 bit word of the msg array
5719	 */
5720	unsigned char *addr = (char *)&msg[1];
5721	int err = -1;
5722
5723	if (is_valid_ether_addr(addr))
5724		err = igb_set_vf_mac(adapter, vf, addr);
5725
5726	return err;
5727}
5728
5729static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5730{
5731	struct e1000_hw *hw = &adapter->hw;
5732	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733	u32 msg = E1000_VT_MSGTYPE_NACK;
5734
5735	/* if device isn't clear to send it shouldn't be reading either */
5736	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5737	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5738		igb_write_mbx(hw, &msg, 1, vf);
5739		vf_data->last_nack = jiffies;
5740	}
5741}
5742
5743static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5744{
5745	struct pci_dev *pdev = adapter->pdev;
5746	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5747	struct e1000_hw *hw = &adapter->hw;
5748	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5749	s32 retval;
5750
5751	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5752
5753	if (retval) {
5754		/* if receive failed revoke VF CTS stats and restart init */
5755		dev_err(&pdev->dev, "Error receiving message from VF\n");
5756		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5757		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5758			return;
5759		goto out;
5760	}
5761
5762	/* this is a message we already processed, do nothing */
5763	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5764		return;
5765
5766	/* until the vf completes a reset it should not be
5767	 * allowed to start any configuration.
5768	 */
5769	if (msgbuf[0] == E1000_VF_RESET) {
5770		igb_vf_reset_msg(adapter, vf);
5771		return;
5772	}
5773
5774	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5775		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5776			return;
5777		retval = -1;
5778		goto out;
5779	}
5780
5781	switch ((msgbuf[0] & 0xFFFF)) {
5782	case E1000_VF_SET_MAC_ADDR:
5783		retval = -EINVAL;
5784		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5785			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5786		else
5787			dev_warn(&pdev->dev,
5788				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5789				 vf);
5790		break;
5791	case E1000_VF_SET_PROMISC:
5792		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5793		break;
5794	case E1000_VF_SET_MULTICAST:
5795		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5796		break;
5797	case E1000_VF_SET_LPE:
5798		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5799		break;
5800	case E1000_VF_SET_VLAN:
5801		retval = -1;
5802		if (vf_data->pf_vlan)
5803			dev_warn(&pdev->dev,
5804				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5805				 vf);
5806		else
5807			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5808		break;
5809	default:
5810		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5811		retval = -1;
5812		break;
5813	}
5814
5815	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5816out:
5817	/* notify the VF of the results of what it sent us */
5818	if (retval)
5819		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5820	else
5821		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5822
5823	igb_write_mbx(hw, msgbuf, 1, vf);
5824}
5825
5826static void igb_msg_task(struct igb_adapter *adapter)
5827{
5828	struct e1000_hw *hw = &adapter->hw;
5829	u32 vf;
5830
5831	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5832		/* process any reset requests */
5833		if (!igb_check_for_rst(hw, vf))
5834			igb_vf_reset_event(adapter, vf);
5835
5836		/* process any messages pending */
5837		if (!igb_check_for_msg(hw, vf))
5838			igb_rcv_msg_from_vf(adapter, vf);
5839
5840		/* process any acks */
5841		if (!igb_check_for_ack(hw, vf))
5842			igb_rcv_ack_from_vf(adapter, vf);
5843	}
5844}
5845
5846/**
5847 *  igb_set_uta - Set unicast filter table address
5848 *  @adapter: board private structure
5849 *
5850 *  The unicast table address is a register array of 32-bit registers.
5851 *  The table is meant to be used in a way similar to how the MTA is used
5852 *  however due to certain limitations in the hardware it is necessary to
5853 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5854 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5855 **/
5856static void igb_set_uta(struct igb_adapter *adapter)
5857{
5858	struct e1000_hw *hw = &adapter->hw;
5859	int i;
5860
5861	/* The UTA table only exists on 82576 hardware and newer */
5862	if (hw->mac.type < e1000_82576)
5863		return;
5864
5865	/* we only need to do this if VMDq is enabled */
5866	if (!adapter->vfs_allocated_count)
5867		return;
5868
5869	for (i = 0; i < hw->mac.uta_reg_count; i++)
5870		array_wr32(E1000_UTA, i, ~0);
5871}
5872
5873/**
5874 *  igb_intr_msi - Interrupt Handler
5875 *  @irq: interrupt number
5876 *  @data: pointer to a network interface device structure
5877 **/
5878static irqreturn_t igb_intr_msi(int irq, void *data)
5879{
5880	struct igb_adapter *adapter = data;
5881	struct igb_q_vector *q_vector = adapter->q_vector[0];
5882	struct e1000_hw *hw = &adapter->hw;
5883	/* read ICR disables interrupts using IAM */
5884	u32 icr = rd32(E1000_ICR);
5885
5886	igb_write_itr(q_vector);
5887
5888	if (icr & E1000_ICR_DRSTA)
5889		schedule_work(&adapter->reset_task);
5890
5891	if (icr & E1000_ICR_DOUTSYNC) {
5892		/* HW is reporting DMA is out of sync */
5893		adapter->stats.doosync++;
5894	}
5895
5896	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5897		hw->mac.get_link_status = 1;
5898		if (!test_bit(__IGB_DOWN, &adapter->state))
5899			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5900	}
5901
5902	if (icr & E1000_ICR_TS) {
5903		u32 tsicr = rd32(E1000_TSICR);
5904
5905		if (tsicr & E1000_TSICR_TXTS) {
5906			/* acknowledge the interrupt */
5907			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5908			/* retrieve hardware timestamp */
5909			schedule_work(&adapter->ptp_tx_work);
5910		}
5911	}
5912
5913	napi_schedule(&q_vector->napi);
5914
5915	return IRQ_HANDLED;
5916}
5917
5918/**
5919 *  igb_intr - Legacy Interrupt Handler
5920 *  @irq: interrupt number
5921 *  @data: pointer to a network interface device structure
5922 **/
5923static irqreturn_t igb_intr(int irq, void *data)
5924{
5925	struct igb_adapter *adapter = data;
5926	struct igb_q_vector *q_vector = adapter->q_vector[0];
5927	struct e1000_hw *hw = &adapter->hw;
5928	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5929	 * need for the IMC write
5930	 */
5931	u32 icr = rd32(E1000_ICR);
5932
5933	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5934	 * not set, then the adapter didn't send an interrupt
5935	 */
5936	if (!(icr & E1000_ICR_INT_ASSERTED))
5937		return IRQ_NONE;
5938
5939	igb_write_itr(q_vector);
5940
5941	if (icr & E1000_ICR_DRSTA)
5942		schedule_work(&adapter->reset_task);
5943
5944	if (icr & E1000_ICR_DOUTSYNC) {
5945		/* HW is reporting DMA is out of sync */
5946		adapter->stats.doosync++;
5947	}
5948
5949	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5950		hw->mac.get_link_status = 1;
5951		/* guard against interrupt when we're going down */
5952		if (!test_bit(__IGB_DOWN, &adapter->state))
5953			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5954	}
5955
5956	if (icr & E1000_ICR_TS) {
5957		u32 tsicr = rd32(E1000_TSICR);
5958
5959		if (tsicr & E1000_TSICR_TXTS) {
5960			/* acknowledge the interrupt */
5961			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5962			/* retrieve hardware timestamp */
5963			schedule_work(&adapter->ptp_tx_work);
5964		}
5965	}
5966
5967	napi_schedule(&q_vector->napi);
5968
5969	return IRQ_HANDLED;
5970}
5971
5972static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5973{
5974	struct igb_adapter *adapter = q_vector->adapter;
5975	struct e1000_hw *hw = &adapter->hw;
5976
5977	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5978	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5979		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5980			igb_set_itr(q_vector);
5981		else
5982			igb_update_ring_itr(q_vector);
5983	}
5984
5985	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5986		if (adapter->msix_entries)
5987			wr32(E1000_EIMS, q_vector->eims_value);
5988		else
5989			igb_irq_enable(adapter);
5990	}
5991}
5992
5993/**
5994 *  igb_poll - NAPI Rx polling callback
5995 *  @napi: napi polling structure
5996 *  @budget: count of how many packets we should handle
5997 **/
5998static int igb_poll(struct napi_struct *napi, int budget)
5999{
6000	struct igb_q_vector *q_vector = container_of(napi,
6001						     struct igb_q_vector,
