igb_main.c revision f646968f8f7c624587de729115d802372b9063dd
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/bitops.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/net_tstamp.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
47#include <linux/pci-aspm.h>
48#include <linux/delay.h>
49#include <linux/interrupt.h>
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
53#include <linux/if_ether.h>
54#include <linux/aer.h>
55#include <linux/prefetch.h>
56#include <linux/pm_runtime.h>
57#ifdef CONFIG_IGB_DCA
58#include <linux/dca.h>
59#endif
60#include <linux/i2c.h>
61#include "igb.h"
62
63#define MAJ 4
64#define MIN 1
65#define BUILD 2
66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67__stringify(BUILD) "-k"
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71				"Intel(R) Gigabit Ethernet Network Driver";
72static const char igb_copyright[] =
73				"Copyright (c) 2007-2013 Intel Corporation.";
74
75static const struct e1000_info *igb_info_tbl[] = {
76	[board_82575] = &e1000_82575_info,
77};
78
79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113	/* required last entry */
114	{0, }
115};
116
117MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119void igb_reset(struct igb_adapter *);
120static int igb_setup_all_tx_resources(struct igb_adapter *);
121static int igb_setup_all_rx_resources(struct igb_adapter *);
122static void igb_free_all_tx_resources(struct igb_adapter *);
123static void igb_free_all_rx_resources(struct igb_adapter *);
124static void igb_setup_mrqc(struct igb_adapter *);
125static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126static void igb_remove(struct pci_dev *pdev);
127static int igb_sw_init(struct igb_adapter *);
128static int igb_open(struct net_device *);
129static int igb_close(struct net_device *);
130static void igb_configure(struct igb_adapter *);
131static void igb_configure_tx(struct igb_adapter *);
132static void igb_configure_rx(struct igb_adapter *);
133static void igb_clean_all_tx_rings(struct igb_adapter *);
134static void igb_clean_all_rx_rings(struct igb_adapter *);
135static void igb_clean_tx_ring(struct igb_ring *);
136static void igb_clean_rx_ring(struct igb_ring *);
137static void igb_set_rx_mode(struct net_device *);
138static void igb_update_phy_info(unsigned long);
139static void igb_watchdog(unsigned long);
140static void igb_watchdog_task(struct work_struct *);
141static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143						 struct rtnl_link_stats64 *stats);
144static int igb_change_mtu(struct net_device *, int);
145static int igb_set_mac(struct net_device *, void *);
146static void igb_set_uta(struct igb_adapter *adapter);
147static irqreturn_t igb_intr(int irq, void *);
148static irqreturn_t igb_intr_msi(int irq, void *);
149static irqreturn_t igb_msix_other(int irq, void *);
150static irqreturn_t igb_msix_ring(int irq, void *);
151#ifdef CONFIG_IGB_DCA
152static void igb_update_dca(struct igb_q_vector *);
153static void igb_setup_dca(struct igb_adapter *);
154#endif /* CONFIG_IGB_DCA */
155static int igb_poll(struct napi_struct *, int);
156static bool igb_clean_tx_irq(struct igb_q_vector *);
157static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159static void igb_tx_timeout(struct net_device *);
160static void igb_reset_task(struct work_struct *);
161static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162static int igb_vlan_rx_add_vid(struct net_device *, u16);
163static int igb_vlan_rx_kill_vid(struct net_device *, u16);
164static void igb_restore_vlan(struct igb_adapter *);
165static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166static void igb_ping_all_vfs(struct igb_adapter *);
167static void igb_msg_task(struct igb_adapter *);
168static void igb_vmm_control(struct igb_adapter *);
169static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173			       int vf, u16 vlan, u8 qos);
174static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176				   bool setting);
177static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178				 struct ifla_vf_info *ivi);
179static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181#ifdef CONFIG_PCI_IOV
182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
184#endif
185
186#ifdef CONFIG_PM
187#ifdef CONFIG_PM_SLEEP
188static int igb_suspend(struct device *);
189#endif
190static int igb_resume(struct device *);
191#ifdef CONFIG_PM_RUNTIME
192static int igb_runtime_suspend(struct device *dev);
193static int igb_runtime_resume(struct device *dev);
194static int igb_runtime_idle(struct device *dev);
195#endif
196static const struct dev_pm_ops igb_pm_ops = {
197	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
198	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
199			igb_runtime_idle)
200};
201#endif
202static void igb_shutdown(struct pci_dev *);
203static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
204#ifdef CONFIG_IGB_DCA
205static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
206static struct notifier_block dca_notifier = {
207	.notifier_call	= igb_notify_dca,
208	.next		= NULL,
209	.priority	= 0
210};
211#endif
212#ifdef CONFIG_NET_POLL_CONTROLLER
213/* for netdump / net console */
214static void igb_netpoll(struct net_device *);
215#endif
216#ifdef CONFIG_PCI_IOV
217static unsigned int max_vfs = 0;
218module_param(max_vfs, uint, 0);
219MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
220                 "per physical function");
221#endif /* CONFIG_PCI_IOV */
222
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224		     pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
228static const struct pci_error_handlers igb_err_handler = {
229	.error_detected = igb_io_error_detected,
230	.slot_reset = igb_io_slot_reset,
231	.resume = igb_io_resume,
232};
233
234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236static struct pci_driver igb_driver = {
237	.name     = igb_driver_name,
238	.id_table = igb_pci_tbl,
239	.probe    = igb_probe,
240	.remove   = igb_remove,
241#ifdef CONFIG_PM
242	.driver.pm = &igb_pm_ops,
243#endif
244	.shutdown = igb_shutdown,
245	.sriov_configure = igb_pci_sriov_configure,
246	.err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259struct igb_reg_info {
260	u32 ofs;
261	char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266	/* General Registers */
267	{E1000_CTRL, "CTRL"},
268	{E1000_STATUS, "STATUS"},
269	{E1000_CTRL_EXT, "CTRL_EXT"},
270
271	/* Interrupt Registers */
272	{E1000_ICR, "ICR"},
273
274	/* RX Registers */
275	{E1000_RCTL, "RCTL"},
276	{E1000_RDLEN(0), "RDLEN"},
277	{E1000_RDH(0), "RDH"},
278	{E1000_RDT(0), "RDT"},
279	{E1000_RXDCTL(0), "RXDCTL"},
280	{E1000_RDBAL(0), "RDBAL"},
281	{E1000_RDBAH(0), "RDBAH"},
282
283	/* TX Registers */
284	{E1000_TCTL, "TCTL"},
285	{E1000_TDBAL(0), "TDBAL"},
286	{E1000_TDBAH(0), "TDBAH"},
287	{E1000_TDLEN(0), "TDLEN"},
288	{E1000_TDH(0), "TDH"},
289	{E1000_TDT(0), "TDT"},
290	{E1000_TXDCTL(0), "TXDCTL"},
291	{E1000_TDFH, "TDFH"},
292	{E1000_TDFT, "TDFT"},
293	{E1000_TDFHS, "TDFHS"},
294	{E1000_TDFPC, "TDFPC"},
295
296	/* List Terminator */
297	{}
298};
299
300/* igb_regdump - register printout routine */
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303	int n = 0;
304	char rname[16];
305	u32 regs[8];
306
307	switch (reginfo->ofs) {
308	case E1000_RDLEN(0):
309		for (n = 0; n < 4; n++)
310			regs[n] = rd32(E1000_RDLEN(n));
311		break;
312	case E1000_RDH(0):
313		for (n = 0; n < 4; n++)
314			regs[n] = rd32(E1000_RDH(n));
315		break;
316	case E1000_RDT(0):
317		for (n = 0; n < 4; n++)
318			regs[n] = rd32(E1000_RDT(n));
319		break;
320	case E1000_RXDCTL(0):
321		for (n = 0; n < 4; n++)
322			regs[n] = rd32(E1000_RXDCTL(n));
323		break;
324	case E1000_RDBAL(0):
325		for (n = 0; n < 4; n++)
326			regs[n] = rd32(E1000_RDBAL(n));
327		break;
328	case E1000_RDBAH(0):
329		for (n = 0; n < 4; n++)
330			regs[n] = rd32(E1000_RDBAH(n));
331		break;
332	case E1000_TDBAL(0):
333		for (n = 0; n < 4; n++)
334			regs[n] = rd32(E1000_RDBAL(n));
335		break;
336	case E1000_TDBAH(0):
337		for (n = 0; n < 4; n++)
338			regs[n] = rd32(E1000_TDBAH(n));
339		break;
340	case E1000_TDLEN(0):
341		for (n = 0; n < 4; n++)
342			regs[n] = rd32(E1000_TDLEN(n));
343		break;
344	case E1000_TDH(0):
345		for (n = 0; n < 4; n++)
346			regs[n] = rd32(E1000_TDH(n));
347		break;
348	case E1000_TDT(0):
349		for (n = 0; n < 4; n++)
350			regs[n] = rd32(E1000_TDT(n));
351		break;
352	case E1000_TXDCTL(0):
353		for (n = 0; n < 4; n++)
354			regs[n] = rd32(E1000_TXDCTL(n));
355		break;
356	default:
357		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358		return;
359	}
360
361	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363		regs[2], regs[3]);
364}
365
366/* igb_dump - Print registers, Tx-rings and Rx-rings */
367static void igb_dump(struct igb_adapter *adapter)
368{
369	struct net_device *netdev = adapter->netdev;
370	struct e1000_hw *hw = &adapter->hw;
371	struct igb_reg_info *reginfo;
372	struct igb_ring *tx_ring;
373	union e1000_adv_tx_desc *tx_desc;
374	struct my_u0 { u64 a; u64 b; } *u0;
375	struct igb_ring *rx_ring;
376	union e1000_adv_rx_desc *rx_desc;
377	u32 staterr;
378	u16 i, n;
379
380	if (!netif_msg_hw(adapter))
381		return;
382
383	/* Print netdevice Info */
384	if (netdev) {
385		dev_info(&adapter->pdev->dev, "Net device Info\n");
386		pr_info("Device Name     state            trans_start      "
387			"last_rx\n");
388		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
389			netdev->state, netdev->trans_start, netdev->last_rx);
390	}
391
392	/* Print Registers */
393	dev_info(&adapter->pdev->dev, "Register Dump\n");
394	pr_info(" Register Name   Value\n");
395	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
396	     reginfo->name; reginfo++) {
397		igb_regdump(hw, reginfo);
398	}
399
400	/* Print TX Ring Summary */
401	if (!netdev || !netif_running(netdev))
402		goto exit;
403
404	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
405	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
406	for (n = 0; n < adapter->num_tx_queues; n++) {
407		struct igb_tx_buffer *buffer_info;
408		tx_ring = adapter->tx_ring[n];
409		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
410		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
411			n, tx_ring->next_to_use, tx_ring->next_to_clean,
412			(u64)dma_unmap_addr(buffer_info, dma),
413			dma_unmap_len(buffer_info, len),
414			buffer_info->next_to_watch,
415			(u64)buffer_info->time_stamp);
416	}
417
418	/* Print TX Rings */
419	if (!netif_msg_tx_done(adapter))
420		goto rx_ring_summary;
421
422	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
423
424	/* Transmit Descriptor Formats
425	 *
426	 * Advanced Transmit Descriptor
427	 *   +--------------------------------------------------------------+
428	 * 0 |         Buffer Address [63:0]                                |
429	 *   +--------------------------------------------------------------+
430	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
431	 *   +--------------------------------------------------------------+
432	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
433	 */
434
435	for (n = 0; n < adapter->num_tx_queues; n++) {
436		tx_ring = adapter->tx_ring[n];
437		pr_info("------------------------------------\n");
438		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
439		pr_info("------------------------------------\n");
440		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
441			"[bi->dma       ] leng  ntw timestamp        "
442			"bi->skb\n");
443
444		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
445			const char *next_desc;
446			struct igb_tx_buffer *buffer_info;
447			tx_desc = IGB_TX_DESC(tx_ring, i);
448			buffer_info = &tx_ring->tx_buffer_info[i];
449			u0 = (struct my_u0 *)tx_desc;
450			if (i == tx_ring->next_to_use &&
451			    i == tx_ring->next_to_clean)
452				next_desc = " NTC/U";
453			else if (i == tx_ring->next_to_use)
454				next_desc = " NTU";
455			else if (i == tx_ring->next_to_clean)
456				next_desc = " NTC";
457			else
458				next_desc = "";
459
460			pr_info("T [0x%03X]    %016llX %016llX %016llX"
461				" %04X  %p %016llX %p%s\n", i,
462				le64_to_cpu(u0->a),
463				le64_to_cpu(u0->b),
464				(u64)dma_unmap_addr(buffer_info, dma),
465				dma_unmap_len(buffer_info, len),
466				buffer_info->next_to_watch,
467				(u64)buffer_info->time_stamp,
468				buffer_info->skb, next_desc);
469
470			if (netif_msg_pktdata(adapter) && buffer_info->skb)
471				print_hex_dump(KERN_INFO, "",
472					DUMP_PREFIX_ADDRESS,
473					16, 1, buffer_info->skb->data,
474					dma_unmap_len(buffer_info, len),
475					true);
476		}
477	}
478
479	/* Print RX Rings Summary */
480rx_ring_summary:
481	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
482	pr_info("Queue [NTU] [NTC]\n");
483	for (n = 0; n < adapter->num_rx_queues; n++) {
484		rx_ring = adapter->rx_ring[n];
485		pr_info(" %5d %5X %5X\n",
486			n, rx_ring->next_to_use, rx_ring->next_to_clean);
487	}
488
489	/* Print RX Rings */
490	if (!netif_msg_rx_status(adapter))
491		goto exit;
492
493	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
494
495	/* Advanced Receive Descriptor (Read) Format
496	 *    63                                           1        0
497	 *    +-----------------------------------------------------+
498	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
499	 *    +----------------------------------------------+------+
500	 *  8 |       Header Buffer Address [63:1]           |  DD  |
501	 *    +-----------------------------------------------------+
502	 *
503	 *
504	 * Advanced Receive Descriptor (Write-Back) Format
505	 *
506	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
507	 *   +------------------------------------------------------+
508	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
509	 *   | Checksum   Ident  |   |           |    | Type | Type |
510	 *   +------------------------------------------------------+
511	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
512	 *   +------------------------------------------------------+
513	 *   63       48 47    32 31            20 19               0
514	 */
515
516	for (n = 0; n < adapter->num_rx_queues; n++) {
517		rx_ring = adapter->rx_ring[n];
518		pr_info("------------------------------------\n");
519		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
520		pr_info("------------------------------------\n");
521		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
522			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
523		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
524			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
525
526		for (i = 0; i < rx_ring->count; i++) {
527			const char *next_desc;
528			struct igb_rx_buffer *buffer_info;
529			buffer_info = &rx_ring->rx_buffer_info[i];
530			rx_desc = IGB_RX_DESC(rx_ring, i);
531			u0 = (struct my_u0 *)rx_desc;
532			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
533
534			if (i == rx_ring->next_to_use)
535				next_desc = " NTU";
536			else if (i == rx_ring->next_to_clean)
537				next_desc = " NTC";
538			else
539				next_desc = "";
540
541			if (staterr & E1000_RXD_STAT_DD) {
542				/* Descriptor Done */
543				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
544					"RWB", i,
545					le64_to_cpu(u0->a),
546					le64_to_cpu(u0->b),
547					next_desc);
548			} else {
549				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
550					"R  ", i,
551					le64_to_cpu(u0->a),
552					le64_to_cpu(u0->b),
553					(u64)buffer_info->dma,
554					next_desc);
555
556				if (netif_msg_pktdata(adapter) &&
557				    buffer_info->dma && buffer_info->page) {
558					print_hex_dump(KERN_INFO, "",
559					  DUMP_PREFIX_ADDRESS,
560					  16, 1,
561					  page_address(buffer_info->page) +
562						      buffer_info->page_offset,
563					  IGB_RX_BUFSZ, true);
564				}
565			}
566		}
567	}
568
569exit:
570	return;
571}
572
573/**
574 *  igb_get_i2c_data - Reads the I2C SDA data bit
575 *  @hw: pointer to hardware structure
576 *  @i2cctl: Current value of I2CCTL register
577 *
578 *  Returns the I2C data bit value
579 **/
580static int igb_get_i2c_data(void *data)
581{
582	struct igb_adapter *adapter = (struct igb_adapter *)data;
583	struct e1000_hw *hw = &adapter->hw;
584	s32 i2cctl = rd32(E1000_I2CPARAMS);
585
586	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
587}
588
589/**
590 *  igb_set_i2c_data - Sets the I2C data bit
591 *  @data: pointer to hardware structure
592 *  @state: I2C data value (0 or 1) to set
593 *
594 *  Sets the I2C data bit
595 **/
596static void igb_set_i2c_data(void *data, int state)
597{
598	struct igb_adapter *adapter = (struct igb_adapter *)data;
599	struct e1000_hw *hw = &adapter->hw;
600	s32 i2cctl = rd32(E1000_I2CPARAMS);
601
602	if (state)
603		i2cctl |= E1000_I2C_DATA_OUT;
604	else
605		i2cctl &= ~E1000_I2C_DATA_OUT;
606
607	i2cctl &= ~E1000_I2C_DATA_OE_N;
608	i2cctl |= E1000_I2C_CLK_OE_N;
609	wr32(E1000_I2CPARAMS, i2cctl);
610	wrfl();
611
612}
613
614/**
615 *  igb_set_i2c_clk - Sets the I2C SCL clock
616 *  @data: pointer to hardware structure
617 *  @state: state to set clock
618 *
619 *  Sets the I2C clock line to state
620 **/
621static void igb_set_i2c_clk(void *data, int state)
622{
623	struct igb_adapter *adapter = (struct igb_adapter *)data;
624	struct e1000_hw *hw = &adapter->hw;
625	s32 i2cctl = rd32(E1000_I2CPARAMS);
626
627	if (state) {
628		i2cctl |= E1000_I2C_CLK_OUT;
629		i2cctl &= ~E1000_I2C_CLK_OE_N;
630	} else {
631		i2cctl &= ~E1000_I2C_CLK_OUT;
632		i2cctl &= ~E1000_I2C_CLK_OE_N;
633	}
634	wr32(E1000_I2CPARAMS, i2cctl);
635	wrfl();
636}
637
638/**
639 *  igb_get_i2c_clk - Gets the I2C SCL clock state
640 *  @data: pointer to hardware structure
641 *
642 *  Gets the I2C clock state
643 **/
644static int igb_get_i2c_clk(void *data)
645{
646	struct igb_adapter *adapter = (struct igb_adapter *)data;
647	struct e1000_hw *hw = &adapter->hw;
648	s32 i2cctl = rd32(E1000_I2CPARAMS);
649
650	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
651}
652
653static const struct i2c_algo_bit_data igb_i2c_algo = {
654	.setsda		= igb_set_i2c_data,
655	.setscl		= igb_set_i2c_clk,
656	.getsda		= igb_get_i2c_data,
657	.getscl		= igb_get_i2c_clk,
658	.udelay		= 5,
659	.timeout	= 20,
660};
661
662/**
663 *  igb_get_hw_dev - return device
664 *  @hw: pointer to hardware structure
665 *
666 *  used by hardware layer to print debugging information
667 **/
668struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
669{
670	struct igb_adapter *adapter = hw->back;
671	return adapter->netdev;
672}
673
674/**
675 *  igb_init_module - Driver Registration Routine
676 *
677 *  igb_init_module is the first routine called when the driver is
678 *  loaded. All it does is register with the PCI subsystem.
