igb_main.c revision e52c0f960cbc2c691cbb809ac0bfec2becfe6da9
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 0
61#define BUILD 5
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67				"Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69				"Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72	[board_82575] = &e1000_82575_info,
73};
74
75static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111	/* required last entry */
112	{0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117void igb_reset(struct igb_adapter *);
118static int igb_setup_all_tx_resources(struct igb_adapter *);
119static int igb_setup_all_rx_resources(struct igb_adapter *);
120static void igb_free_all_tx_resources(struct igb_adapter *);
121static void igb_free_all_rx_resources(struct igb_adapter *);
122static void igb_setup_mrqc(struct igb_adapter *);
123static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124static void igb_remove(struct pci_dev *pdev);
125static int igb_sw_init(struct igb_adapter *);
126static int igb_open(struct net_device *);
127static int igb_close(struct net_device *);
128static void igb_configure(struct igb_adapter *);
129static void igb_configure_tx(struct igb_adapter *);
130static void igb_configure_rx(struct igb_adapter *);
131static void igb_clean_all_tx_rings(struct igb_adapter *);
132static void igb_clean_all_rx_rings(struct igb_adapter *);
133static void igb_clean_tx_ring(struct igb_ring *);
134static void igb_clean_rx_ring(struct igb_ring *);
135static void igb_set_rx_mode(struct net_device *);
136static void igb_update_phy_info(unsigned long);
137static void igb_watchdog(unsigned long);
138static void igb_watchdog_task(struct work_struct *);
139static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141						 struct rtnl_link_stats64 *stats);
142static int igb_change_mtu(struct net_device *, int);
143static int igb_set_mac(struct net_device *, void *);
144static void igb_set_uta(struct igb_adapter *adapter);
145static irqreturn_t igb_intr(int irq, void *);
146static irqreturn_t igb_intr_msi(int irq, void *);
147static irqreturn_t igb_msix_other(int irq, void *);
148static irqreturn_t igb_msix_ring(int irq, void *);
149#ifdef CONFIG_IGB_DCA
150static void igb_update_dca(struct igb_q_vector *);
151static void igb_setup_dca(struct igb_adapter *);
152#endif /* CONFIG_IGB_DCA */
153static int igb_poll(struct napi_struct *, int);
154static bool igb_clean_tx_irq(struct igb_q_vector *);
155static bool igb_clean_rx_irq(struct igb_q_vector *, int);
156static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157static void igb_tx_timeout(struct net_device *);
158static void igb_reset_task(struct work_struct *);
159static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171			       int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174				   bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176				 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189#ifdef CONFIG_PM_RUNTIME
190static int igb_runtime_suspend(struct device *dev);
191static int igb_runtime_resume(struct device *dev);
192static int igb_runtime_idle(struct device *dev);
193#endif
194static const struct dev_pm_ops igb_pm_ops = {
195	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197			igb_runtime_idle)
198};
199#endif
200static void igb_shutdown(struct pci_dev *);
201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202#ifdef CONFIG_IGB_DCA
203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204static struct notifier_block dca_notifier = {
205	.notifier_call	= igb_notify_dca,
206	.next		= NULL,
207	.priority	= 0
208};
209#endif
210#ifdef CONFIG_NET_POLL_CONTROLLER
211/* for netdump / net console */
212static void igb_netpoll(struct net_device *);
213#endif
214#ifdef CONFIG_PCI_IOV
215static unsigned int max_vfs = 0;
216module_param(max_vfs, uint, 0);
217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218#endif /* CONFIG_PCI_IOV */
219
220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221		     pci_channel_state_t);
222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223static void igb_io_resume(struct pci_dev *);
224
225static const struct pci_error_handlers igb_err_handler = {
226	.error_detected = igb_io_error_detected,
227	.slot_reset = igb_io_slot_reset,
228	.resume = igb_io_resume,
229};
230
231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233static struct pci_driver igb_driver = {
234	.name     = igb_driver_name,
235	.id_table = igb_pci_tbl,
236	.probe    = igb_probe,
237	.remove   = igb_remove,
238#ifdef CONFIG_PM
239	.driver.pm = &igb_pm_ops,
240#endif
241	.shutdown = igb_shutdown,
242	.sriov_configure = igb_pci_sriov_configure,
243	.err_handler = &igb_err_handler
244};
245
246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248MODULE_LICENSE("GPL");
249MODULE_VERSION(DRV_VERSION);
250
251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252static int debug = -1;
253module_param(debug, int, 0);
254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256struct igb_reg_info {
257	u32 ofs;
258	char *name;
259};
260
261static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263	/* General Registers */
264	{E1000_CTRL, "CTRL"},
265	{E1000_STATUS, "STATUS"},
266	{E1000_CTRL_EXT, "CTRL_EXT"},
267
268	/* Interrupt Registers */
269	{E1000_ICR, "ICR"},
270
271	/* RX Registers */
272	{E1000_RCTL, "RCTL"},
273	{E1000_RDLEN(0), "RDLEN"},
274	{E1000_RDH(0), "RDH"},
275	{E1000_RDT(0), "RDT"},
276	{E1000_RXDCTL(0), "RXDCTL"},
277	{E1000_RDBAL(0), "RDBAL"},
278	{E1000_RDBAH(0), "RDBAH"},
279
280	/* TX Registers */
281	{E1000_TCTL, "TCTL"},
282	{E1000_TDBAL(0), "TDBAL"},
283	{E1000_TDBAH(0), "TDBAH"},
284	{E1000_TDLEN(0), "TDLEN"},
285	{E1000_TDH(0), "TDH"},
286	{E1000_TDT(0), "TDT"},
287	{E1000_TXDCTL(0), "TXDCTL"},
288	{E1000_TDFH, "TDFH"},
289	{E1000_TDFT, "TDFT"},
290	{E1000_TDFHS, "TDFHS"},
291	{E1000_TDFPC, "TDFPC"},
292
293	/* List Terminator */
294	{}
295};
296
297/* igb_regdump - register printout routine */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300	int n = 0;
301	char rname[16];
302	u32 regs[8];
303
304	switch (reginfo->ofs) {
305	case E1000_RDLEN(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RDLEN(n));
308		break;
309	case E1000_RDH(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDH(n));
312		break;
313	case E1000_RDT(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDT(n));
316		break;
317	case E1000_RXDCTL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RXDCTL(n));
320		break;
321	case E1000_RDBAL(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_RDBAL(n));
324		break;
325	case E1000_RDBAH(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_RDBAH(n));
328		break;
329	case E1000_TDBAL(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_RDBAL(n));
332		break;
333	case E1000_TDBAH(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDBAH(n));
336		break;
337	case E1000_TDLEN(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TDLEN(n));
340		break;
341	case E1000_TDH(0):
342		for (n = 0; n < 4; n++)
343			regs[n] = rd32(E1000_TDH(n));
344		break;
345	case E1000_TDT(0):
346		for (n = 0; n < 4; n++)
347			regs[n] = rd32(E1000_TDT(n));
348		break;
349	case E1000_TXDCTL(0):
350		for (n = 0; n < 4; n++)
351			regs[n] = rd32(E1000_TXDCTL(n));
352		break;
353	default:
354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355		return;
356	}
357
358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360		regs[2], regs[3]);
361}
362
363/* igb_dump - Print registers, Tx-rings and Rx-rings */
364static void igb_dump(struct igb_adapter *adapter)
365{
366	struct net_device *netdev = adapter->netdev;
367	struct e1000_hw *hw = &adapter->hw;
368	struct igb_reg_info *reginfo;
369	struct igb_ring *tx_ring;
370	union e1000_adv_tx_desc *tx_desc;
371	struct my_u0 { u64 a; u64 b; } *u0;
372	struct igb_ring *rx_ring;
373	union e1000_adv_rx_desc *rx_desc;
374	u32 staterr;
375	u16 i, n;
376
377	if (!netif_msg_hw(adapter))
378		return;
379
380	/* Print netdevice Info */
381	if (netdev) {
382		dev_info(&adapter->pdev->dev, "Net device Info\n");
383		pr_info("Device Name     state            trans_start      last_rx\n");
384		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385			netdev->state, netdev->trans_start, netdev->last_rx);
386	}
387
388	/* Print Registers */
389	dev_info(&adapter->pdev->dev, "Register Dump\n");
390	pr_info(" Register Name   Value\n");
391	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392	     reginfo->name; reginfo++) {
393		igb_regdump(hw, reginfo);
394	}
395
396	/* Print TX Ring Summary */
397	if (!netdev || !netif_running(netdev))
398		goto exit;
399
400	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402	for (n = 0; n < adapter->num_tx_queues; n++) {
403		struct igb_tx_buffer *buffer_info;
404		tx_ring = adapter->tx_ring[n];
405		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408			(u64)dma_unmap_addr(buffer_info, dma),
409			dma_unmap_len(buffer_info, len),
410			buffer_info->next_to_watch,
411			(u64)buffer_info->time_stamp);
412	}
413
414	/* Print TX Rings */
415	if (!netif_msg_tx_done(adapter))
416		goto rx_ring_summary;
417
418	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420	/* Transmit Descriptor Formats
421	 *
422	 * Advanced Transmit Descriptor
423	 *   +--------------------------------------------------------------+
424	 * 0 |         Buffer Address [63:0]                                |
425	 *   +--------------------------------------------------------------+
426	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427	 *   +--------------------------------------------------------------+
428	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
429	 */
430
431	for (n = 0; n < adapter->num_tx_queues; n++) {
432		tx_ring = adapter->tx_ring[n];
433		pr_info("------------------------------------\n");
434		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435		pr_info("------------------------------------\n");
436		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439			const char *next_desc;
440			struct igb_tx_buffer *buffer_info;
441			tx_desc = IGB_TX_DESC(tx_ring, i);
442			buffer_info = &tx_ring->tx_buffer_info[i];
443			u0 = (struct my_u0 *)tx_desc;
444			if (i == tx_ring->next_to_use &&
445			    i == tx_ring->next_to_clean)
446				next_desc = " NTC/U";
447			else if (i == tx_ring->next_to_use)
448				next_desc = " NTU";
449			else if (i == tx_ring->next_to_clean)
450				next_desc = " NTC";
451			else
452				next_desc = "";
453
454			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455				i, le64_to_cpu(u0->a),
456				le64_to_cpu(u0->b),
457				(u64)dma_unmap_addr(buffer_info, dma),
458				dma_unmap_len(buffer_info, len),
459				buffer_info->next_to_watch,
460				(u64)buffer_info->time_stamp,
461				buffer_info->skb, next_desc);
462
463			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464				print_hex_dump(KERN_INFO, "",
465					DUMP_PREFIX_ADDRESS,
466					16, 1, buffer_info->skb->data,
467					dma_unmap_len(buffer_info, len),
468					true);
469		}
470	}
471
472	/* Print RX Rings Summary */
473rx_ring_summary:
474	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475	pr_info("Queue [NTU] [NTC]\n");
476	for (n = 0; n < adapter->num_rx_queues; n++) {
477		rx_ring = adapter->rx_ring[n];
478		pr_info(" %5d %5X %5X\n",
479			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480	}
481
482	/* Print RX Rings */
483	if (!netif_msg_rx_status(adapter))
484		goto exit;
485
486	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488	/* Advanced Receive Descriptor (Read) Format
489	 *    63                                           1        0
490	 *    +-----------------------------------------------------+
491	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492	 *    +----------------------------------------------+------+
493	 *  8 |       Header Buffer Address [63:1]           |  DD  |
494	 *    +-----------------------------------------------------+
495	 *
496	 *
497	 * Advanced Receive Descriptor (Write-Back) Format
498	 *
499	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
500	 *   +------------------------------------------------------+
501	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502	 *   | Checksum   Ident  |   |           |    | Type | Type |
503	 *   +------------------------------------------------------+
504	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505	 *   +------------------------------------------------------+
506	 *   63       48 47    32 31            20 19               0
507	 */
508
509	for (n = 0; n < adapter->num_rx_queues; n++) {
510		rx_ring = adapter->rx_ring[n];
511		pr_info("------------------------------------\n");
512		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513		pr_info("------------------------------------\n");
514		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517		for (i = 0; i < rx_ring->count; i++) {
518			const char *next_desc;
519			struct igb_rx_buffer *buffer_info;
520			buffer_info = &rx_ring->rx_buffer_info[i];
521			rx_desc = IGB_RX_DESC(rx_ring, i);
522			u0 = (struct my_u0 *)rx_desc;
523			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525			if (i == rx_ring->next_to_use)
526				next_desc = " NTU";
527			else if (i == rx_ring->next_to_clean)
528				next_desc = " NTC";
529			else
530				next_desc = "";
531
532			if (staterr & E1000_RXD_STAT_DD) {
533				/* Descriptor Done */
534				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535					"RWB", i,
536					le64_to_cpu(u0->a),
537					le64_to_cpu(u0->b),
538					next_desc);
539			} else {
540				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541					"R  ", i,
542					le64_to_cpu(u0->a),
543					le64_to_cpu(u0->b),
544					(u64)buffer_info->dma,
545					next_desc);
546
547				if (netif_msg_pktdata(adapter) &&
548				    buffer_info->dma && buffer_info->page) {
549					print_hex_dump(KERN_INFO, "",
550					  DUMP_PREFIX_ADDRESS,
551					  16, 1,
552					  page_address(buffer_info->page) +
553						      buffer_info->page_offset,
554					  IGB_RX_BUFSZ, true);
555				}
556			}
557		}
558	}
559
560exit:
561	return;
562}
563
564/**
565 *  igb_get_i2c_data - Reads the I2C SDA data bit
566 *  @hw: pointer to hardware structure
567 *  @i2cctl: Current value of I2CCTL register
568 *
569 *  Returns the I2C data bit value
570 **/
571static int igb_get_i2c_data(void *data)
572{
573	struct igb_adapter *adapter = (struct igb_adapter *)data;
574	struct e1000_hw *hw = &adapter->hw;
575	s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
578}
579
580/**
581 *  igb_set_i2c_data - Sets the I2C data bit
582 *  @data: pointer to hardware structure
583 *  @state: I2C data value (0 or 1) to set
584 *
585 *  Sets the I2C data bit
586 **/
587static void igb_set_i2c_data(void *data, int state)
588{
589	struct igb_adapter *adapter = (struct igb_adapter *)data;
590	struct e1000_hw *hw = &adapter->hw;
591	s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593	if (state)
594		i2cctl |= E1000_I2C_DATA_OUT;
595	else
596		i2cctl &= ~E1000_I2C_DATA_OUT;
597
598	i2cctl &= ~E1000_I2C_DATA_OE_N;
599	i2cctl |= E1000_I2C_CLK_OE_N;
600	wr32(E1000_I2CPARAMS, i2cctl);
601	wrfl();
602
603}
604
605/**
606 *  igb_set_i2c_clk - Sets the I2C SCL clock
607 *  @data: pointer to hardware structure
608 *  @state: state to set clock
609 *
610 *  Sets the I2C clock line to state
611 **/
612static void igb_set_i2c_clk(void *data, int state)
613{
614	struct igb_adapter *adapter = (struct igb_adapter *)data;
615	struct e1000_hw *hw = &adapter->hw;
616	s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618	if (state) {
619		i2cctl |= E1000_I2C_CLK_OUT;
620		i2cctl &= ~E1000_I2C_CLK_OE_N;
621	} else {
622		i2cctl &= ~E1000_I2C_CLK_OUT;
623		i2cctl &= ~E1000_I2C_CLK_OE_N;
624	}
625	wr32(E1000_I2CPARAMS, i2cctl);
626	wrfl();
627}
628
629/**
630 *  igb_get_i2c_clk - Gets the I2C SCL clock state
631 *  @data: pointer to hardware structure
632 *
633 *  Gets the I2C clock state
634 **/
635static int igb_get_i2c_clk(void *data)
636{
637	struct igb_adapter *adapter = (struct igb_adapter *)data;
638	struct e1000_hw *hw = &adapter->hw;
639	s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
642}
643
644static const struct i2c_algo_bit_data igb_i2c_algo = {
645	.setsda		= igb_set_i2c_data,
646	.setscl		= igb_set_i2c_clk,
647	.getsda		= igb_get_i2c_data,
648	.getscl		= igb_get_i2c_clk,
649	.udelay		= 5,
650	.timeout	= 20,
651};
652
653/**
654 *  igb_get_hw_dev - return device
655 *  @hw: pointer to hardware structure
656 *
657 *  used by hardware layer to print debugging information
658 **/
659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660{
661	struct igb_adapter *adapter = hw->back;
662	return adapter->netdev;
663}
664
665/**
666 *  igb_init_module - Driver Registration Routine
667 *
668 *  igb_init_module is the first routine called when the driver is
669 *  loaded. All it does is register with the PCI subsystem.
670 **/
671static int __init igb_init_module(void)
672{
673	int ret;
674
675	pr_info("%s - version %s\n",
676	       igb_driver_string, igb_driver_version);
677	pr_info("%s\n", igb_copyright);
678
679#ifdef CONFIG_IGB_DCA
680	dca_register_notify(&dca_notifier);
681#endif
682	ret = pci_register_driver(&igb_driver);
683	return ret;
684}
685
686module_init(igb_init_module);
687
688/**
689 *  igb_exit_module - Driver Exit Cleanup Routine
690 *
691 *  igb_exit_module is called just before the driver is removed
692 *  from memory.
693 **/
694static void __exit igb_exit_module(void)
695{
696#ifdef CONFIG_IGB_DCA
697	dca_unregister_notify(&dca_notifier);
698#endif
699	pci_unregister_driver(&igb_driver);
700}
701
702module_exit(igb_exit_module);
703
704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705/**
706 *  igb_cache_ring_register - Descriptor ring to register mapping
707 *  @adapter: board private structure to initialize
708 *
709 *  Once we know the feature-set enabled for the device, we'll cache
710 *  the register offset the descriptor ring is assigned to.
711 **/
712static void igb_cache_ring_register(struct igb_adapter *adapter)
713{
714	int i = 0, j = 0;
715	u32 rbase_offset = adapter->vfs_allocated_count;
716
717	switch (adapter->hw.mac.type) {
718	case e1000_82576:
719		/* The queues are allocated for virtualization such that VF 0
720		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721		 * In order to avoid collision we start at the first free queue
722		 * and continue consuming queues in the same sequence
723		 */
724		if (adapter->vfs_allocated_count) {
725			for (; i < adapter->rss_queues; i++)
726				adapter->rx_ring[i]->reg_idx = rbase_offset +
727							       Q_IDX_82576(i);
728		}
729	case e1000_82575:
730	case e1000_82580:
731	case e1000_i350:
732	case e1000_i354:
733	case e1000_i210:
734	case e1000_i211:
735	default:
736		for (; i < adapter->num_rx_queues; i++)
737			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738		for (; j < adapter->num_tx_queues; j++)
739			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740		break;
741	}
742}
743
744u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745{
746	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748	u32 value = 0;
749
750	if (E1000_REMOVED(hw_addr))
751		return ~value;
752
753	value = readl(&hw_addr[reg]);
754
755	/* reads should not return all F's */
756	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757		struct net_device *netdev = igb->netdev;
758		hw->hw_addr = NULL;
759		netif_device_detach(netdev);
760		netdev_err(netdev, "PCIe link lost, device now detached\n");
761	}
762
763	return value;
764}
765
766/**
767 *  igb_write_ivar - configure ivar for given MSI-X vector
768 *  @hw: pointer to the HW structure
769 *  @msix_vector: vector number we are allocating to a given ring
770 *  @index: row index of IVAR register to write within IVAR table
771 *  @offset: column offset of in IVAR, should be multiple of 8
772 *
773 *  This function is intended to handle the writing of the IVAR register
774 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775 *  each containing an cause allocation for an Rx and Tx ring, and a
776 *  variable number of rows depending on the number of queues supported.
777 **/
778static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779			   int index, int offset)
780{
781	u32 ivar = array_rd32(E1000_IVAR0, index);
782
783	/* clear any bits that are currently set */
784	ivar &= ~((u32)0xFF << offset);
785
786	/* write vector and valid bit */
787	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789	array_wr32(E1000_IVAR0, index, ivar);
790}
791
792#define IGB_N0_QUEUE -1
793static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794{
795	struct igb_adapter *adapter = q_vector->adapter;
796	struct e1000_hw *hw = &adapter->hw;
797	int rx_queue = IGB_N0_QUEUE;
798	int tx_queue = IGB_N0_QUEUE;
799	u32 msixbm = 0;
800
801	if (q_vector->rx.ring)
802		rx_queue = q_vector->rx.ring->reg_idx;
803	if (q_vector->tx.ring)
804		tx_queue = q_vector->tx.ring->reg_idx;
805
806	switch (hw->mac.type) {
807	case e1000_82575:
808		/* The 82575 assigns vectors using a bitmask, which matches the
809		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810		 * or more queues to a vector, we write the appropriate bits
811		 * into the MSIXBM register for that vector.
812		 */
813		if (rx_queue > IGB_N0_QUEUE)
814			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815		if (tx_queue > IGB_N0_QUEUE)
816			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818			msixbm |= E1000_EIMS_OTHER;
819		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820		q_vector->eims_value = msixbm;
821		break;
822	case e1000_82576:
823		/* 82576 uses a table that essentially consists of 2 columns
824		 * with 8 rows.  The ordering is column-major so we use the
825		 * lower 3 bits as the row index, and the 4th bit as the
826		 * column offset.
827		 */
828		if (rx_queue > IGB_N0_QUEUE)
829			igb_write_ivar(hw, msix_vector,
830				       rx_queue & 0x7,
831				       (rx_queue & 0x8) << 1);
832		if (tx_queue > IGB_N0_QUEUE)
833			igb_write_ivar(hw, msix_vector,
834				       tx_queue & 0x7,
835				       ((tx_queue & 0x8) << 1) + 8);
836		q_vector->eims_value = 1 << msix_vector;
837		break;
838	case e1000_82580:
839	case e1000_i350:
840	case e1000_i354:
841	case e1000_i210:
842	case e1000_i211:
843		/* On 82580 and newer adapters the scheme is similar to 82576
844		 * however instead of ordering column-major we have things
845		 * ordered row-major.  So we traverse the table by using
846		 * bit 0 as the column offset, and the remaining bits as the
847		 * row index.
848		 */
849		if (rx_queue > IGB_N0_QUEUE)
850			igb_write_ivar(hw, msix_vector,
851				       rx_queue >> 1,
852				       (rx_queue & 0x1) << 4);
853		if (tx_queue > IGB_N0_QUEUE)
854			igb_write_ivar(hw, msix_vector,
855				       tx_queue >> 1,
856				       ((tx_queue & 0x1) << 4) + 8);
857		q_vector->eims_value = 1 << msix_vector;
858		break;
859	default:
860		BUG();
861		break;
862	}
863
864	/* add q_vector eims value to global eims_enable_mask */
865	adapter->eims_enable_mask |= q_vector->eims_value;
866
867	/* configure q_vector to set itr on first interrupt */
868	q_vector->set_itr = 1;
869}
870
871/**
872 *  igb_configure_msix - Configure MSI-X hardware
873 *  @adapter: board private structure to initialize
874 *
875 *  igb_configure_msix sets up the hardware to properly
876 *  generate MSI-X interrupts.
877 **/
878static void igb_configure_msix(struct igb_adapter *adapter)
879{
880	u32 tmp;
881	int i, vector = 0;
882	struct e1000_hw *hw = &adapter->hw;
883
884	adapter->eims_enable_mask = 0;
885
886	/* set vector for other causes, i.e. link changes */
887	switch (hw->mac.type) {
888	case e1000_82575:
889		tmp = rd32(E1000_CTRL_EXT);
890		/* enable MSI-X PBA support*/
891		tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893		/* Auto-Mask interrupts upon ICR read. */
894		tmp |= E1000_CTRL_EXT_EIAME;
895		tmp |= E1000_CTRL_EXT_IRCA;
896
897		wr32(E1000_CTRL_EXT, tmp);
898
899		/* enable msix_other interrupt */
900		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901		adapter->eims_other = E1000_EIMS_OTHER;
902
903		break;
904
905	case e1000_82576:
906	case e1000_82580:
907	case e1000_i350:
908	case e1000_i354:
909	case e1000_i210:
910	case e1000_i211:
911		/* Turn on MSI-X capability first, or our settings
912		 * won't stick.  And it will take days to debug.
913		 */
914		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
916		     E1000_GPIE_NSICR);
917
918		/* enable msix_other interrupt */
919		adapter->eims_other = 1 << vector;
920		tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922		wr32(E1000_IVAR_MISC, tmp);
923		break;
924	default:
925		/* do nothing, since nothing else supports MSI-X */
926		break;
927	} /* switch (hw->mac.type) */
928
929	adapter->eims_enable_mask |= adapter->eims_other;
930
931	for (i = 0; i < adapter->num_q_vectors; i++)
932		igb_assign_vector(adapter->q_vector[i], vector++);
933
934	wrfl();
935}
936
937/**
938 *  igb_request_msix - Initialize MSI-X interrupts
939 *  @adapter: board private structure to initialize
940 *
941 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942 *  kernel.
943 **/
944static int igb_request_msix(struct igb_adapter *adapter)
945{
946	struct net_device *netdev = adapter->netdev;
947	struct e1000_hw *hw = &adapter->hw;
948	int i, err = 0, vector = 0, free_vector = 0;
949
950	err = request_irq(adapter->msix_entries[vector].vector,
951			  igb_msix_other, 0, netdev->name, adapter);
952	if (err)
953		goto err_out;
954
955	for (i = 0; i < adapter->num_q_vectors; i++) {
956		struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958		vector++;
959
960		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962		if (q_vector->rx.ring && q_vector->tx.ring)
963			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964				q_vector->rx.ring->queue_index);
965		else if (q_vector->tx.ring)
966			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967				q_vector->tx.ring->queue_index);
968		else if (q_vector->rx.ring)
969			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970				q_vector->rx.ring->queue_index);
971		else
972			sprintf(q_vector->name, "%s-unused", netdev->name);
973
974		err = request_irq(adapter->msix_entries[vector].vector,
975				  igb_msix_ring, 0, q_vector->name,
976				  q_vector);
977		if (err)
978			goto err_free;
979	}
980
981	igb_configure_msix(adapter);
982	return 0;
983
984err_free:
985	/* free already assigned IRQs */
986	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988	vector--;
989	for (i = 0; i < vector; i++) {
990		free_irq(adapter->msix_entries[free_vector++].vector,
991			 adapter->q_vector[i]);
992	}
993err_out:
994	return err;
995}
996
997/**
998 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999 *  @adapter: board private structure to initialize
1000 *  @v_idx: Index of vector to be freed
1001 *
1002 *  This function frees the memory allocated to the q_vector.
1003 **/
1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005{
1006	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008	adapter->q_vector[v_idx] = NULL;
1009
1010	/* igb_get_stats64() might access the rings on this vector,
1011	 * we must wait a grace period before freeing it.
1012	 */
1013	kfree_rcu(q_vector, rcu);
1014}
1015
1016/**
1017 *  igb_reset_q_vector - Reset config for interrupt vector
1018 *  @adapter: board private structure to initialize
1019 *  @v_idx: Index of vector to be reset
1020 *
1021 *  If NAPI is enabled it will delete any references to the
1022 *  NAPI struct. This is preparation for igb_free_q_vector.
1023 **/
1024static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1025{
1026	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1027
1028	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1029	 * allocated. So, q_vector is NULL so we should stop here.
1030	 */
1031	if (!q_vector)
1032		return;
1033
1034	if (q_vector->tx.ring)
1035		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1036
1037	if (q_vector->rx.ring)
1038		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1039
1040	netif_napi_del(&q_vector->napi);
1041
1042}
1043
1044static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1045{
1046	int v_idx = adapter->num_q_vectors;
1047
1048	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1049		pci_disable_msix(adapter->pdev);
1050	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1051		pci_disable_msi(adapter->pdev);
1052
1053	while (v_idx--)
1054		igb_reset_q_vector(adapter, v_idx);
1055}
1056
1057/**
1058 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1059 *  @adapter: board private structure to initialize
1060 *
1061 *  This function frees the memory allocated to the q_vectors.  In addition if
1062 *  NAPI is enabled it will delete any references to the NAPI struct prior
1063 *  to freeing the q_vector.
1064 **/
1065static void igb_free_q_vectors(struct igb_adapter *adapter)
1066{
1067	int v_idx = adapter->num_q_vectors;
1068
1069	adapter->num_tx_queues = 0;
1070	adapter->num_rx_queues = 0;
1071	adapter->num_q_vectors = 0;
1072
1073	while (v_idx--) {
1074		igb_reset_q_vector(adapter, v_idx);
1075		igb_free_q_vector(adapter, v_idx);
1076	}
1077}
1078
1079/**
1080 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1081 *  @adapter: board private structure to initialize
1082 *
1083 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1084 *  MSI-X interrupts allocated.
1085 */
1086static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1087{
1088	igb_free_q_vectors(adapter);
1089	igb_reset_interrupt_capability(adapter);
1090}
1091
1092/**
1093 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1094 *  @adapter: board private structure to initialize
1095 *  @msix: boolean value of MSIX capability
1096 *
1097 *  Attempt to configure interrupts using the best available
1098 *  capabilities of the hardware and kernel.
