igb_main.c revision e4f7dbb17e797d922d72567f37de3735722034ba
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 4
64#define MIN 1
65#define BUILD 2
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110	/* required last entry */
111	{0, }
112};
113
114MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115
116void igb_reset(struct igb_adapter *);
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140						 struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159static int igb_vlan_rx_add_vid(struct net_device *, u16);
160static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161static void igb_restore_vlan(struct igb_adapter *);
162static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163static void igb_ping_all_vfs(struct igb_adapter *);
164static void igb_msg_task(struct igb_adapter *);
165static void igb_vmm_control(struct igb_adapter *);
166static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170			       int vf, u16 vlan, u8 qos);
171static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173				 struct ifla_vf_info *ivi);
174static void igb_check_vf_rate_limit(struct igb_adapter *);
175
176#ifdef CONFIG_PCI_IOV
177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
179#endif
180
181#ifdef CONFIG_PM
182#ifdef CONFIG_PM_SLEEP
183static int igb_suspend(struct device *);
184#endif
185static int igb_resume(struct device *);
186#ifdef CONFIG_PM_RUNTIME
187static int igb_runtime_suspend(struct device *dev);
188static int igb_runtime_resume(struct device *dev);
189static int igb_runtime_idle(struct device *dev);
190#endif
191static const struct dev_pm_ops igb_pm_ops = {
192	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194			igb_runtime_idle)
195};
196#endif
197static void igb_shutdown(struct pci_dev *);
198static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199#ifdef CONFIG_IGB_DCA
200static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201static struct notifier_block dca_notifier = {
202	.notifier_call	= igb_notify_dca,
203	.next		= NULL,
204	.priority	= 0
205};
206#endif
207#ifdef CONFIG_NET_POLL_CONTROLLER
208/* for netdump / net console */
209static void igb_netpoll(struct net_device *);
210#endif
211#ifdef CONFIG_PCI_IOV
212static unsigned int max_vfs = 0;
213module_param(max_vfs, uint, 0);
214MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215                 "per physical function");
216#endif /* CONFIG_PCI_IOV */
217
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219		     pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
223static const struct pci_error_handlers igb_err_handler = {
224	.error_detected = igb_io_error_detected,
225	.slot_reset = igb_io_slot_reset,
226	.resume = igb_io_resume,
227};
228
229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231static struct pci_driver igb_driver = {
232	.name     = igb_driver_name,
233	.id_table = igb_pci_tbl,
234	.probe    = igb_probe,
235	.remove   = igb_remove,
236#ifdef CONFIG_PM
237	.driver.pm = &igb_pm_ops,
238#endif
239	.shutdown = igb_shutdown,
240	.sriov_configure = igb_pci_sriov_configure,
241	.err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254struct igb_reg_info {
255	u32 ofs;
256	char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261	/* General Registers */
262	{E1000_CTRL, "CTRL"},
263	{E1000_STATUS, "STATUS"},
264	{E1000_CTRL_EXT, "CTRL_EXT"},
265
266	/* Interrupt Registers */
267	{E1000_ICR, "ICR"},
268
269	/* RX Registers */
270	{E1000_RCTL, "RCTL"},
271	{E1000_RDLEN(0), "RDLEN"},
272	{E1000_RDH(0), "RDH"},
273	{E1000_RDT(0), "RDT"},
274	{E1000_RXDCTL(0), "RXDCTL"},
275	{E1000_RDBAL(0), "RDBAL"},
276	{E1000_RDBAH(0), "RDBAH"},
277
278	/* TX Registers */
279	{E1000_TCTL, "TCTL"},
280	{E1000_TDBAL(0), "TDBAL"},
281	{E1000_TDBAH(0), "TDBAH"},
282	{E1000_TDLEN(0), "TDLEN"},
283	{E1000_TDH(0), "TDH"},
284	{E1000_TDT(0), "TDT"},
285	{E1000_TXDCTL(0), "TXDCTL"},
286	{E1000_TDFH, "TDFH"},
287	{E1000_TDFT, "TDFT"},
288	{E1000_TDFHS, "TDFHS"},
289	{E1000_TDFPC, "TDFPC"},
290
291	/* List Terminator */
292	{}
293};
294
295/*
296 * igb_regdump - register printout routine
297 */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300	int n = 0;
301	char rname[16];
302	u32 regs[8];
303
304	switch (reginfo->ofs) {
305	case E1000_RDLEN(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RDLEN(n));
308		break;
309	case E1000_RDH(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDH(n));
312		break;
313	case E1000_RDT(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDT(n));
316		break;
317	case E1000_RXDCTL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RXDCTL(n));
320		break;
321	case E1000_RDBAL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RDBAL(n));
324		break;
325	case E1000_RDBAH(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAH(n));
328		break;
329	case E1000_TDBAL(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAL(n));
332		break;
333	case E1000_TDBAH(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDBAH(n));
336		break;
337	case E1000_TDLEN(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDLEN(n));
340		break;
341	case E1000_TDH(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDH(n));
344		break;
345	case E1000_TDT(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDT(n));
348		break;
349	case E1000_TXDCTL(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TXDCTL(n));
352		break;
353	default:
354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355		return;
356	}
357
358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360		regs[2], regs[3]);
361}
362
363/*
364 * igb_dump - Print registers, tx-rings and rx-rings
365 */
366static void igb_dump(struct igb_adapter *adapter)
367{
368	struct net_device *netdev = adapter->netdev;
369	struct e1000_hw *hw = &adapter->hw;
370	struct igb_reg_info *reginfo;
371	struct igb_ring *tx_ring;
372	union e1000_adv_tx_desc *tx_desc;
373	struct my_u0 { u64 a; u64 b; } *u0;
374	struct igb_ring *rx_ring;
375	union e1000_adv_rx_desc *rx_desc;
376	u32 staterr;
377	u16 i, n;
378
379	if (!netif_msg_hw(adapter))
380		return;
381
382	/* Print netdevice Info */
383	if (netdev) {
384		dev_info(&adapter->pdev->dev, "Net device Info\n");
385		pr_info("Device Name     state            trans_start      "
386			"last_rx\n");
387		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388			netdev->state, netdev->trans_start, netdev->last_rx);
389	}
390
391	/* Print Registers */
392	dev_info(&adapter->pdev->dev, "Register Dump\n");
393	pr_info(" Register Name   Value\n");
394	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395	     reginfo->name; reginfo++) {
396		igb_regdump(hw, reginfo);
397	}
398
399	/* Print TX Ring Summary */
400	if (!netdev || !netif_running(netdev))
401		goto exit;
402
403	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405	for (n = 0; n < adapter->num_tx_queues; n++) {
406		struct igb_tx_buffer *buffer_info;
407		tx_ring = adapter->tx_ring[n];
408		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411			(u64)dma_unmap_addr(buffer_info, dma),
412			dma_unmap_len(buffer_info, len),
413			buffer_info->next_to_watch,
414			(u64)buffer_info->time_stamp);
415	}
416
417	/* Print TX Rings */
418	if (!netif_msg_tx_done(adapter))
419		goto rx_ring_summary;
420
421	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423	/* Transmit Descriptor Formats
424	 *
425	 * Advanced Transmit Descriptor
426	 *   +--------------------------------------------------------------+
427	 * 0 |         Buffer Address [63:0]                                |
428	 *   +--------------------------------------------------------------+
429	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430	 *   +--------------------------------------------------------------+
431	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432	 */
433
434	for (n = 0; n < adapter->num_tx_queues; n++) {
435		tx_ring = adapter->tx_ring[n];
436		pr_info("------------------------------------\n");
437		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438		pr_info("------------------------------------\n");
439		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440			"[bi->dma       ] leng  ntw timestamp        "
441			"bi->skb\n");
442
443		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444			const char *next_desc;
445			struct igb_tx_buffer *buffer_info;
446			tx_desc = IGB_TX_DESC(tx_ring, i);
447			buffer_info = &tx_ring->tx_buffer_info[i];
448			u0 = (struct my_u0 *)tx_desc;
449			if (i == tx_ring->next_to_use &&
450			    i == tx_ring->next_to_clean)
451				next_desc = " NTC/U";
452			else if (i == tx_ring->next_to_use)
453				next_desc = " NTU";
454			else if (i == tx_ring->next_to_clean)
455				next_desc = " NTC";
456			else
457				next_desc = "";
458
459			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460				" %04X  %p %016llX %p%s\n", i,
461				le64_to_cpu(u0->a),
462				le64_to_cpu(u0->b),
463				(u64)dma_unmap_addr(buffer_info, dma),
464				dma_unmap_len(buffer_info, len),
465				buffer_info->next_to_watch,
466				(u64)buffer_info->time_stamp,
467				buffer_info->skb, next_desc);
468
469			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470				print_hex_dump(KERN_INFO, "",
471					DUMP_PREFIX_ADDRESS,
472					16, 1, buffer_info->skb->data,
473					dma_unmap_len(buffer_info, len),
474					true);
475		}
476	}
477
478	/* Print RX Rings Summary */
479rx_ring_summary:
480	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481	pr_info("Queue [NTU] [NTC]\n");
482	for (n = 0; n < adapter->num_rx_queues; n++) {
483		rx_ring = adapter->rx_ring[n];
484		pr_info(" %5d %5X %5X\n",
485			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486	}
487
488	/* Print RX Rings */
489	if (!netif_msg_rx_status(adapter))
490		goto exit;
491
492	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494	/* Advanced Receive Descriptor (Read) Format
495	 *    63                                           1        0
496	 *    +-----------------------------------------------------+
497	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498	 *    +----------------------------------------------+------+
499	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500	 *    +-----------------------------------------------------+
501	 *
502	 *
503	 * Advanced Receive Descriptor (Write-Back) Format
504	 *
505	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506	 *   +------------------------------------------------------+
507	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508	 *   | Checksum   Ident  |   |           |    | Type | Type |
509	 *   +------------------------------------------------------+
510	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511	 *   +------------------------------------------------------+
512	 *   63       48 47    32 31            20 19               0
513	 */
514
515	for (n = 0; n < adapter->num_rx_queues; n++) {
516		rx_ring = adapter->rx_ring[n];
517		pr_info("------------------------------------\n");
518		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519		pr_info("------------------------------------\n");
520		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525		for (i = 0; i < rx_ring->count; i++) {
526			const char *next_desc;
527			struct igb_rx_buffer *buffer_info;
528			buffer_info = &rx_ring->rx_buffer_info[i];
529			rx_desc = IGB_RX_DESC(rx_ring, i);
530			u0 = (struct my_u0 *)rx_desc;
531			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533			if (i == rx_ring->next_to_use)
534				next_desc = " NTU";
535			else if (i == rx_ring->next_to_clean)
536				next_desc = " NTC";
537			else
538				next_desc = "";
539
540			if (staterr & E1000_RXD_STAT_DD) {
541				/* Descriptor Done */
542				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543					"RWB", i,
544					le64_to_cpu(u0->a),
545					le64_to_cpu(u0->b),
546					next_desc);
547			} else {
548				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549					"R  ", i,
550					le64_to_cpu(u0->a),
551					le64_to_cpu(u0->b),
552					(u64)buffer_info->dma,
553					next_desc);
554
555				if (netif_msg_pktdata(adapter) &&
556				    buffer_info->dma && buffer_info->page) {
557					print_hex_dump(KERN_INFO, "",
558					  DUMP_PREFIX_ADDRESS,
559					  16, 1,
560					  page_address(buffer_info->page) +
561						      buffer_info->page_offset,
562					  IGB_RX_BUFSZ, true);
563				}
564			}
565		}
566	}
567
568exit:
569	return;
570}
571
572/*  igb_get_i2c_data - Reads the I2C SDA data bit
573 *  @hw: pointer to hardware structure
574 *  @i2cctl: Current value of I2CCTL register
575 *
576 *  Returns the I2C data bit value
577 */
578static int igb_get_i2c_data(void *data)
579{
580	struct igb_adapter *adapter = (struct igb_adapter *)data;
581	struct e1000_hw *hw = &adapter->hw;
582	s32 i2cctl = rd32(E1000_I2CPARAMS);
583
584	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585}
586
587/* igb_set_i2c_data - Sets the I2C data bit
588 *  @data: pointer to hardware structure
589 *  @state: I2C data value (0 or 1) to set
590 *
591 *  Sets the I2C data bit
592 */
593static void igb_set_i2c_data(void *data, int state)
594{
595	struct igb_adapter *adapter = (struct igb_adapter *)data;
596	struct e1000_hw *hw = &adapter->hw;
597	s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599	if (state)
600		i2cctl |= E1000_I2C_DATA_OUT;
601	else
602		i2cctl &= ~E1000_I2C_DATA_OUT;
603
604	i2cctl &= ~E1000_I2C_DATA_OE_N;
605	i2cctl |= E1000_I2C_CLK_OE_N;
606	wr32(E1000_I2CPARAMS, i2cctl);
607	wrfl();
608
609}
610
611/* igb_set_i2c_clk - Sets the I2C SCL clock
612 *  @data: pointer to hardware structure
613 *  @state: state to set clock
614 *
615 *  Sets the I2C clock line to state
616 */
617static void igb_set_i2c_clk(void *data, int state)
618{
619	struct igb_adapter *adapter = (struct igb_adapter *)data;
620	struct e1000_hw *hw = &adapter->hw;
621	s32 i2cctl = rd32(E1000_I2CPARAMS);
622
623	if (state) {
624		i2cctl |= E1000_I2C_CLK_OUT;
625		i2cctl &= ~E1000_I2C_CLK_OE_N;
626	} else {
627		i2cctl &= ~E1000_I2C_CLK_OUT;
628		i2cctl &= ~E1000_I2C_CLK_OE_N;
629	}
630	wr32(E1000_I2CPARAMS, i2cctl);
631	wrfl();
632}
633
634/* igb_get_i2c_clk - Gets the I2C SCL clock state
635 *  @data: pointer to hardware structure
636 *
637 *  Gets the I2C clock state
638 */
639static int igb_get_i2c_clk(void *data)
640{
641	struct igb_adapter *adapter = (struct igb_adapter *)data;
642	struct e1000_hw *hw = &adapter->hw;
643	s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646}
647
648static const struct i2c_algo_bit_data igb_i2c_algo = {
649	.setsda		= igb_set_i2c_data,
650	.setscl		= igb_set_i2c_clk,
651	.getsda		= igb_get_i2c_data,
652	.getscl		= igb_get_i2c_clk,
653	.udelay		= 5,
654	.timeout	= 20,
655};
656
657/**
658 * igb_get_hw_dev - return device
659 * used by hardware layer to print debugging information
660 **/
661struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662{
663	struct igb_adapter *adapter = hw->back;
664	return adapter->netdev;
665}
666
667/**
668 * igb_init_module - Driver Registration Routine
669 *
670 * igb_init_module is the first routine called when the driver is
671 * loaded. All it does is register with the PCI subsystem.
672 **/
673static int __init igb_init_module(void)
674{
675	int ret;
676	pr_info("%s - version %s\n",
677	       igb_driver_string, igb_driver_version);
678
679	pr_info("%s\n", igb_copyright);
680
681#ifdef CONFIG_IGB_DCA
682	dca_register_notify(&dca_notifier);
683#endif
684	ret = pci_register_driver(&igb_driver);
685	return ret;
686}
687
688module_init(igb_init_module);
689
690/**
691 * igb_exit_module - Driver Exit Cleanup Routine
692 *
693 * igb_exit_module is called just before the driver is removed
694 * from memory.
695 **/
696static void __exit igb_exit_module(void)
697{
698#ifdef CONFIG_IGB_DCA
699	dca_unregister_notify(&dca_notifier);
700#endif
701	pci_unregister_driver(&igb_driver);
702}
703
704module_exit(igb_exit_module);
705
706#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707/**
708 * igb_cache_ring_register - Descriptor ring to register mapping
709 * @adapter: board private structure to initialize
710 *
711 * Once we know the feature-set enabled for the device, we'll cache
712 * the register offset the descriptor ring is assigned to.
713 **/
714static void igb_cache_ring_register(struct igb_adapter *adapter)
715{
716	int i = 0, j = 0;
717	u32 rbase_offset = adapter->vfs_allocated_count;
718
719	switch (adapter->hw.mac.type) {
720	case e1000_82576:
721		/* The queues are allocated for virtualization such that VF 0
722		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723		 * In order to avoid collision we start at the first free queue
724		 * and continue consuming queues in the same sequence
725		 */
726		if (adapter->vfs_allocated_count) {
727			for (; i < adapter->rss_queues; i++)
728				adapter->rx_ring[i]->reg_idx = rbase_offset +
729				                               Q_IDX_82576(i);
730		}
731	case e1000_82575:
732	case e1000_82580:
733	case e1000_i350:
734	case e1000_i210:
735	case e1000_i211:
736	default:
737		for (; i < adapter->num_rx_queues; i++)
738			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739		for (; j < adapter->num_tx_queues; j++)
740			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741		break;
742	}
743}
744
745/**
746 *  igb_write_ivar - configure ivar for given MSI-X vector
747 *  @hw: pointer to the HW structure
748 *  @msix_vector: vector number we are allocating to a given ring
749 *  @index: row index of IVAR register to write within IVAR table
750 *  @offset: column offset of in IVAR, should be multiple of 8
751 *
752 *  This function is intended to handle the writing of the IVAR register
753 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
754 *  each containing an cause allocation for an Rx and Tx ring, and a
755 *  variable number of rows depending on the number of queues supported.
756 **/
757static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758			   int index, int offset)
759{
760	u32 ivar = array_rd32(E1000_IVAR0, index);
761
762	/* clear any bits that are currently set */
763	ivar &= ~((u32)0xFF << offset);
764
765	/* write vector and valid bit */
766	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767
768	array_wr32(E1000_IVAR0, index, ivar);
769}
770
771#define IGB_N0_QUEUE -1
772static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773{
774	struct igb_adapter *adapter = q_vector->adapter;
775	struct e1000_hw *hw = &adapter->hw;
776	int rx_queue = IGB_N0_QUEUE;
777	int tx_queue = IGB_N0_QUEUE;
778	u32 msixbm = 0;
779
780	if (q_vector->rx.ring)
781		rx_queue = q_vector->rx.ring->reg_idx;
782	if (q_vector->tx.ring)
783		tx_queue = q_vector->tx.ring->reg_idx;
784
785	switch (hw->mac.type) {
786	case e1000_82575:
787		/* The 82575 assigns vectors using a bitmask, which matches the
788		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
789		   or more queues to a vector, we write the appropriate bits
790		   into the MSIXBM register for that vector. */
791		if (rx_queue > IGB_N0_QUEUE)
792			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793		if (tx_queue > IGB_N0_QUEUE)
794			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795		if (!adapter->msix_entries && msix_vector == 0)
796			msixbm |= E1000_EIMS_OTHER;
797		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798		q_vector->eims_value = msixbm;
799		break;
800	case e1000_82576:
801		/*
802		 * 82576 uses a table that essentially consists of 2 columns
803		 * with 8 rows.  The ordering is column-major so we use the
804		 * lower 3 bits as the row index, and the 4th bit as the
805		 * column offset.
806		 */
807		if (rx_queue > IGB_N0_QUEUE)
808			igb_write_ivar(hw, msix_vector,
809				       rx_queue & 0x7,
810				       (rx_queue & 0x8) << 1);
811		if (tx_queue > IGB_N0_QUEUE)
812			igb_write_ivar(hw, msix_vector,
813				       tx_queue & 0x7,
814				       ((tx_queue & 0x8) << 1) + 8);
815		q_vector->eims_value = 1 << msix_vector;
816		break;
817	case e1000_82580:
818	case e1000_i350:
819	case e1000_i210:
820	case e1000_i211:
821		/*
822		 * On 82580 and newer adapters the scheme is similar to 82576
823		 * however instead of ordering column-major we have things
824		 * ordered row-major.  So we traverse the table by using
825		 * bit 0 as the column offset, and the remaining bits as the
826		 * row index.
827		 */
828		if (rx_queue > IGB_N0_QUEUE)
829			igb_write_ivar(hw, msix_vector,
830				       rx_queue >> 1,
831				       (rx_queue & 0x1) << 4);
832		if (tx_queue > IGB_N0_QUEUE)
833			igb_write_ivar(hw, msix_vector,
834				       tx_queue >> 1,
835				       ((tx_queue & 0x1) << 4) + 8);
836		q_vector->eims_value = 1 << msix_vector;
837		break;
838	default:
839		BUG();
840		break;
841	}
842
843	/* add q_vector eims value to global eims_enable_mask */
844	adapter->eims_enable_mask |= q_vector->eims_value;
845
846	/* configure q_vector to set itr on first interrupt */
847	q_vector->set_itr = 1;
848}
849
850/**
851 * igb_configure_msix - Configure MSI-X hardware
852 *
853 * igb_configure_msix sets up the hardware to properly
854 * generate MSI-X interrupts.
855 **/
856static void igb_configure_msix(struct igb_adapter *adapter)
857{
858	u32 tmp;
859	int i, vector = 0;
860	struct e1000_hw *hw = &adapter->hw;
861
862	adapter->eims_enable_mask = 0;
863
864	/* set vector for other causes, i.e. link changes */
865	switch (hw->mac.type) {
866	case e1000_82575:
867		tmp = rd32(E1000_CTRL_EXT);
868		/* enable MSI-X PBA support*/
869		tmp |= E1000_CTRL_EXT_PBA_CLR;
870
871		/* Auto-Mask interrupts upon ICR read. */
872		tmp |= E1000_CTRL_EXT_EIAME;
873		tmp |= E1000_CTRL_EXT_IRCA;
874
875		wr32(E1000_CTRL_EXT, tmp);
876
877		/* enable msix_other interrupt */
878		array_wr32(E1000_MSIXBM(0), vector++,
879		                      E1000_EIMS_OTHER);
880		adapter->eims_other = E1000_EIMS_OTHER;
881
882		break;
883
884	case e1000_82576:
885	case e1000_82580:
886	case e1000_i350:
887	case e1000_i210:
888	case e1000_i211:
889		/* Turn on MSI-X capability first, or our settings
890		 * won't stick.  And it will take days to debug. */
891		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
893		                E1000_GPIE_NSICR);
894
895		/* enable msix_other interrupt */
896		adapter->eims_other = 1 << vector;
897		tmp = (vector++ | E1000_IVAR_VALID) << 8;
898
899		wr32(E1000_IVAR_MISC, tmp);
900		break;
901	default:
902		/* do nothing, since nothing else supports MSI-X */
903		break;
904	} /* switch (hw->mac.type) */
905
906	adapter->eims_enable_mask |= adapter->eims_other;
907
908	for (i = 0; i < adapter->num_q_vectors; i++)
909		igb_assign_vector(adapter->q_vector[i], vector++);
910
911	wrfl();
912}
913
914/**
915 * igb_request_msix - Initialize MSI-X interrupts
916 *
917 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918 * kernel.
919 **/
920static int igb_request_msix(struct igb_adapter *adapter)
921{
922	struct net_device *netdev = adapter->netdev;
923	struct e1000_hw *hw = &adapter->hw;
924	int i, err = 0, vector = 0, free_vector = 0;
925
926	err = request_irq(adapter->msix_entries[vector].vector,
927	                  igb_msix_other, 0, netdev->name, adapter);
928	if (err)
929		goto err_out;
930
931	for (i = 0; i < adapter->num_q_vectors; i++) {
932		struct igb_q_vector *q_vector = adapter->q_vector[i];
933
934		vector++;
935
936		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937
938		if (q_vector->rx.ring && q_vector->tx.ring)
939			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940				q_vector->rx.ring->queue_index);
941		else if (q_vector->tx.ring)
942			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943				q_vector->tx.ring->queue_index);
944		else if (q_vector->rx.ring)
945			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946				q_vector->rx.ring->queue_index);
947		else
948			sprintf(q_vector->name, "%s-unused", netdev->name);
949
950		err = request_irq(adapter->msix_entries[vector].vector,
951		                  igb_msix_ring, 0, q_vector->name,
952		                  q_vector);
953		if (err)
954			goto err_free;
955	}
956
957	igb_configure_msix(adapter);
958	return 0;
959
960err_free:
961	/* free already assigned IRQs */
962	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963
964	vector--;
965	for (i = 0; i < vector; i++) {
966		free_irq(adapter->msix_entries[free_vector++].vector,
967			 adapter->q_vector[i]);
968	}
969err_out:
970	return err;
971}
972
973static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974{
975	if (adapter->msix_entries) {
976		pci_disable_msix(adapter->pdev);
977		kfree(adapter->msix_entries);
978		adapter->msix_entries = NULL;
979	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980		pci_disable_msi(adapter->pdev);
981	}
982}
983
984/**
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
988 *
989 * This function frees the memory allocated to the q_vector.  In addition if
990 * NAPI is enabled it will delete any references to the NAPI struct prior
991 * to freeing the q_vector.
992 **/
993static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994{
995	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997	if (q_vector->tx.ring)
998		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999
1000	if (q_vector->rx.ring)
1001		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002
1003	adapter->q_vector[v_idx] = NULL;
1004	netif_napi_del(&q_vector->napi);
1005
1006	/*
1007	 * ixgbe_get_stats64() might access the rings on this vector,
1008	 * we must wait a grace period before freeing it.
1009	 */
1010	kfree_rcu(q_vector, rcu);
1011}
1012
1013/**
1014 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015 * @adapter: board private structure to initialize
1016 *
1017 * This function frees the memory allocated to the q_vectors.  In addition if
1018 * NAPI is enabled it will delete any references to the NAPI struct prior
1019 * to freeing the q_vector.
1020 **/
1021static void igb_free_q_vectors(struct igb_adapter *adapter)
1022{
1023	int v_idx = adapter->num_q_vectors;
1024
1025	adapter->num_tx_queues = 0;
1026	adapter->num_rx_queues = 0;
1027	adapter->num_q_vectors = 0;
1028
1029	while (v_idx--)
1030		igb_free_q_vector(adapter, v_idx);
1031}
1032
1033/**
1034 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035 *
1036 * This function resets the device so that it has 0 rx queues, tx queues, and
1037 * MSI-X interrupts allocated.
1038 */
1039static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040{
1041	igb_free_q_vectors(adapter);
1042	igb_reset_interrupt_capability(adapter);
1043}
1044
1045/**
1046 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047 *
1048 * Attempt to configure interrupts using the best available
1049 * capabilities of the hardware and kernel.
1050 **/
1051static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052{
1053	int err;
1054	int numvecs, i;
1055
1056	if (!msix)
1057		goto msi_only;
1058
1059	/* Number of supported queues. */
1060	adapter->num_rx_queues = adapter->rss_queues;
1061	if (adapter->vfs_allocated_count)
1062		adapter->num_tx_queues = 1;
1063	else
1064		adapter->num_tx_queues = adapter->rss_queues;
1065
1066	/* start with one vector for every rx queue */
1067	numvecs = adapter->num_rx_queues;
1068
1069	/* if tx handler is separate add 1 for every tx queue */
1070	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071		numvecs += adapter->num_tx_queues;
1072
1073	/* store the number of vectors reserved for queues */
1074	adapter->num_q_vectors = numvecs;
1075
1076	/* add 1 vector for link status interrupts */
1077	numvecs++;
1078	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079					GFP_KERNEL);
1080
1081	if (!adapter->msix_entries)
1082		goto msi_only;
1083
1084	for (i = 0; i < numvecs; i++)
1085		adapter->msix_entries[i].entry = i;
1086
1087	err = pci_enable_msix(adapter->pdev,
1088			      adapter->msix_entries,
1089			      numvecs);
1090	if (err == 0)
1091		return;
1092
1093	igb_reset_interrupt_capability(adapter);
1094
1095	/* If we can't do MSI-X, try MSI */
1096msi_only:
1097#ifdef CONFIG_PCI_IOV
1098	/* disable SR-IOV for non MSI-X configurations */
1099	if (adapter->vf_data) {
1100		struct e1000_hw *hw = &adapter->hw;
1101		/* disable iov and allow time for transactions to clear */
1102		pci_disable_sriov(adapter->pdev);
1103		msleep(500);
1104
1105		kfree(adapter->vf_data);
1106		adapter->vf_data = NULL;
1107		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108		wrfl();
1109		msleep(100);
1110		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111	}
1112#endif
1113	adapter->vfs_allocated_count = 0;
1114	adapter->rss_queues = 1;
1115	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116	adapter->num_rx_queues = 1;
1117	adapter->num_tx_queues = 1;
1118	adapter->num_q_vectors = 1;
1119	if (!pci_enable_msi(adapter->pdev))
1120		adapter->flags |= IGB_FLAG_HAS_MSI;
1121}
1122
1123static void igb_add_ring(struct igb_ring *ring,
1124			 struct igb_ring_container *head)
1125{
1126	head->ring = ring;
1127	head->count++;
1128}
1129
1130/**
1131 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132 * @adapter: board private structure to initialize
1133 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134 * @v_idx: index of vector in adapter struct
1135 * @txr_count: total number of Tx rings to allocate
1136 * @txr_idx: index of first Tx ring to allocate
1137 * @rxr_count: total number of Rx rings to allocate
1138 * @rxr_idx: index of first Rx ring to allocate
1139 *
1140 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141 **/
1142static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143			      int v_count, int v_idx,
1144			      int txr_count, int txr_idx,
1145			      int rxr_count, int rxr_idx)
1146{
1147	struct igb_q_vector *q_vector;
1148	struct igb_ring *ring;
1149	int ring_count, size;
1150
1151	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152	if (txr_count > 1 || rxr_count > 1)
1153		return -ENOMEM;
1154
1155	ring_count = txr_count + rxr_count;
1156	size = sizeof(struct igb_q_vector) +
1157	       (sizeof(struct igb_ring) * ring_count);
1158
1159	/* allocate q_vector and rings */
1160	q_vector = kzalloc(size, GFP_KERNEL);
1161	if (!q_vector)
1162		return -ENOMEM;
1163
1164	/* initialize NAPI */
1165	netif_napi_add(adapter->netdev, &q_vector->napi,
1166		       igb_poll, 64);
1167
1168	/* tie q_vector and adapter together */
1169	adapter->q_vector[v_idx] = q_vector;
1170	q_vector->adapter = adapter;
1171
1172	/* initialize work limits */
1173	q_vector->tx.work_limit = adapter->tx_work_limit;
1174
1175	/* initialize ITR configuration */
1176	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177	q_vector->itr_val = IGB_START_ITR;
1178
1179	/* initialize pointer to rings */
1180	ring = q_vector->ring;
1181
1182	if (txr_count) {
1183		/* assign generic ring traits */
1184		ring->dev = &adapter->pdev->dev;
1185		ring->netdev = adapter->netdev;
1186
1187		/* configure backlink on ring */
1188		ring->q_vector = q_vector;
1189
1190		/* update q_vector Tx values */
1191		igb_add_ring(ring, &q_vector->tx);
1192
1193		/* For 82575, context index must be unique per ring. */
1194		if (adapter->hw.mac.type == e1000_82575)
1195			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196
1197		/* apply Tx specific ring traits */
1198		ring->count = adapter->tx_ring_count;
1199		ring->queue_index = txr_idx;
1200
1201		/* assign ring to adapter */
1202		adapter->tx_ring[txr_idx] = ring;
1203
1204		/* push pointer to next ring */
1205		ring++;
1206	}
1207
1208	if (rxr_count) {
1209		/* assign generic ring traits */
1210		ring->dev = &adapter->pdev->dev;
1211		ring->netdev = adapter->netdev;
1212
1213		/* configure backlink on ring */
1214		ring->q_vector = q_vector;
1215
1216		/* update q_vector Rx values */
1217		igb_add_ring(ring, &q_vector->rx);
1218
1219		/* set flag indicating ring supports SCTP checksum offload */
1220		if (adapter->hw.mac.type >= e1000_82576)
1221			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222
1223		/*
1224		 * On i350, i210, and i211, loopback VLAN packets
1225		 * have the tag byte-swapped.