679 **/
680static int __init igb_init_module(void)
681{
682	int ret;
683	pr_info("%s - version %s\n",
684	       igb_driver_string, igb_driver_version);
685
686	pr_info("%s\n", igb_copyright);
687
688#ifdef CONFIG_IGB_DCA
689	dca_register_notify(&dca_notifier);
690#endif
691	ret = pci_register_driver(&igb_driver);
692	return ret;
693}
694
695module_init(igb_init_module);
696
697/**
698 *  igb_exit_module - Driver Exit Cleanup Routine
699 *
700 *  igb_exit_module is called just before the driver is removed
701 *  from memory.
702 **/
703static void __exit igb_exit_module(void)
704{
705#ifdef CONFIG_IGB_DCA
706	dca_unregister_notify(&dca_notifier);
707#endif
708	pci_unregister_driver(&igb_driver);
709}
710
711module_exit(igb_exit_module);
712
713#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
714/**
715 *  igb_cache_ring_register - Descriptor ring to register mapping
716 *  @adapter: board private structure to initialize
717 *
718 *  Once we know the feature-set enabled for the device, we'll cache
719 *  the register offset the descriptor ring is assigned to.
720 **/
721static void igb_cache_ring_register(struct igb_adapter *adapter)
722{
723	int i = 0, j = 0;
724	u32 rbase_offset = adapter->vfs_allocated_count;
725
726	switch (adapter->hw.mac.type) {
727	case e1000_82576:
728		/* The queues are allocated for virtualization such that VF 0
729		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
730		 * In order to avoid collision we start at the first free queue
731		 * and continue consuming queues in the same sequence
732		 */
733		if (adapter->vfs_allocated_count) {
734			for (; i < adapter->rss_queues; i++)
735				adapter->rx_ring[i]->reg_idx = rbase_offset +
736							       Q_IDX_82576(i);
737		}
738	case e1000_82575:
739	case e1000_82580:
740	case e1000_i350:
741	case e1000_i354:
742	case e1000_i210:
743	case e1000_i211:
744	default:
745		for (; i < adapter->num_rx_queues; i++)
746			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
747		for (; j < adapter->num_tx_queues; j++)
748			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
749		break;
750	}
751}
752
753/**
754 *  igb_write_ivar - configure ivar for given MSI-X vector
755 *  @hw: pointer to the HW structure
756 *  @msix_vector: vector number we are allocating to a given ring
757 *  @index: row index of IVAR register to write within IVAR table
758 *  @offset: column offset of in IVAR, should be multiple of 8
759 *
760 *  This function is intended to handle the writing of the IVAR register
761 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
762 *  each containing an cause allocation for an Rx and Tx ring, and a
763 *  variable number of rows depending on the number of queues supported.
764 **/
765static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
766			   int index, int offset)
767{
768	u32 ivar = array_rd32(E1000_IVAR0, index);
769
770	/* clear any bits that are currently set */
771	ivar &= ~((u32)0xFF << offset);
772
773	/* write vector and valid bit */
774	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775
776	array_wr32(E1000_IVAR0, index, ivar);
777}
778
779#define IGB_N0_QUEUE -1
780static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
781{
782	struct igb_adapter *adapter = q_vector->adapter;
783	struct e1000_hw *hw = &adapter->hw;
784	int rx_queue = IGB_N0_QUEUE;
785	int tx_queue = IGB_N0_QUEUE;
786	u32 msixbm = 0;
787
788	if (q_vector->rx.ring)
789		rx_queue = q_vector->rx.ring->reg_idx;
790	if (q_vector->tx.ring)
791		tx_queue = q_vector->tx.ring->reg_idx;
792
793	switch (hw->mac.type) {
794	case e1000_82575:
795		/* The 82575 assigns vectors using a bitmask, which matches the
796		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
797		 * or more queues to a vector, we write the appropriate bits
798		 * into the MSIXBM register for that vector.
799		 */
800		if (rx_queue > IGB_N0_QUEUE)
801			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
802		if (tx_queue > IGB_N0_QUEUE)
803			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
804		if (!adapter->msix_entries && msix_vector == 0)
805			msixbm |= E1000_EIMS_OTHER;
806		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
807		q_vector->eims_value = msixbm;
808		break;
809	case e1000_82576:
810		/* 82576 uses a table that essentially consists of 2 columns
811		 * with 8 rows.  The ordering is column-major so we use the
812		 * lower 3 bits as the row index, and the 4th bit as the
813		 * column offset.
814		 */
815		if (rx_queue > IGB_N0_QUEUE)
816			igb_write_ivar(hw, msix_vector,
817				       rx_queue & 0x7,
818				       (rx_queue & 0x8) << 1);
819		if (tx_queue > IGB_N0_QUEUE)
820			igb_write_ivar(hw, msix_vector,
821				       tx_queue & 0x7,
822				       ((tx_queue & 0x8) << 1) + 8);
823		q_vector->eims_value = 1 << msix_vector;
824		break;
825	case e1000_82580:
826	case e1000_i350:
827	case e1000_i354:
828	case e1000_i210:
829	case e1000_i211:
830		/* On 82580 and newer adapters the scheme is similar to 82576
831		 * however instead of ordering column-major we have things
832		 * ordered row-major.  So we traverse the table by using
833		 * bit 0 as the column offset, and the remaining bits as the
834		 * row index.
835		 */
836		if (rx_queue > IGB_N0_QUEUE)
837			igb_write_ivar(hw, msix_vector,
838				       rx_queue >> 1,
839				       (rx_queue & 0x1) << 4);
840		if (tx_queue > IGB_N0_QUEUE)
841			igb_write_ivar(hw, msix_vector,
842				       tx_queue >> 1,
843				       ((tx_queue & 0x1) << 4) + 8);
844		q_vector->eims_value = 1 << msix_vector;
845		break;
846	default:
847		BUG();
848		break;
849	}
850
851	/* add q_vector eims value to global eims_enable_mask */
852	adapter->eims_enable_mask |= q_vector->eims_value;
853
854	/* configure q_vector to set itr on first interrupt */
855	q_vector->set_itr = 1;
856}
857
858/**
859 *  igb_configure_msix - Configure MSI-X hardware
860 *  @adapter: board private structure to initialize
861 *
862 *  igb_configure_msix sets up the hardware to properly
863 *  generate MSI-X interrupts.
864 **/
865static void igb_configure_msix(struct igb_adapter *adapter)
866{
867	u32 tmp;
868	int i, vector = 0;
869	struct e1000_hw *hw = &adapter->hw;
870
871	adapter->eims_enable_mask = 0;
872
873	/* set vector for other causes, i.e. link changes */
874	switch (hw->mac.type) {
875	case e1000_82575:
876		tmp = rd32(E1000_CTRL_EXT);
877		/* enable MSI-X PBA support*/
878		tmp |= E1000_CTRL_EXT_PBA_CLR;
879
880		/* Auto-Mask interrupts upon ICR read. */
881		tmp |= E1000_CTRL_EXT_EIAME;
882		tmp |= E1000_CTRL_EXT_IRCA;
883
884		wr32(E1000_CTRL_EXT, tmp);
885
886		/* enable msix_other interrupt */
887		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
888		adapter->eims_other = E1000_EIMS_OTHER;
889
890		break;
891
892	case e1000_82576:
893	case e1000_82580:
894	case e1000_i350:
895	case e1000_i354:
896	case e1000_i210:
897	case e1000_i211:
898		/* Turn on MSI-X capability first, or our settings
899		 * won't stick.  And it will take days to debug.
900		 */
901		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
902		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
903		     E1000_GPIE_NSICR);
904
905		/* enable msix_other interrupt */
906		adapter->eims_other = 1 << vector;
907		tmp = (vector++ | E1000_IVAR_VALID) << 8;
908
909		wr32(E1000_IVAR_MISC, tmp);
910		break;
911	default:
912		/* do nothing, since nothing else supports MSI-X */
913		break;
914	} /* switch (hw->mac.type) */
915
916	adapter->eims_enable_mask |= adapter->eims_other;
917
918	for (i = 0; i < adapter->num_q_vectors; i++)
919		igb_assign_vector(adapter->q_vector[i], vector++);
920
921	wrfl();
922}
923
924/**
925 *  igb_request_msix - Initialize MSI-X interrupts
926 *  @adapter: board private structure to initialize
927 *
928 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
929 *  kernel.
930 **/
931static int igb_request_msix(struct igb_adapter *adapter)
932{
933	struct net_device *netdev = adapter->netdev;
934	struct e1000_hw *hw = &adapter->hw;
935	int i, err = 0, vector = 0, free_vector = 0;
936
937	err = request_irq(adapter->msix_entries[vector].vector,
938			  igb_msix_other, 0, netdev->name, adapter);
939	if (err)
940		goto err_out;
941
942	for (i = 0; i < adapter->num_q_vectors; i++) {
943		struct igb_q_vector *q_vector = adapter->q_vector[i];
944
945		vector++;
946
947		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
948
949		if (q_vector->rx.ring && q_vector->tx.ring)
950			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951				q_vector->rx.ring->queue_index);
952		else if (q_vector->tx.ring)
953			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954				q_vector->tx.ring->queue_index);
955		else if (q_vector->rx.ring)
956			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957				q_vector->rx.ring->queue_index);
958		else
959			sprintf(q_vector->name, "%s-unused", netdev->name);
960
961		err = request_irq(adapter->msix_entries[vector].vector,
962				  igb_msix_ring, 0, q_vector->name,
963				  q_vector);
964		if (err)
965			goto err_free;
966	}
967
968	igb_configure_msix(adapter);
969	return 0;
970
971err_free:
972	/* free already assigned IRQs */
973	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975	vector--;
976	for (i = 0; i < vector; i++) {
977		free_irq(adapter->msix_entries[free_vector++].vector,
978			 adapter->q_vector[i]);
979	}
980err_out:
981	return err;
982}
983
984static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
985{
986	if (adapter->msix_entries) {
987		pci_disable_msix(adapter->pdev);
988		kfree(adapter->msix_entries);
989		adapter->msix_entries = NULL;
990	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
991		pci_disable_msi(adapter->pdev);
992	}
993}
994
995/**
996 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
997 *  @adapter: board private structure to initialize
998 *  @v_idx: Index of vector to be freed
999 *
1000 *  This function frees the memory allocated to the q_vector.  In addition if
1001 *  NAPI is enabled it will delete any references to the NAPI struct prior
1002 *  to freeing the q_vector.
1003 **/
1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005{
1006	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008	if (q_vector->tx.ring)
1009		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1010
1011	if (q_vector->rx.ring)
1012		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1013
1014	adapter->q_vector[v_idx] = NULL;
1015	netif_napi_del(&q_vector->napi);
1016
1017	/* ixgbe_get_stats64() might access the rings on this vector,
1018	 * we must wait a grace period before freeing it.
1019	 */
1020	kfree_rcu(q_vector, rcu);
1021}
1022
1023/**
1024 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1025 *  @adapter: board private structure to initialize
1026 *
1027 *  This function frees the memory allocated to the q_vectors.  In addition if
1028 *  NAPI is enabled it will delete any references to the NAPI struct prior
1029 *  to freeing the q_vector.
1030 **/
1031static void igb_free_q_vectors(struct igb_adapter *adapter)
1032{
1033	int v_idx = adapter->num_q_vectors;
1034
1035	adapter->num_tx_queues = 0;
1036	adapter->num_rx_queues = 0;
1037	adapter->num_q_vectors = 0;
1038
1039	while (v_idx--)
1040		igb_free_q_vector(adapter, v_idx);
1041}
1042
1043/**
1044 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1045 *  @adapter: board private structure to initialize
1046 *
1047 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1048 *  MSI-X interrupts allocated.
1049 */
1050static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1051{
1052	igb_free_q_vectors(adapter);
1053	igb_reset_interrupt_capability(adapter);
1054}
1055
1056/**
1057 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1058 *  @adapter: board private structure to initialize
1059 *  @msix: boolean value of MSIX capability
1060 *
1061 *  Attempt to configure interrupts using the best available
1062 *  capabilities of the hardware and kernel.
1063 **/
1064static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1065{
1066	int err;
1067	int numvecs, i;
1068
1069	if (!msix)
1070		goto msi_only;
1071
1072	/* Number of supported queues. */
1073	adapter->num_rx_queues = adapter->rss_queues;
1074	if (adapter->vfs_allocated_count)
1075		adapter->num_tx_queues = 1;
1076	else
1077		adapter->num_tx_queues = adapter->rss_queues;
1078
1079	/* start with one vector for every Rx queue */
1080	numvecs = adapter->num_rx_queues;
1081
1082	/* if Tx handler is separate add 1 for every Tx queue */
1083	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1084		numvecs += adapter->num_tx_queues;
1085
1086	/* store the number of vectors reserved for queues */
1087	adapter->num_q_vectors = numvecs;
1088
1089	/* add 1 vector for link status interrupts */
1090	numvecs++;
1091	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1092					GFP_KERNEL);
1093
1094	if (!adapter->msix_entries)
1095		goto msi_only;
1096
1097	for (i = 0; i < numvecs; i++)
1098		adapter->msix_entries[i].entry = i;
1099
1100	err = pci_enable_msix(adapter->pdev,
1101			      adapter->msix_entries,
1102			      numvecs);
1103	if (err == 0)
1104		return;
1105
1106	igb_reset_interrupt_capability(adapter);
1107
1108	/* If we can't do MSI-X, try MSI */
1109msi_only:
1110#ifdef CONFIG_PCI_IOV
1111	/* disable SR-IOV for non MSI-X configurations */
1112	if (adapter->vf_data) {
1113		struct e1000_hw *hw = &adapter->hw;
1114		/* disable iov and allow time for transactions to clear */
1115		pci_disable_sriov(adapter->pdev);
1116		msleep(500);
1117
1118		kfree(adapter->vf_data);
1119		adapter->vf_data = NULL;
1120		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1121		wrfl();
1122		msleep(100);
1123		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1124	}
1125#endif
1126	adapter->vfs_allocated_count = 0;
1127	adapter->rss_queues = 1;
1128	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1129	adapter->num_rx_queues = 1;
1130	adapter->num_tx_queues = 1;
1131	adapter->num_q_vectors = 1;
1132	if (!pci_enable_msi(adapter->pdev))
1133		adapter->flags |= IGB_FLAG_HAS_MSI;
1134}
1135
1136static void igb_add_ring(struct igb_ring *ring,
1137			 struct igb_ring_container *head)
1138{
1139	head->ring = ring;
1140	head->count++;
1141}
1142
1143/**
1144 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1145 *  @adapter: board private structure to initialize
1146 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1147 *  @v_idx: index of vector in adapter struct
1148 *  @txr_count: total number of Tx rings to allocate
1149 *  @txr_idx: index of first Tx ring to allocate
1150 *  @rxr_count: total number of Rx rings to allocate
1151 *  @rxr_idx: index of first Rx ring to allocate
1152 *
1153 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1154 **/
1155static int igb_alloc_q_vector(struct igb_adapter *adapter,
1156			      int v_count, int v_idx,
1157			      int txr_count, int txr_idx,
1158			      int rxr_count, int rxr_idx)
1159{
1160	struct igb_q_vector *q_vector;
1161	struct igb_ring *ring;
1162	int ring_count, size;
1163
1164	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1165	if (txr_count > 1 || rxr_count > 1)
1166		return -ENOMEM;
1167
1168	ring_count = txr_count + rxr_count;
1169	size = sizeof(struct igb_q_vector) +
1170	       (sizeof(struct igb_ring) * ring_count);
1171
1172	/* allocate q_vector and rings */
1173	q_vector = kzalloc(size, GFP_KERNEL);
1174	if (!q_vector)
1175		return -ENOMEM;
1176
1177	/* initialize NAPI */
1178	netif_napi_add(adapter->netdev, &q_vector->napi,
1179		       igb_poll, 64);
1180
1181	/* tie q_vector and adapter together */
1182	adapter->q_vector[v_idx] = q_vector;
1183	q_vector->adapter = adapter;
1184
1185	/* initialize work limits */
1186	q_vector->tx.work_limit = adapter->tx_work_limit;
1187
1188	/* initialize ITR configuration */
1189	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1190	q_vector->itr_val = IGB_START_ITR;
1191
1192	/* initialize pointer to rings */
1193	ring = q_vector->ring;
1194
1195	/* intialize ITR */
1196	if (rxr_count) {
1197		/* rx or rx/tx vector */
1198		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1199			q_vector->itr_val = adapter->rx_itr_setting;
1200	} else {
1201		/* tx only vector */
1202		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1203			q_vector->itr_val = adapter->tx_itr_setting;
1204	}
1205
1206	if (txr_count) {
1207		/* assign generic ring traits */
1208		ring->dev = &adapter->pdev->dev;
1209		ring->netdev = adapter->netdev;
1210
1211		/* configure backlink on ring */
1212		ring->q_vector = q_vector;
1213
1214		/* update q_vector Tx values */
1215		igb_add_ring(ring, &q_vector->tx);
1216
1217		/* For 82575, context index must be unique per ring. */
1218		if (adapter->hw.mac.type == e1000_82575)
1219			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1220
1221		/* apply Tx specific ring traits */
1222		ring->count = adapter->tx_ring_count;
1223		ring->queue_index = txr_idx;
1224
1225		/* assign ring to adapter */
1226		adapter->tx_ring[txr_idx] = ring;
1227
1228		/* push pointer to next ring */
1229		ring++;
1230	}
1231
1232	if (rxr_count) {
1233		/* assign generic ring traits */
1234		ring->dev = &adapter->pdev->dev;
1235		ring->netdev = adapter->netdev;
1236
1237		/* configure backlink on ring */
1238		ring->q_vector = q_vector;
1239
1240		/* update q_vector Rx values */
1241		igb_add_ring(ring, &q_vector->rx);
1242
1243		/* set flag indicating ring supports SCTP checksum offload */
1244		if (adapter->hw.mac.type >= e1000_82576)
1245			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1246
1247		/*
1248		 * On i350, i354, i210, and i211, loopback VLAN packets
1249		 * have the tag byte-swapped.