1099 **/
1100static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1101{
1102	int err;
1103	int numvecs, i;
1104
1105	if (!msix)
1106		goto msi_only;
1107	adapter->flags |= IGB_FLAG_HAS_MSIX;
1108
1109	/* Number of supported queues. */
1110	adapter->num_rx_queues = adapter->rss_queues;
1111	if (adapter->vfs_allocated_count)
1112		adapter->num_tx_queues = 1;
1113	else
1114		adapter->num_tx_queues = adapter->rss_queues;
1115
1116	/* start with one vector for every Rx queue */
1117	numvecs = adapter->num_rx_queues;
1118
1119	/* if Tx handler is separate add 1 for every Tx queue */
1120	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1121		numvecs += adapter->num_tx_queues;
1122
1123	/* store the number of vectors reserved for queues */
1124	adapter->num_q_vectors = numvecs;
1125
1126	/* add 1 vector for link status interrupts */
1127	numvecs++;
1128	for (i = 0; i < numvecs; i++)
1129		adapter->msix_entries[i].entry = i;
1130
1131	err = pci_enable_msix_range(adapter->pdev,
1132				    adapter->msix_entries,
1133				    numvecs,
1134				    numvecs);
1135	if (err > 0)
1136		return;
1137
1138	igb_reset_interrupt_capability(adapter);
1139
1140	/* If we can't do MSI-X, try MSI */
1141msi_only:
1142	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1143#ifdef CONFIG_PCI_IOV
1144	/* disable SR-IOV for non MSI-X configurations */
1145	if (adapter->vf_data) {
1146		struct e1000_hw *hw = &adapter->hw;
1147		/* disable iov and allow time for transactions to clear */
1148		pci_disable_sriov(adapter->pdev);
1149		msleep(500);
1150
1151		kfree(adapter->vf_data);
1152		adapter->vf_data = NULL;
1153		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1154		wrfl();
1155		msleep(100);
1156		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1157	}
1158#endif
1159	adapter->vfs_allocated_count = 0;
1160	adapter->rss_queues = 1;
1161	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1162	adapter->num_rx_queues = 1;
1163	adapter->num_tx_queues = 1;
1164	adapter->num_q_vectors = 1;
1165	if (!pci_enable_msi(adapter->pdev))
1166		adapter->flags |= IGB_FLAG_HAS_MSI;
1167}
1168
1169static void igb_add_ring(struct igb_ring *ring,
1170			 struct igb_ring_container *head)
1171{
1172	head->ring = ring;
1173	head->count++;
1174}
1175
1176/**
1177 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1178 *  @adapter: board private structure to initialize
1179 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1180 *  @v_idx: index of vector in adapter struct
1181 *  @txr_count: total number of Tx rings to allocate
1182 *  @txr_idx: index of first Tx ring to allocate
1183 *  @rxr_count: total number of Rx rings to allocate
1184 *  @rxr_idx: index of first Rx ring to allocate
1185 *
1186 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1187 **/
1188static int igb_alloc_q_vector(struct igb_adapter *adapter,
1189			      int v_count, int v_idx,
1190			      int txr_count, int txr_idx,
1191			      int rxr_count, int rxr_idx)
1192{
1193	struct igb_q_vector *q_vector;
1194	struct igb_ring *ring;
1195	int ring_count, size;
1196
1197	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198	if (txr_count > 1 || rxr_count > 1)
1199		return -ENOMEM;
1200
1201	ring_count = txr_count + rxr_count;
1202	size = sizeof(struct igb_q_vector) +
1203	       (sizeof(struct igb_ring) * ring_count);
1204
1205	/* allocate q_vector and rings */
1206	q_vector = adapter->q_vector[v_idx];
1207	if (!q_vector)
1208		q_vector = kzalloc(size, GFP_KERNEL);
1209	if (!q_vector)
1210		return -ENOMEM;
1211
1212	/* initialize NAPI */
1213	netif_napi_add(adapter->netdev, &q_vector->napi,
1214		       igb_poll, 64);
1215
1216	/* tie q_vector and adapter together */
1217	adapter->q_vector[v_idx] = q_vector;
1218	q_vector->adapter = adapter;
1219
1220	/* initialize work limits */
1221	q_vector->tx.work_limit = adapter->tx_work_limit;
1222
1223	/* initialize ITR configuration */
1224	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1225	q_vector->itr_val = IGB_START_ITR;
1226
1227	/* initialize pointer to rings */
1228	ring = q_vector->ring;
1229
1230	/* intialize ITR */
1231	if (rxr_count) {
1232		/* rx or rx/tx vector */
1233		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1234			q_vector->itr_val = adapter->rx_itr_setting;
1235	} else {
1236		/* tx only vector */
1237		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1238			q_vector->itr_val = adapter->tx_itr_setting;
1239	}
1240
1241	if (txr_count) {
1242		/* assign generic ring traits */
1243		ring->dev = &adapter->pdev->dev;
1244		ring->netdev = adapter->netdev;
1245
1246		/* configure backlink on ring */
1247		ring->q_vector = q_vector;
1248
1249		/* update q_vector Tx values */
1250		igb_add_ring(ring, &q_vector->tx);
1251
1252		/* For 82575, context index must be unique per ring. */
1253		if (adapter->hw.mac.type == e1000_82575)
1254			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1255
1256		/* apply Tx specific ring traits */
1257		ring->count = adapter->tx_ring_count;
1258		ring->queue_index = txr_idx;
1259
1260		u64_stats_init(&ring->tx_syncp);
1261		u64_stats_init(&ring->tx_syncp2);
1262
1263		/* assign ring to adapter */
1264		adapter->tx_ring[txr_idx] = ring;
1265
1266		/* push pointer to next ring */
1267		ring++;
1268	}
1269
1270	if (rxr_count) {
1271		/* assign generic ring traits */
1272		ring->dev = &adapter->pdev->dev;
1273		ring->netdev = adapter->netdev;
1274
1275		/* configure backlink on ring */
1276		ring->q_vector = q_vector;
1277
1278		/* update q_vector Rx values */
1279		igb_add_ring(ring, &q_vector->rx);
1280
1281		/* set flag indicating ring supports SCTP checksum offload */
1282		if (adapter->hw.mac.type >= e1000_82576)
1283			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1284
1285		/* On i350, i354, i210, and i211, loopback VLAN packets
1286		 * have the tag byte-swapped.
1287		 */
1288		if (adapter->hw.mac.type >= e1000_i350)
1289			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1290
1291		/* apply Rx specific ring traits */
1292		ring->count = adapter->rx_ring_count;
1293		ring->queue_index = rxr_idx;
1294
1295		u64_stats_init(&ring->rx_syncp);
1296
1297		/* assign ring to adapter */
1298		adapter->rx_ring[rxr_idx] = ring;
1299	}
1300
1301	return 0;
1302}
1303
1304
1305/**
1306 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1307 *  @adapter: board private structure to initialize
1308 *
1309 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1310 *  return -ENOMEM.
1311 **/
1312static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1313{
1314	int q_vectors = adapter->num_q_vectors;
1315	int rxr_remaining = adapter->num_rx_queues;
1316	int txr_remaining = adapter->num_tx_queues;
1317	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1318	int err;
1319
1320	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1321		for (; rxr_remaining; v_idx++) {
1322			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1323						 0, 0, 1, rxr_idx);
1324
1325			if (err)
1326				goto err_out;
1327
1328			/* update counts and index */
1329			rxr_remaining--;
1330			rxr_idx++;
1331		}
1332	}
1333
1334	for (; v_idx < q_vectors; v_idx++) {
1335		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1336		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1337
1338		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1339					 tqpv, txr_idx, rqpv, rxr_idx);
1340
1341		if (err)
1342			goto err_out;
1343
1344		/* update counts and index */
1345		rxr_remaining -= rqpv;
1346		txr_remaining -= tqpv;
1347		rxr_idx++;
1348		txr_idx++;
1349	}
1350
1351	return 0;
1352
1353err_out:
1354	adapter->num_tx_queues = 0;
1355	adapter->num_rx_queues = 0;
1356	adapter->num_q_vectors = 0;
1357
1358	while (v_idx--)
1359		igb_free_q_vector(adapter, v_idx);
1360
1361	return -ENOMEM;
1362}
1363
1364/**
1365 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1366 *  @adapter: board private structure to initialize
1367 *  @msix: boolean value of MSIX capability
1368 *
1369 *  This function initializes the interrupts and allocates all of the queues.
1370 **/
1371static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1372{
1373	struct pci_dev *pdev = adapter->pdev;
1374	int err;
1375
1376	igb_set_interrupt_capability(adapter, msix);
1377
1378	err = igb_alloc_q_vectors(adapter);
1379	if (err) {
1380		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1381		goto err_alloc_q_vectors;
1382	}
1383
1384	igb_cache_ring_register(adapter);
1385
1386	return 0;
1387
1388err_alloc_q_vectors:
1389	igb_reset_interrupt_capability(adapter);
1390	return err;
1391}
1392
1393/**
1394 *  igb_request_irq - initialize interrupts
1395 *  @adapter: board private structure to initialize
1396 *
1397 *  Attempts to configure interrupts using the best available
1398 *  capabilities of the hardware and kernel.
1399 **/
1400static int igb_request_irq(struct igb_adapter *adapter)
1401{
1402	struct net_device *netdev = adapter->netdev;
1403	struct pci_dev *pdev = adapter->pdev;
1404	int err = 0;
1405
1406	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1407		err = igb_request_msix(adapter);
1408		if (!err)
1409			goto request_done;
1410		/* fall back to MSI */
1411		igb_free_all_tx_resources(adapter);
1412		igb_free_all_rx_resources(adapter);
1413
1414		igb_clear_interrupt_scheme(adapter);
1415		err = igb_init_interrupt_scheme(adapter, false);
1416		if (err)
1417			goto request_done;
1418
1419		igb_setup_all_tx_resources(adapter);
1420		igb_setup_all_rx_resources(adapter);
1421		igb_configure(adapter);
1422	}
1423
1424	igb_assign_vector(adapter->q_vector[0], 0);
1425
1426	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1427		err = request_irq(pdev->irq, igb_intr_msi, 0,
1428				  netdev->name, adapter);
1429		if (!err)
1430			goto request_done;
1431
1432		/* fall back to legacy interrupts */
1433		igb_reset_interrupt_capability(adapter);
1434		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1435	}
1436
1437	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1438			  netdev->name, adapter);
1439
1440	if (err)
1441		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1442			err);
1443
1444request_done:
1445	return err;
1446}
1447
1448static void igb_free_irq(struct igb_adapter *adapter)
1449{
1450	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1451		int vector = 0, i;
1452
1453		free_irq(adapter->msix_entries[vector++].vector, adapter);
1454
1455		for (i = 0; i < adapter->num_q_vectors; i++)
1456			free_irq(adapter->msix_entries[vector++].vector,
1457				 adapter->q_vector[i]);
1458	} else {
1459		free_irq(adapter->pdev->irq, adapter);
1460	}
1461}
1462
1463/**
1464 *  igb_irq_disable - Mask off interrupt generation on the NIC
1465 *  @adapter: board private structure
1466 **/
1467static void igb_irq_disable(struct igb_adapter *adapter)
1468{
1469	struct e1000_hw *hw = &adapter->hw;
1470
1471	/* we need to be careful when disabling interrupts.  The VFs are also
1472	 * mapped into these registers and so clearing the bits can cause
1473	 * issues on the VF drivers so we only need to clear what we set
1474	 */
1475	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1476		u32 regval = rd32(E1000_EIAM);
1477
1478		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1479		wr32(E1000_EIMC, adapter->eims_enable_mask);
1480		regval = rd32(E1000_EIAC);
1481		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1482	}
1483
1484	wr32(E1000_IAM, 0);
1485	wr32(E1000_IMC, ~0);
1486	wrfl();
1487	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1488		int i;
1489
1490		for (i = 0; i < adapter->num_q_vectors; i++)
1491			synchronize_irq(adapter->msix_entries[i].vector);
1492	} else {
1493		synchronize_irq(adapter->pdev->irq);
1494	}
1495}
1496
1497/**
1498 *  igb_irq_enable - Enable default interrupt generation settings
1499 *  @adapter: board private structure
1500 **/
1501static void igb_irq_enable(struct igb_adapter *adapter)
1502{
1503	struct e1000_hw *hw = &adapter->hw;
1504
1505	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1506		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1507		u32 regval = rd32(E1000_EIAC);
1508
1509		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1510		regval = rd32(E1000_EIAM);
1511		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1512		wr32(E1000_EIMS, adapter->eims_enable_mask);
1513		if (adapter->vfs_allocated_count) {
1514			wr32(E1000_MBVFIMR, 0xFF);
1515			ims |= E1000_IMS_VMMB;
1516		}
1517		wr32(E1000_IMS, ims);
1518	} else {
1519		wr32(E1000_IMS, IMS_ENABLE_MASK |
1520				E1000_IMS_DRSTA);
1521		wr32(E1000_IAM, IMS_ENABLE_MASK |
1522				E1000_IMS_DRSTA);
1523	}
1524}
1525
1526static void igb_update_mng_vlan(struct igb_adapter *adapter)
1527{
1528	struct e1000_hw *hw = &adapter->hw;
1529	u16 vid = adapter->hw.mng_cookie.vlan_id;
1530	u16 old_vid = adapter->mng_vlan_id;
1531
1532	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1533		/* add VID to filter table */
1534		igb_vfta_set(hw, vid, true);
1535		adapter->mng_vlan_id = vid;
1536	} else {
1537		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1538	}
1539
1540	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1541	    (vid != old_vid) &&
1542	    !test_bit(old_vid, adapter->active_vlans)) {
1543		/* remove VID from filter table */
1544		igb_vfta_set(hw, old_vid, false);
1545	}
1546}
1547
1548/**
1549 *  igb_release_hw_control - release control of the h/w to f/w
1550 *  @adapter: address of board private structure
1551 *
1552 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1553 *  For ASF and Pass Through versions of f/w this means that the
1554 *  driver is no longer loaded.
1555 **/
1556static void igb_release_hw_control(struct igb_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559	u32 ctrl_ext;
1560
1561	/* Let firmware take over control of h/w */
1562	ctrl_ext = rd32(E1000_CTRL_EXT);
1563	wr32(E1000_CTRL_EXT,
1564			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1565}
1566
1567/**
1568 *  igb_get_hw_control - get control of the h/w from f/w
1569 *  @adapter: address of board private structure
1570 *
1571 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1572 *  For ASF and Pass Through versions of f/w this means that
1573 *  the driver is loaded.
1574 **/
1575static void igb_get_hw_control(struct igb_adapter *adapter)
1576{
1577	struct e1000_hw *hw = &adapter->hw;
1578	u32 ctrl_ext;
1579
1580	/* Let firmware know the driver has taken over */
1581	ctrl_ext = rd32(E1000_CTRL_EXT);
1582	wr32(E1000_CTRL_EXT,
1583			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1584}
1585
1586/**
1587 *  igb_configure - configure the hardware for RX and TX
1588 *  @adapter: private board structure
1589 **/
1590static void igb_configure(struct igb_adapter *adapter)
1591{
1592	struct net_device *netdev = adapter->netdev;
1593	int i;
1594
1595	igb_get_hw_control(adapter);
1596	igb_set_rx_mode(netdev);
1597
1598	igb_restore_vlan(adapter);
1599
1600	igb_setup_tctl(adapter);
1601	igb_setup_mrqc(adapter);
1602	igb_setup_rctl(adapter);
1603
1604	igb_configure_tx(adapter);
1605	igb_configure_rx(adapter);
1606
1607	igb_rx_fifo_flush_82575(&adapter->hw);
1608
1609	/* call igb_desc_unused which always leaves
1610	 * at least 1 descriptor unused to make sure
1611	 * next_to_use != next_to_clean
1612	 */
1613	for (i = 0; i < adapter->num_rx_queues; i++) {
1614		struct igb_ring *ring = adapter->rx_ring[i];
1615		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1616	}
1617}
1618
1619/**
1620 *  igb_power_up_link - Power up the phy/serdes link
1621 *  @adapter: address of board private structure
1622 **/
1623void igb_power_up_link(struct igb_adapter *adapter)
1624{
1625	igb_reset_phy(&adapter->hw);
1626
1627	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1628		igb_power_up_phy_copper(&adapter->hw);
1629	else
1630		igb_power_up_serdes_link_82575(&adapter->hw);
1631}
1632
1633/**
1634 *  igb_power_down_link - Power down the phy/serdes link
1635 *  @adapter: address of board private structure
1636 */
1637static void igb_power_down_link(struct igb_adapter *adapter)
1638{
1639	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1640		igb_power_down_phy_copper_82575(&adapter->hw);
1641	else
1642		igb_shutdown_serdes_link_82575(&adapter->hw);
1643}
1644
1645/**
1646 * Detect and switch function for Media Auto Sense
1647 * @adapter: address of the board private structure
1648 **/
1649static void igb_check_swap_media(struct igb_adapter *adapter)
1650{
1651	struct e1000_hw *hw = &adapter->hw;
1652	u32 ctrl_ext, connsw;
1653	bool swap_now = false;
1654
1655	ctrl_ext = rd32(E1000_CTRL_EXT);
1656	connsw = rd32(E1000_CONNSW);
1657
1658	/* need to live swap if current media is copper and we have fiber/serdes
1659	 * to go to.
1660	 */
1661
1662	if ((hw->phy.media_type == e1000_media_type_copper) &&
1663	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1664		swap_now = true;
1665	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1666		/* copper signal takes time to appear */
1667		if (adapter->copper_tries < 4) {
1668			adapter->copper_tries++;
1669			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1670			wr32(E1000_CONNSW, connsw);
1671			return;
1672		} else {
1673			adapter->copper_tries = 0;
1674			if ((connsw & E1000_CONNSW_PHYSD) &&
1675			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1676				swap_now = true;
1677				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1678				wr32(E1000_CONNSW, connsw);
1679			}
1680		}
1681	}
1682
1683	if (!swap_now)
1684		return;
1685
1686	switch (hw->phy.media_type) {
1687	case e1000_media_type_copper:
1688		netdev_info(adapter->netdev,
1689			"MAS: changing media to fiber/serdes\n");
1690		ctrl_ext |=
1691			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1692		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1693		adapter->copper_tries = 0;
1694		break;
1695	case e1000_media_type_internal_serdes:
1696	case e1000_media_type_fiber:
1697		netdev_info(adapter->netdev,
1698			"MAS: changing media to copper\n");
1699		ctrl_ext &=
1700			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702		break;
1703	default:
1704		/* shouldn't get here during regular operation */
1705		netdev_err(adapter->netdev,
1706			"AMS: Invalid media type found, returning\n");
1707		break;
1708	}
1709	wr32(E1000_CTRL_EXT, ctrl_ext);
1710}
1711
1712/**
1713 *  igb_up - Open the interface and prepare it to handle traffic
1714 *  @adapter: board private structure
1715 **/
1716int igb_up(struct igb_adapter *adapter)
1717{
1718	struct e1000_hw *hw = &adapter->hw;
1719	int i;
1720
1721	/* hardware has been reset, we need to reload some things */
1722	igb_configure(adapter);
1723
1724	clear_bit(__IGB_DOWN, &adapter->state);
1725
1726	for (i = 0; i < adapter->num_q_vectors; i++)
1727		napi_enable(&(adapter->q_vector[i]->napi));
1728
1729	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1730		igb_configure_msix(adapter);
1731	else
1732		igb_assign_vector(adapter->q_vector[0], 0);
1733
1734	/* Clear any pending interrupts. */
1735	rd32(E1000_ICR);
1736	igb_irq_enable(adapter);
1737
1738	/* notify VFs that reset has been completed */
1739	if (adapter->vfs_allocated_count) {
1740		u32 reg_data = rd32(E1000_CTRL_EXT);
1741
1742		reg_data |= E1000_CTRL_EXT_PFRSTD;
1743		wr32(E1000_CTRL_EXT, reg_data);
1744	}
1745
1746	netif_tx_start_all_queues(adapter->netdev);
1747
1748	/* start the watchdog. */
1749	hw->mac.get_link_status = 1;
1750	schedule_work(&adapter->watchdog_task);
1751
1752	if ((adapter->flags & IGB_FLAG_EEE) &&
1753	    (!hw->dev_spec._82575.eee_disable))
1754		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1755
1756	return 0;
1757}
1758
1759void igb_down(struct igb_adapter *adapter)
1760{
1761	struct net_device *netdev = adapter->netdev;
1762	struct e1000_hw *hw = &adapter->hw;
1763	u32 tctl, rctl;
1764	int i;
1765
1766	/* signal that we're down so the interrupt handler does not
1767	 * reschedule our watchdog timer
1768	 */
1769	set_bit(__IGB_DOWN, &adapter->state);
1770
1771	/* disable receives in the hardware */
1772	rctl = rd32(E1000_RCTL);
1773	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1774	/* flush and sleep below */
1775
1776	netif_tx_stop_all_queues(netdev);
1777
1778	/* disable transmits in the hardware */
1779	tctl = rd32(E1000_TCTL);
1780	tctl &= ~E1000_TCTL_EN;
1781	wr32(E1000_TCTL, tctl);
1782	/* flush both disables and wait for them to finish */
1783	wrfl();
1784	msleep(10);
1785
1786	igb_irq_disable(adapter);
1787
1788	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1789
1790	for (i = 0; i < adapter->num_q_vectors; i++) {
1791		napi_synchronize(&(adapter->q_vector[i]->napi));
1792		napi_disable(&(adapter->q_vector[i]->napi));
1793	}
1794
1795
1796	del_timer_sync(&adapter->watchdog_timer);
1797	del_timer_sync(&adapter->phy_info_timer);
1798
1799	netif_carrier_off(netdev);
1800
1801	/* record the stats before reset*/
1802	spin_lock(&adapter->stats64_lock);
1803	igb_update_stats(adapter, &adapter->stats64);
1804	spin_unlock(&adapter->stats64_lock);
1805
1806	adapter->link_speed = 0;
1807	adapter->link_duplex = 0;
1808
1809	if (!pci_channel_offline(adapter->pdev))
1810		igb_reset(adapter);
1811	igb_clean_all_tx_rings(adapter);
1812	igb_clean_all_rx_rings(adapter);
1813#ifdef CONFIG_IGB_DCA
1814
1815	/* since we reset the hardware DCA settings were cleared */
1816	igb_setup_dca(adapter);
1817#endif
1818}
1819
1820void igb_reinit_locked(struct igb_adapter *adapter)
1821{
1822	WARN_ON(in_interrupt());
1823	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1824		msleep(1);
1825	igb_down(adapter);
1826	igb_up(adapter);
1827	clear_bit(__IGB_RESETTING, &adapter->state);
1828}
1829
1830/** igb_enable_mas - Media Autosense re-enable after swap
1831 *
1832 * @adapter: adapter struct
1833 **/
1834static s32 igb_enable_mas(struct igb_adapter *adapter)
1835{
1836	struct e1000_hw *hw = &adapter->hw;
1837	u32 connsw;
1838	s32 ret_val = 0;
1839
1840	connsw = rd32(E1000_CONNSW);
1841	if (!(hw->phy.media_type == e1000_media_type_copper))
1842		return ret_val;
1843
1844	/* configure for SerDes media detect */
1845	if (!(connsw & E1000_CONNSW_SERDESD)) {
1846		connsw |= E1000_CONNSW_ENRGSRC;
1847		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1848		wr32(E1000_CONNSW, connsw);
1849		wrfl();
1850	} else if (connsw & E1000_CONNSW_SERDESD) {
1851		/* already SerDes, no need to enable anything */
1852		return ret_val;
1853	} else {
1854		netdev_info(adapter->netdev,
1855			"MAS: Unable to configure feature, disabling..\n");
1856		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1857	}
1858	return ret_val;
1859}
1860
1861void igb_reset(struct igb_adapter *adapter)
1862{
1863	struct pci_dev *pdev = adapter->pdev;
1864	struct e1000_hw *hw = &adapter->hw;
1865	struct e1000_mac_info *mac = &hw->mac;
1866	struct e1000_fc_info *fc = &hw->fc;
1867	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1868
1869	/* Repartition Pba for greater than 9k mtu
1870	 * To take effect CTRL.RST is required.
1871	 */
1872	switch (mac->type) {
1873	case e1000_i350:
1874	case e1000_i354:
1875	case e1000_82580:
1876		pba = rd32(E1000_RXPBS);
1877		pba = igb_rxpbs_adjust_82580(pba);
1878		break;
1879	case e1000_82576:
1880		pba = rd32(E1000_RXPBS);
1881		pba &= E1000_RXPBS_SIZE_MASK_82576;
1882		break;
1883	case e1000_82575:
1884	case e1000_i210:
1885	case e1000_i211:
1886	default:
1887		pba = E1000_PBA_34K;
1888		break;
1889	}
1890
1891	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1892	    (mac->type < e1000_82576)) {
1893		/* adjust PBA for jumbo frames */
1894		wr32(E1000_PBA, pba);
1895
1896		/* To maintain wire speed transmits, the Tx FIFO should be
1897		 * large enough to accommodate two full transmit packets,
1898		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1899		 * the Rx FIFO should be large enough to accommodate at least
1900		 * one full receive packet and is similarly rounded up and
1901		 * expressed in KB.
1902		 */
1903		pba = rd32(E1000_PBA);
1904		/* upper 16 bits has Tx packet buffer allocation size in KB */
1905		tx_space = pba >> 16;
1906		/* lower 16 bits has Rx packet buffer allocation size in KB */
1907		pba &= 0xffff;
1908		/* the Tx fifo also stores 16 bytes of information about the Tx
1909		 * but don't include ethernet FCS because hardware appends it
1910		 */
1911		min_tx_space = (adapter->max_frame_size +
1912				sizeof(union e1000_adv_tx_desc) -
1913				ETH_FCS_LEN) * 2;
1914		min_tx_space = ALIGN(min_tx_space, 1024);
1915		min_tx_space >>= 10;
1916		/* software strips receive CRC, so leave room for it */
1917		min_rx_space = adapter->max_frame_size;
1918		min_rx_space = ALIGN(min_rx_space, 1024);
1919		min_rx_space >>= 10;
1920
1921		/* If current Tx allocation is less than the min Tx FIFO size,
1922		 * and the min Tx FIFO size is less than the current Rx FIFO
1923		 * allocation, take space away from current Rx allocation
1924		 */
1925		if (tx_space < min_tx_space &&
1926		    ((min_tx_space - tx_space) < pba)) {
1927			pba = pba - (min_tx_space - tx_space);
1928
1929			/* if short on Rx space, Rx wins and must trump Tx
1930			 * adjustment
1931			 */
1932			if (pba < min_rx_space)
1933				pba = min_rx_space;
1934		}
1935		wr32(E1000_PBA, pba);
1936	}
1937
1938	/* flow control settings */
1939	/* The high water mark must be low enough to fit one full frame
1940	 * (or the size used for early receive) above it in the Rx FIFO.
1941	 * Set it to the lower of:
1942	 * - 90% of the Rx FIFO size, or
1943	 * - the full Rx FIFO size minus one full frame
1944	 */
1945	hwm = min(((pba << 10) * 9 / 10),
1946			((pba << 10) - 2 * adapter->max_frame_size));
1947
1948	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1949	fc->low_water = fc->high_water - 16;
1950	fc->pause_time = 0xFFFF;
1951	fc->send_xon = 1;
1952	fc->current_mode = fc->requested_mode;
1953
1954	/* disable receive for all VFs and wait one second */
1955	if (adapter->vfs_allocated_count) {
1956		int i;
1957
1958		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1959			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1960
1961		/* ping all the active vfs to let them know we are going down */
1962		igb_ping_all_vfs(adapter);
1963
1964		/* disable transmits and receives */
1965		wr32(E1000_VFRE, 0);
1966		wr32(E1000_VFTE, 0);
1967	}
1968
1969	/* Allow time for pending master requests to run */
1970	hw->mac.ops.reset_hw(hw);
1971	wr32(E1000_WUC, 0);
1972
1973	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1974		/* need to resetup here after media swap */
1975		adapter->ei.get_invariants(hw);
1976		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1977	}
1978	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1979		if (igb_enable_mas(adapter))
1980			dev_err(&pdev->dev,
1981				"Error enabling Media Auto Sense\n");
1982	}
1983	if (hw->mac.ops.init_hw(hw))
1984		dev_err(&pdev->dev, "Hardware Error\n");
1985
1986	/* Flow control settings reset on hardware reset, so guarantee flow
1987	 * control is off when forcing speed.
1988	 */
1989	if (!hw->mac.autoneg)
1990		igb_force_mac_fc(hw);
1991
1992	igb_init_dmac(adapter, pba);
1993#ifdef CONFIG_IGB_HWMON
1994	/* Re-initialize the thermal sensor on i350 devices. */
1995	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997			/* If present, re-initialize the external thermal sensor
1998			 * interface.
1999			 */
2000			if (adapter->ets)
2001				mac->ops.init_thermal_sensor_thresh(hw);
2002		}
2003	}
2004#endif
2005	/* Re-establish EEE setting */
2006	if (hw->phy.media_type == e1000_media_type_copper) {
2007		switch (mac->type) {
2008		case e1000_i350:
2009		case e1000_i210:
2010		case e1000_i211:
2011			igb_set_eee_i350(hw);
2012			break;
2013		case e1000_i354:
2014			igb_set_eee_i354(hw);
2015			break;
2016		default:
2017			break;
2018		}
2019	}
2020	if (!netif_running(adapter->netdev))
2021		igb_power_down_link(adapter);
2022
2023	igb_update_mng_vlan(adapter);
2024
2025	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027
2028	/* Re-enable PTP, where applicable. */
2029	igb_ptp_reset(adapter);
2030
2031	igb_get_phy_info(hw);
2032}
2033
2034static netdev_features_t igb_fix_features(struct net_device *netdev,
2035	netdev_features_t features)
2036{
2037	/* Since there is no support for separate Rx/Tx vlan accel
2038	 * enable/disable make sure Tx flag is always in same state as Rx.
2039	 */
2040	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041		features |= NETIF_F_HW_VLAN_CTAG_TX;
2042	else
2043		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2044
2045	return features;
2046}
2047
2048static int igb_set_features(struct net_device *netdev,
2049	netdev_features_t features)
2050{
2051	netdev_features_t changed = netdev->features ^ features;
2052	struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2055		igb_vlan_mode(netdev, features);
2056
2057	if (!(changed & NETIF_F_RXALL))
2058		return 0;
2059
2060	netdev->features = features;
2061
2062	if (netif_running(netdev))
2063		igb_reinit_locked(adapter);
2064	else
2065		igb_reset(adapter);
2066
2067	return 0;
2068}
2069
2070static const struct net_device_ops igb_netdev_ops = {
2071	.ndo_open		= igb_open,
2072	.ndo_stop		= igb_close,
2073	.ndo_start_xmit		= igb_xmit_frame,
2074	.ndo_get_stats64	= igb_get_stats64,
2075	.ndo_set_rx_mode	= igb_set_rx_mode,
2076	.ndo_set_mac_address	= igb_set_mac,
2077	.ndo_change_mtu		= igb_change_mtu,
2078	.ndo_do_ioctl		= igb_ioctl,
2079	.ndo_tx_timeout		= igb_tx_timeout,
2080	.ndo_validate_addr	= eth_validate_addr,
2081	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2082	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2083	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2084	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2085	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2086	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2087	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2088#ifdef CONFIG_NET_POLL_CONTROLLER
2089	.ndo_poll_controller	= igb_netpoll,
2090#endif
2091	.ndo_fix_features	= igb_fix_features,
2092	.ndo_set_features	= igb_set_features,
2093};
2094
2095/**
2096 * igb_set_fw_version - Configure version string for ethtool
2097 * @adapter: adapter struct
2098 **/
2099void igb_set_fw_version(struct igb_adapter *adapter)
2100{
2101	struct e1000_hw *hw = &adapter->hw;
2102	struct e1000_fw_version fw;
2103
2104	igb_get_fw_version(hw, &fw);
2105
2106	switch (hw->mac.type) {
2107	case e1000_i210:
2108	case e1000_i211:
2109		if (!(igb_get_flash_presence_i210(hw))) {
2110			snprintf(adapter->fw_version,
2111				 sizeof(adapter->fw_version),
2112				 "%2d.%2d-%d",
2113				 fw.invm_major, fw.invm_minor,
2114				 fw.invm_img_type);
2115			break;
2116		}
2117		/* fall through */
2118	default:
2119		/* if option is rom valid, display its version too */
2120		if (fw.or_valid) {
2121			snprintf(adapter->fw_version,
2122				 sizeof(adapter->fw_version),
2123				 "%d.%d, 0x%08x, %d.%d.%d",
2124				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2125				 fw.or_major, fw.or_build, fw.or_patch);
2126		/* no option rom */
2127		} else if (fw.etrack_id != 0X0000) {
2128			snprintf(adapter->fw_version,
2129			    sizeof(adapter->fw_version),
2130			    "%d.%d, 0x%08x",
2131			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2132		} else {
2133		snprintf(adapter->fw_version,
2134		    sizeof(adapter->fw_version),
2135		    "%d.%d.%d",
2136		    fw.eep_major, fw.eep_minor, fw.eep_build);
2137		}
2138		break;
2139	}
2140	return;
2141}
2142
2143/**
2144 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2145 *
2146 * @adapter: adapter struct
2147 **/
2148static void igb_init_mas(struct igb_adapter *adapter)
2149{
2150	struct e1000_hw *hw = &adapter->hw;
2151	u16 eeprom_data;
2152
2153	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2154	switch (hw->bus.func) {
2155	case E1000_FUNC_0:
2156		if (eeprom_data & IGB_MAS_ENABLE_0) {
2157			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158			netdev_info(adapter->netdev,
2159				"MAS: Enabling Media Autosense for port %d\n",
2160				hw->bus.func);
2161		}
2162		break;
2163	case E1000_FUNC_1:
2164		if (eeprom_data & IGB_MAS_ENABLE_1) {
2165			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2166			netdev_info(adapter->netdev,
2167				"MAS: Enabling Media Autosense for port %d\n",
2168				hw->bus.func);
2169		}
2170		break;
2171	case E1000_FUNC_2:
2172		if (eeprom_data & IGB_MAS_ENABLE_2) {
2173			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2174			netdev_info(adapter->netdev,
2175				"MAS: Enabling Media Autosense for port %d\n",
2176				hw->bus.func);
2177		}
2178		break;
2179	case E1000_FUNC_3:
2180		if (eeprom_data & IGB_MAS_ENABLE_3) {
2181			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2182			netdev_info(adapter->netdev,
2183				"MAS: Enabling Media Autosense for port %d\n",
2184				hw->bus.func);
2185		}
2186		break;
2187	default:
2188		/* Shouldn't get here */
2189		netdev_err(adapter->netdev,
2190			"MAS: Invalid port configuration, returning\n");
2191		break;
2192	}
2193}
2194
2195/**
2196 *  igb_init_i2c - Init I2C interface
2197 *  @adapter: pointer to adapter structure
2198 **/
2199static s32 igb_init_i2c(struct igb_adapter *adapter)
2200{
2201	s32 status = E1000_SUCCESS;
2202
2203	/* I2C interface supported on i350 devices */
2204	if (adapter->hw.mac.type != e1000_i350)
2205		return E1000_SUCCESS;
2206
2207	/* Initialize the i2c bus which is controlled by the registers.