6002						     napi);
6003	bool clean_complete = true;
6004
6005#ifdef CONFIG_IGB_DCA
6006	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6007		igb_update_dca(q_vector);
6008#endif
6009	if (q_vector->tx.ring)
6010		clean_complete = igb_clean_tx_irq(q_vector);
6011
6012	if (q_vector->rx.ring)
6013		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6014
6015	/* If all work not completed, return budget and keep polling */
6016	if (!clean_complete)
6017		return budget;
6018
6019	/* If not enough Rx work done, exit the polling mode */
6020	napi_complete(napi);
6021	igb_ring_irq_enable(q_vector);
6022
6023	return 0;
6024}
6025
6026/**
6027 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6028 *  @q_vector: pointer to q_vector containing needed info
6029 *
6030 *  returns true if ring is completely cleaned
6031 **/
6032static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6033{
6034	struct igb_adapter *adapter = q_vector->adapter;
6035	struct igb_ring *tx_ring = q_vector->tx.ring;
6036	struct igb_tx_buffer *tx_buffer;
6037	union e1000_adv_tx_desc *tx_desc;
6038	unsigned int total_bytes = 0, total_packets = 0;
6039	unsigned int budget = q_vector->tx.work_limit;
6040	unsigned int i = tx_ring->next_to_clean;
6041
6042	if (test_bit(__IGB_DOWN, &adapter->state))
6043		return true;
6044
6045	tx_buffer = &tx_ring->tx_buffer_info[i];
6046	tx_desc = IGB_TX_DESC(tx_ring, i);
6047	i -= tx_ring->count;
6048
6049	do {
6050		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6051
6052		/* if next_to_watch is not set then there is no work pending */
6053		if (!eop_desc)
6054			break;
6055
6056		/* prevent any other reads prior to eop_desc */
6057		read_barrier_depends();
6058
6059		/* if DD is not set pending work has not been completed */
6060		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6061			break;
6062
6063		/* clear next_to_watch to prevent false hangs */
6064		tx_buffer->next_to_watch = NULL;
6065
6066		/* update the statistics for this packet */
6067		total_bytes += tx_buffer->bytecount;
6068		total_packets += tx_buffer->gso_segs;
6069
6070		/* free the skb */
6071		dev_kfree_skb_any(tx_buffer->skb);
6072
6073		/* unmap skb header data */
6074		dma_unmap_single(tx_ring->dev,
6075				 dma_unmap_addr(tx_buffer, dma),
6076				 dma_unmap_len(tx_buffer, len),
6077				 DMA_TO_DEVICE);
6078
6079		/* clear tx_buffer data */
6080		tx_buffer->skb = NULL;
6081		dma_unmap_len_set(tx_buffer, len, 0);
6082
6083		/* clear last DMA location and unmap remaining buffers */
6084		while (tx_desc != eop_desc) {
6085			tx_buffer++;
6086			tx_desc++;
6087			i++;
6088			if (unlikely(!i)) {
6089				i -= tx_ring->count;
6090				tx_buffer = tx_ring->tx_buffer_info;
6091				tx_desc = IGB_TX_DESC(tx_ring, 0);
6092			}
6093
6094			/* unmap any remaining paged data */
6095			if (dma_unmap_len(tx_buffer, len)) {
6096				dma_unmap_page(tx_ring->dev,
6097					       dma_unmap_addr(tx_buffer, dma),
6098					       dma_unmap_len(tx_buffer, len),
6099					       DMA_TO_DEVICE);
6100				dma_unmap_len_set(tx_buffer, len, 0);
6101			}
6102		}
6103
6104		/* move us one more past the eop_desc for start of next pkt */
6105		tx_buffer++;
6106		tx_desc++;
6107		i++;
6108		if (unlikely(!i)) {
6109			i -= tx_ring->count;
6110			tx_buffer = tx_ring->tx_buffer_info;
6111			tx_desc = IGB_TX_DESC(tx_ring, 0);
6112		}
6113
6114		/* issue prefetch for next Tx descriptor */
6115		prefetch(tx_desc);
6116
6117		/* update budget accounting */
6118		budget--;
6119	} while (likely(budget));
6120
6121	netdev_tx_completed_queue(txring_txq(tx_ring),
6122				  total_packets, total_bytes);
6123	i += tx_ring->count;
6124	tx_ring->next_to_clean = i;
6125	u64_stats_update_begin(&tx_ring->tx_syncp);
6126	tx_ring->tx_stats.bytes += total_bytes;
6127	tx_ring->tx_stats.packets += total_packets;
6128	u64_stats_update_end(&tx_ring->tx_syncp);
6129	q_vector->tx.total_bytes += total_bytes;
6130	q_vector->tx.total_packets += total_packets;
6131
6132	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6133		struct e1000_hw *hw = &adapter->hw;
6134
6135		/* Detect a transmit hang in hardware, this serializes the
6136		 * check with the clearing of time_stamp and movement of i
6137		 */
6138		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6139		if (tx_buffer->next_to_watch &&
6140		    time_after(jiffies, tx_buffer->time_stamp +
6141			       (adapter->tx_timeout_factor * HZ)) &&
6142		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6143
6144			/* detected Tx unit hang */
6145			dev_err(tx_ring->dev,
6146				"Detected Tx Unit Hang\n"
6147				"  Tx Queue             <%d>\n"
6148				"  TDH                  <%x>\n"
6149				"  TDT                  <%x>\n"
6150				"  next_to_use          <%x>\n"
6151				"  next_to_clean        <%x>\n"
6152				"buffer_info[next_to_clean]\n"
6153				"  time_stamp           <%lx>\n"
6154				"  next_to_watch        <%p>\n"
6155				"  jiffies              <%lx>\n"
6156				"  desc.status          <%x>\n",
6157				tx_ring->queue_index,
6158				rd32(E1000_TDH(tx_ring->reg_idx)),
6159				readl(tx_ring->tail),
6160				tx_ring->next_to_use,
6161				tx_ring->next_to_clean,
6162				tx_buffer->time_stamp,
6163				tx_buffer->next_to_watch,
6164				jiffies,
6165				tx_buffer->next_to_watch->wb.status);
6166			netif_stop_subqueue(tx_ring->netdev,
6167					    tx_ring->queue_index);
6168
6169			/* we are about to reset, no point in enabling stuff */
6170			return true;
6171		}
6172	}
6173
6174#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6175	if (unlikely(total_packets &&
6176	    netif_carrier_ok(tx_ring->netdev) &&
6177	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6178		/* Make sure that anybody stopping the queue after this
6179		 * sees the new next_to_clean.
6180		 */
6181		smp_mb();
6182		if (__netif_subqueue_stopped(tx_ring->netdev,
6183					     tx_ring->queue_index) &&
6184		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6185			netif_wake_subqueue(tx_ring->netdev,
6186					    tx_ring->queue_index);
6187
6188			u64_stats_update_begin(&tx_ring->tx_syncp);
6189			tx_ring->tx_stats.restart_queue++;
6190			u64_stats_update_end(&tx_ring->tx_syncp);
6191		}
6192	}
6193
6194	return !!budget;
6195}
6196
6197/**
6198 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6199 *  @rx_ring: rx descriptor ring to store buffers on
6200 *  @old_buff: donor buffer to have page reused
6201 *
6202 *  Synchronizes page for reuse by the adapter
6203 **/
6204static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6205			      struct igb_rx_buffer *old_buff)
6206{
6207	struct igb_rx_buffer *new_buff;
6208	u16 nta = rx_ring->next_to_alloc;
6209
6210	new_buff = &rx_ring->rx_buffer_info[nta];
6211
6212	/* update, and store next to alloc */
6213	nta++;
6214	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6215
6216	/* transfer page from old buffer to new buffer */
6217	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6218
6219	/* sync the buffer for use by the device */
6220	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6221					 old_buff->page_offset,
6222					 IGB_RX_BUFSZ,
6223					 DMA_FROM_DEVICE);
6224}
6225
6226static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6227				  struct page *page,
6228				  unsigned int truesize)
6229{
6230	/* avoid re-using remote pages */
6231	if (unlikely(page_to_nid(page) != numa_node_id()))
6232		return false;
6233
6234#if (PAGE_SIZE < 8192)
6235	/* if we are only owner of page we can reuse it */
6236	if (unlikely(page_count(page) != 1))
6237		return false;
6238
6239	/* flip page offset to other buffer */
6240	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6241
6242	/* since we are the only owner of the page and we need to
6243	 * increment it, just set the value to 2 in order to avoid
6244	 * an unnecessary locked operation
6245	 */
6246	atomic_set(&page->_count, 2);
6247#else
6248	/* move offset up to the next cache line */
6249	rx_buffer->page_offset += truesize;
6250
6251	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6252		return false;
6253
6254	/* bump ref count on page before it is given to the stack */
6255	get_page(page);
6256#endif
6257
6258	return true;
6259}
6260
6261/**
6262 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6263 *  @rx_ring: rx descriptor ring to transact packets on
6264 *  @rx_buffer: buffer containing page to add
6265 *  @rx_desc: descriptor containing length of buffer written by hardware
6266 *  @skb: sk_buff to place the data into
6267 *
6268 *  This function will add the data contained in rx_buffer->page to the skb.