1250		 */
1251		if (adapter->hw.mac.type >= e1000_i350)
1252			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1253
1254		/* apply Rx specific ring traits */
1255		ring->count = adapter->rx_ring_count;
1256		ring->queue_index = rxr_idx;
1257
1258		/* assign ring to adapter */
1259		adapter->rx_ring[rxr_idx] = ring;
1260	}
1261
1262	return 0;
1263}
1264
1265
1266/**
1267 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1268 *  @adapter: board private structure to initialize
1269 *
1270 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1271 *  return -ENOMEM.
1272 **/
1273static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1274{
1275	int q_vectors = adapter->num_q_vectors;
1276	int rxr_remaining = adapter->num_rx_queues;
1277	int txr_remaining = adapter->num_tx_queues;
1278	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1279	int err;
1280
1281	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1282		for (; rxr_remaining; v_idx++) {
1283			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1284						 0, 0, 1, rxr_idx);
1285
1286			if (err)
1287				goto err_out;
1288
1289			/* update counts and index */
1290			rxr_remaining--;
1291			rxr_idx++;
1292		}
1293	}
1294
1295	for (; v_idx < q_vectors; v_idx++) {
1296		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1297		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1298		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1299					 tqpv, txr_idx, rqpv, rxr_idx);
1300
1301		if (err)
1302			goto err_out;
1303
1304		/* update counts and index */
1305		rxr_remaining -= rqpv;
1306		txr_remaining -= tqpv;
1307		rxr_idx++;
1308		txr_idx++;
1309	}
1310
1311	return 0;
1312
1313err_out:
1314	adapter->num_tx_queues = 0;
1315	adapter->num_rx_queues = 0;
1316	adapter->num_q_vectors = 0;
1317
1318	while (v_idx--)
1319		igb_free_q_vector(adapter, v_idx);
1320
1321	return -ENOMEM;
1322}
1323
1324/**
1325 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1326 *  @adapter: board private structure to initialize
1327 *  @msix: boolean value of MSIX capability
1328 *
1329 *  This function initializes the interrupts and allocates all of the queues.
1330 **/
1331static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1332{
1333	struct pci_dev *pdev = adapter->pdev;
1334	int err;
1335
1336	igb_set_interrupt_capability(adapter, msix);
1337
1338	err = igb_alloc_q_vectors(adapter);
1339	if (err) {
1340		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1341		goto err_alloc_q_vectors;
1342	}
1343
1344	igb_cache_ring_register(adapter);
1345
1346	return 0;
1347
1348err_alloc_q_vectors:
1349	igb_reset_interrupt_capability(adapter);
1350	return err;
1351}
1352
1353/**
1354 *  igb_request_irq - initialize interrupts
1355 *  @adapter: board private structure to initialize
1356 *
1357 *  Attempts to configure interrupts using the best available
1358 *  capabilities of the hardware and kernel.
1359 **/
1360static int igb_request_irq(struct igb_adapter *adapter)
1361{
1362	struct net_device *netdev = adapter->netdev;
1363	struct pci_dev *pdev = adapter->pdev;
1364	int err = 0;
1365
1366	if (adapter->msix_entries) {
1367		err = igb_request_msix(adapter);
1368		if (!err)
1369			goto request_done;
1370		/* fall back to MSI */
1371		igb_free_all_tx_resources(adapter);
1372		igb_free_all_rx_resources(adapter);
1373
1374		igb_clear_interrupt_scheme(adapter);
1375		err = igb_init_interrupt_scheme(adapter, false);
1376		if (err)
1377			goto request_done;
1378
1379		igb_setup_all_tx_resources(adapter);
1380		igb_setup_all_rx_resources(adapter);
1381		igb_configure(adapter);
1382	}
1383
1384	igb_assign_vector(adapter->q_vector[0], 0);
1385
1386	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1387		err = request_irq(pdev->irq, igb_intr_msi, 0,
1388				  netdev->name, adapter);
1389		if (!err)
1390			goto request_done;
1391
1392		/* fall back to legacy interrupts */
1393		igb_reset_interrupt_capability(adapter);
1394		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1395	}
1396
1397	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1398			  netdev->name, adapter);
1399
1400	if (err)
1401		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1402			err);
1403
1404request_done:
1405	return err;
1406}
1407
1408static void igb_free_irq(struct igb_adapter *adapter)
1409{
1410	if (adapter->msix_entries) {
1411		int vector = 0, i;
1412
1413		free_irq(adapter->msix_entries[vector++].vector, adapter);
1414
1415		for (i = 0; i < adapter->num_q_vectors; i++)
1416			free_irq(adapter->msix_entries[vector++].vector,
1417				 adapter->q_vector[i]);
1418	} else {
1419		free_irq(adapter->pdev->irq, adapter);
1420	}
1421}
1422
1423/**
1424 *  igb_irq_disable - Mask off interrupt generation on the NIC
1425 *  @adapter: board private structure
1426 **/
1427static void igb_irq_disable(struct igb_adapter *adapter)
1428{
1429	struct e1000_hw *hw = &adapter->hw;
1430
1431	/* we need to be careful when disabling interrupts.  The VFs are also
1432	 * mapped into these registers and so clearing the bits can cause
1433	 * issues on the VF drivers so we only need to clear what we set
1434	 */
1435	if (adapter->msix_entries) {
1436		u32 regval = rd32(E1000_EIAM);
1437		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1438		wr32(E1000_EIMC, adapter->eims_enable_mask);
1439		regval = rd32(E1000_EIAC);
1440		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1441	}
1442
1443	wr32(E1000_IAM, 0);
1444	wr32(E1000_IMC, ~0);
1445	wrfl();
1446	if (adapter->msix_entries) {
1447		int i;
1448		for (i = 0; i < adapter->num_q_vectors; i++)
1449			synchronize_irq(adapter->msix_entries[i].vector);
1450	} else {
1451		synchronize_irq(adapter->pdev->irq);
1452	}
1453}
1454
1455/**
1456 *  igb_irq_enable - Enable default interrupt generation settings
1457 *  @adapter: board private structure
1458 **/
1459static void igb_irq_enable(struct igb_adapter *adapter)
1460{
1461	struct e1000_hw *hw = &adapter->hw;
1462
1463	if (adapter->msix_entries) {
1464		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1465		u32 regval = rd32(E1000_EIAC);
1466		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1467		regval = rd32(E1000_EIAM);
1468		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1469		wr32(E1000_EIMS, adapter->eims_enable_mask);
1470		if (adapter->vfs_allocated_count) {
1471			wr32(E1000_MBVFIMR, 0xFF);
1472			ims |= E1000_IMS_VMMB;
1473		}
1474		wr32(E1000_IMS, ims);
1475	} else {
1476		wr32(E1000_IMS, IMS_ENABLE_MASK |
1477				E1000_IMS_DRSTA);
1478		wr32(E1000_IAM, IMS_ENABLE_MASK |
1479				E1000_IMS_DRSTA);
1480	}
1481}
1482
1483static void igb_update_mng_vlan(struct igb_adapter *adapter)
1484{
1485	struct e1000_hw *hw = &adapter->hw;
1486	u16 vid = adapter->hw.mng_cookie.vlan_id;
1487	u16 old_vid = adapter->mng_vlan_id;
1488
1489	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1490		/* add VID to filter table */
1491		igb_vfta_set(hw, vid, true);
1492		adapter->mng_vlan_id = vid;
1493	} else {
1494		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1495	}
1496
1497	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1498	    (vid != old_vid) &&
1499	    !test_bit(old_vid, adapter->active_vlans)) {
1500		/* remove VID from filter table */
1501		igb_vfta_set(hw, old_vid, false);
1502	}
1503}
1504
1505/**
1506 *  igb_release_hw_control - release control of the h/w to f/w
1507 *  @adapter: address of board private structure
1508 *
1509 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1510 *  For ASF and Pass Through versions of f/w this means that the
1511 *  driver is no longer loaded.
1512 **/
1513static void igb_release_hw_control(struct igb_adapter *adapter)
1514{
1515	struct e1000_hw *hw = &adapter->hw;
1516	u32 ctrl_ext;
1517
1518	/* Let firmware take over control of h/w */
1519	ctrl_ext = rd32(E1000_CTRL_EXT);
1520	wr32(E1000_CTRL_EXT,
1521			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1522}
1523
1524/**
1525 *  igb_get_hw_control - get control of the h/w from f/w
1526 *  @adapter: address of board private structure
1527 *
1528 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1529 *  For ASF and Pass Through versions of f/w this means that
1530 *  the driver is loaded.
1531 **/
1532static void igb_get_hw_control(struct igb_adapter *adapter)
1533{
1534	struct e1000_hw *hw = &adapter->hw;
1535	u32 ctrl_ext;
1536
1537	/* Let firmware know the driver has taken over */
1538	ctrl_ext = rd32(E1000_CTRL_EXT);
1539	wr32(E1000_CTRL_EXT,
1540			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1541}
1542
1543/**
1544 *  igb_configure - configure the hardware for RX and TX
1545 *  @adapter: private board structure
1546 **/
1547static void igb_configure(struct igb_adapter *adapter)
1548{
1549	struct net_device *netdev = adapter->netdev;
1550	int i;
1551
1552	igb_get_hw_control(adapter);
1553	igb_set_rx_mode(netdev);
1554
1555	igb_restore_vlan(adapter);
1556
1557	igb_setup_tctl(adapter);
1558	igb_setup_mrqc(adapter);
1559	igb_setup_rctl(adapter);
1560
1561	igb_configure_tx(adapter);
1562	igb_configure_rx(adapter);
1563
1564	igb_rx_fifo_flush_82575(&adapter->hw);
1565
1566	/* call igb_desc_unused which always leaves
1567	 * at least 1 descriptor unused to make sure
1568	 * next_to_use != next_to_clean
1569	 */
1570	for (i = 0; i < adapter->num_rx_queues; i++) {
1571		struct igb_ring *ring = adapter->rx_ring[i];
1572		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1573	}
1574}
1575
1576/**
1577 *  igb_power_up_link - Power up the phy/serdes link
1578 *  @adapter: address of board private structure
1579 **/
1580void igb_power_up_link(struct igb_adapter *adapter)
1581{
1582	igb_reset_phy(&adapter->hw);
1583
1584	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1585		igb_power_up_phy_copper(&adapter->hw);
1586	else
1587		igb_power_up_serdes_link_82575(&adapter->hw);
1588}
1589
1590/**
1591 *  igb_power_down_link - Power down the phy/serdes link
1592 *  @adapter: address of board private structure
1593 */
1594static void igb_power_down_link(struct igb_adapter *adapter)
1595{
1596	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1597		igb_power_down_phy_copper_82575(&adapter->hw);
1598	else
1599		igb_shutdown_serdes_link_82575(&adapter->hw);
1600}
1601
1602/**
1603 *  igb_up - Open the interface and prepare it to handle traffic
1604 *  @adapter: board private structure
1605 **/
1606int igb_up(struct igb_adapter *adapter)
1607{
1608	struct e1000_hw *hw = &adapter->hw;
1609	int i;
1610
1611	/* hardware has been reset, we need to reload some things */
1612	igb_configure(adapter);
1613
1614	clear_bit(__IGB_DOWN, &adapter->state);
1615
1616	for (i = 0; i < adapter->num_q_vectors; i++)
1617		napi_enable(&(adapter->q_vector[i]->napi));
1618
1619	if (adapter->msix_entries)
1620		igb_configure_msix(adapter);
1621	else
1622		igb_assign_vector(adapter->q_vector[0], 0);
1623
1624	/* Clear any pending interrupts. */
1625	rd32(E1000_ICR);
1626	igb_irq_enable(adapter);
1627
1628	/* notify VFs that reset has been completed */
1629	if (adapter->vfs_allocated_count) {
1630		u32 reg_data = rd32(E1000_CTRL_EXT);
1631		reg_data |= E1000_CTRL_EXT_PFRSTD;
1632		wr32(E1000_CTRL_EXT, reg_data);
1633	}
1634
1635	netif_tx_start_all_queues(adapter->netdev);
1636
1637	/* start the watchdog. */
1638	hw->mac.get_link_status = 1;
1639	schedule_work(&adapter->watchdog_task);
1640
1641	return 0;
1642}
1643
1644void igb_down(struct igb_adapter *adapter)
1645{
1646	struct net_device *netdev = adapter->netdev;
1647	struct e1000_hw *hw = &adapter->hw;
1648	u32 tctl, rctl;
1649	int i;
1650
1651	/* signal that we're down so the interrupt handler does not
1652	 * reschedule our watchdog timer
1653	 */
1654	set_bit(__IGB_DOWN, &adapter->state);
1655
1656	/* disable receives in the hardware */
1657	rctl = rd32(E1000_RCTL);
1658	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1659	/* flush and sleep below */
1660
1661	netif_tx_stop_all_queues(netdev);
1662
1663	/* disable transmits in the hardware */
1664	tctl = rd32(E1000_TCTL);
1665	tctl &= ~E1000_TCTL_EN;
1666	wr32(E1000_TCTL, tctl);
1667	/* flush both disables and wait for them to finish */
1668	wrfl();
1669	msleep(10);
1670
1671	for (i = 0; i < adapter->num_q_vectors; i++)
1672		napi_disable(&(adapter->q_vector[i]->napi));
1673
1674	igb_irq_disable(adapter);
1675
1676	del_timer_sync(&adapter->watchdog_timer);
1677	del_timer_sync(&adapter->phy_info_timer);
1678
1679	netif_carrier_off(netdev);
1680
1681	/* record the stats before reset*/
1682	spin_lock(&adapter->stats64_lock);
1683	igb_update_stats(adapter, &adapter->stats64);
1684	spin_unlock(&adapter->stats64_lock);
1685
1686	adapter->link_speed = 0;
1687	adapter->link_duplex = 0;
1688
1689	if (!pci_channel_offline(adapter->pdev))
1690		igb_reset(adapter);
1691	igb_clean_all_tx_rings(adapter);
1692	igb_clean_all_rx_rings(adapter);
1693#ifdef CONFIG_IGB_DCA
1694
1695	/* since we reset the hardware DCA settings were cleared */
1696	igb_setup_dca(adapter);
1697#endif
1698}
1699
1700void igb_reinit_locked(struct igb_adapter *adapter)
1701{
1702	WARN_ON(in_interrupt());
1703	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1704		msleep(1);
1705	igb_down(adapter);
1706	igb_up(adapter);
1707	clear_bit(__IGB_RESETTING, &adapter->state);
1708}
1709
1710void igb_reset(struct igb_adapter *adapter)
1711{
1712	struct pci_dev *pdev = adapter->pdev;
1713	struct e1000_hw *hw = &adapter->hw;
1714	struct e1000_mac_info *mac = &hw->mac;
1715	struct e1000_fc_info *fc = &hw->fc;
1716	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1717
1718	/* Repartition Pba for greater than 9k mtu
1719	 * To take effect CTRL.RST is required.