1226		 * */
1227		if (adapter->hw.mac.type >= e1000_i350)
1228			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229
1230		/* apply Rx specific ring traits */
1231		ring->count = adapter->rx_ring_count;
1232		ring->queue_index = rxr_idx;
1233
1234		/* assign ring to adapter */
1235		adapter->rx_ring[rxr_idx] = ring;
1236	}
1237
1238	return 0;
1239}
1240
1241
1242/**
1243 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244 * @adapter: board private structure to initialize
1245 *
1246 * We allocate one q_vector per queue interrupt.  If allocation fails we
1247 * return -ENOMEM.
1248 **/
1249static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250{
1251	int q_vectors = adapter->num_q_vectors;
1252	int rxr_remaining = adapter->num_rx_queues;
1253	int txr_remaining = adapter->num_tx_queues;
1254	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255	int err;
1256
1257	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258		for (; rxr_remaining; v_idx++) {
1259			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260						 0, 0, 1, rxr_idx);
1261
1262			if (err)
1263				goto err_out;
1264
1265			/* update counts and index */
1266			rxr_remaining--;
1267			rxr_idx++;
1268		}
1269	}
1270
1271	for (; v_idx < q_vectors; v_idx++) {
1272		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275					 tqpv, txr_idx, rqpv, rxr_idx);
1276
1277		if (err)
1278			goto err_out;
1279
1280		/* update counts and index */
1281		rxr_remaining -= rqpv;
1282		txr_remaining -= tqpv;
1283		rxr_idx++;
1284		txr_idx++;
1285	}
1286
1287	return 0;
1288
1289err_out:
1290	adapter->num_tx_queues = 0;
1291	adapter->num_rx_queues = 0;
1292	adapter->num_q_vectors = 0;
1293
1294	while (v_idx--)
1295		igb_free_q_vector(adapter, v_idx);
1296
1297	return -ENOMEM;
1298}
1299
1300/**
1301 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302 *
1303 * This function initializes the interrupts and allocates all of the queues.
1304 **/
1305static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306{
1307	struct pci_dev *pdev = adapter->pdev;
1308	int err;
1309
1310	igb_set_interrupt_capability(adapter, msix);
1311
1312	err = igb_alloc_q_vectors(adapter);
1313	if (err) {
1314		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315		goto err_alloc_q_vectors;
1316	}
1317
1318	igb_cache_ring_register(adapter);
1319
1320	return 0;
1321
1322err_alloc_q_vectors:
1323	igb_reset_interrupt_capability(adapter);
1324	return err;
1325}
1326
1327/**
1328 * igb_request_irq - initialize interrupts
1329 *
1330 * Attempts to configure interrupts using the best available
1331 * capabilities of the hardware and kernel.
1332 **/
1333static int igb_request_irq(struct igb_adapter *adapter)
1334{
1335	struct net_device *netdev = adapter->netdev;
1336	struct pci_dev *pdev = adapter->pdev;
1337	int err = 0;
1338
1339	if (adapter->msix_entries) {
1340		err = igb_request_msix(adapter);
1341		if (!err)
1342			goto request_done;
1343		/* fall back to MSI */
1344		igb_free_all_tx_resources(adapter);
1345		igb_free_all_rx_resources(adapter);
1346
1347		igb_clear_interrupt_scheme(adapter);
1348		err = igb_init_interrupt_scheme(adapter, false);
1349		if (err)
1350			goto request_done;
1351
1352		igb_setup_all_tx_resources(adapter);
1353		igb_setup_all_rx_resources(adapter);
1354		igb_configure(adapter);
1355	}
1356
1357	igb_assign_vector(adapter->q_vector[0], 0);
1358
1359	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361				  netdev->name, adapter);
1362		if (!err)
1363			goto request_done;
1364
1365		/* fall back to legacy interrupts */
1366		igb_reset_interrupt_capability(adapter);
1367		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368	}
1369
1370	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371			  netdev->name, adapter);
1372
1373	if (err)
1374		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375			err);
1376
1377request_done:
1378	return err;
1379}
1380
1381static void igb_free_irq(struct igb_adapter *adapter)
1382{
1383	if (adapter->msix_entries) {
1384		int vector = 0, i;
1385
1386		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387
1388		for (i = 0; i < adapter->num_q_vectors; i++)
1389			free_irq(adapter->msix_entries[vector++].vector,
1390				 adapter->q_vector[i]);
1391	} else {
1392		free_irq(adapter->pdev->irq, adapter);
1393	}
1394}
1395
1396/**
1397 * igb_irq_disable - Mask off interrupt generation on the NIC
1398 * @adapter: board private structure
1399 **/
1400static void igb_irq_disable(struct igb_adapter *adapter)
1401{
1402	struct e1000_hw *hw = &adapter->hw;
1403
1404	/*
1405	 * we need to be careful when disabling interrupts.  The VFs are also
1406	 * mapped into these registers and so clearing the bits can cause
1407	 * issues on the VF drivers so we only need to clear what we set
1408	 */
1409	if (adapter->msix_entries) {
1410		u32 regval = rd32(E1000_EIAM);
1411		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412		wr32(E1000_EIMC, adapter->eims_enable_mask);
1413		regval = rd32(E1000_EIAC);
1414		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415	}
1416
1417	wr32(E1000_IAM, 0);
1418	wr32(E1000_IMC, ~0);
1419	wrfl();
1420	if (adapter->msix_entries) {
1421		int i;
1422		for (i = 0; i < adapter->num_q_vectors; i++)
1423			synchronize_irq(adapter->msix_entries[i].vector);
1424	} else {
1425		synchronize_irq(adapter->pdev->irq);
1426	}
1427}
1428
1429/**
1430 * igb_irq_enable - Enable default interrupt generation settings
1431 * @adapter: board private structure
1432 **/
1433static void igb_irq_enable(struct igb_adapter *adapter)
1434{
1435	struct e1000_hw *hw = &adapter->hw;
1436
1437	if (adapter->msix_entries) {
1438		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439		u32 regval = rd32(E1000_EIAC);
1440		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441		regval = rd32(E1000_EIAM);
1442		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1443		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444		if (adapter->vfs_allocated_count) {
1445			wr32(E1000_MBVFIMR, 0xFF);
1446			ims |= E1000_IMS_VMMB;
1447		}
1448		wr32(E1000_IMS, ims);
1449	} else {
1450		wr32(E1000_IMS, IMS_ENABLE_MASK |
1451				E1000_IMS_DRSTA);
1452		wr32(E1000_IAM, IMS_ENABLE_MASK |
1453				E1000_IMS_DRSTA);
1454	}
1455}
1456
1457static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458{
1459	struct e1000_hw *hw = &adapter->hw;
1460	u16 vid = adapter->hw.mng_cookie.vlan_id;
1461	u16 old_vid = adapter->mng_vlan_id;
1462
1463	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464		/* add VID to filter table */
1465		igb_vfta_set(hw, vid, true);
1466		adapter->mng_vlan_id = vid;
1467	} else {
1468		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469	}
1470
1471	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472	    (vid != old_vid) &&
1473	    !test_bit(old_vid, adapter->active_vlans)) {
1474		/* remove VID from filter table */
1475		igb_vfta_set(hw, old_vid, false);
1476	}
1477}
1478
1479/**
1480 * igb_release_hw_control - release control of the h/w to f/w
1481 * @adapter: address of board private structure
1482 *
1483 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484 * For ASF and Pass Through versions of f/w this means that the
1485 * driver is no longer loaded.
1486 *
1487 **/
1488static void igb_release_hw_control(struct igb_adapter *adapter)
1489{
1490	struct e1000_hw *hw = &adapter->hw;
1491	u32 ctrl_ext;
1492
1493	/* Let firmware take over control of h/w */
1494	ctrl_ext = rd32(E1000_CTRL_EXT);
1495	wr32(E1000_CTRL_EXT,
1496			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497}
1498
1499/**
1500 * igb_get_hw_control - get control of the h/w from f/w
1501 * @adapter: address of board private structure
1502 *
1503 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504 * For ASF and Pass Through versions of f/w this means that
1505 * the driver is loaded.
1506 *
1507 **/
1508static void igb_get_hw_control(struct igb_adapter *adapter)
1509{
1510	struct e1000_hw *hw = &adapter->hw;
1511	u32 ctrl_ext;
1512
1513	/* Let firmware know the driver has taken over */
1514	ctrl_ext = rd32(E1000_CTRL_EXT);
1515	wr32(E1000_CTRL_EXT,
1516			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517}
1518
1519/**
1520 * igb_configure - configure the hardware for RX and TX
1521 * @adapter: private board structure
1522 **/
1523static void igb_configure(struct igb_adapter *adapter)
1524{
1525	struct net_device *netdev = adapter->netdev;
1526	int i;
1527
1528	igb_get_hw_control(adapter);
1529	igb_set_rx_mode(netdev);
1530
1531	igb_restore_vlan(adapter);
1532
1533	igb_setup_tctl(adapter);
1534	igb_setup_mrqc(adapter);
1535	igb_setup_rctl(adapter);
1536
1537	igb_configure_tx(adapter);
1538	igb_configure_rx(adapter);
1539
1540	igb_rx_fifo_flush_82575(&adapter->hw);
1541
1542	/* call igb_desc_unused which always leaves
1543	 * at least 1 descriptor unused to make sure
1544	 * next_to_use != next_to_clean */
1545	for (i = 0; i < adapter->num_rx_queues; i++) {
1546		struct igb_ring *ring = adapter->rx_ring[i];
1547		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548	}
1549}
1550
1551/**
1552 * igb_power_up_link - Power up the phy/serdes link
1553 * @adapter: address of board private structure
1554 **/
1555void igb_power_up_link(struct igb_adapter *adapter)
1556{
1557	igb_reset_phy(&adapter->hw);
1558
1559	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560		igb_power_up_phy_copper(&adapter->hw);
1561	else
1562		igb_power_up_serdes_link_82575(&adapter->hw);
1563}
1564
1565/**
1566 * igb_power_down_link - Power down the phy/serdes link
1567 * @adapter: address of board private structure
1568 */
1569static void igb_power_down_link(struct igb_adapter *adapter)
1570{
1571	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572		igb_power_down_phy_copper_82575(&adapter->hw);
1573	else
1574		igb_shutdown_serdes_link_82575(&adapter->hw);
1575}
1576
1577/**
1578 * igb_up - Open the interface and prepare it to handle traffic
1579 * @adapter: board private structure
1580 **/
1581int igb_up(struct igb_adapter *adapter)
1582{
1583	struct e1000_hw *hw = &adapter->hw;
1584	int i;
1585
1586	/* hardware has been reset, we need to reload some things */
1587	igb_configure(adapter);
1588
1589	clear_bit(__IGB_DOWN, &adapter->state);
1590
1591	for (i = 0; i < adapter->num_q_vectors; i++)
1592		napi_enable(&(adapter->q_vector[i]->napi));
1593
1594	if (adapter->msix_entries)
1595		igb_configure_msix(adapter);
1596	else
1597		igb_assign_vector(adapter->q_vector[0], 0);
1598
1599	/* Clear any pending interrupts. */
1600	rd32(E1000_ICR);
1601	igb_irq_enable(adapter);
1602
1603	/* notify VFs that reset has been completed */
1604	if (adapter->vfs_allocated_count) {
1605		u32 reg_data = rd32(E1000_CTRL_EXT);
1606		reg_data |= E1000_CTRL_EXT_PFRSTD;
1607		wr32(E1000_CTRL_EXT, reg_data);
1608	}
1609
1610	netif_tx_start_all_queues(adapter->netdev);
1611
1612	/* start the watchdog. */
1613	hw->mac.get_link_status = 1;
1614	schedule_work(&adapter->watchdog_task);
1615
1616	return 0;
1617}
1618
1619void igb_down(struct igb_adapter *adapter)
1620{
1621	struct net_device *netdev = adapter->netdev;
1622	struct e1000_hw *hw = &adapter->hw;
1623	u32 tctl, rctl;
1624	int i;
1625
1626	/* signal that we're down so the interrupt handler does not
1627	 * reschedule our watchdog timer */
1628	set_bit(__IGB_DOWN, &adapter->state);
1629
1630	/* disable receives in the hardware */
1631	rctl = rd32(E1000_RCTL);
1632	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633	/* flush and sleep below */
1634
1635	netif_tx_stop_all_queues(netdev);
1636
1637	/* disable transmits in the hardware */
1638	tctl = rd32(E1000_TCTL);
1639	tctl &= ~E1000_TCTL_EN;
1640	wr32(E1000_TCTL, tctl);
1641	/* flush both disables and wait for them to finish */
1642	wrfl();
1643	msleep(10);
1644
1645	for (i = 0; i < adapter->num_q_vectors; i++)
1646		napi_disable(&(adapter->q_vector[i]->napi));
1647
1648	igb_irq_disable(adapter);
1649
1650	del_timer_sync(&adapter->watchdog_timer);
1651	del_timer_sync(&adapter->phy_info_timer);
1652
1653	netif_carrier_off(netdev);
1654
1655	/* record the stats before reset*/
1656	spin_lock(&adapter->stats64_lock);
1657	igb_update_stats(adapter, &adapter->stats64);
1658	spin_unlock(&adapter->stats64_lock);
1659
1660	adapter->link_speed = 0;
1661	adapter->link_duplex = 0;
1662
1663	if (!pci_channel_offline(adapter->pdev))
1664		igb_reset(adapter);
1665	igb_clean_all_tx_rings(adapter);
1666	igb_clean_all_rx_rings(adapter);
1667#ifdef CONFIG_IGB_DCA
1668
1669	/* since we reset the hardware DCA settings were cleared */
1670	igb_setup_dca(adapter);
1671#endif
1672}
1673
1674void igb_reinit_locked(struct igb_adapter *adapter)
1675{
1676	WARN_ON(in_interrupt());
1677	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678		msleep(1);
1679	igb_down(adapter);
1680	igb_up(adapter);
1681	clear_bit(__IGB_RESETTING, &adapter->state);
1682}
1683
1684void igb_reset(struct igb_adapter *adapter)
1685{
1686	struct pci_dev *pdev = adapter->pdev;
1687	struct e1000_hw *hw = &adapter->hw;
1688	struct e1000_mac_info *mac = &hw->mac;
1689	struct e1000_fc_info *fc = &hw->fc;
1690	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691
1692	/* Repartition Pba for greater than 9k mtu
1693	 * To take effect CTRL.RST is required.
1694	 */
1695	switch (mac->type) {
1696	case e1000_i350:
1697	case e1000_82580:
1698		pba = rd32(E1000_RXPBS);
1699		pba = igb_rxpbs_adjust_82580(pba);
1700		break;
1701	case e1000_82576:
1702		pba = rd32(E1000_RXPBS);
1703		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704		break;
1705	case e1000_82575:
1706	case e1000_i210:
1707	case e1000_i211:
1708	default:
1709		pba = E1000_PBA_34K;
1710		break;
1711	}
1712
1713	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714	    (mac->type < e1000_82576)) {
1715		/* adjust PBA for jumbo frames */
1716		wr32(E1000_PBA, pba);
1717
1718		/* To maintain wire speed transmits, the Tx FIFO should be
1719		 * large enough to accommodate two full transmit packets,
1720		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1721		 * the Rx FIFO should be large enough to accommodate at least
1722		 * one full receive packet and is similarly rounded up and
1723		 * expressed in KB. */
1724		pba = rd32(E1000_PBA);
1725		/* upper 16 bits has Tx packet buffer allocation size in KB */
1726		tx_space = pba >> 16;
1727		/* lower 16 bits has Rx packet buffer allocation size in KB */
1728		pba &= 0xffff;
1729		/* the tx fifo also stores 16 bytes of information about the tx
1730		 * but don't include ethernet FCS because hardware appends it */
1731		min_tx_space = (adapter->max_frame_size +
1732				sizeof(union e1000_adv_tx_desc) -
1733				ETH_FCS_LEN) * 2;
1734		min_tx_space = ALIGN(min_tx_space, 1024);
1735		min_tx_space >>= 10;
1736		/* software strips receive CRC, so leave room for it */
1737		min_rx_space = adapter->max_frame_size;
1738		min_rx_space = ALIGN(min_rx_space, 1024);
1739		min_rx_space >>= 10;
1740
1741		/* If current Tx allocation is less than the min Tx FIFO size,
1742		 * and the min Tx FIFO size is less than the current Rx FIFO
1743		 * allocation, take space away from current Rx allocation */
1744		if (tx_space < min_tx_space &&
1745		    ((min_tx_space - tx_space) < pba)) {
1746			pba = pba - (min_tx_space - tx_space);
1747
1748			/* if short on rx space, rx wins and must trump tx
1749			 * adjustment */
1750			if (pba < min_rx_space)
1751				pba = min_rx_space;
1752		}
1753		wr32(E1000_PBA, pba);
1754	}
1755
1756	/* flow control settings */
1757	/* The high water mark must be low enough to fit one full frame
1758	 * (or the size used for early receive) above it in the Rx FIFO.
1759	 * Set it to the lower of:
1760	 * - 90% of the Rx FIFO size, or
1761	 * - the full Rx FIFO size minus one full frame */
1762	hwm = min(((pba << 10) * 9 / 10),
1763			((pba << 10) - 2 * adapter->max_frame_size));
1764
1765	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766	fc->low_water = fc->high_water - 16;
1767	fc->pause_time = 0xFFFF;
1768	fc->send_xon = 1;
1769	fc->current_mode = fc->requested_mode;
1770
1771	/* disable receive for all VFs and wait one second */
1772	if (adapter->vfs_allocated_count) {
1773		int i;
1774		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1775			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776
1777		/* ping all the active vfs to let them know we are going down */
1778		igb_ping_all_vfs(adapter);
1779
1780		/* disable transmits and receives */
1781		wr32(E1000_VFRE, 0);
1782		wr32(E1000_VFTE, 0);
1783	}
1784
1785	/* Allow time for pending master requests to run */
1786	hw->mac.ops.reset_hw(hw);
1787	wr32(E1000_WUC, 0);
1788
1789	if (hw->mac.ops.init_hw(hw))
1790		dev_err(&pdev->dev, "Hardware Error\n");
1791
1792	/*
1793	 * Flow control settings reset on hardware reset, so guarantee flow
1794	 * control is off when forcing speed.
1795	 */
1796	if (!hw->mac.autoneg)
1797		igb_force_mac_fc(hw);
1798
1799	igb_init_dmac(adapter, pba);
1800#ifdef CONFIG_IGB_HWMON
1801	/* Re-initialize the thermal sensor on i350 devices. */
1802	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804			/* If present, re-initialize the external thermal sensor
1805			 * interface.
1806			 */
1807			if (adapter->ets)
1808				mac->ops.init_thermal_sensor_thresh(hw);
1809		}
1810	}
1811#endif
1812	if (!netif_running(adapter->netdev))
1813		igb_power_down_link(adapter);
1814
1815	igb_update_mng_vlan(adapter);
1816
1817	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819
1820	/* Re-enable PTP, where applicable. */
1821	igb_ptp_reset(adapter);
1822
1823	igb_get_phy_info(hw);
1824}
1825
1826static netdev_features_t igb_fix_features(struct net_device *netdev,
1827	netdev_features_t features)
1828{
1829	/*
1830	 * Since there is no support for separate rx/tx vlan accel
1831	 * enable/disable make sure tx flag is always in same state as rx.
1832	 */
1833	if (features & NETIF_F_HW_VLAN_RX)
1834		features |= NETIF_F_HW_VLAN_TX;
1835	else
1836		features &= ~NETIF_F_HW_VLAN_TX;
1837
1838	return features;
1839}
1840
1841static int igb_set_features(struct net_device *netdev,
1842	netdev_features_t features)
1843{
1844	netdev_features_t changed = netdev->features ^ features;
1845	struct igb_adapter *adapter = netdev_priv(netdev);
1846
1847	if (changed & NETIF_F_HW_VLAN_RX)
1848		igb_vlan_mode(netdev, features);
1849
1850	if (!(changed & NETIF_F_RXALL))
1851		return 0;
1852
1853	netdev->features = features;
1854
1855	if (netif_running(netdev))
1856		igb_reinit_locked(adapter);
1857	else
1858		igb_reset(adapter);
1859
1860	return 0;
1861}
1862
1863static const struct net_device_ops igb_netdev_ops = {
1864	.ndo_open		= igb_open,
1865	.ndo_stop		= igb_close,
1866	.ndo_start_xmit		= igb_xmit_frame,
1867	.ndo_get_stats64	= igb_get_stats64,
1868	.ndo_set_rx_mode	= igb_set_rx_mode,
1869	.ndo_set_mac_address	= igb_set_mac,
1870	.ndo_change_mtu		= igb_change_mtu,
1871	.ndo_do_ioctl		= igb_ioctl,
1872	.ndo_tx_timeout		= igb_tx_timeout,
1873	.ndo_validate_addr	= eth_validate_addr,
1874	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1875	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1877	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1878	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1879	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1880#ifdef CONFIG_NET_POLL_CONTROLLER
1881	.ndo_poll_controller	= igb_netpoll,
1882#endif
1883	.ndo_fix_features	= igb_fix_features,
1884	.ndo_set_features	= igb_set_features,
1885};
1886
1887/**
1888 * igb_set_fw_version - Configure version string for ethtool
1889 * @adapter: adapter struct
1890 *
1891 **/
1892void igb_set_fw_version(struct igb_adapter *adapter)
1893{
1894	struct e1000_hw *hw = &adapter->hw;
1895	struct e1000_fw_version fw;
1896
1897	igb_get_fw_version(hw, &fw);
1898
1899	switch (hw->mac.type) {
1900	case e1000_i211:
1901		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902			 "%2d.%2d-%d",
1903			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904		break;
1905
1906	default:
1907		/* if option is rom valid, display its version too */
1908		if (fw.or_valid) {
1909			snprintf(adapter->fw_version,
1910				 sizeof(adapter->fw_version),
1911				 "%d.%d, 0x%08x, %d.%d.%d",
1912				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913				 fw.or_major, fw.or_build, fw.or_patch);
1914		/* no option rom */
1915		} else {
1916			snprintf(adapter->fw_version,
1917				 sizeof(adapter->fw_version),
1918				 "%d.%d, 0x%08x",
1919				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920		}
1921		break;
1922	}
1923	return;
1924}
1925
1926static const struct i2c_board_info i350_sensor_info = {
1927	I2C_BOARD_INFO("i350bb", 0Xf8),
1928};
1929
1930/*  igb_init_i2c - Init I2C interface
1931 *  @adapter: pointer to adapter structure
1932 *
1933 */
1934static s32 igb_init_i2c(struct igb_adapter *adapter)
1935{
1936	s32 status = E1000_SUCCESS;
1937
1938	/* I2C interface supported on i350 devices */
1939	if (adapter->hw.mac.type != e1000_i350)
1940		return E1000_SUCCESS;
1941
1942	/* Initialize the i2c bus which is controlled by the registers.
1943	 * This bus will use the i2c_algo_bit structue that implements
1944	 * the protocol through toggling of the 4 bits in the register.
1945	 */
1946	adapter->i2c_adap.owner = THIS_MODULE;
1947	adapter->i2c_algo = igb_i2c_algo;
1948	adapter->i2c_algo.data = adapter;
1949	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1950	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1951	strlcpy(adapter->i2c_adap.name, "igb BB",
1952		sizeof(adapter->i2c_adap.name));
1953	status = i2c_bit_add_bus(&adapter->i2c_adap);
1954	return status;
1955}
1956
1957/**
1958 * igb_probe - Device Initialization Routine
1959 * @pdev: PCI device information struct
1960 * @ent: entry in igb_pci_tbl
1961 *
1962 * Returns 0 on success, negative on failure
1963 *
1964 * igb_probe initializes an adapter identified by a pci_dev structure.
1965 * The OS initialization, configuring of the adapter private structure,
1966 * and a hardware reset occur.
1967 **/
1968static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1969{
1970	struct net_device *netdev;
1971	struct igb_adapter *adapter;
1972	struct e1000_hw *hw;
1973	u16 eeprom_data = 0;
1974	s32 ret_val;
1975	static int global_quad_port_a; /* global quad port a indication */
1976	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1977	unsigned long mmio_start, mmio_len;
1978	int err, pci_using_dac;
1979	u8 part_str[E1000_PBANUM_LENGTH];
1980
1981	/* Catch broken hardware that put the wrong VF device ID in
1982	 * the PCIe SR-IOV capability.
1983	 */
1984	if (pdev->is_virtfn) {
1985		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1986			pci_name(pdev), pdev->vendor, pdev->device);
1987		return -EINVAL;
1988	}
1989
1990	err = pci_enable_device_mem(pdev);
1991	if (err)
1992		return err;
1993
1994	pci_using_dac = 0;
1995	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1996	if (!err) {
1997		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1998		if (!err)
1999			pci_using_dac = 1;
2000	} else {
2001		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2002		if (err) {
2003			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2004			if (err) {
2005				dev_err(&pdev->dev, "No usable DMA "
2006					"configuration, aborting\n");
2007				goto err_dma;
2008			}
2009		}
2010	}
2011
2012	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2013	                                   IORESOURCE_MEM),
2014	                                   igb_driver_name);
2015	if (err)
2016		goto err_pci_reg;
2017
2018	pci_enable_pcie_error_reporting(pdev);
2019
2020	pci_set_master(pdev);
2021	pci_save_state(pdev);
2022
2023	err = -ENOMEM;
2024	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2025				   IGB_MAX_TX_QUEUES);
2026	if (!netdev)
2027		goto err_alloc_etherdev;
2028
2029	SET_NETDEV_DEV(netdev, &pdev->dev);
2030
2031	pci_set_drvdata(pdev, netdev);
2032	adapter = netdev_priv(netdev);
2033	adapter->netdev = netdev;
2034	adapter->pdev = pdev;
2035	hw = &adapter->hw;
2036	hw->back = adapter;
2037	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2038
2039	mmio_start = pci_resource_start(pdev, 0);
2040	mmio_len = pci_resource_len(pdev, 0);
2041
2042	err = -EIO;
2043	hw->hw_addr = ioremap(mmio_start, mmio_len);
2044	if (!hw->hw_addr)
2045		goto err_ioremap;
2046
2047	netdev->netdev_ops = &igb_netdev_ops;
2048	igb_set_ethtool_ops(netdev);
2049	netdev->watchdog_timeo = 5 * HZ;
2050
2051	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2052
2053	netdev->mem_start = mmio_start;
2054	netdev->mem_end = mmio_start + mmio_len;
2055
2056	/* PCI config space info */
2057	hw->vendor_id = pdev->vendor;
2058	hw->device_id = pdev->device;
2059	hw->revision_id = pdev->revision;
2060	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2061	hw->subsystem_device_id = pdev->subsystem_device;
2062
2063	/* Copy the default MAC, PHY and NVM function pointers */
2064	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2065	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2066	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2067	/* Initialize skew-specific constants */
2068	err = ei->get_invariants(hw);
2069	if (err)
2070		goto err_sw_init;
2071
2072	/* setup the private structure */
2073	err = igb_sw_init(adapter);
2074	if (err)
2075		goto err_sw_init;
2076
2077	igb_get_bus_info_pcie(hw);
2078
2079	hw->phy.autoneg_wait_to_complete = false;
2080
2081	/* Copper options */
2082	if (hw->phy.media_type == e1000_media_type_copper) {
2083		hw->phy.mdix = AUTO_ALL_MODES;
2084		hw->phy.disable_polarity_correction = false;
2085		hw->phy.ms_type = e1000_ms_hw_default;
2086	}
2087
2088	if (igb_check_reset_block(hw))
2089		dev_info(&pdev->dev,
2090			"PHY reset is blocked due to SOL/IDER session.\n");
2091
2092	/*
2093	 * features is initialized to 0 in allocation, it might have bits
2094	 * set by igb_sw_init so we should use an or instead of an
2095	 * assignment.