6269 *  This is done either through a direct copy if the data in the buffer is
6270 *  less than the skb header size, otherwise it will just attach the page as
6271 *  a frag to the skb.
6272 *
6273 *  The function will then update the page offset if necessary and return
6274 *  true if the buffer can be reused by the adapter.
6275 **/
6276static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6277			    struct igb_rx_buffer *rx_buffer,
6278			    union e1000_adv_rx_desc *rx_desc,
6279			    struct sk_buff *skb)
6280{
6281	struct page *page = rx_buffer->page;
6282	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6283#if (PAGE_SIZE < 8192)
6284	unsigned int truesize = IGB_RX_BUFSZ;
6285#else
6286	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6287#endif
6288
6289	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6290		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6291
6292		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6293			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6294			va += IGB_TS_HDR_LEN;
6295			size -= IGB_TS_HDR_LEN;
6296		}
6297
6298		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6299
6300		/* we can reuse buffer as-is, just make sure it is local */
6301		if (likely(page_to_nid(page) == numa_node_id()))
6302			return true;
6303
6304		/* this page cannot be reused so discard it */
6305		put_page(page);
6306		return false;
6307	}
6308
6309	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6310			rx_buffer->page_offset, size, truesize);
6311
6312	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6313}
6314
6315static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6316					   union e1000_adv_rx_desc *rx_desc,
6317					   struct sk_buff *skb)
6318{
6319	struct igb_rx_buffer *rx_buffer;
6320	struct page *page;
6321
6322	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6323
6324	page = rx_buffer->page;
6325	prefetchw(page);
6326
6327	if (likely(!skb)) {
6328		void *page_addr = page_address(page) +
6329				  rx_buffer->page_offset;
6330
6331		/* prefetch first cache line of first page */
6332		prefetch(page_addr);
6333#if L1_CACHE_BYTES < 128
6334		prefetch(page_addr + L1_CACHE_BYTES);
6335#endif
6336
6337		/* allocate a skb to store the frags */
6338		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6339						IGB_RX_HDR_LEN);
6340		if (unlikely(!skb)) {
6341			rx_ring->rx_stats.alloc_failed++;
6342			return NULL;
6343		}
6344
6345		/* we will be copying header into skb->data in
6346		 * pskb_may_pull so it is in our interest to prefetch
6347		 * it now to avoid a possible cache miss
6348		 */
6349		prefetchw(skb->data);
6350	}
6351
6352	/* we are reusing so sync this buffer for CPU use */
6353	dma_sync_single_range_for_cpu(rx_ring->dev,
6354				      rx_buffer->dma,
6355				      rx_buffer->page_offset,
6356				      IGB_RX_BUFSZ,
6357				      DMA_FROM_DEVICE);
6358
6359	/* pull page into skb */
6360	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6361		/* hand second half of page back to the ring */
6362		igb_reuse_rx_page(rx_ring, rx_buffer);
6363	} else {
6364		/* we are not reusing the buffer so unmap it */
6365		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6366			       PAGE_SIZE, DMA_FROM_DEVICE);
6367	}
6368
6369	/* clear contents of rx_buffer */
6370	rx_buffer->page = NULL;
6371
6372	return skb;
6373}
6374
6375static inline void igb_rx_checksum(struct igb_ring *ring,
6376				   union e1000_adv_rx_desc *rx_desc,
6377				   struct sk_buff *skb)
6378{
6379	skb_checksum_none_assert(skb);
6380
6381	/* Ignore Checksum bit is set */
6382	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6383		return;
6384
6385	/* Rx checksum disabled via ethtool */
6386	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6387		return;
6388
6389	/* TCP/UDP checksum error bit is set */
6390	if (igb_test_staterr(rx_desc,
6391			     E1000_RXDEXT_STATERR_TCPE |
6392			     E1000_RXDEXT_STATERR_IPE)) {
6393		/* work around errata with sctp packets where the TCPE aka
6394		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6395		 * packets, (aka let the stack check the crc32c)
6396		 */
6397		if (!((skb->len == 60) &&
6398		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6399			u64_stats_update_begin(&ring->rx_syncp);
6400			ring->rx_stats.csum_err++;
6401			u64_stats_update_end(&ring->rx_syncp);
6402		}
6403		/* let the stack verify checksum errors */
6404		return;
6405	}
6406	/* It must be a TCP or UDP packet with a valid checksum */
6407	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6408				      E1000_RXD_STAT_UDPCS))
6409		skb->ip_summed = CHECKSUM_UNNECESSARY;
6410
6411	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6412		le32_to_cpu(rx_desc->wb.upper.status_error));
6413}
6414
6415static inline void igb_rx_hash(struct igb_ring *ring,
6416			       union e1000_adv_rx_desc *rx_desc,
6417			       struct sk_buff *skb)
6418{
6419	if (ring->netdev->features & NETIF_F_RXHASH)
6420		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6421}
6422
6423/**
6424 *  igb_is_non_eop - process handling of non-EOP buffers
6425 *  @rx_ring: Rx ring being processed
6426 *  @rx_desc: Rx descriptor for current buffer
6427 *  @skb: current socket buffer containing buffer in progress
6428 *
6429 *  This function updates next to clean.  If the buffer is an EOP buffer
6430 *  this function exits returning false, otherwise it will place the
6431 *  sk_buff in the next buffer to be chained and return true indicating
6432 *  that this is in fact a non-EOP buffer.
6433 **/
6434static bool igb_is_non_eop(struct igb_ring *rx_ring,
6435			   union e1000_adv_rx_desc *rx_desc)
6436{
6437	u32 ntc = rx_ring->next_to_clean + 1;
6438
6439	/* fetch, update, and store next to clean */
6440	ntc = (ntc < rx_ring->count) ? ntc : 0;
6441	rx_ring->next_to_clean = ntc;
6442
6443	prefetch(IGB_RX_DESC(rx_ring, ntc));
6444
6445	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6446		return false;
6447
6448	return true;
6449}
6450
6451/**
6452 *  igb_get_headlen - determine size of header for LRO/GRO
6453 *  @data: pointer to the start of the headers
6454 *  @max_len: total length of section to find headers in
6455 *
6456 *  This function is meant to determine the length of headers that will
6457 *  be recognized by hardware for LRO, and GRO offloads.  The main
6458 *  motivation of doing this is to only perform one pull for IPv4 TCP
6459 *  packets so that we can do basic things like calculating the gso_size
6460 *  based on the average data per packet.