1720	 */
1721	switch (mac->type) {
1722	case e1000_i350:
1723	case e1000_i354:
1724	case e1000_82580:
1725		pba = rd32(E1000_RXPBS);
1726		pba = igb_rxpbs_adjust_82580(pba);
1727		break;
1728	case e1000_82576:
1729		pba = rd32(E1000_RXPBS);
1730		pba &= E1000_RXPBS_SIZE_MASK_82576;
1731		break;
1732	case e1000_82575:
1733	case e1000_i210:
1734	case e1000_i211:
1735	default:
1736		pba = E1000_PBA_34K;
1737		break;
1738	}
1739
1740	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1741	    (mac->type < e1000_82576)) {
1742		/* adjust PBA for jumbo frames */
1743		wr32(E1000_PBA, pba);
1744
1745		/* To maintain wire speed transmits, the Tx FIFO should be
1746		 * large enough to accommodate two full transmit packets,
1747		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1748		 * the Rx FIFO should be large enough to accommodate at least
1749		 * one full receive packet and is similarly rounded up and
1750		 * expressed in KB.
1751		 */
1752		pba = rd32(E1000_PBA);
1753		/* upper 16 bits has Tx packet buffer allocation size in KB */
1754		tx_space = pba >> 16;
1755		/* lower 16 bits has Rx packet buffer allocation size in KB */
1756		pba &= 0xffff;
1757		/* the Tx fifo also stores 16 bytes of information about the Tx
1758		 * but don't include ethernet FCS because hardware appends it
1759		 */
1760		min_tx_space = (adapter->max_frame_size +
1761				sizeof(union e1000_adv_tx_desc) -
1762				ETH_FCS_LEN) * 2;
1763		min_tx_space = ALIGN(min_tx_space, 1024);
1764		min_tx_space >>= 10;
1765		/* software strips receive CRC, so leave room for it */
1766		min_rx_space = adapter->max_frame_size;
1767		min_rx_space = ALIGN(min_rx_space, 1024);
1768		min_rx_space >>= 10;
1769
1770		/* If current Tx allocation is less than the min Tx FIFO size,
1771		 * and the min Tx FIFO size is less than the current Rx FIFO
1772		 * allocation, take space away from current Rx allocation
1773		 */
1774		if (tx_space < min_tx_space &&
1775		    ((min_tx_space - tx_space) < pba)) {
1776			pba = pba - (min_tx_space - tx_space);
1777
1778			/* if short on Rx space, Rx wins and must trump Tx
1779			 * adjustment
1780			 */
1781			if (pba < min_rx_space)
1782				pba = min_rx_space;
1783		}
1784		wr32(E1000_PBA, pba);
1785	}
1786
1787	/* flow control settings */
1788	/* The high water mark must be low enough to fit one full frame
1789	 * (or the size used for early receive) above it in the Rx FIFO.
1790	 * Set it to the lower of:
1791	 * - 90% of the Rx FIFO size, or
1792	 * - the full Rx FIFO size minus one full frame
1793	 */
1794	hwm = min(((pba << 10) * 9 / 10),
1795			((pba << 10) - 2 * adapter->max_frame_size));
1796
1797	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1798	fc->low_water = fc->high_water - 16;
1799	fc->pause_time = 0xFFFF;
1800	fc->send_xon = 1;
1801	fc->current_mode = fc->requested_mode;
1802
1803	/* disable receive for all VFs and wait one second */
1804	if (adapter->vfs_allocated_count) {
1805		int i;
1806		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1807			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1808
1809		/* ping all the active vfs to let them know we are going down */
1810		igb_ping_all_vfs(adapter);
1811
1812		/* disable transmits and receives */
1813		wr32(E1000_VFRE, 0);
1814		wr32(E1000_VFTE, 0);
1815	}
1816
1817	/* Allow time for pending master requests to run */
1818	hw->mac.ops.reset_hw(hw);
1819	wr32(E1000_WUC, 0);
1820
1821	if (hw->mac.ops.init_hw(hw))
1822		dev_err(&pdev->dev, "Hardware Error\n");
1823
1824	/* Flow control settings reset on hardware reset, so guarantee flow
1825	 * control is off when forcing speed.
1826	 */
1827	if (!hw->mac.autoneg)
1828		igb_force_mac_fc(hw);
1829
1830	igb_init_dmac(adapter, pba);
1831#ifdef CONFIG_IGB_HWMON
1832	/* Re-initialize the thermal sensor on i350 devices. */
1833	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1834		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1835			/* If present, re-initialize the external thermal sensor
1836			 * interface.
1837			 */
1838			if (adapter->ets)
1839				mac->ops.init_thermal_sensor_thresh(hw);
1840		}
1841	}
1842#endif
1843	if (!netif_running(adapter->netdev))
1844		igb_power_down_link(adapter);
1845
1846	igb_update_mng_vlan(adapter);
1847
1848	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1849	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1850
1851	/* Re-enable PTP, where applicable. */
1852	igb_ptp_reset(adapter);
1853
1854	igb_get_phy_info(hw);
1855}
1856
1857static netdev_features_t igb_fix_features(struct net_device *netdev,
1858	netdev_features_t features)
1859{
1860	/* Since there is no support for separate Rx/Tx vlan accel
1861	 * enable/disable make sure Tx flag is always in same state as Rx.
1862	 */
1863	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1864		features |= NETIF_F_HW_VLAN_CTAG_TX;
1865	else
1866		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1867
1868	return features;
1869}
1870
1871static int igb_set_features(struct net_device *netdev,
1872	netdev_features_t features)
1873{
1874	netdev_features_t changed = netdev->features ^ features;
1875	struct igb_adapter *adapter = netdev_priv(netdev);
1876
1877	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1878		igb_vlan_mode(netdev, features);
1879
1880	if (!(changed & NETIF_F_RXALL))
1881		return 0;
1882
1883	netdev->features = features;
1884
1885	if (netif_running(netdev))
1886		igb_reinit_locked(adapter);
1887	else
1888		igb_reset(adapter);
1889
1890	return 0;
1891}
1892
1893static const struct net_device_ops igb_netdev_ops = {
1894	.ndo_open		= igb_open,
1895	.ndo_stop		= igb_close,
1896	.ndo_start_xmit		= igb_xmit_frame,
1897	.ndo_get_stats64	= igb_get_stats64,
1898	.ndo_set_rx_mode	= igb_set_rx_mode,
1899	.ndo_set_mac_address	= igb_set_mac,
1900	.ndo_change_mtu		= igb_change_mtu,
1901	.ndo_do_ioctl		= igb_ioctl,
1902	.ndo_tx_timeout		= igb_tx_timeout,
1903	.ndo_validate_addr	= eth_validate_addr,
1904	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1905	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1906	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1907	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1908	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1909	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1910	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1911#ifdef CONFIG_NET_POLL_CONTROLLER
1912	.ndo_poll_controller	= igb_netpoll,
1913#endif
1914	.ndo_fix_features	= igb_fix_features,
1915	.ndo_set_features	= igb_set_features,
1916};
1917
1918/**
1919 * igb_set_fw_version - Configure version string for ethtool
1920 * @adapter: adapter struct
1921 **/
1922void igb_set_fw_version(struct igb_adapter *adapter)
1923{
1924	struct e1000_hw *hw = &adapter->hw;
1925	struct e1000_fw_version fw;
1926
1927	igb_get_fw_version(hw, &fw);
1928
1929	switch (hw->mac.type) {
1930	case e1000_i211:
1931		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1932			 "%2d.%2d-%d",
1933			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1934		break;
1935
1936	default:
1937		/* if option is rom valid, display its version too */
1938		if (fw.or_valid) {
1939			snprintf(adapter->fw_version,
1940				 sizeof(adapter->fw_version),
1941				 "%d.%d, 0x%08x, %d.%d.%d",
1942				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1943				 fw.or_major, fw.or_build, fw.or_patch);
1944		/* no option rom */
1945		} else {
1946			snprintf(adapter->fw_version,
1947				 sizeof(adapter->fw_version),
1948				 "%d.%d, 0x%08x",
1949				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1950		}
1951		break;
1952	}
1953	return;
1954}
1955
1956/**
1957 *  igb_init_i2c - Init I2C interface
1958 *  @adapter: pointer to adapter structure
1959 **/
1960static s32 igb_init_i2c(struct igb_adapter *adapter)
1961{
1962	s32 status = E1000_SUCCESS;
1963
1964	/* I2C interface supported on i350 devices */
1965	if (adapter->hw.mac.type != e1000_i350)
1966		return E1000_SUCCESS;
1967
1968	/* Initialize the i2c bus which is controlled by the registers.
1969	 * This bus will use the i2c_algo_bit structue that implements
1970	 * the protocol through toggling of the 4 bits in the register.
1971	 */
1972	adapter->i2c_adap.owner = THIS_MODULE;
1973	adapter->i2c_algo = igb_i2c_algo;
1974	adapter->i2c_algo.data = adapter;
1975	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1976	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1977	strlcpy(adapter->i2c_adap.name, "igb BB",
1978		sizeof(adapter->i2c_adap.name));
1979	status = i2c_bit_add_bus(&adapter->i2c_adap);
1980	return status;
1981}
1982
1983/**
1984 *  igb_probe - Device Initialization Routine
1985 *  @pdev: PCI device information struct
1986 *  @ent: entry in igb_pci_tbl
1987 *
1988 *  Returns 0 on success, negative on failure
1989 *
1990 *  igb_probe initializes an adapter identified by a pci_dev structure.
1991 *  The OS initialization, configuring of the adapter private structure,
1992 *  and a hardware reset occur.
1993 **/
1994static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1995{
1996	struct net_device *netdev;
1997	struct igb_adapter *adapter;
1998	struct e1000_hw *hw;
1999	u16 eeprom_data = 0;
2000	s32 ret_val;
2001	static int global_quad_port_a; /* global quad port a indication */
2002	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2003	unsigned long mmio_start, mmio_len;
2004	int err, pci_using_dac;
2005	u8 part_str[E1000_PBANUM_LENGTH];
2006
2007	/* Catch broken hardware that put the wrong VF device ID in
2008	 * the PCIe SR-IOV capability.
2009	 */
2010	if (pdev->is_virtfn) {
2011		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2012			pci_name(pdev), pdev->vendor, pdev->device);
2013		return -EINVAL;
2014	}
2015
2016	err = pci_enable_device_mem(pdev);
2017	if (err)
2018		return err;
2019
2020	pci_using_dac = 0;
2021	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2022	if (!err) {
2023		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2024		if (!err)
2025			pci_using_dac = 1;
2026	} else {
2027		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2028		if (err) {
2029			err = dma_set_coherent_mask(&pdev->dev,
2030						    DMA_BIT_MASK(32));
2031			if (err) {
2032				dev_err(&pdev->dev,
2033					"No usable DMA configuration, aborting\n");
2034				goto err_dma;
2035			}
2036		}
2037	}
2038
2039	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2040					   IORESOURCE_MEM),
2041					   igb_driver_name);
2042	if (err)
2043		goto err_pci_reg;
2044
2045	pci_enable_pcie_error_reporting(pdev);
2046
2047	pci_set_master(pdev);
2048	pci_save_state(pdev);
2049
2050	err = -ENOMEM;
2051	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2052				   IGB_MAX_TX_QUEUES);
2053	if (!netdev)
2054		goto err_alloc_etherdev;
2055
2056	SET_NETDEV_DEV(netdev, &pdev->dev);
2057
2058	pci_set_drvdata(pdev, netdev);
2059	adapter = netdev_priv(netdev);
2060	adapter->netdev = netdev;
2061	adapter->pdev = pdev;
2062	hw = &adapter->hw;
2063	hw->back = adapter;
2064	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2065
2066	mmio_start = pci_resource_start(pdev, 0);
2067	mmio_len = pci_resource_len(pdev, 0);
2068
2069	err = -EIO;
2070	hw->hw_addr = ioremap(mmio_start, mmio_len);
2071	if (!hw->hw_addr)
2072		goto err_ioremap;
2073
2074	netdev->netdev_ops = &igb_netdev_ops;
2075	igb_set_ethtool_ops(netdev);
2076	netdev->watchdog_timeo = 5 * HZ;
2077
2078	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2079
2080	netdev->mem_start = mmio_start;
2081	netdev->mem_end = mmio_start + mmio_len;
2082
2083	/* PCI config space info */
2084	hw->vendor_id = pdev->vendor;
2085	hw->device_id = pdev->device;
2086	hw->revision_id = pdev->revision;
2087	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2088	hw->subsystem_device_id = pdev->subsystem_device;
2089
2090	/* Copy the default MAC, PHY and NVM function pointers */
2091	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2092	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2093	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2094	/* Initialize skew-specific constants */
2095	err = ei->get_invariants(hw);
2096	if (err)
2097		goto err_sw_init;
2098
2099	/* setup the private structure */
2100	err = igb_sw_init(adapter);
2101	if (err)
2102		goto err_sw_init;
2103
2104	igb_get_bus_info_pcie(hw);
2105
2106	hw->phy.autoneg_wait_to_complete = false;
2107
2108	/* Copper options */
2109	if (hw->phy.media_type == e1000_media_type_copper) {
2110		hw->phy.mdix = AUTO_ALL_MODES;
2111		hw->phy.disable_polarity_correction = false;
2112		hw->phy.ms_type = e1000_ms_hw_default;
2113	}
2114
2115	if (igb_check_reset_block(hw))
2116		dev_info(&pdev->dev,
2117			"PHY reset is blocked due to SOL/IDER session.\n");
2118
2119	/* features is initialized to 0 in allocation, it might have bits
2120	 * set by igb_sw_init so we should use an or instead of an
2121	 * assignment.
2122	 */
2123	netdev->features |= NETIF_F_SG |
2124			    NETIF_F_IP_CSUM |
2125			    NETIF_F_IPV6_CSUM |
2126			    NETIF_F_TSO |
2127			    NETIF_F_TSO6 |
2128			    NETIF_F_RXHASH |
2129			    NETIF_F_RXCSUM |
2130			    NETIF_F_HW_VLAN_CTAG_RX |
2131			    NETIF_F_HW_VLAN_CTAG_TX;
2132
2133	/* copy netdev features into list of user selectable features */
2134	netdev->hw_features |= netdev->features;
2135	netdev->hw_features |= NETIF_F_RXALL;
2136
2137	/* set this bit last since it cannot be part of hw_features */
2138	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2139
2140	netdev->vlan_features |= NETIF_F_TSO |
2141				 NETIF_F_TSO6 |
2142				 NETIF_F_IP_CSUM |
2143				 NETIF_F_IPV6_CSUM |
2144				 NETIF_F_SG;
2145
2146	netdev->priv_flags |= IFF_SUPP_NOFCS;
2147
2148	if (pci_using_dac) {
2149		netdev->features |= NETIF_F_HIGHDMA;
2150		netdev->vlan_features |= NETIF_F_HIGHDMA;
2151	}
2152
2153	if (hw->mac.type >= e1000_82576) {
2154		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2155		netdev->features |= NETIF_F_SCTP_CSUM;
2156	}
2157
2158	netdev->priv_flags |= IFF_UNICAST_FLT;
2159
2160	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2161
2162	/* before reading the NVM, reset the controller to put the device in a
2163	 * known good starting state
2164	 */
2165	hw->mac.ops.reset_hw(hw);
2166
2167	/* make sure the NVM is good , i211 parts have special NVM that
2168	 * doesn't contain a checksum
2169	 */
2170	if (hw->mac.type != e1000_i211) {
2171		if (hw->nvm.ops.validate(hw) < 0) {
2172			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2173			err = -EIO;
2174			goto err_eeprom;
2175		}
2176	}
2177
2178	/* copy the MAC address out of the NVM */
2179	if (hw->mac.ops.read_mac_addr(hw))
2180		dev_err(&pdev->dev, "NVM Read Error\n");
2181
2182	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2183
2184	if (!is_valid_ether_addr(netdev->dev_addr)) {
2185		dev_err(&pdev->dev, "Invalid MAC Address\n");
2186		err = -EIO;
2187		goto err_eeprom;
2188	}
2189
2190	/* get firmware version for ethtool -i */
2191	igb_set_fw_version(adapter);
2192
2193	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2194		    (unsigned long) adapter);
2195	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2196		    (unsigned long) adapter);
2197
2198	INIT_WORK(&adapter->reset_task, igb_reset_task);
2199	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2200
2201	/* Initialize link properties that are user-changeable */
2202	adapter->fc_autoneg = true;
2203	hw->mac.autoneg = true;
2204	hw->phy.autoneg_advertised = 0x2f;
2205
2206	hw->fc.requested_mode = e1000_fc_default;
2207	hw->fc.current_mode = e1000_fc_default;
2208
2209	igb_validate_mdi_setting(hw);
2210
2211	/* By default, support wake on port A */
2212	if (hw->bus.func == 0)
2213		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2214
2215	/* Check the NVM for wake support on non-port A ports */
2216	if (hw->mac.type >= e1000_82580)
2217		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2218				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2219				 &eeprom_data);
2220	else if (hw->bus.func == 1)
2221		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2222
2223	if (eeprom_data & IGB_EEPROM_APME)
2224		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2225
2226	/* now that we have the eeprom settings, apply the special cases where
2227	 * the eeprom may be wrong or the board simply won't support wake on
2228	 * lan on a particular port
2229	 */
2230	switch (pdev->device) {
2231	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2232		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2233		break;
2234	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2235	case E1000_DEV_ID_82576_FIBER:
2236	case E1000_DEV_ID_82576_SERDES:
2237		/* Wake events only supported on port A for dual fiber
2238		 * regardless of eeprom setting
2239		 */
2240		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2241			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2242		break;
2243	case E1000_DEV_ID_82576_QUAD_COPPER:
2244	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2245		/* if quad port adapter, disable WoL on all but port A */
2246		if (global_quad_port_a != 0)
2247			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2248		else
2249			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2250		/* Reset for multiple quad port adapters */
2251		if (++global_quad_port_a == 4)
2252			global_quad_port_a = 0;
2253		break;
2254	default:
2255		/* If the device can't wake, don't set software support */
2256		if (!device_can_wakeup(&adapter->pdev->dev))
2257			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2258	}
2259
2260	/* initialize the wol settings based on the eeprom settings */
2261	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2262		adapter->wol |= E1000_WUFC_MAG;
2263
2264	/* Some vendors want WoL disabled by default, but still supported */
2265	if ((hw->mac.type == e1000_i350) &&
2266	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2267		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2268		adapter->wol = 0;
2269	}
2270
2271	device_set_wakeup_enable(&adapter->pdev->dev,
2272				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2273
2274	/* reset the hardware with the new settings */
2275	igb_reset(adapter);
2276
2277	/* Init the I2C interface */
2278	err = igb_init_i2c(adapter);
2279	if (err) {
2280		dev_err(&pdev->dev, "failed to init i2c interface\n");
2281		goto err_eeprom;
2282	}
2283
2284	/* let the f/w know that the h/w is now under the control of the
2285	 * driver. */
2286	igb_get_hw_control(adapter);
2287
2288	strcpy(netdev->name, "eth%d");
2289	err = register_netdev(netdev);
2290	if (err)
2291		goto err_register;
2292
2293	/* carrier off reporting is important to ethtool even BEFORE open */
2294	netif_carrier_off(netdev);
2295
2296#ifdef CONFIG_IGB_DCA
2297	if (dca_add_requester(&pdev->dev) == 0) {
2298		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2299		dev_info(&pdev->dev, "DCA enabled\n");
2300		igb_setup_dca(adapter);
2301	}
2302
2303#endif
2304#ifdef CONFIG_IGB_HWMON
2305	/* Initialize the thermal sensor on i350 devices. */
2306	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2307		u16 ets_word;
2308
2309		/* Read the NVM to determine if this i350 device supports an
2310		 * external thermal sensor.