2096	 */
2097	netdev->features |= NETIF_F_SG |
2098			    NETIF_F_IP_CSUM |
2099			    NETIF_F_IPV6_CSUM |
2100			    NETIF_F_TSO |
2101			    NETIF_F_TSO6 |
2102			    NETIF_F_RXHASH |
2103			    NETIF_F_RXCSUM |
2104			    NETIF_F_HW_VLAN_RX |
2105			    NETIF_F_HW_VLAN_TX;
2106
2107	/* copy netdev features into list of user selectable features */
2108	netdev->hw_features |= netdev->features;
2109	netdev->hw_features |= NETIF_F_RXALL;
2110
2111	/* set this bit last since it cannot be part of hw_features */
2112	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2113
2114	netdev->vlan_features |= NETIF_F_TSO |
2115				 NETIF_F_TSO6 |
2116				 NETIF_F_IP_CSUM |
2117				 NETIF_F_IPV6_CSUM |
2118				 NETIF_F_SG;
2119
2120	netdev->priv_flags |= IFF_SUPP_NOFCS;
2121
2122	if (pci_using_dac) {
2123		netdev->features |= NETIF_F_HIGHDMA;
2124		netdev->vlan_features |= NETIF_F_HIGHDMA;
2125	}
2126
2127	if (hw->mac.type >= e1000_82576) {
2128		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2129		netdev->features |= NETIF_F_SCTP_CSUM;
2130	}
2131
2132	netdev->priv_flags |= IFF_UNICAST_FLT;
2133
2134	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2135
2136	/* before reading the NVM, reset the controller to put the device in a
2137	 * known good starting state */
2138	hw->mac.ops.reset_hw(hw);
2139
2140	/*
2141	 * make sure the NVM is good , i211 parts have special NVM that
2142	 * doesn't contain a checksum
2143	 */
2144	if (hw->mac.type != e1000_i211) {
2145		if (hw->nvm.ops.validate(hw) < 0) {
2146			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2147			err = -EIO;
2148			goto err_eeprom;
2149		}
2150	}
2151
2152	/* copy the MAC address out of the NVM */
2153	if (hw->mac.ops.read_mac_addr(hw))
2154		dev_err(&pdev->dev, "NVM Read Error\n");
2155
2156	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2157
2158	if (!is_valid_ether_addr(netdev->dev_addr)) {
2159		dev_err(&pdev->dev, "Invalid MAC Address\n");
2160		err = -EIO;
2161		goto err_eeprom;
2162	}
2163
2164	/* get firmware version for ethtool -i */
2165	igb_set_fw_version(adapter);
2166
2167	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2168	            (unsigned long) adapter);
2169	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2170	            (unsigned long) adapter);
2171
2172	INIT_WORK(&adapter->reset_task, igb_reset_task);
2173	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2174
2175	/* Initialize link properties that are user-changeable */
2176	adapter->fc_autoneg = true;
2177	hw->mac.autoneg = true;
2178	hw->phy.autoneg_advertised = 0x2f;
2179
2180	hw->fc.requested_mode = e1000_fc_default;
2181	hw->fc.current_mode = e1000_fc_default;
2182
2183	igb_validate_mdi_setting(hw);
2184
2185	/* By default, support wake on port A */
2186	if (hw->bus.func == 0)
2187		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2188
2189	/* Check the NVM for wake support on non-port A ports */
2190	if (hw->mac.type >= e1000_82580)
2191		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2192		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2193		                 &eeprom_data);
2194	else if (hw->bus.func == 1)
2195		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2196
2197	if (eeprom_data & IGB_EEPROM_APME)
2198		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2199
2200	/* now that we have the eeprom settings, apply the special cases where
2201	 * the eeprom may be wrong or the board simply won't support wake on
2202	 * lan on a particular port */
2203	switch (pdev->device) {
2204	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2205		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2206		break;
2207	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2208	case E1000_DEV_ID_82576_FIBER:
2209	case E1000_DEV_ID_82576_SERDES:
2210		/* Wake events only supported on port A for dual fiber
2211		 * regardless of eeprom setting */
2212		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2213			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2214		break;
2215	case E1000_DEV_ID_82576_QUAD_COPPER:
2216	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2217		/* if quad port adapter, disable WoL on all but port A */
2218		if (global_quad_port_a != 0)
2219			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2220		else
2221			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2222		/* Reset for multiple quad port adapters */
2223		if (++global_quad_port_a == 4)
2224			global_quad_port_a = 0;
2225		break;
2226	default:
2227		/* If the device can't wake, don't set software support */
2228		if (!device_can_wakeup(&adapter->pdev->dev))
2229			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2230	}
2231
2232	/* initialize the wol settings based on the eeprom settings */
2233	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2234		adapter->wol |= E1000_WUFC_MAG;
2235
2236	/* Some vendors want WoL disabled by default, but still supported */
2237	if ((hw->mac.type == e1000_i350) &&
2238	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2239		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2240		adapter->wol = 0;
2241	}
2242
2243	device_set_wakeup_enable(&adapter->pdev->dev,
2244				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2245
2246	/* reset the hardware with the new settings */
2247	igb_reset(adapter);
2248
2249	/* Init the I2C interface */
2250	err = igb_init_i2c(adapter);
2251	if (err) {
2252		dev_err(&pdev->dev, "failed to init i2c interface\n");
2253		goto err_eeprom;
2254	}
2255
2256	/* let the f/w know that the h/w is now under the control of the
2257	 * driver. */
2258	igb_get_hw_control(adapter);
2259
2260	strcpy(netdev->name, "eth%d");
2261	err = register_netdev(netdev);
2262	if (err)
2263		goto err_register;
2264
2265	/* carrier off reporting is important to ethtool even BEFORE open */
2266	netif_carrier_off(netdev);
2267
2268#ifdef CONFIG_IGB_DCA
2269	if (dca_add_requester(&pdev->dev) == 0) {
2270		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2271		dev_info(&pdev->dev, "DCA enabled\n");
2272		igb_setup_dca(adapter);
2273	}
2274
2275#endif
2276#ifdef CONFIG_IGB_HWMON
2277	/* Initialize the thermal sensor on i350 devices. */
2278	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2279		u16 ets_word;
2280
2281		/*
2282		 * Read the NVM to determine if this i350 device supports an
2283		 * external thermal sensor.
2284		 */
2285		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2286		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2287			adapter->ets = true;
2288		else
2289			adapter->ets = false;
2290		if (igb_sysfs_init(adapter))
2291			dev_err(&pdev->dev,
2292				"failed to allocate sysfs resources\n");
2293	} else {
2294		adapter->ets = false;
2295	}
2296#endif
2297	/* do hw tstamp init after resetting */
2298	igb_ptp_init(adapter);
2299
2300	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2301	/* print bus type/speed/width info */
2302	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2303		 netdev->name,
2304		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2305		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2306		                                            "unknown"),
2307		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2308		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2309		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2310		   "unknown"),
2311		 netdev->dev_addr);
2312
2313	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2314	if (ret_val)
2315		strcpy(part_str, "Unknown");
2316	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2317	dev_info(&pdev->dev,
2318		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2319		adapter->msix_entries ? "MSI-X" :
2320		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2321		adapter->num_rx_queues, adapter->num_tx_queues);
2322	switch (hw->mac.type) {
2323	case e1000_i350:
2324	case e1000_i210:
2325	case e1000_i211:
2326		igb_set_eee_i350(hw);
2327		break;
2328	default:
2329		break;
2330	}
2331
2332	pm_runtime_put_noidle(&pdev->dev);
2333	return 0;
2334
2335err_register:
2336	igb_release_hw_control(adapter);
2337	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2338err_eeprom:
2339	if (!igb_check_reset_block(hw))
2340		igb_reset_phy(hw);
2341
2342	if (hw->flash_address)
2343		iounmap(hw->flash_address);
2344err_sw_init:
2345	igb_clear_interrupt_scheme(adapter);
2346	iounmap(hw->hw_addr);
2347err_ioremap:
2348	free_netdev(netdev);
2349err_alloc_etherdev:
2350	pci_release_selected_regions(pdev,
2351	                             pci_select_bars(pdev, IORESOURCE_MEM));
2352err_pci_reg:
2353err_dma:
2354	pci_disable_device(pdev);
2355	return err;
2356}
2357
2358#ifdef CONFIG_PCI_IOV
2359static int  igb_disable_sriov(struct pci_dev *pdev)
2360{
2361	struct net_device *netdev = pci_get_drvdata(pdev);
2362	struct igb_adapter *adapter = netdev_priv(netdev);
2363	struct e1000_hw *hw = &adapter->hw;
2364
2365	/* reclaim resources allocated to VFs */
2366	if (adapter->vf_data) {
2367		/* disable iov and allow time for transactions to clear */
2368		if (igb_vfs_are_assigned(adapter)) {
2369			dev_warn(&pdev->dev,
2370				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2371			return -EPERM;
2372		} else {
2373			pci_disable_sriov(pdev);
2374			msleep(500);
2375		}
2376
2377		kfree(adapter->vf_data);
2378		adapter->vf_data = NULL;
2379		adapter->vfs_allocated_count = 0;
2380		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2381		wrfl();
2382		msleep(100);
2383		dev_info(&pdev->dev, "IOV Disabled\n");
2384
2385		/* Re-enable DMA Coalescing flag since IOV is turned off */
2386		adapter->flags |= IGB_FLAG_DMAC;
2387	}
2388
2389	return 0;
2390}
2391
2392static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2393{
2394	struct net_device *netdev = pci_get_drvdata(pdev);
2395	struct igb_adapter *adapter = netdev_priv(netdev);
2396	int old_vfs = pci_num_vf(pdev);
2397	int err = 0;
2398	int i;
2399
2400	if (!num_vfs)
2401		goto out;
2402	else if (old_vfs && old_vfs == num_vfs)
2403		goto out;
2404	else if (old_vfs && old_vfs != num_vfs)
2405		err = igb_disable_sriov(pdev);
2406
2407	if (err)
2408		goto out;
2409
2410	if (num_vfs > 7) {
2411		err = -EPERM;
2412		goto out;
2413	}
2414
2415	adapter->vfs_allocated_count = num_vfs;
2416
2417	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2418				sizeof(struct vf_data_storage), GFP_KERNEL);
2419
2420	/* if allocation failed then we do not support SR-IOV */
2421	if (!adapter->vf_data) {
2422		adapter->vfs_allocated_count = 0;
2423		dev_err(&pdev->dev,
2424			"Unable to allocate memory for VF Data Storage\n");
2425		err = -ENOMEM;
2426		goto out;
2427	}
2428
2429	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2430	if (err)
2431		goto err_out;
2432
2433	dev_info(&pdev->dev, "%d VFs allocated\n",
2434		 adapter->vfs_allocated_count);
2435	for (i = 0; i < adapter->vfs_allocated_count; i++)
2436		igb_vf_configure(adapter, i);
2437
2438	/* DMA Coalescing is not supported in IOV mode. */
2439	adapter->flags &= ~IGB_FLAG_DMAC;
2440	goto out;
2441
2442err_out:
2443	kfree(adapter->vf_data);
2444	adapter->vf_data = NULL;
2445	adapter->vfs_allocated_count = 0;
2446out:
2447	return err;
2448}
2449
2450#endif
2451/*
2452 *  igb_remove_i2c - Cleanup  I2C interface
2453 *  @adapter: pointer to adapter structure
2454 *
2455 */
2456static void igb_remove_i2c(struct igb_adapter *adapter)
2457{
2458
2459	/* free the adapter bus structure */
2460	i2c_del_adapter(&adapter->i2c_adap);
2461}
2462
2463/**
2464 * igb_remove - Device Removal Routine
2465 * @pdev: PCI device information struct
2466 *
2467 * igb_remove is called by the PCI subsystem to alert the driver
2468 * that it should release a PCI device.  The could be caused by a
2469 * Hot-Plug event, or because the driver is going to be removed from
2470 * memory.
2471 **/
2472static void igb_remove(struct pci_dev *pdev)
2473{
2474	struct net_device *netdev = pci_get_drvdata(pdev);
2475	struct igb_adapter *adapter = netdev_priv(netdev);
2476	struct e1000_hw *hw = &adapter->hw;
2477
2478	pm_runtime_get_noresume(&pdev->dev);
2479#ifdef CONFIG_IGB_HWMON
2480	igb_sysfs_exit(adapter);
2481#endif
2482	igb_remove_i2c(adapter);
2483	igb_ptp_stop(adapter);
2484	/*
2485	 * The watchdog timer may be rescheduled, so explicitly
2486	 * disable watchdog from being rescheduled.
2487	 */
2488	set_bit(__IGB_DOWN, &adapter->state);
2489	del_timer_sync(&adapter->watchdog_timer);
2490	del_timer_sync(&adapter->phy_info_timer);
2491
2492	cancel_work_sync(&adapter->reset_task);
2493	cancel_work_sync(&adapter->watchdog_task);
2494
2495#ifdef CONFIG_IGB_DCA
2496	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2497		dev_info(&pdev->dev, "DCA disabled\n");
2498		dca_remove_requester(&pdev->dev);
2499		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2500		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2501	}
2502#endif
2503
2504	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2505	 * would have already happened in close and is redundant. */
2506	igb_release_hw_control(adapter);
2507
2508	unregister_netdev(netdev);
2509
2510	igb_clear_interrupt_scheme(adapter);
2511
2512#ifdef CONFIG_PCI_IOV
2513	igb_disable_sriov(pdev);
2514#endif
2515
2516	iounmap(hw->hw_addr);
2517	if (hw->flash_address)
2518		iounmap(hw->flash_address);
2519	pci_release_selected_regions(pdev,
2520	                             pci_select_bars(pdev, IORESOURCE_MEM));
2521
2522	kfree(adapter->shadow_vfta);
2523	free_netdev(netdev);
2524
2525	pci_disable_pcie_error_reporting(pdev);
2526
2527	pci_disable_device(pdev);
2528}
2529
2530/**
2531 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2532 * @adapter: board private structure to initialize
2533 *
2534 * This function initializes the vf specific data storage and then attempts to
2535 * allocate the VFs.  The reason for ordering it this way is because it is much
2536 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2537 * the memory for the VFs.
2538 **/
2539static void igb_probe_vfs(struct igb_adapter *adapter)
2540{
2541#ifdef CONFIG_PCI_IOV
2542	struct pci_dev *pdev = adapter->pdev;
2543	struct e1000_hw *hw = &adapter->hw;
2544
2545	/* Virtualization features not supported on i210 family. */
2546	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2547		return;
2548
2549	igb_enable_sriov(pdev, max_vfs);
2550	pci_sriov_set_totalvfs(pdev, 7);
2551
2552#endif /* CONFIG_PCI_IOV */
2553}
2554
2555static void igb_init_queue_configuration(struct igb_adapter *adapter)
2556{
2557	struct e1000_hw *hw = &adapter->hw;
2558	u32 max_rss_queues;
2559
2560	/* Determine the maximum number of RSS queues supported. */
2561	switch (hw->mac.type) {
2562	case e1000_i211:
2563		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2564		break;
2565	case e1000_82575:
2566	case e1000_i210:
2567		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2568		break;
2569	case e1000_i350:
2570		/* I350 cannot do RSS and SR-IOV at the same time */
2571		if (!!adapter->vfs_allocated_count) {
2572			max_rss_queues = 1;
2573			break;
2574		}
2575		/* fall through */
2576	case e1000_82576:
2577		if (!!adapter->vfs_allocated_count) {
2578			max_rss_queues = 2;
2579			break;
2580		}
2581		/* fall through */
2582	case e1000_82580:
2583	default:
2584		max_rss_queues = IGB_MAX_RX_QUEUES;
2585		break;
2586	}
2587
2588	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2589
2590	/* Determine if we need to pair queues. */
2591	switch (hw->mac.type) {
2592	case e1000_82575:
2593	case e1000_i211:
2594		/* Device supports enough interrupts without queue pairing. */
2595		break;
2596	case e1000_82576:
2597		/*
2598		 * If VFs are going to be allocated with RSS queues then we
2599		 * should pair the queues in order to conserve interrupts due
2600		 * to limited supply.
2601		 */
2602		if ((adapter->rss_queues > 1) &&
2603		    (adapter->vfs_allocated_count > 6))
2604			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2605		/* fall through */
2606	case e1000_82580:
2607	case e1000_i350:
2608	case e1000_i210:
2609	default:
2610		/*
2611		 * If rss_queues > half of max_rss_queues, pair the queues in
2612		 * order to conserve interrupts due to limited supply.
2613		 */
2614		if (adapter->rss_queues > (max_rss_queues / 2))
2615			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2616		break;
2617	}
2618}
2619
2620/**
2621 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2622 * @adapter: board private structure to initialize
2623 *
2624 * igb_sw_init initializes the Adapter private data structure.
2625 * Fields are initialized based on PCI device information and
2626 * OS network device settings (MTU size).
2627 **/
2628static int igb_sw_init(struct igb_adapter *adapter)
2629{
2630	struct e1000_hw *hw = &adapter->hw;
2631	struct net_device *netdev = adapter->netdev;
2632	struct pci_dev *pdev = adapter->pdev;
2633
2634	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2635
2636	/* set default ring sizes */
2637	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2638	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2639
2640	/* set default ITR values */
2641	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2642	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2643
2644	/* set default work limits */
2645	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2646
2647	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2648				  VLAN_HLEN;
2649	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2650
2651	spin_lock_init(&adapter->stats64_lock);
2652#ifdef CONFIG_PCI_IOV
2653	switch (hw->mac.type) {
2654	case e1000_82576:
2655	case e1000_i350:
2656		if (max_vfs > 7) {
2657			dev_warn(&pdev->dev,
2658				 "Maximum of 7 VFs per PF, using max\n");
2659			adapter->vfs_allocated_count = 7;
2660		} else
2661			adapter->vfs_allocated_count = max_vfs;
2662		if (adapter->vfs_allocated_count)
2663			dev_warn(&pdev->dev,
2664				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2665		break;
2666	default:
2667		break;
2668	}
2669#endif /* CONFIG_PCI_IOV */
2670
2671	igb_init_queue_configuration(adapter);
2672
2673	/* Setup and initialize a copy of the hw vlan table array */
2674	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2675				       GFP_ATOMIC);
2676
2677	/* This call may decrease the number of queues */
2678	if (igb_init_interrupt_scheme(adapter, true)) {
2679		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2680		return -ENOMEM;
2681	}
2682
2683	igb_probe_vfs(adapter);
2684
2685	/* Explicitly disable IRQ since the NIC can be in any state. */
2686	igb_irq_disable(adapter);
2687
2688	if (hw->mac.type >= e1000_i350)
2689		adapter->flags &= ~IGB_FLAG_DMAC;
2690
2691	set_bit(__IGB_DOWN, &adapter->state);
2692	return 0;
2693}
2694
2695/**
2696 * igb_open - Called when a network interface is made active
2697 * @netdev: network interface device structure
2698 *
2699 * Returns 0 on success, negative value on failure
2700 *
2701 * The open entry point is called when a network interface is made
2702 * active by the system (IFF_UP).  At this point all resources needed
2703 * for transmit and receive operations are allocated, the interrupt
2704 * handler is registered with the OS, the watchdog timer is started,
2705 * and the stack is notified that the interface is ready.
2706 **/
2707static int __igb_open(struct net_device *netdev, bool resuming)
2708{
2709	struct igb_adapter *adapter = netdev_priv(netdev);
2710	struct e1000_hw *hw = &adapter->hw;
2711	struct pci_dev *pdev = adapter->pdev;
2712	int err;
2713	int i;
2714
2715	/* disallow open during test */
2716	if (test_bit(__IGB_TESTING, &adapter->state)) {
2717		WARN_ON(resuming);
2718		return -EBUSY;
2719	}
2720
2721	if (!resuming)
2722		pm_runtime_get_sync(&pdev->dev);
2723
2724	netif_carrier_off(netdev);
2725
2726	/* allocate transmit descriptors */
2727	err = igb_setup_all_tx_resources(adapter);
2728	if (err)
2729		goto err_setup_tx;
2730
2731	/* allocate receive descriptors */
2732	err = igb_setup_all_rx_resources(adapter);
2733	if (err)
2734		goto err_setup_rx;
2735
2736	igb_power_up_link(adapter);
2737
2738	/* before we allocate an interrupt, we must be ready to handle it.
2739	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2740	 * as soon as we call pci_request_irq, so we have to setup our
2741	 * clean_rx handler before we do so.  */
2742	igb_configure(adapter);
2743
2744	err = igb_request_irq(adapter);
2745	if (err)
2746		goto err_req_irq;
2747
2748	/* Notify the stack of the actual queue counts. */
2749	err = netif_set_real_num_tx_queues(adapter->netdev,
2750					   adapter->num_tx_queues);
2751	if (err)
2752		goto err_set_queues;
2753
2754	err = netif_set_real_num_rx_queues(adapter->netdev,
2755					   adapter->num_rx_queues);
2756	if (err)
2757		goto err_set_queues;
2758
2759	/* From here on the code is the same as igb_up() */
2760	clear_bit(__IGB_DOWN, &adapter->state);
2761
2762	for (i = 0; i < adapter->num_q_vectors; i++)
2763		napi_enable(&(adapter->q_vector[i]->napi));
2764
2765	/* Clear any pending interrupts. */
2766	rd32(E1000_ICR);
2767
2768	igb_irq_enable(adapter);
2769
2770	/* notify VFs that reset has been completed */
2771	if (adapter->vfs_allocated_count) {
2772		u32 reg_data = rd32(E1000_CTRL_EXT);
2773		reg_data |= E1000_CTRL_EXT_PFRSTD;
2774		wr32(E1000_CTRL_EXT, reg_data);
2775	}
2776
2777	netif_tx_start_all_queues(netdev);
2778
2779	if (!resuming)
2780		pm_runtime_put(&pdev->dev);
2781
2782	/* start the watchdog. */
2783	hw->mac.get_link_status = 1;
2784	schedule_work(&adapter->watchdog_task);
2785
2786	return 0;
2787
2788err_set_queues:
2789	igb_free_irq(adapter);
2790err_req_irq:
2791	igb_release_hw_control(adapter);
2792	igb_power_down_link(adapter);
2793	igb_free_all_rx_resources(adapter);
2794err_setup_rx:
2795	igb_free_all_tx_resources(adapter);
2796err_setup_tx:
2797	igb_reset(adapter);
2798	if (!resuming)
2799		pm_runtime_put(&pdev->dev);
2800
2801	return err;
2802}
2803
2804static int igb_open(struct net_device *netdev)
2805{
2806	return __igb_open(netdev, false);
2807}
2808
2809/**
2810 * igb_close - Disables a network interface
2811 * @netdev: network interface device structure
2812 *
2813 * Returns 0, this is not allowed to fail
2814 *
2815 * The close entry point is called when an interface is de-activated
2816 * by the OS.  The hardware is still under the driver's control, but
2817 * needs to be disabled.  A global MAC reset is issued to stop the
2818 * hardware, and all transmit and receive resources are freed.
2819 **/
2820static int __igb_close(struct net_device *netdev, bool suspending)
2821{
2822	struct igb_adapter *adapter = netdev_priv(netdev);
2823	struct pci_dev *pdev = adapter->pdev;
2824
2825	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2826
2827	if (!suspending)
2828		pm_runtime_get_sync(&pdev->dev);
2829
2830	igb_down(adapter);
2831	igb_free_irq(adapter);
2832
2833	igb_free_all_tx_resources(adapter);
2834	igb_free_all_rx_resources(adapter);
2835
2836	if (!suspending)
2837		pm_runtime_put_sync(&pdev->dev);
2838	return 0;
2839}
2840
2841static int igb_close(struct net_device *netdev)
2842{
2843	return __igb_close(netdev, false);
2844}
2845
2846/**
2847 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2848 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2849 *
2850 * Return 0 on success, negative on failure
2851 **/
2852int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853{
2854	struct device *dev = tx_ring->dev;
2855	int size;
2856
2857	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858
2859	tx_ring->tx_buffer_info = vzalloc(size);
2860	if (!tx_ring->tx_buffer_info)
2861		goto err;
2862
2863	/* round up to nearest 4K */
2864	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865	tx_ring->size = ALIGN(tx_ring->size, 4096);
2866
2867	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2868					   &tx_ring->dma, GFP_KERNEL);
2869	if (!tx_ring->desc)
2870		goto err;
2871
2872	tx_ring->next_to_use = 0;
2873	tx_ring->next_to_clean = 0;
2874
2875	return 0;
2876
2877err:
2878	vfree(tx_ring->tx_buffer_info);
2879	tx_ring->tx_buffer_info = NULL;
2880	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881	return -ENOMEM;
2882}
2883
2884/**
2885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2886 *				  (Descriptors) for all queues
2887 * @adapter: board private structure
2888 *
2889 * Return 0 on success, negative on failure
2890 **/
2891static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2892{
2893	struct pci_dev *pdev = adapter->pdev;
2894	int i, err = 0;
2895
2896	for (i = 0; i < adapter->num_tx_queues; i++) {
2897		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898		if (err) {
2899			dev_err(&pdev->dev,
2900				"Allocation for Tx Queue %u failed\n", i);
2901			for (i--; i >= 0; i--)
2902				igb_free_tx_resources(adapter->tx_ring[i]);
2903			break;
2904		}
2905	}
2906
2907	return err;
2908}
2909
2910/**
2911 * igb_setup_tctl - configure the transmit control registers
2912 * @adapter: Board private structure
2913 **/
2914void igb_setup_tctl(struct igb_adapter *adapter)
2915{
2916	struct e1000_hw *hw = &adapter->hw;
2917	u32 tctl;
2918
2919	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2920	wr32(E1000_TXDCTL(0), 0);
2921
2922	/* Program the Transmit Control Register */
2923	tctl = rd32(E1000_TCTL);
2924	tctl &= ~E1000_TCTL_CT;
2925	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2926		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2927
2928	igb_config_collision_dist(hw);
2929
2930	/* Enable transmits */
2931	tctl |= E1000_TCTL_EN;
2932
2933	wr32(E1000_TCTL, tctl);
2934}
2935
2936/**
2937 * igb_configure_tx_ring - Configure transmit ring after Reset
2938 * @adapter: board private structure
2939 * @ring: tx ring to configure
2940 *
2941 * Configure a transmit ring after a reset.
2942 **/
2943void igb_configure_tx_ring(struct igb_adapter *adapter,
2944                           struct igb_ring *ring)
2945{
2946	struct e1000_hw *hw = &adapter->hw;
2947	u32 txdctl = 0;
2948	u64 tdba = ring->dma;
2949	int reg_idx = ring->reg_idx;
2950
2951	/* disable the queue */
2952	wr32(E1000_TXDCTL(reg_idx), 0);
2953	wrfl();
2954	mdelay(10);
2955
2956	wr32(E1000_TDLEN(reg_idx),
2957	                ring->count * sizeof(union e1000_adv_tx_desc));
2958	wr32(E1000_TDBAL(reg_idx),
2959	                tdba & 0x00000000ffffffffULL);
2960	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2961
2962	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963	wr32(E1000_TDH(reg_idx), 0);
2964	writel(0, ring->tail);
2965
2966	txdctl |= IGB_TX_PTHRESH;
2967	txdctl |= IGB_TX_HTHRESH << 8;
2968	txdctl |= IGB_TX_WTHRESH << 16;
2969
2970	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2971	wr32(E1000_TXDCTL(reg_idx), txdctl);
2972}
2973
2974/**
2975 * igb_configure_tx - Configure transmit Unit after Reset
2976 * @adapter: board private structure
2977 *
2978 * Configure the Tx unit of the MAC after a reset.
2979 **/
2980static void igb_configure_tx(struct igb_adapter *adapter)
2981{
2982	int i;
2983
2984	for (i = 0; i < adapter->num_tx_queues; i++)
2985		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986}
2987
2988/**
2989 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2990 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2991 *
2992 * Returns 0 on success, negative on failure
2993 **/
2994int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995{
2996	struct device *dev = rx_ring->dev;
2997	int size;
2998
2999	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000
3001	rx_ring->rx_buffer_info = vzalloc(size);
3002	if (!rx_ring->rx_buffer_info)
3003		goto err;
3004
3005	/* Round up to nearest 4K */
3006	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007	rx_ring->size = ALIGN(rx_ring->size, 4096);
3008
3009	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3010					   &rx_ring->dma, GFP_KERNEL);
3011	if (!rx_ring->desc)
3012		goto err;
3013
3014	rx_ring->next_to_alloc = 0;
3015	rx_ring->next_to_clean = 0;
3016	rx_ring->next_to_use = 0;
3017
3018	return 0;
3019
3020err:
3021	vfree(rx_ring->rx_buffer_info);
3022	rx_ring->rx_buffer_info = NULL;
3023	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024	return -ENOMEM;
3025}
3026
3027/**
3028 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3029 *				  (Descriptors) for all queues
3030 * @adapter: board private structure
3031 *
3032 * Return 0 on success, negative on failure
3033 **/
3034static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3035{
3036	struct pci_dev *pdev = adapter->pdev;
3037	int i, err = 0;
3038
3039	for (i = 0; i < adapter->num_rx_queues; i++) {
3040		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041		if (err) {
3042			dev_err(&pdev->dev,
3043				"Allocation for Rx Queue %u failed\n", i);
3044			for (i--; i >= 0; i--)
3045				igb_free_rx_resources(adapter->rx_ring[i]);
3046			break;
3047		}
3048	}
3049
3050	return err;
3051}
3052
3053/**
3054 * igb_setup_mrqc - configure the multiple receive queue control registers
3055 * @adapter: Board private structure
3056 **/
3057static void igb_setup_mrqc(struct igb_adapter *adapter)
3058{
3059	struct e1000_hw *hw = &adapter->hw;
3060	u32 mrqc, rxcsum;
3061	u32 j, num_rx_queues, shift = 0;
3062	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3063					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3064					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3065					0xFA01ACBE };
3066
3067	/* Fill out hash function seeds */
3068	for (j = 0; j < 10; j++)
3069		wr32(E1000_RSSRK(j), rsskey[j]);
3070
3071	num_rx_queues = adapter->rss_queues;
3072
3073	switch (hw->mac.type) {
3074	case e1000_82575:
3075		shift = 6;
3076		break;
3077	case e1000_82576:
3078		/* 82576 supports 2 RSS queues for SR-IOV */
3079		if (adapter->vfs_allocated_count) {
3080			shift = 3;
3081			num_rx_queues = 2;
3082		}
3083		break;
3084	default:
3085		break;
3086	}
3087
3088	/*
3089	 * Populate the indirection table 4 entries at a time.  To do this
3090	 * we are generating the results for n and n+2 and then interleaving
3091	 * those with the results with n+1 and n+3.