6461 **/
6462static unsigned int igb_get_headlen(unsigned char *data,
6463				    unsigned int max_len)
6464{
6465	union {
6466		unsigned char *network;
6467		/* l2 headers */
6468		struct ethhdr *eth;
6469		struct vlan_hdr *vlan;
6470		/* l3 headers */
6471		struct iphdr *ipv4;
6472		struct ipv6hdr *ipv6;
6473	} hdr;
6474	__be16 protocol;
6475	u8 nexthdr = 0;	/* default to not TCP */
6476	u8 hlen;
6477
6478	/* this should never happen, but better safe than sorry */
6479	if (max_len < ETH_HLEN)
6480		return max_len;
6481
6482	/* initialize network frame pointer */
6483	hdr.network = data;
6484
6485	/* set first protocol and move network header forward */
6486	protocol = hdr.eth->h_proto;
6487	hdr.network += ETH_HLEN;
6488
6489	/* handle any vlan tag if present */
6490	if (protocol == __constant_htons(ETH_P_8021Q)) {
6491		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6492			return max_len;
6493
6494		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6495		hdr.network += VLAN_HLEN;
6496	}
6497
6498	/* handle L3 protocols */
6499	if (protocol == __constant_htons(ETH_P_IP)) {
6500		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6501			return max_len;
6502
6503		/* access ihl as a u8 to avoid unaligned access on ia64 */
6504		hlen = (hdr.network[0] & 0x0F) << 2;
6505
6506		/* verify hlen meets minimum size requirements */
6507		if (hlen < sizeof(struct iphdr))
6508			return hdr.network - data;
6509
6510		/* record next protocol if header is present */
6511		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6512			nexthdr = hdr.ipv4->protocol;
6513	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6514		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6515			return max_len;
6516
6517		/* record next protocol */
6518		nexthdr = hdr.ipv6->nexthdr;
6519		hlen = sizeof(struct ipv6hdr);
6520	} else {
6521		return hdr.network - data;
6522	}
6523
6524	/* relocate pointer to start of L4 header */
6525	hdr.network += hlen;
6526
6527	/* finally sort out TCP */
6528	if (nexthdr == IPPROTO_TCP) {
6529		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6530			return max_len;
6531
6532		/* access doff as a u8 to avoid unaligned access on ia64 */
6533		hlen = (hdr.network[12] & 0xF0) >> 2;
6534
6535		/* verify hlen meets minimum size requirements */
6536		if (hlen < sizeof(struct tcphdr))
6537			return hdr.network - data;
6538
6539		hdr.network += hlen;
6540	} else if (nexthdr == IPPROTO_UDP) {
6541		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6542			return max_len;
6543
6544		hdr.network += sizeof(struct udphdr);
6545	}
6546
6547	/* If everything has gone correctly hdr.network should be the
6548	 * data section of the packet and will be the end of the header.
6549	 * If not then it probably represents the end of the last recognized
6550	 * header.
6551	 */
6552	if ((hdr.network - data) < max_len)
6553		return hdr.network - data;
6554	else
6555		return max_len;
6556}
6557
6558/**
6559 *  igb_pull_tail - igb specific version of skb_pull_tail
6560 *  @rx_ring: rx descriptor ring packet is being transacted on
6561 *  @rx_desc: pointer to the EOP Rx descriptor
6562 *  @skb: pointer to current skb being adjusted
6563 *
6564 *  This function is an igb specific version of __pskb_pull_tail.  The
6565 *  main difference between this version and the original function is that
6566 *  this function can make several assumptions about the state of things
6567 *  that allow for significant optimizations versus the standard function.
6568 *  As a result we can do things like drop a frag and maintain an accurate
6569 *  truesize for the skb.
6570 */
6571static void igb_pull_tail(struct igb_ring *rx_ring,
6572			  union e1000_adv_rx_desc *rx_desc,
6573			  struct sk_buff *skb)
6574{
6575	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6576	unsigned char *va;
6577	unsigned int pull_len;
6578
6579	/* it is valid to use page_address instead of kmap since we are
6580	 * working with pages allocated out of the lomem pool per
6581	 * alloc_page(GFP_ATOMIC)
6582	 */
6583	va = skb_frag_address(frag);
6584
6585	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6586		/* retrieve timestamp from buffer */
6587		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6588
6589		/* update pointers to remove timestamp header */
6590		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6591		frag->page_offset += IGB_TS_HDR_LEN;
6592		skb->data_len -= IGB_TS_HDR_LEN;
6593		skb->len -= IGB_TS_HDR_LEN;
6594
6595		/* move va to start of packet data */
6596		va += IGB_TS_HDR_LEN;
6597	}
6598
6599	/* we need the header to contain the greater of either ETH_HLEN or
6600	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6601	 */
6602	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6603
6604	/* align pull length to size of long to optimize memcpy performance */
6605	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6606
6607	/* update all of the pointers */
6608	skb_frag_size_sub(frag, pull_len);
6609	frag->page_offset += pull_len;
6610	skb->data_len -= pull_len;
6611	skb->tail += pull_len;
6612}
6613
6614/**
6615 *  igb_cleanup_headers - Correct corrupted or empty headers
6616 *  @rx_ring: rx descriptor ring packet is being transacted on
6617 *  @rx_desc: pointer to the EOP Rx descriptor
6618 *  @skb: pointer to current skb being fixed
6619 *
6620 *  Address the case where we are pulling data in on pages only
6621 *  and as such no data is present in the skb header.
6622 *
6623 *  In addition if skb is not at least 60 bytes we need to pad it so that
6624 *  it is large enough to qualify as a valid Ethernet frame.
6625 *
6626 *  Returns true if an error was encountered and skb was freed.
6627 **/
6628static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6629				union e1000_adv_rx_desc *rx_desc,
6630				struct sk_buff *skb)
6631{
6632	if (unlikely((igb_test_staterr(rx_desc,
6633				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6634		struct net_device *netdev = rx_ring->netdev;
6635		if (!(netdev->features & NETIF_F_RXALL)) {
6636			dev_kfree_skb_any(skb);
6637			return true;
6638		}
6639	}
6640
6641	/* place header in linear portion of buffer */
6642	if (skb_is_nonlinear(skb))
6643		igb_pull_tail(rx_ring, rx_desc, skb);
6644
6645	/* if skb_pad returns an error the skb was freed */
6646	if (unlikely(skb->len < 60)) {
6647		int pad_len = 60 - skb->len;
6648
6649		if (skb_pad(skb, pad_len))
6650			return true;
6651		__skb_put(skb, pad_len);
6652	}
6653
6654	return false;
6655}
6656
6657/**
6658 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6659 *  @rx_ring: rx descriptor ring packet is being transacted on
6660 *  @rx_desc: pointer to the EOP Rx descriptor
6661 *  @skb: pointer to current skb being populated
6662 *
6663 *  This function checks the ring, descriptor, and packet information in
6664 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6665 *  other fields within the skb.
6666 **/
6667static void igb_process_skb_fields(struct igb_ring *rx_ring,
6668				   union e1000_adv_rx_desc *rx_desc,
6669				   struct sk_buff *skb)
6670{
6671	struct net_device *dev = rx_ring->netdev;
6672
6673	igb_rx_hash(rx_ring, rx_desc, skb);
6674
6675	igb_rx_checksum(rx_ring, rx_desc, skb);
6676
6677	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6678
6679	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6680	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6681		u16 vid;
6682		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6683		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6684			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6685		else
6686			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6687
6688		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6689	}
6690
6691	skb_record_rx_queue(skb, rx_ring->queue_index);
6692
6693	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6694}
6695
6696static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6697{
6698	struct igb_ring *rx_ring = q_vector->rx.ring;
6699	struct sk_buff *skb = rx_ring->skb;
6700	unsigned int total_bytes = 0, total_packets = 0;
6701	u16 cleaned_count = igb_desc_unused(rx_ring);
6702
6703	do {
6704		union e1000_adv_rx_desc *rx_desc;
6705
6706		/* return some buffers to hardware, one at a time is too slow */
6707		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6708			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6709			cleaned_count = 0;
6710		}
6711
6712		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6713
6714		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6715			break;
6716
6717		/* This memory barrier is needed to keep us from reading
6718		 * any other fields out of the rx_desc until we know the
6719		 * RXD_STAT_DD bit is set
6720		 */
6721		rmb();
6722
6723		/* retrieve a buffer from the ring */
6724		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6725
6726		/* exit if we failed to retrieve a buffer */
6727		if (!skb)
6728			break;
6729
6730		cleaned_count++;
6731
6732		/* fetch next buffer in frame if non-eop */
6733		if (igb_is_non_eop(rx_ring, rx_desc))
6734			continue;
6735
6736		/* verify the packet layout is correct */
6737		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6738			skb = NULL;
6739			continue;
6740		}
6741
6742		/* probably a little skewed due to removing CRC */
6743		total_bytes += skb->len;
6744
6745		/* populate checksum, timestamp, VLAN, and protocol */
6746		igb_process_skb_fields(rx_ring, rx_desc, skb);
6747
6748		napi_gro_receive(&q_vector->napi, skb);
6749
6750		/* reset skb pointer */
6751		skb = NULL;
6752
6753		/* update budget accounting */
6754		total_packets++;
6755	} while (likely(total_packets < budget));
6756
6757	/* place incomplete frames back on ring for completion */
6758	rx_ring->skb = skb;
6759
6760	u64_stats_update_begin(&rx_ring->rx_syncp);
6761	rx_ring->rx_stats.packets += total_packets;
6762	rx_ring->rx_stats.bytes += total_bytes;
6763	u64_stats_update_end(&rx_ring->rx_syncp);
6764	q_vector->rx.total_packets += total_packets;
6765	q_vector->rx.total_bytes += total_bytes;
6766
6767	if (cleaned_count)
6768		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6769
6770	return (total_packets < budget);
6771}
6772
6773static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6774				  struct igb_rx_buffer *bi)
6775{
6776	struct page *page = bi->page;
6777	dma_addr_t dma;
6778
6779	/* since we are recycling buffers we should seldom need to alloc */
6780	if (likely(page))
6781		return true;
6782
6783	/* alloc new page for storage */
6784	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6785	if (unlikely(!page)) {
6786		rx_ring->rx_stats.alloc_failed++;
6787		return false;
6788	}
6789
6790	/* map page for use */
6791	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6792
6793	/* if mapping failed free memory back to system since
6794	 * there isn't much point in holding memory we can't use
6795	 */
6796	if (dma_mapping_error(rx_ring->dev, dma)) {
6797		__free_page(page);
6798
6799		rx_ring->rx_stats.alloc_failed++;
6800		return false;
6801	}
6802
6803	bi->dma = dma;
6804	bi->page = page;
6805	bi->page_offset = 0;
6806
6807	return true;
6808}
6809
6810/**
6811 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6812 *  @adapter: address of board private structure
6813 **/
6814void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6815{
6816	union e1000_adv_rx_desc *rx_desc;
6817	struct igb_rx_buffer *bi;
6818	u16 i = rx_ring->next_to_use;
6819
6820	/* nothing to do */
6821	if (!cleaned_count)
6822		return;
6823
6824	rx_desc = IGB_RX_DESC(rx_ring, i);
6825	bi = &rx_ring->rx_buffer_info[i];
6826	i -= rx_ring->count;
6827
6828	do {
6829		if (!igb_alloc_mapped_page(rx_ring, bi))
6830			break;
6831
6832		/* Refresh the desc even if buffer_addrs didn't change
6833		 * because each write-back erases this info.