2311		 */
2312		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2313		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2314			adapter->ets = true;
2315		else
2316			adapter->ets = false;
2317		if (igb_sysfs_init(adapter))
2318			dev_err(&pdev->dev,
2319				"failed to allocate sysfs resources\n");
2320	} else {
2321		adapter->ets = false;
2322	}
2323#endif
2324	/* do hw tstamp init after resetting */
2325	igb_ptp_init(adapter);
2326
2327	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2328	/* print bus type/speed/width info, not applicable to i354 */
2329	if (hw->mac.type != e1000_i354) {
2330		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2331			 netdev->name,
2332			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2333			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2334			   "unknown"),
2335			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2336			  "Width x4" :
2337			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2338			  "Width x2" :
2339			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2340			  "Width x1" : "unknown"), netdev->dev_addr);
2341	}
2342
2343	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2344	if (ret_val)
2345		strcpy(part_str, "Unknown");
2346	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2347	dev_info(&pdev->dev,
2348		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2349		adapter->msix_entries ? "MSI-X" :
2350		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2351		adapter->num_rx_queues, adapter->num_tx_queues);
2352	switch (hw->mac.type) {
2353	case e1000_i350:
2354	case e1000_i210:
2355	case e1000_i211:
2356		igb_set_eee_i350(hw);
2357		break;
2358	case e1000_i354:
2359		if (hw->phy.media_type == e1000_media_type_copper) {
2360			if ((rd32(E1000_CTRL_EXT) &
2361			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2362				igb_set_eee_i354(hw);
2363		}
2364		break;
2365	default:
2366		break;
2367	}
2368
2369	pm_runtime_put_noidle(&pdev->dev);
2370	return 0;
2371
2372err_register:
2373	igb_release_hw_control(adapter);
2374	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2375err_eeprom:
2376	if (!igb_check_reset_block(hw))
2377		igb_reset_phy(hw);
2378
2379	if (hw->flash_address)
2380		iounmap(hw->flash_address);
2381err_sw_init:
2382	igb_clear_interrupt_scheme(adapter);
2383	iounmap(hw->hw_addr);
2384err_ioremap:
2385	free_netdev(netdev);
2386err_alloc_etherdev:
2387	pci_release_selected_regions(pdev,
2388				     pci_select_bars(pdev, IORESOURCE_MEM));
2389err_pci_reg:
2390err_dma:
2391	pci_disable_device(pdev);
2392	return err;
2393}
2394
2395#ifdef CONFIG_PCI_IOV
2396static int  igb_disable_sriov(struct pci_dev *pdev)
2397{
2398	struct net_device *netdev = pci_get_drvdata(pdev);
2399	struct igb_adapter *adapter = netdev_priv(netdev);
2400	struct e1000_hw *hw = &adapter->hw;
2401
2402	/* reclaim resources allocated to VFs */
2403	if (adapter->vf_data) {
2404		/* disable iov and allow time for transactions to clear */
2405		if (igb_vfs_are_assigned(adapter)) {
2406			dev_warn(&pdev->dev,
2407				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2408			return -EPERM;
2409		} else {
2410			pci_disable_sriov(pdev);
2411			msleep(500);
2412		}
2413
2414		kfree(adapter->vf_data);
2415		adapter->vf_data = NULL;
2416		adapter->vfs_allocated_count = 0;
2417		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2418		wrfl();
2419		msleep(100);
2420		dev_info(&pdev->dev, "IOV Disabled\n");
2421
2422		/* Re-enable DMA Coalescing flag since IOV is turned off */
2423		adapter->flags |= IGB_FLAG_DMAC;
2424	}
2425
2426	return 0;
2427}
2428
2429static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2430{
2431	struct net_device *netdev = pci_get_drvdata(pdev);
2432	struct igb_adapter *adapter = netdev_priv(netdev);
2433	int old_vfs = pci_num_vf(pdev);
2434	int err = 0;
2435	int i;
2436
2437	if (!num_vfs)
2438		goto out;
2439	else if (old_vfs && old_vfs == num_vfs)
2440		goto out;
2441	else if (old_vfs && old_vfs != num_vfs)
2442		err = igb_disable_sriov(pdev);
2443
2444	if (err)
2445		goto out;
2446
2447	if (num_vfs > 7) {
2448		err = -EPERM;
2449		goto out;
2450	}
2451
2452	adapter->vfs_allocated_count = num_vfs;
2453
2454	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2455				sizeof(struct vf_data_storage), GFP_KERNEL);
2456
2457	/* if allocation failed then we do not support SR-IOV */
2458	if (!adapter->vf_data) {
2459		adapter->vfs_allocated_count = 0;
2460		dev_err(&pdev->dev,
2461			"Unable to allocate memory for VF Data Storage\n");
2462		err = -ENOMEM;
2463		goto out;
2464	}
2465
2466	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2467	if (err)
2468		goto err_out;
2469
2470	dev_info(&pdev->dev, "%d VFs allocated\n",
2471		 adapter->vfs_allocated_count);
2472	for (i = 0; i < adapter->vfs_allocated_count; i++)
2473		igb_vf_configure(adapter, i);
2474
2475	/* DMA Coalescing is not supported in IOV mode. */
2476	adapter->flags &= ~IGB_FLAG_DMAC;
2477	goto out;
2478
2479err_out:
2480	kfree(adapter->vf_data);
2481	adapter->vf_data = NULL;
2482	adapter->vfs_allocated_count = 0;
2483out:
2484	return err;
2485}
2486
2487#endif
2488/**
2489 *  igb_remove_i2c - Cleanup  I2C interface
2490 *  @adapter: pointer to adapter structure
2491 **/
2492static void igb_remove_i2c(struct igb_adapter *adapter)
2493{
2494	/* free the adapter bus structure */
2495	i2c_del_adapter(&adapter->i2c_adap);
2496}
2497
2498/**
2499 *  igb_remove - Device Removal Routine
2500 *  @pdev: PCI device information struct
2501 *
2502 *  igb_remove is called by the PCI subsystem to alert the driver
2503 *  that it should release a PCI device.  The could be caused by a
2504 *  Hot-Plug event, or because the driver is going to be removed from
2505 *  memory.
2506 **/
2507static void igb_remove(struct pci_dev *pdev)
2508{
2509	struct net_device *netdev = pci_get_drvdata(pdev);
2510	struct igb_adapter *adapter = netdev_priv(netdev);
2511	struct e1000_hw *hw = &adapter->hw;
2512
2513	pm_runtime_get_noresume(&pdev->dev);
2514#ifdef CONFIG_IGB_HWMON
2515	igb_sysfs_exit(adapter);
2516#endif
2517	igb_remove_i2c(adapter);
2518	igb_ptp_stop(adapter);
2519	/* The watchdog timer may be rescheduled, so explicitly
2520	 * disable watchdog from being rescheduled.
2521	 */
2522	set_bit(__IGB_DOWN, &adapter->state);
2523	del_timer_sync(&adapter->watchdog_timer);
2524	del_timer_sync(&adapter->phy_info_timer);
2525
2526	cancel_work_sync(&adapter->reset_task);
2527	cancel_work_sync(&adapter->watchdog_task);
2528
2529#ifdef CONFIG_IGB_DCA
2530	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2531		dev_info(&pdev->dev, "DCA disabled\n");
2532		dca_remove_requester(&pdev->dev);
2533		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2534		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2535	}
2536#endif
2537
2538	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2539	 * would have already happened in close and is redundant.
2540	 */
2541	igb_release_hw_control(adapter);
2542
2543	unregister_netdev(netdev);
2544
2545	igb_clear_interrupt_scheme(adapter);
2546
2547#ifdef CONFIG_PCI_IOV
2548	igb_disable_sriov(pdev);
2549#endif
2550
2551	iounmap(hw->hw_addr);
2552	if (hw->flash_address)
2553		iounmap(hw->flash_address);
2554	pci_release_selected_regions(pdev,
2555				     pci_select_bars(pdev, IORESOURCE_MEM));
2556
2557	kfree(adapter->shadow_vfta);
2558	free_netdev(netdev);
2559
2560	pci_disable_pcie_error_reporting(pdev);
2561
2562	pci_disable_device(pdev);
2563}
2564
2565/**
2566 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2567 *  @adapter: board private structure to initialize
2568 *
2569 *  This function initializes the vf specific data storage and then attempts to
2570 *  allocate the VFs.  The reason for ordering it this way is because it is much
2571 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2572 *  the memory for the VFs.
2573 **/
2574static void igb_probe_vfs(struct igb_adapter *adapter)
2575{
2576#ifdef CONFIG_PCI_IOV
2577	struct pci_dev *pdev = adapter->pdev;
2578	struct e1000_hw *hw = &adapter->hw;
2579
2580	/* Virtualization features not supported on i210 family. */
2581	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2582		return;
2583
2584	pci_sriov_set_totalvfs(pdev, 7);
2585	igb_enable_sriov(pdev, max_vfs);
2586
2587#endif /* CONFIG_PCI_IOV */
2588}
2589
2590static void igb_init_queue_configuration(struct igb_adapter *adapter)
2591{
2592	struct e1000_hw *hw = &adapter->hw;
2593	u32 max_rss_queues;
2594
2595	/* Determine the maximum number of RSS queues supported. */
2596	switch (hw->mac.type) {
2597	case e1000_i211:
2598		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2599		break;
2600	case e1000_82575:
2601	case e1000_i210:
2602		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2603		break;
2604	case e1000_i350:
2605		/* I350 cannot do RSS and SR-IOV at the same time */
2606		if (!!adapter->vfs_allocated_count) {
2607			max_rss_queues = 1;
2608			break;
2609		}
2610		/* fall through */
2611	case e1000_82576:
2612		if (!!adapter->vfs_allocated_count) {
2613			max_rss_queues = 2;
2614			break;
2615		}
2616		/* fall through */
2617	case e1000_82580:
2618	case e1000_i354:
2619	default:
2620		max_rss_queues = IGB_MAX_RX_QUEUES;
2621		break;
2622	}
2623
2624	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2625
2626	/* Determine if we need to pair queues. */
2627	switch (hw->mac.type) {
2628	case e1000_82575:
2629	case e1000_i211:
2630		/* Device supports enough interrupts without queue pairing. */
2631		break;
2632	case e1000_82576:
2633		/* If VFs are going to be allocated with RSS queues then we
2634		 * should pair the queues in order to conserve interrupts due
2635		 * to limited supply.
2636		 */
2637		if ((adapter->rss_queues > 1) &&
2638		    (adapter->vfs_allocated_count > 6))
2639			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2640		/* fall through */
2641	case e1000_82580:
2642	case e1000_i350:
2643	case e1000_i354:
2644	case e1000_i210:
2645	default:
2646		/* If rss_queues > half of max_rss_queues, pair the queues in
2647		 * order to conserve interrupts due to limited supply.
2648		 */
2649		if (adapter->rss_queues > (max_rss_queues / 2))
2650			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2651		break;
2652	}
2653}
2654
2655/**
2656 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2657 *  @adapter: board private structure to initialize
2658 *
2659 *  igb_sw_init initializes the Adapter private data structure.
2660 *  Fields are initialized based on PCI device information and
2661 *  OS network device settings (MTU size).
2662 **/
2663static int igb_sw_init(struct igb_adapter *adapter)
2664{
2665	struct e1000_hw *hw = &adapter->hw;
2666	struct net_device *netdev = adapter->netdev;
2667	struct pci_dev *pdev = adapter->pdev;
2668
2669	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2670
2671	/* set default ring sizes */
2672	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2673	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2674
2675	/* set default ITR values */
2676	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2677	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2678
2679	/* set default work limits */
2680	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2681
2682	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2683				  VLAN_HLEN;
2684	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2685
2686	spin_lock_init(&adapter->stats64_lock);
2687#ifdef CONFIG_PCI_IOV
2688	switch (hw->mac.type) {
2689	case e1000_82576:
2690	case e1000_i350:
2691		if (max_vfs > 7) {
2692			dev_warn(&pdev->dev,
2693				 "Maximum of 7 VFs per PF, using max\n");
2694			max_vfs = adapter->vfs_allocated_count = 7;
2695		} else
2696			adapter->vfs_allocated_count = max_vfs;
2697		if (adapter->vfs_allocated_count)
2698			dev_warn(&pdev->dev,
2699				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2700		break;
2701	default:
2702		break;
2703	}
2704#endif /* CONFIG_PCI_IOV */
2705
2706	igb_init_queue_configuration(adapter);
2707
2708	/* Setup and initialize a copy of the hw vlan table array */
2709	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2710				       GFP_ATOMIC);
2711
2712	/* This call may decrease the number of queues */
2713	if (igb_init_interrupt_scheme(adapter, true)) {
2714		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2715		return -ENOMEM;
2716	}
2717
2718	igb_probe_vfs(adapter);
2719
2720	/* Explicitly disable IRQ since the NIC can be in any state. */
2721	igb_irq_disable(adapter);
2722
2723	if (hw->mac.type >= e1000_i350)
2724		adapter->flags &= ~IGB_FLAG_DMAC;
2725
2726	set_bit(__IGB_DOWN, &adapter->state);
2727	return 0;
2728}
2729
2730/**
2731 *  igb_open - Called when a network interface is made active
2732 *  @netdev: network interface device structure
2733 *
2734 *  Returns 0 on success, negative value on failure
2735 *
2736 *  The open entry point is called when a network interface is made
2737 *  active by the system (IFF_UP).  At this point all resources needed
2738 *  for transmit and receive operations are allocated, the interrupt
2739 *  handler is registered with the OS, the watchdog timer is started,
2740 *  and the stack is notified that the interface is ready.
2741 **/
2742static int __igb_open(struct net_device *netdev, bool resuming)
2743{
2744	struct igb_adapter *adapter = netdev_priv(netdev);
2745	struct e1000_hw *hw = &adapter->hw;
2746	struct pci_dev *pdev = adapter->pdev;
2747	int err;
2748	int i;
2749
2750	/* disallow open during test */
2751	if (test_bit(__IGB_TESTING, &adapter->state)) {
2752		WARN_ON(resuming);
2753		return -EBUSY;
2754	}
2755
2756	if (!resuming)
2757		pm_runtime_get_sync(&pdev->dev);
2758
2759	netif_carrier_off(netdev);
2760
2761	/* allocate transmit descriptors */
2762	err = igb_setup_all_tx_resources(adapter);
2763	if (err)
2764		goto err_setup_tx;
2765
2766	/* allocate receive descriptors */
2767	err = igb_setup_all_rx_resources(adapter);
2768	if (err)
2769		goto err_setup_rx;
2770
2771	igb_power_up_link(adapter);
2772
2773	/* before we allocate an interrupt, we must be ready to handle it.
2774	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2775	 * as soon as we call pci_request_irq, so we have to setup our
2776	 * clean_rx handler before we do so.