3092	 */
3093	for (j = 0; j < 32; j++) {
3094		/* first pass generates n and n+2 */
3095		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3096		u32 reta = (base & 0x07800780) >> (7 - shift);
3097
3098		/* second pass generates n+1 and n+3 */
3099		base += 0x00010001 * num_rx_queues;
3100		reta |= (base & 0x07800780) << (1 + shift);
3101
3102		wr32(E1000_RETA(j), reta);
3103	}
3104
3105	/*
3106	 * Disable raw packet checksumming so that RSS hash is placed in
3107	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3108	 * offloads as they are enabled by default
3109	 */
3110	rxcsum = rd32(E1000_RXCSUM);
3111	rxcsum |= E1000_RXCSUM_PCSD;
3112
3113	if (adapter->hw.mac.type >= e1000_82576)
3114		/* Enable Receive Checksum Offload for SCTP */
3115		rxcsum |= E1000_RXCSUM_CRCOFL;
3116
3117	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3118	wr32(E1000_RXCSUM, rxcsum);
3119
3120	/* Generate RSS hash based on packet types, TCP/UDP
3121	 * port numbers and/or IPv4/v6 src and dst addresses
3122	 */
3123	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3124	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3125	       E1000_MRQC_RSS_FIELD_IPV6 |
3126	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3127	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128
3129	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3130		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3131	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3132		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3133
3134	/* If VMDq is enabled then we set the appropriate mode for that, else
3135	 * we default to RSS so that an RSS hash is calculated per packet even
3136	 * if we are only using one queue */
3137	if (adapter->vfs_allocated_count) {
3138		if (hw->mac.type > e1000_82575) {
3139			/* Set the default pool for the PF's first queue */
3140			u32 vtctl = rd32(E1000_VT_CTL);
3141			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3142				   E1000_VT_CTL_DISABLE_DEF_POOL);
3143			vtctl |= adapter->vfs_allocated_count <<
3144				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3145			wr32(E1000_VT_CTL, vtctl);
3146		}
3147		if (adapter->rss_queues > 1)
3148			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149		else
3150			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151	} else {
3152		if (hw->mac.type != e1000_i211)
3153			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154	}
3155	igb_vmm_control(adapter);
3156
3157	wr32(E1000_MRQC, mrqc);
3158}
3159
3160/**
3161 * igb_setup_rctl - configure the receive control registers
3162 * @adapter: Board private structure
3163 **/
3164void igb_setup_rctl(struct igb_adapter *adapter)
3165{
3166	struct e1000_hw *hw = &adapter->hw;
3167	u32 rctl;
3168
3169	rctl = rd32(E1000_RCTL);
3170
3171	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173
3174	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176
3177	/*
3178	 * enable stripping of CRC. It's unlikely this will break BMC
3179	 * redirection as it did with e1000. Newer features require
3180	 * that the HW strips the CRC.
3181	 */
3182	rctl |= E1000_RCTL_SECRC;
3183
3184	/* disable store bad packets and clear size bits. */
3185	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186
3187	/* enable LPE to prevent packets larger than max_frame_size */
3188	rctl |= E1000_RCTL_LPE;
3189
3190	/* disable queue 0 to prevent tail write w/o re-config */
3191	wr32(E1000_RXDCTL(0), 0);
3192
3193	/* Attention!!!  For SR-IOV PF driver operations you must enable
3194	 * queue drop for all VF and PF queues to prevent head of line blocking
3195	 * if an un-trusted VF does not provide descriptors to hardware.
3196	 */
3197	if (adapter->vfs_allocated_count) {
3198		/* set all queue drop enable bits */
3199		wr32(E1000_QDE, ALL_QUEUES);
3200	}
3201
3202	/* This is useful for sniffing bad packets. */
3203	if (adapter->netdev->features & NETIF_F_RXALL) {
3204		/* UPE and MPE will be handled by normal PROMISC logic
3205		 * in e1000e_set_rx_mode */
3206		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3207			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3208			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3209
3210		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3211			  E1000_RCTL_DPF | /* Allow filtered pause */
3212			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3213		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3214		 * and that breaks VLANs.
3215		 */
3216	}
3217
3218	wr32(E1000_RCTL, rctl);
3219}
3220
3221static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3222                                   int vfn)
3223{
3224	struct e1000_hw *hw = &adapter->hw;
3225	u32 vmolr;
3226
3227	/* if it isn't the PF check to see if VFs are enabled and
3228	 * increase the size to support vlan tags */
3229	if (vfn < adapter->vfs_allocated_count &&
3230	    adapter->vf_data[vfn].vlans_enabled)
3231		size += VLAN_TAG_SIZE;
3232
3233	vmolr = rd32(E1000_VMOLR(vfn));
3234	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3235	vmolr |= size | E1000_VMOLR_LPE;
3236	wr32(E1000_VMOLR(vfn), vmolr);
3237
3238	return 0;
3239}
3240
3241/**
3242 * igb_rlpml_set - set maximum receive packet size
3243 * @adapter: board private structure
3244 *
3245 * Configure maximum receivable packet size.
3246 **/
3247static void igb_rlpml_set(struct igb_adapter *adapter)
3248{
3249	u32 max_frame_size = adapter->max_frame_size;
3250	struct e1000_hw *hw = &adapter->hw;
3251	u16 pf_id = adapter->vfs_allocated_count;
3252
3253	if (pf_id) {
3254		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255		/*
3256		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3257		 * to our max jumbo frame size, in case we need to enable
3258		 * jumbo frames on one of the rings later.
3259		 * This will not pass over-length frames into the default
3260		 * queue because it's gated by the VMOLR.RLPML.
3261		 */
3262		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263	}
3264
3265	wr32(E1000_RLPML, max_frame_size);
3266}
3267
3268static inline void igb_set_vmolr(struct igb_adapter *adapter,
3269				 int vfn, bool aupe)
3270{
3271	struct e1000_hw *hw = &adapter->hw;
3272	u32 vmolr;
3273
3274	/*
3275	 * This register exists only on 82576 and newer so if we are older then
3276	 * we should exit and do nothing
3277	 */
3278	if (hw->mac.type < e1000_82576)
3279		return;
3280
3281	vmolr = rd32(E1000_VMOLR(vfn));
3282	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3283	if (aupe)
3284		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3285	else
3286		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287
3288	/* clear all bits that might not be set */
3289	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3290
3291	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3293	/*
3294	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3295	 * multicast packets
3296	 */
3297	if (vfn <= adapter->vfs_allocated_count)
3298		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3299
3300	wr32(E1000_VMOLR(vfn), vmolr);
3301}
3302
3303/**
3304 * igb_configure_rx_ring - Configure a receive ring after Reset
3305 * @adapter: board private structure
3306 * @ring: receive ring to be configured
3307 *
3308 * Configure the Rx unit of the MAC after a reset.
3309 **/
3310void igb_configure_rx_ring(struct igb_adapter *adapter,
3311                           struct igb_ring *ring)
3312{
3313	struct e1000_hw *hw = &adapter->hw;
3314	u64 rdba = ring->dma;
3315	int reg_idx = ring->reg_idx;
3316	u32 srrctl = 0, rxdctl = 0;
3317
3318	/* disable the queue */
3319	wr32(E1000_RXDCTL(reg_idx), 0);
3320
3321	/* Set DMA base address registers */
3322	wr32(E1000_RDBAL(reg_idx),
3323	     rdba & 0x00000000ffffffffULL);
3324	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3325	wr32(E1000_RDLEN(reg_idx),
3326	               ring->count * sizeof(union e1000_adv_rx_desc));
3327
3328	/* initialize head and tail */
3329	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330	wr32(E1000_RDH(reg_idx), 0);
3331	writel(0, ring->tail);
3332
3333	/* set descriptor configuration */
3334	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337	if (hw->mac.type >= e1000_82580)
3338		srrctl |= E1000_SRRCTL_TIMESTAMP;
3339	/* Only set Drop Enable if we are supporting multiple queues */
3340	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3341		srrctl |= E1000_SRRCTL_DROP_EN;
3342
3343	wr32(E1000_SRRCTL(reg_idx), srrctl);
3344
3345	/* set filtering for VMDQ pools */
3346	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347
3348	rxdctl |= IGB_RX_PTHRESH;
3349	rxdctl |= IGB_RX_HTHRESH << 8;
3350	rxdctl |= IGB_RX_WTHRESH << 16;
3351
3352	/* enable receive descriptor fetching */
3353	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3355}
3356
3357static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3358				  struct igb_ring *rx_ring)
3359{
3360#define IGB_MAX_BUILD_SKB_SIZE \
3361	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3362	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3363
3364	/* set build_skb flag */
3365	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3366		set_ring_build_skb_enabled(rx_ring);
3367	else
3368		clear_ring_build_skb_enabled(rx_ring);
3369}
3370
3371/**
3372 * igb_configure_rx - Configure receive Unit after Reset
3373 * @adapter: board private structure
3374 *
3375 * Configure the Rx unit of the MAC after a reset.
3376 **/
3377static void igb_configure_rx(struct igb_adapter *adapter)
3378{
3379	int i;
3380
3381	/* set UTA to appropriate mode */
3382	igb_set_uta(adapter);
3383
3384	/* set the correct pool for the PF default MAC address in entry 0 */
3385	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3386	                 adapter->vfs_allocated_count);
3387
3388	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3389	 * the Base and Length of the Rx Descriptor Ring */
3390	for (i = 0; i < adapter->num_rx_queues; i++) {
3391		struct igb_ring *rx_ring = adapter->rx_ring[i];
3392		igb_set_rx_buffer_len(adapter, rx_ring);
3393		igb_configure_rx_ring(adapter, rx_ring);
3394	}
3395}
3396
3397/**
3398 * igb_free_tx_resources - Free Tx Resources per Queue
3399 * @tx_ring: Tx descriptor ring for a specific queue
3400 *
3401 * Free all transmit software resources
3402 **/
3403void igb_free_tx_resources(struct igb_ring *tx_ring)
3404{
3405	igb_clean_tx_ring(tx_ring);
3406
3407	vfree(tx_ring->tx_buffer_info);
3408	tx_ring->tx_buffer_info = NULL;
3409
3410	/* if not set, then don't free */
3411	if (!tx_ring->desc)
3412		return;
3413
3414	dma_free_coherent(tx_ring->dev, tx_ring->size,
3415			  tx_ring->desc, tx_ring->dma);
3416
3417	tx_ring->desc = NULL;
3418}
3419
3420/**
3421 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3422 * @adapter: board private structure
3423 *
3424 * Free all transmit software resources
3425 **/
3426static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3427{
3428	int i;
3429
3430	for (i = 0; i < adapter->num_tx_queues; i++)
3431		igb_free_tx_resources(adapter->tx_ring[i]);
3432}
3433
3434void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3435				    struct igb_tx_buffer *tx_buffer)
3436{
3437	if (tx_buffer->skb) {
3438		dev_kfree_skb_any(tx_buffer->skb);
3439		if (dma_unmap_len(tx_buffer, len))
3440			dma_unmap_single(ring->dev,
3441					 dma_unmap_addr(tx_buffer, dma),
3442					 dma_unmap_len(tx_buffer, len),
3443					 DMA_TO_DEVICE);
3444	} else if (dma_unmap_len(tx_buffer, len)) {
3445		dma_unmap_page(ring->dev,
3446			       dma_unmap_addr(tx_buffer, dma),
3447			       dma_unmap_len(tx_buffer, len),
3448			       DMA_TO_DEVICE);
3449	}
3450	tx_buffer->next_to_watch = NULL;
3451	tx_buffer->skb = NULL;
3452	dma_unmap_len_set(tx_buffer, len, 0);
3453	/* buffer_info must be completely set up in the transmit path */
3454}
3455
3456/**
3457 * igb_clean_tx_ring - Free Tx Buffers
3458 * @tx_ring: ring to be cleaned
3459 **/
3460static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3461{
3462	struct igb_tx_buffer *buffer_info;
3463	unsigned long size;
3464	u16 i;
3465
3466	if (!tx_ring->tx_buffer_info)
3467		return;
3468	/* Free all the Tx ring sk_buffs */
3469
3470	for (i = 0; i < tx_ring->count; i++) {
3471		buffer_info = &tx_ring->tx_buffer_info[i];
3472		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3473	}
3474
3475	netdev_tx_reset_queue(txring_txq(tx_ring));
3476
3477	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3478	memset(tx_ring->tx_buffer_info, 0, size);
3479
3480	/* Zero out the descriptor ring */
3481	memset(tx_ring->desc, 0, tx_ring->size);
3482
3483	tx_ring->next_to_use = 0;
3484	tx_ring->next_to_clean = 0;
3485}
3486
3487/**
3488 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3489 * @adapter: board private structure
3490 **/
3491static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3492{
3493	int i;
3494
3495	for (i = 0; i < adapter->num_tx_queues; i++)
3496		igb_clean_tx_ring(adapter->tx_ring[i]);
3497}
3498
3499/**
3500 * igb_free_rx_resources - Free Rx Resources
3501 * @rx_ring: ring to clean the resources from
3502 *
3503 * Free all receive software resources
3504 **/
3505void igb_free_rx_resources(struct igb_ring *rx_ring)
3506{
3507	igb_clean_rx_ring(rx_ring);
3508
3509	vfree(rx_ring->rx_buffer_info);
3510	rx_ring->rx_buffer_info = NULL;
3511
3512	/* if not set, then don't free */
3513	if (!rx_ring->desc)
3514		return;
3515
3516	dma_free_coherent(rx_ring->dev, rx_ring->size,
3517			  rx_ring->desc, rx_ring->dma);
3518
3519	rx_ring->desc = NULL;
3520}
3521
3522/**
3523 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3524 * @adapter: board private structure
3525 *
3526 * Free all receive software resources
3527 **/
3528static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3529{
3530	int i;
3531
3532	for (i = 0; i < adapter->num_rx_queues; i++)
3533		igb_free_rx_resources(adapter->rx_ring[i]);
3534}
3535
3536/**
3537 * igb_clean_rx_ring - Free Rx Buffers per Queue
3538 * @rx_ring: ring to free buffers from
3539 **/
3540static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3541{
3542	unsigned long size;
3543	u16 i;
3544
3545	if (rx_ring->skb)
3546		dev_kfree_skb(rx_ring->skb);
3547	rx_ring->skb = NULL;
3548
3549	if (!rx_ring->rx_buffer_info)
3550		return;
3551
3552	/* Free all the Rx ring sk_buffs */
3553	for (i = 0; i < rx_ring->count; i++) {
3554		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3555
3556		if (!buffer_info->page)
3557			continue;
3558
3559		dma_unmap_page(rx_ring->dev,
3560			       buffer_info->dma,
3561			       PAGE_SIZE,
3562			       DMA_FROM_DEVICE);
3563		__free_page(buffer_info->page);
3564
3565		buffer_info->page = NULL;
3566	}
3567
3568	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3569	memset(rx_ring->rx_buffer_info, 0, size);
3570
3571	/* Zero out the descriptor ring */
3572	memset(rx_ring->desc, 0, rx_ring->size);
3573
3574	rx_ring->next_to_alloc = 0;
3575	rx_ring->next_to_clean = 0;
3576	rx_ring->next_to_use = 0;
3577}
3578
3579/**
3580 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3581 * @adapter: board private structure
3582 **/
3583static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3584{
3585	int i;
3586
3587	for (i = 0; i < adapter->num_rx_queues; i++)
3588		igb_clean_rx_ring(adapter->rx_ring[i]);
3589}
3590
3591/**
3592 * igb_set_mac - Change the Ethernet Address of the NIC
3593 * @netdev: network interface device structure
3594 * @p: pointer to an address structure
3595 *
3596 * Returns 0 on success, negative on failure
3597 **/
3598static int igb_set_mac(struct net_device *netdev, void *p)
3599{
3600	struct igb_adapter *adapter = netdev_priv(netdev);
3601	struct e1000_hw *hw = &adapter->hw;
3602	struct sockaddr *addr = p;
3603
3604	if (!is_valid_ether_addr(addr->sa_data))
3605		return -EADDRNOTAVAIL;
3606
3607	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3608	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3609
3610	/* set the correct pool for the new PF MAC address in entry 0 */
3611	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3612	                 adapter->vfs_allocated_count);
3613
3614	return 0;
3615}
3616
3617/**
3618 * igb_write_mc_addr_list - write multicast addresses to MTA
3619 * @netdev: network interface device structure
3620 *
3621 * Writes multicast address list to the MTA hash table.
3622 * Returns: -ENOMEM on failure
3623 *                0 on no addresses written
3624 *                X on writing X addresses to MTA
3625 **/
3626static int igb_write_mc_addr_list(struct net_device *netdev)
3627{
3628	struct igb_adapter *adapter = netdev_priv(netdev);
3629	struct e1000_hw *hw = &adapter->hw;
3630	struct netdev_hw_addr *ha;
3631	u8  *mta_list;
3632	int i;
3633
3634	if (netdev_mc_empty(netdev)) {
3635		/* nothing to program, so clear mc list */
3636		igb_update_mc_addr_list(hw, NULL, 0);
3637		igb_restore_vf_multicasts(adapter);
3638		return 0;
3639	}
3640
3641	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3642	if (!mta_list)
3643		return -ENOMEM;
3644
3645	/* The shared function expects a packed array of only addresses. */
3646	i = 0;
3647	netdev_for_each_mc_addr(ha, netdev)
3648		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3649
3650	igb_update_mc_addr_list(hw, mta_list, i);
3651	kfree(mta_list);
3652
3653	return netdev_mc_count(netdev);
3654}
3655
3656/**
3657 * igb_write_uc_addr_list - write unicast addresses to RAR table
3658 * @netdev: network interface device structure
3659 *
3660 * Writes unicast address list to the RAR table.
3661 * Returns: -ENOMEM on failure/insufficient address space
3662 *                0 on no addresses written
3663 *                X on writing X addresses to the RAR table
3664 **/
3665static int igb_write_uc_addr_list(struct net_device *netdev)
3666{
3667	struct igb_adapter *adapter = netdev_priv(netdev);
3668	struct e1000_hw *hw = &adapter->hw;
3669	unsigned int vfn = adapter->vfs_allocated_count;
3670	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3671	int count = 0;
3672
3673	/* return ENOMEM indicating insufficient memory for addresses */
3674	if (netdev_uc_count(netdev) > rar_entries)
3675		return -ENOMEM;
3676
3677	if (!netdev_uc_empty(netdev) && rar_entries) {
3678		struct netdev_hw_addr *ha;
3679
3680		netdev_for_each_uc_addr(ha, netdev) {
3681			if (!rar_entries)
3682				break;
3683			igb_rar_set_qsel(adapter, ha->addr,
3684			                 rar_entries--,
3685			                 vfn);
3686			count++;
3687		}
3688	}
3689	/* write the addresses in reverse order to avoid write combining */
3690	for (; rar_entries > 0 ; rar_entries--) {
3691		wr32(E1000_RAH(rar_entries), 0);
3692		wr32(E1000_RAL(rar_entries), 0);
3693	}
3694	wrfl();
3695
3696	return count;
3697}
3698
3699/**
3700 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3701 * @netdev: network interface device structure
3702 *
3703 * The set_rx_mode entry point is called whenever the unicast or multicast
3704 * address lists or the network interface flags are updated.  This routine is
3705 * responsible for configuring the hardware for proper unicast, multicast,
3706 * promiscuous mode, and all-multi behavior.
3707 **/
3708static void igb_set_rx_mode(struct net_device *netdev)
3709{
3710	struct igb_adapter *adapter = netdev_priv(netdev);
3711	struct e1000_hw *hw = &adapter->hw;
3712	unsigned int vfn = adapter->vfs_allocated_count;
3713	u32 rctl, vmolr = 0;
3714	int count;
3715
3716	/* Check for Promiscuous and All Multicast modes */
3717	rctl = rd32(E1000_RCTL);
3718
3719	/* clear the effected bits */
3720	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3721
3722	if (netdev->flags & IFF_PROMISC) {
3723		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3724		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3725	} else {
3726		if (netdev->flags & IFF_ALLMULTI) {
3727			rctl |= E1000_RCTL_MPE;
3728			vmolr |= E1000_VMOLR_MPME;
3729		} else {
3730			/*
3731			 * Write addresses to the MTA, if the attempt fails
3732			 * then we should just turn on promiscuous mode so
3733			 * that we can at least receive multicast traffic
3734			 */
3735			count = igb_write_mc_addr_list(netdev);
3736			if (count < 0) {
3737				rctl |= E1000_RCTL_MPE;
3738				vmolr |= E1000_VMOLR_MPME;
3739			} else if (count) {
3740				vmolr |= E1000_VMOLR_ROMPE;
3741			}
3742		}
3743		/*
3744		 * Write addresses to available RAR registers, if there is not
3745		 * sufficient space to store all the addresses then enable
3746		 * unicast promiscuous mode
3747		 */
3748		count = igb_write_uc_addr_list(netdev);
3749		if (count < 0) {
3750			rctl |= E1000_RCTL_UPE;
3751			vmolr |= E1000_VMOLR_ROPE;
3752		}
3753		rctl |= E1000_RCTL_VFE;
3754	}
3755	wr32(E1000_RCTL, rctl);
3756
3757	/*
3758	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3759	 * the VMOLR to enable the appropriate modes.  Without this workaround
3760	 * we will have issues with VLAN tag stripping not being done for frames
3761	 * that are only arriving because we are the default pool
3762	 */
3763	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3764		return;
3765
3766	vmolr |= rd32(E1000_VMOLR(vfn)) &
3767	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3768	wr32(E1000_VMOLR(vfn), vmolr);
3769	igb_restore_vf_multicasts(adapter);
3770}
3771
3772static void igb_check_wvbr(struct igb_adapter *adapter)
3773{
3774	struct e1000_hw *hw = &adapter->hw;
3775	u32 wvbr = 0;
3776
3777	switch (hw->mac.type) {
3778	case e1000_82576:
3779	case e1000_i350:
3780		if (!(wvbr = rd32(E1000_WVBR)))
3781			return;
3782		break;
3783	default:
3784		break;
3785	}
3786
3787	adapter->wvbr |= wvbr;
3788}
3789
3790#define IGB_STAGGERED_QUEUE_OFFSET 8
3791
3792static void igb_spoof_check(struct igb_adapter *adapter)
3793{
3794	int j;
3795
3796	if (!adapter->wvbr)
3797		return;
3798
3799	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3800		if (adapter->wvbr & (1 << j) ||
3801		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3802			dev_warn(&adapter->pdev->dev,
3803				"Spoof event(s) detected on VF %d\n", j);
3804			adapter->wvbr &=
3805				~((1 << j) |
3806				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3807		}
3808	}
3809}
3810
3811/* Need to wait a few seconds after link up to get diagnostic information from
3812 * the phy */
3813static void igb_update_phy_info(unsigned long data)
3814{
3815	struct igb_adapter *adapter = (struct igb_adapter *) data;
3816	igb_get_phy_info(&adapter->hw);
3817}
3818
3819/**
3820 * igb_has_link - check shared code for link and determine up/down
3821 * @adapter: pointer to driver private info
3822 **/
3823bool igb_has_link(struct igb_adapter *adapter)
3824{
3825	struct e1000_hw *hw = &adapter->hw;
3826	bool link_active = false;
3827	s32 ret_val = 0;
3828
3829	/* get_link_status is set on LSC (link status) interrupt or
3830	 * rx sequence error interrupt.  get_link_status will stay
3831	 * false until the e1000_check_for_link establishes link
3832	 * for copper adapters ONLY
3833	 */
3834	switch (hw->phy.media_type) {
3835	case e1000_media_type_copper:
3836		if (hw->mac.get_link_status) {
3837			ret_val = hw->mac.ops.check_for_link(hw);
3838			link_active = !hw->mac.get_link_status;
3839		} else {
3840			link_active = true;
3841		}
3842		break;
3843	case e1000_media_type_internal_serdes:
3844		ret_val = hw->mac.ops.check_for_link(hw);
3845		link_active = hw->mac.serdes_has_link;
3846		break;
3847	default:
3848	case e1000_media_type_unknown:
3849		break;
3850	}
3851
3852	return link_active;
3853}
3854
3855static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3856{
3857	bool ret = false;
3858	u32 ctrl_ext, thstat;
3859
3860	/* check for thermal sensor event on i350 copper only */
3861	if (hw->mac.type == e1000_i350) {
3862		thstat = rd32(E1000_THSTAT);
3863		ctrl_ext = rd32(E1000_CTRL_EXT);
3864
3865		if ((hw->phy.media_type == e1000_media_type_copper) &&
3866		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3867			ret = !!(thstat & event);
3868		}
3869	}
3870
3871	return ret;
3872}
3873
3874/**
3875 * igb_watchdog - Timer Call-back
3876 * @data: pointer to adapter cast into an unsigned long
3877 **/
3878static void igb_watchdog(unsigned long data)
3879{
3880	struct igb_adapter *adapter = (struct igb_adapter *)data;
3881	/* Do the rest outside of interrupt context */
3882	schedule_work(&adapter->watchdog_task);
3883}
3884
3885static void igb_watchdog_task(struct work_struct *work)
3886{
3887	struct igb_adapter *adapter = container_of(work,
3888	                                           struct igb_adapter,
3889                                                   watchdog_task);
3890	struct e1000_hw *hw = &adapter->hw;
3891	struct net_device *netdev = adapter->netdev;
3892	u32 link;
3893	int i;
3894
3895	link = igb_has_link(adapter);
3896	if (link) {
3897		/* Cancel scheduled suspend requests. */
3898		pm_runtime_resume(netdev->dev.parent);
3899
3900		if (!netif_carrier_ok(netdev)) {
3901			u32 ctrl;
3902			hw->mac.ops.get_speed_and_duplex(hw,
3903			                                 &adapter->link_speed,
3904			                                 &adapter->link_duplex);
3905
3906			ctrl = rd32(E1000_CTRL);
3907			/* Links status message must follow this format */
3908			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3909			       "Duplex, Flow Control: %s\n",
3910			       netdev->name,
3911			       adapter->link_speed,
3912			       adapter->link_duplex == FULL_DUPLEX ?
3913			       "Full" : "Half",
3914			       (ctrl & E1000_CTRL_TFCE) &&
3915			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3916			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3917			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3918
3919			/* check for thermal sensor event */
3920			if (igb_thermal_sensor_event(hw,
3921			    E1000_THSTAT_LINK_THROTTLE)) {
3922				netdev_info(netdev, "The network adapter link "
3923					    "speed was downshifted because it "
3924					    "overheated\n");
3925			}
3926
3927			/* adjust timeout factor according to speed/duplex */
3928			adapter->tx_timeout_factor = 1;
3929			switch (adapter->link_speed) {
3930			case SPEED_10:
3931				adapter->tx_timeout_factor = 14;
3932				break;
3933			case SPEED_100:
3934				/* maybe add some timeout factor ? */
3935				break;
3936			}
3937
3938			netif_carrier_on(netdev);
3939
3940			igb_ping_all_vfs(adapter);
3941			igb_check_vf_rate_limit(adapter);
3942
3943			/* link state has changed, schedule phy info update */
3944			if (!test_bit(__IGB_DOWN, &adapter->state))
3945				mod_timer(&adapter->phy_info_timer,
3946					  round_jiffies(jiffies + 2 * HZ));
3947		}
3948	} else {
3949		if (netif_carrier_ok(netdev)) {
3950			adapter->link_speed = 0;
3951			adapter->link_duplex = 0;
3952
3953			/* check for thermal sensor event */
3954			if (igb_thermal_sensor_event(hw,
3955			    E1000_THSTAT_PWR_DOWN)) {
3956				netdev_err(netdev, "The network adapter was "
3957					   "stopped because it overheated\n");
3958			}
3959
3960			/* Links status message must follow this format */
3961			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3962			       netdev->name);
3963			netif_carrier_off(netdev);
3964
3965			igb_ping_all_vfs(adapter);
3966
3967			/* link state has changed, schedule phy info update */
3968			if (!test_bit(__IGB_DOWN, &adapter->state))
3969				mod_timer(&adapter->phy_info_timer,
3970					  round_jiffies(jiffies + 2 * HZ));
3971
3972			pm_schedule_suspend(netdev->dev.parent,
3973					    MSEC_PER_SEC * 5);
3974		}
3975	}
3976
3977	spin_lock(&adapter->stats64_lock);
3978	igb_update_stats(adapter, &adapter->stats64);
3979	spin_unlock(&adapter->stats64_lock);
3980
3981	for (i = 0; i < adapter->num_tx_queues; i++) {
3982		struct igb_ring *tx_ring = adapter->tx_ring[i];
3983		if (!netif_carrier_ok(netdev)) {
3984			/* We've lost link, so the controller stops DMA,
3985			 * but we've got queued Tx work that's never going
3986			 * to get done, so reset controller to flush Tx.