6834		 */
6835		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6836
6837		rx_desc++;
6838		bi++;
6839		i++;
6840		if (unlikely(!i)) {
6841			rx_desc = IGB_RX_DESC(rx_ring, 0);
6842			bi = rx_ring->rx_buffer_info;
6843			i -= rx_ring->count;
6844		}
6845
6846		/* clear the hdr_addr for the next_to_use descriptor */
6847		rx_desc->read.hdr_addr = 0;
6848
6849		cleaned_count--;
6850	} while (cleaned_count);
6851
6852	i += rx_ring->count;
6853
6854	if (rx_ring->next_to_use != i) {
6855		/* record the next descriptor to use */
6856		rx_ring->next_to_use = i;
6857
6858		/* update next to alloc since we have filled the ring */
6859		rx_ring->next_to_alloc = i;
6860
6861		/* Force memory writes to complete before letting h/w
6862		 * know there are new descriptors to fetch.  (Only
6863		 * applicable for weak-ordered memory model archs,
6864		 * such as IA-64).
6865		 */
6866		wmb();
6867		writel(i, rx_ring->tail);
6868	}
6869}
6870
6871/**
6872 * igb_mii_ioctl -
6873 * @netdev:
6874 * @ifreq:
6875 * @cmd:
6876 **/
6877static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6878{
6879	struct igb_adapter *adapter = netdev_priv(netdev);
6880	struct mii_ioctl_data *data = if_mii(ifr);
6881
6882	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6883		return -EOPNOTSUPP;
6884
6885	switch (cmd) {
6886	case SIOCGMIIPHY:
6887		data->phy_id = adapter->hw.phy.addr;
6888		break;
6889	case SIOCGMIIREG:
6890		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6891		                     &data->val_out))
6892			return -EIO;
6893		break;
6894	case SIOCSMIIREG:
6895	default:
6896		return -EOPNOTSUPP;
6897	}
6898	return 0;
6899}
6900
6901/**
6902 * igb_ioctl -
6903 * @netdev:
6904 * @ifreq:
6905 * @cmd:
6906 **/
6907static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6908{
6909	switch (cmd) {
6910	case SIOCGMIIPHY:
6911	case SIOCGMIIREG:
6912	case SIOCSMIIREG:
6913		return igb_mii_ioctl(netdev, ifr, cmd);
6914	case SIOCSHWTSTAMP:
6915		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6916	default:
6917		return -EOPNOTSUPP;
6918	}
6919}
6920
6921s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6922{
6923	struct igb_adapter *adapter = hw->back;
6924
6925	if (pcie_capability_read_word(adapter->pdev, reg, value))
6926		return -E1000_ERR_CONFIG;
6927
6928	return 0;
6929}
6930
6931s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6932{
6933	struct igb_adapter *adapter = hw->back;
6934
6935	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6936		return -E1000_ERR_CONFIG;
6937
6938	return 0;
6939}
6940
6941static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6942{
6943	struct igb_adapter *adapter = netdev_priv(netdev);
6944	struct e1000_hw *hw = &adapter->hw;
6945	u32 ctrl, rctl;
6946	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6947
6948	if (enable) {
6949		/* enable VLAN tag insert/strip */
6950		ctrl = rd32(E1000_CTRL);
6951		ctrl |= E1000_CTRL_VME;
6952		wr32(E1000_CTRL, ctrl);
6953
6954		/* Disable CFI check */
6955		rctl = rd32(E1000_RCTL);
6956		rctl &= ~E1000_RCTL_CFIEN;
6957		wr32(E1000_RCTL, rctl);
6958	} else {
6959		/* disable VLAN tag insert/strip */
6960		ctrl = rd32(E1000_CTRL);
6961		ctrl &= ~E1000_CTRL_VME;
6962		wr32(E1000_CTRL, ctrl);
6963	}
6964
6965	igb_rlpml_set(adapter);
6966}
6967
6968static int igb_vlan_rx_add_vid(struct net_device *netdev,
6969			       __be16 proto, u16 vid)
6970{
6971	struct igb_adapter *adapter = netdev_priv(netdev);
6972	struct e1000_hw *hw = &adapter->hw;
6973	int pf_id = adapter->vfs_allocated_count;
6974
6975	/* attempt to add filter to vlvf array */
6976	igb_vlvf_set(adapter, vid, true, pf_id);
6977
6978	/* add the filter since PF can receive vlans w/o entry in vlvf */
6979	igb_vfta_set(hw, vid, true);
6980
6981	set_bit(vid, adapter->active_vlans);
6982
6983	return 0;
6984}
6985
6986static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6987				__be16 proto, u16 vid)
6988{
6989	struct igb_adapter *adapter = netdev_priv(netdev);
6990	struct e1000_hw *hw = &adapter->hw;
6991	int pf_id = adapter->vfs_allocated_count;
6992	s32 err;
6993
6994	/* remove vlan from VLVF table array */
6995	err = igb_vlvf_set(adapter, vid, false, pf_id);
6996
6997	/* if vid was not present in VLVF just remove it from table */
6998	if (err)
6999		igb_vfta_set(hw, vid, false);
7000
7001	clear_bit(vid, adapter->active_vlans);
7002
7003	return 0;
7004}
7005
7006static void igb_restore_vlan(struct igb_adapter *adapter)
7007{
7008	u16 vid;
7009
7010	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7011
7012	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7013		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7014}
7015
7016int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7017{
7018	struct pci_dev *pdev = adapter->pdev;
7019	struct e1000_mac_info *mac = &adapter->hw.mac;
7020
7021	mac->autoneg = 0;
7022
7023	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7024	 * for the switch() below to work
7025	 */
7026	if ((spd & 1) || (dplx & ~1))
7027		goto err_inval;
7028
7029	/* Fiber NIC's only allow 1000 gbps Full duplex
7030	 * and 100Mbps Full duplex for 100baseFx sfp
7031	 */
7032	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7033		switch (spd + dplx) {
7034		case SPEED_10 + DUPLEX_HALF:
7035		case SPEED_10 + DUPLEX_FULL:
7036		case SPEED_100 + DUPLEX_HALF:
7037			goto err_inval;
7038		default:
7039			break;
7040		}
7041	}
7042
7043	switch (spd + dplx) {
7044	case SPEED_10 + DUPLEX_HALF:
7045		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7046		break;
7047	case SPEED_10 + DUPLEX_FULL:
7048		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7049		break;
7050	case SPEED_100 + DUPLEX_HALF:
7051		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7052		break;
7053	case SPEED_100 + DUPLEX_FULL:
7054		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7055		break;
7056	case SPEED_1000 + DUPLEX_FULL:
7057		mac->autoneg = 1;
7058		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7059		break;
7060	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7061	default:
7062		goto err_inval;
7063	}
7064
7065	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7066	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7067
7068	return 0;
7069
7070err_inval:
7071	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7072	return -EINVAL;
7073}
7074
7075static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7076			  bool runtime)
7077{