2777	 */
2778	igb_configure(adapter);
2779
2780	err = igb_request_irq(adapter);
2781	if (err)
2782		goto err_req_irq;
2783
2784	/* Notify the stack of the actual queue counts. */
2785	err = netif_set_real_num_tx_queues(adapter->netdev,
2786					   adapter->num_tx_queues);
2787	if (err)
2788		goto err_set_queues;
2789
2790	err = netif_set_real_num_rx_queues(adapter->netdev,
2791					   adapter->num_rx_queues);
2792	if (err)
2793		goto err_set_queues;
2794
2795	/* From here on the code is the same as igb_up() */
2796	clear_bit(__IGB_DOWN, &adapter->state);
2797
2798	for (i = 0; i < adapter->num_q_vectors; i++)
2799		napi_enable(&(adapter->q_vector[i]->napi));
2800
2801	/* Clear any pending interrupts. */
2802	rd32(E1000_ICR);
2803
2804	igb_irq_enable(adapter);
2805
2806	/* notify VFs that reset has been completed */
2807	if (adapter->vfs_allocated_count) {
2808		u32 reg_data = rd32(E1000_CTRL_EXT);
2809		reg_data |= E1000_CTRL_EXT_PFRSTD;
2810		wr32(E1000_CTRL_EXT, reg_data);
2811	}
2812
2813	netif_tx_start_all_queues(netdev);
2814
2815	if (!resuming)
2816		pm_runtime_put(&pdev->dev);
2817
2818	/* start the watchdog. */
2819	hw->mac.get_link_status = 1;
2820	schedule_work(&adapter->watchdog_task);
2821
2822	return 0;
2823
2824err_set_queues:
2825	igb_free_irq(adapter);
2826err_req_irq:
2827	igb_release_hw_control(adapter);
2828	igb_power_down_link(adapter);
2829	igb_free_all_rx_resources(adapter);
2830err_setup_rx:
2831	igb_free_all_tx_resources(adapter);
2832err_setup_tx:
2833	igb_reset(adapter);
2834	if (!resuming)
2835		pm_runtime_put(&pdev->dev);
2836
2837	return err;
2838}
2839
2840static int igb_open(struct net_device *netdev)
2841{
2842	return __igb_open(netdev, false);
2843}
2844
2845/**
2846 *  igb_close - Disables a network interface
2847 *  @netdev: network interface device structure
2848 *
2849 *  Returns 0, this is not allowed to fail
2850 *
2851 *  The close entry point is called when an interface is de-activated
2852 *  by the OS.  The hardware is still under the driver's control, but
2853 *  needs to be disabled.  A global MAC reset is issued to stop the
2854 *  hardware, and all transmit and receive resources are freed.
2855 **/
2856static int __igb_close(struct net_device *netdev, bool suspending)
2857{
2858	struct igb_adapter *adapter = netdev_priv(netdev);
2859	struct pci_dev *pdev = adapter->pdev;
2860
2861	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2862
2863	if (!suspending)
2864		pm_runtime_get_sync(&pdev->dev);
2865
2866	igb_down(adapter);
2867	igb_free_irq(adapter);
2868
2869	igb_free_all_tx_resources(adapter);
2870	igb_free_all_rx_resources(adapter);
2871
2872	if (!suspending)
2873		pm_runtime_put_sync(&pdev->dev);
2874	return 0;
2875}
2876
2877static int igb_close(struct net_device *netdev)
2878{
2879	return __igb_close(netdev, false);
2880}
2881
2882/**
2883 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2884 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2885 *
2886 *  Return 0 on success, negative on failure
2887 **/
2888int igb_setup_tx_resources(struct igb_ring *tx_ring)
2889{
2890	struct device *dev = tx_ring->dev;
2891	int size;
2892
2893	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2894
2895	tx_ring->tx_buffer_info = vzalloc(size);
2896	if (!tx_ring->tx_buffer_info)
2897		goto err;
2898
2899	/* round up to nearest 4K */
2900	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2901	tx_ring->size = ALIGN(tx_ring->size, 4096);
2902
2903	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2904					   &tx_ring->dma, GFP_KERNEL);
2905	if (!tx_ring->desc)
2906		goto err;
2907
2908	tx_ring->next_to_use = 0;
2909	tx_ring->next_to_clean = 0;
2910
2911	return 0;
2912
2913err:
2914	vfree(tx_ring->tx_buffer_info);
2915	tx_ring->tx_buffer_info = NULL;
2916	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2917	return -ENOMEM;
2918}
2919
2920/**
2921 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2922 *				 (Descriptors) for all queues
2923 *  @adapter: board private structure
2924 *
2925 *  Return 0 on success, negative on failure
2926 **/
2927static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2928{
2929	struct pci_dev *pdev = adapter->pdev;
2930	int i, err = 0;
2931
2932	for (i = 0; i < adapter->num_tx_queues; i++) {
2933		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2934		if (err) {
2935			dev_err(&pdev->dev,
2936				"Allocation for Tx Queue %u failed\n", i);
2937			for (i--; i >= 0; i--)
2938				igb_free_tx_resources(adapter->tx_ring[i]);
2939			break;
2940		}
2941	}
2942
2943	return err;
2944}
2945
2946/**
2947 *  igb_setup_tctl - configure the transmit control registers
2948 *  @adapter: Board private structure
2949 **/
2950void igb_setup_tctl(struct igb_adapter *adapter)
2951{
2952	struct e1000_hw *hw = &adapter->hw;
2953	u32 tctl;
2954
2955	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2956	wr32(E1000_TXDCTL(0), 0);
2957
2958	/* Program the Transmit Control Register */
2959	tctl = rd32(E1000_TCTL);
2960	tctl &= ~E1000_TCTL_CT;
2961	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2962		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2963
2964	igb_config_collision_dist(hw);
2965
2966	/* Enable transmits */
2967	tctl |= E1000_TCTL_EN;
2968
2969	wr32(E1000_TCTL, tctl);
2970}
2971
2972/**
2973 *  igb_configure_tx_ring - Configure transmit ring after Reset
2974 *  @adapter: board private structure
2975 *  @ring: tx ring to configure
2976 *
2977 *  Configure a transmit ring after a reset.
2978 **/
2979void igb_configure_tx_ring(struct igb_adapter *adapter,
2980                           struct igb_ring *ring)
2981{
2982	struct e1000_hw *hw = &adapter->hw;
2983	u32 txdctl = 0;
2984	u64 tdba = ring->dma;
2985	int reg_idx = ring->reg_idx;
2986
2987	/* disable the queue */
2988	wr32(E1000_TXDCTL(reg_idx), 0);
2989	wrfl();
2990	mdelay(10);
2991
2992	wr32(E1000_TDLEN(reg_idx),
2993	     ring->count * sizeof(union e1000_adv_tx_desc));
2994	wr32(E1000_TDBAL(reg_idx),
2995	     tdba & 0x00000000ffffffffULL);
2996	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2997
2998	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2999	wr32(E1000_TDH(reg_idx), 0);
3000	writel(0, ring->tail);
3001
3002	txdctl |= IGB_TX_PTHRESH;
3003	txdctl |= IGB_TX_HTHRESH << 8;
3004	txdctl |= IGB_TX_WTHRESH << 16;
3005
3006	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3007	wr32(E1000_TXDCTL(reg_idx), txdctl);
3008}
3009
3010/**
3011 *  igb_configure_tx - Configure transmit Unit after Reset
3012 *  @adapter: board private structure
3013 *
3014 *  Configure the Tx unit of the MAC after a reset.
3015 **/
3016static void igb_configure_tx(struct igb_adapter *adapter)
3017{
3018	int i;
3019
3020	for (i = 0; i < adapter->num_tx_queues; i++)
3021		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3022}
3023
3024/**
3025 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3026 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3027 *
3028 *  Returns 0 on success, negative on failure
3029 **/
3030int igb_setup_rx_resources(struct igb_ring *rx_ring)
3031{
3032	struct device *dev = rx_ring->dev;
3033	int size;
3034
3035	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3036
3037	rx_ring->rx_buffer_info = vzalloc(size);
3038	if (!rx_ring->rx_buffer_info)
3039		goto err;
3040
3041	/* Round up to nearest 4K */
3042	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3043	rx_ring->size = ALIGN(rx_ring->size, 4096);
3044
3045	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3046					   &rx_ring->dma, GFP_KERNEL);
3047	if (!rx_ring->desc)
3048		goto err;
3049
3050	rx_ring->next_to_alloc = 0;
3051	rx_ring->next_to_clean = 0;
3052	rx_ring->next_to_use = 0;
3053
3054	return 0;
3055
3056err:
3057	vfree(rx_ring->rx_buffer_info);
3058	rx_ring->rx_buffer_info = NULL;
3059	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3060	return -ENOMEM;
3061}
3062
3063/**
3064 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3065 *				 (Descriptors) for all queues
3066 *  @adapter: board private structure
3067 *
3068 *  Return 0 on success, negative on failure
3069 **/
3070static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3071{
3072	struct pci_dev *pdev = adapter->pdev;
3073	int i, err = 0;
3074
3075	for (i = 0; i < adapter->num_rx_queues; i++) {
3076		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3077		if (err) {
3078			dev_err(&pdev->dev,
3079				"Allocation for Rx Queue %u failed\n", i);
3080			for (i--; i >= 0; i--)
3081				igb_free_rx_resources(adapter->rx_ring[i]);
3082			break;
3083		}
3084	}
3085
3086	return err;
3087}
3088
3089/**
3090 *  igb_setup_mrqc - configure the multiple receive queue control registers
3091 *  @adapter: Board private structure
3092 **/
3093static void igb_setup_mrqc(struct igb_adapter *adapter)
3094{
3095	struct e1000_hw *hw = &adapter->hw;
3096	u32 mrqc, rxcsum;
3097	u32 j, num_rx_queues, shift = 0;
3098	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3099					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3100					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3101					0xFA01ACBE };
3102
3103	/* Fill out hash function seeds */
3104	for (j = 0; j < 10; j++)
3105		wr32(E1000_RSSRK(j), rsskey[j]);
3106
3107	num_rx_queues = adapter->rss_queues;
3108
3109	switch (hw->mac.type) {
3110	case e1000_82575:
3111		shift = 6;
3112		break;
3113	case e1000_82576:
3114		/* 82576 supports 2 RSS queues for SR-IOV */
3115		if (adapter->vfs_allocated_count) {
3116			shift = 3;
3117			num_rx_queues = 2;
3118		}
3119		break;
3120	default:
3121		break;
3122	}
3123
3124	/* Populate the indirection table 4 entries at a time.  To do this
3125	 * we are generating the results for n and n+2 and then interleaving
3126	 * those with the results with n+1 and n+3.
3127	 */
3128	for (j = 0; j < 32; j++) {
3129		/* first pass generates n and n+2 */
3130		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3131		u32 reta = (base & 0x07800780) >> (7 - shift);
3132
3133		/* second pass generates n+1 and n+3 */
3134		base += 0x00010001 * num_rx_queues;
3135		reta |= (base & 0x07800780) << (1 + shift);
3136
3137		wr32(E1000_RETA(j), reta);
3138	}
3139
3140	/* Disable raw packet checksumming so that RSS hash is placed in
3141	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3142	 * offloads as they are enabled by default
3143	 */
3144	rxcsum = rd32(E1000_RXCSUM);
3145	rxcsum |= E1000_RXCSUM_PCSD;
3146
3147	if (adapter->hw.mac.type >= e1000_82576)
3148		/* Enable Receive Checksum Offload for SCTP */
3149		rxcsum |= E1000_RXCSUM_CRCOFL;
3150
3151	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3152	wr32(E1000_RXCSUM, rxcsum);
3153
3154	/* Generate RSS hash based on packet types, TCP/UDP
3155	 * port numbers and/or IPv4/v6 src and dst addresses
3156	 */
3157	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3158	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3159	       E1000_MRQC_RSS_FIELD_IPV6 |
3160	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3161	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3162
3163	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3164		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3165	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3166		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3167
3168	/* If VMDq is enabled then we set the appropriate mode for that, else
3169	 * we default to RSS so that an RSS hash is calculated per packet even
3170	 * if we are only using one queue
3171	 */
3172	if (adapter->vfs_allocated_count) {
3173		if (hw->mac.type > e1000_82575) {
3174			/* Set the default pool for the PF's first queue */
3175			u32 vtctl = rd32(E1000_VT_CTL);
3176			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3177				   E1000_VT_CTL_DISABLE_DEF_POOL);
3178			vtctl |= adapter->vfs_allocated_count <<
3179				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3180			wr32(E1000_VT_CTL, vtctl);
3181		}
3182		if (adapter->rss_queues > 1)
3183			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3184		else
3185			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3186	} else {
3187		if (hw->mac.type != e1000_i211)
3188			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3189	}
3190	igb_vmm_control(adapter);
3191
3192	wr32(E1000_MRQC, mrqc);
3193}
3194
3195/**
3196 *  igb_setup_rctl - configure the receive control registers
3197 *  @adapter: Board private structure
3198 **/
3199void igb_setup_rctl(struct igb_adapter *adapter)
3200{
3201	struct e1000_hw *hw = &adapter->hw;
3202	u32 rctl;
3203
3204	rctl = rd32(E1000_RCTL);
3205
3206	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3207	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3208
3209	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3210		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3211
3212	/* enable stripping of CRC. It's unlikely this will break BMC
3213	 * redirection as it did with e1000. Newer features require
3214	 * that the HW strips the CRC.
3215	 */
3216	rctl |= E1000_RCTL_SECRC;
3217
3218	/* disable store bad packets and clear size bits. */
3219	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3220
3221	/* enable LPE to prevent packets larger than max_frame_size */
3222	rctl |= E1000_RCTL_LPE;
3223
3224	/* disable queue 0 to prevent tail write w/o re-config */
3225	wr32(E1000_RXDCTL(0), 0);
3226
3227	/* Attention!!!  For SR-IOV PF driver operations you must enable
3228	 * queue drop for all VF and PF queues to prevent head of line blocking
3229	 * if an un-trusted VF does not provide descriptors to hardware.
3230	 */
3231	if (adapter->vfs_allocated_count) {
3232		/* set all queue drop enable bits */
3233		wr32(E1000_QDE, ALL_QUEUES);
3234	}
3235
3236	/* This is useful for sniffing bad packets. */
3237	if (adapter->netdev->features & NETIF_F_RXALL) {
3238		/* UPE and MPE will be handled by normal PROMISC logic
3239		 * in e1000e_set_rx_mode
3240		 */
3241		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3242			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3243			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3244
3245		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3246			  E1000_RCTL_DPF | /* Allow filtered pause */
3247			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3248		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3249		 * and that breaks VLANs.
3250		 */
3251	}
3252
3253	wr32(E1000_RCTL, rctl);
3254}
3255
3256static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3257                                   int vfn)
3258{
3259	struct e1000_hw *hw = &adapter->hw;
3260	u32 vmolr;
3261
3262	/* if it isn't the PF check to see if VFs are enabled and
3263	 * increase the size to support vlan tags
3264	 */
3265	if (vfn < adapter->vfs_allocated_count &&
3266	    adapter->vf_data[vfn].vlans_enabled)
3267		size += VLAN_TAG_SIZE;
3268
3269	vmolr = rd32(E1000_VMOLR(vfn));
3270	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3271	vmolr |= size | E1000_VMOLR_LPE;
3272	wr32(E1000_VMOLR(vfn), vmolr);
3273
3274	return 0;
3275}
3276
3277/**
3278 *  igb_rlpml_set - set maximum receive packet size
3279 *  @adapter: board private structure
3280 *
3281 *  Configure maximum receivable packet size.
3282 **/
3283static void igb_rlpml_set(struct igb_adapter *adapter)
3284{
3285	u32 max_frame_size = adapter->max_frame_size;
3286	struct e1000_hw *hw = &adapter->hw;
3287	u16 pf_id = adapter->vfs_allocated_count;
3288
3289	if (pf_id) {
3290		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3291		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3292		 * to our max jumbo frame size, in case we need to enable
3293		 * jumbo frames on one of the rings later.
3294		 * This will not pass over-length frames into the default
3295		 * queue because it's gated by the VMOLR.RLPML.
3296		 */
3297		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3298	}
3299
3300	wr32(E1000_RLPML, max_frame_size);
3301}
3302
3303static inline void igb_set_vmolr(struct igb_adapter *adapter,
3304				 int vfn, bool aupe)
3305{
3306	struct e1000_hw *hw = &adapter->hw;
3307	u32 vmolr;
3308
3309	/* This register exists only on 82576 and newer so if we are older then
3310	 * we should exit and do nothing
3311	 */
3312	if (hw->mac.type < e1000_82576)
3313		return;
3314
3315	vmolr = rd32(E1000_VMOLR(vfn));
3316	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3317	if (aupe)
3318		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3319	else
3320		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3321
3322	/* clear all bits that might not be set */
3323	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3324
3325	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3326		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3327	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3328	 * multicast packets
3329	 */
3330	if (vfn <= adapter->vfs_allocated_count)
3331		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3332
3333	wr32(E1000_VMOLR(vfn), vmolr);
3334}
3335
3336/**
3337 *  igb_configure_rx_ring - Configure a receive ring after Reset
3338 *  @adapter: board private structure
3339 *  @ring: receive ring to be configured
3340 *
3341 *  Configure the Rx unit of the MAC after a reset.