3987			 * (Do the reset outside of interrupt context). */
3988			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3989				adapter->tx_timeout_count++;
3990				schedule_work(&adapter->reset_task);
3991				/* return immediately since reset is imminent */
3992				return;
3993			}
3994		}
3995
3996		/* Force detection of hung controller every watchdog period */
3997		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3998	}
3999
4000	/* Cause software interrupt to ensure rx ring is cleaned */
4001	if (adapter->msix_entries) {
4002		u32 eics = 0;
4003		for (i = 0; i < adapter->num_q_vectors; i++)
4004			eics |= adapter->q_vector[i]->eims_value;
4005		wr32(E1000_EICS, eics);
4006	} else {
4007		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4008	}
4009
4010	igb_spoof_check(adapter);
4011	igb_ptp_rx_hang(adapter);
4012
4013	/* Reset the timer */
4014	if (!test_bit(__IGB_DOWN, &adapter->state))
4015		mod_timer(&adapter->watchdog_timer,
4016			  round_jiffies(jiffies + 2 * HZ));
4017}
4018
4019enum latency_range {
4020	lowest_latency = 0,
4021	low_latency = 1,
4022	bulk_latency = 2,
4023	latency_invalid = 255
4024};
4025
4026/**
4027 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4028 *
4029 *      Stores a new ITR value based on strictly on packet size.  This
4030 *      algorithm is less sophisticated than that used in igb_update_itr,
4031 *      due to the difficulty of synchronizing statistics across multiple
4032 *      receive rings.  The divisors and thresholds used by this function
4033 *      were determined based on theoretical maximum wire speed and testing
4034 *      data, in order to minimize response time while increasing bulk
4035 *      throughput.
4036 *      This functionality is controlled by the InterruptThrottleRate module
4037 *      parameter (see igb_param.c)
4038 *      NOTE:  This function is called only when operating in a multiqueue
4039 *             receive environment.
4040 * @q_vector: pointer to q_vector
4041 **/
4042static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4043{
4044	int new_val = q_vector->itr_val;
4045	int avg_wire_size = 0;
4046	struct igb_adapter *adapter = q_vector->adapter;
4047	unsigned int packets;
4048
4049	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4050	 * ints/sec - ITR timer value of 120 ticks.
4051	 */
4052	if (adapter->link_speed != SPEED_1000) {
4053		new_val = IGB_4K_ITR;
4054		goto set_itr_val;
4055	}
4056
4057	packets = q_vector->rx.total_packets;
4058	if (packets)
4059		avg_wire_size = q_vector->rx.total_bytes / packets;
4060
4061	packets = q_vector->tx.total_packets;
4062	if (packets)
4063		avg_wire_size = max_t(u32, avg_wire_size,
4064				      q_vector->tx.total_bytes / packets);
4065
4066	/* if avg_wire_size isn't set no work was done */
4067	if (!avg_wire_size)
4068		goto clear_counts;
4069
4070	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4071	avg_wire_size += 24;
4072
4073	/* Don't starve jumbo frames */
4074	avg_wire_size = min(avg_wire_size, 3000);
4075
4076	/* Give a little boost to mid-size frames */
4077	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4078		new_val = avg_wire_size / 3;
4079	else
4080		new_val = avg_wire_size / 2;
4081
4082	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4083	if (new_val < IGB_20K_ITR &&
4084	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4085	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4086		new_val = IGB_20K_ITR;
4087
4088set_itr_val:
4089	if (new_val != q_vector->itr_val) {
4090		q_vector->itr_val = new_val;
4091		q_vector->set_itr = 1;
4092	}
4093clear_counts:
4094	q_vector->rx.total_bytes = 0;
4095	q_vector->rx.total_packets = 0;
4096	q_vector->tx.total_bytes = 0;
4097	q_vector->tx.total_packets = 0;
4098}
4099
4100/**
4101 * igb_update_itr - update the dynamic ITR value based on statistics
4102 *      Stores a new ITR value based on packets and byte
4103 *      counts during the last interrupt.  The advantage of per interrupt
4104 *      computation is faster updates and more accurate ITR for the current
4105 *      traffic pattern.  Constants in this function were computed
4106 *      based on theoretical maximum wire speed and thresholds were set based
4107 *      on testing data as well as attempting to minimize response time
4108 *      while increasing bulk throughput.
4109 *      this functionality is controlled by the InterruptThrottleRate module
4110 *      parameter (see igb_param.c)
4111 *      NOTE:  These calculations are only valid when operating in a single-
4112 *             queue environment.
4113 * @q_vector: pointer to q_vector
4114 * @ring_container: ring info to update the itr for
4115 **/
4116static void igb_update_itr(struct igb_q_vector *q_vector,
4117			   struct igb_ring_container *ring_container)
4118{
4119	unsigned int packets = ring_container->total_packets;
4120	unsigned int bytes = ring_container->total_bytes;
4121	u8 itrval = ring_container->itr;
4122
4123	/* no packets, exit with status unchanged */
4124	if (packets == 0)
4125		return;
4126
4127	switch (itrval) {
4128	case lowest_latency:
4129		/* handle TSO and jumbo frames */
4130		if (bytes/packets > 8000)
4131			itrval = bulk_latency;
4132		else if ((packets < 5) && (bytes > 512))
4133			itrval = low_latency;
4134		break;
4135	case low_latency:  /* 50 usec aka 20000 ints/s */
4136		if (bytes > 10000) {
4137			/* this if handles the TSO accounting */
4138			if (bytes/packets > 8000) {
4139				itrval = bulk_latency;
4140			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4141				itrval = bulk_latency;
4142			} else if ((packets > 35)) {
4143				itrval = lowest_latency;
4144			}
4145		} else if (bytes/packets > 2000) {
4146			itrval = bulk_latency;
4147		} else if (packets <= 2 && bytes < 512) {
4148			itrval = lowest_latency;
4149		}
4150		break;
4151	case bulk_latency: /* 250 usec aka 4000 ints/s */
4152		if (bytes > 25000) {
4153			if (packets > 35)
4154				itrval = low_latency;
4155		} else if (bytes < 1500) {
4156			itrval = low_latency;
4157		}
4158		break;
4159	}
4160
4161	/* clear work counters since we have the values we need */
4162	ring_container->total_bytes = 0;
4163	ring_container->total_packets = 0;
4164
4165	/* write updated itr to ring container */
4166	ring_container->itr = itrval;
4167}
4168
4169static void igb_set_itr(struct igb_q_vector *q_vector)
4170{
4171	struct igb_adapter *adapter = q_vector->adapter;
4172	u32 new_itr = q_vector->itr_val;
4173	u8 current_itr = 0;
4174
4175	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4176	if (adapter->link_speed != SPEED_1000) {
4177		current_itr = 0;
4178		new_itr = IGB_4K_ITR;
4179		goto set_itr_now;
4180	}
4181
4182	igb_update_itr(q_vector, &q_vector->tx);
4183	igb_update_itr(q_vector, &q_vector->rx);
4184
4185	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4186
4187	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4188	if (current_itr == lowest_latency &&
4189	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4190	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4191		current_itr = low_latency;
4192
4193	switch (current_itr) {
4194	/* counts and packets in update_itr are dependent on these numbers */
4195	case lowest_latency:
4196		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4197		break;
4198	case low_latency:
4199		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4200		break;
4201	case bulk_latency:
4202		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4203		break;
4204	default:
4205		break;
4206	}
4207
4208set_itr_now:
4209	if (new_itr != q_vector->itr_val) {
4210		/* this attempts to bias the interrupt rate towards Bulk
4211		 * by adding intermediate steps when interrupt rate is
4212		 * increasing */
4213		new_itr = new_itr > q_vector->itr_val ?
4214		             max((new_itr * q_vector->itr_val) /
4215		                 (new_itr + (q_vector->itr_val >> 2)),
4216				 new_itr) :
4217			     new_itr;
4218		/* Don't write the value here; it resets the adapter's
4219		 * internal timer, and causes us to delay far longer than
4220		 * we should between interrupts.  Instead, we write the ITR
4221		 * value at the beginning of the next interrupt so the timing
4222		 * ends up being correct.
4223		 */
4224		q_vector->itr_val = new_itr;
4225		q_vector->set_itr = 1;
4226	}
4227}
4228
4229static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4230			    u32 type_tucmd, u32 mss_l4len_idx)
4231{
4232	struct e1000_adv_tx_context_desc *context_desc;
4233	u16 i = tx_ring->next_to_use;
4234
4235	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4236
4237	i++;
4238	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4239
4240	/* set bits to identify this as an advanced context descriptor */
4241	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4242
4243	/* For 82575, context index must be unique per ring. */
4244	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4245		mss_l4len_idx |= tx_ring->reg_idx << 4;
4246
4247	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4248	context_desc->seqnum_seed	= 0;
4249	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4250	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4251}
4252
4253static int igb_tso(struct igb_ring *tx_ring,
4254		   struct igb_tx_buffer *first,
4255		   u8 *hdr_len)
4256{
4257	struct sk_buff *skb = first->skb;
4258	u32 vlan_macip_lens, type_tucmd;
4259	u32 mss_l4len_idx, l4len;
4260
4261	if (skb->ip_summed != CHECKSUM_PARTIAL)
4262		return 0;
4263
4264	if (!skb_is_gso(skb))
4265		return 0;
4266
4267	if (skb_header_cloned(skb)) {
4268		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4269		if (err)
4270			return err;
4271	}
4272
4273	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4274	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4275
4276	if (first->protocol == __constant_htons(ETH_P_IP)) {
4277		struct iphdr *iph = ip_hdr(skb);
4278		iph->tot_len = 0;
4279		iph->check = 0;
4280		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4281							 iph->daddr, 0,
4282							 IPPROTO_TCP,
4283							 0);
4284		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4285		first->tx_flags |= IGB_TX_FLAGS_TSO |
4286				   IGB_TX_FLAGS_CSUM |
4287				   IGB_TX_FLAGS_IPV4;
4288	} else if (skb_is_gso_v6(skb)) {
4289		ipv6_hdr(skb)->payload_len = 0;
4290		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4291						       &ipv6_hdr(skb)->daddr,
4292						       0, IPPROTO_TCP, 0);
4293		first->tx_flags |= IGB_TX_FLAGS_TSO |
4294				   IGB_TX_FLAGS_CSUM;
4295	}
4296
4297	/* compute header lengths */
4298	l4len = tcp_hdrlen(skb);
4299	*hdr_len = skb_transport_offset(skb) + l4len;
4300
4301	/* update gso size and bytecount with header size */
4302	first->gso_segs = skb_shinfo(skb)->gso_segs;
4303	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4304
4305	/* MSS L4LEN IDX */
4306	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4307	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4308
4309	/* VLAN MACLEN IPLEN */
4310	vlan_macip_lens = skb_network_header_len(skb);
4311	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4312	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4313
4314	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4315
4316	return 1;
4317}
4318
4319static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4320{
4321	struct sk_buff *skb = first->skb;
4322	u32 vlan_macip_lens = 0;
4323	u32 mss_l4len_idx = 0;
4324	u32 type_tucmd = 0;
4325
4326	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4327		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4328			return;
4329	} else {
4330		u8 l4_hdr = 0;
4331		switch (first->protocol) {
4332		case __constant_htons(ETH_P_IP):
4333			vlan_macip_lens |= skb_network_header_len(skb);
4334			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4335			l4_hdr = ip_hdr(skb)->protocol;
4336			break;
4337		case __constant_htons(ETH_P_IPV6):
4338			vlan_macip_lens |= skb_network_header_len(skb);
4339			l4_hdr = ipv6_hdr(skb)->nexthdr;
4340			break;
4341		default:
4342			if (unlikely(net_ratelimit())) {
4343				dev_warn(tx_ring->dev,
4344				 "partial checksum but proto=%x!\n",
4345				 first->protocol);
4346			}
4347			break;
4348		}
4349
4350		switch (l4_hdr) {
4351		case IPPROTO_TCP:
4352			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4353			mss_l4len_idx = tcp_hdrlen(skb) <<
4354					E1000_ADVTXD_L4LEN_SHIFT;
4355			break;
4356		case IPPROTO_SCTP:
4357			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4358			mss_l4len_idx = sizeof(struct sctphdr) <<
4359					E1000_ADVTXD_L4LEN_SHIFT;
4360			break;
4361		case IPPROTO_UDP:
4362			mss_l4len_idx = sizeof(struct udphdr) <<
4363					E1000_ADVTXD_L4LEN_SHIFT;
4364			break;
4365		default:
4366			if (unlikely(net_ratelimit())) {
4367				dev_warn(tx_ring->dev,
4368				 "partial checksum but l4 proto=%x!\n",
4369				 l4_hdr);
4370			}
4371			break;
4372		}
4373
4374		/* update TX checksum flag */
4375		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4376	}
4377
4378	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4379	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4380
4381	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4382}
4383
4384#define IGB_SET_FLAG(_input, _flag, _result) \
4385	((_flag <= _result) ? \
4386	 ((u32)(_input & _flag) * (_result / _flag)) : \
4387	 ((u32)(_input & _flag) / (_flag / _result)))
4388
4389static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4390{
4391	/* set type for advanced descriptor with frame checksum insertion */
4392	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4393		       E1000_ADVTXD_DCMD_DEXT |
4394		       E1000_ADVTXD_DCMD_IFCS;
4395
4396	/* set HW vlan bit if vlan is present */
4397	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4398				 (E1000_ADVTXD_DCMD_VLE));
4399
4400	/* set segmentation bits for TSO */
4401	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4402				 (E1000_ADVTXD_DCMD_TSE));
4403
4404	/* set timestamp bit if present */
4405	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4406				 (E1000_ADVTXD_MAC_TSTAMP));
4407
4408	/* insert frame checksum */
4409	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4410
4411	return cmd_type;
4412}
4413
4414static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4415				 union e1000_adv_tx_desc *tx_desc,
4416				 u32 tx_flags, unsigned int paylen)
4417{
4418	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4419
4420	/* 82575 requires a unique index per ring */
4421	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4422		olinfo_status |= tx_ring->reg_idx << 4;
4423
4424	/* insert L4 checksum */
4425	olinfo_status |= IGB_SET_FLAG(tx_flags,
4426				      IGB_TX_FLAGS_CSUM,
4427				      (E1000_TXD_POPTS_TXSM << 8));
4428
4429	/* insert IPv4 checksum */
4430	olinfo_status |= IGB_SET_FLAG(tx_flags,
4431				      IGB_TX_FLAGS_IPV4,
4432				      (E1000_TXD_POPTS_IXSM << 8));
4433
4434	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4435}
4436
4437static void igb_tx_map(struct igb_ring *tx_ring,
4438		       struct igb_tx_buffer *first,
4439		       const u8 hdr_len)
4440{
4441	struct sk_buff *skb = first->skb;
4442	struct igb_tx_buffer *tx_buffer;
4443	union e1000_adv_tx_desc *tx_desc;
4444	struct skb_frag_struct *frag;
4445	dma_addr_t dma;
4446	unsigned int data_len, size;
4447	u32 tx_flags = first->tx_flags;
4448	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4449	u16 i = tx_ring->next_to_use;
4450
4451	tx_desc = IGB_TX_DESC(tx_ring, i);
4452
4453	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4454
4455	size = skb_headlen(skb);
4456	data_len = skb->data_len;
4457
4458	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4459
4460	tx_buffer = first;
4461
4462	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4463		if (dma_mapping_error(tx_ring->dev, dma))
4464			goto dma_error;
4465
4466		/* record length, and DMA address */
4467		dma_unmap_len_set(tx_buffer, len, size);
4468		dma_unmap_addr_set(tx_buffer, dma, dma);
4469
4470		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4471
4472		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4473			tx_desc->read.cmd_type_len =
4474				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4475
4476			i++;
4477			tx_desc++;
4478			if (i == tx_ring->count) {
4479				tx_desc = IGB_TX_DESC(tx_ring, 0);
4480				i = 0;
4481			}
4482			tx_desc->read.olinfo_status = 0;
4483
4484			dma += IGB_MAX_DATA_PER_TXD;
4485			size -= IGB_MAX_DATA_PER_TXD;
4486
4487			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4488		}
4489
4490		if (likely(!data_len))
4491			break;
4492
4493		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4494
4495		i++;
4496		tx_desc++;
4497		if (i == tx_ring->count) {
4498			tx_desc = IGB_TX_DESC(tx_ring, 0);
4499			i = 0;
4500		}
4501		tx_desc->read.olinfo_status = 0;
4502
4503		size = skb_frag_size(frag);
4504		data_len -= size;
4505
4506		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4507				       size, DMA_TO_DEVICE);
4508
4509		tx_buffer = &tx_ring->tx_buffer_info[i];
4510	}
4511
4512	/* write last descriptor with RS and EOP bits */
4513	cmd_type |= size | IGB_TXD_DCMD;
4514	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4515
4516	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4517
4518	/* set the timestamp */
4519	first->time_stamp = jiffies;
4520
4521	/*
4522	 * Force memory writes to complete before letting h/w know there
4523	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4524	 * memory model archs, such as IA-64).
4525	 *
4526	 * We also need this memory barrier to make certain all of the
4527	 * status bits have been updated before next_to_watch is written.
4528	 */
4529	wmb();
4530
4531	/* set next_to_watch value indicating a packet is present */
4532	first->next_to_watch = tx_desc;
4533
4534	i++;
4535	if (i == tx_ring->count)
4536		i = 0;
4537
4538	tx_ring->next_to_use = i;
4539
4540	writel(i, tx_ring->tail);
4541
4542	/* we need this if more than one processor can write to our tail
4543	 * at a time, it syncronizes IO on IA64/Altix systems */
4544	mmiowb();
4545
4546	return;
4547
4548dma_error:
4549	dev_err(tx_ring->dev, "TX DMA map failed\n");
4550
4551	/* clear dma mappings for failed tx_buffer_info map */
4552	for (;;) {
4553		tx_buffer = &tx_ring->tx_buffer_info[i];
4554		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4555		if (tx_buffer == first)
4556			break;
4557		if (i == 0)
4558			i = tx_ring->count;
4559		i--;
4560	}
4561
4562	tx_ring->next_to_use = i;
4563}
4564
4565static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4566{
4567	struct net_device *netdev = tx_ring->netdev;
4568
4569	netif_stop_subqueue(netdev, tx_ring->queue_index);
4570
4571	/* Herbert's original patch had:
4572	 *  smp_mb__after_netif_stop_queue();
4573	 * but since that doesn't exist yet, just open code it. */
4574	smp_mb();
4575
4576	/* We need to check again in a case another CPU has just
4577	 * made room available. */
4578	if (igb_desc_unused(tx_ring) < size)
4579		return -EBUSY;
4580
4581	/* A reprieve! */
4582	netif_wake_subqueue(netdev, tx_ring->queue_index);
4583
4584	u64_stats_update_begin(&tx_ring->tx_syncp2);
4585	tx_ring->tx_stats.restart_queue2++;
4586	u64_stats_update_end(&tx_ring->tx_syncp2);
4587
4588	return 0;
4589}
4590
4591static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4592{
4593	if (igb_desc_unused(tx_ring) >= size)
4594		return 0;
4595	return __igb_maybe_stop_tx(tx_ring, size);
4596}
4597
4598netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4599				struct igb_ring *tx_ring)
4600{
4601	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4602	struct igb_tx_buffer *first;
4603	int tso;
4604	u32 tx_flags = 0;
4605	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4606	__be16 protocol = vlan_get_protocol(skb);
4607	u8 hdr_len = 0;
4608
4609	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4610	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4611	 *       + 2 desc gap to keep tail from touching head,
4612	 *       + 1 desc for context descriptor,
4613	 * otherwise try next time
4614	 */
4615	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4616		unsigned short f;
4617		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4618			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4619	} else {
4620		count += skb_shinfo(skb)->nr_frags;
4621	}
4622
4623	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4624		/* this is a hard error */
4625		return NETDEV_TX_BUSY;
4626	}
4627
4628	/* record the location of the first descriptor for this packet */
4629	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4630	first->skb = skb;
4631	first->bytecount = skb->len;
4632	first->gso_segs = 1;
4633
4634	skb_tx_timestamp(skb);
4635
4636	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4637		     !(adapter->ptp_tx_skb))) {
4638		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4639		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4640
4641		adapter->ptp_tx_skb = skb_get(skb);
4642		adapter->ptp_tx_start = jiffies;
4643		if (adapter->hw.mac.type == e1000_82576)
4644			schedule_work(&adapter->ptp_tx_work);
4645	}
4646
4647	if (vlan_tx_tag_present(skb)) {
4648		tx_flags |= IGB_TX_FLAGS_VLAN;
4649		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4650	}
4651
4652	/* record initial flags and protocol */
4653	first->tx_flags = tx_flags;
4654	first->protocol = protocol;
4655
4656	tso = igb_tso(tx_ring, first, &hdr_len);
4657	if (tso < 0)
4658		goto out_drop;
4659	else if (!tso)
4660		igb_tx_csum(tx_ring, first);
4661
4662	igb_tx_map(tx_ring, first, hdr_len);
4663
4664	/* Make sure there is space in the ring for the next send. */
4665	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4666
4667	return NETDEV_TX_OK;
4668
4669out_drop:
4670	igb_unmap_and_free_tx_resource(tx_ring, first);
4671
4672	return NETDEV_TX_OK;
4673}
4674
4675static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4676						    struct sk_buff *skb)
4677{
4678	unsigned int r_idx = skb->queue_mapping;
4679
4680	if (r_idx >= adapter->num_tx_queues)
4681		r_idx = r_idx % adapter->num_tx_queues;
4682
4683	return adapter->tx_ring[r_idx];
4684}
4685
4686static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4687				  struct net_device *netdev)
4688{
4689	struct igb_adapter *adapter = netdev_priv(netdev);
4690
4691	if (test_bit(__IGB_DOWN, &adapter->state)) {
4692		dev_kfree_skb_any(skb);
4693		return NETDEV_TX_OK;
4694	}
4695
4696	if (skb->len <= 0) {
4697		dev_kfree_skb_any(skb);
4698		return NETDEV_TX_OK;
4699	}
4700
4701	/*
4702	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4703	 * in order to meet this minimum size requirement.
4704	 */
4705	if (unlikely(skb->len < 17)) {
4706		if (skb_pad(skb, 17 - skb->len))
4707			return NETDEV_TX_OK;
4708		skb->len = 17;
4709		skb_set_tail_pointer(skb, 17);
4710	}
4711
4712	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4713}
4714
4715/**
4716 * igb_tx_timeout - Respond to a Tx Hang
4717 * @netdev: network interface device structure
4718 **/
4719static void igb_tx_timeout(struct net_device *netdev)
4720{
4721	struct igb_adapter *adapter = netdev_priv(netdev);
4722	struct e1000_hw *hw = &adapter->hw;
4723
4724	/* Do the reset outside of interrupt context */
4725	adapter->tx_timeout_count++;
4726
4727	if (hw->mac.type >= e1000_82580)
4728		hw->dev_spec._82575.global_device_reset = true;
4729
4730	schedule_work(&adapter->reset_task);
4731	wr32(E1000_EICS,
4732	     (adapter->eims_enable_mask & ~adapter->eims_other));
4733}
4734
4735static void igb_reset_task(struct work_struct *work)
4736{
4737	struct igb_adapter *adapter;
4738	adapter = container_of(work, struct igb_adapter, reset_task);
4739
4740	igb_dump(adapter);
4741	netdev_err(adapter->netdev, "Reset adapter\n");
4742	igb_reinit_locked(adapter);
4743}
4744
4745/**
4746 * igb_get_stats64 - Get System Network Statistics
4747 * @netdev: network interface device structure
4748 * @stats: rtnl_link_stats64 pointer
4749 *
4750 **/
4751static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4752						 struct rtnl_link_stats64 *stats)
4753{
4754	struct igb_adapter *adapter = netdev_priv(netdev);
4755
4756	spin_lock(&adapter->stats64_lock);
4757	igb_update_stats(adapter, &adapter->stats64);
4758	memcpy(stats, &adapter->stats64, sizeof(*stats));
4759	spin_unlock(&adapter->stats64_lock);
4760
4761	return stats;
4762}
4763
4764/**
4765 * igb_change_mtu - Change the Maximum Transfer Unit
4766 * @netdev: network interface device structure
4767 * @new_mtu: new value for maximum frame size
4768 *
4769 * Returns 0 on success, negative on failure
4770 **/
4771static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4772{
4773	struct igb_adapter *adapter = netdev_priv(netdev);
4774	struct pci_dev *pdev = adapter->pdev;
4775	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4776
4777	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4778		dev_err(&pdev->dev, "Invalid MTU setting\n");
4779		return -EINVAL;
4780	}
4781
4782#define MAX_STD_JUMBO_FRAME_SIZE 9238
4783	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4784		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4785		return -EINVAL;
4786	}
4787
4788	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4789		msleep(1);
4790
4791	/* igb_down has a dependency on max_frame_size */
4792	adapter->max_frame_size = max_frame;
4793
4794	if (netif_running(netdev))
4795		igb_down(adapter);
4796
4797	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4798		 netdev->mtu, new_mtu);
4799	netdev->mtu = new_mtu;
4800
4801	if (netif_running(netdev))
4802		igb_up(adapter);
4803	else
4804		igb_reset(adapter);
4805
4806	clear_bit(__IGB_RESETTING, &adapter->state);
4807
4808	return 0;
4809}
4810
4811/**
4812 * igb_update_stats - Update the board statistics counters
4813 * @adapter: board private structure
4814 **/
4815
4816void igb_update_stats(struct igb_adapter *adapter,
4817		      struct rtnl_link_stats64 *net_stats)
4818{
4819	struct e1000_hw *hw = &adapter->hw;
4820	struct pci_dev *pdev = adapter->pdev;
4821	u32 reg, mpc;
4822	u16 phy_tmp;
4823	int i;
4824	u64 bytes, packets;
4825	unsigned int start;
4826	u64 _bytes, _packets;
4827
4828#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4829
4830	/*
4831	 * Prevent stats update while adapter is being reset, or if the pci
4832	 * connection is down.