2208	 * This bus will use the i2c_algo_bit structue that implements
2209	 * the protocol through toggling of the 4 bits in the register.
2210	 */
2211	adapter->i2c_adap.owner = THIS_MODULE;
2212	adapter->i2c_algo = igb_i2c_algo;
2213	adapter->i2c_algo.data = adapter;
2214	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2215	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2216	strlcpy(adapter->i2c_adap.name, "igb BB",
2217		sizeof(adapter->i2c_adap.name));
2218	status = i2c_bit_add_bus(&adapter->i2c_adap);
2219	return status;
2220}
2221
2222/**
2223 *  igb_probe - Device Initialization Routine
2224 *  @pdev: PCI device information struct
2225 *  @ent: entry in igb_pci_tbl
2226 *
2227 *  Returns 0 on success, negative on failure
2228 *
2229 *  igb_probe initializes an adapter identified by a pci_dev structure.
2230 *  The OS initialization, configuring of the adapter private structure,
2231 *  and a hardware reset occur.
2232 **/
2233static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2234{
2235	struct net_device *netdev;
2236	struct igb_adapter *adapter;
2237	struct e1000_hw *hw;
2238	u16 eeprom_data = 0;
2239	s32 ret_val;
2240	static int global_quad_port_a; /* global quad port a indication */
2241	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2242	int err, pci_using_dac;
2243	u8 part_str[E1000_PBANUM_LENGTH];
2244
2245	/* Catch broken hardware that put the wrong VF device ID in
2246	 * the PCIe SR-IOV capability.
2247	 */
2248	if (pdev->is_virtfn) {
2249		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2250			pci_name(pdev), pdev->vendor, pdev->device);
2251		return -EINVAL;
2252	}
2253
2254	err = pci_enable_device_mem(pdev);
2255	if (err)
2256		return err;
2257
2258	pci_using_dac = 0;
2259	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2260	if (!err) {
2261		pci_using_dac = 1;
2262	} else {
2263		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2264		if (err) {
2265			dev_err(&pdev->dev,
2266				"No usable DMA configuration, aborting\n");
2267			goto err_dma;
2268		}
2269	}
2270
2271	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2272					   IORESOURCE_MEM),
2273					   igb_driver_name);
2274	if (err)
2275		goto err_pci_reg;
2276
2277	pci_enable_pcie_error_reporting(pdev);
2278
2279	pci_set_master(pdev);
2280	pci_save_state(pdev);
2281
2282	err = -ENOMEM;
2283	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2284				   IGB_MAX_TX_QUEUES);
2285	if (!netdev)
2286		goto err_alloc_etherdev;
2287
2288	SET_NETDEV_DEV(netdev, &pdev->dev);
2289
2290	pci_set_drvdata(pdev, netdev);
2291	adapter = netdev_priv(netdev);
2292	adapter->netdev = netdev;
2293	adapter->pdev = pdev;
2294	hw = &adapter->hw;
2295	hw->back = adapter;
2296	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2297
2298	err = -EIO;
2299	hw->hw_addr = pci_iomap(pdev, 0, 0);
2300	if (!hw->hw_addr)
2301		goto err_ioremap;
2302
2303	netdev->netdev_ops = &igb_netdev_ops;
2304	igb_set_ethtool_ops(netdev);
2305	netdev->watchdog_timeo = 5 * HZ;
2306
2307	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2308
2309	netdev->mem_start = pci_resource_start(pdev, 0);
2310	netdev->mem_end = pci_resource_end(pdev, 0);
2311
2312	/* PCI config space info */
2313	hw->vendor_id = pdev->vendor;
2314	hw->device_id = pdev->device;
2315	hw->revision_id = pdev->revision;
2316	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2317	hw->subsystem_device_id = pdev->subsystem_device;
2318
2319	/* Copy the default MAC, PHY and NVM function pointers */
2320	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2321	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2322	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2323	/* Initialize skew-specific constants */
2324	err = ei->get_invariants(hw);
2325	if (err)
2326		goto err_sw_init;
2327
2328	/* setup the private structure */
2329	err = igb_sw_init(adapter);
2330	if (err)
2331		goto err_sw_init;
2332
2333	igb_get_bus_info_pcie(hw);
2334
2335	hw->phy.autoneg_wait_to_complete = false;
2336
2337	/* Copper options */
2338	if (hw->phy.media_type == e1000_media_type_copper) {
2339		hw->phy.mdix = AUTO_ALL_MODES;
2340		hw->phy.disable_polarity_correction = false;
2341		hw->phy.ms_type = e1000_ms_hw_default;
2342	}
2343
2344	if (igb_check_reset_block(hw))
2345		dev_info(&pdev->dev,
2346			"PHY reset is blocked due to SOL/IDER session.\n");
2347
2348	/* features is initialized to 0 in allocation, it might have bits
2349	 * set by igb_sw_init so we should use an or instead of an
2350	 * assignment.
2351	 */
2352	netdev->features |= NETIF_F_SG |
2353			    NETIF_F_IP_CSUM |
2354			    NETIF_F_IPV6_CSUM |
2355			    NETIF_F_TSO |
2356			    NETIF_F_TSO6 |
2357			    NETIF_F_RXHASH |
2358			    NETIF_F_RXCSUM |
2359			    NETIF_F_HW_VLAN_CTAG_RX |
2360			    NETIF_F_HW_VLAN_CTAG_TX;
2361
2362	/* copy netdev features into list of user selectable features */
2363	netdev->hw_features |= netdev->features;
2364	netdev->hw_features |= NETIF_F_RXALL;
2365
2366	/* set this bit last since it cannot be part of hw_features */
2367	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2368
2369	netdev->vlan_features |= NETIF_F_TSO |
2370				 NETIF_F_TSO6 |
2371				 NETIF_F_IP_CSUM |
2372				 NETIF_F_IPV6_CSUM |
2373				 NETIF_F_SG;
2374
2375	netdev->priv_flags |= IFF_SUPP_NOFCS;
2376
2377	if (pci_using_dac) {
2378		netdev->features |= NETIF_F_HIGHDMA;
2379		netdev->vlan_features |= NETIF_F_HIGHDMA;
2380	}
2381
2382	if (hw->mac.type >= e1000_82576) {
2383		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2384		netdev->features |= NETIF_F_SCTP_CSUM;
2385	}
2386
2387	netdev->priv_flags |= IFF_UNICAST_FLT;
2388
2389	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2390
2391	/* before reading the NVM, reset the controller to put the device in a
2392	 * known good starting state
2393	 */
2394	hw->mac.ops.reset_hw(hw);
2395
2396	/* make sure the NVM is good , i211/i210 parts can have special NVM
2397	 * that doesn't contain a checksum
2398	 */
2399	switch (hw->mac.type) {
2400	case e1000_i210:
2401	case e1000_i211:
2402		if (igb_get_flash_presence_i210(hw)) {
2403			if (hw->nvm.ops.validate(hw) < 0) {
2404				dev_err(&pdev->dev,
2405					"The NVM Checksum Is Not Valid\n");
2406				err = -EIO;
2407				goto err_eeprom;
2408			}
2409		}
2410		break;
2411	default:
2412		if (hw->nvm.ops.validate(hw) < 0) {
2413			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2414			err = -EIO;
2415			goto err_eeprom;
2416		}
2417		break;
2418	}
2419
2420	/* copy the MAC address out of the NVM */
2421	if (hw->mac.ops.read_mac_addr(hw))
2422		dev_err(&pdev->dev, "NVM Read Error\n");
2423
2424	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2425
2426	if (!is_valid_ether_addr(netdev->dev_addr)) {
2427		dev_err(&pdev->dev, "Invalid MAC Address\n");
2428		err = -EIO;
2429		goto err_eeprom;
2430	}
2431
2432	/* get firmware version for ethtool -i */
2433	igb_set_fw_version(adapter);
2434
2435	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2436		    (unsigned long) adapter);
2437	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2438		    (unsigned long) adapter);
2439
2440	INIT_WORK(&adapter->reset_task, igb_reset_task);
2441	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2442
2443	/* Initialize link properties that are user-changeable */
2444	adapter->fc_autoneg = true;
2445	hw->mac.autoneg = true;
2446	hw->phy.autoneg_advertised = 0x2f;
2447
2448	hw->fc.requested_mode = e1000_fc_default;
2449	hw->fc.current_mode = e1000_fc_default;
2450
2451	igb_validate_mdi_setting(hw);
2452
2453	/* By default, support wake on port A */
2454	if (hw->bus.func == 0)
2455		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2456
2457	/* Check the NVM for wake support on non-port A ports */
2458	if (hw->mac.type >= e1000_82580)
2459		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2460				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2461				 &eeprom_data);
2462	else if (hw->bus.func == 1)
2463		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2464
2465	if (eeprom_data & IGB_EEPROM_APME)
2466		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2467
2468	/* now that we have the eeprom settings, apply the special cases where
2469	 * the eeprom may be wrong or the board simply won't support wake on
2470	 * lan on a particular port
2471	 */
2472	switch (pdev->device) {
2473	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2474		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2475		break;
2476	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2477	case E1000_DEV_ID_82576_FIBER:
2478	case E1000_DEV_ID_82576_SERDES:
2479		/* Wake events only supported on port A for dual fiber
2480		 * regardless of eeprom setting
2481		 */
2482		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2483			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2484		break;
2485	case E1000_DEV_ID_82576_QUAD_COPPER:
2486	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2487		/* if quad port adapter, disable WoL on all but port A */
2488		if (global_quad_port_a != 0)
2489			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2490		else
2491			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2492		/* Reset for multiple quad port adapters */
2493		if (++global_quad_port_a == 4)
2494			global_quad_port_a = 0;
2495		break;
2496	default:
2497		/* If the device can't wake, don't set software support */
2498		if (!device_can_wakeup(&adapter->pdev->dev))
2499			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2500	}
2501
2502	/* initialize the wol settings based on the eeprom settings */
2503	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2504		adapter->wol |= E1000_WUFC_MAG;
2505
2506	/* Some vendors want WoL disabled by default, but still supported */
2507	if ((hw->mac.type == e1000_i350) &&
2508	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2509		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2510		adapter->wol = 0;
2511	}
2512
2513	device_set_wakeup_enable(&adapter->pdev->dev,
2514				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2515
2516	/* reset the hardware with the new settings */
2517	igb_reset(adapter);
2518
2519	/* Init the I2C interface */
2520	err = igb_init_i2c(adapter);
2521	if (err) {
2522		dev_err(&pdev->dev, "failed to init i2c interface\n");
2523		goto err_eeprom;
2524	}
2525
2526	/* let the f/w know that the h/w is now under the control of the
2527	 * driver.
2528	 */
2529	igb_get_hw_control(adapter);
2530
2531	strcpy(netdev->name, "eth%d");
2532	err = register_netdev(netdev);
2533	if (err)
2534		goto err_register;
2535
2536	/* carrier off reporting is important to ethtool even BEFORE open */
2537	netif_carrier_off(netdev);
2538
2539#ifdef CONFIG_IGB_DCA
2540	if (dca_add_requester(&pdev->dev) == 0) {
2541		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2542		dev_info(&pdev->dev, "DCA enabled\n");
2543		igb_setup_dca(adapter);
2544	}
2545
2546#endif
2547#ifdef CONFIG_IGB_HWMON
2548	/* Initialize the thermal sensor on i350 devices. */
2549	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2550		u16 ets_word;
2551
2552		/* Read the NVM to determine if this i350 device supports an
2553		 * external thermal sensor.
2554		 */
2555		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2556		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2557			adapter->ets = true;
2558		else
2559			adapter->ets = false;
2560		if (igb_sysfs_init(adapter))
2561			dev_err(&pdev->dev,
2562				"failed to allocate sysfs resources\n");
2563	} else {
2564		adapter->ets = false;
2565	}
2566#endif
2567	/* Check if Media Autosense is enabled */
2568	adapter->ei = *ei;
2569	if (hw->dev_spec._82575.mas_capable)
2570		igb_init_mas(adapter);
2571
2572	/* do hw tstamp init after resetting */
2573	igb_ptp_init(adapter);
2574
2575	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2576	/* print bus type/speed/width info, not applicable to i354 */
2577	if (hw->mac.type != e1000_i354) {
2578		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2579			 netdev->name,
2580			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2581			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2582			   "unknown"),
2583			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2584			  "Width x4" :
2585			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2586			  "Width x2" :
2587			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2588			  "Width x1" : "unknown"), netdev->dev_addr);
2589	}
2590
2591	if ((hw->mac.type >= e1000_i210 ||
2592	     igb_get_flash_presence_i210(hw))) {
2593		ret_val = igb_read_part_string(hw, part_str,
2594					       E1000_PBANUM_LENGTH);
2595	} else {
2596		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2597	}
2598
2599	if (ret_val)
2600		strcpy(part_str, "Unknown");
2601	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2602	dev_info(&pdev->dev,
2603		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2604		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2605		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2606		adapter->num_rx_queues, adapter->num_tx_queues);
2607	if (hw->phy.media_type == e1000_media_type_copper) {
2608		switch (hw->mac.type) {
2609		case e1000_i350:
2610		case e1000_i210:
2611		case e1000_i211:
2612			/* Enable EEE for internal copper PHY devices */
2613			err = igb_set_eee_i350(hw);
2614			if ((!err) &&
2615			    (!hw->dev_spec._82575.eee_disable)) {
2616				adapter->eee_advert =
2617					MDIO_EEE_100TX | MDIO_EEE_1000T;
2618				adapter->flags |= IGB_FLAG_EEE;
2619			}
2620			break;
2621		case e1000_i354:
2622			if ((rd32(E1000_CTRL_EXT) &
2623			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2624				err = igb_set_eee_i354(hw);
2625				if ((!err) &&
2626					(!hw->dev_spec._82575.eee_disable)) {
2627					adapter->eee_advert =
2628					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2629					adapter->flags |= IGB_FLAG_EEE;
2630				}
2631			}
2632			break;
2633		default:
2634			break;
2635		}
2636	}
2637	pm_runtime_put_noidle(&pdev->dev);
2638	return 0;
2639
2640err_register:
2641	igb_release_hw_control(adapter);
2642	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2643err_eeprom:
2644	if (!igb_check_reset_block(hw))
2645		igb_reset_phy(hw);
2646
2647	if (hw->flash_address)
2648		iounmap(hw->flash_address);
2649err_sw_init:
2650	igb_clear_interrupt_scheme(adapter);
2651	pci_iounmap(pdev, hw->hw_addr);
2652err_ioremap:
2653	free_netdev(netdev);
2654err_alloc_etherdev:
2655	pci_release_selected_regions(pdev,
2656				     pci_select_bars(pdev, IORESOURCE_MEM));
2657err_pci_reg:
2658err_dma:
2659	pci_disable_device(pdev);
2660	return err;
2661}
2662
2663#ifdef CONFIG_PCI_IOV
2664static int igb_disable_sriov(struct pci_dev *pdev)
2665{
2666	struct net_device *netdev = pci_get_drvdata(pdev);
2667	struct igb_adapter *adapter = netdev_priv(netdev);
2668	struct e1000_hw *hw = &adapter->hw;
2669
2670	/* reclaim resources allocated to VFs */
2671	if (adapter->vf_data) {
2672		/* disable iov and allow time for transactions to clear */
2673		if (pci_vfs_assigned(pdev)) {
2674			dev_warn(&pdev->dev,
2675				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2676			return -EPERM;
2677		} else {
2678			pci_disable_sriov(pdev);
2679			msleep(500);
2680		}
2681
2682		kfree(adapter->vf_data);
2683		adapter->vf_data = NULL;
2684		adapter->vfs_allocated_count = 0;
2685		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2686		wrfl();
2687		msleep(100);
2688		dev_info(&pdev->dev, "IOV Disabled\n");
2689
2690		/* Re-enable DMA Coalescing flag since IOV is turned off */
2691		adapter->flags |= IGB_FLAG_DMAC;
2692	}
2693
2694	return 0;
2695}
2696
2697static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2698{
2699	struct net_device *netdev = pci_get_drvdata(pdev);
2700	struct igb_adapter *adapter = netdev_priv(netdev);
2701	int old_vfs = pci_num_vf(pdev);
2702	int err = 0;
2703	int i;
2704
2705	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2706		err = -EPERM;
2707		goto out;
2708	}
2709	if (!num_vfs)
2710		goto out;
2711
2712	if (old_vfs) {
2713		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2714			 old_vfs, max_vfs);
2715		adapter->vfs_allocated_count = old_vfs;
2716	} else
2717		adapter->vfs_allocated_count = num_vfs;
2718
2719	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2720				sizeof(struct vf_data_storage), GFP_KERNEL);
2721
2722	/* if allocation failed then we do not support SR-IOV */
2723	if (!adapter->vf_data) {
2724		adapter->vfs_allocated_count = 0;
2725		dev_err(&pdev->dev,
2726			"Unable to allocate memory for VF Data Storage\n");
2727		err = -ENOMEM;
2728		goto out;
2729	}
2730
2731	/* only call pci_enable_sriov() if no VFs are allocated already */
2732	if (!old_vfs) {
2733		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2734		if (err)
2735			goto err_out;
2736	}
2737	dev_info(&pdev->dev, "%d VFs allocated\n",
2738		 adapter->vfs_allocated_count);
2739	for (i = 0; i < adapter->vfs_allocated_count; i++)
2740		igb_vf_configure(adapter, i);
2741
2742	/* DMA Coalescing is not supported in IOV mode. */
2743	adapter->flags &= ~IGB_FLAG_DMAC;
2744	goto out;
2745
2746err_out:
2747	kfree(adapter->vf_data);
2748	adapter->vf_data = NULL;
2749	adapter->vfs_allocated_count = 0;
2750out:
2751	return err;
2752}
2753
2754#endif
2755/**
2756 *  igb_remove_i2c - Cleanup  I2C interface
2757 *  @adapter: pointer to adapter structure
2758 **/
2759static void igb_remove_i2c(struct igb_adapter *adapter)
2760{
2761	/* free the adapter bus structure */
2762	i2c_del_adapter(&adapter->i2c_adap);
2763}
2764
2765/**
2766 *  igb_remove - Device Removal Routine
2767 *  @pdev: PCI device information struct
2768 *
2769 *  igb_remove is called by the PCI subsystem to alert the driver
2770 *  that it should release a PCI device.  The could be caused by a
2771 *  Hot-Plug event, or because the driver is going to be removed from
2772 *  memory.
2773 **/
2774static void igb_remove(struct pci_dev *pdev)
2775{
2776	struct net_device *netdev = pci_get_drvdata(pdev);
2777	struct igb_adapter *adapter = netdev_priv(netdev);
2778	struct e1000_hw *hw = &adapter->hw;
2779
2780	pm_runtime_get_noresume(&pdev->dev);
2781#ifdef CONFIG_IGB_HWMON
2782	igb_sysfs_exit(adapter);
2783#endif
2784	igb_remove_i2c(adapter);
2785	igb_ptp_stop(adapter);
2786	/* The watchdog timer may be rescheduled, so explicitly
2787	 * disable watchdog from being rescheduled.
2788	 */
2789	set_bit(__IGB_DOWN, &adapter->state);
2790	del_timer_sync(&adapter->watchdog_timer);
2791	del_timer_sync(&adapter->phy_info_timer);
2792
2793	cancel_work_sync(&adapter->reset_task);
2794	cancel_work_sync(&adapter->watchdog_task);
2795
2796#ifdef CONFIG_IGB_DCA
2797	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2798		dev_info(&pdev->dev, "DCA disabled\n");
2799		dca_remove_requester(&pdev->dev);
2800		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2801		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2802	}
2803#endif
2804
2805	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2806	 * would have already happened in close and is redundant.
2807	 */
2808	igb_release_hw_control(adapter);
2809
2810	unregister_netdev(netdev);
2811
2812	igb_clear_interrupt_scheme(adapter);
2813
2814#ifdef CONFIG_PCI_IOV
2815	igb_disable_sriov(pdev);
2816#endif
2817
2818	pci_iounmap(pdev, hw->hw_addr);
2819	if (hw->flash_address)
2820		iounmap(hw->flash_address);
2821	pci_release_selected_regions(pdev,
2822				     pci_select_bars(pdev, IORESOURCE_MEM));
2823
2824	kfree(adapter->shadow_vfta);
2825	free_netdev(netdev);
2826
2827	pci_disable_pcie_error_reporting(pdev);
2828
2829	pci_disable_device(pdev);
2830}
2831
2832/**
2833 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2834 *  @adapter: board private structure to initialize
2835 *
2836 *  This function initializes the vf specific data storage and then attempts to
2837 *  allocate the VFs.  The reason for ordering it this way is because it is much
2838 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2839 *  the memory for the VFs.
2840 **/
2841static void igb_probe_vfs(struct igb_adapter *adapter)
2842{
2843#ifdef CONFIG_PCI_IOV
2844	struct pci_dev *pdev = adapter->pdev;
2845	struct e1000_hw *hw = &adapter->hw;
2846
2847	/* Virtualization features not supported on i210 family. */
2848	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2849		return;
2850
2851	pci_sriov_set_totalvfs(pdev, 7);
2852	igb_pci_enable_sriov(pdev, max_vfs);
2853
2854#endif /* CONFIG_PCI_IOV */
2855}
2856
2857static void igb_init_queue_configuration(struct igb_adapter *adapter)
2858{
2859	struct e1000_hw *hw = &adapter->hw;
2860	u32 max_rss_queues;
2861
2862	/* Determine the maximum number of RSS queues supported. */
2863	switch (hw->mac.type) {
2864	case e1000_i211:
2865		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2866		break;
2867	case e1000_82575:
2868	case e1000_i210:
2869		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2870		break;
2871	case e1000_i350:
2872		/* I350 cannot do RSS and SR-IOV at the same time */
2873		if (!!adapter->vfs_allocated_count) {
2874			max_rss_queues = 1;
2875			break;
2876		}
2877		/* fall through */
2878	case e1000_82576:
2879		if (!!adapter->vfs_allocated_count) {
2880			max_rss_queues = 2;
2881			break;
2882		}
2883		/* fall through */
2884	case e1000_82580:
2885	case e1000_i354:
2886	default:
2887		max_rss_queues = IGB_MAX_RX_QUEUES;
2888		break;
2889	}
2890
2891	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2892
2893	/* Determine if we need to pair queues. */
2894	switch (hw->mac.type) {
2895	case e1000_82575:
2896	case e1000_i211:
2897		/* Device supports enough interrupts without queue pairing. */
2898		break;
2899	case e1000_82576:
2900		/* If VFs are going to be allocated with RSS queues then we
2901		 * should pair the queues in order to conserve interrupts due
2902		 * to limited supply.
2903		 */
2904		if ((adapter->rss_queues > 1) &&
2905		    (adapter->vfs_allocated_count > 6))
2906			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2907		/* fall through */
2908	case e1000_82580:
2909	case e1000_i350:
2910	case e1000_i354:
2911	case e1000_i210:
2912	default:
2913		/* If rss_queues > half of max_rss_queues, pair the queues in
2914		 * order to conserve interrupts due to limited supply.
2915		 */
2916		if (adapter->rss_queues > (max_rss_queues / 2))
2917			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2918		break;
2919	}
2920}
2921
2922/**
2923 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2924 *  @adapter: board private structure to initialize
2925 *
2926 *  igb_sw_init initializes the Adapter private data structure.
2927 *  Fields are initialized based on PCI device information and
2928 *  OS network device settings (MTU size).
2929 **/
2930static int igb_sw_init(struct igb_adapter *adapter)
2931{
2932	struct e1000_hw *hw = &adapter->hw;
2933	struct net_device *netdev = adapter->netdev;
2934	struct pci_dev *pdev = adapter->pdev;
2935
2936	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2937
2938	/* set default ring sizes */
2939	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2940	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2941
2942	/* set default ITR values */
2943	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2944	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2945
2946	/* set default work limits */
2947	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2948
2949	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2950				  VLAN_HLEN;
2951	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2952
2953	spin_lock_init(&adapter->stats64_lock);
2954#ifdef CONFIG_PCI_IOV
2955	switch (hw->mac.type) {
2956	case e1000_82576:
2957	case e1000_i350:
2958		if (max_vfs > 7) {
2959			dev_warn(&pdev->dev,
2960				 "Maximum of 7 VFs per PF, using max\n");
2961			max_vfs = adapter->vfs_allocated_count = 7;
2962		} else
2963			adapter->vfs_allocated_count = max_vfs;
2964		if (adapter->vfs_allocated_count)
2965			dev_warn(&pdev->dev,
2966				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2967		break;
2968	default:
2969		break;
2970	}
2971#endif /* CONFIG_PCI_IOV */
2972
2973	igb_init_queue_configuration(adapter);
2974
2975	/* Setup and initialize a copy of the hw vlan table array */
2976	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2977				       GFP_ATOMIC);
2978
2979	/* This call may decrease the number of queues */
2980	if (igb_init_interrupt_scheme(adapter, true)) {
2981		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2982		return -ENOMEM;
2983	}
2984
2985	igb_probe_vfs(adapter);
2986
2987	/* Explicitly disable IRQ since the NIC can be in any state. */
2988	igb_irq_disable(adapter);
2989
2990	if (hw->mac.type >= e1000_i350)
2991		adapter->flags &= ~IGB_FLAG_DMAC;
2992
2993	set_bit(__IGB_DOWN, &adapter->state);
2994	return 0;
2995}
2996
2997/**
2998 *  igb_open - Called when a network interface is made active
2999 *  @netdev: network interface device structure
3000 *
3001 *  Returns 0 on success, negative value on failure
3002 *
3003 *  The open entry point is called when a network interface is made
3004 *  active by the system (IFF_UP).  At this point all resources needed
3005 *  for transmit and receive operations are allocated, the interrupt
3006 *  handler is registered with the OS, the watchdog timer is started,
3007 *  and the stack is notified that the interface is ready.
3008 **/
3009static int __igb_open(struct net_device *netdev, bool resuming)
3010{
3011	struct igb_adapter *adapter = netdev_priv(netdev);
3012	struct e1000_hw *hw = &adapter->hw;
3013	struct pci_dev *pdev = adapter->pdev;
3014	int err;
3015	int i;
3016
3017	/* disallow open during test */
3018	if (test_bit(__IGB_TESTING, &adapter->state)) {
3019		WARN_ON(resuming);
3020		return -EBUSY;
3021	}
3022
3023	if (!resuming)
3024		pm_runtime_get_sync(&pdev->dev);
3025
3026	netif_carrier_off(netdev);
3027
3028	/* allocate transmit descriptors */
3029	err = igb_setup_all_tx_resources(adapter);
3030	if (err)
3031		goto err_setup_tx;
3032
3033	/* allocate receive descriptors */
3034	err = igb_setup_all_rx_resources(adapter);
3035	if (err)
3036		goto err_setup_rx;
3037
3038	igb_power_up_link(adapter);
3039
3040	/* before we allocate an interrupt, we must be ready to handle it.
3041	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3042	 * as soon as we call pci_request_irq, so we have to setup our
3043	 * clean_rx handler before we do so.
3044	 */
3045	igb_configure(adapter);
3046
3047	err = igb_request_irq(adapter);
3048	if (err)
3049		goto err_req_irq;
3050
3051	/* Notify the stack of the actual queue counts. */
3052	err = netif_set_real_num_tx_queues(adapter->netdev,
3053					   adapter->num_tx_queues);
3054	if (err)
3055		goto err_set_queues;
3056
3057	err = netif_set_real_num_rx_queues(adapter->netdev,
3058					   adapter->num_rx_queues);
3059	if (err)
3060		goto err_set_queues;
3061
3062	/* From here on the code is the same as igb_up() */
3063	clear_bit(__IGB_DOWN, &adapter->state);
3064
3065	for (i = 0; i < adapter->num_q_vectors; i++)
3066		napi_enable(&(adapter->q_vector[i]->napi));
3067
3068	/* Clear any pending interrupts. */
3069	rd32(E1000_ICR);
3070
3071	igb_irq_enable(adapter);
3072
3073	/* notify VFs that reset has been completed */
3074	if (adapter->vfs_allocated_count) {
3075		u32 reg_data = rd32(E1000_CTRL_EXT);
3076
3077		reg_data |= E1000_CTRL_EXT_PFRSTD;
3078		wr32(E1000_CTRL_EXT, reg_data);
3079	}
3080
3081	netif_tx_start_all_queues(netdev);
3082
3083	if (!resuming)
3084		pm_runtime_put(&pdev->dev);
3085
3086	/* start the watchdog. */
3087	hw->mac.get_link_status = 1;
3088	schedule_work(&adapter->watchdog_task);
3089
3090	return 0;
3091
3092err_set_queues:
3093	igb_free_irq(adapter);
3094err_req_irq:
3095	igb_release_hw_control(adapter);
3096	igb_power_down_link(adapter);
3097	igb_free_all_rx_resources(adapter);
3098err_setup_rx:
3099	igb_free_all_tx_resources(adapter);
3100err_setup_tx:
3101	igb_reset(adapter);
3102	if (!resuming)
3103		pm_runtime_put(&pdev->dev);
3104
3105	return err;
3106}
3107
3108static int igb_open(struct net_device *netdev)
3109{
3110	return __igb_open(netdev, false);
3111}
3112
3113/**
3114 *  igb_close - Disables a network interface
3115 *  @netdev: network interface device structure
3116 *
3117 *  Returns 0, this is not allowed to fail
3118 *
3119 *  The close entry point is called when an interface is de-activated
3120 *  by the OS.  The hardware is still under the driver's control, but
3121 *  needs to be disabled.  A global MAC reset is issued to stop the
3122 *  hardware, and all transmit and receive resources are freed.