7078	struct net_device *netdev = pci_get_drvdata(pdev);
7079	struct igb_adapter *adapter = netdev_priv(netdev);
7080	struct e1000_hw *hw = &adapter->hw;
7081	u32 ctrl, rctl, status;
7082	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7083#ifdef CONFIG_PM
7084	int retval = 0;
7085#endif
7086
7087	netif_device_detach(netdev);
7088
7089	if (netif_running(netdev))
7090		__igb_close(netdev, true);
7091
7092	igb_clear_interrupt_scheme(adapter);
7093
7094#ifdef CONFIG_PM
7095	retval = pci_save_state(pdev);
7096	if (retval)
7097		return retval;
7098#endif
7099
7100	status = rd32(E1000_STATUS);
7101	if (status & E1000_STATUS_LU)
7102		wufc &= ~E1000_WUFC_LNKC;
7103
7104	if (wufc) {
7105		igb_setup_rctl(adapter);
7106		igb_set_rx_mode(netdev);
7107
7108		/* turn on all-multi mode if wake on multicast is enabled */
7109		if (wufc & E1000_WUFC_MC) {
7110			rctl = rd32(E1000_RCTL);
7111			rctl |= E1000_RCTL_MPE;
7112			wr32(E1000_RCTL, rctl);
7113		}
7114
7115		ctrl = rd32(E1000_CTRL);
7116		/* advertise wake from D3Cold */
7117		#define E1000_CTRL_ADVD3WUC 0x00100000
7118		/* phy power management enable */
7119		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7120		ctrl |= E1000_CTRL_ADVD3WUC;
7121		wr32(E1000_CTRL, ctrl);
7122
7123		/* Allow time for pending master requests to run */
7124		igb_disable_pcie_master(hw);
7125
7126		wr32(E1000_WUC, E1000_WUC_PME_EN);
7127		wr32(E1000_WUFC, wufc);
7128	} else {
7129		wr32(E1000_WUC, 0);
7130		wr32(E1000_WUFC, 0);
7131	}
7132
7133	*enable_wake = wufc || adapter->en_mng_pt;
7134	if (!*enable_wake)
7135		igb_power_down_link(adapter);
7136	else
7137		igb_power_up_link(adapter);
7138
7139	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7140	 * would have already happened in close and is redundant.
7141	 */
7142	igb_release_hw_control(adapter);
7143
7144	pci_disable_device(pdev);
7145
7146	return 0;
7147}
7148
7149#ifdef CONFIG_PM
7150#ifdef CONFIG_PM_SLEEP
7151static int igb_suspend(struct device *dev)
7152{
7153	int retval;
7154	bool wake;
7155	struct pci_dev *pdev = to_pci_dev(dev);
7156
7157	retval = __igb_shutdown(pdev, &wake, 0);
7158	if (retval)
7159		return retval;
7160
7161	if (wake) {
7162		pci_prepare_to_sleep(pdev);
7163	} else {
7164		pci_wake_from_d3(pdev, false);
7165		pci_set_power_state(pdev, PCI_D3hot);
7166	}
7167
7168	return 0;
7169}
7170#endif /* CONFIG_PM_SLEEP */
7171
7172static int igb_resume(struct device *dev)
7173{
7174	struct pci_dev *pdev = to_pci_dev(dev);
7175	struct net_device *netdev = pci_get_drvdata(pdev);
7176	struct igb_adapter *adapter = netdev_priv(netdev);
7177	struct e1000_hw *hw = &adapter->hw;
7178	u32 err;
7179
7180	pci_set_power_state(pdev, PCI_D0);
7181	pci_restore_state(pdev);
7182	pci_save_state(pdev);
7183
7184	err = pci_enable_device_mem(pdev);
7185	if (err) {
7186		dev_err(&pdev->dev,
7187			"igb: Cannot enable PCI device from suspend\n");
7188		return err;
7189	}
7190	pci_set_master(pdev);
7191
7192	pci_enable_wake(pdev, PCI_D3hot, 0);
7193	pci_enable_wake(pdev, PCI_D3cold, 0);
7194
7195	if (igb_init_interrupt_scheme(adapter, true)) {
7196		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7197		return -ENOMEM;
7198	}
7199
7200	igb_reset(adapter);
7201
7202	/* let the f/w know that the h/w is now under the control of the
7203	 * driver.
7204	 */
7205	igb_get_hw_control(adapter);
7206
7207	wr32(E1000_WUS, ~0);
7208
7209	if (netdev->flags & IFF_UP) {
7210		rtnl_lock();
7211		err = __igb_open(netdev, true);
7212		rtnl_unlock();
7213		if (err)
7214			return err;
7215	}
7216
7217	netif_device_attach(netdev);
7218	return 0;
7219}
7220
7221#ifdef CONFIG_PM_RUNTIME
7222static int igb_runtime_idle(struct device *dev)
7223{
7224	struct pci_dev *pdev = to_pci_dev(dev);
7225	struct net_device *netdev = pci_get_drvdata(pdev);
7226	struct igb_adapter *adapter = netdev_priv(netdev);
7227
7228	if (!igb_has_link(adapter))
7229		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7230
7231	return -EBUSY;
7232}
7233
7234static int igb_runtime_suspend(struct device *dev)
7235{
7236	struct pci_dev *pdev = to_pci_dev(dev);
7237	int retval;
7238	bool wake;
7239
7240	retval = __igb_shutdown(pdev, &wake, 1);
7241	if (retval)
7242		return retval;
7243
7244	if (wake) {
7245		pci_prepare_to_sleep(pdev);
7246	} else {
7247		pci_wake_from_d3(pdev, false);
7248		pci_set_power_state(pdev, PCI_D3hot);
7249	}
7250
7251	return 0;
7252}
7253
7254static int igb_runtime_resume(struct device *dev)
7255{
7256	return igb_resume(dev);
7257}
7258#endif /* CONFIG_PM_RUNTIME */
7259#endif
7260
7261static void igb_shutdown(struct pci_dev *pdev)
7262{
7263	bool wake;
7264
7265	__igb_shutdown(pdev, &wake, 0);
7266
7267	if (system_state == SYSTEM_POWER_OFF) {
7268		pci_wake_from_d3(pdev, wake);
7269		pci_set_power_state(pdev, PCI_D3hot);
7270	}
7271}
7272
7273#ifdef CONFIG_PCI_IOV
7274static int igb_sriov_reinit(struct pci_dev *dev)
7275{
7276	struct net_device *netdev = pci_get_drvdata(dev);
7277	struct igb_adapter *adapter = netdev_priv(netdev);
7278	struct pci_dev *pdev = adapter->pdev;
7279
7280	rtnl_lock();
7281
7282	if (netif_running(netdev))
7283		igb_close(netdev);
7284
7285	igb_clear_interrupt_scheme(adapter);
7286
7287	igb_init_queue_configuration(adapter);
7288
7289	if (igb_init_interrupt_scheme(adapter, true)) {
7290		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7291		return -ENOMEM;
7292	}
7293
7294	if (netif_running(netdev))
7295		igb_open(netdev);
7296
7297	rtnl_unlock();
7298
7299	return 0;
7300}
7301
7302static int igb_pci_disable_sriov(struct pci_dev *dev)
7303{
7304	int err = igb_disable_sriov(dev);
7305
7306	if (!err)
7307		err = igb_sriov_reinit(dev);
7308
7309	return err;
7310}
7311
7312static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7313{
7314	int err = igb_enable_sriov(dev, num_vfs);
7315
7316	if (err)
7317		goto out;
7318
7319	err = igb_sriov_reinit(dev);
7320	if (!err)
7321		return num_vfs;
7322
7323out:
7324	return err;
7325}
7326
7327#endif
7328static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7329{
7330#ifdef CONFIG_PCI_IOV
7331	if (num_vfs == 0)
7332		return igb_pci_disable_sriov(dev);
7333	else
7334		return igb_pci_enable_sriov(dev, num_vfs);
7335#endif
7336	return 0;
7337}
7338
7339#ifdef CONFIG_NET_POLL_CONTROLLER
7340/* Polling 'interrupt' - used by things like netconsole to send skbs
7341 * without having to re-enable interrupts. It's not called while
7342 * the interrupt routine is executing.