4833	 */
4834	if (adapter->link_speed == 0)
4835		return;
4836	if (pci_channel_offline(pdev))
4837		return;
4838
4839	bytes = 0;
4840	packets = 0;
4841	for (i = 0; i < adapter->num_rx_queues; i++) {
4842		u32 rqdpc = rd32(E1000_RQDPC(i));
4843		struct igb_ring *ring = adapter->rx_ring[i];
4844
4845		if (rqdpc) {
4846			ring->rx_stats.drops += rqdpc;
4847			net_stats->rx_fifo_errors += rqdpc;
4848		}
4849
4850		do {
4851			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4852			_bytes = ring->rx_stats.bytes;
4853			_packets = ring->rx_stats.packets;
4854		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4855		bytes += _bytes;
4856		packets += _packets;
4857	}
4858
4859	net_stats->rx_bytes = bytes;
4860	net_stats->rx_packets = packets;
4861
4862	bytes = 0;
4863	packets = 0;
4864	for (i = 0; i < adapter->num_tx_queues; i++) {
4865		struct igb_ring *ring = adapter->tx_ring[i];
4866		do {
4867			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4868			_bytes = ring->tx_stats.bytes;
4869			_packets = ring->tx_stats.packets;
4870		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4871		bytes += _bytes;
4872		packets += _packets;
4873	}
4874	net_stats->tx_bytes = bytes;
4875	net_stats->tx_packets = packets;
4876
4877	/* read stats registers */
4878	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4879	adapter->stats.gprc += rd32(E1000_GPRC);
4880	adapter->stats.gorc += rd32(E1000_GORCL);
4881	rd32(E1000_GORCH); /* clear GORCL */
4882	adapter->stats.bprc += rd32(E1000_BPRC);
4883	adapter->stats.mprc += rd32(E1000_MPRC);
4884	adapter->stats.roc += rd32(E1000_ROC);
4885
4886	adapter->stats.prc64 += rd32(E1000_PRC64);
4887	adapter->stats.prc127 += rd32(E1000_PRC127);
4888	adapter->stats.prc255 += rd32(E1000_PRC255);
4889	adapter->stats.prc511 += rd32(E1000_PRC511);
4890	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4891	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4892	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4893	adapter->stats.sec += rd32(E1000_SEC);
4894
4895	mpc = rd32(E1000_MPC);
4896	adapter->stats.mpc += mpc;
4897	net_stats->rx_fifo_errors += mpc;
4898	adapter->stats.scc += rd32(E1000_SCC);
4899	adapter->stats.ecol += rd32(E1000_ECOL);
4900	adapter->stats.mcc += rd32(E1000_MCC);
4901	adapter->stats.latecol += rd32(E1000_LATECOL);
4902	adapter->stats.dc += rd32(E1000_DC);
4903	adapter->stats.rlec += rd32(E1000_RLEC);
4904	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4905	adapter->stats.xontxc += rd32(E1000_XONTXC);
4906	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4907	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4908	adapter->stats.fcruc += rd32(E1000_FCRUC);
4909	adapter->stats.gptc += rd32(E1000_GPTC);
4910	adapter->stats.gotc += rd32(E1000_GOTCL);
4911	rd32(E1000_GOTCH); /* clear GOTCL */
4912	adapter->stats.rnbc += rd32(E1000_RNBC);
4913	adapter->stats.ruc += rd32(E1000_RUC);
4914	adapter->stats.rfc += rd32(E1000_RFC);
4915	adapter->stats.rjc += rd32(E1000_RJC);
4916	adapter->stats.tor += rd32(E1000_TORH);
4917	adapter->stats.tot += rd32(E1000_TOTH);
4918	adapter->stats.tpr += rd32(E1000_TPR);
4919
4920	adapter->stats.ptc64 += rd32(E1000_PTC64);
4921	adapter->stats.ptc127 += rd32(E1000_PTC127);
4922	adapter->stats.ptc255 += rd32(E1000_PTC255);
4923	adapter->stats.ptc511 += rd32(E1000_PTC511);
4924	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4925	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4926
4927	adapter->stats.mptc += rd32(E1000_MPTC);
4928	adapter->stats.bptc += rd32(E1000_BPTC);
4929
4930	adapter->stats.tpt += rd32(E1000_TPT);
4931	adapter->stats.colc += rd32(E1000_COLC);
4932
4933	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4934	/* read internal phy specific stats */
4935	reg = rd32(E1000_CTRL_EXT);
4936	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4937		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4938
4939		/* this stat has invalid values on i210/i211 */
4940		if ((hw->mac.type != e1000_i210) &&
4941		    (hw->mac.type != e1000_i211))
4942			adapter->stats.tncrs += rd32(E1000_TNCRS);
4943	}
4944
4945	adapter->stats.tsctc += rd32(E1000_TSCTC);
4946	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4947
4948	adapter->stats.iac += rd32(E1000_IAC);
4949	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4950	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4951	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4952	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4953	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4954	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4955	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4956	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4957
4958	/* Fill out the OS statistics structure */
4959	net_stats->multicast = adapter->stats.mprc;
4960	net_stats->collisions = adapter->stats.colc;
4961
4962	/* Rx Errors */
4963
4964	/* RLEC on some newer hardware can be incorrect so build
4965	 * our own version based on RUC and ROC */
4966	net_stats->rx_errors = adapter->stats.rxerrc +
4967		adapter->stats.crcerrs + adapter->stats.algnerrc +
4968		adapter->stats.ruc + adapter->stats.roc +
4969		adapter->stats.cexterr;
4970	net_stats->rx_length_errors = adapter->stats.ruc +
4971				      adapter->stats.roc;
4972	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4973	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4974	net_stats->rx_missed_errors = adapter->stats.mpc;
4975
4976	/* Tx Errors */
4977	net_stats->tx_errors = adapter->stats.ecol +
4978			       adapter->stats.latecol;
4979	net_stats->tx_aborted_errors = adapter->stats.ecol;
4980	net_stats->tx_window_errors = adapter->stats.latecol;
4981	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4982
4983	/* Tx Dropped needs to be maintained elsewhere */
4984
4985	/* Phy Stats */
4986	if (hw->phy.media_type == e1000_media_type_copper) {
4987		if ((adapter->link_speed == SPEED_1000) &&
4988		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4989			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4990			adapter->phy_stats.idle_errors += phy_tmp;
4991		}
4992	}
4993
4994	/* Management Stats */
4995	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4996	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4997	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4998
4999	/* OS2BMC Stats */
5000	reg = rd32(E1000_MANC);
5001	if (reg & E1000_MANC_EN_BMC2OS) {
5002		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5003		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5004		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5005		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5006	}
5007}
5008
5009static irqreturn_t igb_msix_other(int irq, void *data)
5010{
5011	struct igb_adapter *adapter = data;
5012	struct e1000_hw *hw = &adapter->hw;
5013	u32 icr = rd32(E1000_ICR);
5014	/* reading ICR causes bit 31 of EICR to be cleared */
5015
5016	if (icr & E1000_ICR_DRSTA)
5017		schedule_work(&adapter->reset_task);
5018
5019	if (icr & E1000_ICR_DOUTSYNC) {
5020		/* HW is reporting DMA is out of sync */
5021		adapter->stats.doosync++;
5022		/* The DMA Out of Sync is also indication of a spoof event
5023		 * in IOV mode. Check the Wrong VM Behavior register to
5024		 * see if it is really a spoof event. */
5025		igb_check_wvbr(adapter);
5026	}
5027
5028	/* Check for a mailbox event */
5029	if (icr & E1000_ICR_VMMB)
5030		igb_msg_task(adapter);
5031
5032	if (icr & E1000_ICR_LSC) {
5033		hw->mac.get_link_status = 1;
5034		/* guard against interrupt when we're going down */
5035		if (!test_bit(__IGB_DOWN, &adapter->state))
5036			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5037	}
5038
5039	if (icr & E1000_ICR_TS) {
5040		u32 tsicr = rd32(E1000_TSICR);
5041
5042		if (tsicr & E1000_TSICR_TXTS) {
5043			/* acknowledge the interrupt */
5044			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5045			/* retrieve hardware timestamp */
5046			schedule_work(&adapter->ptp_tx_work);
5047		}
5048	}
5049
5050	wr32(E1000_EIMS, adapter->eims_other);
5051
5052	return IRQ_HANDLED;
5053}
5054
5055static void igb_write_itr(struct igb_q_vector *q_vector)
5056{
5057	struct igb_adapter *adapter = q_vector->adapter;
5058	u32 itr_val = q_vector->itr_val & 0x7FFC;
5059
5060	if (!q_vector->set_itr)
5061		return;
5062
5063	if (!itr_val)
5064		itr_val = 0x4;
5065
5066	if (adapter->hw.mac.type == e1000_82575)
5067		itr_val |= itr_val << 16;
5068	else
5069		itr_val |= E1000_EITR_CNT_IGNR;
5070
5071	writel(itr_val, q_vector->itr_register);
5072	q_vector->set_itr = 0;
5073}
5074
5075static irqreturn_t igb_msix_ring(int irq, void *data)
5076{
5077	struct igb_q_vector *q_vector = data;
5078
5079	/* Write the ITR value calculated from the previous interrupt. */
5080	igb_write_itr(q_vector);
5081
5082	napi_schedule(&q_vector->napi);
5083
5084	return IRQ_HANDLED;
5085}
5086
5087#ifdef CONFIG_IGB_DCA
5088static void igb_update_tx_dca(struct igb_adapter *adapter,
5089			      struct igb_ring *tx_ring,
5090			      int cpu)
5091{
5092	struct e1000_hw *hw = &adapter->hw;
5093	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5094
5095	if (hw->mac.type != e1000_82575)
5096		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5097
5098	/*
5099	 * We can enable relaxed ordering for reads, but not writes when
5100	 * DCA is enabled.  This is due to a known issue in some chipsets
5101	 * which will cause the DCA tag to be cleared.
5102	 */
5103	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5104		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5105		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5106
5107	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5108}
5109
5110static void igb_update_rx_dca(struct igb_adapter *adapter,
5111			      struct igb_ring *rx_ring,
5112			      int cpu)
5113{
5114	struct e1000_hw *hw = &adapter->hw;
5115	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5116
5117	if (hw->mac.type != e1000_82575)
5118		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5119
5120	/*
5121	 * We can enable relaxed ordering for reads, but not writes when
5122	 * DCA is enabled.  This is due to a known issue in some chipsets
5123	 * which will cause the DCA tag to be cleared.
5124	 */
5125	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5126		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5127
5128	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5129}
5130
5131static void igb_update_dca(struct igb_q_vector *q_vector)
5132{
5133	struct igb_adapter *adapter = q_vector->adapter;
5134	int cpu = get_cpu();
5135
5136	if (q_vector->cpu == cpu)
5137		goto out_no_update;
5138
5139	if (q_vector->tx.ring)
5140		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5141
5142	if (q_vector->rx.ring)
5143		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5144
5145	q_vector->cpu = cpu;
5146out_no_update:
5147	put_cpu();
5148}
5149
5150static void igb_setup_dca(struct igb_adapter *adapter)
5151{
5152	struct e1000_hw *hw = &adapter->hw;
5153	int i;
5154
5155	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5156		return;
5157
5158	/* Always use CB2 mode, difference is masked in the CB driver. */
5159	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5160
5161	for (i = 0; i < adapter->num_q_vectors; i++) {
5162		adapter->q_vector[i]->cpu = -1;
5163		igb_update_dca(adapter->q_vector[i]);
5164	}
5165}
5166
5167static int __igb_notify_dca(struct device *dev, void *data)
5168{
5169	struct net_device *netdev = dev_get_drvdata(dev);
5170	struct igb_adapter *adapter = netdev_priv(netdev);
5171	struct pci_dev *pdev = adapter->pdev;
5172	struct e1000_hw *hw = &adapter->hw;
5173	unsigned long event = *(unsigned long *)data;
5174
5175	switch (event) {
5176	case DCA_PROVIDER_ADD:
5177		/* if already enabled, don't do it again */
5178		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5179			break;
5180		if (dca_add_requester(dev) == 0) {
5181			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5182			dev_info(&pdev->dev, "DCA enabled\n");
5183			igb_setup_dca(adapter);
5184			break;
5185		}
5186		/* Fall Through since DCA is disabled. */
5187	case DCA_PROVIDER_REMOVE:
5188		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5189			/* without this a class_device is left
5190			 * hanging around in the sysfs model */
5191			dca_remove_requester(dev);
5192			dev_info(&pdev->dev, "DCA disabled\n");
5193			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5194			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5195		}
5196		break;
5197	}
5198
5199	return 0;
5200}
5201
5202static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5203                          void *p)
5204{
5205	int ret_val;
5206
5207	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5208	                                 __igb_notify_dca);
5209
5210	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5211}
5212#endif /* CONFIG_IGB_DCA */
5213
5214#ifdef CONFIG_PCI_IOV
5215static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5216{
5217	unsigned char mac_addr[ETH_ALEN];
5218
5219	eth_zero_addr(mac_addr);
5220	igb_set_vf_mac(adapter, vf, mac_addr);
5221
5222	return 0;
5223}
5224
5225static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5226{
5227	struct pci_dev *pdev = adapter->pdev;
5228	struct pci_dev *vfdev;
5229	int dev_id;
5230
5231	switch (adapter->hw.mac.type) {
5232	case e1000_82576:
5233		dev_id = IGB_82576_VF_DEV_ID;
5234		break;
5235	case e1000_i350:
5236		dev_id = IGB_I350_VF_DEV_ID;
5237		break;
5238	default:
5239		return false;
5240	}
5241
5242	/* loop through all the VFs to see if we own any that are assigned */
5243	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5244	while (vfdev) {
5245		/* if we don't own it we don't care */
5246		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5247			/* if it is assigned we cannot release it */
5248			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5249				return true;
5250		}
5251
5252		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5253	}
5254
5255	return false;
5256}
5257
5258#endif
5259static void igb_ping_all_vfs(struct igb_adapter *adapter)
5260{
5261	struct e1000_hw *hw = &adapter->hw;
5262	u32 ping;
5263	int i;
5264
5265	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5266		ping = E1000_PF_CONTROL_MSG;
5267		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5268			ping |= E1000_VT_MSGTYPE_CTS;
5269		igb_write_mbx(hw, &ping, 1, i);
5270	}
5271}
5272
5273static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5274{
5275	struct e1000_hw *hw = &adapter->hw;
5276	u32 vmolr = rd32(E1000_VMOLR(vf));
5277	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5278
5279	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5280	                    IGB_VF_FLAG_MULTI_PROMISC);
5281	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5282
5283	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5284		vmolr |= E1000_VMOLR_MPME;
5285		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5286		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5287	} else {
5288		/*
5289		 * if we have hashes and we are clearing a multicast promisc
5290		 * flag we need to write the hashes to the MTA as this step
5291		 * was previously skipped
5292		 */
5293		if (vf_data->num_vf_mc_hashes > 30) {
5294			vmolr |= E1000_VMOLR_MPME;
5295		} else if (vf_data->num_vf_mc_hashes) {
5296			int j;
5297			vmolr |= E1000_VMOLR_ROMPE;
5298			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5299				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5300		}
5301	}
5302
5303	wr32(E1000_VMOLR(vf), vmolr);
5304
5305	/* there are flags left unprocessed, likely not supported */
5306	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5307		return -EINVAL;
5308
5309	return 0;
5310
5311}
5312
5313static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5314				  u32 *msgbuf, u32 vf)
5315{
5316	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5317	u16 *hash_list = (u16 *)&msgbuf[1];
5318	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5319	int i;
5320
5321	/* salt away the number of multicast addresses assigned
5322	 * to this VF for later use to restore when the PF multi cast
5323	 * list changes
5324	 */
5325	vf_data->num_vf_mc_hashes = n;
5326
5327	/* only up to 30 hash values supported */
5328	if (n > 30)
5329		n = 30;
5330
5331	/* store the hashes for later use */
5332	for (i = 0; i < n; i++)
5333		vf_data->vf_mc_hashes[i] = hash_list[i];
5334
5335	/* Flush and reset the mta with the new values */
5336	igb_set_rx_mode(adapter->netdev);
5337
5338	return 0;
5339}
5340
5341static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5342{
5343	struct e1000_hw *hw = &adapter->hw;
5344	struct vf_data_storage *vf_data;
5345	int i, j;
5346
5347	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5348		u32 vmolr = rd32(E1000_VMOLR(i));
5349		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5350
5351		vf_data = &adapter->vf_data[i];
5352
5353		if ((vf_data->num_vf_mc_hashes > 30) ||
5354		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5355			vmolr |= E1000_VMOLR_MPME;
5356		} else if (vf_data->num_vf_mc_hashes) {
5357			vmolr |= E1000_VMOLR_ROMPE;
5358			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5359				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5360		}
5361		wr32(E1000_VMOLR(i), vmolr);
5362	}
5363}
5364
5365static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5366{
5367	struct e1000_hw *hw = &adapter->hw;
5368	u32 pool_mask, reg, vid;
5369	int i;
5370
5371	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5372
5373	/* Find the vlan filter for this id */
5374	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5375		reg = rd32(E1000_VLVF(i));
5376
5377		/* remove the vf from the pool */
5378		reg &= ~pool_mask;
5379
5380		/* if pool is empty then remove entry from vfta */
5381		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5382		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5383			reg = 0;
5384			vid = reg & E1000_VLVF_VLANID_MASK;
5385			igb_vfta_set(hw, vid, false);
5386		}
5387
5388		wr32(E1000_VLVF(i), reg);
5389	}
5390
5391	adapter->vf_data[vf].vlans_enabled = 0;
5392}
5393
5394static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5395{
5396	struct e1000_hw *hw = &adapter->hw;
5397	u32 reg, i;
5398
5399	/* The vlvf table only exists on 82576 hardware and newer */
5400	if (hw->mac.type < e1000_82576)
5401		return -1;
5402
5403	/* we only need to do this if VMDq is enabled */
5404	if (!adapter->vfs_allocated_count)
5405		return -1;
5406
5407	/* Find the vlan filter for this id */
5408	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5409		reg = rd32(E1000_VLVF(i));
5410		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5411		    vid == (reg & E1000_VLVF_VLANID_MASK))
5412			break;
5413	}
5414
5415	if (add) {
5416		if (i == E1000_VLVF_ARRAY_SIZE) {
5417			/* Did not find a matching VLAN ID entry that was
5418			 * enabled.  Search for a free filter entry, i.e.
5419			 * one without the enable bit set
5420			 */
5421			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5422				reg = rd32(E1000_VLVF(i));
5423				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5424					break;
5425			}
5426		}
5427		if (i < E1000_VLVF_ARRAY_SIZE) {
5428			/* Found an enabled/available entry */
5429			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5430
5431			/* if !enabled we need to set this up in vfta */
5432			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5433				/* add VID to filter table */
5434				igb_vfta_set(hw, vid, true);
5435				reg |= E1000_VLVF_VLANID_ENABLE;
5436			}
5437			reg &= ~E1000_VLVF_VLANID_MASK;
5438			reg |= vid;
5439			wr32(E1000_VLVF(i), reg);
5440
5441			/* do not modify RLPML for PF devices */
5442			if (vf >= adapter->vfs_allocated_count)
5443				return 0;
5444
5445			if (!adapter->vf_data[vf].vlans_enabled) {
5446				u32 size;
5447				reg = rd32(E1000_VMOLR(vf));
5448				size = reg & E1000_VMOLR_RLPML_MASK;
5449				size += 4;
5450				reg &= ~E1000_VMOLR_RLPML_MASK;
5451				reg |= size;
5452				wr32(E1000_VMOLR(vf), reg);
5453			}
5454
5455			adapter->vf_data[vf].vlans_enabled++;
5456		}
5457	} else {
5458		if (i < E1000_VLVF_ARRAY_SIZE) {
5459			/* remove vf from the pool */
5460			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5461			/* if pool is empty then remove entry from vfta */
5462			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5463				reg = 0;
5464				igb_vfta_set(hw, vid, false);
5465			}
5466			wr32(E1000_VLVF(i), reg);
5467
5468			/* do not modify RLPML for PF devices */
5469			if (vf >= adapter->vfs_allocated_count)
5470				return 0;
5471
5472			adapter->vf_data[vf].vlans_enabled--;
5473			if (!adapter->vf_data[vf].vlans_enabled) {
5474				u32 size;
5475				reg = rd32(E1000_VMOLR(vf));
5476				size = reg & E1000_VMOLR_RLPML_MASK;
5477				size -= 4;
5478				reg &= ~E1000_VMOLR_RLPML_MASK;
5479				reg |= size;
5480				wr32(E1000_VMOLR(vf), reg);
5481			}
5482		}
5483	}
5484	return 0;
5485}
5486
5487static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5488{
5489	struct e1000_hw *hw = &adapter->hw;
5490
5491	if (vid)
5492		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5493	else
5494		wr32(E1000_VMVIR(vf), 0);
5495}
5496
5497static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5498			       int vf, u16 vlan, u8 qos)
5499{
5500	int err = 0;
5501	struct igb_adapter *adapter = netdev_priv(netdev);
5502
5503	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5504		return -EINVAL;
5505	if (vlan || qos) {
5506		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5507		if (err)
5508			goto out;
5509		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5510		igb_set_vmolr(adapter, vf, !vlan);
5511		adapter->vf_data[vf].pf_vlan = vlan;
5512		adapter->vf_data[vf].pf_qos = qos;
5513		dev_info(&adapter->pdev->dev,
5514			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5515		if (test_bit(__IGB_DOWN, &adapter->state)) {
5516			dev_warn(&adapter->pdev->dev,
5517				 "The VF VLAN has been set,"
5518				 " but the PF device is not up.\n");
5519			dev_warn(&adapter->pdev->dev,
5520				 "Bring the PF device up before"
5521				 " attempting to use the VF device.\n");
5522		}
5523	} else {
5524		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5525				   false, vf);
5526		igb_set_vmvir(adapter, vlan, vf);
5527		igb_set_vmolr(adapter, vf, true);
5528		adapter->vf_data[vf].pf_vlan = 0;
5529		adapter->vf_data[vf].pf_qos = 0;
5530       }
5531out:
5532       return err;
5533}
5534
5535static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5536{
5537	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5538	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5539
5540	return igb_vlvf_set(adapter, vid, add, vf);
5541}
5542
5543static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5544{
5545	/* clear flags - except flag that indicates PF has set the MAC */
5546	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5547	adapter->vf_data[vf].last_nack = jiffies;
5548
5549	/* reset offloads to defaults */
5550	igb_set_vmolr(adapter, vf, true);
5551
5552	/* reset vlans for device */
5553	igb_clear_vf_vfta(adapter, vf);
5554	if (adapter->vf_data[vf].pf_vlan)
5555		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5556				    adapter->vf_data[vf].pf_vlan,
5557				    adapter->vf_data[vf].pf_qos);
5558	else
5559		igb_clear_vf_vfta(adapter, vf);
5560
5561	/* reset multicast table array for vf */
5562	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5563
5564	/* Flush and reset the mta with the new values */
5565	igb_set_rx_mode(adapter->netdev);
5566}
5567
5568static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5569{
5570	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5571
5572	/* clear mac address as we were hotplug removed/added */
5573	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5574		eth_zero_addr(vf_mac);
5575
5576	/* process remaining reset events */
5577	igb_vf_reset(adapter, vf);
5578}
5579
5580static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5581{
5582	struct e1000_hw *hw = &adapter->hw;
5583	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5584	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5585	u32 reg, msgbuf[3];
5586	u8 *addr = (u8 *)(&msgbuf[1]);
5587
5588	/* process all the same items cleared in a function level reset */
5589	igb_vf_reset(adapter, vf);
5590
5591	/* set vf mac address */
5592	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5593
5594	/* enable transmit and receive for vf */
5595	reg = rd32(E1000_VFTE);
5596	wr32(E1000_VFTE, reg | (1 << vf));
5597	reg = rd32(E1000_VFRE);
5598	wr32(E1000_VFRE, reg | (1 << vf));
5599
5600	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5601
5602	/* reply to reset with ack and vf mac address */
5603	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5604	memcpy(addr, vf_mac, 6);
5605	igb_write_mbx(hw, msgbuf, 3, vf);
5606}
5607
5608static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5609{
5610	/*
5611	 * The VF MAC Address is stored in a packed array of bytes
5612	 * starting at the second 32 bit word of the msg array
5613	 */
5614	unsigned char *addr = (char *)&msg[1];
5615	int err = -1;
5616
5617	if (is_valid_ether_addr(addr))
5618		err = igb_set_vf_mac(adapter, vf, addr);
5619
5620	return err;
5621}
5622
5623static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5624{
5625	struct e1000_hw *hw = &adapter->hw;
5626	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5627	u32 msg = E1000_VT_MSGTYPE_NACK;
5628
5629	/* if device isn't clear to send it shouldn't be reading either */
5630	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5631	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5632		igb_write_mbx(hw, &msg, 1, vf);
5633		vf_data->last_nack = jiffies;
5634	}
5635}
5636
5637static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5638{
5639	struct pci_dev *pdev = adapter->pdev;
5640	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5641	struct e1000_hw *hw = &adapter->hw;
5642	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5643	s32 retval;
5644
5645	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5646
5647	if (retval) {
5648		/* if receive failed revoke VF CTS stats and restart init */
5649		dev_err(&pdev->dev, "Error receiving message from VF\n");
5650		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5651		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5652			return;
5653		goto out;
5654	}
5655
5656	/* this is a message we already processed, do nothing */
5657	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5658		return;
5659
5660	/*
5661	 * until the vf completes a reset it should not be
5662	 * allowed to start any configuration.
5663	 */
5664
5665	if (msgbuf[0] == E1000_VF_RESET) {
5666		igb_vf_reset_msg(adapter, vf);
5667		return;
5668	}
5669
5670	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5671		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5672			return;
5673		retval = -1;
5674		goto out;
5675	}
5676
5677	switch ((msgbuf[0] & 0xFFFF)) {
5678	case E1000_VF_SET_MAC_ADDR:
5679		retval = -EINVAL;
5680		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5681			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5682		else
5683			dev_warn(&pdev->dev,
5684				 "VF %d attempted to override administratively "
5685				 "set MAC address\nReload the VF driver to "
5686				 "resume operations\n", vf);
5687		break;
5688	case E1000_VF_SET_PROMISC:
5689		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5690		break;
5691	case E1000_VF_SET_MULTICAST:
5692		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5693		break;
5694	case E1000_VF_SET_LPE:
5695		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5696		break;
5697	case E1000_VF_SET_VLAN:
5698		retval = -1;
5699		if (vf_data->pf_vlan)
5700			dev_warn(&pdev->dev,
5701				 "VF %d attempted to override administratively "
5702				 "set VLAN tag\nReload the VF driver to "
5703				 "resume operations\n", vf);
5704		else
5705			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5706		break;
5707	default:
5708		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5709		retval = -1;
5710		break;
5711	}
5712
5713	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5714out:
5715	/* notify the VF of the results of what it sent us */
5716	if (retval)
5717		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5718	else
5719		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5720
5721	igb_write_mbx(hw, msgbuf, 1, vf);
5722}
5723
5724static void igb_msg_task(struct igb_adapter *adapter)
5725{
5726	struct e1000_hw *hw = &adapter->hw;
5727	u32 vf;
5728
5729	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5730		/* process any reset requests */
5731		if (!igb_check_for_rst(hw, vf))
5732			igb_vf_reset_event(adapter, vf);
5733
5734		/* process any messages pending */
5735		if (!igb_check_for_msg(hw, vf))
5736			igb_rcv_msg_from_vf(adapter, vf);
5737
5738		/* process any acks */
5739		if (!igb_check_for_ack(hw, vf))
5740			igb_rcv_ack_from_vf(adapter, vf);
5741	}
5742}
5743
5744/**
5745 *  igb_set_uta - Set unicast filter table address
5746 *  @adapter: board private structure
5747 *
5748 *  The unicast table address is a register array of 32-bit registers.