3123 **/
3124static int __igb_close(struct net_device *netdev, bool suspending)
3125{
3126	struct igb_adapter *adapter = netdev_priv(netdev);
3127	struct pci_dev *pdev = adapter->pdev;
3128
3129	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3130
3131	if (!suspending)
3132		pm_runtime_get_sync(&pdev->dev);
3133
3134	igb_down(adapter);
3135	igb_free_irq(adapter);
3136
3137	igb_free_all_tx_resources(adapter);
3138	igb_free_all_rx_resources(adapter);
3139
3140	if (!suspending)
3141		pm_runtime_put_sync(&pdev->dev);
3142	return 0;
3143}
3144
3145static int igb_close(struct net_device *netdev)
3146{
3147	return __igb_close(netdev, false);
3148}
3149
3150/**
3151 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3152 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3153 *
3154 *  Return 0 on success, negative on failure
3155 **/
3156int igb_setup_tx_resources(struct igb_ring *tx_ring)
3157{
3158	struct device *dev = tx_ring->dev;
3159	int size;
3160
3161	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3162
3163	tx_ring->tx_buffer_info = vzalloc(size);
3164	if (!tx_ring->tx_buffer_info)
3165		goto err;
3166
3167	/* round up to nearest 4K */
3168	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3169	tx_ring->size = ALIGN(tx_ring->size, 4096);
3170
3171	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3172					   &tx_ring->dma, GFP_KERNEL);
3173	if (!tx_ring->desc)
3174		goto err;
3175
3176	tx_ring->next_to_use = 0;
3177	tx_ring->next_to_clean = 0;
3178
3179	return 0;
3180
3181err:
3182	vfree(tx_ring->tx_buffer_info);
3183	tx_ring->tx_buffer_info = NULL;
3184	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3185	return -ENOMEM;
3186}
3187
3188/**
3189 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3190 *				 (Descriptors) for all queues
3191 *  @adapter: board private structure
3192 *
3193 *  Return 0 on success, negative on failure
3194 **/
3195static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3196{
3197	struct pci_dev *pdev = adapter->pdev;
3198	int i, err = 0;
3199
3200	for (i = 0; i < adapter->num_tx_queues; i++) {
3201		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3202		if (err) {
3203			dev_err(&pdev->dev,
3204				"Allocation for Tx Queue %u failed\n", i);
3205			for (i--; i >= 0; i--)
3206				igb_free_tx_resources(adapter->tx_ring[i]);
3207			break;
3208		}
3209	}
3210
3211	return err;
3212}
3213
3214/**
3215 *  igb_setup_tctl - configure the transmit control registers
3216 *  @adapter: Board private structure
3217 **/
3218void igb_setup_tctl(struct igb_adapter *adapter)
3219{
3220	struct e1000_hw *hw = &adapter->hw;
3221	u32 tctl;
3222
3223	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3224	wr32(E1000_TXDCTL(0), 0);
3225
3226	/* Program the Transmit Control Register */
3227	tctl = rd32(E1000_TCTL);
3228	tctl &= ~E1000_TCTL_CT;
3229	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3230		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3231
3232	igb_config_collision_dist(hw);
3233
3234	/* Enable transmits */
3235	tctl |= E1000_TCTL_EN;
3236
3237	wr32(E1000_TCTL, tctl);
3238}
3239
3240/**
3241 *  igb_configure_tx_ring - Configure transmit ring after Reset
3242 *  @adapter: board private structure
3243 *  @ring: tx ring to configure
3244 *
3245 *  Configure a transmit ring after a reset.
3246 **/
3247void igb_configure_tx_ring(struct igb_adapter *adapter,
3248			   struct igb_ring *ring)
3249{
3250	struct e1000_hw *hw = &adapter->hw;
3251	u32 txdctl = 0;
3252	u64 tdba = ring->dma;
3253	int reg_idx = ring->reg_idx;
3254
3255	/* disable the queue */
3256	wr32(E1000_TXDCTL(reg_idx), 0);
3257	wrfl();
3258	mdelay(10);
3259
3260	wr32(E1000_TDLEN(reg_idx),
3261	     ring->count * sizeof(union e1000_adv_tx_desc));
3262	wr32(E1000_TDBAL(reg_idx),
3263	     tdba & 0x00000000ffffffffULL);
3264	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3265
3266	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3267	wr32(E1000_TDH(reg_idx), 0);
3268	writel(0, ring->tail);
3269
3270	txdctl |= IGB_TX_PTHRESH;
3271	txdctl |= IGB_TX_HTHRESH << 8;
3272	txdctl |= IGB_TX_WTHRESH << 16;
3273
3274	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3275	wr32(E1000_TXDCTL(reg_idx), txdctl);
3276}
3277
3278/**
3279 *  igb_configure_tx - Configure transmit Unit after Reset
3280 *  @adapter: board private structure
3281 *
3282 *  Configure the Tx unit of the MAC after a reset.
3283 **/
3284static void igb_configure_tx(struct igb_adapter *adapter)
3285{
3286	int i;
3287
3288	for (i = 0; i < adapter->num_tx_queues; i++)
3289		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3290}
3291
3292/**
3293 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3294 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3295 *
3296 *  Returns 0 on success, negative on failure
3297 **/
3298int igb_setup_rx_resources(struct igb_ring *rx_ring)
3299{
3300	struct device *dev = rx_ring->dev;
3301	int size;
3302
3303	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3304
3305	rx_ring->rx_buffer_info = vzalloc(size);
3306	if (!rx_ring->rx_buffer_info)
3307		goto err;
3308
3309	/* Round up to nearest 4K */
3310	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3311	rx_ring->size = ALIGN(rx_ring->size, 4096);
3312
3313	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3314					   &rx_ring->dma, GFP_KERNEL);
3315	if (!rx_ring->desc)
3316		goto err;
3317
3318	rx_ring->next_to_alloc = 0;
3319	rx_ring->next_to_clean = 0;
3320	rx_ring->next_to_use = 0;
3321
3322	return 0;
3323
3324err:
3325	vfree(rx_ring->rx_buffer_info);
3326	rx_ring->rx_buffer_info = NULL;
3327	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3328	return -ENOMEM;
3329}
3330
3331/**
3332 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3333 *				 (Descriptors) for all queues
3334 *  @adapter: board private structure
3335 *
3336 *  Return 0 on success, negative on failure
3337 **/
3338static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3339{
3340	struct pci_dev *pdev = adapter->pdev;
3341	int i, err = 0;
3342
3343	for (i = 0; i < adapter->num_rx_queues; i++) {
3344		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3345		if (err) {
3346			dev_err(&pdev->dev,
3347				"Allocation for Rx Queue %u failed\n", i);
3348			for (i--; i >= 0; i--)
3349				igb_free_rx_resources(adapter->rx_ring[i]);
3350			break;
3351		}
3352	}
3353
3354	return err;
3355}
3356
3357/**
3358 *  igb_setup_mrqc - configure the multiple receive queue control registers
3359 *  @adapter: Board private structure
3360 **/
3361static void igb_setup_mrqc(struct igb_adapter *adapter)
3362{
3363	struct e1000_hw *hw = &adapter->hw;
3364	u32 mrqc, rxcsum;
3365	u32 j, num_rx_queues;
3366	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3367					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3368					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3369					0xFA01ACBE };
3370
3371	/* Fill out hash function seeds */
3372	for (j = 0; j < 10; j++)
3373		wr32(E1000_RSSRK(j), rsskey[j]);
3374
3375	num_rx_queues = adapter->rss_queues;
3376
3377	switch (hw->mac.type) {
3378	case e1000_82576:
3379		/* 82576 supports 2 RSS queues for SR-IOV */
3380		if (adapter->vfs_allocated_count)
3381			num_rx_queues = 2;
3382		break;
3383	default:
3384		break;
3385	}
3386
3387	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3388		for (j = 0; j < IGB_RETA_SIZE; j++)
3389			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3390		adapter->rss_indir_tbl_init = num_rx_queues;
3391	}
3392	igb_write_rss_indir_tbl(adapter);
3393
3394	/* Disable raw packet checksumming so that RSS hash is placed in
3395	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3396	 * offloads as they are enabled by default
3397	 */
3398	rxcsum = rd32(E1000_RXCSUM);
3399	rxcsum |= E1000_RXCSUM_PCSD;
3400
3401	if (adapter->hw.mac.type >= e1000_82576)
3402		/* Enable Receive Checksum Offload for SCTP */
3403		rxcsum |= E1000_RXCSUM_CRCOFL;
3404
3405	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3406	wr32(E1000_RXCSUM, rxcsum);
3407
3408	/* Generate RSS hash based on packet types, TCP/UDP
3409	 * port numbers and/or IPv4/v6 src and dst addresses
3410	 */
3411	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3412	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3413	       E1000_MRQC_RSS_FIELD_IPV6 |
3414	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3415	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3416
3417	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3418		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3419	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3420		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3421
3422	/* If VMDq is enabled then we set the appropriate mode for that, else
3423	 * we default to RSS so that an RSS hash is calculated per packet even
3424	 * if we are only using one queue
3425	 */
3426	if (adapter->vfs_allocated_count) {
3427		if (hw->mac.type > e1000_82575) {
3428			/* Set the default pool for the PF's first queue */
3429			u32 vtctl = rd32(E1000_VT_CTL);
3430
3431			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3432				   E1000_VT_CTL_DISABLE_DEF_POOL);
3433			vtctl |= adapter->vfs_allocated_count <<
3434				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3435			wr32(E1000_VT_CTL, vtctl);
3436		}
3437		if (adapter->rss_queues > 1)
3438			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3439		else
3440			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3441	} else {
3442		if (hw->mac.type != e1000_i211)
3443			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3444	}
3445	igb_vmm_control(adapter);
3446
3447	wr32(E1000_MRQC, mrqc);
3448}
3449
3450/**
3451 *  igb_setup_rctl - configure the receive control registers
3452 *  @adapter: Board private structure
3453 **/
3454void igb_setup_rctl(struct igb_adapter *adapter)
3455{
3456	struct e1000_hw *hw = &adapter->hw;
3457	u32 rctl;
3458
3459	rctl = rd32(E1000_RCTL);
3460
3461	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3462	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3463
3464	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3465		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3466
3467	/* enable stripping of CRC. It's unlikely this will break BMC
3468	 * redirection as it did with e1000. Newer features require
3469	 * that the HW strips the CRC.
3470	 */
3471	rctl |= E1000_RCTL_SECRC;
3472
3473	/* disable store bad packets and clear size bits. */
3474	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3475
3476	/* enable LPE to prevent packets larger than max_frame_size */
3477	rctl |= E1000_RCTL_LPE;
3478
3479	/* disable queue 0 to prevent tail write w/o re-config */
3480	wr32(E1000_RXDCTL(0), 0);
3481
3482	/* Attention!!!  For SR-IOV PF driver operations you must enable
3483	 * queue drop for all VF and PF queues to prevent head of line blocking
3484	 * if an un-trusted VF does not provide descriptors to hardware.
3485	 */
3486	if (adapter->vfs_allocated_count) {
3487		/* set all queue drop enable bits */
3488		wr32(E1000_QDE, ALL_QUEUES);
3489	}
3490
3491	/* This is useful for sniffing bad packets. */
3492	if (adapter->netdev->features & NETIF_F_RXALL) {
3493		/* UPE and MPE will be handled by normal PROMISC logic
3494		 * in e1000e_set_rx_mode
3495		 */
3496		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3497			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3498			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3499
3500		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3501			  E1000_RCTL_DPF | /* Allow filtered pause */
3502			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3503		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3504		 * and that breaks VLANs.
3505		 */
3506	}
3507
3508	wr32(E1000_RCTL, rctl);
3509}
3510
3511static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3512				   int vfn)
3513{
3514	struct e1000_hw *hw = &adapter->hw;
3515	u32 vmolr;
3516
3517	/* if it isn't the PF check to see if VFs are enabled and
3518	 * increase the size to support vlan tags
3519	 */
3520	if (vfn < adapter->vfs_allocated_count &&
3521	    adapter->vf_data[vfn].vlans_enabled)
3522		size += VLAN_TAG_SIZE;
3523
3524	vmolr = rd32(E1000_VMOLR(vfn));
3525	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3526	vmolr |= size | E1000_VMOLR_LPE;
3527	wr32(E1000_VMOLR(vfn), vmolr);
3528
3529	return 0;
3530}
3531
3532/**
3533 *  igb_rlpml_set - set maximum receive packet size
3534 *  @adapter: board private structure
3535 *
3536 *  Configure maximum receivable packet size.
3537 **/
3538static void igb_rlpml_set(struct igb_adapter *adapter)
3539{
3540	u32 max_frame_size = adapter->max_frame_size;
3541	struct e1000_hw *hw = &adapter->hw;
3542	u16 pf_id = adapter->vfs_allocated_count;
3543
3544	if (pf_id) {
3545		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3546		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3547		 * to our max jumbo frame size, in case we need to enable
3548		 * jumbo frames on one of the rings later.
3549		 * This will not pass over-length frames into the default
3550		 * queue because it's gated by the VMOLR.RLPML.
3551		 */
3552		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3553	}
3554
3555	wr32(E1000_RLPML, max_frame_size);
3556}
3557
3558static inline void igb_set_vmolr(struct igb_adapter *adapter,
3559				 int vfn, bool aupe)
3560{
3561	struct e1000_hw *hw = &adapter->hw;
3562	u32 vmolr;
3563
3564	/* This register exists only on 82576 and newer so if we are older then
3565	 * we should exit and do nothing
3566	 */
3567	if (hw->mac.type < e1000_82576)
3568		return;
3569
3570	vmolr = rd32(E1000_VMOLR(vfn));
3571	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3572	if (hw->mac.type == e1000_i350) {
3573		u32 dvmolr;
3574
3575		dvmolr = rd32(E1000_DVMOLR(vfn));
3576		dvmolr |= E1000_DVMOLR_STRVLAN;
3577		wr32(E1000_DVMOLR(vfn), dvmolr);
3578	}
3579	if (aupe)
3580		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3581	else
3582		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3583
3584	/* clear all bits that might not be set */
3585	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3586
3587	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3588		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3589	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3590	 * multicast packets
3591	 */
3592	if (vfn <= adapter->vfs_allocated_count)
3593		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3594
3595	wr32(E1000_VMOLR(vfn), vmolr);
3596}
3597
3598/**
3599 *  igb_configure_rx_ring - Configure a receive ring after Reset
3600 *  @adapter: board private structure
3601 *  @ring: receive ring to be configured
3602 *
3603 *  Configure the Rx unit of the MAC after a reset.
3604 **/
3605void igb_configure_rx_ring(struct igb_adapter *adapter,
3606			   struct igb_ring *ring)
3607{
3608	struct e1000_hw *hw = &adapter->hw;
3609	u64 rdba = ring->dma;
3610	int reg_idx = ring->reg_idx;
3611	u32 srrctl = 0, rxdctl = 0;
3612
3613	/* disable the queue */
3614	wr32(E1000_RXDCTL(reg_idx), 0);
3615
3616	/* Set DMA base address registers */
3617	wr32(E1000_RDBAL(reg_idx),
3618	     rdba & 0x00000000ffffffffULL);
3619	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3620	wr32(E1000_RDLEN(reg_idx),
3621	     ring->count * sizeof(union e1000_adv_rx_desc));
3622
3623	/* initialize head and tail */
3624	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3625	wr32(E1000_RDH(reg_idx), 0);
3626	writel(0, ring->tail);
3627
3628	/* set descriptor configuration */
3629	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3630	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3631	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3632	if (hw->mac.type >= e1000_82580)
3633		srrctl |= E1000_SRRCTL_TIMESTAMP;
3634	/* Only set Drop Enable if we are supporting multiple queues */
3635	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3636		srrctl |= E1000_SRRCTL_DROP_EN;
3637
3638	wr32(E1000_SRRCTL(reg_idx), srrctl);
3639
3640	/* set filtering for VMDQ pools */
3641	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3642
3643	rxdctl |= IGB_RX_PTHRESH;
3644	rxdctl |= IGB_RX_HTHRESH << 8;
3645	rxdctl |= IGB_RX_WTHRESH << 16;
3646
3647	/* enable receive descriptor fetching */
3648	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3649	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3650}
3651
3652/**
3653 *  igb_configure_rx - Configure receive Unit after Reset
3654 *  @adapter: board private structure
3655 *
3656 *  Configure the Rx unit of the MAC after a reset.
3657 **/
3658static void igb_configure_rx(struct igb_adapter *adapter)
3659{
3660	int i;
3661
3662	/* set UTA to appropriate mode */
3663	igb_set_uta(adapter);
3664
3665	/* set the correct pool for the PF default MAC address in entry 0 */
3666	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3667			 adapter->vfs_allocated_count);
3668
3669	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3670	 * the Base and Length of the Rx Descriptor Ring
3671	 */
3672	for (i = 0; i < adapter->num_rx_queues; i++)
3673		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3674}
3675
3676/**
3677 *  igb_free_tx_resources - Free Tx Resources per Queue
3678 *  @tx_ring: Tx descriptor ring for a specific queue
3679 *
3680 *  Free all transmit software resources
3681 **/
3682void igb_free_tx_resources(struct igb_ring *tx_ring)
3683{
3684	igb_clean_tx_ring(tx_ring);
3685
3686	vfree(tx_ring->tx_buffer_info);
3687	tx_ring->tx_buffer_info = NULL;
3688
3689	/* if not set, then don't free */
3690	if (!tx_ring->desc)
3691		return;
3692
3693	dma_free_coherent(tx_ring->dev, tx_ring->size,
3694			  tx_ring->desc, tx_ring->dma);
3695
3696	tx_ring->desc = NULL;
3697}
3698
3699/**
3700 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3701 *  @adapter: board private structure
3702 *
3703 *  Free all transmit software resources
3704 **/
3705static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3706{
3707	int i;
3708
3709	for (i = 0; i < adapter->num_tx_queues; i++)
3710		igb_free_tx_resources(adapter->tx_ring[i]);
3711}
3712
3713void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3714				    struct igb_tx_buffer *tx_buffer)
3715{
3716	if (tx_buffer->skb) {
3717		dev_kfree_skb_any(tx_buffer->skb);
3718		if (dma_unmap_len(tx_buffer, len))
3719			dma_unmap_single(ring->dev,
3720					 dma_unmap_addr(tx_buffer, dma),
3721					 dma_unmap_len(tx_buffer, len),
3722					 DMA_TO_DEVICE);
3723	} else if (dma_unmap_len(tx_buffer, len)) {
3724		dma_unmap_page(ring->dev,
3725			       dma_unmap_addr(tx_buffer, dma),
3726			       dma_unmap_len(tx_buffer, len),
3727			       DMA_TO_DEVICE);
3728	}
3729	tx_buffer->next_to_watch = NULL;
3730	tx_buffer->skb = NULL;
3731	dma_unmap_len_set(tx_buffer, len, 0);
3732	/* buffer_info must be completely set up in the transmit path */
3733}
3734
3735/**
3736 *  igb_clean_tx_ring - Free Tx Buffers
3737 *  @tx_ring: ring to be cleaned
3738 **/
3739static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3740{
3741	struct igb_tx_buffer *buffer_info;
3742	unsigned long size;
3743	u16 i;
3744
3745	if (!tx_ring->tx_buffer_info)
3746		return;
3747	/* Free all the Tx ring sk_buffs */
3748
3749	for (i = 0; i < tx_ring->count; i++) {
3750		buffer_info = &tx_ring->tx_buffer_info[i];
3751		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3752	}
3753
3754	netdev_tx_reset_queue(txring_txq(tx_ring));
3755
3756	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3757	memset(tx_ring->tx_buffer_info, 0, size);
3758
3759	/* Zero out the descriptor ring */
3760	memset(tx_ring->desc, 0, tx_ring->size);
3761
3762	tx_ring->next_to_use = 0;
3763	tx_ring->next_to_clean = 0;
3764}
3765
3766/**
3767 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3768 *  @adapter: board private structure
3769 **/
3770static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3771{
3772	int i;
3773
3774	for (i = 0; i < adapter->num_tx_queues; i++)
3775		igb_clean_tx_ring(adapter->tx_ring[i]);
3776}
3777
3778/**
3779 *  igb_free_rx_resources - Free Rx Resources
3780 *  @rx_ring: ring to clean the resources from
3781 *
3782 *  Free all receive software resources
3783 **/
3784void igb_free_rx_resources(struct igb_ring *rx_ring)
3785{
3786	igb_clean_rx_ring(rx_ring);
3787
3788	vfree(rx_ring->rx_buffer_info);
3789	rx_ring->rx_buffer_info = NULL;
3790
3791	/* if not set, then don't free */
3792	if (!rx_ring->desc)
3793		return;
3794
3795	dma_free_coherent(rx_ring->dev, rx_ring->size,
3796			  rx_ring->desc, rx_ring->dma);
3797
3798	rx_ring->desc = NULL;
3799}
3800
3801/**
3802 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3803 *  @adapter: board private structure
3804 *
3805 *  Free all receive software resources
3806 **/
3807static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3808{
3809	int i;
3810
3811	for (i = 0; i < adapter->num_rx_queues; i++)
3812		igb_free_rx_resources(adapter->rx_ring[i]);
3813}
3814
3815/**
3816 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3817 *  @rx_ring: ring to free buffers from
3818 **/
3819static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3820{
3821	unsigned long size;
3822	u16 i;
3823
3824	if (rx_ring->skb)
3825		dev_kfree_skb(rx_ring->skb);
3826	rx_ring->skb = NULL;
3827
3828	if (!rx_ring->rx_buffer_info)
3829		return;
3830
3831	/* Free all the Rx ring sk_buffs */
3832	for (i = 0; i < rx_ring->count; i++) {
3833		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3834
3835		if (!buffer_info->page)
3836			continue;
3837
3838		dma_unmap_page(rx_ring->dev,
3839			       buffer_info->dma,
3840			       PAGE_SIZE,
3841			       DMA_FROM_DEVICE);
3842		__free_page(buffer_info->page);
3843
3844		buffer_info->page = NULL;
3845	}
3846
3847	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3848	memset(rx_ring->rx_buffer_info, 0, size);
3849
3850	/* Zero out the descriptor ring */
3851	memset(rx_ring->desc, 0, rx_ring->size);
3852
3853	rx_ring->next_to_alloc = 0;
3854	rx_ring->next_to_clean = 0;
3855	rx_ring->next_to_use = 0;
3856}
3857
3858/**
3859 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3860 *  @adapter: board private structure
3861 **/
3862static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3863{
3864	int i;
3865
3866	for (i = 0; i < adapter->num_rx_queues; i++)
3867		igb_clean_rx_ring(adapter->rx_ring[i]);
3868}
3869
3870/**
3871 *  igb_set_mac - Change the Ethernet Address of the NIC
3872 *  @netdev: network interface device structure
3873 *  @p: pointer to an address structure
3874 *
3875 *  Returns 0 on success, negative on failure
3876 **/
3877static int igb_set_mac(struct net_device *netdev, void *p)
3878{
3879	struct igb_adapter *adapter = netdev_priv(netdev);
3880	struct e1000_hw *hw = &adapter->hw;
3881	struct sockaddr *addr = p;
3882
3883	if (!is_valid_ether_addr(addr->sa_data))
3884		return -EADDRNOTAVAIL;
3885
3886	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3887	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3888
3889	/* set the correct pool for the new PF MAC address in entry 0 */
3890	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3891			 adapter->vfs_allocated_count);
3892
3893	return 0;
3894}
3895
3896/**
3897 *  igb_write_mc_addr_list - write multicast addresses to MTA
3898 *  @netdev: network interface device structure
3899 *
3900 *  Writes multicast address list to the MTA hash table.
3901 *  Returns: -ENOMEM on failure
3902 *           0 on no addresses written
3903 *           X on writing X addresses to MTA
3904 **/
3905static int igb_write_mc_addr_list(struct net_device *netdev)
3906{
3907	struct igb_adapter *adapter = netdev_priv(netdev);
3908	struct e1000_hw *hw = &adapter->hw;
3909	struct netdev_hw_addr *ha;
3910	u8  *mta_list;
3911	int i;
3912
3913	if (netdev_mc_empty(netdev)) {
3914		/* nothing to program, so clear mc list */
3915		igb_update_mc_addr_list(hw, NULL, 0);
3916		igb_restore_vf_multicasts(adapter);
3917		return 0;
3918	}
3919
3920	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3921	if (!mta_list)
3922		return -ENOMEM;
3923
3924	/* The shared function expects a packed array of only addresses. */
3925	i = 0;
3926	netdev_for_each_mc_addr(ha, netdev)
3927		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3928
3929	igb_update_mc_addr_list(hw, mta_list, i);
3930	kfree(mta_list);
3931
3932	return netdev_mc_count(netdev);
3933}
3934
3935/**
3936 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3937 *  @netdev: network interface device structure
3938 *
3939 *  Writes unicast address list to the RAR table.
3940 *  Returns: -ENOMEM on failure/insufficient address space
3941 *           0 on no addresses written
3942 *           X on writing X addresses to the RAR table
3943 **/
3944static int igb_write_uc_addr_list(struct net_device *netdev)
3945{
3946	struct igb_adapter *adapter = netdev_priv(netdev);
3947	struct e1000_hw *hw = &adapter->hw;
3948	unsigned int vfn = adapter->vfs_allocated_count;
3949	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3950	int count = 0;
3951
3952	/* return ENOMEM indicating insufficient memory for addresses */
3953	if (netdev_uc_count(netdev) > rar_entries)
3954		return -ENOMEM;
3955
3956	if (!netdev_uc_empty(netdev) && rar_entries) {
3957		struct netdev_hw_addr *ha;
3958
3959		netdev_for_each_uc_addr(ha, netdev) {
3960			if (!rar_entries)
3961				break;
3962			igb_rar_set_qsel(adapter, ha->addr,
3963					 rar_entries--,
3964					 vfn);
3965			count++;
3966		}
3967	}
3968	/* write the addresses in reverse order to avoid write combining */
3969	for (; rar_entries > 0 ; rar_entries--) {
3970		wr32(E1000_RAH(rar_entries), 0);
3971		wr32(E1000_RAL(rar_entries), 0);
3972	}
3973	wrfl();
3974
3975	return count;
3976}
3977
3978/**
3979 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3980 *  @netdev: network interface device structure
3981 *
3982 *  The set_rx_mode entry point is called whenever the unicast or multicast
3983 *  address lists or the network interface flags are updated.  This routine is
3984 *  responsible for configuring the hardware for proper unicast, multicast,
3985 *  promiscuous mode, and all-multi behavior.
3986 **/
3987static void igb_set_rx_mode(struct net_device *netdev)
3988{
3989	struct igb_adapter *adapter = netdev_priv(netdev);
3990	struct e1000_hw *hw = &adapter->hw;
3991	unsigned int vfn = adapter->vfs_allocated_count;
3992	u32 rctl, vmolr = 0;
3993	int count;
3994
3995	/* Check for Promiscuous and All Multicast modes */
3996	rctl = rd32(E1000_RCTL);
3997
3998	/* clear the effected bits */
3999	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4000
4001	if (netdev->flags & IFF_PROMISC) {
4002		/* retain VLAN HW filtering if in VT mode */
4003		if (adapter->vfs_allocated_count)
4004			rctl |= E1000_RCTL_VFE;
4005		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4006		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4007	} else {
4008		if (netdev->flags & IFF_ALLMULTI) {
4009			rctl |= E1000_RCTL_MPE;
4010			vmolr |= E1000_VMOLR_MPME;
4011		} else {
4012			/* Write addresses to the MTA, if the attempt fails
4013			 * then we should just turn on promiscuous mode so
4014			 * that we can at least receive multicast traffic
4015			 */
4016			count = igb_write_mc_addr_list(netdev);
4017			if (count < 0) {
4018				rctl |= E1000_RCTL_MPE;
4019				vmolr |= E1000_VMOLR_MPME;
4020			} else if (count) {
4021				vmolr |= E1000_VMOLR_ROMPE;
4022			}
4023		}
4024		/* Write addresses to available RAR registers, if there is not
4025		 * sufficient space to store all the addresses then enable
4026		 * unicast promiscuous mode
4027		 */
4028		count = igb_write_uc_addr_list(netdev);
4029		if (count < 0) {
4030			rctl |= E1000_RCTL_UPE;
4031			vmolr |= E1000_VMOLR_ROPE;
4032		}
4033		rctl |= E1000_RCTL_VFE;
4034	}
4035	wr32(E1000_RCTL, rctl);
4036
4037	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4038	 * the VMOLR to enable the appropriate modes.  Without this workaround
4039	 * we will have issues with VLAN tag stripping not being done for frames
4040	 * that are only arriving because we are the default pool
4041	 */
4042	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4043		return;
4044
4045	vmolr |= rd32(E1000_VMOLR(vfn)) &
4046		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4047	wr32(E1000_VMOLR(vfn), vmolr);
4048	igb_restore_vf_multicasts(adapter);
4049}
4050
4051static void igb_check_wvbr(struct igb_adapter *adapter)
4052{
4053	struct e1000_hw *hw = &adapter->hw;
4054	u32 wvbr = 0;
4055
4056	switch (hw->mac.type) {
4057	case e1000_82576:
4058	case e1000_i350:
4059		if (!(wvbr = rd32(E1000_WVBR)))
4060			return;
4061		break;
4062	default:
4063		break;
4064	}
4065
4066	adapter->wvbr |= wvbr;
4067}
4068
4069#define IGB_STAGGERED_QUEUE_OFFSET 8
4070
4071static void igb_spoof_check(struct igb_adapter *adapter)
4072{
4073	int j;
4074
4075	if (!adapter->wvbr)
4076		return;
4077
4078	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4079		if (adapter->wvbr & (1 << j) ||
4080		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4081			dev_warn(&adapter->pdev->dev,
4082				"Spoof event(s) detected on VF %d\n", j);
4083			adapter->wvbr &=
4084				~((1 << j) |
4085				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4086		}
4087	}
4088}
4089
4090/* Need to wait a few seconds after link up to get diagnostic information from
4091 * the phy
4092 */
4093static void igb_update_phy_info(unsigned long data)
4094{
4095	struct igb_adapter *adapter = (struct igb_adapter *) data;
4096	igb_get_phy_info(&adapter->hw);
4097}
4098
4099/**
4100 *  igb_has_link - check shared code for link and determine up/down
4101 *  @adapter: pointer to driver private info
4102 **/
4103bool igb_has_link(struct igb_adapter *adapter)
4104{
4105	struct e1000_hw *hw = &adapter->hw;
4106	bool link_active = false;
4107
4108	/* get_link_status is set on LSC (link status) interrupt or
4109	 * rx sequence error interrupt.  get_link_status will stay
4110	 * false until the e1000_check_for_link establishes link
4111	 * for copper adapters ONLY
4112	 */
4113	switch (hw->phy.media_type) {
4114	case e1000_media_type_copper:
4115		if (!hw->mac.get_link_status)
4116			return true;
4117	case e1000_media_type_internal_serdes:
4118		hw->mac.ops.check_for_link(hw);
4119		link_active = !hw->mac.get_link_status;
4120		break;
4121	default:
4122	case e1000_media_type_unknown:
4123		break;
4124	}
4125
4126	if (((hw->mac.type == e1000_i210) ||
4127	     (hw->mac.type == e1000_i211)) &&
4128	     (hw->phy.id == I210_I_PHY_ID)) {
4129		if (!netif_carrier_ok(adapter->netdev)) {
4130			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4131		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4132			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4133			adapter->link_check_timeout = jiffies;
4134		}
4135	}
4136
4137	return link_active;
4138}
4139
4140static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4141{
4142	bool ret = false;
4143	u32 ctrl_ext, thstat;
4144
4145	/* check for thermal sensor event on i350 copper only */
4146	if (hw->mac.type == e1000_i350) {
4147		thstat = rd32(E1000_THSTAT);
4148		ctrl_ext = rd32(E1000_CTRL_EXT);
4149
4150		if ((hw->phy.media_type == e1000_media_type_copper) &&
4151		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4152			ret = !!(thstat & event);
4153	}
4154
4155	return ret;
4156}
4157
4158/**
4159 *  igb_watchdog - Timer Call-back
4160 *  @data: pointer to adapter cast into an unsigned long
4161 **/
4162static void igb_watchdog(unsigned long data)
4163{
4164	struct igb_adapter *adapter = (struct igb_adapter *)data;
4165	/* Do the rest outside of interrupt context */
4166	schedule_work(&adapter->watchdog_task);
4167}
4168
4169static void igb_watchdog_task(struct work_struct *work)
4170{
4171	struct igb_adapter *adapter = container_of(work,
4172						   struct igb_adapter,
4173						   watchdog_task);
4174	struct e1000_hw *hw = &adapter->hw;
4175	struct e1000_phy_info *phy = &hw->phy;
4176	struct net_device *netdev = adapter->netdev;
4177	u32 link;
4178	int i;
4179	u32 connsw;
4180
4181	link = igb_has_link(adapter);
4182
4183	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4184		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4185			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4186		else
4187			link = false;
4188	}
4189
4190	/* Force link down if we have fiber to swap to */
4191	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4192		if (hw->phy.media_type == e1000_media_type_copper) {
4193			connsw = rd32(E1000_CONNSW);
4194			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4195				link = 0;
4196		}
4197	}
4198	if (link) {
4199		/* Perform a reset if the media type changed. */
4200		if (hw->dev_spec._82575.media_changed) {
4201			hw->dev_spec._82575.media_changed = false;
4202			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4203			igb_reset(adapter);
4204		}
4205		/* Cancel scheduled suspend requests. */
4206		pm_runtime_resume(netdev->dev.parent);
4207
4208		if (!netif_carrier_ok(netdev)) {
4209			u32 ctrl;
4210
4211			hw->mac.ops.get_speed_and_duplex(hw,
4212							 &adapter->link_speed,
4213							 &adapter->link_duplex);
4214
4215			ctrl = rd32(E1000_CTRL);
4216			/* Links status message must follow this format */
4217			netdev_info(netdev,
4218			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4219			       netdev->name,
4220			       adapter->link_speed,
4221			       adapter->link_duplex == FULL_DUPLEX ?