3342 **/
3343void igb_configure_rx_ring(struct igb_adapter *adapter,
3344			   struct igb_ring *ring)
3345{
3346	struct e1000_hw *hw = &adapter->hw;
3347	u64 rdba = ring->dma;
3348	int reg_idx = ring->reg_idx;
3349	u32 srrctl = 0, rxdctl = 0;
3350
3351	/* disable the queue */
3352	wr32(E1000_RXDCTL(reg_idx), 0);
3353
3354	/* Set DMA base address registers */
3355	wr32(E1000_RDBAL(reg_idx),
3356	     rdba & 0x00000000ffffffffULL);
3357	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3358	wr32(E1000_RDLEN(reg_idx),
3359	     ring->count * sizeof(union e1000_adv_rx_desc));
3360
3361	/* initialize head and tail */
3362	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3363	wr32(E1000_RDH(reg_idx), 0);
3364	writel(0, ring->tail);
3365
3366	/* set descriptor configuration */
3367	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3368	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3369	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3370	if (hw->mac.type >= e1000_82580)
3371		srrctl |= E1000_SRRCTL_TIMESTAMP;
3372	/* Only set Drop Enable if we are supporting multiple queues */
3373	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3374		srrctl |= E1000_SRRCTL_DROP_EN;
3375
3376	wr32(E1000_SRRCTL(reg_idx), srrctl);
3377
3378	/* set filtering for VMDQ pools */
3379	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3380
3381	rxdctl |= IGB_RX_PTHRESH;
3382	rxdctl |= IGB_RX_HTHRESH << 8;
3383	rxdctl |= IGB_RX_WTHRESH << 16;
3384
3385	/* enable receive descriptor fetching */
3386	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3387	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3388}
3389
3390static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3391				  struct igb_ring *rx_ring)
3392{
3393#define IGB_MAX_BUILD_SKB_SIZE \
3394	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3395	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3396
3397	/* set build_skb flag */
3398	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3399		set_ring_build_skb_enabled(rx_ring);
3400	else
3401		clear_ring_build_skb_enabled(rx_ring);
3402}
3403
3404/**
3405 *  igb_configure_rx - Configure receive Unit after Reset
3406 *  @adapter: board private structure
3407 *
3408 *  Configure the Rx unit of the MAC after a reset.
3409 **/
3410static void igb_configure_rx(struct igb_adapter *adapter)
3411{
3412	int i;
3413
3414	/* set UTA to appropriate mode */
3415	igb_set_uta(adapter);
3416
3417	/* set the correct pool for the PF default MAC address in entry 0 */
3418	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3419			 adapter->vfs_allocated_count);
3420
3421	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3422	 * the Base and Length of the Rx Descriptor Ring
3423	 */
3424	for (i = 0; i < adapter->num_rx_queues; i++) {
3425		struct igb_ring *rx_ring = adapter->rx_ring[i];
3426		igb_set_rx_buffer_len(adapter, rx_ring);
3427		igb_configure_rx_ring(adapter, rx_ring);
3428	}
3429}
3430
3431/**
3432 *  igb_free_tx_resources - Free Tx Resources per Queue
3433 *  @tx_ring: Tx descriptor ring for a specific queue
3434 *
3435 *  Free all transmit software resources
3436 **/
3437void igb_free_tx_resources(struct igb_ring *tx_ring)
3438{
3439	igb_clean_tx_ring(tx_ring);
3440
3441	vfree(tx_ring->tx_buffer_info);
3442	tx_ring->tx_buffer_info = NULL;
3443
3444	/* if not set, then don't free */
3445	if (!tx_ring->desc)
3446		return;
3447
3448	dma_free_coherent(tx_ring->dev, tx_ring->size,
3449			  tx_ring->desc, tx_ring->dma);
3450
3451	tx_ring->desc = NULL;
3452}
3453
3454/**
3455 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3456 *  @adapter: board private structure
3457 *
3458 *  Free all transmit software resources
3459 **/
3460static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3461{
3462	int i;
3463
3464	for (i = 0; i < adapter->num_tx_queues; i++)
3465		igb_free_tx_resources(adapter->tx_ring[i]);
3466}
3467
3468void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3469				    struct igb_tx_buffer *tx_buffer)
3470{
3471	if (tx_buffer->skb) {
3472		dev_kfree_skb_any(tx_buffer->skb);
3473		if (dma_unmap_len(tx_buffer, len))
3474			dma_unmap_single(ring->dev,
3475					 dma_unmap_addr(tx_buffer, dma),
3476					 dma_unmap_len(tx_buffer, len),
3477					 DMA_TO_DEVICE);
3478	} else if (dma_unmap_len(tx_buffer, len)) {
3479		dma_unmap_page(ring->dev,
3480			       dma_unmap_addr(tx_buffer, dma),
3481			       dma_unmap_len(tx_buffer, len),
3482			       DMA_TO_DEVICE);
3483	}
3484	tx_buffer->next_to_watch = NULL;
3485	tx_buffer->skb = NULL;
3486	dma_unmap_len_set(tx_buffer, len, 0);
3487	/* buffer_info must be completely set up in the transmit path */
3488}
3489
3490/**
3491 *  igb_clean_tx_ring - Free Tx Buffers
3492 *  @tx_ring: ring to be cleaned
3493 **/
3494static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3495{
3496	struct igb_tx_buffer *buffer_info;
3497	unsigned long size;
3498	u16 i;
3499
3500	if (!tx_ring->tx_buffer_info)
3501		return;
3502	/* Free all the Tx ring sk_buffs */
3503
3504	for (i = 0; i < tx_ring->count; i++) {
3505		buffer_info = &tx_ring->tx_buffer_info[i];
3506		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3507	}
3508
3509	netdev_tx_reset_queue(txring_txq(tx_ring));
3510
3511	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3512	memset(tx_ring->tx_buffer_info, 0, size);
3513
3514	/* Zero out the descriptor ring */
3515	memset(tx_ring->desc, 0, tx_ring->size);
3516
3517	tx_ring->next_to_use = 0;
3518	tx_ring->next_to_clean = 0;
3519}
3520
3521/**
3522 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3523 *  @adapter: board private structure
3524 **/
3525static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3526{
3527	int i;
3528
3529	for (i = 0; i < adapter->num_tx_queues; i++)
3530		igb_clean_tx_ring(adapter->tx_ring[i]);
3531}
3532
3533/**
3534 *  igb_free_rx_resources - Free Rx Resources
3535 *  @rx_ring: ring to clean the resources from
3536 *
3537 *  Free all receive software resources
3538 **/
3539void igb_free_rx_resources(struct igb_ring *rx_ring)
3540{
3541	igb_clean_rx_ring(rx_ring);
3542
3543	vfree(rx_ring->rx_buffer_info);
3544	rx_ring->rx_buffer_info = NULL;
3545
3546	/* if not set, then don't free */
3547	if (!rx_ring->desc)
3548		return;
3549
3550	dma_free_coherent(rx_ring->dev, rx_ring->size,
3551			  rx_ring->desc, rx_ring->dma);
3552
3553	rx_ring->desc = NULL;
3554}
3555
3556/**
3557 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3558 *  @adapter: board private structure
3559 *
3560 *  Free all receive software resources
3561 **/
3562static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3563{
3564	int i;
3565
3566	for (i = 0; i < adapter->num_rx_queues; i++)
3567		igb_free_rx_resources(adapter->rx_ring[i]);
3568}
3569
3570/**
3571 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3572 *  @rx_ring: ring to free buffers from
3573 **/
3574static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3575{
3576	unsigned long size;
3577	u16 i;
3578
3579	if (rx_ring->skb)
3580		dev_kfree_skb(rx_ring->skb);
3581	rx_ring->skb = NULL;
3582
3583	if (!rx_ring->rx_buffer_info)
3584		return;
3585
3586	/* Free all the Rx ring sk_buffs */
3587	for (i = 0; i < rx_ring->count; i++) {
3588		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3589
3590		if (!buffer_info->page)
3591			continue;
3592
3593		dma_unmap_page(rx_ring->dev,
3594			       buffer_info->dma,
3595			       PAGE_SIZE,
3596			       DMA_FROM_DEVICE);
3597		__free_page(buffer_info->page);
3598
3599		buffer_info->page = NULL;
3600	}
3601
3602	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3603	memset(rx_ring->rx_buffer_info, 0, size);
3604
3605	/* Zero out the descriptor ring */
3606	memset(rx_ring->desc, 0, rx_ring->size);
3607
3608	rx_ring->next_to_alloc = 0;
3609	rx_ring->next_to_clean = 0;
3610	rx_ring->next_to_use = 0;
3611}
3612
3613/**
3614 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3615 *  @adapter: board private structure
3616 **/
3617static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3618{
3619	int i;
3620
3621	for (i = 0; i < adapter->num_rx_queues; i++)
3622		igb_clean_rx_ring(adapter->rx_ring[i]);
3623}
3624
3625/**
3626 *  igb_set_mac - Change the Ethernet Address of the NIC
3627 *  @netdev: network interface device structure
3628 *  @p: pointer to an address structure
3629 *
3630 *  Returns 0 on success, negative on failure
3631 **/
3632static int igb_set_mac(struct net_device *netdev, void *p)
3633{
3634	struct igb_adapter *adapter = netdev_priv(netdev);
3635	struct e1000_hw *hw = &adapter->hw;
3636	struct sockaddr *addr = p;
3637
3638	if (!is_valid_ether_addr(addr->sa_data))
3639		return -EADDRNOTAVAIL;
3640
3641	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3642	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3643
3644	/* set the correct pool for the new PF MAC address in entry 0 */
3645	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3646			 adapter->vfs_allocated_count);
3647
3648	return 0;
3649}
3650
3651/**
3652 *  igb_write_mc_addr_list - write multicast addresses to MTA
3653 *  @netdev: network interface device structure
3654 *
3655 *  Writes multicast address list to the MTA hash table.
3656 *  Returns: -ENOMEM on failure
3657 *           0 on no addresses written
3658 *           X on writing X addresses to MTA
3659 **/
3660static int igb_write_mc_addr_list(struct net_device *netdev)
3661{
3662	struct igb_adapter *adapter = netdev_priv(netdev);
3663	struct e1000_hw *hw = &adapter->hw;
3664	struct netdev_hw_addr *ha;
3665	u8  *mta_list;
3666	int i;
3667
3668	if (netdev_mc_empty(netdev)) {
3669		/* nothing to program, so clear mc list */
3670		igb_update_mc_addr_list(hw, NULL, 0);
3671		igb_restore_vf_multicasts(adapter);
3672		return 0;
3673	}
3674
3675	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3676	if (!mta_list)
3677		return -ENOMEM;
3678
3679	/* The shared function expects a packed array of only addresses. */
3680	i = 0;
3681	netdev_for_each_mc_addr(ha, netdev)
3682		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3683
3684	igb_update_mc_addr_list(hw, mta_list, i);
3685	kfree(mta_list);
3686
3687	return netdev_mc_count(netdev);
3688}
3689
3690/**
3691 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3692 *  @netdev: network interface device structure
3693 *
3694 *  Writes unicast address list to the RAR table.
3695 *  Returns: -ENOMEM on failure/insufficient address space
3696 *           0 on no addresses written
3697 *           X on writing X addresses to the RAR table
3698 **/
3699static int igb_write_uc_addr_list(struct net_device *netdev)
3700{
3701	struct igb_adapter *adapter = netdev_priv(netdev);
3702	struct e1000_hw *hw = &adapter->hw;
3703	unsigned int vfn = adapter->vfs_allocated_count;
3704	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3705	int count = 0;
3706
3707	/* return ENOMEM indicating insufficient memory for addresses */
3708	if (netdev_uc_count(netdev) > rar_entries)
3709		return -ENOMEM;
3710
3711	if (!netdev_uc_empty(netdev) && rar_entries) {
3712		struct netdev_hw_addr *ha;
3713
3714		netdev_for_each_uc_addr(ha, netdev) {
3715			if (!rar_entries)
3716				break;
3717			igb_rar_set_qsel(adapter, ha->addr,
3718					 rar_entries--,
3719					 vfn);
3720			count++;
3721		}
3722	}
3723	/* write the addresses in reverse order to avoid write combining */
3724	for (; rar_entries > 0 ; rar_entries--) {
3725		wr32(E1000_RAH(rar_entries), 0);
3726		wr32(E1000_RAL(rar_entries), 0);
3727	}
3728	wrfl();
3729
3730	return count;
3731}
3732
3733/**
3734 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3735 *  @netdev: network interface device structure
3736 *
3737 *  The set_rx_mode entry point is called whenever the unicast or multicast
3738 *  address lists or the network interface flags are updated.  This routine is
3739 *  responsible for configuring the hardware for proper unicast, multicast,
3740 *  promiscuous mode, and all-multi behavior.
3741 **/
3742static void igb_set_rx_mode(struct net_device *netdev)
3743{
3744	struct igb_adapter *adapter = netdev_priv(netdev);
3745	struct e1000_hw *hw = &adapter->hw;
3746	unsigned int vfn = adapter->vfs_allocated_count;
3747	u32 rctl, vmolr = 0;
3748	int count;
3749
3750	/* Check for Promiscuous and All Multicast modes */
3751	rctl = rd32(E1000_RCTL);
3752
3753	/* clear the effected bits */
3754	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3755
3756	if (netdev->flags & IFF_PROMISC) {
3757		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3758		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3759	} else {
3760		if (netdev->flags & IFF_ALLMULTI) {
3761			rctl |= E1000_RCTL_MPE;
3762			vmolr |= E1000_VMOLR_MPME;
3763		} else {
3764			/* Write addresses to the MTA, if the attempt fails
3765			 * then we should just turn on promiscuous mode so
3766			 * that we can at least receive multicast traffic
3767			 */
3768			count = igb_write_mc_addr_list(netdev);
3769			if (count < 0) {
3770				rctl |= E1000_RCTL_MPE;
3771				vmolr |= E1000_VMOLR_MPME;
3772			} else if (count) {
3773				vmolr |= E1000_VMOLR_ROMPE;
3774			}
3775		}
3776		/* Write addresses to available RAR registers, if there is not
3777		 * sufficient space to store all the addresses then enable
3778		 * unicast promiscuous mode
3779		 */
3780		count = igb_write_uc_addr_list(netdev);
3781		if (count < 0) {
3782			rctl |= E1000_RCTL_UPE;
3783			vmolr |= E1000_VMOLR_ROPE;
3784		}
3785		rctl |= E1000_RCTL_VFE;
3786	}
3787	wr32(E1000_RCTL, rctl);
3788
3789	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3790	 * the VMOLR to enable the appropriate modes.  Without this workaround
3791	 * we will have issues with VLAN tag stripping not being done for frames
3792	 * that are only arriving because we are the default pool
3793	 */
3794	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3795		return;
3796
3797	vmolr |= rd32(E1000_VMOLR(vfn)) &
3798		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3799	wr32(E1000_VMOLR(vfn), vmolr);
3800	igb_restore_vf_multicasts(adapter);
3801}
3802
3803static void igb_check_wvbr(struct igb_adapter *adapter)
3804{
3805	struct e1000_hw *hw = &adapter->hw;
3806	u32 wvbr = 0;
3807
3808	switch (hw->mac.type) {
3809	case e1000_82576:
3810	case e1000_i350:
3811		if (!(wvbr = rd32(E1000_WVBR)))
3812			return;
3813		break;
3814	default:
3815		break;
3816	}
3817
3818	adapter->wvbr |= wvbr;
3819}
3820
3821#define IGB_STAGGERED_QUEUE_OFFSET 8
3822
3823static void igb_spoof_check(struct igb_adapter *adapter)
3824{
3825	int j;
3826
3827	if (!adapter->wvbr)
3828		return;
3829
3830	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3831		if (adapter->wvbr & (1 << j) ||
3832		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3833			dev_warn(&adapter->pdev->dev,
3834				"Spoof event(s) detected on VF %d\n", j);
3835			adapter->wvbr &=
3836				~((1 << j) |
3837				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3838		}
3839	}
3840}
3841
3842/* Need to wait a few seconds after link up to get diagnostic information from
3843 * the phy
3844 */
3845static void igb_update_phy_info(unsigned long data)
3846{
3847	struct igb_adapter *adapter = (struct igb_adapter *) data;
3848	igb_get_phy_info(&adapter->hw);
3849}
3850
3851/**
3852 *  igb_has_link - check shared code for link and determine up/down
3853 *  @adapter: pointer to driver private info
3854 **/
3855bool igb_has_link(struct igb_adapter *adapter)
3856{
3857	struct e1000_hw *hw = &adapter->hw;
3858	bool link_active = false;
3859	s32 ret_val = 0;
3860
3861	/* get_link_status is set on LSC (link status) interrupt or
3862	 * rx sequence error interrupt.  get_link_status will stay
3863	 * false until the e1000_check_for_link establishes link
3864	 * for copper adapters ONLY
3865	 */
3866	switch (hw->phy.media_type) {
3867	case e1000_media_type_copper:
3868		if (hw->mac.get_link_status) {
3869			ret_val = hw->mac.ops.check_for_link(hw);
3870			link_active = !hw->mac.get_link_status;
3871		} else {
3872			link_active = true;
3873		}
3874		break;
3875	case e1000_media_type_internal_serdes:
3876		ret_val = hw->mac.ops.check_for_link(hw);
3877		link_active = hw->mac.serdes_has_link;
3878		break;
3879	default:
3880	case e1000_media_type_unknown:
3881		break;
3882	}
3883
3884	return link_active;
3885}
3886
3887static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3888{
3889	bool ret = false;
3890	u32 ctrl_ext, thstat;
3891
3892	/* check for thermal sensor event on i350 copper only */
3893	if (hw->mac.type == e1000_i350) {
3894		thstat = rd32(E1000_THSTAT);
3895		ctrl_ext = rd32(E1000_CTRL_EXT);
3896
3897		if ((hw->phy.media_type == e1000_media_type_copper) &&
3898		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3899			ret = !!(thstat & event);
3900	}
3901
3902	return ret;
3903}
3904
3905/**
3906 *  igb_watchdog - Timer Call-back
3907 *  @data: pointer to adapter cast into an unsigned long
3908 **/
3909static void igb_watchdog(unsigned long data)
3910{
3911	struct igb_adapter *adapter = (struct igb_adapter *)data;
3912	/* Do the rest outside of interrupt context */
3913	schedule_work(&adapter->watchdog_task);
3914}
3915
3916static void igb_watchdog_task(struct work_struct *work)
3917{
3918	struct igb_adapter *adapter = container_of(work,
3919						   struct igb_adapter,
3920						   watchdog_task);
3921	struct e1000_hw *hw = &adapter->hw;
3922	struct net_device *netdev = adapter->netdev;
3923	u32 link;
3924	int i;
3925
3926	link = igb_has_link(adapter);
3927	if (link) {
3928		/* Cancel scheduled suspend requests. */
3929		pm_runtime_resume(netdev->dev.parent);
3930
3931		if (!netif_carrier_ok(netdev)) {
3932			u32 ctrl;
3933			hw->mac.ops.get_speed_and_duplex(hw,
3934							 &adapter->link_speed,
3935							 &adapter->link_duplex);
3936
3937			ctrl = rd32(E1000_CTRL);
3938			/* Links status message must follow this format */
3939			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3940			       "Duplex, Flow Control: %s\n",
3941			       netdev->name,
3942			       adapter->link_speed,
3943			       adapter->link_duplex == FULL_DUPLEX ?