5749 *  The table is meant to be used in a way similar to how the MTA is used
5750 *  however due to certain limitations in the hardware it is necessary to
5751 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5752 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5753 **/
5754static void igb_set_uta(struct igb_adapter *adapter)
5755{
5756	struct e1000_hw *hw = &adapter->hw;
5757	int i;
5758
5759	/* The UTA table only exists on 82576 hardware and newer */
5760	if (hw->mac.type < e1000_82576)
5761		return;
5762
5763	/* we only need to do this if VMDq is enabled */
5764	if (!adapter->vfs_allocated_count)
5765		return;
5766
5767	for (i = 0; i < hw->mac.uta_reg_count; i++)
5768		array_wr32(E1000_UTA, i, ~0);
5769}
5770
5771/**
5772 * igb_intr_msi - Interrupt Handler
5773 * @irq: interrupt number
5774 * @data: pointer to a network interface device structure
5775 **/
5776static irqreturn_t igb_intr_msi(int irq, void *data)
5777{
5778	struct igb_adapter *adapter = data;
5779	struct igb_q_vector *q_vector = adapter->q_vector[0];
5780	struct e1000_hw *hw = &adapter->hw;
5781	/* read ICR disables interrupts using IAM */
5782	u32 icr = rd32(E1000_ICR);
5783
5784	igb_write_itr(q_vector);
5785
5786	if (icr & E1000_ICR_DRSTA)
5787		schedule_work(&adapter->reset_task);
5788
5789	if (icr & E1000_ICR_DOUTSYNC) {
5790		/* HW is reporting DMA is out of sync */
5791		adapter->stats.doosync++;
5792	}
5793
5794	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5795		hw->mac.get_link_status = 1;
5796		if (!test_bit(__IGB_DOWN, &adapter->state))
5797			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5798	}
5799
5800	if (icr & E1000_ICR_TS) {
5801		u32 tsicr = rd32(E1000_TSICR);
5802
5803		if (tsicr & E1000_TSICR_TXTS) {
5804			/* acknowledge the interrupt */
5805			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5806			/* retrieve hardware timestamp */
5807			schedule_work(&adapter->ptp_tx_work);
5808		}
5809	}
5810
5811	napi_schedule(&q_vector->napi);
5812
5813	return IRQ_HANDLED;
5814}
5815
5816/**
5817 * igb_intr - Legacy Interrupt Handler
5818 * @irq: interrupt number
5819 * @data: pointer to a network interface device structure
5820 **/
5821static irqreturn_t igb_intr(int irq, void *data)
5822{
5823	struct igb_adapter *adapter = data;
5824	struct igb_q_vector *q_vector = adapter->q_vector[0];
5825	struct e1000_hw *hw = &adapter->hw;
5826	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5827	 * need for the IMC write */
5828	u32 icr = rd32(E1000_ICR);
5829
5830	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5831	 * not set, then the adapter didn't send an interrupt */
5832	if (!(icr & E1000_ICR_INT_ASSERTED))
5833		return IRQ_NONE;
5834
5835	igb_write_itr(q_vector);
5836
5837	if (icr & E1000_ICR_DRSTA)
5838		schedule_work(&adapter->reset_task);
5839
5840	if (icr & E1000_ICR_DOUTSYNC) {
5841		/* HW is reporting DMA is out of sync */
5842		adapter->stats.doosync++;
5843	}
5844
5845	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5846		hw->mac.get_link_status = 1;
5847		/* guard against interrupt when we're going down */
5848		if (!test_bit(__IGB_DOWN, &adapter->state))
5849			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5850	}
5851
5852	if (icr & E1000_ICR_TS) {
5853		u32 tsicr = rd32(E1000_TSICR);
5854
5855		if (tsicr & E1000_TSICR_TXTS) {
5856			/* acknowledge the interrupt */
5857			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5858			/* retrieve hardware timestamp */
5859			schedule_work(&adapter->ptp_tx_work);
5860		}
5861	}
5862
5863	napi_schedule(&q_vector->napi);
5864
5865	return IRQ_HANDLED;
5866}
5867
5868static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5869{
5870	struct igb_adapter *adapter = q_vector->adapter;
5871	struct e1000_hw *hw = &adapter->hw;
5872
5873	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5874	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5875		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5876			igb_set_itr(q_vector);
5877		else
5878			igb_update_ring_itr(q_vector);
5879	}
5880
5881	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5882		if (adapter->msix_entries)
5883			wr32(E1000_EIMS, q_vector->eims_value);
5884		else
5885			igb_irq_enable(adapter);
5886	}
5887}
5888
5889/**
5890 * igb_poll - NAPI Rx polling callback
5891 * @napi: napi polling structure
5892 * @budget: count of how many packets we should handle
5893 **/
5894static int igb_poll(struct napi_struct *napi, int budget)
5895{
5896	struct igb_q_vector *q_vector = container_of(napi,
5897	                                             struct igb_q_vector,
5898	                                             napi);
5899	bool clean_complete = true;
5900
5901#ifdef CONFIG_IGB_DCA
5902	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5903		igb_update_dca(q_vector);
5904#endif
5905	if (q_vector->tx.ring)
5906		clean_complete = igb_clean_tx_irq(q_vector);
5907
5908	if (q_vector->rx.ring)
5909		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5910
5911	/* If all work not completed, return budget and keep polling */
5912	if (!clean_complete)
5913		return budget;
5914
5915	/* If not enough Rx work done, exit the polling mode */
5916	napi_complete(napi);
5917	igb_ring_irq_enable(q_vector);
5918
5919	return 0;
5920}
5921
5922/**
5923 * igb_clean_tx_irq - Reclaim resources after transmit completes
5924 * @q_vector: pointer to q_vector containing needed info
5925 *
5926 * returns true if ring is completely cleaned
5927 **/
5928static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5929{
5930	struct igb_adapter *adapter = q_vector->adapter;
5931	struct igb_ring *tx_ring = q_vector->tx.ring;
5932	struct igb_tx_buffer *tx_buffer;
5933	union e1000_adv_tx_desc *tx_desc;
5934	unsigned int total_bytes = 0, total_packets = 0;
5935	unsigned int budget = q_vector->tx.work_limit;
5936	unsigned int i = tx_ring->next_to_clean;
5937
5938	if (test_bit(__IGB_DOWN, &adapter->state))
5939		return true;
5940
5941	tx_buffer = &tx_ring->tx_buffer_info[i];
5942	tx_desc = IGB_TX_DESC(tx_ring, i);
5943	i -= tx_ring->count;
5944
5945	do {
5946		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5947
5948		/* if next_to_watch is not set then there is no work pending */
5949		if (!eop_desc)
5950			break;
5951
5952		/* prevent any other reads prior to eop_desc */
5953		read_barrier_depends();
5954
5955		/* if DD is not set pending work has not been completed */
5956		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5957			break;
5958
5959		/* clear next_to_watch to prevent false hangs */
5960		tx_buffer->next_to_watch = NULL;
5961
5962		/* update the statistics for this packet */
5963		total_bytes += tx_buffer->bytecount;
5964		total_packets += tx_buffer->gso_segs;
5965
5966		/* free the skb */
5967		dev_kfree_skb_any(tx_buffer->skb);
5968
5969		/* unmap skb header data */
5970		dma_unmap_single(tx_ring->dev,
5971				 dma_unmap_addr(tx_buffer, dma),
5972				 dma_unmap_len(tx_buffer, len),
5973				 DMA_TO_DEVICE);
5974
5975		/* clear tx_buffer data */
5976		tx_buffer->skb = NULL;
5977		dma_unmap_len_set(tx_buffer, len, 0);
5978
5979		/* clear last DMA location and unmap remaining buffers */
5980		while (tx_desc != eop_desc) {
5981			tx_buffer++;
5982			tx_desc++;
5983			i++;
5984			if (unlikely(!i)) {
5985				i -= tx_ring->count;
5986				tx_buffer = tx_ring->tx_buffer_info;
5987				tx_desc = IGB_TX_DESC(tx_ring, 0);
5988			}
5989
5990			/* unmap any remaining paged data */
5991			if (dma_unmap_len(tx_buffer, len)) {
5992				dma_unmap_page(tx_ring->dev,
5993					       dma_unmap_addr(tx_buffer, dma),
5994					       dma_unmap_len(tx_buffer, len),
5995					       DMA_TO_DEVICE);
5996				dma_unmap_len_set(tx_buffer, len, 0);
5997			}
5998		}
5999
6000		/* move us one more past the eop_desc for start of next pkt */
6001		tx_buffer++;
6002		tx_desc++;
6003		i++;
6004		if (unlikely(!i)) {
6005			i -= tx_ring->count;
6006			tx_buffer = tx_ring->tx_buffer_info;
6007			tx_desc = IGB_TX_DESC(tx_ring, 0);
6008		}
6009
6010		/* issue prefetch for next Tx descriptor */
6011		prefetch(tx_desc);
6012
6013		/* update budget accounting */
6014		budget--;
6015	} while (likely(budget));
6016
6017	netdev_tx_completed_queue(txring_txq(tx_ring),
6018				  total_packets, total_bytes);
6019	i += tx_ring->count;
6020	tx_ring->next_to_clean = i;
6021	u64_stats_update_begin(&tx_ring->tx_syncp);
6022	tx_ring->tx_stats.bytes += total_bytes;
6023	tx_ring->tx_stats.packets += total_packets;
6024	u64_stats_update_end(&tx_ring->tx_syncp);
6025	q_vector->tx.total_bytes += total_bytes;
6026	q_vector->tx.total_packets += total_packets;
6027
6028	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6029		struct e1000_hw *hw = &adapter->hw;
6030
6031		/* Detect a transmit hang in hardware, this serializes the
6032		 * check with the clearing of time_stamp and movement of i */
6033		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6034		if (tx_buffer->next_to_watch &&
6035		    time_after(jiffies, tx_buffer->time_stamp +
6036			       (adapter->tx_timeout_factor * HZ)) &&
6037		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6038
6039			/* detected Tx unit hang */
6040			dev_err(tx_ring->dev,
6041				"Detected Tx Unit Hang\n"
6042				"  Tx Queue             <%d>\n"
6043				"  TDH                  <%x>\n"
6044				"  TDT                  <%x>\n"
6045				"  next_to_use          <%x>\n"
6046				"  next_to_clean        <%x>\n"
6047				"buffer_info[next_to_clean]\n"
6048				"  time_stamp           <%lx>\n"
6049				"  next_to_watch        <%p>\n"
6050				"  jiffies              <%lx>\n"
6051				"  desc.status          <%x>\n",
6052				tx_ring->queue_index,
6053				rd32(E1000_TDH(tx_ring->reg_idx)),
6054				readl(tx_ring->tail),
6055				tx_ring->next_to_use,
6056				tx_ring->next_to_clean,
6057				tx_buffer->time_stamp,
6058				tx_buffer->next_to_watch,
6059				jiffies,
6060				tx_buffer->next_to_watch->wb.status);
6061			netif_stop_subqueue(tx_ring->netdev,
6062					    tx_ring->queue_index);
6063
6064			/* we are about to reset, no point in enabling stuff */
6065			return true;
6066		}
6067	}
6068
6069#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6070	if (unlikely(total_packets &&
6071		     netif_carrier_ok(tx_ring->netdev) &&
6072		     igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6073		/* Make sure that anybody stopping the queue after this
6074		 * sees the new next_to_clean.
6075		 */
6076		smp_mb();
6077		if (__netif_subqueue_stopped(tx_ring->netdev,
6078					     tx_ring->queue_index) &&
6079		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6080			netif_wake_subqueue(tx_ring->netdev,
6081					    tx_ring->queue_index);
6082
6083			u64_stats_update_begin(&tx_ring->tx_syncp);
6084			tx_ring->tx_stats.restart_queue++;
6085			u64_stats_update_end(&tx_ring->tx_syncp);
6086		}
6087	}
6088
6089	return !!budget;
6090}
6091
6092/**
6093 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6094 * @rx_ring: rx descriptor ring to store buffers on
6095 * @old_buff: donor buffer to have page reused
6096 *
6097 * Synchronizes page for reuse by the adapter
6098 **/
6099static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6100			      struct igb_rx_buffer *old_buff)
6101{
6102	struct igb_rx_buffer *new_buff;
6103	u16 nta = rx_ring->next_to_alloc;
6104
6105	new_buff = &rx_ring->rx_buffer_info[nta];
6106
6107	/* update, and store next to alloc */
6108	nta++;
6109	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6110
6111	/* transfer page from old buffer to new buffer */
6112	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6113
6114	/* sync the buffer for use by the device */
6115	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6116					 old_buff->page_offset,
6117					 IGB_RX_BUFSZ,
6118					 DMA_FROM_DEVICE);
6119}
6120
6121static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6122				  struct page *page,
6123				  unsigned int truesize)
6124{
6125	/* avoid re-using remote pages */
6126	if (unlikely(page_to_nid(page) != numa_node_id()))
6127		return false;
6128
6129#if (PAGE_SIZE < 8192)
6130	/* if we are only owner of page we can reuse it */
6131	if (unlikely(page_count(page) != 1))
6132		return false;
6133
6134	/* flip page offset to other buffer */
6135	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6136
6137	/* since we are the only owner of the page and we need to
6138	 * increment it, just set the value to 2 in order to avoid
6139	 * an unnecessary locked operation
6140	 */
6141	atomic_set(&page->_count, 2);
6142#else
6143	/* move offset up to the next cache line */
6144	rx_buffer->page_offset += truesize;
6145
6146	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6147		return false;
6148
6149	/* bump ref count on page before it is given to the stack */
6150	get_page(page);
6151#endif
6152
6153	return true;
6154}
6155
6156/**
6157 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6158 * @rx_ring: rx descriptor ring to transact packets on
6159 * @rx_buffer: buffer containing page to add
6160 * @rx_desc: descriptor containing length of buffer written by hardware
6161 * @skb: sk_buff to place the data into
6162 *
6163 * This function will add the data contained in rx_buffer->page to the skb.
6164 * This is done either through a direct copy if the data in the buffer is
6165 * less than the skb header size, otherwise it will just attach the page as
6166 * a frag to the skb.
6167 *
6168 * The function will then update the page offset if necessary and return
6169 * true if the buffer can be reused by the adapter.
6170 **/
6171static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6172			    struct igb_rx_buffer *rx_buffer,
6173			    union e1000_adv_rx_desc *rx_desc,
6174			    struct sk_buff *skb)
6175{
6176	struct page *page = rx_buffer->page;
6177	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6178#if (PAGE_SIZE < 8192)
6179	unsigned int truesize = IGB_RX_BUFSZ;
6180#else
6181	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6182#endif
6183
6184	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6185		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6186
6187		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6188			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6189			va += IGB_TS_HDR_LEN;
6190			size -= IGB_TS_HDR_LEN;
6191		}
6192
6193		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6194
6195		/* we can reuse buffer as-is, just make sure it is local */
6196		if (likely(page_to_nid(page) == numa_node_id()))
6197			return true;
6198
6199		/* this page cannot be reused so discard it */
6200		put_page(page);
6201		return false;
6202	}
6203
6204	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6205			rx_buffer->page_offset, size, truesize);
6206
6207	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6208}
6209
6210static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6211					   union e1000_adv_rx_desc *rx_desc)
6212{
6213	struct igb_rx_buffer *rx_buffer;
6214	struct sk_buff *skb;
6215	struct page *page;
6216	void *page_addr;
6217	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6218#if (PAGE_SIZE < 8192)
6219	unsigned int truesize = IGB_RX_BUFSZ;
6220#else
6221	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6222				SKB_DATA_ALIGN(NET_SKB_PAD +
6223					       NET_IP_ALIGN +
6224					       size);
6225#endif
6226
6227	/* If we spanned a buffer we have a huge mess so test for it */
6228	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6229
6230	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6231	page = rx_buffer->page;
6232	prefetchw(page);
6233
6234	page_addr = page_address(page) + rx_buffer->page_offset;
6235
6236	/* prefetch first cache line of first page */
6237	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6238#if L1_CACHE_BYTES < 128
6239	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6240#endif
6241
6242	/* build an skb to around the page buffer */
6243	skb = build_skb(page_addr, truesize);
6244	if (unlikely(!skb)) {
6245		rx_ring->rx_stats.alloc_failed++;
6246		return NULL;
6247	}
6248
6249	/* we are reusing so sync this buffer for CPU use */
6250	dma_sync_single_range_for_cpu(rx_ring->dev,
6251				      rx_buffer->dma,
6252				      rx_buffer->page_offset,
6253				      IGB_RX_BUFSZ,
6254				      DMA_FROM_DEVICE);
6255
6256	/* update pointers within the skb to store the data */
6257	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6258	__skb_put(skb, size);
6259
6260	/* pull timestamp out of packet data */
6261	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6262		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6263		__skb_pull(skb, IGB_TS_HDR_LEN);
6264	}
6265
6266	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6267		/* hand second half of page back to the ring */
6268		igb_reuse_rx_page(rx_ring, rx_buffer);
6269	} else {
6270		/* we are not reusing the buffer so unmap it */
6271		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6272			       PAGE_SIZE, DMA_FROM_DEVICE);
6273	}
6274
6275	/* clear contents of buffer_info */
6276	rx_buffer->dma = 0;
6277	rx_buffer->page = NULL;
6278
6279	return skb;
6280}
6281
6282static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6283					   union e1000_adv_rx_desc *rx_desc,
6284					   struct sk_buff *skb)
6285{
6286	struct igb_rx_buffer *rx_buffer;
6287	struct page *page;
6288
6289	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6290
6291	page = rx_buffer->page;
6292	prefetchw(page);
6293
6294	if (likely(!skb)) {
6295		void *page_addr = page_address(page) +
6296				  rx_buffer->page_offset;
6297
6298		/* prefetch first cache line of first page */
6299		prefetch(page_addr);
6300#if L1_CACHE_BYTES < 128
6301		prefetch(page_addr + L1_CACHE_BYTES);
6302#endif
6303
6304		/* allocate a skb to store the frags */
6305		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6306						IGB_RX_HDR_LEN);
6307		if (unlikely(!skb)) {
6308			rx_ring->rx_stats.alloc_failed++;
6309			return NULL;
6310		}
6311
6312		/*
6313		 * we will be copying header into skb->data in
6314		 * pskb_may_pull so it is in our interest to prefetch
6315		 * it now to avoid a possible cache miss
6316		 */
6317		prefetchw(skb->data);
6318	}
6319
6320	/* we are reusing so sync this buffer for CPU use */
6321	dma_sync_single_range_for_cpu(rx_ring->dev,
6322				      rx_buffer->dma,
6323				      rx_buffer->page_offset,
6324				      IGB_RX_BUFSZ,
6325				      DMA_FROM_DEVICE);
6326
6327	/* pull page into skb */
6328	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6329		/* hand second half of page back to the ring */
6330		igb_reuse_rx_page(rx_ring, rx_buffer);
6331	} else {
6332		/* we are not reusing the buffer so unmap it */
6333		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6334			       PAGE_SIZE, DMA_FROM_DEVICE);
6335	}
6336
6337	/* clear contents of rx_buffer */
6338	rx_buffer->page = NULL;
6339
6340	return skb;
6341}
6342
6343static inline void igb_rx_checksum(struct igb_ring *ring,
6344				   union e1000_adv_rx_desc *rx_desc,
6345				   struct sk_buff *skb)
6346{
6347	skb_checksum_none_assert(skb);
6348
6349	/* Ignore Checksum bit is set */
6350	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6351		return;
6352
6353	/* Rx checksum disabled via ethtool */
6354	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6355		return;
6356
6357	/* TCP/UDP checksum error bit is set */
6358	if (igb_test_staterr(rx_desc,
6359			     E1000_RXDEXT_STATERR_TCPE |
6360			     E1000_RXDEXT_STATERR_IPE)) {
6361		/*
6362		 * work around errata with sctp packets where the TCPE aka
6363		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6364		 * packets, (aka let the stack check the crc32c)
6365		 */
6366		if (!((skb->len == 60) &&
6367		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6368			u64_stats_update_begin(&ring->rx_syncp);
6369			ring->rx_stats.csum_err++;
6370			u64_stats_update_end(&ring->rx_syncp);
6371		}
6372		/* let the stack verify checksum errors */
6373		return;
6374	}
6375	/* It must be a TCP or UDP packet with a valid checksum */
6376	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6377				      E1000_RXD_STAT_UDPCS))
6378		skb->ip_summed = CHECKSUM_UNNECESSARY;
6379
6380	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6381		le32_to_cpu(rx_desc->wb.upper.status_error));
6382}
6383
6384static inline void igb_rx_hash(struct igb_ring *ring,
6385			       union e1000_adv_rx_desc *rx_desc,
6386			       struct sk_buff *skb)
6387{
6388	if (ring->netdev->features & NETIF_F_RXHASH)
6389		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6390}
6391
6392/**
6393 * igb_is_non_eop - process handling of non-EOP buffers
6394 * @rx_ring: Rx ring being processed
6395 * @rx_desc: Rx descriptor for current buffer
6396 * @skb: current socket buffer containing buffer in progress
6397 *
6398 * This function updates next to clean.  If the buffer is an EOP buffer
6399 * this function exits returning false, otherwise it will place the
6400 * sk_buff in the next buffer to be chained and return true indicating
6401 * that this is in fact a non-EOP buffer.
6402 **/
6403static bool igb_is_non_eop(struct igb_ring *rx_ring,
6404			   union e1000_adv_rx_desc *rx_desc)
6405{
6406	u32 ntc = rx_ring->next_to_clean + 1;
6407
6408	/* fetch, update, and store next to clean */
6409	ntc = (ntc < rx_ring->count) ? ntc : 0;
6410	rx_ring->next_to_clean = ntc;
6411
6412	prefetch(IGB_RX_DESC(rx_ring, ntc));
6413
6414	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6415		return false;
6416
6417	return true;
6418}
6419
6420/**
6421 * igb_get_headlen - determine size of header for LRO/GRO
6422 * @data: pointer to the start of the headers
6423 * @max_len: total length of section to find headers in
6424 *
6425 * This function is meant to determine the length of headers that will
6426 * be recognized by hardware for LRO, and GRO offloads.  The main
6427 * motivation of doing this is to only perform one pull for IPv4 TCP
6428 * packets so that we can do basic things like calculating the gso_size
6429 * based on the average data per packet.
6430 **/
6431static unsigned int igb_get_headlen(unsigned char *data,
6432				    unsigned int max_len)
6433{
6434	union {
6435		unsigned char *network;
6436		/* l2 headers */
6437		struct ethhdr *eth;
6438		struct vlan_hdr *vlan;
6439		/* l3 headers */
6440		struct iphdr *ipv4;
6441		struct ipv6hdr *ipv6;
6442	} hdr;
6443	__be16 protocol;
6444	u8 nexthdr = 0;	/* default to not TCP */
6445	u8 hlen;
6446
6447	/* this should never happen, but better safe than sorry */
6448	if (max_len < ETH_HLEN)
6449		return max_len;
6450
6451	/* initialize network frame pointer */
6452	hdr.network = data;
6453
6454	/* set first protocol and move network header forward */
6455	protocol = hdr.eth->h_proto;
6456	hdr.network += ETH_HLEN;
6457
6458	/* handle any vlan tag if present */
6459	if (protocol == __constant_htons(ETH_P_8021Q)) {
6460		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6461			return max_len;
6462
6463		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6464		hdr.network += VLAN_HLEN;
6465	}
6466
6467	/* handle L3 protocols */
6468	if (protocol == __constant_htons(ETH_P_IP)) {
6469		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6470			return max_len;
6471
6472		/* access ihl as a u8 to avoid unaligned access on ia64 */
6473		hlen = (hdr.network[0] & 0x0F) << 2;
6474
6475		/* verify hlen meets minimum size requirements */
6476		if (hlen < sizeof(struct iphdr))
6477			return hdr.network - data;
6478
6479		/* record next protocol if header is present */
6480		if (!hdr.ipv4->frag_off)
6481			nexthdr = hdr.ipv4->protocol;
6482	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6483		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6484			return max_len;
6485
6486		/* record next protocol */
6487		nexthdr = hdr.ipv6->nexthdr;
6488		hlen = sizeof(struct ipv6hdr);
6489	} else {
6490		return hdr.network - data;
6491	}
6492
6493	/* relocate pointer to start of L4 header */
6494	hdr.network += hlen;
6495
6496	/* finally sort out TCP */
6497	if (nexthdr == IPPROTO_TCP) {
6498		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6499			return max_len;
6500
6501		/* access doff as a u8 to avoid unaligned access on ia64 */
6502		hlen = (hdr.network[12] & 0xF0) >> 2;
6503
6504		/* verify hlen meets minimum size requirements */
6505		if (hlen < sizeof(struct tcphdr))
6506			return hdr.network - data;
6507
6508		hdr.network += hlen;
6509	} else if (nexthdr == IPPROTO_UDP) {
6510		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6511			return max_len;
6512
6513		hdr.network += sizeof(struct udphdr);
6514	}
6515
6516	/*
6517	 * If everything has gone correctly hdr.network should be the
6518	 * data section of the packet and will be the end of the header.
6519	 * If not then it probably represents the end of the last recognized
6520	 * header.
6521	 */
6522	if ((hdr.network - data) < max_len)
6523		return hdr.network - data;
6524	else
6525		return max_len;
6526}
6527
6528/**
6529 * igb_pull_tail - igb specific version of skb_pull_tail
6530 * @rx_ring: rx descriptor ring packet is being transacted on
6531 * @rx_desc: pointer to the EOP Rx descriptor
6532 * @skb: pointer to current skb being adjusted
6533 *
6534 * This function is an igb specific version of __pskb_pull_tail.  The
6535 * main difference between this version and the original function is that
6536 * this function can make several assumptions about the state of things
6537 * that allow for significant optimizations versus the standard function.
6538 * As a result we can do things like drop a frag and maintain an accurate
6539 * truesize for the skb.
6540 */
6541static void igb_pull_tail(struct igb_ring *rx_ring,
6542			  union e1000_adv_rx_desc *rx_desc,
6543			  struct sk_buff *skb)
6544{
6545	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6546	unsigned char *va;
6547	unsigned int pull_len;
6548
6549	/*
6550	 * it is valid to use page_address instead of kmap since we are
6551	 * working with pages allocated out of the lomem pool per
6552	 * alloc_page(GFP_ATOMIC)
6553	 */
6554	va = skb_frag_address(frag);
6555
6556	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6557		/* retrieve timestamp from buffer */
6558		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6559
6560		/* update pointers to remove timestamp header */
6561		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6562		frag->page_offset += IGB_TS_HDR_LEN;
6563		skb->data_len -= IGB_TS_HDR_LEN;
6564		skb->len -= IGB_TS_HDR_LEN;
6565
6566		/* move va to start of packet data */
6567		va += IGB_TS_HDR_LEN;
6568	}
6569
6570	/*
6571	 * we need the header to contain the greater of either ETH_HLEN or
6572	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6573	 */
6574	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6575
6576	/* align pull length to size of long to optimize memcpy performance */
6577	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6578
6579	/* update all of the pointers */
6580	skb_frag_size_sub(frag, pull_len);
6581	frag->page_offset += pull_len;
6582	skb->data_len -= pull_len;
6583	skb->tail += pull_len;
6584}
6585
6586/**
6587 * igb_cleanup_headers - Correct corrupted or empty headers
6588 * @rx_ring: rx descriptor ring packet is being transacted on
6589 * @rx_desc: pointer to the EOP Rx descriptor
6590 * @skb: pointer to current skb being fixed
6591 *
6592 * Address the case where we are pulling data in on pages only
6593 * and as such no data is present in the skb header.
6594 *
6595 * In addition if skb is not at least 60 bytes we need to pad it so that
6596 * it is large enough to qualify as a valid Ethernet frame.
6597 *
6598 * Returns true if an error was encountered and skb was freed.
6599 **/
6600static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6601				union e1000_adv_rx_desc *rx_desc,
6602				struct sk_buff *skb)
6603{
6604
6605	if (unlikely((igb_test_staterr(rx_desc,
6606				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6607		struct net_device *netdev = rx_ring->netdev;
6608		if (!(netdev->features & NETIF_F_RXALL)) {
6609			dev_kfree_skb_any(skb);
6610			return true;
6611		}
6612	}
6613
6614	/* place header in linear portion of buffer */
6615	if (skb_is_nonlinear(skb))
6616		igb_pull_tail(rx_ring, rx_desc, skb);
6617
6618	/* if skb_pad returns an error the skb was freed */
6619	if (unlikely(skb->len < 60)) {
6620		int pad_len = 60 - skb->len;
6621
6622		if (skb_pad(skb, pad_len))
6623			return true;
6624		__skb_put(skb, pad_len);
6625	}
6626
6627	return false;
6628}
6629
6630/**
6631 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6632 * @rx_ring: rx descriptor ring packet is being transacted on
6633 * @rx_desc: pointer to the EOP Rx descriptor
6634 * @skb: pointer to current skb being populated
6635 *
6636 * This function checks the ring, descriptor, and packet information in
6637 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6638 * other fields within the skb.
6639 **/
6640static void igb_process_skb_fields(struct igb_ring *rx_ring,
6641				   union e1000_adv_rx_desc *rx_desc,
6642				   struct sk_buff *skb)
6643{
6644	struct net_device *dev = rx_ring->netdev;
6645
6646	igb_rx_hash(rx_ring, rx_desc, skb);
6647
6648	igb_rx_checksum(rx_ring, rx_desc, skb);
6649
6650	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6651
6652	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6653	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6654		u16 vid;
6655		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6656		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6657			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6658		else
6659			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6660
6661		__vlan_hwaccel_put_tag(skb, vid);
6662	}
6663
6664	skb_record_rx_queue(skb, rx_ring->queue_index);
6665
6666	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6667}
6668
6669static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6670{
6671	struct igb_ring *rx_ring = q_vector->rx.ring;
6672	struct sk_buff *skb = rx_ring->skb;
6673	unsigned int total_bytes = 0, total_packets = 0;
6674	u16 cleaned_count = igb_desc_unused(rx_ring);
6675
6676	do {
6677		union e1000_adv_rx_desc *rx_desc;
6678
6679		/* return some buffers to hardware, one at a time is too slow */
6680		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6681			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6682			cleaned_count = 0;
6683		}
6684
6685		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6686
6687		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6688			break;
6689
6690		/* This memory barrier is needed to keep us from reading
6691		 * any other fields out of the rx_desc until we know the
6692		 * RXD_STAT_DD bit is set
6693		 */
6694		rmb();
6695
6696		/* retrieve a buffer from the ring */
6697		if (ring_uses_build_skb(rx_ring))
6698			skb = igb_build_rx_buffer(rx_ring, rx_desc);
6699		else
6700			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6701
6702		/* exit if we failed to retrieve a buffer */
6703		if (!skb)
6704			break;
6705
6706		cleaned_count++;
6707
6708		/* fetch next buffer in frame if non-eop */
6709		if (igb_is_non_eop(rx_ring, rx_desc))
6710			continue;
6711
6712		/* verify the packet layout is correct */
6713		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6714			skb = NULL;
6715			continue;
6716		}
6717
6718		/* probably a little skewed due to removing CRC */
6719		total_bytes += skb->len;
6720
6721		/* populate checksum, timestamp, VLAN, and protocol */
6722		igb_process_skb_fields(rx_ring, rx_desc, skb);
6723
6724		napi_gro_receive(&q_vector->napi, skb);
6725
6726		/* reset skb pointer */
6727		skb = NULL;
6728
6729		/* update budget accounting */
6730		total_packets++;
6731	} while (likely(total_packets < budget));
6732
6733	/* place incomplete frames back on ring for completion */
6734	rx_ring->skb = skb;
6735
6736	u64_stats_update_begin(&rx_ring->rx_syncp);
6737	rx_ring->rx_stats.packets += total_packets;
6738	rx_ring->rx_stats.bytes += total_bytes;
6739	u64_stats_update_end(&rx_ring->rx_syncp);
6740	q_vector->rx.total_packets += total_packets;
6741	q_vector->rx.total_bytes += total_bytes;
6742
6743	if (cleaned_count)
6744		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6745
6746	return (total_packets < budget);
6747}
6748
6749static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6750				  struct igb_rx_buffer *bi)
6751{
6752	struct page *page = bi->page;
6753	dma_addr_t dma;
6754
6755	/* since we are recycling buffers we should seldom need to alloc */
6756	if (likely(page))
6757		return true;
6758
6759	/* alloc new page for storage */
6760	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6761	if (unlikely(!page)) {
6762		rx_ring->rx_stats.alloc_failed++;
6763		return false;
6764	}
6765
6766	/* map page for use */
6767	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6768
6769	/*
6770	 * if mapping failed free memory back to system since
6771	 * there isn't much point in holding memory we can't use
6772	 */
6773	if (dma_mapping_error(rx_ring->dev, dma)) {
6774		__free_page(page);
6775
6776		rx_ring->rx_stats.alloc_failed++;
6777		return false;
6778	}
6779
6780	bi->dma = dma;
6781	bi->page = page;
6782	bi->page_offset = 0;
6783
6784	return true;
6785}
6786
6787static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6788{
6789	if (ring_uses_build_skb(rx_ring))
6790		return NET_SKB_PAD + NET_IP_ALIGN;
6791	else
6792		return 0;
6793}
6794
6795/**
6796 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6797 * @adapter: address of board private structure
6798 **/
6799void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6800{
6801	union e1000_adv_rx_desc *rx_desc;
6802	struct igb_rx_buffer *bi;
6803	u16 i = rx_ring->next_to_use;
6804
6805	/* nothing to do */
6806	if (!cleaned_count)
6807		return;
6808
6809	rx_desc = IGB_RX_DESC(rx_ring, i);
6810	bi = &rx_ring->rx_buffer_info[i];
6811	i -= rx_ring->count;
6812
6813	do {
6814		if (!igb_alloc_mapped_page(rx_ring, bi))
6815			break;
6816
6817		/*
6818		 * Refresh the desc even if buffer_addrs didn't change
6819		 * because each write-back erases this info.
6820		 */
6821		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6822						     bi->page_offset +
6823						     igb_rx_offset(rx_ring));
6824
6825		rx_desc++;
6826		bi++;
6827		i++;
6828		if (unlikely(!i)) {
6829			rx_desc = IGB_RX_DESC(rx_ring, 0);
6830			bi = rx_ring->rx_buffer_info;
6831			i -= rx_ring->count;
6832		}
6833
6834		/* clear the hdr_addr for the next_to_use descriptor */
6835		rx_desc->read.hdr_addr = 0;
6836
6837		cleaned_count--;
6838	} while (cleaned_count);
6839
6840	i += rx_ring->count;
6841
6842	if (rx_ring->next_to_use != i) {
6843		/* record the next descriptor to use */
6844		rx_ring->next_to_use = i;
6845
6846		/* update next to alloc since we have filled the ring */
6847		rx_ring->next_to_alloc = i;
6848
6849		/*
6850		 * Force memory writes to complete before letting h/w
6851		 * know there are new descriptors to fetch.  (Only
6852		 * applicable for weak-ordered memory model archs,
6853		 * such as IA-64).