7343 */
7344static void igb_netpoll(struct net_device *netdev)
7345{
7346	struct igb_adapter *adapter = netdev_priv(netdev);
7347	struct e1000_hw *hw = &adapter->hw;
7348	struct igb_q_vector *q_vector;
7349	int i;
7350
7351	for (i = 0; i < adapter->num_q_vectors; i++) {
7352		q_vector = adapter->q_vector[i];
7353		if (adapter->msix_entries)
7354			wr32(E1000_EIMC, q_vector->eims_value);
7355		else
7356			igb_irq_disable(adapter);
7357		napi_schedule(&q_vector->napi);
7358	}
7359}
7360#endif /* CONFIG_NET_POLL_CONTROLLER */
7361
7362/**
7363 *  igb_io_error_detected - called when PCI error is detected
7364 *  @pdev: Pointer to PCI device
7365 *  @state: The current pci connection state
7366 *
7367 *  This function is called after a PCI bus error affecting
7368 *  this device has been detected.
7369 **/
7370static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7371					      pci_channel_state_t state)
7372{
7373	struct net_device *netdev = pci_get_drvdata(pdev);
7374	struct igb_adapter *adapter = netdev_priv(netdev);
7375
7376	netif_device_detach(netdev);
7377
7378	if (state == pci_channel_io_perm_failure)
7379		return PCI_ERS_RESULT_DISCONNECT;
7380
7381	if (netif_running(netdev))
7382		igb_down(adapter);
7383	pci_disable_device(pdev);
7384
7385	/* Request a slot slot reset. */
7386	return PCI_ERS_RESULT_NEED_RESET;
7387}
7388
7389/**
7390 *  igb_io_slot_reset - called after the pci bus has been reset.
7391 *  @pdev: Pointer to PCI device
7392 *
7393 *  Restart the card from scratch, as if from a cold-boot. Implementation
7394 *  resembles the first-half of the igb_resume routine.
7395 **/
7396static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7397{
7398	struct net_device *netdev = pci_get_drvdata(pdev);
7399	struct igb_adapter *adapter = netdev_priv(netdev);
7400	struct e1000_hw *hw = &adapter->hw;
7401	pci_ers_result_t result;
7402	int err;
7403
7404	if (pci_enable_device_mem(pdev)) {
7405		dev_err(&pdev->dev,
7406			"Cannot re-enable PCI device after reset.\n");
7407		result = PCI_ERS_RESULT_DISCONNECT;
7408	} else {
7409		pci_set_master(pdev);
7410		pci_restore_state(pdev);
7411		pci_save_state(pdev);
7412
7413		pci_enable_wake(pdev, PCI_D3hot, 0);
7414		pci_enable_wake(pdev, PCI_D3cold, 0);
7415
7416		igb_reset(adapter);
7417		wr32(E1000_WUS, ~0);
7418		result = PCI_ERS_RESULT_RECOVERED;
7419	}
7420
7421	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7422	if (err) {
7423		dev_err(&pdev->dev,
7424			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7425			err);
7426		/* non-fatal, continue */
7427	}
7428
7429	return result;
7430}
7431
7432/**
7433 *  igb_io_resume - called when traffic can start flowing again.
7434 *  @pdev: Pointer to PCI device
7435 *
7436 *  This callback is called when the error recovery driver tells us that
7437 *  its OK to resume normal operation. Implementation resembles the
7438 *  second-half of the igb_resume routine.
7439 */
7440static void igb_io_resume(struct pci_dev *pdev)
7441{
7442	struct net_device *netdev = pci_get_drvdata(pdev);
7443	struct igb_adapter *adapter = netdev_priv(netdev);
7444
7445	if (netif_running(netdev)) {
7446		if (igb_up(adapter)) {
7447			dev_err(&pdev->dev, "igb_up failed after reset\n");
7448			return;
7449		}
7450	}
7451
7452	netif_device_attach(netdev);
7453
7454	/* let the f/w know that the h/w is now under the control of the
7455	 * driver.
7456	 */
7457	igb_get_hw_control(adapter);
7458}
7459
7460static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7461			     u8 qsel)
7462{
7463	u32 rar_low, rar_high;
7464	struct e1000_hw *hw = &adapter->hw;
7465
7466	/* HW expects these in little endian so we reverse the byte order
7467	 * from network order (big endian) to little endian
7468	 */
7469	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7470		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7471	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7472
7473	/* Indicate to hardware the Address is Valid. */
7474	rar_high |= E1000_RAH_AV;
7475
7476	if (hw->mac.type == e1000_82575)
7477		rar_high |= E1000_RAH_POOL_1 * qsel;
7478	else
7479		rar_high |= E1000_RAH_POOL_1 << qsel;
7480
7481	wr32(E1000_RAL(index), rar_low);
7482	wrfl();
7483	wr32(E1000_RAH(index), rar_high);
7484	wrfl();
7485}
7486
7487static int igb_set_vf_mac(struct igb_adapter *adapter,
7488			  int vf, unsigned char *mac_addr)
7489{
7490	struct e1000_hw *hw = &adapter->hw;
7491	/* VF MAC addresses start at end of receive addresses and moves
7492	 * towards the first, as a result a collision should not be possible
7493	 */
7494	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7495
7496	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7497
7498	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7499
7500	return 0;
7501}
7502
7503static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7504{
7505	struct igb_adapter *adapter = netdev_priv(netdev);
7506	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7507		return -EINVAL;
7508	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7509	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7510	dev_info(&adapter->pdev->dev,
7511		 "Reload the VF driver to make this change effective.");
7512	if (test_bit(__IGB_DOWN, &adapter->state)) {
7513		dev_warn(&adapter->pdev->dev,
7514			 "The VF MAC address has been set, but the PF device is not up.\n");
7515		dev_warn(&adapter->pdev->dev,
7516			 "Bring the PF device up before attempting to use the VF device.\n");
7517	}
7518	return igb_set_vf_mac(adapter, vf, mac);
7519}
7520
7521static int igb_link_mbps(int internal_link_speed)
7522{
7523	switch (internal_link_speed) {
7524	case SPEED_100:
7525		return 100;
7526	case SPEED_1000:
7527		return 1000;
7528	default:
7529		return 0;
7530	}
7531}
7532
7533static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7534				  int link_speed)
7535{
7536	int rf_dec, rf_int;
7537	u32 bcnrc_val;
7538
7539	if (tx_rate != 0) {
7540		/* Calculate the rate factor values to set */
7541		rf_int = link_speed / tx_rate;
7542		rf_dec = (link_speed - (rf_int * tx_rate));
7543		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7544			 tx_rate;
7545
7546		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7547		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7548			      E1000_RTTBCNRC_RF_INT_MASK);
7549		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7550	} else {
7551		bcnrc_val = 0;
7552	}
7553
7554	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7555	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7556	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7557	 */
7558	wr32(E1000_RTTBCNRM, 0x14);
7559	wr32(E1000_RTTBCNRC, bcnrc_val);
7560}
7561
7562static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7563{
7564	int actual_link_speed, i;
7565	bool reset_rate = false;
7566
7567	/* VF TX rate limit was not set or not supported */
7568	if ((adapter->vf_rate_link_speed == 0) ||
7569	    (adapter->hw.mac.type != e1000_82576))
7570		return;
7571
7572	actual_link_speed = igb_link_mbps(adapter->link_speed);
7573	if (actual_link_speed != adapter->vf_rate_link_speed) {
7574		reset_rate = true;
7575		adapter->vf_rate_link_speed = 0;
7576		dev_info(&adapter->pdev->dev,
7577			 "Link speed has been changed. VF Transmit rate is disabled\n");
7578	}
7579
7580	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7581		if (reset_rate)
7582			adapter->vf_data[i].tx_rate = 0;
7583
7584		igb_set_vf_rate_limit(&adapter->hw, i,
7585				      adapter->vf_data[i].tx_rate,
7586				      actual_link_speed);
7587	}
7588}
7589
7590static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7591{
7592	struct igb_adapter *adapter = netdev_priv(netdev);
7593	struct e1000_hw *hw = &adapter->hw;
7594	int actual_link_speed;
7595
7596	if (hw->mac.type != e1000_82576)
7597		return -EOPNOTSUPP;
7598
7599	actual_link_speed = igb_link_mbps(adapter->link_speed);
7600	if ((vf >= adapter->vfs_allocated_count) ||