4222			       "Full" : "Half",
4223			       (ctrl & E1000_CTRL_TFCE) &&
4224			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4225			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4226			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4227
4228			/* disable EEE if enabled */
4229			if ((adapter->flags & IGB_FLAG_EEE) &&
4230				(adapter->link_duplex == HALF_DUPLEX)) {
4231				dev_info(&adapter->pdev->dev,
4232				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4233				adapter->hw.dev_spec._82575.eee_disable = true;
4234				adapter->flags &= ~IGB_FLAG_EEE;
4235			}
4236
4237			/* check if SmartSpeed worked */
4238			igb_check_downshift(hw);
4239			if (phy->speed_downgraded)
4240				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4241
4242			/* check for thermal sensor event */
4243			if (igb_thermal_sensor_event(hw,
4244			    E1000_THSTAT_LINK_THROTTLE))
4245				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4246
4247			/* adjust timeout factor according to speed/duplex */
4248			adapter->tx_timeout_factor = 1;
4249			switch (adapter->link_speed) {
4250			case SPEED_10:
4251				adapter->tx_timeout_factor = 14;
4252				break;
4253			case SPEED_100:
4254				/* maybe add some timeout factor ? */
4255				break;
4256			}
4257
4258			netif_carrier_on(netdev);
4259
4260			igb_ping_all_vfs(adapter);
4261			igb_check_vf_rate_limit(adapter);
4262
4263			/* link state has changed, schedule phy info update */
4264			if (!test_bit(__IGB_DOWN, &adapter->state))
4265				mod_timer(&adapter->phy_info_timer,
4266					  round_jiffies(jiffies + 2 * HZ));
4267		}
4268	} else {
4269		if (netif_carrier_ok(netdev)) {
4270			adapter->link_speed = 0;
4271			adapter->link_duplex = 0;
4272
4273			/* check for thermal sensor event */
4274			if (igb_thermal_sensor_event(hw,
4275			    E1000_THSTAT_PWR_DOWN)) {
4276				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4277			}
4278
4279			/* Links status message must follow this format */
4280			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4281			       netdev->name);
4282			netif_carrier_off(netdev);
4283
4284			igb_ping_all_vfs(adapter);
4285
4286			/* link state has changed, schedule phy info update */
4287			if (!test_bit(__IGB_DOWN, &adapter->state))
4288				mod_timer(&adapter->phy_info_timer,
4289					  round_jiffies(jiffies + 2 * HZ));
4290
4291			/* link is down, time to check for alternate media */
4292			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4293				igb_check_swap_media(adapter);
4294				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4295					schedule_work(&adapter->reset_task);
4296					/* return immediately */
4297					return;
4298				}
4299			}
4300			pm_schedule_suspend(netdev->dev.parent,
4301					    MSEC_PER_SEC * 5);
4302
4303		/* also check for alternate media here */
4304		} else if (!netif_carrier_ok(netdev) &&
4305			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4306			igb_check_swap_media(adapter);
4307			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4308				schedule_work(&adapter->reset_task);
4309				/* return immediately */
4310				return;
4311			}
4312		}
4313	}
4314
4315	spin_lock(&adapter->stats64_lock);
4316	igb_update_stats(adapter, &adapter->stats64);
4317	spin_unlock(&adapter->stats64_lock);
4318
4319	for (i = 0; i < adapter->num_tx_queues; i++) {
4320		struct igb_ring *tx_ring = adapter->tx_ring[i];
4321		if (!netif_carrier_ok(netdev)) {
4322			/* We've lost link, so the controller stops DMA,
4323			 * but we've got queued Tx work that's never going
4324			 * to get done, so reset controller to flush Tx.
4325			 * (Do the reset outside of interrupt context).
4326			 */
4327			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4328				adapter->tx_timeout_count++;
4329				schedule_work(&adapter->reset_task);
4330				/* return immediately since reset is imminent */
4331				return;
4332			}
4333		}
4334
4335		/* Force detection of hung controller every watchdog period */
4336		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4337	}
4338
4339	/* Cause software interrupt to ensure Rx ring is cleaned */
4340	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4341		u32 eics = 0;
4342
4343		for (i = 0; i < adapter->num_q_vectors; i++)
4344			eics |= adapter->q_vector[i]->eims_value;
4345		wr32(E1000_EICS, eics);
4346	} else {
4347		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4348	}
4349
4350	igb_spoof_check(adapter);
4351	igb_ptp_rx_hang(adapter);
4352
4353	/* Reset the timer */
4354	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4355		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4356			mod_timer(&adapter->watchdog_timer,
4357				  round_jiffies(jiffies +  HZ));
4358		else
4359			mod_timer(&adapter->watchdog_timer,
4360				  round_jiffies(jiffies + 2 * HZ));
4361	}
4362}
4363
4364enum latency_range {
4365	lowest_latency = 0,
4366	low_latency = 1,
4367	bulk_latency = 2,
4368	latency_invalid = 255
4369};
4370
4371/**
4372 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4373 *  @q_vector: pointer to q_vector
4374 *
4375 *  Stores a new ITR value based on strictly on packet size.  This
4376 *  algorithm is less sophisticated than that used in igb_update_itr,
4377 *  due to the difficulty of synchronizing statistics across multiple
4378 *  receive rings.  The divisors and thresholds used by this function
4379 *  were determined based on theoretical maximum wire speed and testing
4380 *  data, in order to minimize response time while increasing bulk
4381 *  throughput.
4382 *  This functionality is controlled by ethtool's coalescing settings.
4383 *  NOTE:  This function is called only when operating in a multiqueue
4384 *         receive environment.
4385 **/
4386static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4387{
4388	int new_val = q_vector->itr_val;
4389	int avg_wire_size = 0;
4390	struct igb_adapter *adapter = q_vector->adapter;
4391	unsigned int packets;
4392
4393	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4394	 * ints/sec - ITR timer value of 120 ticks.
4395	 */
4396	if (adapter->link_speed != SPEED_1000) {
4397		new_val = IGB_4K_ITR;
4398		goto set_itr_val;
4399	}
4400
4401	packets = q_vector->rx.total_packets;
4402	if (packets)
4403		avg_wire_size = q_vector->rx.total_bytes / packets;
4404
4405	packets = q_vector->tx.total_packets;
4406	if (packets)
4407		avg_wire_size = max_t(u32, avg_wire_size,
4408				      q_vector->tx.total_bytes / packets);
4409
4410	/* if avg_wire_size isn't set no work was done */
4411	if (!avg_wire_size)
4412		goto clear_counts;
4413
4414	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4415	avg_wire_size += 24;
4416
4417	/* Don't starve jumbo frames */
4418	avg_wire_size = min(avg_wire_size, 3000);
4419
4420	/* Give a little boost to mid-size frames */
4421	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4422		new_val = avg_wire_size / 3;
4423	else
4424		new_val = avg_wire_size / 2;
4425
4426	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4427	if (new_val < IGB_20K_ITR &&
4428	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4429	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4430		new_val = IGB_20K_ITR;
4431
4432set_itr_val:
4433	if (new_val != q_vector->itr_val) {
4434		q_vector->itr_val = new_val;
4435		q_vector->set_itr = 1;
4436	}
4437clear_counts:
4438	q_vector->rx.total_bytes = 0;
4439	q_vector->rx.total_packets = 0;
4440	q_vector->tx.total_bytes = 0;
4441	q_vector->tx.total_packets = 0;
4442}
4443
4444/**
4445 *  igb_update_itr - update the dynamic ITR value based on statistics
4446 *  @q_vector: pointer to q_vector
4447 *  @ring_container: ring info to update the itr for
4448 *
4449 *  Stores a new ITR value based on packets and byte
4450 *  counts during the last interrupt.  The advantage of per interrupt
4451 *  computation is faster updates and more accurate ITR for the current
4452 *  traffic pattern.  Constants in this function were computed
4453 *  based on theoretical maximum wire speed and thresholds were set based
4454 *  on testing data as well as attempting to minimize response time
4455 *  while increasing bulk throughput.
4456 *  This functionality is controlled by ethtool's coalescing settings.
4457 *  NOTE:  These calculations are only valid when operating in a single-
4458 *         queue environment.
4459 **/
4460static void igb_update_itr(struct igb_q_vector *q_vector,
4461			   struct igb_ring_container *ring_container)
4462{
4463	unsigned int packets = ring_container->total_packets;
4464	unsigned int bytes = ring_container->total_bytes;
4465	u8 itrval = ring_container->itr;
4466
4467	/* no packets, exit with status unchanged */
4468	if (packets == 0)
4469		return;
4470
4471	switch (itrval) {
4472	case lowest_latency:
4473		/* handle TSO and jumbo frames */
4474		if (bytes/packets > 8000)
4475			itrval = bulk_latency;
4476		else if ((packets < 5) && (bytes > 512))
4477			itrval = low_latency;
4478		break;
4479	case low_latency:  /* 50 usec aka 20000 ints/s */
4480		if (bytes > 10000) {
4481			/* this if handles the TSO accounting */
4482			if (bytes/packets > 8000)
4483				itrval = bulk_latency;
4484			else if ((packets < 10) || ((bytes/packets) > 1200))
4485				itrval = bulk_latency;
4486			else if ((packets > 35))
4487				itrval = lowest_latency;
4488		} else if (bytes/packets > 2000) {
4489			itrval = bulk_latency;
4490		} else if (packets <= 2 && bytes < 512) {
4491			itrval = lowest_latency;
4492		}
4493		break;
4494	case bulk_latency: /* 250 usec aka 4000 ints/s */
4495		if (bytes > 25000) {
4496			if (packets > 35)
4497				itrval = low_latency;
4498		} else if (bytes < 1500) {
4499			itrval = low_latency;
4500		}
4501		break;
4502	}
4503
4504	/* clear work counters since we have the values we need */
4505	ring_container->total_bytes = 0;
4506	ring_container->total_packets = 0;
4507
4508	/* write updated itr to ring container */
4509	ring_container->itr = itrval;
4510}
4511
4512static void igb_set_itr(struct igb_q_vector *q_vector)
4513{
4514	struct igb_adapter *adapter = q_vector->adapter;
4515	u32 new_itr = q_vector->itr_val;
4516	u8 current_itr = 0;
4517
4518	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4519	if (adapter->link_speed != SPEED_1000) {
4520		current_itr = 0;
4521		new_itr = IGB_4K_ITR;
4522		goto set_itr_now;
4523	}
4524
4525	igb_update_itr(q_vector, &q_vector->tx);
4526	igb_update_itr(q_vector, &q_vector->rx);
4527
4528	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4529
4530	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4531	if (current_itr == lowest_latency &&
4532	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4533	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4534		current_itr = low_latency;
4535
4536	switch (current_itr) {
4537	/* counts and packets in update_itr are dependent on these numbers */
4538	case lowest_latency:
4539		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4540		break;
4541	case low_latency:
4542		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4543		break;
4544	case bulk_latency:
4545		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4546		break;
4547	default:
4548		break;
4549	}
4550
4551set_itr_now:
4552	if (new_itr != q_vector->itr_val) {
4553		/* this attempts to bias the interrupt rate towards Bulk
4554		 * by adding intermediate steps when interrupt rate is
4555		 * increasing
4556		 */
4557		new_itr = new_itr > q_vector->itr_val ?
4558			  max((new_itr * q_vector->itr_val) /
4559			  (new_itr + (q_vector->itr_val >> 2)),
4560			  new_itr) : new_itr;
4561		/* Don't write the value here; it resets the adapter's
4562		 * internal timer, and causes us to delay far longer than
4563		 * we should between interrupts.  Instead, we write the ITR
4564		 * value at the beginning of the next interrupt so the timing
4565		 * ends up being correct.
4566		 */
4567		q_vector->itr_val = new_itr;
4568		q_vector->set_itr = 1;
4569	}
4570}
4571
4572static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4573			    u32 type_tucmd, u32 mss_l4len_idx)
4574{
4575	struct e1000_adv_tx_context_desc *context_desc;
4576	u16 i = tx_ring->next_to_use;
4577
4578	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4579
4580	i++;
4581	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4582
4583	/* set bits to identify this as an advanced context descriptor */
4584	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4585
4586	/* For 82575, context index must be unique per ring. */
4587	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4588		mss_l4len_idx |= tx_ring->reg_idx << 4;
4589
4590	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4591	context_desc->seqnum_seed	= 0;
4592	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4593	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4594}
4595
4596static int igb_tso(struct igb_ring *tx_ring,
4597		   struct igb_tx_buffer *first,
4598		   u8 *hdr_len)
4599{
4600	struct sk_buff *skb = first->skb;
4601	u32 vlan_macip_lens, type_tucmd;
4602	u32 mss_l4len_idx, l4len;
4603	int err;
4604
4605	if (skb->ip_summed != CHECKSUM_PARTIAL)
4606		return 0;
4607
4608	if (!skb_is_gso(skb))
4609		return 0;
4610
4611	err = skb_cow_head(skb, 0);
4612	if (err < 0)
4613		return err;
4614
4615	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4616	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4617
4618	if (first->protocol == htons(ETH_P_IP)) {
4619		struct iphdr *iph = ip_hdr(skb);
4620		iph->tot_len = 0;
4621		iph->check = 0;
4622		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4623							 iph->daddr, 0,
4624							 IPPROTO_TCP,
4625							 0);
4626		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4627		first->tx_flags |= IGB_TX_FLAGS_TSO |
4628				   IGB_TX_FLAGS_CSUM |
4629				   IGB_TX_FLAGS_IPV4;
4630	} else if (skb_is_gso_v6(skb)) {
4631		ipv6_hdr(skb)->payload_len = 0;
4632		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4633						       &ipv6_hdr(skb)->daddr,
4634						       0, IPPROTO_TCP, 0);
4635		first->tx_flags |= IGB_TX_FLAGS_TSO |
4636				   IGB_TX_FLAGS_CSUM;
4637	}
4638
4639	/* compute header lengths */
4640	l4len = tcp_hdrlen(skb);
4641	*hdr_len = skb_transport_offset(skb) + l4len;
4642
4643	/* update gso size and bytecount with header size */
4644	first->gso_segs = skb_shinfo(skb)->gso_segs;
4645	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4646
4647	/* MSS L4LEN IDX */
4648	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4649	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4650
4651	/* VLAN MACLEN IPLEN */
4652	vlan_macip_lens = skb_network_header_len(skb);
4653	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4654	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4655
4656	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4657
4658	return 1;
4659}
4660
4661static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4662{
4663	struct sk_buff *skb = first->skb;
4664	u32 vlan_macip_lens = 0;
4665	u32 mss_l4len_idx = 0;
4666	u32 type_tucmd = 0;
4667
4668	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4669		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4670			return;
4671	} else {
4672		u8 l4_hdr = 0;
4673
4674		switch (first->protocol) {
4675		case htons(ETH_P_IP):
4676			vlan_macip_lens |= skb_network_header_len(skb);
4677			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4678			l4_hdr = ip_hdr(skb)->protocol;
4679			break;
4680		case htons(ETH_P_IPV6):
4681			vlan_macip_lens |= skb_network_header_len(skb);
4682			l4_hdr = ipv6_hdr(skb)->nexthdr;
4683			break;
4684		default:
4685			if (unlikely(net_ratelimit())) {
4686				dev_warn(tx_ring->dev,
4687					 "partial checksum but proto=%x!\n",
4688					 first->protocol);
4689			}
4690			break;
4691		}
4692
4693		switch (l4_hdr) {
4694		case IPPROTO_TCP:
4695			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4696			mss_l4len_idx = tcp_hdrlen(skb) <<
4697					E1000_ADVTXD_L4LEN_SHIFT;
4698			break;
4699		case IPPROTO_SCTP:
4700			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4701			mss_l4len_idx = sizeof(struct sctphdr) <<
4702					E1000_ADVTXD_L4LEN_SHIFT;
4703			break;
4704		case IPPROTO_UDP:
4705			mss_l4len_idx = sizeof(struct udphdr) <<
4706					E1000_ADVTXD_L4LEN_SHIFT;
4707			break;
4708		default:
4709			if (unlikely(net_ratelimit())) {
4710				dev_warn(tx_ring->dev,
4711					 "partial checksum but l4 proto=%x!\n",
4712					 l4_hdr);
4713			}
4714			break;
4715		}
4716
4717		/* update TX checksum flag */
4718		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4719	}
4720
4721	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4722	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4723
4724	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4725}
4726
4727#define IGB_SET_FLAG(_input, _flag, _result) \
4728	((_flag <= _result) ? \
4729	 ((u32)(_input & _flag) * (_result / _flag)) : \
4730	 ((u32)(_input & _flag) / (_flag / _result)))
4731
4732static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4733{
4734	/* set type for advanced descriptor with frame checksum insertion */
4735	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4736		       E1000_ADVTXD_DCMD_DEXT |
4737		       E1000_ADVTXD_DCMD_IFCS;
4738
4739	/* set HW vlan bit if vlan is present */
4740	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4741				 (E1000_ADVTXD_DCMD_VLE));
4742
4743	/* set segmentation bits for TSO */
4744	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4745				 (E1000_ADVTXD_DCMD_TSE));
4746
4747	/* set timestamp bit if present */
4748	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4749				 (E1000_ADVTXD_MAC_TSTAMP));
4750
4751	/* insert frame checksum */
4752	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4753
4754	return cmd_type;
4755}
4756
4757static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4758				 union e1000_adv_tx_desc *tx_desc,
4759				 u32 tx_flags, unsigned int paylen)
4760{
4761	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4762
4763	/* 82575 requires a unique index per ring */
4764	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4765		olinfo_status |= tx_ring->reg_idx << 4;
4766
4767	/* insert L4 checksum */
4768	olinfo_status |= IGB_SET_FLAG(tx_flags,
4769				      IGB_TX_FLAGS_CSUM,
4770				      (E1000_TXD_POPTS_TXSM << 8));
4771
4772	/* insert IPv4 checksum */
4773	olinfo_status |= IGB_SET_FLAG(tx_flags,
4774				      IGB_TX_FLAGS_IPV4,
4775				      (E1000_TXD_POPTS_IXSM << 8));
4776
4777	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4778}
4779
4780static void igb_tx_map(struct igb_ring *tx_ring,
4781		       struct igb_tx_buffer *first,
4782		       const u8 hdr_len)
4783{
4784	struct sk_buff *skb = first->skb;
4785	struct igb_tx_buffer *tx_buffer;
4786	union e1000_adv_tx_desc *tx_desc;
4787	struct skb_frag_struct *frag;
4788	dma_addr_t dma;
4789	unsigned int data_len, size;
4790	u32 tx_flags = first->tx_flags;
4791	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4792	u16 i = tx_ring->next_to_use;
4793
4794	tx_desc = IGB_TX_DESC(tx_ring, i);
4795
4796	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4797
4798	size = skb_headlen(skb);
4799	data_len = skb->data_len;
4800
4801	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4802
4803	tx_buffer = first;
4804
4805	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4806		if (dma_mapping_error(tx_ring->dev, dma))
4807			goto dma_error;
4808
4809		/* record length, and DMA address */
4810		dma_unmap_len_set(tx_buffer, len, size);
4811		dma_unmap_addr_set(tx_buffer, dma, dma);
4812
4813		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4814
4815		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4816			tx_desc->read.cmd_type_len =
4817				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4818
4819			i++;
4820			tx_desc++;
4821			if (i == tx_ring->count) {
4822				tx_desc = IGB_TX_DESC(tx_ring, 0);
4823				i = 0;
4824			}
4825			tx_desc->read.olinfo_status = 0;
4826
4827			dma += IGB_MAX_DATA_PER_TXD;
4828			size -= IGB_MAX_DATA_PER_TXD;
4829
4830			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4831		}
4832
4833		if (likely(!data_len))
4834			break;
4835
4836		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4837
4838		i++;
4839		tx_desc++;
4840		if (i == tx_ring->count) {
4841			tx_desc = IGB_TX_DESC(tx_ring, 0);
4842			i = 0;
4843		}
4844		tx_desc->read.olinfo_status = 0;
4845
4846		size = skb_frag_size(frag);
4847		data_len -= size;
4848
4849		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4850				       size, DMA_TO_DEVICE);
4851
4852		tx_buffer = &tx_ring->tx_buffer_info[i];
4853	}
4854
4855	/* write last descriptor with RS and EOP bits */
4856	cmd_type |= size | IGB_TXD_DCMD;
4857	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4858
4859	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4860
4861	/* set the timestamp */
4862	first->time_stamp = jiffies;
4863
4864	/* Force memory writes to complete before letting h/w know there
4865	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4866	 * memory model archs, such as IA-64).
4867	 *
4868	 * We also need this memory barrier to make certain all of the
4869	 * status bits have been updated before next_to_watch is written.
4870	 */
4871	wmb();
4872
4873	/* set next_to_watch value indicating a packet is present */
4874	first->next_to_watch = tx_desc;
4875
4876	i++;
4877	if (i == tx_ring->count)
4878		i = 0;
4879
4880	tx_ring->next_to_use = i;
4881
4882	writel(i, tx_ring->tail);
4883
4884	/* we need this if more than one processor can write to our tail
4885	 * at a time, it synchronizes IO on IA64/Altix systems
4886	 */
4887	mmiowb();
4888
4889	return;
4890
4891dma_error:
4892	dev_err(tx_ring->dev, "TX DMA map failed\n");
4893
4894	/* clear dma mappings for failed tx_buffer_info map */
4895	for (;;) {
4896		tx_buffer = &tx_ring->tx_buffer_info[i];
4897		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4898		if (tx_buffer == first)
4899			break;
4900		if (i == 0)
4901			i = tx_ring->count;
4902		i--;
4903	}
4904
4905	tx_ring->next_to_use = i;
4906}
4907
4908static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4909{
4910	struct net_device *netdev = tx_ring->netdev;
4911
4912	netif_stop_subqueue(netdev, tx_ring->queue_index);
4913
4914	/* Herbert's original patch had:
4915	 *  smp_mb__after_netif_stop_queue();
4916	 * but since that doesn't exist yet, just open code it.
4917	 */
4918	smp_mb();
4919
4920	/* We need to check again in a case another CPU has just
4921	 * made room available.
4922	 */
4923	if (igb_desc_unused(tx_ring) < size)
4924		return -EBUSY;
4925
4926	/* A reprieve! */
4927	netif_wake_subqueue(netdev, tx_ring->queue_index);
4928
4929	u64_stats_update_begin(&tx_ring->tx_syncp2);
4930	tx_ring->tx_stats.restart_queue2++;
4931	u64_stats_update_end(&tx_ring->tx_syncp2);
4932
4933	return 0;
4934}
4935
4936static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4937{
4938	if (igb_desc_unused(tx_ring) >= size)
4939		return 0;
4940	return __igb_maybe_stop_tx(tx_ring, size);
4941}
4942
4943netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4944				struct igb_ring *tx_ring)
4945{
4946	struct igb_tx_buffer *first;
4947	int tso;
4948	u32 tx_flags = 0;
4949	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4950	__be16 protocol = vlan_get_protocol(skb);
4951	u8 hdr_len = 0;
4952
4953	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4954	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4955	 *       + 2 desc gap to keep tail from touching head,
4956	 *       + 1 desc for context descriptor,
4957	 * otherwise try next time
4958	 */
4959	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4960		unsigned short f;
4961
4962		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4963			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4964	} else {
4965		count += skb_shinfo(skb)->nr_frags;
4966	}
4967
4968	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4969		/* this is a hard error */
4970		return NETDEV_TX_BUSY;
4971	}
4972
4973	/* record the location of the first descriptor for this packet */
4974	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4975	first->skb = skb;
4976	first->bytecount = skb->len;
4977	first->gso_segs = 1;
4978
4979	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4980		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4981
4982		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4983					   &adapter->state)) {
4984			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4985			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4986
4987			adapter->ptp_tx_skb = skb_get(skb);
4988			adapter->ptp_tx_start = jiffies;
4989			if (adapter->hw.mac.type == e1000_82576)
4990				schedule_work(&adapter->ptp_tx_work);
4991		}
4992	}
4993
4994	skb_tx_timestamp(skb);
4995
4996	if (vlan_tx_tag_present(skb)) {
4997		tx_flags |= IGB_TX_FLAGS_VLAN;
4998		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4999	}
5000
5001	/* record initial flags and protocol */
5002	first->tx_flags = tx_flags;
5003	first->protocol = protocol;
5004
5005	tso = igb_tso(tx_ring, first, &hdr_len);
5006	if (tso < 0)
5007		goto out_drop;
5008	else if (!tso)
5009		igb_tx_csum(tx_ring, first);
5010
5011	igb_tx_map(tx_ring, first, hdr_len);
5012
5013	/* Make sure there is space in the ring for the next send. */
5014	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5015
5016	return NETDEV_TX_OK;
5017
5018out_drop:
5019	igb_unmap_and_free_tx_resource(tx_ring, first);
5020
5021	return NETDEV_TX_OK;
5022}
5023
5024static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5025						    struct sk_buff *skb)
5026{
5027	unsigned int r_idx = skb->queue_mapping;
5028
5029	if (r_idx >= adapter->num_tx_queues)
5030		r_idx = r_idx % adapter->num_tx_queues;
5031
5032	return adapter->tx_ring[r_idx];
5033}
5034
5035static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5036				  struct net_device *netdev)
5037{
5038	struct igb_adapter *adapter = netdev_priv(netdev);
5039
5040	if (test_bit(__IGB_DOWN, &adapter->state)) {
5041		dev_kfree_skb_any(skb);
5042		return NETDEV_TX_OK;
5043	}
5044
5045	if (skb->len <= 0) {
5046		dev_kfree_skb_any(skb);
5047		return NETDEV_TX_OK;
5048	}
5049
5050	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5051	 * in order to meet this minimum size requirement.
5052	 */
5053	if (unlikely(skb->len < 17)) {
5054		if (skb_pad(skb, 17 - skb->len))
5055			return NETDEV_TX_OK;
5056		skb->len = 17;
5057		skb_set_tail_pointer(skb, 17);
5058	}
5059
5060	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5061}
5062
5063/**
5064 *  igb_tx_timeout - Respond to a Tx Hang
5065 *  @netdev: network interface device structure
5066 **/
5067static void igb_tx_timeout(struct net_device *netdev)
5068{
5069	struct igb_adapter *adapter = netdev_priv(netdev);
5070	struct e1000_hw *hw = &adapter->hw;
5071
5072	/* Do the reset outside of interrupt context */
5073	adapter->tx_timeout_count++;
5074
5075	if (hw->mac.type >= e1000_82580)
5076		hw->dev_spec._82575.global_device_reset = true;
5077
5078	schedule_work(&adapter->reset_task);
5079	wr32(E1000_EICS,
5080	     (adapter->eims_enable_mask & ~adapter->eims_other));
5081}
5082
5083static void igb_reset_task(struct work_struct *work)
5084{
5085	struct igb_adapter *adapter;
5086	adapter = container_of(work, struct igb_adapter, reset_task);
5087
5088	igb_dump(adapter);
5089	netdev_err(adapter->netdev, "Reset adapter\n");
5090	igb_reinit_locked(adapter);
5091}
5092
5093/**
5094 *  igb_get_stats64 - Get System Network Statistics
5095 *  @netdev: network interface device structure
5096 *  @stats: rtnl_link_stats64 pointer
5097 **/
5098static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5099						struct rtnl_link_stats64 *stats)
5100{
5101	struct igb_adapter *adapter = netdev_priv(netdev);
5102
5103	spin_lock(&adapter->stats64_lock);
5104	igb_update_stats(adapter, &adapter->stats64);
5105	memcpy(stats, &adapter->stats64, sizeof(*stats));
5106	spin_unlock(&adapter->stats64_lock);
5107
5108	return stats;
5109}
5110
5111/**
5112 *  igb_change_mtu - Change the Maximum Transfer Unit
5113 *  @netdev: network interface device structure
5114 *  @new_mtu: new value for maximum frame size
5115 *
5116 *  Returns 0 on success, negative on failure
5117 **/
5118static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5119{
5120	struct igb_adapter *adapter = netdev_priv(netdev);
5121	struct pci_dev *pdev = adapter->pdev;
5122	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5123
5124	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5125		dev_err(&pdev->dev, "Invalid MTU setting\n");
5126		return -EINVAL;
5127	}
5128
5129#define MAX_STD_JUMBO_FRAME_SIZE 9238
5130	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5131		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5132		return -EINVAL;
5133	}
5134
5135	/* adjust max frame to be at least the size of a standard frame */
5136	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5137		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5138
5139	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5140		msleep(1);
5141
5142	/* igb_down has a dependency on max_frame_size */
5143	adapter->max_frame_size = max_frame;
5144
5145	if (netif_running(netdev))
5146		igb_down(adapter);
5147
5148	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5149		 netdev->mtu, new_mtu);
5150	netdev->mtu = new_mtu;
5151
5152	if (netif_running(netdev))
5153		igb_up(adapter);
5154	else
5155		igb_reset(adapter);
5156
5157	clear_bit(__IGB_RESETTING, &adapter->state);
5158
5159	return 0;
5160}
5161
5162/**
5163 *  igb_update_stats - Update the board statistics counters
5164 *  @adapter: board private structure
5165 **/
5166void igb_update_stats(struct igb_adapter *adapter,
5167		      struct rtnl_link_stats64 *net_stats)
5168{
5169	struct e1000_hw *hw = &adapter->hw;
5170	struct pci_dev *pdev = adapter->pdev;
5171	u32 reg, mpc;
5172	u16 phy_tmp;
5173	int i;
5174	u64 bytes, packets;
5175	unsigned int start;
5176	u64 _bytes, _packets;
5177
5178#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5179
5180	/* Prevent stats update while adapter is being reset, or if the pci
5181	 * connection is down.