6854		 */
6855		wmb();
6856		writel(i, rx_ring->tail);
6857	}
6858}
6859
6860/**
6861 * igb_mii_ioctl -
6862 * @netdev:
6863 * @ifreq:
6864 * @cmd:
6865 **/
6866static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6867{
6868	struct igb_adapter *adapter = netdev_priv(netdev);
6869	struct mii_ioctl_data *data = if_mii(ifr);
6870
6871	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6872		return -EOPNOTSUPP;
6873
6874	switch (cmd) {
6875	case SIOCGMIIPHY:
6876		data->phy_id = adapter->hw.phy.addr;
6877		break;
6878	case SIOCGMIIREG:
6879		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6880		                     &data->val_out))
6881			return -EIO;
6882		break;
6883	case SIOCSMIIREG:
6884	default:
6885		return -EOPNOTSUPP;
6886	}
6887	return 0;
6888}
6889
6890/**
6891 * igb_ioctl -
6892 * @netdev:
6893 * @ifreq:
6894 * @cmd:
6895 **/
6896static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6897{
6898	switch (cmd) {
6899	case SIOCGMIIPHY:
6900	case SIOCGMIIREG:
6901	case SIOCSMIIREG:
6902		return igb_mii_ioctl(netdev, ifr, cmd);
6903	case SIOCSHWTSTAMP:
6904		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6905	default:
6906		return -EOPNOTSUPP;
6907	}
6908}
6909
6910s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6911{
6912	struct igb_adapter *adapter = hw->back;
6913
6914	if (pcie_capability_read_word(adapter->pdev, reg, value))
6915		return -E1000_ERR_CONFIG;
6916
6917	return 0;
6918}
6919
6920s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6921{
6922	struct igb_adapter *adapter = hw->back;
6923
6924	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6925		return -E1000_ERR_CONFIG;
6926
6927	return 0;
6928}
6929
6930static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6931{
6932	struct igb_adapter *adapter = netdev_priv(netdev);
6933	struct e1000_hw *hw = &adapter->hw;
6934	u32 ctrl, rctl;
6935	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6936
6937	if (enable) {
6938		/* enable VLAN tag insert/strip */
6939		ctrl = rd32(E1000_CTRL);
6940		ctrl |= E1000_CTRL_VME;
6941		wr32(E1000_CTRL, ctrl);
6942
6943		/* Disable CFI check */
6944		rctl = rd32(E1000_RCTL);
6945		rctl &= ~E1000_RCTL_CFIEN;
6946		wr32(E1000_RCTL, rctl);
6947	} else {
6948		/* disable VLAN tag insert/strip */
6949		ctrl = rd32(E1000_CTRL);
6950		ctrl &= ~E1000_CTRL_VME;
6951		wr32(E1000_CTRL, ctrl);
6952	}
6953
6954	igb_rlpml_set(adapter);
6955}
6956
6957static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6958{
6959	struct igb_adapter *adapter = netdev_priv(netdev);
6960	struct e1000_hw *hw = &adapter->hw;
6961	int pf_id = adapter->vfs_allocated_count;
6962
6963	/* attempt to add filter to vlvf array */
6964	igb_vlvf_set(adapter, vid, true, pf_id);
6965
6966	/* add the filter since PF can receive vlans w/o entry in vlvf */
6967	igb_vfta_set(hw, vid, true);
6968
6969	set_bit(vid, adapter->active_vlans);
6970
6971	return 0;
6972}
6973
6974static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6975{
6976	struct igb_adapter *adapter = netdev_priv(netdev);
6977	struct e1000_hw *hw = &adapter->hw;
6978	int pf_id = adapter->vfs_allocated_count;
6979	s32 err;
6980
6981	/* remove vlan from VLVF table array */
6982	err = igb_vlvf_set(adapter, vid, false, pf_id);
6983
6984	/* if vid was not present in VLVF just remove it from table */
6985	if (err)
6986		igb_vfta_set(hw, vid, false);
6987
6988	clear_bit(vid, adapter->active_vlans);
6989
6990	return 0;
6991}
6992
6993static void igb_restore_vlan(struct igb_adapter *adapter)
6994{
6995	u16 vid;
6996
6997	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6998
6999	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7000		igb_vlan_rx_add_vid(adapter->netdev, vid);
7001}
7002
7003int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7004{
7005	struct pci_dev *pdev = adapter->pdev;
7006	struct e1000_mac_info *mac = &adapter->hw.mac;
7007
7008	mac->autoneg = 0;
7009
7010	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7011	 * for the switch() below to work */
7012	if ((spd & 1) || (dplx & ~1))
7013		goto err_inval;
7014
7015	/* Fiber NIC's only allow 1000 Gbps Full duplex */
7016	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
7017	    spd != SPEED_1000 &&
7018	    dplx != DUPLEX_FULL)
7019		goto err_inval;
7020
7021	switch (spd + dplx) {
7022	case SPEED_10 + DUPLEX_HALF:
7023		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7024		break;
7025	case SPEED_10 + DUPLEX_FULL:
7026		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7027		break;
7028	case SPEED_100 + DUPLEX_HALF:
7029		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7030		break;
7031	case SPEED_100 + DUPLEX_FULL:
7032		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7033		break;
7034	case SPEED_1000 + DUPLEX_FULL:
7035		mac->autoneg = 1;
7036		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7037		break;
7038	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7039	default:
7040		goto err_inval;
7041	}
7042
7043	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7044	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7045
7046	return 0;
7047
7048err_inval:
7049	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7050	return -EINVAL;
7051}
7052
7053static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7054			  bool runtime)
7055{
7056	struct net_device *netdev = pci_get_drvdata(pdev);
7057	struct igb_adapter *adapter = netdev_priv(netdev);
7058	struct e1000_hw *hw = &adapter->hw;
7059	u32 ctrl, rctl, status;
7060	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7061#ifdef CONFIG_PM
7062	int retval = 0;
7063#endif
7064
7065	netif_device_detach(netdev);
7066
7067	if (netif_running(netdev))
7068		__igb_close(netdev, true);
7069
7070	igb_clear_interrupt_scheme(adapter);
7071
7072#ifdef CONFIG_PM
7073	retval = pci_save_state(pdev);
7074	if (retval)
7075		return retval;
7076#endif
7077
7078	status = rd32(E1000_STATUS);
7079	if (status & E1000_STATUS_LU)
7080		wufc &= ~E1000_WUFC_LNKC;
7081
7082	if (wufc) {
7083		igb_setup_rctl(adapter);
7084		igb_set_rx_mode(netdev);
7085
7086		/* turn on all-multi mode if wake on multicast is enabled */
7087		if (wufc & E1000_WUFC_MC) {
7088			rctl = rd32(E1000_RCTL);
7089			rctl |= E1000_RCTL_MPE;
7090			wr32(E1000_RCTL, rctl);
7091		}
7092
7093		ctrl = rd32(E1000_CTRL);
7094		/* advertise wake from D3Cold */
7095		#define E1000_CTRL_ADVD3WUC 0x00100000
7096		/* phy power management enable */
7097		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7098		ctrl |= E1000_CTRL_ADVD3WUC;
7099		wr32(E1000_CTRL, ctrl);
7100
7101		/* Allow time for pending master requests to run */
7102		igb_disable_pcie_master(hw);
7103
7104		wr32(E1000_WUC, E1000_WUC_PME_EN);
7105		wr32(E1000_WUFC, wufc);
7106	} else {
7107		wr32(E1000_WUC, 0);
7108		wr32(E1000_WUFC, 0);
7109	}
7110
7111	*enable_wake = wufc || adapter->en_mng_pt;
7112	if (!*enable_wake)
7113		igb_power_down_link(adapter);
7114	else
7115		igb_power_up_link(adapter);
7116
7117	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7118	 * would have already happened in close and is redundant. */
7119	igb_release_hw_control(adapter);
7120
7121	pci_disable_device(pdev);
7122
7123	return 0;
7124}
7125
7126#ifdef CONFIG_PM
7127#ifdef CONFIG_PM_SLEEP
7128static int igb_suspend(struct device *dev)
7129{
7130	int retval;
7131	bool wake;
7132	struct pci_dev *pdev = to_pci_dev(dev);
7133
7134	retval = __igb_shutdown(pdev, &wake, 0);
7135	if (retval)
7136		return retval;
7137
7138	if (wake) {
7139		pci_prepare_to_sleep(pdev);
7140	} else {
7141		pci_wake_from_d3(pdev, false);
7142		pci_set_power_state(pdev, PCI_D3hot);
7143	}
7144
7145	return 0;
7146}
7147#endif /* CONFIG_PM_SLEEP */
7148
7149static int igb_resume(struct device *dev)
7150{
7151	struct pci_dev *pdev = to_pci_dev(dev);
7152	struct net_device *netdev = pci_get_drvdata(pdev);
7153	struct igb_adapter *adapter = netdev_priv(netdev);
7154	struct e1000_hw *hw = &adapter->hw;
7155	u32 err;
7156
7157	pci_set_power_state(pdev, PCI_D0);
7158	pci_restore_state(pdev);
7159	pci_save_state(pdev);
7160
7161	err = pci_enable_device_mem(pdev);
7162	if (err) {
7163		dev_err(&pdev->dev,
7164			"igb: Cannot enable PCI device from suspend\n");
7165		return err;
7166	}
7167	pci_set_master(pdev);
7168
7169	pci_enable_wake(pdev, PCI_D3hot, 0);
7170	pci_enable_wake(pdev, PCI_D3cold, 0);
7171
7172	if (igb_init_interrupt_scheme(adapter, true)) {
7173		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7174		return -ENOMEM;
7175	}
7176
7177	igb_reset(adapter);
7178
7179	/* let the f/w know that the h/w is now under the control of the
7180	 * driver. */
7181	igb_get_hw_control(adapter);
7182
7183	wr32(E1000_WUS, ~0);
7184
7185	if (netdev->flags & IFF_UP) {
7186		rtnl_lock();
7187		err = __igb_open(netdev, true);
7188		rtnl_unlock();
7189		if (err)
7190			return err;
7191	}
7192
7193	netif_device_attach(netdev);
7194	return 0;
7195}
7196
7197#ifdef CONFIG_PM_RUNTIME
7198static int igb_runtime_idle(struct device *dev)
7199{
7200	struct pci_dev *pdev = to_pci_dev(dev);
7201	struct net_device *netdev = pci_get_drvdata(pdev);
7202	struct igb_adapter *adapter = netdev_priv(netdev);
7203
7204	if (!igb_has_link(adapter))
7205		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7206
7207	return -EBUSY;
7208}
7209
7210static int igb_runtime_suspend(struct device *dev)
7211{
7212	struct pci_dev *pdev = to_pci_dev(dev);
7213	int retval;
7214	bool wake;
7215
7216	retval = __igb_shutdown(pdev, &wake, 1);
7217	if (retval)
7218		return retval;
7219
7220	if (wake) {
7221		pci_prepare_to_sleep(pdev);
7222	} else {
7223		pci_wake_from_d3(pdev, false);
7224		pci_set_power_state(pdev, PCI_D3hot);
7225	}
7226
7227	return 0;
7228}
7229
7230static int igb_runtime_resume(struct device *dev)
7231{
7232	return igb_resume(dev);
7233}
7234#endif /* CONFIG_PM_RUNTIME */
7235#endif
7236
7237static void igb_shutdown(struct pci_dev *pdev)
7238{
7239	bool wake;
7240
7241	__igb_shutdown(pdev, &wake, 0);
7242
7243	if (system_state == SYSTEM_POWER_OFF) {
7244		pci_wake_from_d3(pdev, wake);
7245		pci_set_power_state(pdev, PCI_D3hot);
7246	}
7247}
7248
7249#ifdef CONFIG_PCI_IOV
7250static int igb_sriov_reinit(struct pci_dev *dev)
7251{
7252	struct net_device *netdev = pci_get_drvdata(dev);
7253	struct igb_adapter *adapter = netdev_priv(netdev);
7254	struct pci_dev *pdev = adapter->pdev;
7255
7256	rtnl_lock();
7257
7258	if (netif_running(netdev))
7259		igb_close(netdev);
7260
7261	igb_clear_interrupt_scheme(adapter);
7262
7263	igb_init_queue_configuration(adapter);
7264
7265	if (igb_init_interrupt_scheme(adapter, true)) {
7266		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7267		return -ENOMEM;
7268	}
7269
7270	if (netif_running(netdev))
7271		igb_open(netdev);
7272
7273	rtnl_unlock();
7274
7275	return 0;
7276}
7277
7278static int igb_pci_disable_sriov(struct pci_dev *dev)
7279{
7280	int err = igb_disable_sriov(dev);
7281
7282	if (!err)
7283		err = igb_sriov_reinit(dev);
7284
7285	return err;
7286}
7287
7288static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7289{
7290	int err = igb_enable_sriov(dev, num_vfs);
7291
7292	if (err)
7293		goto out;
7294
7295	err = igb_sriov_reinit(dev);
7296	if (!err)
7297		return num_vfs;
7298
7299out:
7300	return err;
7301}
7302
7303#endif
7304static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7305{
7306#ifdef CONFIG_PCI_IOV
7307	if (num_vfs == 0)
7308		return igb_pci_disable_sriov(dev);
7309	else
7310		return igb_pci_enable_sriov(dev, num_vfs);
7311#endif
7312	return 0;
7313}
7314
7315#ifdef CONFIG_NET_POLL_CONTROLLER
7316/*
7317 * Polling 'interrupt' - used by things like netconsole to send skbs
7318 * without having to re-enable interrupts. It's not called while
7319 * the interrupt routine is executing.
7320 */
7321static void igb_netpoll(struct net_device *netdev)
7322{
7323	struct igb_adapter *adapter = netdev_priv(netdev);
7324	struct e1000_hw *hw = &adapter->hw;
7325	struct igb_q_vector *q_vector;
7326	int i;
7327
7328	for (i = 0; i < adapter->num_q_vectors; i++) {
7329		q_vector = adapter->q_vector[i];
7330		if (adapter->msix_entries)
7331			wr32(E1000_EIMC, q_vector->eims_value);
7332		else
7333			igb_irq_disable(adapter);
7334		napi_schedule(&q_vector->napi);
7335	}
7336}
7337#endif /* CONFIG_NET_POLL_CONTROLLER */
7338
7339/**
7340 * igb_io_error_detected - called when PCI error is detected
7341 * @pdev: Pointer to PCI device
7342 * @state: The current pci connection state
7343 *
7344 * This function is called after a PCI bus error affecting
7345 * this device has been detected.
7346 */
7347static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7348					      pci_channel_state_t state)
7349{
7350	struct net_device *netdev = pci_get_drvdata(pdev);
7351	struct igb_adapter *adapter = netdev_priv(netdev);
7352
7353	netif_device_detach(netdev);
7354
7355	if (state == pci_channel_io_perm_failure)
7356		return PCI_ERS_RESULT_DISCONNECT;
7357
7358	if (netif_running(netdev))
7359		igb_down(adapter);
7360	pci_disable_device(pdev);
7361
7362	/* Request a slot slot reset. */
7363	return PCI_ERS_RESULT_NEED_RESET;
7364}
7365
7366/**
7367 * igb_io_slot_reset - called after the pci bus has been reset.
7368 * @pdev: Pointer to PCI device
7369 *
7370 * Restart the card from scratch, as if from a cold-boot. Implementation
7371 * resembles the first-half of the igb_resume routine.
7372 */
7373static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7374{
7375	struct net_device *netdev = pci_get_drvdata(pdev);
7376	struct igb_adapter *adapter = netdev_priv(netdev);
7377	struct e1000_hw *hw = &adapter->hw;
7378	pci_ers_result_t result;
7379	int err;
7380
7381	if (pci_enable_device_mem(pdev)) {
7382		dev_err(&pdev->dev,
7383			"Cannot re-enable PCI device after reset.\n");
7384		result = PCI_ERS_RESULT_DISCONNECT;
7385	} else {
7386		pci_set_master(pdev);
7387		pci_restore_state(pdev);
7388		pci_save_state(pdev);
7389
7390		pci_enable_wake(pdev, PCI_D3hot, 0);
7391		pci_enable_wake(pdev, PCI_D3cold, 0);
7392
7393		igb_reset(adapter);
7394		wr32(E1000_WUS, ~0);
7395		result = PCI_ERS_RESULT_RECOVERED;
7396	}
7397
7398	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7399	if (err) {
7400		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7401		        "failed 0x%0x\n", err);
7402		/* non-fatal, continue */
7403	}
7404
7405	return result;
7406}
7407
7408/**
7409 * igb_io_resume - called when traffic can start flowing again.
7410 * @pdev: Pointer to PCI device
7411 *
7412 * This callback is called when the error recovery driver tells us that
7413 * its OK to resume normal operation. Implementation resembles the
7414 * second-half of the igb_resume routine.
7415 */
7416static void igb_io_resume(struct pci_dev *pdev)
7417{
7418	struct net_device *netdev = pci_get_drvdata(pdev);
7419	struct igb_adapter *adapter = netdev_priv(netdev);
7420
7421	if (netif_running(netdev)) {
7422		if (igb_up(adapter)) {
7423			dev_err(&pdev->dev, "igb_up failed after reset\n");
7424			return;
7425		}
7426	}
7427
7428	netif_device_attach(netdev);
7429
7430	/* let the f/w know that the h/w is now under the control of the
7431	 * driver. */
7432	igb_get_hw_control(adapter);
7433}
7434
7435static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7436                             u8 qsel)
7437{
7438	u32 rar_low, rar_high;
7439	struct e1000_hw *hw = &adapter->hw;
7440
7441	/* HW expects these in little endian so we reverse the byte order
7442	 * from network order (big endian) to little endian
7443	 */
7444	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7445	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7446	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7447
7448	/* Indicate to hardware the Address is Valid. */
7449	rar_high |= E1000_RAH_AV;
7450
7451	if (hw->mac.type == e1000_82575)
7452		rar_high |= E1000_RAH_POOL_1 * qsel;
7453	else
7454		rar_high |= E1000_RAH_POOL_1 << qsel;
7455
7456	wr32(E1000_RAL(index), rar_low);
7457	wrfl();
7458	wr32(E1000_RAH(index), rar_high);
7459	wrfl();
7460}
7461
7462static int igb_set_vf_mac(struct igb_adapter *adapter,
7463                          int vf, unsigned char *mac_addr)
7464{
7465	struct e1000_hw *hw = &adapter->hw;
7466	/* VF MAC addresses start at end of receive addresses and moves
7467	 * torwards the first, as a result a collision should not be possible */
7468	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7469
7470	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7471
7472	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7473
7474	return 0;
7475}
7476
7477static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7478{
7479	struct igb_adapter *adapter = netdev_priv(netdev);
7480	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7481		return -EINVAL;
7482	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7483	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7484	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7485				      " change effective.");
7486	if (test_bit(__IGB_DOWN, &adapter->state)) {
7487		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7488			 " but the PF device is not up.\n");
7489		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7490			 " attempting to use the VF device.\n");
7491	}
7492	return igb_set_vf_mac(adapter, vf, mac);
7493}
7494
7495static int igb_link_mbps(int internal_link_speed)
7496{
7497	switch (internal_link_speed) {
7498	case SPEED_100:
7499		return 100;
7500	case SPEED_1000:
7501		return 1000;
7502	default:
7503		return 0;
7504	}
7505}
7506
7507static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7508				  int link_speed)
7509{
7510	int rf_dec, rf_int;
7511	u32 bcnrc_val;
7512
7513	if (tx_rate != 0) {
7514		/* Calculate the rate factor values to set */
7515		rf_int = link_speed / tx_rate;
7516		rf_dec = (link_speed - (rf_int * tx_rate));
7517		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7518
7519		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7520		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7521		               E1000_RTTBCNRC_RF_INT_MASK);
7522		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7523	} else {
7524		bcnrc_val = 0;
7525	}
7526
7527	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7528	/*
7529	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7530	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7531	 */
7532	wr32(E1000_RTTBCNRM, 0x14);
7533	wr32(E1000_RTTBCNRC, bcnrc_val);
7534}
7535
7536static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7537{
7538	int actual_link_speed, i;
7539	bool reset_rate = false;
7540
7541	/* VF TX rate limit was not set or not supported */
7542	if ((adapter->vf_rate_link_speed == 0) ||
7543	    (adapter->hw.mac.type != e1000_82576))
7544		return;
7545
7546	actual_link_speed = igb_link_mbps(adapter->link_speed);
7547	if (actual_link_speed != adapter->vf_rate_link_speed) {
7548		reset_rate = true;
7549		adapter->vf_rate_link_speed = 0;
7550		dev_info(&adapter->pdev->dev,
7551		         "Link speed has been changed. VF Transmit "
7552		         "rate is disabled\n");
7553	}
7554
7555	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7556		if (reset_rate)
7557			adapter->vf_data[i].tx_rate = 0;
7558
7559		igb_set_vf_rate_limit(&adapter->hw, i,
7560		                      adapter->vf_data[i].tx_rate,
7561		                      actual_link_speed);
7562	}
7563}
7564
7565static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7566{
7567	struct igb_adapter *adapter = netdev_priv(netdev);
7568	struct e1000_hw *hw = &adapter->hw;
7569	int actual_link_speed;
7570
7571	if (hw->mac.type != e1000_82576)
7572		return -EOPNOTSUPP;
7573
7574	actual_link_speed = igb_link_mbps(adapter->link_speed);
7575	if ((vf >= adapter->vfs_allocated_count) ||
7576	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7577	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7578		return -EINVAL;
7579
7580	adapter->vf_rate_link_speed = actual_link_speed;
7581	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7582	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7583
7584	return 0;
7585}
7586
7587static int igb_ndo_get_vf_config(struct net_device *netdev,
7588				 int vf, struct ifla_vf_info *ivi)
7589{
7590	struct igb_adapter *adapter = netdev_priv(netdev);
7591	if (vf >= adapter->vfs_allocated_count)
7592		return -EINVAL;
7593	ivi->vf = vf;
7594	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7595	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7596	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7597	ivi->qos = adapter->vf_data[vf].pf_qos;
7598	return 0;
7599}
7600
7601static void igb_vmm_control(struct igb_adapter *adapter)
7602{
7603	struct e1000_hw *hw = &adapter->hw;
7604	u32 reg;
7605
7606	switch (hw->mac.type) {
7607	case e1000_82575:
7608	case e1000_i210:
7609	case e1000_i211:
7610	default:
7611		/* replication is not supported for 82575 */
7612		return;
7613	case e1000_82576:
7614		/* notify HW that the MAC is adding vlan tags */
7615		reg = rd32(E1000_DTXCTL);
7616		reg |= E1000_DTXCTL_VLAN_ADDED;
7617		wr32(E1000_DTXCTL, reg);
7618	case e1000_82580:
7619		/* enable replication vlan tag stripping */
7620		reg = rd32(E1000_RPLOLR);
7621		reg |= E1000_RPLOLR_STRVLAN;
7622		wr32(E1000_RPLOLR, reg);
7623	case e1000_i350:
7624		/* none of the above registers are supported by i350 */
7625		break;
7626	}
7627
7628	if (adapter->vfs_allocated_count) {
7629		igb_vmdq_set_loopback_pf(hw, true);
7630		igb_vmdq_set_replication_pf(hw, true);
7631		igb_vmdq_set_anti_spoofing_pf(hw, true,
7632						adapter->vfs_allocated_count);
7633	} else {
7634		igb_vmdq_set_loopback_pf(hw, false);
7635		igb_vmdq_set_replication_pf(hw, false);
7636	}
7637}
7638
7639static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7640{
7641	struct e1000_hw *hw = &adapter->hw;
7642	u32 dmac_thr;
7643	u16 hwm;
7644
7645	if (hw->mac.type > e1000_82580) {
7646		if (adapter->flags & IGB_FLAG_DMAC) {
7647			u32 reg;
7648
7649			/* force threshold to 0. */
7650			wr32(E1000_DMCTXTH, 0);
7651
7652			/*
7653			 * DMA Coalescing high water mark needs to be greater
7654			 * than the Rx threshold. Set hwm to PBA - max frame
7655			 * size in 16B units, capping it at PBA - 6KB.
7656			 */
7657			hwm = 64 * pba - adapter->max_frame_size / 16;
7658			if (hwm < 64 * (pba - 6))
7659				hwm = 64 * (pba - 6);
7660			reg = rd32(E1000_FCRTC);
7661			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7662			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7663				& E1000_FCRTC_RTH_COAL_MASK);
7664			wr32(E1000_FCRTC, reg);
7665
7666			/*
7667			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7668			 * frame size, capping it at PBA - 10KB.
7669			 */
7670			dmac_thr = pba - adapter->max_frame_size / 512;
7671			if (dmac_thr < pba - 10)
7672				dmac_thr = pba - 10;
7673			reg = rd32(E1000_DMACR);
7674			reg &= ~E1000_DMACR_DMACTHR_MASK;
7675			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7676				& E1000_DMACR_DMACTHR_MASK);
7677
7678			/* transition to L0x or L1 if available..*/
7679			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7680
7681			/* watchdog timer= +-1000 usec in 32usec intervals */
7682			reg |= (1000 >> 5);
7683
7684			/* Disable BMC-to-OS Watchdog Enable */
7685			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7686			wr32(E1000_DMACR, reg);
7687
7688			/*
7689			 * no lower threshold to disable
7690			 * coalescing(smart fifb)-UTRESH=0
7691			 */
7692			wr32(E1000_DMCRTRH, 0);
7693
7694			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7695
7696			wr32(E1000_DMCTLX, reg);
7697
7698			/*
7699			 * free space in tx packet buffer to wake from
7700			 * DMA coal
7701			 */
7702			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7703			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7704
7705			/*
7706			 * make low power state decision controlled
7707			 * by DMA coal
7708			 */
7709			reg = rd32(E1000_PCIEMISC);
7710			reg &= ~E1000_PCIEMISC_LX_DECISION;
7711			wr32(E1000_PCIEMISC, reg);
7712		} /* endif adapter->dmac is not disabled */
7713	} else if (hw->mac.type == e1000_82580) {
7714		u32 reg = rd32(E1000_PCIEMISC);
7715		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7716		wr32(E1000_DMACR, 0);
7717	}
7718}
7719
7720static DEFINE_SPINLOCK(i2c_clients_lock);
7721
7722/*  igb_get_i2c_client - returns matching client
7723 *  in adapters's client list.
7724 *  @adapter: adapter struct
7725 *  @dev_addr: device address of i2c needed.
7726 */
7727static struct i2c_client *
7728igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
7729{
7730	ulong flags;
7731	struct igb_i2c_client_list *client_list;
7732	struct i2c_client *client = NULL;
7733	struct i2c_board_info client_info = {
7734		I2C_BOARD_INFO("igb", 0x00),
7735	};
7736
7737	spin_lock_irqsave(&i2c_clients_lock, flags);
7738	client_list = adapter->i2c_clients;
7739
7740	/* See if we already have an i2c_client */
7741	while (client_list) {
7742		if (client_list->client->addr == (dev_addr >> 1)) {
7743			client = client_list->client;
7744			goto exit;
7745		} else {
7746			client_list = client_list->next;
7747		}
7748	}
7749
7750	/* no client_list found, create a new one */
7751	client_list = kzalloc(sizeof(*client_list), GFP_ATOMIC);
7752	if (client_list == NULL)
7753		goto exit;
7754
7755	/* dev_addr passed to us is left-shifted by 1 bit
7756	 * i2c_new_device call expects it to be flush to the right.
7757	 */
7758	client_info.addr = dev_addr >> 1;
7759	client_info.platform_data = adapter;
7760	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
7761	if (client_list->client == NULL) {
7762		dev_info(&adapter->pdev->dev,
7763			"Failed to create new i2c device..\n");
7764		goto err_no_client;
7765	}
7766
7767	/* insert new client at head of list */
7768	client_list->next = adapter->i2c_clients;
7769	adapter->i2c_clients = client_list;
7770
7771	client = client_list->client;
7772	goto exit;
7773
7774err_no_client:
7775	kfree(client_list);
7776exit:
7777	spin_unlock_irqrestore(&i2c_clients_lock, flags);
7778	return client;
7779}
7780
7781/*  igb_read_i2c_byte - Reads 8 bit word over I2C
7782 *  @hw: pointer to hardware structure
7783 *  @byte_offset: byte offset to read
7784 *  @dev_addr: device address
7785 *  @data: value read
7786 *
7787 *  Performs byte read operation over I2C interface at
7788 *  a specified device address.
7789 */
7790s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7791				u8 dev_addr, u8 *data)
7792{
7793	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7794	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7795	s32 status;
7796	u16 swfw_mask = 0;
7797
7798	if (!this_client)
7799		return E1000_ERR_I2C;
7800
7801	swfw_mask = E1000_SWFW_PHY0_SM;
7802
7803	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7804	    != E1000_SUCCESS)
7805		return E1000_ERR_SWFW_SYNC;
7806
7807	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7808	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7809
7810	if (status < 0)
7811		return E1000_ERR_I2C;
7812	else {
7813		*data = status;
7814		return E1000_SUCCESS;
7815	}
7816}
7817
7818/*  igb_write_i2c_byte - Writes 8 bit word over I2C
7819 *  @hw: pointer to hardware structure
7820 *  @byte_offset: byte offset to write
7821 *  @dev_addr: device address
7822 *  @data: value to write
7823 *
7824 *  Performs byte write operation over I2C interface at
7825 *  a specified device address.
7826 */
7827s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7828				 u8 dev_addr, u8 data)
7829{
7830	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7831	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7832	s32 status;
7833	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7834
7835	if (!this_client)
7836		return E1000_ERR_I2C;
7837
7838	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7839		return E1000_ERR_SWFW_SYNC;
7840	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7841	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7842
7843	if (status)
7844		return E1000_ERR_I2C;
7845	else
7846		return E1000_SUCCESS;
7847
7848}
7849/* igb_main.c */
7850