7601	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7602	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7603		return -EINVAL;
7604
7605	adapter->vf_rate_link_speed = actual_link_speed;
7606	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7607	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7608
7609	return 0;
7610}
7611
7612static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7613				   bool setting)
7614{
7615	struct igb_adapter *adapter = netdev_priv(netdev);
7616	struct e1000_hw *hw = &adapter->hw;
7617	u32 reg_val, reg_offset;
7618
7619	if (!adapter->vfs_allocated_count)
7620		return -EOPNOTSUPP;
7621
7622	if (vf >= adapter->vfs_allocated_count)
7623		return -EINVAL;
7624
7625	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7626	reg_val = rd32(reg_offset);
7627	if (setting)
7628		reg_val |= ((1 << vf) |
7629			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7630	else
7631		reg_val &= ~((1 << vf) |
7632			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7633	wr32(reg_offset, reg_val);
7634
7635	adapter->vf_data[vf].spoofchk_enabled = setting;
7636	return E1000_SUCCESS;
7637}
7638
7639static int igb_ndo_get_vf_config(struct net_device *netdev,
7640				 int vf, struct ifla_vf_info *ivi)
7641{
7642	struct igb_adapter *adapter = netdev_priv(netdev);
7643	if (vf >= adapter->vfs_allocated_count)
7644		return -EINVAL;
7645	ivi->vf = vf;
7646	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7647	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7648	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7649	ivi->qos = adapter->vf_data[vf].pf_qos;
7650	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7651	return 0;
7652}
7653
7654static void igb_vmm_control(struct igb_adapter *adapter)
7655{
7656	struct e1000_hw *hw = &adapter->hw;
7657	u32 reg;
7658
7659	switch (hw->mac.type) {
7660	case e1000_82575:
7661	case e1000_i210:
7662	case e1000_i211:
7663	case e1000_i354:
7664	default:
7665		/* replication is not supported for 82575 */
7666		return;
7667	case e1000_82576:
7668		/* notify HW that the MAC is adding vlan tags */
7669		reg = rd32(E1000_DTXCTL);
7670		reg |= E1000_DTXCTL_VLAN_ADDED;
7671		wr32(E1000_DTXCTL, reg);
7672	case e1000_82580:
7673		/* enable replication vlan tag stripping */
7674		reg = rd32(E1000_RPLOLR);
7675		reg |= E1000_RPLOLR_STRVLAN;
7676		wr32(E1000_RPLOLR, reg);
7677	case e1000_i350:
7678		/* none of the above registers are supported by i350 */
7679		break;
7680	}
7681
7682	if (adapter->vfs_allocated_count) {
7683		igb_vmdq_set_loopback_pf(hw, true);
7684		igb_vmdq_set_replication_pf(hw, true);
7685		igb_vmdq_set_anti_spoofing_pf(hw, true,
7686					      adapter->vfs_allocated_count);
7687	} else {
7688		igb_vmdq_set_loopback_pf(hw, false);
7689		igb_vmdq_set_replication_pf(hw, false);
7690	}
7691}
7692
7693static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7694{
7695	struct e1000_hw *hw = &adapter->hw;
7696	u32 dmac_thr;
7697	u16 hwm;
7698
7699	if (hw->mac.type > e1000_82580) {
7700		if (adapter->flags & IGB_FLAG_DMAC) {
7701			u32 reg;
7702
7703			/* force threshold to 0. */
7704			wr32(E1000_DMCTXTH, 0);
7705
7706			/* DMA Coalescing high water mark needs to be greater
7707			 * than the Rx threshold. Set hwm to PBA - max frame
7708			 * size in 16B units, capping it at PBA - 6KB.
7709			 */
7710			hwm = 64 * pba - adapter->max_frame_size / 16;
7711			if (hwm < 64 * (pba - 6))
7712				hwm = 64 * (pba - 6);
7713			reg = rd32(E1000_FCRTC);
7714			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7715			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7716				& E1000_FCRTC_RTH_COAL_MASK);
7717			wr32(E1000_FCRTC, reg);
7718
7719			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7720			 * frame size, capping it at PBA - 10KB.
7721			 */
7722			dmac_thr = pba - adapter->max_frame_size / 512;
7723			if (dmac_thr < pba - 10)
7724				dmac_thr = pba - 10;
7725			reg = rd32(E1000_DMACR);
7726			reg &= ~E1000_DMACR_DMACTHR_MASK;
7727			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7728				& E1000_DMACR_DMACTHR_MASK);
7729
7730			/* transition to L0x or L1 if available..*/
7731			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7732
7733			/* watchdog timer= +-1000 usec in 32usec intervals */
7734			reg |= (1000 >> 5);
7735
7736			/* Disable BMC-to-OS Watchdog Enable */
7737			if (hw->mac.type != e1000_i354)
7738				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7739
7740			wr32(E1000_DMACR, reg);
7741
7742			/* no lower threshold to disable
7743			 * coalescing(smart fifb)-UTRESH=0
7744			 */
7745			wr32(E1000_DMCRTRH, 0);
7746
7747			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7748
7749			wr32(E1000_DMCTLX, reg);
7750
7751			/* free space in tx packet buffer to wake from
7752			 * DMA coal
7753			 */
7754			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7755			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7756
7757			/* make low power state decision controlled
7758			 * by DMA coal
7759			 */
7760			reg = rd32(E1000_PCIEMISC);
7761			reg &= ~E1000_PCIEMISC_LX_DECISION;
7762			wr32(E1000_PCIEMISC, reg);
7763		} /* endif adapter->dmac is not disabled */
7764	} else if (hw->mac.type == e1000_82580) {
7765		u32 reg = rd32(E1000_PCIEMISC);
7766		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7767		wr32(E1000_DMACR, 0);
7768	}
7769}
7770
7771/**
7772 *  igb_read_i2c_byte - Reads 8 bit word over I2C
7773 *  @hw: pointer to hardware structure
7774 *  @byte_offset: byte offset to read
7775 *  @dev_addr: device address
7776 *  @data: value read
7777 *
7778 *  Performs byte read operation over I2C interface at
7779 *  a specified device address.
7780 **/
7781s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7782		      u8 dev_addr, u8 *data)
7783{
7784	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7785	struct i2c_client *this_client = adapter->i2c_client;
7786	s32 status;
7787	u16 swfw_mask = 0;
7788
7789	if (!this_client)
7790		return E1000_ERR_I2C;
7791
7792	swfw_mask = E1000_SWFW_PHY0_SM;
7793
7794	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7795	    != E1000_SUCCESS)
7796		return E1000_ERR_SWFW_SYNC;
7797
7798	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7799	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7800
7801	if (status < 0)
7802		return E1000_ERR_I2C;
7803	else {
7804		*data = status;
7805		return E1000_SUCCESS;
7806	}
7807}
7808
7809/**
7810 *  igb_write_i2c_byte - Writes 8 bit word over I2C
7811 *  @hw: pointer to hardware structure
7812 *  @byte_offset: byte offset to write
7813 *  @dev_addr: device address
7814 *  @data: value to write
7815 *
7816 *  Performs byte write operation over I2C interface at
7817 *  a specified device address.
7818 **/
7819s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7820		       u8 dev_addr, u8 data)
7821{
7822	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7823	struct i2c_client *this_client = adapter->i2c_client;
7824	s32 status;
7825	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7826
7827	if (!this_client)
7828		return E1000_ERR_I2C;
7829
7830	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7831		return E1000_ERR_SWFW_SYNC;
7832	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7833	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7834
7835	if (status)
7836		return E1000_ERR_I2C;
7837	else
7838		return E1000_SUCCESS;
7839
7840}
7841
7842int igb_reinit_queues(struct igb_adapter *adapter)
7843{
7844	struct net_device *netdev = adapter->netdev;
7845	struct pci_dev *pdev = adapter->pdev;
7846	int err = 0;
7847
7848	if (netif_running(netdev))
7849		igb_close(netdev);
7850
7851	igb_clear_interrupt_scheme(adapter);
7852
7853	if (igb_init_interrupt_scheme(adapter, true)) {
7854		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7855		return -ENOMEM;
7856	}
7857
7858	if (netif_running(netdev))
7859		err = igb_open(netdev);
7860
7861	return err;
7862}
7863/* igb_main.c */
7864