5182	 */
5183	if (adapter->link_speed == 0)
5184		return;
5185	if (pci_channel_offline(pdev))
5186		return;
5187
5188	bytes = 0;
5189	packets = 0;
5190
5191	rcu_read_lock();
5192	for (i = 0; i < adapter->num_rx_queues; i++) {
5193		struct igb_ring *ring = adapter->rx_ring[i];
5194		u32 rqdpc = rd32(E1000_RQDPC(i));
5195		if (hw->mac.type >= e1000_i210)
5196			wr32(E1000_RQDPC(i), 0);
5197
5198		if (rqdpc) {
5199			ring->rx_stats.drops += rqdpc;
5200			net_stats->rx_fifo_errors += rqdpc;
5201		}
5202
5203		do {
5204			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5205			_bytes = ring->rx_stats.bytes;
5206			_packets = ring->rx_stats.packets;
5207		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5208		bytes += _bytes;
5209		packets += _packets;
5210	}
5211
5212	net_stats->rx_bytes = bytes;
5213	net_stats->rx_packets = packets;
5214
5215	bytes = 0;
5216	packets = 0;
5217	for (i = 0; i < adapter->num_tx_queues; i++) {
5218		struct igb_ring *ring = adapter->tx_ring[i];
5219		do {
5220			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5221			_bytes = ring->tx_stats.bytes;
5222			_packets = ring->tx_stats.packets;
5223		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5224		bytes += _bytes;
5225		packets += _packets;
5226	}
5227	net_stats->tx_bytes = bytes;
5228	net_stats->tx_packets = packets;
5229	rcu_read_unlock();
5230
5231	/* read stats registers */
5232	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5233	adapter->stats.gprc += rd32(E1000_GPRC);
5234	adapter->stats.gorc += rd32(E1000_GORCL);
5235	rd32(E1000_GORCH); /* clear GORCL */
5236	adapter->stats.bprc += rd32(E1000_BPRC);
5237	adapter->stats.mprc += rd32(E1000_MPRC);
5238	adapter->stats.roc += rd32(E1000_ROC);
5239
5240	adapter->stats.prc64 += rd32(E1000_PRC64);
5241	adapter->stats.prc127 += rd32(E1000_PRC127);
5242	adapter->stats.prc255 += rd32(E1000_PRC255);
5243	adapter->stats.prc511 += rd32(E1000_PRC511);
5244	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5245	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5246	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5247	adapter->stats.sec += rd32(E1000_SEC);
5248
5249	mpc = rd32(E1000_MPC);
5250	adapter->stats.mpc += mpc;
5251	net_stats->rx_fifo_errors += mpc;
5252	adapter->stats.scc += rd32(E1000_SCC);
5253	adapter->stats.ecol += rd32(E1000_ECOL);
5254	adapter->stats.mcc += rd32(E1000_MCC);
5255	adapter->stats.latecol += rd32(E1000_LATECOL);
5256	adapter->stats.dc += rd32(E1000_DC);
5257	adapter->stats.rlec += rd32(E1000_RLEC);
5258	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5259	adapter->stats.xontxc += rd32(E1000_XONTXC);
5260	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5261	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5262	adapter->stats.fcruc += rd32(E1000_FCRUC);
5263	adapter->stats.gptc += rd32(E1000_GPTC);
5264	adapter->stats.gotc += rd32(E1000_GOTCL);
5265	rd32(E1000_GOTCH); /* clear GOTCL */
5266	adapter->stats.rnbc += rd32(E1000_RNBC);
5267	adapter->stats.ruc += rd32(E1000_RUC);
5268	adapter->stats.rfc += rd32(E1000_RFC);
5269	adapter->stats.rjc += rd32(E1000_RJC);
5270	adapter->stats.tor += rd32(E1000_TORH);
5271	adapter->stats.tot += rd32(E1000_TOTH);
5272	adapter->stats.tpr += rd32(E1000_TPR);
5273
5274	adapter->stats.ptc64 += rd32(E1000_PTC64);
5275	adapter->stats.ptc127 += rd32(E1000_PTC127);
5276	adapter->stats.ptc255 += rd32(E1000_PTC255);
5277	adapter->stats.ptc511 += rd32(E1000_PTC511);
5278	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5279	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5280
5281	adapter->stats.mptc += rd32(E1000_MPTC);
5282	adapter->stats.bptc += rd32(E1000_BPTC);
5283
5284	adapter->stats.tpt += rd32(E1000_TPT);
5285	adapter->stats.colc += rd32(E1000_COLC);
5286
5287	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5288	/* read internal phy specific stats */
5289	reg = rd32(E1000_CTRL_EXT);
5290	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5291		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5292
5293		/* this stat has invalid values on i210/i211 */
5294		if ((hw->mac.type != e1000_i210) &&
5295		    (hw->mac.type != e1000_i211))
5296			adapter->stats.tncrs += rd32(E1000_TNCRS);
5297	}
5298
5299	adapter->stats.tsctc += rd32(E1000_TSCTC);
5300	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5301
5302	adapter->stats.iac += rd32(E1000_IAC);
5303	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5304	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5305	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5306	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5307	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5308	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5309	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5310	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5311
5312	/* Fill out the OS statistics structure */
5313	net_stats->multicast = adapter->stats.mprc;
5314	net_stats->collisions = adapter->stats.colc;
5315
5316	/* Rx Errors */
5317
5318	/* RLEC on some newer hardware can be incorrect so build
5319	 * our own version based on RUC and ROC
5320	 */
5321	net_stats->rx_errors = adapter->stats.rxerrc +
5322		adapter->stats.crcerrs + adapter->stats.algnerrc +
5323		adapter->stats.ruc + adapter->stats.roc +
5324		adapter->stats.cexterr;
5325	net_stats->rx_length_errors = adapter->stats.ruc +
5326				      adapter->stats.roc;
5327	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5328	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5329	net_stats->rx_missed_errors = adapter->stats.mpc;
5330
5331	/* Tx Errors */
5332	net_stats->tx_errors = adapter->stats.ecol +
5333			       adapter->stats.latecol;
5334	net_stats->tx_aborted_errors = adapter->stats.ecol;
5335	net_stats->tx_window_errors = adapter->stats.latecol;
5336	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5337
5338	/* Tx Dropped needs to be maintained elsewhere */
5339
5340	/* Phy Stats */
5341	if (hw->phy.media_type == e1000_media_type_copper) {
5342		if ((adapter->link_speed == SPEED_1000) &&
5343		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5344			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5345			adapter->phy_stats.idle_errors += phy_tmp;
5346		}
5347	}
5348
5349	/* Management Stats */
5350	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5351	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5352	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5353
5354	/* OS2BMC Stats */
5355	reg = rd32(E1000_MANC);
5356	if (reg & E1000_MANC_EN_BMC2OS) {
5357		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5358		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5359		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5360		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5361	}
5362}
5363
5364static irqreturn_t igb_msix_other(int irq, void *data)
5365{
5366	struct igb_adapter *adapter = data;
5367	struct e1000_hw *hw = &adapter->hw;
5368	u32 icr = rd32(E1000_ICR);
5369	/* reading ICR causes bit 31 of EICR to be cleared */
5370
5371	if (icr & E1000_ICR_DRSTA)
5372		schedule_work(&adapter->reset_task);
5373
5374	if (icr & E1000_ICR_DOUTSYNC) {
5375		/* HW is reporting DMA is out of sync */
5376		adapter->stats.doosync++;
5377		/* The DMA Out of Sync is also indication of a spoof event
5378		 * in IOV mode. Check the Wrong VM Behavior register to
5379		 * see if it is really a spoof event.
5380		 */
5381		igb_check_wvbr(adapter);
5382	}
5383
5384	/* Check for a mailbox event */
5385	if (icr & E1000_ICR_VMMB)
5386		igb_msg_task(adapter);
5387
5388	if (icr & E1000_ICR_LSC) {
5389		hw->mac.get_link_status = 1;
5390		/* guard against interrupt when we're going down */
5391		if (!test_bit(__IGB_DOWN, &adapter->state))
5392			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5393	}
5394
5395	if (icr & E1000_ICR_TS) {
5396		u32 tsicr = rd32(E1000_TSICR);
5397
5398		if (tsicr & E1000_TSICR_TXTS) {
5399			/* acknowledge the interrupt */
5400			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5401			/* retrieve hardware timestamp */
5402			schedule_work(&adapter->ptp_tx_work);
5403		}
5404	}
5405
5406	wr32(E1000_EIMS, adapter->eims_other);
5407
5408	return IRQ_HANDLED;
5409}
5410
5411static void igb_write_itr(struct igb_q_vector *q_vector)
5412{
5413	struct igb_adapter *adapter = q_vector->adapter;
5414	u32 itr_val = q_vector->itr_val & 0x7FFC;
5415
5416	if (!q_vector->set_itr)
5417		return;
5418
5419	if (!itr_val)
5420		itr_val = 0x4;
5421
5422	if (adapter->hw.mac.type == e1000_82575)
5423		itr_val |= itr_val << 16;
5424	else
5425		itr_val |= E1000_EITR_CNT_IGNR;
5426
5427	writel(itr_val, q_vector->itr_register);
5428	q_vector->set_itr = 0;
5429}
5430
5431static irqreturn_t igb_msix_ring(int irq, void *data)
5432{
5433	struct igb_q_vector *q_vector = data;
5434
5435	/* Write the ITR value calculated from the previous interrupt. */
5436	igb_write_itr(q_vector);
5437
5438	napi_schedule(&q_vector->napi);
5439
5440	return IRQ_HANDLED;
5441}
5442
5443#ifdef CONFIG_IGB_DCA
5444static void igb_update_tx_dca(struct igb_adapter *adapter,
5445			      struct igb_ring *tx_ring,
5446			      int cpu)
5447{
5448	struct e1000_hw *hw = &adapter->hw;
5449	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5450
5451	if (hw->mac.type != e1000_82575)
5452		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5453
5454	/* We can enable relaxed ordering for reads, but not writes when
5455	 * DCA is enabled.  This is due to a known issue in some chipsets
5456	 * which will cause the DCA tag to be cleared.
5457	 */
5458	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5459		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5460		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5461
5462	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5463}
5464
5465static void igb_update_rx_dca(struct igb_adapter *adapter,
5466			      struct igb_ring *rx_ring,
5467			      int cpu)
5468{
5469	struct e1000_hw *hw = &adapter->hw;
5470	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5471
5472	if (hw->mac.type != e1000_82575)
5473		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5474
5475	/* We can enable relaxed ordering for reads, but not writes when
5476	 * DCA is enabled.  This is due to a known issue in some chipsets
5477	 * which will cause the DCA tag to be cleared.
5478	 */
5479	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5480		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5481
5482	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5483}
5484
5485static void igb_update_dca(struct igb_q_vector *q_vector)
5486{
5487	struct igb_adapter *adapter = q_vector->adapter;
5488	int cpu = get_cpu();
5489
5490	if (q_vector->cpu == cpu)
5491		goto out_no_update;
5492
5493	if (q_vector->tx.ring)
5494		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5495
5496	if (q_vector->rx.ring)
5497		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5498
5499	q_vector->cpu = cpu;
5500out_no_update:
5501	put_cpu();
5502}
5503
5504static void igb_setup_dca(struct igb_adapter *adapter)
5505{
5506	struct e1000_hw *hw = &adapter->hw;
5507	int i;
5508
5509	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5510		return;
5511
5512	/* Always use CB2 mode, difference is masked in the CB driver. */
5513	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5514
5515	for (i = 0; i < adapter->num_q_vectors; i++) {
5516		adapter->q_vector[i]->cpu = -1;
5517		igb_update_dca(adapter->q_vector[i]);
5518	}
5519}
5520
5521static int __igb_notify_dca(struct device *dev, void *data)
5522{
5523	struct net_device *netdev = dev_get_drvdata(dev);
5524	struct igb_adapter *adapter = netdev_priv(netdev);
5525	struct pci_dev *pdev = adapter->pdev;
5526	struct e1000_hw *hw = &adapter->hw;
5527	unsigned long event = *(unsigned long *)data;
5528
5529	switch (event) {
5530	case DCA_PROVIDER_ADD:
5531		/* if already enabled, don't do it again */
5532		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5533			break;
5534		if (dca_add_requester(dev) == 0) {
5535			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5536			dev_info(&pdev->dev, "DCA enabled\n");
5537			igb_setup_dca(adapter);
5538			break;
5539		}
5540		/* Fall Through since DCA is disabled. */
5541	case DCA_PROVIDER_REMOVE:
5542		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5543			/* without this a class_device is left
5544			 * hanging around in the sysfs model
5545			 */
5546			dca_remove_requester(dev);
5547			dev_info(&pdev->dev, "DCA disabled\n");
5548			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5549			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5550		}
5551		break;
5552	}
5553
5554	return 0;
5555}
5556
5557static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5558			  void *p)
5559{
5560	int ret_val;
5561
5562	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5563					 __igb_notify_dca);
5564
5565	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5566}
5567#endif /* CONFIG_IGB_DCA */
5568
5569#ifdef CONFIG_PCI_IOV
5570static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5571{
5572	unsigned char mac_addr[ETH_ALEN];
5573
5574	eth_zero_addr(mac_addr);
5575	igb_set_vf_mac(adapter, vf, mac_addr);
5576
5577	/* By default spoof check is enabled for all VFs */
5578	adapter->vf_data[vf].spoofchk_enabled = true;
5579
5580	return 0;
5581}
5582
5583#endif
5584static void igb_ping_all_vfs(struct igb_adapter *adapter)
5585{
5586	struct e1000_hw *hw = &adapter->hw;
5587	u32 ping;
5588	int i;
5589
5590	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5591		ping = E1000_PF_CONTROL_MSG;
5592		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5593			ping |= E1000_VT_MSGTYPE_CTS;
5594		igb_write_mbx(hw, &ping, 1, i);
5595	}
5596}
5597
5598static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5599{
5600	struct e1000_hw *hw = &adapter->hw;
5601	u32 vmolr = rd32(E1000_VMOLR(vf));
5602	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5603
5604	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5605			    IGB_VF_FLAG_MULTI_PROMISC);
5606	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5607
5608	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5609		vmolr |= E1000_VMOLR_MPME;
5610		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5611		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5612	} else {
5613		/* if we have hashes and we are clearing a multicast promisc
5614		 * flag we need to write the hashes to the MTA as this step
5615		 * was previously skipped
5616		 */
5617		if (vf_data->num_vf_mc_hashes > 30) {
5618			vmolr |= E1000_VMOLR_MPME;
5619		} else if (vf_data->num_vf_mc_hashes) {
5620			int j;
5621
5622			vmolr |= E1000_VMOLR_ROMPE;
5623			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5624				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5625		}
5626	}
5627
5628	wr32(E1000_VMOLR(vf), vmolr);
5629
5630	/* there are flags left unprocessed, likely not supported */
5631	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5632		return -EINVAL;
5633
5634	return 0;
5635}
5636
5637static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5638				  u32 *msgbuf, u32 vf)
5639{
5640	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5641	u16 *hash_list = (u16 *)&msgbuf[1];
5642	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5643	int i;
5644
5645	/* salt away the number of multicast addresses assigned
5646	 * to this VF for later use to restore when the PF multi cast
5647	 * list changes
5648	 */
5649	vf_data->num_vf_mc_hashes = n;
5650
5651	/* only up to 30 hash values supported */
5652	if (n > 30)
5653		n = 30;
5654
5655	/* store the hashes for later use */
5656	for (i = 0; i < n; i++)
5657		vf_data->vf_mc_hashes[i] = hash_list[i];
5658
5659	/* Flush and reset the mta with the new values */
5660	igb_set_rx_mode(adapter->netdev);
5661
5662	return 0;
5663}
5664
5665static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5666{
5667	struct e1000_hw *hw = &adapter->hw;
5668	struct vf_data_storage *vf_data;
5669	int i, j;
5670
5671	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5672		u32 vmolr = rd32(E1000_VMOLR(i));
5673
5674		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5675
5676		vf_data = &adapter->vf_data[i];
5677
5678		if ((vf_data->num_vf_mc_hashes > 30) ||
5679		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5680			vmolr |= E1000_VMOLR_MPME;
5681		} else if (vf_data->num_vf_mc_hashes) {
5682			vmolr |= E1000_VMOLR_ROMPE;
5683			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5684				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5685		}
5686		wr32(E1000_VMOLR(i), vmolr);
5687	}
5688}
5689
5690static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5691{
5692	struct e1000_hw *hw = &adapter->hw;
5693	u32 pool_mask, reg, vid;
5694	int i;
5695
5696	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5697
5698	/* Find the vlan filter for this id */
5699	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5700		reg = rd32(E1000_VLVF(i));
5701
5702		/* remove the vf from the pool */
5703		reg &= ~pool_mask;
5704
5705		/* if pool is empty then remove entry from vfta */
5706		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5707		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5708			reg = 0;
5709			vid = reg & E1000_VLVF_VLANID_MASK;
5710			igb_vfta_set(hw, vid, false);
5711		}
5712
5713		wr32(E1000_VLVF(i), reg);
5714	}
5715
5716	adapter->vf_data[vf].vlans_enabled = 0;
5717}
5718
5719static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5720{
5721	struct e1000_hw *hw = &adapter->hw;
5722	u32 reg, i;
5723
5724	/* The vlvf table only exists on 82576 hardware and newer */
5725	if (hw->mac.type < e1000_82576)
5726		return -1;
5727
5728	/* we only need to do this if VMDq is enabled */
5729	if (!adapter->vfs_allocated_count)
5730		return -1;
5731
5732	/* Find the vlan filter for this id */
5733	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5734		reg = rd32(E1000_VLVF(i));
5735		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5736		    vid == (reg & E1000_VLVF_VLANID_MASK))
5737			break;
5738	}
5739
5740	if (add) {
5741		if (i == E1000_VLVF_ARRAY_SIZE) {
5742			/* Did not find a matching VLAN ID entry that was
5743			 * enabled.  Search for a free filter entry, i.e.
5744			 * one without the enable bit set
5745			 */
5746			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5747				reg = rd32(E1000_VLVF(i));
5748				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5749					break;
5750			}
5751		}
5752		if (i < E1000_VLVF_ARRAY_SIZE) {
5753			/* Found an enabled/available entry */
5754			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5755
5756			/* if !enabled we need to set this up in vfta */
5757			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5758				/* add VID to filter table */
5759				igb_vfta_set(hw, vid, true);
5760				reg |= E1000_VLVF_VLANID_ENABLE;
5761			}
5762			reg &= ~E1000_VLVF_VLANID_MASK;
5763			reg |= vid;
5764			wr32(E1000_VLVF(i), reg);
5765
5766			/* do not modify RLPML for PF devices */
5767			if (vf >= adapter->vfs_allocated_count)
5768				return 0;
5769
5770			if (!adapter->vf_data[vf].vlans_enabled) {
5771				u32 size;
5772
5773				reg = rd32(E1000_VMOLR(vf));
5774				size = reg & E1000_VMOLR_RLPML_MASK;
5775				size += 4;
5776				reg &= ~E1000_VMOLR_RLPML_MASK;
5777				reg |= size;
5778				wr32(E1000_VMOLR(vf), reg);
5779			}
5780
5781			adapter->vf_data[vf].vlans_enabled++;
5782		}
5783	} else {
5784		if (i < E1000_VLVF_ARRAY_SIZE) {
5785			/* remove vf from the pool */
5786			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5787			/* if pool is empty then remove entry from vfta */
5788			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5789				reg = 0;
5790				igb_vfta_set(hw, vid, false);
5791			}
5792			wr32(E1000_VLVF(i), reg);
5793
5794			/* do not modify RLPML for PF devices */
5795			if (vf >= adapter->vfs_allocated_count)
5796				return 0;
5797
5798			adapter->vf_data[vf].vlans_enabled--;
5799			if (!adapter->vf_data[vf].vlans_enabled) {
5800				u32 size;
5801
5802				reg = rd32(E1000_VMOLR(vf));
5803				size = reg & E1000_VMOLR_RLPML_MASK;
5804				size -= 4;
5805				reg &= ~E1000_VMOLR_RLPML_MASK;
5806				reg |= size;
5807				wr32(E1000_VMOLR(vf), reg);
5808			}
5809		}
5810	}
5811	return 0;
5812}
5813
5814static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5815{
5816	struct e1000_hw *hw = &adapter->hw;
5817
5818	if (vid)
5819		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5820	else
5821		wr32(E1000_VMVIR(vf), 0);
5822}
5823
5824static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5825			       int vf, u16 vlan, u8 qos)
5826{
5827	int err = 0;
5828	struct igb_adapter *adapter = netdev_priv(netdev);
5829
5830	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5831		return -EINVAL;
5832	if (vlan || qos) {
5833		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5834		if (err)
5835			goto out;
5836		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5837		igb_set_vmolr(adapter, vf, !vlan);
5838		adapter->vf_data[vf].pf_vlan = vlan;
5839		adapter->vf_data[vf].pf_qos = qos;
5840		dev_info(&adapter->pdev->dev,
5841			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5842		if (test_bit(__IGB_DOWN, &adapter->state)) {
5843			dev_warn(&adapter->pdev->dev,
5844				 "The VF VLAN has been set, but the PF device is not up.\n");
5845			dev_warn(&adapter->pdev->dev,
5846				 "Bring the PF device up before attempting to use the VF device.\n");
5847		}
5848	} else {
5849		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5850			     false, vf);
5851		igb_set_vmvir(adapter, vlan, vf);
5852		igb_set_vmolr(adapter, vf, true);
5853		adapter->vf_data[vf].pf_vlan = 0;
5854		adapter->vf_data[vf].pf_qos = 0;
5855	}
5856out:
5857	return err;
5858}
5859
5860static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5861{
5862	struct e1000_hw *hw = &adapter->hw;
5863	int i;
5864	u32 reg;
5865
5866	/* Find the vlan filter for this id */
5867	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5868		reg = rd32(E1000_VLVF(i));
5869		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5870		    vid == (reg & E1000_VLVF_VLANID_MASK))
5871			break;
5872	}
5873
5874	if (i >= E1000_VLVF_ARRAY_SIZE)
5875		i = -1;
5876
5877	return i;
5878}
5879
5880static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5881{
5882	struct e1000_hw *hw = &adapter->hw;
5883	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5884	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5885	int err = 0;
5886
5887	/* If in promiscuous mode we need to make sure the PF also has
5888	 * the VLAN filter set.
5889	 */
5890	if (add && (adapter->netdev->flags & IFF_PROMISC))
5891		err = igb_vlvf_set(adapter, vid, add,
5892				   adapter->vfs_allocated_count);
5893	if (err)
5894		goto out;
5895
5896	err = igb_vlvf_set(adapter, vid, add, vf);
5897
5898	if (err)
5899		goto out;
5900
5901	/* Go through all the checks to see if the VLAN filter should
5902	 * be wiped completely.
5903	 */
5904	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5905		u32 vlvf, bits;
5906		int regndx = igb_find_vlvf_entry(adapter, vid);
5907
5908		if (regndx < 0)
5909			goto out;
5910		/* See if any other pools are set for this VLAN filter
5911		 * entry other than the PF.
5912		 */
5913		vlvf = bits = rd32(E1000_VLVF(regndx));
5914		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5915			      adapter->vfs_allocated_count);
5916		/* If the filter was removed then ensure PF pool bit
5917		 * is cleared if the PF only added itself to the pool
5918		 * because the PF is in promiscuous mode.
5919		 */
5920		if ((vlvf & VLAN_VID_MASK) == vid &&
5921		    !test_bit(vid, adapter->active_vlans) &&
5922		    !bits)
5923			igb_vlvf_set(adapter, vid, add,
5924				     adapter->vfs_allocated_count);
5925	}
5926
5927out:
5928	return err;
5929}
5930
5931static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5932{
5933	/* clear flags - except flag that indicates PF has set the MAC */
5934	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5935	adapter->vf_data[vf].last_nack = jiffies;
5936
5937	/* reset offloads to defaults */
5938	igb_set_vmolr(adapter, vf, true);
5939
5940	/* reset vlans for device */
5941	igb_clear_vf_vfta(adapter, vf);
5942	if (adapter->vf_data[vf].pf_vlan)
5943		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5944				    adapter->vf_data[vf].pf_vlan,
5945				    adapter->vf_data[vf].pf_qos);
5946	else
5947		igb_clear_vf_vfta(adapter, vf);
5948
5949	/* reset multicast table array for vf */
5950	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5951
5952	/* Flush and reset the mta with the new values */
5953	igb_set_rx_mode(adapter->netdev);
5954}
5955
5956static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5957{
5958	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5959
5960	/* clear mac address as we were hotplug removed/added */
5961	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5962		eth_zero_addr(vf_mac);
5963
5964	/* process remaining reset events */
5965	igb_vf_reset(adapter, vf);
5966}
5967
5968static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5969{
5970	struct e1000_hw *hw = &adapter->hw;
5971	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5972	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5973	u32 reg, msgbuf[3];
5974	u8 *addr = (u8 *)(&msgbuf[1]);
5975
5976	/* process all the same items cleared in a function level reset */
5977	igb_vf_reset(adapter, vf);
5978
5979	/* set vf mac address */
5980	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5981
5982	/* enable transmit and receive for vf */
5983	reg = rd32(E1000_VFTE);
5984	wr32(E1000_VFTE, reg | (1 << vf));
5985	reg = rd32(E1000_VFRE);
5986	wr32(E1000_VFRE, reg | (1 << vf));
5987
5988	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5989
5990	/* reply to reset with ack and vf mac address */
5991	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5992	memcpy(addr, vf_mac, ETH_ALEN);
5993	igb_write_mbx(hw, msgbuf, 3, vf);
5994}
5995
5996static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5997{
5998	/* The VF MAC Address is stored in a packed array of bytes
5999	 * starting at the second 32 bit word of the msg array
6000	 */
6001	unsigned char *addr = (char *)&msg[1];
6002	int err = -1;
6003
6004	if (is_valid_ether_addr(addr))
6005		err = igb_set_vf_mac(adapter, vf, addr);
6006
6007	return err;
6008}
6009
6010static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6011{
6012	struct e1000_hw *hw = &adapter->hw;
6013	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6014	u32 msg = E1000_VT_MSGTYPE_NACK;
6015
6016	/* if device isn't clear to send it shouldn't be reading either */
6017	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6018	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6019		igb_write_mbx(hw, &msg, 1, vf);
6020		vf_data->last_nack = jiffies;
6021	}
6022}
6023
6024static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6025{
6026	struct pci_dev *pdev = adapter->pdev;
6027	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6028	struct e1000_hw *hw = &adapter->hw;
6029	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6030	s32 retval;
6031
6032	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6033
6034	if (retval) {
6035		/* if receive failed revoke VF CTS stats and restart init */
6036		dev_err(&pdev->dev, "Error receiving message from VF\n");
6037		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6038		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6039			return;
6040		goto out;
6041	}
6042
6043	/* this is a message we already processed, do nothing */
6044	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6045		return;
6046
6047	/* until the vf completes a reset it should not be
6048	 * allowed to start any configuration.
6049	 */
6050	if (msgbuf[0] == E1000_VF_RESET) {
6051		igb_vf_reset_msg(adapter, vf);
6052		return;
6053	}
6054
6055	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6056		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6057			return;
6058		retval = -1;
6059		goto out;
6060	}
6061
6062	switch ((msgbuf[0] & 0xFFFF)) {
6063	case E1000_VF_SET_MAC_ADDR:
6064		retval = -EINVAL;
6065		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6066			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6067		else
6068			dev_warn(&pdev->dev,
6069				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6070				 vf);
6071		break;
6072	case E1000_VF_SET_PROMISC:
6073		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6074		break;
6075	case E1000_VF_SET_MULTICAST:
6076		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6077		break;
6078	case E1000_VF_SET_LPE:
6079		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6080		break;
6081	case E1000_VF_SET_VLAN:
6082		retval = -1;
6083		if (vf_data->pf_vlan)
6084			dev_warn(&pdev->dev,
6085				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6086				 vf);
6087		else
6088			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6089		break;
6090	default:
6091		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6092		retval = -1;
6093		break;
6094	}
6095
6096	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6097out:
6098	/* notify the VF of the results of what it sent us */
6099	if (retval)
6100		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6101	else
6102		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6103
6104	igb_write_mbx(hw, msgbuf, 1, vf);
6105}
6106
6107static void igb_msg_task(struct igb_adapter *adapter)
6108{
6109	struct e1000_hw *hw = &adapter->hw;
6110	u32 vf;
6111
6112	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6113		/* process any reset requests */
6114		if (!igb_check_for_rst(hw, vf))
6115			igb_vf_reset_event(adapter, vf);
6116
6117		/* process any messages pending */
6118		if (!igb_check_for_msg(hw, vf))
6119			igb_rcv_msg_from_vf(adapter, vf);
6120
6121		/* process any acks */
6122		if (!igb_check_for_ack(hw, vf))
6123			igb_rcv_ack_from_vf(adapter, vf);
6124	}
6125}
6126
6127/**
6128 *  igb_set_uta - Set unicast filter table address
6129 *  @adapter: board private structure
6130 *
6131 *  The unicast table address is a register array of 32-bit registers.
6132 *  The table is meant to be used in a way similar to how the MTA is used
6133 *  however due to certain limitations in the hardware it is necessary to
6134 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6135 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6136 **/
6137static void igb_set_uta(struct igb_adapter *adapter)
6138{
6139	struct e1000_hw *hw = &adapter->hw;
6140	int i;
6141
6142	/* The UTA table only exists on 82576 hardware and newer */
6143	if (hw->mac.type < e1000_82576)
6144		return;
6145
6146	/* we only need to do this if VMDq is enabled */
6147	if (!adapter->vfs_allocated_count)
6148		return;
6149
6150	for (i = 0; i < hw->mac.uta_reg_count; i++)
6151		array_wr32(E1000_UTA, i, ~0);
6152}
6153
6154/**
6155 *  igb_intr_msi - Interrupt Handler
6156 *  @irq: interrupt number
6157 *  @data: pointer to a network interface device structure
6158 **/
6159static irqreturn_t igb_intr_msi(int irq, void *data)
6160{
6161	struct igb_adapter *adapter = data;
6162	struct igb_q_vector *q_vector = adapter->q_vector[0];
6163	struct e1000_hw *hw = &adapter->hw;
6164	/* read ICR disables interrupts using IAM */
6165	u32 icr = rd32(E1000_ICR);
6166
6167	igb_write_itr(q_vector);
6168
6169	if (icr & E1000_ICR_DRSTA)
6170		schedule_work(&adapter->reset_task);
6171
6172	if (icr & E1000_ICR_DOUTSYNC) {
6173		/* HW is reporting DMA is out of sync */
6174		adapter->stats.doosync++;
6175	}
6176
6177	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6178		hw->mac.get_link_status = 1;
6179		if (!test_bit(__IGB_DOWN, &adapter->state))
6180			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6181	}
6182
6183	if (icr & E1000_ICR_TS) {
6184		u32 tsicr = rd32(E1000_TSICR);
6185
6186		if (tsicr & E1000_TSICR_TXTS) {
6187			/* acknowledge the interrupt */
6188			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6189			/* retrieve hardware timestamp */
6190			schedule_work(&adapter->ptp_tx_work);
6191		}
6192	}
6193
6194	napi_schedule(&q_vector->napi);
6195
6196	return IRQ_HANDLED;
6197}
6198
6199/**
6200 *  igb_intr - Legacy Interrupt Handler
6201 *  @irq: interrupt number
6202 *  @data: pointer to a network interface device structure
6203 **/
6204static irqreturn_t igb_intr(int irq, void *data)
6205{
6206	struct igb_adapter *adapter = data;
6207	struct igb_q_vector *q_vector = adapter->q_vector[0];
6208	struct e1000_hw *hw = &adapter->hw;
6209	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6210	 * need for the IMC write
6211	 */
6212	u32 icr = rd32(E1000_ICR);
6213
6214	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6215	 * not set, then the adapter didn't send an interrupt
6216	 */
6217	if (!(icr & E1000_ICR_INT_ASSERTED))
6218		return IRQ_NONE;
6219
6220	igb_write_itr(q_vector);
6221
6222	if (icr & E1000_ICR_DRSTA)
6223		schedule_work(&adapter->reset_task);
6224
6225	if (icr & E1000_ICR_DOUTSYNC) {
6226		/* HW is reporting DMA is out of sync */
6227		adapter->stats.doosync++;
6228	}
6229
6230	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6231		hw->mac.get_link_status = 1;
6232		/* guard against interrupt when we're going down */
6233		if (!test_bit(__IGB_DOWN, &adapter->state))
6234			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6235	}
6236
6237	if (icr & E1000_ICR_TS) {
6238		u32 tsicr = rd32(E1000_TSICR);
6239
6240		if (tsicr & E1000_TSICR_TXTS) {
6241			/* acknowledge the interrupt */
6242			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6243			/* retrieve hardware timestamp */
6244			schedule_work(&adapter->ptp_tx_work);
6245		}
6246	}
6247
6248	napi_schedule(&q_vector->napi);
6249
6250	return IRQ_HANDLED;
6251}
6252
6253static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6254{
6255	struct igb_adapter *adapter = q_vector->adapter;
6256	struct e1000_hw *hw = &adapter->hw;
6257
6258	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6259	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6260		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6261			igb_set_itr(q_vector);
6262		else
6263			igb_update_ring_itr(q_vector);
6264	}
6265
6266	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6267		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6268			wr32(E1000_EIMS, q_vector->eims_value);
6269		else
6270			igb_irq_enable(adapter);
6271	}
6272}
6273
6274/**
6275 *  igb_poll - NAPI Rx polling callback
6276 *  @napi: napi polling structure
6277 *  @budget: count of how many packets we should handle
6278 **/
6279static int igb_poll(struct napi_struct *napi, int budget)
6280{
6281	struct igb_q_vector *q_vector = container_of(napi,
6282						     struct igb_q_vector,
6283						     napi);
6284	bool clean_complete = true;
6285
6286#ifdef CONFIG_IGB_DCA
6287	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6288		igb_update_dca(q_vector);
6289#endif
6290	if (q_vector->tx.ring)
6291		clean_complete = igb_clean_tx_irq(q_vector);
6292
6293	if (q_vector->rx.ring)
6294		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6295
6296	/* If all work not completed, return budget and keep polling */
6297	if (!clean_complete)
6298		return budget;
6299
6300	/* If not enough Rx work done, exit the polling mode */
6301	napi_complete(napi);
6302	igb_ring_irq_enable(q_vector);
6303
6304	return 0;
6305}
6306
6307/**
6308 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6309 *  @q_vector: pointer to q_vector containing needed info
6310 *
6311 *  returns true if ring is completely cleaned
6312 **/
6313static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6314{
6315	struct igb_adapter *adapter = q_vector->adapter;
6316	struct igb_ring *tx_ring = q_vector->tx.ring;
6317	struct igb_tx_buffer *tx_buffer;
6318	union e1000_adv_tx_desc *tx_desc;
6319	unsigned int total_bytes = 0, total_packets = 0;
6320	unsigned int budget = q_vector->tx.work_limit;
6321	unsigned int i = tx_ring->next_to_clean;
6322
6323	if (test_bit(__IGB_DOWN, &adapter->state))
6324		return true;
6325
6326	tx_buffer = &tx_ring->tx_buffer_info[i];
6327	tx_desc = IGB_TX_DESC(tx_ring, i);
6328	i -= tx_ring->count;
6329
6330	do {
6331		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6332
6333		/* if next_to_watch is not set then there is no work pending */
6334		if (!eop_desc)
6335			break;
6336
6337		/* prevent any other reads prior to eop_desc */
6338		read_barrier_depends();
6339
6340		/* if DD is not set pending work has not been completed */
6341		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6342			break;
6343
6344		/* clear next_to_watch to prevent false hangs */
6345		tx_buffer->next_to_watch = NULL;
6346
6347		/* update the statistics for this packet */
6348		total_bytes += tx_buffer->bytecount;
6349		total_packets += tx_buffer->gso_segs;
6350
6351		/* free the skb */
6352		dev_kfree_skb_any(tx_buffer->skb);
6353
6354		/* unmap skb header data */
6355		dma_unmap_single(tx_ring->dev,
6356				 dma_unmap_addr(tx_buffer, dma),
6357				 dma_unmap_len(tx_buffer, len),
6358				 DMA_TO_DEVICE);
6359
6360		/* clear tx_buffer data */
6361		tx_buffer->skb = NULL;
6362		dma_unmap_len_set(tx_buffer, len, 0);
6363
6364		/* clear last DMA location and unmap remaining buffers */
6365		while (tx_desc != eop_desc) {
6366			tx_buffer++;
6367			tx_desc++;
6368			i++;
6369			if (unlikely(!i)) {
6370				i -= tx_ring->count;
6371				tx_buffer = tx_ring->tx_buffer_info;
6372				tx_desc = IGB_TX_DESC(tx_ring, 0);
6373			}
6374
6375			/* unmap any remaining paged data */
6376			if (dma_unmap_len(tx_buffer, len)) {
6377				dma_unmap_page(tx_ring->dev,
6378					       dma_unmap_addr(tx_buffer, dma),
6379					       dma_unmap_len(tx_buffer, len),
6380					       DMA_TO_DEVICE);
6381				dma_unmap_len_set(tx_buffer, len, 0);
6382			}
6383		}
6384
6385		/* move us one more past the eop_desc for start of next pkt */
6386		tx_buffer++;
6387		tx_desc++;
6388		i++;
6389		if (unlikely(!i)) {
6390			i -= tx_ring->count;
6391			tx_buffer = tx_ring->tx_buffer_info;
6392			tx_desc = IGB_TX_DESC(tx_ring, 0);
6393		}
6394
6395		/* issue prefetch for next Tx descriptor */
6396		prefetch(tx_desc);
6397
6398		/* update budget accounting */
6399		budget--;
6400	} while (likely(budget));
6401
6402	netdev_tx_completed_queue(txring_txq(tx_ring),
6403				  total_packets, total_bytes);
6404	i += tx_ring->count;
6405	tx_ring->next_to_clean = i;
6406	u64_stats_update_begin(&tx_ring->tx_syncp);
6407	tx_ring->tx_stats.bytes += total_bytes;
6408	tx_ring->tx_stats.packets += total_packets;
6409	u64_stats_update_end(&tx_ring->tx_syncp);
6410	q_vector->tx.total_bytes += total_bytes;
6411	q_vector->tx.total_packets += total_packets;
6412
6413	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6414		struct e1000_hw *hw = &adapter->hw;
6415
6416		/* Detect a transmit hang in hardware, this serializes the
6417		 * check with the clearing of time_stamp and movement of i
6418		 */
6419		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6420		if (tx_buffer->next_to_watch &&
6421		    time_after(jiffies, tx_buffer->time_stamp +
6422			       (adapter->tx_timeout_factor * HZ)) &&
6423		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6424
6425			/* detected Tx unit hang */
6426			dev_err(tx_ring->dev,
6427				"Detected Tx Unit Hang\n"
6428				"  Tx Queue             <%d>\n"
6429				"  TDH                  <%x>\n"
6430				"  TDT                  <%x>\n"
6431				"  next_to_use          <%x>\n"
6432				"  next_to_clean        <%x>\n"
6433				"buffer_info[next_to_clean]\n"
6434				"  time_stamp           <%lx>\n"
6435				"  next_to_watch        <%p>\n"
6436				"  jiffies              <%lx>\n"
6437				"  desc.status          <%x>\n",
6438				tx_ring->queue_index,
6439				rd32(E1000_TDH(tx_ring->reg_idx)),
6440				readl(tx_ring->tail),
6441				tx_ring->next_to_use,
6442				tx_ring->next_to_clean,
6443				tx_buffer->time_stamp,
6444				tx_buffer->next_to_watch,
6445				jiffies,
6446				tx_buffer->next_to_watch->wb.status);
6447			netif_stop_subqueue(tx_ring->netdev,
6448					    tx_ring->queue_index);
6449
6450			/* we are about to reset, no point in enabling stuff */
6451			return true;
6452		}
6453	}
6454
6455#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6456	if (unlikely(total_packets &&
6457	    netif_carrier_ok(tx_ring->netdev) &&
6458	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6459		/* Make sure that anybody stopping the queue after this
6460		 * sees the new next_to_clean.
6461		 */
6462		smp_mb();
6463		if (__netif_subqueue_stopped(tx_ring->netdev,
6464					     tx_ring->queue_index) &&
6465		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6466			netif_wake_subqueue(tx_ring->netdev,
6467					    tx_ring->queue_index);
6468
6469			u64_stats_update_begin(&tx_ring->tx_syncp);
6470			tx_ring->tx_stats.restart_queue++;
6471			u64_stats_update_end(&tx_ring->tx_syncp);
6472		}
6473	}
6474
6475	return !!budget;
6476}
6477
6478/**
6479 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6480 *  @rx_ring: rx descriptor ring to store buffers on
6481 *  @old_buff: donor buffer to have page reused
6482 *
6483 *  Synchronizes page for reuse by the adapter
6484 **/
6485static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6486			      struct igb_rx_buffer *old_buff)
6487{
6488	struct igb_rx_buffer *new_buff;
6489	u16 nta = rx_ring->next_to_alloc;
6490
6491	new_buff = &rx_ring->rx_buffer_info[nta];
6492
6493	/* update, and store next to alloc */
6494	nta++;
6495	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6496
6497	/* transfer page from old buffer to new buffer */
6498	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6499
6500	/* sync the buffer for use by the device */
6501	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6502					 old_buff->page_offset,
6503					 IGB_RX_BUFSZ,
6504					 DMA_FROM_DEVICE);
6505}
6506
6507static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6508				  struct page *page,
6509				  unsigned int truesize)
6510{
6511	/* avoid re-using remote pages */
6512	if (unlikely(page_to_nid(page) != numa_node_id()))
6513		return false;
6514
6515#if (PAGE_SIZE < 8192)
6516	/* if we are only owner of page we can reuse it */
6517	if (unlikely(page_count(page) != 1))
6518		return false;
6519
6520	/* flip page offset to other buffer */
6521	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6522
6523	/* since we are the only owner of the page and we need to
6524	 * increment it, just set the value to 2 in order to avoid
6525	 * an unnecessary locked operation
6526	 */
6527	atomic_set(&page->_count, 2);
6528#else
6529	/* move offset up to the next cache line */
6530	rx_buffer->page_offset += truesize;
6531
6532	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6533		return false;
6534
6535	/* bump ref count on page before it is given to the stack */
6536	get_page(page);
6537#endif
6538
6539	return true;
6540}
6541
6542/**
6543 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6544 *  @rx_ring: rx descriptor ring to transact packets on
6545 *  @rx_buffer: buffer containing page to add
6546 *  @rx_desc: descriptor containing length of buffer written by hardware
6547 *  @skb: sk_buff to place the data into
6548 *
6549 *  This function will add the data contained in rx_buffer->page to the skb.
6550 *  This is done either through a direct copy if the data in the buffer is
6551 *  less than the skb header size, otherwise it will just attach the page as
6552 *  a frag to the skb.
6553 *
6554 *  The function will then update the page offset if necessary and return
6555 *  true if the buffer can be reused by the adapter.
6556 **/
6557static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6558			    struct igb_rx_buffer *rx_buffer,
6559			    union e1000_adv_rx_desc *rx_desc,
6560			    struct sk_buff *skb)
6561{
6562	struct page *page = rx_buffer->page;
6563	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6564#if (PAGE_SIZE < 8192)
6565	unsigned int truesize = IGB_RX_BUFSZ;
6566#else
6567	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6568#endif
6569
6570	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6571		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6572
6573		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6574			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6575			va += IGB_TS_HDR_LEN;
6576			size -= IGB_TS_HDR_LEN;
6577		}
6578
6579		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6580
6581		/* we can reuse buffer as-is, just make sure it is local */
6582		if (likely(page_to_nid(page) == numa_node_id()))
6583			return true;
6584
6585		/* this page cannot be reused so discard it */
6586		put_page(page);
6587		return false;
6588	}
6589
6590	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6591			rx_buffer->page_offset, size, truesize);
6592
6593	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6594}
6595
6596static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6597					   union e1000_adv_rx_desc *rx_desc,
6598					   struct sk_buff *skb)
6599{
6600	struct igb_rx_buffer *rx_buffer;
6601	struct page *page;
6602
6603	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6604
6605	page = rx_buffer->page;
6606	prefetchw(page);
6607
6608	if (likely(!skb)) {
6609		void *page_addr = page_address(page) +
6610				  rx_buffer->page_offset;
6611
6612		/* prefetch first cache line of first page */
6613		prefetch(page_addr);
6614#if L1_CACHE_BYTES < 128
6615		prefetch(page_addr + L1_CACHE_BYTES);
6616#endif
6617
6618		/* allocate a skb to store the frags */
6619		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6620						IGB_RX_HDR_LEN);
6621		if (unlikely(!skb)) {
6622			rx_ring->rx_stats.alloc_failed++;
6623			return NULL;
6624		}
6625
6626		/* we will be copying header into skb->data in
6627		 * pskb_may_pull so it is in our interest to prefetch
6628		 * it now to avoid a possible cache miss
6629		 */
6630		prefetchw(skb->data);
6631	}
6632
6633	/* we are reusing so sync this buffer for CPU use */
6634	dma_sync_single_range_for_cpu(rx_ring->dev,
6635				      rx_buffer->dma,
6636				      rx_buffer->page_offset,
6637				      IGB_RX_BUFSZ,
6638				      DMA_FROM_DEVICE);
6639
6640	/* pull page into skb */
6641	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6642		/* hand second half of page back to the ring */
6643		igb_reuse_rx_page(rx_ring, rx_buffer);
6644	} else {
6645		/* we are not reusing the buffer so unmap it */
6646		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6647			       PAGE_SIZE, DMA_FROM_DEVICE);
6648	}
6649
6650	/* clear contents of rx_buffer */
6651	rx_buffer->page = NULL;
6652
6653	return skb;
6654}
6655
6656static inline void igb_rx_checksum(struct igb_ring *ring,
6657				   union e1000_adv_rx_desc *rx_desc,
6658				   struct sk_buff *skb)
6659{
6660	skb_checksum_none_assert(skb);
6661
6662	/* Ignore Checksum bit is set */
6663	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6664		return;
6665
6666	/* Rx checksum disabled via ethtool */
6667	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6668		return;
6669
6670	/* TCP/UDP checksum error bit is set */
6671	if (igb_test_staterr(rx_desc,
6672			     E1000_RXDEXT_STATERR_TCPE |
6673			     E1000_RXDEXT_STATERR_IPE)) {
6674		/* work around errata with sctp packets where the TCPE aka
6675		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6676		 * packets, (aka let the stack check the crc32c)
6677		 */
6678		if (!((skb->len == 60) &&
6679		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6680			u64_stats_update_begin(&ring->rx_syncp);
6681			ring->rx_stats.csum_err++;
6682			u64_stats_update_end(&ring->rx_syncp);
6683		}
6684		/* let the stack verify checksum errors */
6685		return;
6686	}
6687	/* It must be a TCP or UDP packet with a valid checksum */
6688	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6689				      E1000_RXD_STAT_UDPCS))
6690		skb->ip_summed = CHECKSUM_UNNECESSARY;
6691
6692	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6693		le32_to_cpu(rx_desc->wb.upper.status_error));
6694}
6695
6696static inline void igb_rx_hash(struct igb_ring *ring,
6697			       union e1000_adv_rx_desc *rx_desc,
6698			       struct sk_buff *skb)
6699{
6700	if (ring->netdev->features & NETIF_F_RXHASH)
6701		skb_set_hash(skb,
6702			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6703			     PKT_HASH_TYPE_L3);
6704}
6705
6706/**
6707 *  igb_is_non_eop - process handling of non-EOP buffers
6708 *  @rx_ring: Rx ring being processed
6709 *  @rx_desc: Rx descriptor for current buffer
6710 *  @skb: current socket buffer containing buffer in progress
6711 *
6712 *  This function updates next to clean.  If the buffer is an EOP buffer
6713 *  this function exits returning false, otherwise it will place the
6714 *  sk_buff in the next buffer to be chained and return true indicating
6715 *  that this is in fact a non-EOP buffer.
6716 **/
6717static bool igb_is_non_eop(struct igb_ring *rx_ring,
6718			   union e1000_adv_rx_desc *rx_desc)
6719{
6720	u32 ntc = rx_ring->next_to_clean + 1;
6721
6722	/* fetch, update, and store next to clean */
6723	ntc = (ntc < rx_ring->count) ? ntc : 0;
6724	rx_ring->next_to_clean = ntc;
6725
6726	prefetch(IGB_RX_DESC(rx_ring, ntc));
6727
6728	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6729		return false;
6730
6731	return true;
6732}
6733
6734/**
6735 *  igb_get_headlen - determine size of header for LRO/GRO
6736 *  @data: pointer to the start of the headers
6737 *  @max_len: total length of section to find headers in
6738 *
6739 *  This function is meant to determine the length of headers that will
6740 *  be recognized by hardware for LRO, and GRO offloads.  The main
6741 *  motivation of doing this is to only perform one pull for IPv4 TCP
6742 *  packets so that we can do basic things like calculating the gso_size
6743 *  based on the average data per packet.
6744 **/
6745static unsigned int igb_get_headlen(unsigned char *data,
6746				    unsigned int max_len)
6747{
6748	union {
6749		unsigned char *network;
6750		/* l2 headers */
6751		struct ethhdr *eth;
6752		struct vlan_hdr *vlan;
6753		/* l3 headers */
6754		struct iphdr *ipv4;
6755		struct ipv6hdr *ipv6;
6756	} hdr;
6757	__be16 protocol;
6758	u8 nexthdr = 0;	/* default to not TCP */
6759	u8 hlen;
6760
6761	/* this should never happen, but better safe than sorry */
6762	if (max_len < ETH_HLEN)
6763		return max_len;
6764
6765	/* initialize network frame pointer */
6766	hdr.network = data;
6767
6768	/* set first protocol and move network header forward */
6769	protocol = hdr.eth->h_proto;
6770	hdr.network += ETH_HLEN;
6771
6772	/* handle any vlan tag if present */
6773	if (protocol == htons(ETH_P_8021Q)) {
6774		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6775			return max_len;
6776
6777		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6778		hdr.network += VLAN_HLEN;
6779	}
6780
6781	/* handle L3 protocols */
6782	if (protocol == htons(ETH_P_IP)) {
6783		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6784			return max_len;
6785
6786		/* access ihl as a u8 to avoid unaligned access on ia64 */
6787		hlen = (hdr.network[0] & 0x0F) << 2;
6788
6789		/* verify hlen meets minimum size requirements */
6790		if (hlen < sizeof(struct iphdr))
6791			return hdr.network - data;
6792
6793		/* record next protocol if header is present */
6794		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6795			nexthdr = hdr.ipv4->protocol;
6796	} else if (protocol == htons(ETH_P_IPV6)) {
6797		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6798			return max_len;
6799
6800		/* record next protocol */
6801		nexthdr = hdr.ipv6->nexthdr;
6802		hlen = sizeof(struct ipv6hdr);
6803	} else {
6804		return hdr.network - data;
6805	}
6806
6807	/* relocate pointer to start of L4 header */
6808	hdr.network += hlen;
6809
6810	/* finally sort out TCP */
6811	if (nexthdr == IPPROTO_TCP) {
6812		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6813			return max_len;
6814
6815		/* access doff as a u8 to avoid unaligned access on ia64 */
6816		hlen = (hdr.network[12] & 0xF0) >> 2;
6817
6818		/* verify hlen meets minimum size requirements */
6819		if (hlen < sizeof(struct tcphdr))
6820			return hdr.network - data;
6821
6822		hdr.network += hlen;
6823	} else if (nexthdr == IPPROTO_UDP) {
6824		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6825			return max_len;
6826
6827		hdr.network += sizeof(struct udphdr);
6828	}
6829
6830	/* If everything has gone correctly hdr.network should be the
6831	 * data section of the packet and will be the end of the header.
6832	 * If not then it probably represents the end of the last recognized
6833	 * header.
6834	 */
6835	if ((hdr.network - data) < max_len)
6836		return hdr.network - data;
6837	else
6838		return max_len;
6839}
6840
6841/**
6842 *  igb_pull_tail - igb specific version of skb_pull_tail
6843 *  @rx_ring: rx descriptor ring packet is being transacted on
6844 *  @rx_desc: pointer to the EOP Rx descriptor
6845 *  @skb: pointer to current skb being adjusted
6846 *
6847 *  This function is an igb specific version of __pskb_pull_tail.  The
6848 *  main difference between this version and the original function is that
6849 *  this function can make several assumptions about the state of things
6850 *  that allow for significant optimizations versus the standard function.
6851 *  As a result we can do things like drop a frag and maintain an accurate
6852 *  truesize for the skb.
6853 */
6854static void igb_pull_tail(struct igb_ring *rx_ring,
6855			  union e1000_adv_rx_desc *rx_desc,
6856			  struct sk_buff *skb)
6857{
6858	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6859	unsigned char *va;
6860	unsigned int pull_len;
6861
6862	/* it is valid to use page_address instead of kmap since we are
6863	 * working with pages allocated out of the lomem pool per
6864	 * alloc_page(GFP_ATOMIC)
6865	 */
6866	va = skb_frag_address(frag);
6867
6868	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6869		/* retrieve timestamp from buffer */
6870		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6871
6872		/* update pointers to remove timestamp header */
6873		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6874		frag->page_offset += IGB_TS_HDR_LEN;
6875		skb->data_len -= IGB_TS_HDR_LEN;
6876		skb->len -= IGB_TS_HDR_LEN;
6877
6878		/* move va to start of packet data */
6879		va += IGB_TS_HDR_LEN;
6880	}
6881
6882	/* we need the header to contain the greater of either ETH_HLEN or
6883	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6884	 */
6885	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6886
6887	/* align pull length to size of long to optimize memcpy performance */
6888	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6889
6890	/* update all of the pointers */
6891	skb_frag_size_sub(frag, pull_len);
6892	frag->page_offset += pull_len;
6893	skb->data_len -= pull_len;
6894	skb->tail += pull_len;
6895}
6896
6897/**
6898 *  igb_cleanup_headers - Correct corrupted or empty headers
6899 *  @rx_ring: rx descriptor ring packet is being transacted on
6900 *  @rx_desc: pointer to the EOP Rx descriptor
6901 *  @skb: pointer to current skb being fixed
6902 *
6903 *  Address the case where we are pulling data in on pages only
6904 *  and as such no data is present in the skb header.
6905 *
6906 *  In addition if skb is not at least 60 bytes we need to pad it so that
6907 *  it is large enough to qualify as a valid Ethernet frame.
6908 *
6909 *  Returns true if an error was encountered and skb was freed.
6910 **/
6911static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6912				union e1000_adv_rx_desc *rx_desc,
6913				struct sk_buff *skb)
6914{
6915	if (unlikely((igb_test_staterr(rx_desc,
6916				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6917		struct net_device *netdev = rx_ring->netdev;
6918		if (!(netdev->features & NETIF_F_RXALL)) {
6919			dev_kfree_skb_any(skb);
6920			return true;
6921		}
6922	}
6923
6924	/* place header in linear portion of buffer */
6925	if (skb_is_nonlinear(skb))
6926		igb_pull_tail(rx_ring, rx_desc, skb);
6927
6928	/* if skb_pad returns an error the skb was freed */
6929	if (unlikely(skb->len < 60)) {
6930		int pad_len = 60 - skb->len;
6931
6932		if (skb_pad(skb, pad_len))
6933			return true;
6934		__skb_put(skb, pad_len);
6935	}
6936
6937	return false;
6938}
6939
6940/**
6941 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6942 *  @rx_ring: rx descriptor ring packet is being transacted on
6943 *  @rx_desc: pointer to the EOP Rx descriptor
6944 *  @skb: pointer to current skb being populated
6945 *
6946 *  This function checks the ring, descriptor, and packet information in
6947 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6948 *  other fields within the skb.
6949 **/
6950static void igb_process_skb_fields(struct igb_ring *rx_ring,
6951				   union e1000_adv_rx_desc *rx_desc,
6952				   struct sk_buff *skb)
6953{
6954	struct net_device *dev = rx_ring->netdev;
6955
6956	igb_rx_hash(rx_ring, rx_desc, skb);
6957
6958	igb_rx_checksum(rx_ring, rx_desc, skb);
6959
6960	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6961	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6962		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6963
6964	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6965	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6966		u16 vid;
6967
6968		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6969		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6970			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6971		else
6972			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6973
6974		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6975	}
6976
6977	skb_record_rx_queue(skb, rx_ring->queue_index);
6978
6979	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6980}
6981
6982static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6983{
6984	struct igb_ring *rx_ring = q_vector->rx.ring;
6985	struct sk_buff *skb = rx_ring->skb;
6986	unsigned int total_bytes = 0, total_packets = 0;
6987	u16 cleaned_count = igb_desc_unused(rx_ring);
6988
6989	while (likely(total_packets < budget)) {
6990		union e1000_adv_rx_desc *rx_desc;
6991
6992		/* return some buffers to hardware, one at a time is too slow */
6993		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6994			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6995			cleaned_count = 0;
6996		}
6997
6998		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6999
7000		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7001			break;
7002
7003		/* This memory barrier is needed to keep us from reading
7004		 * any other fields out of the rx_desc until we know the
7005		 * RXD_STAT_DD bit is set
7006		 */
7007		rmb();
7008
7009		/* retrieve a buffer from the ring */
7010		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7011
7012		/* exit if we failed to retrieve a buffer */
7013		if (!skb)
7014			break;
7015
7016		cleaned_count++;
7017
7018		/* fetch next buffer in frame if non-eop */
7019		if (igb_is_non_eop(rx_ring, rx_desc))
7020			continue;
7021
7022		/* verify the packet layout is correct */
7023		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7024			skb = NULL;
7025			continue;
7026		}
7027
7028		/* probably a little skewed due to removing CRC */
7029		total_bytes += skb->len;
7030
7031		/* populate checksum, timestamp, VLAN, and protocol */
7032		igb_process_skb_fields(rx_ring, rx_desc, skb);
7033
7034		napi_gro_receive(&q_vector->napi, skb);
7035
7036		/* reset skb pointer */
7037		skb = NULL;
7038
7039		/* update budget accounting */
7040		total_packets++;
7041	}
7042
7043	/* place incomplete frames back on ring for completion */
7044	rx_ring->skb = skb;
7045
7046	u64_stats_update_begin(&rx_ring->rx_syncp);
7047	rx_ring->rx_stats.packets += total_packets;
7048	rx_ring->rx_stats.bytes += total_bytes;
7049	u64_stats_update_end(&rx_ring->rx_syncp);
7050	q_vector->rx.total_packets += total_packets;
7051	q_vector->rx.total_bytes += total_bytes;
7052
7053	if (cleaned_count)
7054		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7055
7056	return (total_packets < budget);
7057}
7058
7059static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7060				  struct igb_rx_buffer *bi)
7061{
7062	struct page *page = bi->page;
7063	dma_addr_t dma;
7064
7065	/* since we are recycling buffers we should seldom need to alloc */
7066	if (likely(page))
7067		return true;
7068
7069	/* alloc new page for storage */
7070	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7071	if (unlikely(!page)) {
7072		rx_ring->rx_stats.alloc_failed++;
7073		return false;
7074	}
7075
7076	/* map page for use */
7077	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7078
7079	/* if mapping failed free memory back to system since
7080	 * there isn't much point in holding memory we can't use
7081	 */
7082	if (dma_mapping_error(rx_ring->dev, dma)) {
7083		__free_page(page);
7084
7085		rx_ring->rx_stats.alloc_failed++;
7086		return false;
7087	}
7088
7089	bi->dma = dma;
7090	bi->page = page;
7091	bi->page_offset = 0;
7092
7093	return true;
7094}
7095
7096/**
7097 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7098 *  @adapter: address of board private structure
7099 **/
7100void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7101{
7102	union e1000_adv_rx_desc *rx_desc;
7103	struct igb_rx_buffer *bi;
7104	u16 i = rx_ring->next_to_use;
7105
7106	/* nothing to do */
7107	if (!cleaned_count)
7108		return;
7109
7110	rx_desc = IGB_RX_DESC(rx_ring, i);
7111	bi = &rx_ring->rx_buffer_info[i];
7112	i -= rx_ring->count;
7113
7114	do {
7115		if (!igb_alloc_mapped_page(rx_ring, bi))
7116			break;
7117
7118		/* Refresh the desc even if buffer_addrs didn't change
7119		 * because each write-back erases this info.
7120		 */
7121		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7122
7123		rx_desc++;
7124		bi++;
7125		i++;
7126		if (unlikely(!i)) {
7127			rx_desc = IGB_RX_DESC(rx_ring, 0);
7128			bi = rx_ring->rx_buffer_info;
7129			i -= rx_ring->count;
7130		}
7131
7132		/* clear the hdr_addr for the next_to_use descriptor */
7133		rx_desc->read.hdr_addr = 0;
7134
7135		cleaned_count--;
7136	} while (cleaned_count);
7137
7138	i += rx_ring->count;
7139
7140	if (rx_ring->next_to_use != i) {
7141		/* record the next descriptor to use */
7142		rx_ring->next_to_use = i;
7143
7144		/* update next to alloc since we have filled the ring */
7145		rx_ring->next_to_alloc = i;
7146
7147		/* Force memory writes to complete before letting h/w
7148		 * know there are new descriptors to fetch.  (Only
7149		 * applicable for weak-ordered memory model archs,
7150		 * such as IA-64).
7151		 */
7152		wmb();
7153		writel(i, rx_ring->tail);
7154	}
7155}
7156
7157/**
7158 * igb_mii_ioctl -
7159 * @netdev:
7160 * @ifreq:
7161 * @cmd:
7162 **/
7163static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7164{
7165	struct igb_adapter *adapter = netdev_priv(netdev);
7166	struct mii_ioctl_data *data = if_mii(ifr);
7167
7168	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7169		return -EOPNOTSUPP;
7170
7171	switch (cmd) {
7172	case SIOCGMIIPHY:
7173		data->phy_id = adapter->hw.phy.addr;
7174		break;
7175	case SIOCGMIIREG:
7176		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7177				     &data->val_out))
7178			return -EIO;
7179		break;
7180	case SIOCSMIIREG:
7181	default:
7182		return -EOPNOTSUPP;
7183	}
7184	return 0;
7185}
7186
7187/**
7188 * igb_ioctl -
7189 * @netdev:
7190 * @ifreq:
7191 * @cmd:
7192 **/
7193static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7194{
7195	switch (cmd) {
7196	case SIOCGMIIPHY:
7197	case SIOCGMIIREG:
7198	case SIOCSMIIREG:
7199		return igb_mii_ioctl(netdev, ifr, cmd);
7200	case SIOCGHWTSTAMP:
7201		return igb_ptp_get_ts_config(netdev, ifr);
7202	case SIOCSHWTSTAMP:
7203		return igb_ptp_set_ts_config(netdev, ifr);
7204	default:
7205		return -EOPNOTSUPP;
7206	}
7207}
7208
7209s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7210{
7211	struct igb_adapter *adapter = hw->back;
7212
7213	if (pcie_capability_read_word(adapter->pdev, reg, value))
7214		return -E1000_ERR_CONFIG;
7215
7216	return 0;
7217}
7218
7219s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7220{
7221	struct igb_adapter *adapter = hw->back;
7222
7223	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7224		return -E1000_ERR_CONFIG;
7225
7226	return 0;
7227}
7228
7229static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7230{
7231	struct igb_adapter *adapter = netdev_priv(netdev);
7232	struct e1000_hw *hw = &adapter->hw;
7233	u32 ctrl, rctl;
7234	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7235
7236	if (enable) {
7237		/* enable VLAN tag insert/strip */
7238		ctrl = rd32(E1000_CTRL);
7239		ctrl |= E1000_CTRL_VME;
7240		wr32(E1000_CTRL, ctrl);
7241
7242		/* Disable CFI check */
7243		rctl = rd32(E1000_RCTL);
7244		rctl &= ~E1000_RCTL_CFIEN;
7245		wr32(E1000_RCTL, rctl);
7246	} else {
7247		/* disable VLAN tag insert/strip */
7248		ctrl = rd32(E1000_CTRL);
7249		ctrl &= ~E1000_CTRL_VME;
7250		wr32(E1000_CTRL, ctrl);
7251	}
7252
7253	igb_rlpml_set(adapter);
7254}
7255
7256static int igb_vlan_rx_add_vid(struct net_device *netdev,
7257			       __be16 proto, u16 vid)
7258{
7259	struct igb_adapter *adapter = netdev_priv(netdev);
7260	struct e1000_hw *hw = &adapter->hw;
7261	int pf_id = adapter->vfs_allocated_count;
7262
7263	/* attempt to add filter to vlvf array */
7264	igb_vlvf_set(adapter, vid, true, pf_id);
7265
7266	/* add the filter since PF can receive vlans w/o entry in vlvf */
7267	igb_vfta_set(hw, vid, true);
7268
7269	set_bit(vid, adapter->active_vlans);
7270
7271	return 0;
7272}
7273
7274static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7275				__be16 proto, u16 vid)
7276{
7277	struct igb_adapter *adapter = netdev_priv(netdev);
7278	struct e1000_hw *hw = &adapter->hw;
7279	int pf_id = adapter->vfs_allocated_count;
7280	s32 err;
7281
7282	/* remove vlan from VLVF table array */
7283	err = igb_vlvf_set(adapter, vid, false, pf_id);
7284
7285	/* if vid was not present in VLVF just remove it from table */
7286	if (err)
7287		igb_vfta_set(hw, vid, false);
7288
7289	clear_bit(vid, adapter->active_vlans);
7290
7291	return 0;
7292}
7293
7294static void igb_restore_vlan(struct igb_adapter *adapter)
7295{
7296	u16 vid;
7297
7298	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7299
7300	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7301		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7302}
7303
7304int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7305{
7306	struct pci_dev *pdev = adapter->pdev;
7307	struct e1000_mac_info *mac = &adapter->hw.mac;
7308
7309	mac->autoneg = 0;
7310
7311	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7312	 * for the switch() below to work
7313	 */
7314	if ((spd & 1) || (dplx & ~1))
7315		goto err_inval;
7316
7317	/* Fiber NIC's only allow 1000 gbps Full duplex
7318	 * and 100Mbps Full duplex for 100baseFx sfp
7319	 */
7320	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7321		switch (spd + dplx) {
7322		case SPEED_10 + DUPLEX_HALF:
7323		case SPEED_10 + DUPLEX_FULL:
7324		case SPEED_100 + DUPLEX_HALF:
7325			goto err_inval;
7326		default:
7327			break;
7328		}
7329	}
7330
7331	switch (spd + dplx) {
7332	case SPEED_10 + DUPLEX_HALF:
7333		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7334		break;
7335	case SPEED_10 + DUPLEX_FULL:
7336		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7337		break;
7338	case SPEED_100 + DUPLEX_HALF:
7339		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7340		break;
7341	case SPEED_100 + DUPLEX_FULL:
7342		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7343		break;
7344	case SPEED_1000 + DUPLEX_FULL:
7345		mac->autoneg = 1;
7346		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7347		break;
7348	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7349	default:
7350		goto err_inval;
7351	}
7352
7353	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7354	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7355
7356	return 0;
7357
7358err_inval:
7359	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7360	return -EINVAL;
7361}
7362
7363static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7364			  bool runtime)
7365{
7366	struct net_device *netdev = pci_get_drvdata(pdev);
7367	struct igb_adapter *adapter = netdev_priv(netdev);
7368	struct e1000_hw *hw = &adapter->hw;
7369	u32 ctrl, rctl, status;
7370	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7371#ifdef CONFIG_PM
7372	int retval = 0;
7373#endif
7374
7375	netif_device_detach(netdev);
7376
7377	if (netif_running(netdev))
7378		__igb_close(netdev, true);
7379
7380	igb_clear_interrupt_scheme(adapter);
7381
7382#ifdef CONFIG_PM
7383	retval = pci_save_state(pdev);
7384	if (retval)
7385		return retval;
7386#endif
7387
7388	status = rd32(E1000_STATUS);
7389	if (status & E1000_STATUS_LU)
7390		wufc &= ~E1000_WUFC_LNKC;
7391
7392	if (wufc) {
7393		igb_setup_rctl(adapter);
7394		igb_set_rx_mode(netdev);
7395
7396		/* turn on all-multi mode if wake on multicast is enabled */
7397		if (wufc & E1000_WUFC_MC) {
7398			rctl = rd32(E1000_RCTL);
7399			rctl |= E1000_RCTL_MPE;
7400			wr32(E1000_RCTL, rctl);
7401		}
7402
7403		ctrl = rd32(E1000_CTRL);
7404		/* advertise wake from D3Cold */
7405		#define E1000_CTRL_ADVD3WUC 0x00100000
7406		/* phy power management enable */
7407		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7408		ctrl |= E1000_CTRL_ADVD3WUC;
7409		wr32(E1000_CTRL, ctrl);
7410
7411		/* Allow time for pending master requests to run */
7412		igb_disable_pcie_master(hw);
7413
7414		wr32(E1000_WUC, E1000_WUC_PME_EN);
7415		wr32(E1000_WUFC, wufc);
7416	} else {
7417		wr32(E1000_WUC, 0);
7418		wr32(E1000_WUFC, 0);
7419	}
7420
7421	*enable_wake = wufc || adapter->en_mng_pt;
7422	if (!*enable_wake)
7423		igb_power_down_link(adapter);
7424	else
7425		igb_power_up_link(adapter);
7426
7427	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7428	 * would have already happened in close and is redundant.
7429	 */
7430	igb_release_hw_control(adapter);
7431
7432	pci_disable_device(pdev);
7433
7434	return 0;
7435}
7436
7437#ifdef CONFIG_PM
7438#ifdef CONFIG_PM_SLEEP
7439static int igb_suspend(struct device *dev)
7440{
7441	int retval;
7442	bool wake;
7443	struct pci_dev *pdev = to_pci_dev(dev);
7444
7445	retval = __igb_shutdown(pdev, &wake, 0);
7446	if (retval)
7447		return retval;
7448
7449	if (wake) {
7450		pci_prepare_to_sleep(pdev);
7451	} else {
7452		pci_wake_from_d3(pdev, false);
7453		pci_set_power_state(pdev, PCI_D3hot);
7454	}
7455
7456	return 0;
7457}
7458#endif /* CONFIG_PM_SLEEP */
7459
7460static int igb_resume(struct device *dev)
7461{
7462	struct pci_dev *pdev = to_pci_dev(dev);
7463	struct net_device *netdev = pci_get_drvdata(pdev);
7464	struct igb_adapter *adapter = netdev_priv(netdev);
7465	struct e1000_hw *hw = &adapter->hw;
7466	u32 err;
7467
7468	pci_set_power_state(pdev, PCI_D0);
7469	pci_restore_state(pdev);
7470	pci_save_state(pdev);
7471
7472	err = pci_enable_device_mem(pdev);
7473	if (err) {
7474		dev_err(&pdev->dev,
7475			"igb: Cannot enable PCI device from suspend\n");
7476		return err;
7477	}
7478	pci_set_master(pdev);
7479
7480	pci_enable_wake(pdev, PCI_D3hot, 0);
7481	pci_enable_wake(pdev, PCI_D3cold, 0);
7482
7483	if (igb_init_interrupt_scheme(adapter, true)) {
7484		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7485		return -ENOMEM;
7486	}
7487
7488	igb_reset(adapter);
7489
7490	/* let the f/w know that the h/w is now under the control of the
7491	 * driver.
7492	 */
7493	igb_get_hw_control(adapter);
7494
7495	wr32(E1000_WUS, ~0);
7496
7497	if (netdev->flags & IFF_UP) {
7498		rtnl_lock();
7499		err = __igb_open(netdev, true);
7500		rtnl_unlock();
7501		if (err)
7502			return err;
7503	}
7504
7505	netif_device_attach(netdev);
7506	return 0;
7507}
7508
7509#ifdef CONFIG_PM_RUNTIME
7510static int igb_runtime_idle(struct device *dev)
7511{
7512	struct pci_dev *pdev = to_pci_dev(dev);
7513	struct net_device *netdev = pci_get_drvdata(pdev);
7514	struct igb_adapter *adapter = netdev_priv(netdev);
7515
7516	if (!igb_has_link(adapter))
7517		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7518
7519	return -EBUSY;
7520}
7521
7522static int igb_runtime_suspend(struct device *dev)
7523{
7524	struct pci_dev *pdev = to_pci_dev(dev);
7525	int retval;
7526	bool wake;
7527
7528	retval = __igb_shutdown(pdev, &wake, 1);
7529	if (retval)
7530		return retval;
7531
7532	if (wake) {
7533		pci_prepare_to_sleep(pdev);
7534	} else {
7535		pci_wake_from_d3(pdev, false);
7536		pci_set_power_state(pdev, PCI_D3hot);
7537	}
7538
7539	return 0;
7540}
7541
7542static int igb_runtime_resume(struct device *dev)
7543{
7544	return igb_resume(dev);
7545}
7546#endif /* CONFIG_PM_RUNTIME */
7547#endif
7548
7549static void igb_shutdown(struct pci_dev *pdev)
7550{
7551	bool wake;
7552
7553	__igb_shutdown(pdev, &wake, 0);
7554
7555	if (system_state == SYSTEM_POWER_OFF) {
7556		pci_wake_from_d3(pdev, wake);
7557		pci_set_power_state(pdev, PCI_D3hot);
7558	}
7559}
7560
7561#ifdef CONFIG_PCI_IOV
7562static int igb_sriov_reinit(struct pci_dev *dev)
7563{
7564	struct net_device *netdev = pci_get_drvdata(dev);
7565	struct igb_adapter *adapter = netdev_priv(netdev);
7566	struct pci_dev *pdev = adapter->pdev;
7567
7568	rtnl_lock();
7569
7570	if (netif_running(netdev))
7571		igb_close(netdev);
7572
7573	igb_clear_interrupt_scheme(adapter);
7574
7575	igb_init_queue_configuration(adapter);
7576
7577	if (igb_init_interrupt_scheme(adapter, true)) {
7578		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7579		return -ENOMEM;
7580	}
7581
7582	if (netif_running(netdev))
7583		igb_open(netdev);
7584
7585	rtnl_unlock();
7586
7587	return 0;
7588}
7589
7590static int igb_pci_disable_sriov(struct pci_dev *dev)
7591{
7592	int err = igb_disable_sriov(dev);
7593
7594	if (!err)
7595		err = igb_sriov_reinit(dev);
7596
7597	return err;
7598}
7599
7600static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7601{
7602	int err = igb_enable_sriov(dev, num_vfs);
7603
7604	if (err)
7605		goto out;
7606
7607	err = igb_sriov_reinit(dev);
7608	if (!err)
7609		return num_vfs;
7610
7611out:
7612	return err;
7613}
7614
7615#endif
7616static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7617{
7618#ifdef CONFIG_PCI_IOV
7619	if (num_vfs == 0)
7620		return igb_pci_disable_sriov(dev);
7621	else
7622		return igb_pci_enable_sriov(dev, num_vfs);
7623#endif
7624	return 0;
7625}
7626
7627#ifdef CONFIG_NET_POLL_CONTROLLER
7628/* Polling 'interrupt' - used by things like netconsole to send skbs
7629 * without having to re-enable interrupts. It's not called while
7630 * the interrupt routine is executing.
7631 */
7632static void igb_netpoll(struct net_device *netdev)
7633{
7634	struct igb_adapter *adapter = netdev_priv(netdev);
7635	struct e1000_hw *hw = &adapter->hw;
7636	struct igb_q_vector *q_vector;
7637	int i;
7638
7639	for (i = 0; i < adapter->num_q_vectors; i++) {
7640		q_vector = adapter->q_vector[i];
7641		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7642			wr32(E1000_EIMC, q_vector->eims_value);
7643		else
7644			igb_irq_disable(adapter);
7645		napi_schedule(&q_vector->napi);
7646	}
7647}
7648#endif /* CONFIG_NET_POLL_CONTROLLER */
7649
7650/**
7651 *  igb_io_error_detected - called when PCI error is detected
7652 *  @pdev: Pointer to PCI device
7653 *  @state: The current pci connection state
7654 *
7655 *  This function is called after a PCI bus error affecting
7656 *  this device has been detected.
7657 **/
7658static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7659					      pci_channel_state_t state)
7660{
7661	struct net_device *netdev = pci_get_drvdata(pdev);
7662	struct igb_adapter *adapter = netdev_priv(netdev);
7663
7664	netif_device_detach(netdev);
7665
7666	if (state == pci_channel_io_perm_failure)
7667		return PCI_ERS_RESULT_DISCONNECT;
7668
7669	if (netif_running(netdev))
7670		igb_down(adapter);
7671	pci_disable_device(pdev);
7672
7673	/* Request a slot slot reset. */
7674	return PCI_ERS_RESULT_NEED_RESET;
7675}
7676
7677/**
7678 *  igb_io_slot_reset - called after the pci bus has been reset.
7679 *  @pdev: Pointer to PCI device
7680 *
7681 *  Restart the card from scratch, as if from a cold-boot. Implementation
7682 *  resembles the first-half of the igb_resume routine.
7683 **/
7684static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7685{
7686	struct net_device *netdev = pci_get_drvdata(pdev);
7687	struct igb_adapter *adapter = netdev_priv(netdev);
7688	struct e1000_hw *hw = &adapter->hw;
7689	pci_ers_result_t result;
7690	int err;
7691
7692	if (pci_enable_device_mem(pdev)) {
7693		dev_err(&pdev->dev,
7694			"Cannot re-enable PCI device after reset.\n");
7695		result = PCI_ERS_RESULT_DISCONNECT;
7696	} else {
7697		pci_set_master(pdev);
7698		pci_restore_state(pdev);
7699		pci_save_state(pdev);
7700
7701		pci_enable_wake(pdev, PCI_D3hot, 0);
7702		pci_enable_wake(pdev, PCI_D3cold, 0);
7703
7704		igb_reset(adapter);
7705		wr32(E1000_WUS, ~0);
7706		result = PCI_ERS_RESULT_RECOVERED;
7707	}
7708
7709	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7710	if (err) {
7711		dev_err(&pdev->dev,
7712			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7713			err);
7714		/* non-fatal, continue */
7715	}
7716
7717	return result;
7718}
7719
7720/**
7721 *  igb_io_resume - called when traffic can start flowing again.
7722 *  @pdev: Pointer to PCI device
7723 *
7724 *  This callback is called when the error recovery driver tells us that
7725 *  its OK to resume normal operation. Implementation resembles the
7726 *  second-half of the igb_resume routine.
7727 */
7728static void igb_io_resume(struct pci_dev *pdev)
7729{
7730	struct net_device *netdev = pci_get_drvdata(pdev);
7731	struct igb_adapter *adapter = netdev_priv(netdev);
7732
7733	if (netif_running(netdev)) {
7734		if (igb_up(adapter)) {
7735			dev_err(&pdev->dev, "igb_up failed after reset\n");
7736			return;
7737		}
7738	}
7739
7740	netif_device_attach(netdev);
7741
7742	/* let the f/w know that the h/w is now under the control of the
7743	 * driver.
7744	 */
7745	igb_get_hw_control(adapter);
7746}
7747
7748static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7749			     u8 qsel)
7750{
7751	u32 rar_low, rar_high;
7752	struct e1000_hw *hw = &adapter->hw;
7753
7754	/* HW expects these in little endian so we reverse the byte order
7755	 * from network order (big endian) to little endian
7756	 */
7757	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7758		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7759	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7760
7761	/* Indicate to hardware the Address is Valid. */
7762	rar_high |= E1000_RAH_AV;
7763
7764	if (hw->mac.type == e1000_82575)
7765		rar_high |= E1000_RAH_POOL_1 * qsel;
7766	else
7767		rar_high |= E1000_RAH_POOL_1 << qsel;
7768
7769	wr32(E1000_RAL(index), rar_low);
7770	wrfl();
7771	wr32(E1000_RAH(index), rar_high);
7772	wrfl();
7773}
7774
7775static int igb_set_vf_mac(struct igb_adapter *adapter,
7776			  int vf, unsigned char *mac_addr)
7777{
7778	struct e1000_hw *hw = &adapter->hw;
7779	/* VF MAC addresses start at end of receive addresses and moves
7780	 * towards the first, as a result a collision should not be possible
7781	 */
7782	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7783
7784	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7785
7786	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7787
7788	return 0;
7789}
7790
7791static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7792{
7793	struct igb_adapter *adapter = netdev_priv(netdev);
7794	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7795		return -EINVAL;
7796	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7797	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7798	dev_info(&adapter->pdev->dev,
7799		 "Reload the VF driver to make this change effective.");
7800	if (test_bit(__IGB_DOWN, &adapter->state)) {
7801		dev_warn(&adapter->pdev->dev,
7802			 "The VF MAC address has been set, but the PF device is not up.\n");
7803		dev_warn(&adapter->pdev->dev,
7804			 "Bring the PF device up before attempting to use the VF device.\n");
7805	}
7806	return igb_set_vf_mac(adapter, vf, mac);
7807}
7808
7809static int igb_link_mbps(int internal_link_speed)
7810{
7811	switch (internal_link_speed) {
7812	case SPEED_100:
7813		return 100;
7814	case SPEED_1000:
7815		return 1000;
7816	default:
7817		return 0;
7818	}
7819}
7820
7821static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7822				  int link_speed)
7823{
7824	int rf_dec, rf_int;
7825	u32 bcnrc_val;
7826
7827	if (tx_rate != 0) {
7828		/* Calculate the rate factor values to set */
7829		rf_int = link_speed / tx_rate;
7830		rf_dec = (link_speed - (rf_int * tx_rate));
7831		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7832			 tx_rate;
7833
7834		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7835		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7836			      E1000_RTTBCNRC_RF_INT_MASK);
7837		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7838	} else {
7839		bcnrc_val = 0;
7840	}
7841
7842	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7843	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7844	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7845	 */
7846	wr32(E1000_RTTBCNRM, 0x14);
7847	wr32(E1000_RTTBCNRC, bcnrc_val);
7848}
7849
7850static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7851{
7852	int actual_link_speed, i;
7853	bool reset_rate = false;
7854
7855	/* VF TX rate limit was not set or not supported */
7856	if ((adapter->vf_rate_link_speed == 0) ||
7857	    (adapter->hw.mac.type != e1000_82576))
7858		return;
7859
7860	actual_link_speed = igb_link_mbps(adapter->link_speed);
7861	if (actual_link_speed != adapter->vf_rate_link_speed) {
7862		reset_rate = true;
7863		adapter->vf_rate_link_speed = 0;
7864		dev_info(&adapter->pdev->dev,
7865			 "Link speed has been changed. VF Transmit rate is disabled\n");
7866	}
7867
7868	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7869		if (reset_rate)
7870			adapter->vf_data[i].tx_rate = 0;
7871
7872		igb_set_vf_rate_limit(&adapter->hw, i,
7873				      adapter->vf_data[i].tx_rate,
7874				      actual_link_speed);
7875	}
7876}
7877
7878static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7879{
7880	struct igb_adapter *adapter = netdev_priv(netdev);
7881	struct e1000_hw *hw = &adapter->hw;
7882	int actual_link_speed;
7883
7884	if (hw->mac.type != e1000_82576)
7885		return -EOPNOTSUPP;
7886
7887	actual_link_speed = igb_link_mbps(adapter->link_speed);
7888	if ((vf >= adapter->vfs_allocated_count) ||
7889	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7890	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7891		return -EINVAL;
7892
7893	adapter->vf_rate_link_speed = actual_link_speed;
7894	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7895	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7896
7897	return 0;
7898}
7899
7900static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7901				   bool setting)
7902{
7903	struct igb_adapter *adapter = netdev_priv(netdev);
7904	struct e1000_hw *hw = &adapter->hw;
7905	u32 reg_val, reg_offset;
7906
7907	if (!adapter->vfs_allocated_count)
7908		return -EOPNOTSUPP;
7909
7910	if (vf >= adapter->vfs_allocated_count)
7911		return -EINVAL;
7912
7913	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7914	reg_val = rd32(reg_offset);
7915	if (setting)
7916		reg_val |= ((1 << vf) |
7917			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7918	else
7919		reg_val &= ~((1 << vf) |
7920			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7921	wr32(reg_offset, reg_val);
7922
7923	adapter->vf_data[vf].spoofchk_enabled = setting;
7924	return E1000_SUCCESS;
7925}
7926
7927static int igb_ndo_get_vf_config(struct net_device *netdev,
7928				 int vf, struct ifla_vf_info *ivi)
7929{
7930	struct igb_adapter *adapter = netdev_priv(netdev);
7931	if (vf >= adapter->vfs_allocated_count)
7932		return -EINVAL;
7933	ivi->vf = vf;
7934	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7935	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7936	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7937	ivi->qos = adapter->vf_data[vf].pf_qos;
7938	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7939	return 0;
7940}
7941
7942static void igb_vmm_control(struct igb_adapter *adapter)
7943{
7944	struct e1000_hw *hw = &adapter->hw;
7945	u32 reg;
7946
7947	switch (hw->mac.type) {
7948	case e1000_82575:
7949	case e1000_i210:
7950	case e1000_i211:
7951	case e1000_i354:
7952	default:
7953		/* replication is not supported for 82575 */
7954		return;
7955	case e1000_82576:
7956		/* notify HW that the MAC is adding vlan tags */
7957		reg = rd32(E1000_DTXCTL);
7958		reg |= E1000_DTXCTL_VLAN_ADDED;
7959		wr32(E1000_DTXCTL, reg);
7960	case e1000_82580:
7961		/* enable replication vlan tag stripping */
7962		reg = rd32(E1000_RPLOLR);
7963		reg |= E1000_RPLOLR_STRVLAN;
7964		wr32(E1000_RPLOLR, reg);
7965	case e1000_i350:
7966		/* none of the above registers are supported by i350 */
7967		break;
7968	}
7969
7970	if (adapter->vfs_allocated_count) {
7971		igb_vmdq_set_loopback_pf(hw, true);
7972		igb_vmdq_set_replication_pf(hw, true);
7973		igb_vmdq_set_anti_spoofing_pf(hw, true,
7974					      adapter->vfs_allocated_count);
7975	} else {
7976		igb_vmdq_set_loopback_pf(hw, false);
7977		igb_vmdq_set_replication_pf(hw, false);
7978	}
7979}
7980
7981static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7982{
7983	struct e1000_hw *hw = &adapter->hw;
7984	u32 dmac_thr;
7985	u16 hwm;
7986
7987	if (hw->mac.type > e1000_82580) {
7988		if (adapter->flags & IGB_FLAG_DMAC) {
7989			u32 reg;
7990
7991			/* force threshold to 0. */
7992			wr32(E1000_DMCTXTH, 0);
7993
7994			/* DMA Coalescing high water mark needs to be greater
7995			 * than the Rx threshold. Set hwm to PBA - max frame
7996			 * size in 16B units, capping it at PBA - 6KB.
7997			 */
7998			hwm = 64 * pba - adapter->max_frame_size / 16;
7999			if (hwm < 64 * (pba - 6))
8000				hwm = 64 * (pba - 6);
8001			reg = rd32(E1000_FCRTC);
8002			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8003			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8004				& E1000_FCRTC_RTH_COAL_MASK);
8005			wr32(E1000_FCRTC, reg);
8006
8007			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8008			 * frame size, capping it at PBA - 10KB.
8009			 */
8010			dmac_thr = pba - adapter->max_frame_size / 512;
8011			if (dmac_thr < pba - 10)
8012				dmac_thr = pba - 10;
8013			reg = rd32(E1000_DMACR);
8014			reg &= ~E1000_DMACR_DMACTHR_MASK;
8015			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8016				& E1000_DMACR_DMACTHR_MASK);
8017
8018			/* transition to L0x or L1 if available..*/
8019			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8020
8021			/* watchdog timer= +-1000 usec in 32usec intervals */
8022			reg |= (1000 >> 5);
8023
8024			/* Disable BMC-to-OS Watchdog Enable */
8025			if (hw->mac.type != e1000_i354)
8026				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8027
8028			wr32(E1000_DMACR, reg);
8029
8030			/* no lower threshold to disable
8031			 * coalescing(smart fifb)-UTRESH=0
8032			 */
8033			wr32(E1000_DMCRTRH, 0);
8034
8035			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8036
8037			wr32(E1000_DMCTLX, reg);
8038
8039			/* free space in tx packet buffer to wake from
8040			 * DMA coal
8041			 */
8042			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8043			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8044
8045			/* make low power state decision controlled
8046			 * by DMA coal
8047			 */
8048			reg = rd32(E1000_PCIEMISC);
8049			reg &= ~E1000_PCIEMISC_LX_DECISION;
8050			wr32(E1000_PCIEMISC, reg);
8051		} /* endif adapter->dmac is not disabled */
8052	} else if (hw->mac.type == e1000_82580) {
8053		u32 reg = rd32(E1000_PCIEMISC);
8054
8055		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8056		wr32(E1000_DMACR, 0);
8057	}
8058}
8059
8060/**
8061 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8062 *  @hw: pointer to hardware structure
8063 *  @byte_offset: byte offset to read
8064 *  @dev_addr: device address
8065 *  @data: value read
8066 *
8067 *  Performs byte read operation over I2C interface at
8068 *  a specified device address.
8069 **/
8070s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8071		      u8 dev_addr, u8 *data)
8072{
8073	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8074	struct i2c_client *this_client = adapter->i2c_client;
8075	s32 status;
8076	u16 swfw_mask = 0;
8077
8078	if (!this_client)
8079		return E1000_ERR_I2C;
8080
8081	swfw_mask = E1000_SWFW_PHY0_SM;
8082
8083	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8084	    != E1000_SUCCESS)
8085		return E1000_ERR_SWFW_SYNC;
8086
8087	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8088	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8089
8090	if (status < 0)
8091		return E1000_ERR_I2C;
8092	else {
8093		*data = status;
8094		return E1000_SUCCESS;
8095	}
8096}
8097
8098/**
8099 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8100 *  @hw: pointer to hardware structure
8101 *  @byte_offset: byte offset to write
8102 *  @dev_addr: device address
8103 *  @data: value to write
8104 *
8105 *  Performs byte write operation over I2C interface at
8106 *  a specified device address.
8107 **/
8108s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8109		       u8 dev_addr, u8 data)
8110{
8111	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8112	struct i2c_client *this_client = adapter->i2c_client;
8113	s32 status;
8114	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8115
8116	if (!this_client)
8117		return E1000_ERR_I2C;
8118
8119	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8120		return E1000_ERR_SWFW_SYNC;
8121	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8122	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8123
8124	if (status)
8125		return E1000_ERR_I2C;
8126	else
8127		return E1000_SUCCESS;
8128
8129}
8130
8131int igb_reinit_queues(struct igb_adapter *adapter)
8132{
8133	struct net_device *netdev = adapter->netdev;
8134	struct pci_dev *pdev = adapter->pdev;
8135	int err = 0;
8136
8137	if (netif_running(netdev))
8138		igb_close(netdev);
8139
8140	igb_reset_interrupt_capability(adapter);
8141
8142	if (igb_init_interrupt_scheme(adapter, true)) {
8143		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8144		return -ENOMEM;
8145	}
8146
8147	if (netif_running(netdev))
8148		err = igb_open(netdev);
8149
8150	return err;
8151}
8152/* igb_main.c */
8153