3944			       "Full" : "Half",
3945			       (ctrl & E1000_CTRL_TFCE) &&
3946			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3947			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3948			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3949
3950			/* check for thermal sensor event */
3951			if (igb_thermal_sensor_event(hw,
3952			    E1000_THSTAT_LINK_THROTTLE)) {
3953				netdev_info(netdev, "The network adapter link "
3954					    "speed was downshifted because it "
3955					    "overheated\n");
3956			}
3957
3958			/* adjust timeout factor according to speed/duplex */
3959			adapter->tx_timeout_factor = 1;
3960			switch (adapter->link_speed) {
3961			case SPEED_10:
3962				adapter->tx_timeout_factor = 14;
3963				break;
3964			case SPEED_100:
3965				/* maybe add some timeout factor ? */
3966				break;
3967			}
3968
3969			netif_carrier_on(netdev);
3970
3971			igb_ping_all_vfs(adapter);
3972			igb_check_vf_rate_limit(adapter);
3973
3974			/* link state has changed, schedule phy info update */
3975			if (!test_bit(__IGB_DOWN, &adapter->state))
3976				mod_timer(&adapter->phy_info_timer,
3977					  round_jiffies(jiffies + 2 * HZ));
3978		}
3979	} else {
3980		if (netif_carrier_ok(netdev)) {
3981			adapter->link_speed = 0;
3982			adapter->link_duplex = 0;
3983
3984			/* check for thermal sensor event */
3985			if (igb_thermal_sensor_event(hw,
3986			    E1000_THSTAT_PWR_DOWN)) {
3987				netdev_err(netdev, "The network adapter was "
3988					   "stopped because it overheated\n");
3989			}
3990
3991			/* Links status message must follow this format */
3992			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3993			       netdev->name);
3994			netif_carrier_off(netdev);
3995
3996			igb_ping_all_vfs(adapter);
3997
3998			/* link state has changed, schedule phy info update */
3999			if (!test_bit(__IGB_DOWN, &adapter->state))
4000				mod_timer(&adapter->phy_info_timer,
4001					  round_jiffies(jiffies + 2 * HZ));
4002
4003			pm_schedule_suspend(netdev->dev.parent,
4004					    MSEC_PER_SEC * 5);
4005		}
4006	}
4007
4008	spin_lock(&adapter->stats64_lock);
4009	igb_update_stats(adapter, &adapter->stats64);
4010	spin_unlock(&adapter->stats64_lock);
4011
4012	for (i = 0; i < adapter->num_tx_queues; i++) {
4013		struct igb_ring *tx_ring = adapter->tx_ring[i];
4014		if (!netif_carrier_ok(netdev)) {
4015			/* We've lost link, so the controller stops DMA,
4016			 * but we've got queued Tx work that's never going
4017			 * to get done, so reset controller to flush Tx.
4018			 * (Do the reset outside of interrupt context).
4019			 */
4020			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4021				adapter->tx_timeout_count++;
4022				schedule_work(&adapter->reset_task);
4023				/* return immediately since reset is imminent */
4024				return;
4025			}
4026		}
4027
4028		/* Force detection of hung controller every watchdog period */
4029		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4030	}
4031
4032	/* Cause software interrupt to ensure Rx ring is cleaned */
4033	if (adapter->msix_entries) {
4034		u32 eics = 0;
4035		for (i = 0; i < adapter->num_q_vectors; i++)
4036			eics |= adapter->q_vector[i]->eims_value;
4037		wr32(E1000_EICS, eics);
4038	} else {
4039		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4040	}
4041
4042	igb_spoof_check(adapter);
4043	igb_ptp_rx_hang(adapter);
4044
4045	/* Reset the timer */
4046	if (!test_bit(__IGB_DOWN, &adapter->state))
4047		mod_timer(&adapter->watchdog_timer,
4048			  round_jiffies(jiffies + 2 * HZ));
4049}
4050
4051enum latency_range {
4052	lowest_latency = 0,
4053	low_latency = 1,
4054	bulk_latency = 2,
4055	latency_invalid = 255
4056};
4057
4058/**
4059 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4060 *  @q_vector: pointer to q_vector
4061 *
4062 *  Stores a new ITR value based on strictly on packet size.  This
4063 *  algorithm is less sophisticated than that used in igb_update_itr,
4064 *  due to the difficulty of synchronizing statistics across multiple
4065 *  receive rings.  The divisors and thresholds used by this function
4066 *  were determined based on theoretical maximum wire speed and testing
4067 *  data, in order to minimize response time while increasing bulk
4068 *  throughput.
4069 *  This functionality is controlled by the InterruptThrottleRate module
4070 *  parameter (see igb_param.c)
4071 *  NOTE:  This function is called only when operating in a multiqueue
4072 *         receive environment.
4073 **/
4074static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4075{
4076	int new_val = q_vector->itr_val;
4077	int avg_wire_size = 0;
4078	struct igb_adapter *adapter = q_vector->adapter;
4079	unsigned int packets;
4080
4081	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4082	 * ints/sec - ITR timer value of 120 ticks.
4083	 */
4084	if (adapter->link_speed != SPEED_1000) {
4085		new_val = IGB_4K_ITR;
4086		goto set_itr_val;
4087	}
4088
4089	packets = q_vector->rx.total_packets;
4090	if (packets)
4091		avg_wire_size = q_vector->rx.total_bytes / packets;
4092
4093	packets = q_vector->tx.total_packets;
4094	if (packets)
4095		avg_wire_size = max_t(u32, avg_wire_size,
4096				      q_vector->tx.total_bytes / packets);
4097
4098	/* if avg_wire_size isn't set no work was done */
4099	if (!avg_wire_size)
4100		goto clear_counts;
4101
4102	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4103	avg_wire_size += 24;
4104
4105	/* Don't starve jumbo frames */
4106	avg_wire_size = min(avg_wire_size, 3000);
4107
4108	/* Give a little boost to mid-size frames */
4109	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4110		new_val = avg_wire_size / 3;
4111	else
4112		new_val = avg_wire_size / 2;
4113
4114	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4115	if (new_val < IGB_20K_ITR &&
4116	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4117	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4118		new_val = IGB_20K_ITR;
4119
4120set_itr_val:
4121	if (new_val != q_vector->itr_val) {
4122		q_vector->itr_val = new_val;
4123		q_vector->set_itr = 1;
4124	}
4125clear_counts:
4126	q_vector->rx.total_bytes = 0;
4127	q_vector->rx.total_packets = 0;
4128	q_vector->tx.total_bytes = 0;
4129	q_vector->tx.total_packets = 0;
4130}
4131
4132/**
4133 *  igb_update_itr - update the dynamic ITR value based on statistics
4134 *  @q_vector: pointer to q_vector
4135 *  @ring_container: ring info to update the itr for
4136 *
4137 *  Stores a new ITR value based on packets and byte
4138 *  counts during the last interrupt.  The advantage of per interrupt
4139 *  computation is faster updates and more accurate ITR for the current
4140 *  traffic pattern.  Constants in this function were computed
4141 *  based on theoretical maximum wire speed and thresholds were set based
4142 *  on testing data as well as attempting to minimize response time
4143 *  while increasing bulk throughput.
4144 *  this functionality is controlled by the InterruptThrottleRate module
4145 *  parameter (see igb_param.c)
4146 *  NOTE:  These calculations are only valid when operating in a single-
4147 *         queue environment.
4148 **/
4149static void igb_update_itr(struct igb_q_vector *q_vector,
4150			   struct igb_ring_container *ring_container)
4151{
4152	unsigned int packets = ring_container->total_packets;
4153	unsigned int bytes = ring_container->total_bytes;
4154	u8 itrval = ring_container->itr;
4155
4156	/* no packets, exit with status unchanged */
4157	if (packets == 0)
4158		return;
4159
4160	switch (itrval) {
4161	case lowest_latency:
4162		/* handle TSO and jumbo frames */
4163		if (bytes/packets > 8000)
4164			itrval = bulk_latency;
4165		else if ((packets < 5) && (bytes > 512))
4166			itrval = low_latency;
4167		break;
4168	case low_latency:  /* 50 usec aka 20000 ints/s */
4169		if (bytes > 10000) {
4170			/* this if handles the TSO accounting */
4171			if (bytes/packets > 8000) {
4172				itrval = bulk_latency;
4173			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4174				itrval = bulk_latency;
4175			} else if ((packets > 35)) {
4176				itrval = lowest_latency;
4177			}
4178		} else if (bytes/packets > 2000) {
4179			itrval = bulk_latency;
4180		} else if (packets <= 2 && bytes < 512) {
4181			itrval = lowest_latency;
4182		}
4183		break;
4184	case bulk_latency: /* 250 usec aka 4000 ints/s */
4185		if (bytes > 25000) {
4186			if (packets > 35)
4187				itrval = low_latency;
4188		} else if (bytes < 1500) {
4189			itrval = low_latency;
4190		}
4191		break;
4192	}
4193
4194	/* clear work counters since we have the values we need */
4195	ring_container->total_bytes = 0;
4196	ring_container->total_packets = 0;
4197
4198	/* write updated itr to ring container */
4199	ring_container->itr = itrval;
4200}
4201
4202static void igb_set_itr(struct igb_q_vector *q_vector)
4203{
4204	struct igb_adapter *adapter = q_vector->adapter;
4205	u32 new_itr = q_vector->itr_val;
4206	u8 current_itr = 0;
4207
4208	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4209	if (adapter->link_speed != SPEED_1000) {
4210		current_itr = 0;
4211		new_itr = IGB_4K_ITR;
4212		goto set_itr_now;
4213	}
4214
4215	igb_update_itr(q_vector, &q_vector->tx);
4216	igb_update_itr(q_vector, &q_vector->rx);
4217
4218	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4219
4220	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4221	if (current_itr == lowest_latency &&
4222	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4223	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4224		current_itr = low_latency;
4225
4226	switch (current_itr) {
4227	/* counts and packets in update_itr are dependent on these numbers */
4228	case lowest_latency:
4229		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4230		break;
4231	case low_latency:
4232		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4233		break;
4234	case bulk_latency:
4235		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4236		break;
4237	default:
4238		break;
4239	}
4240
4241set_itr_now:
4242	if (new_itr != q_vector->itr_val) {
4243		/* this attempts to bias the interrupt rate towards Bulk
4244		 * by adding intermediate steps when interrupt rate is
4245		 * increasing
4246		 */
4247		new_itr = new_itr > q_vector->itr_val ?
4248			  max((new_itr * q_vector->itr_val) /
4249			  (new_itr + (q_vector->itr_val >> 2)),
4250			  new_itr) : new_itr;
4251		/* Don't write the value here; it resets the adapter's
4252		 * internal timer, and causes us to delay far longer than
4253		 * we should between interrupts.  Instead, we write the ITR
4254		 * value at the beginning of the next interrupt so the timing
4255		 * ends up being correct.
4256		 */
4257		q_vector->itr_val = new_itr;
4258		q_vector->set_itr = 1;
4259	}
4260}
4261
4262static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4263			    u32 type_tucmd, u32 mss_l4len_idx)
4264{
4265	struct e1000_adv_tx_context_desc *context_desc;
4266	u16 i = tx_ring->next_to_use;
4267
4268	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4269
4270	i++;
4271	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4272
4273	/* set bits to identify this as an advanced context descriptor */
4274	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4275
4276	/* For 82575, context index must be unique per ring. */
4277	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4278		mss_l4len_idx |= tx_ring->reg_idx << 4;
4279
4280	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4281	context_desc->seqnum_seed	= 0;
4282	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4283	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4284}
4285
4286static int igb_tso(struct igb_ring *tx_ring,
4287		   struct igb_tx_buffer *first,
4288		   u8 *hdr_len)
4289{
4290	struct sk_buff *skb = first->skb;
4291	u32 vlan_macip_lens, type_tucmd;
4292	u32 mss_l4len_idx, l4len;
4293
4294	if (skb->ip_summed != CHECKSUM_PARTIAL)
4295		return 0;
4296
4297	if (!skb_is_gso(skb))
4298		return 0;
4299
4300	if (skb_header_cloned(skb)) {
4301		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4302		if (err)
4303			return err;
4304	}
4305
4306	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4307	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4308
4309	if (first->protocol == __constant_htons(ETH_P_IP)) {
4310		struct iphdr *iph = ip_hdr(skb);
4311		iph->tot_len = 0;
4312		iph->check = 0;
4313		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4314							 iph->daddr, 0,
4315							 IPPROTO_TCP,
4316							 0);
4317		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4318		first->tx_flags |= IGB_TX_FLAGS_TSO |
4319				   IGB_TX_FLAGS_CSUM |
4320				   IGB_TX_FLAGS_IPV4;
4321	} else if (skb_is_gso_v6(skb)) {
4322		ipv6_hdr(skb)->payload_len = 0;
4323		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4324						       &ipv6_hdr(skb)->daddr,
4325						       0, IPPROTO_TCP, 0);
4326		first->tx_flags |= IGB_TX_FLAGS_TSO |
4327				   IGB_TX_FLAGS_CSUM;
4328	}
4329
4330	/* compute header lengths */
4331	l4len = tcp_hdrlen(skb);
4332	*hdr_len = skb_transport_offset(skb) + l4len;
4333
4334	/* update gso size and bytecount with header size */
4335	first->gso_segs = skb_shinfo(skb)->gso_segs;
4336	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4337
4338	/* MSS L4LEN IDX */
4339	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4340	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4341
4342	/* VLAN MACLEN IPLEN */
4343	vlan_macip_lens = skb_network_header_len(skb);
4344	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4345	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4346
4347	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4348
4349	return 1;
4350}
4351
4352static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4353{
4354	struct sk_buff *skb = first->skb;
4355	u32 vlan_macip_lens = 0;
4356	u32 mss_l4len_idx = 0;
4357	u32 type_tucmd = 0;
4358
4359	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4360		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4361			return;
4362	} else {
4363		u8 l4_hdr = 0;
4364		switch (first->protocol) {
4365		case __constant_htons(ETH_P_IP):
4366			vlan_macip_lens |= skb_network_header_len(skb);
4367			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4368			l4_hdr = ip_hdr(skb)->protocol;
4369			break;
4370		case __constant_htons(ETH_P_IPV6):
4371			vlan_macip_lens |= skb_network_header_len(skb);
4372			l4_hdr = ipv6_hdr(skb)->nexthdr;
4373			break;
4374		default:
4375			if (unlikely(net_ratelimit())) {
4376				dev_warn(tx_ring->dev,
4377					 "partial checksum but proto=%x!\n",
4378					 first->protocol);
4379			}
4380			break;
4381		}
4382
4383		switch (l4_hdr) {
4384		case IPPROTO_TCP:
4385			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4386			mss_l4len_idx = tcp_hdrlen(skb) <<
4387					E1000_ADVTXD_L4LEN_SHIFT;
4388			break;
4389		case IPPROTO_SCTP:
4390			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4391			mss_l4len_idx = sizeof(struct sctphdr) <<
4392					E1000_ADVTXD_L4LEN_SHIFT;
4393			break;
4394		case IPPROTO_UDP:
4395			mss_l4len_idx = sizeof(struct udphdr) <<
4396					E1000_ADVTXD_L4LEN_SHIFT;
4397			break;
4398		default:
4399			if (unlikely(net_ratelimit())) {
4400				dev_warn(tx_ring->dev,
4401					 "partial checksum but l4 proto=%x!\n",
4402					 l4_hdr);
4403			}
4404			break;
4405		}
4406
4407		/* update TX checksum flag */
4408		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4409	}
4410
4411	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4412	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4413
4414	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4415}
4416
4417#define IGB_SET_FLAG(_input, _flag, _result) \
4418	((_flag <= _result) ? \
4419	 ((u32)(_input & _flag) * (_result / _flag)) : \
4420	 ((u32)(_input & _flag) / (_flag / _result)))
4421
4422static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4423{
4424	/* set type for advanced descriptor with frame checksum insertion */
4425	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4426		       E1000_ADVTXD_DCMD_DEXT |
4427		       E1000_ADVTXD_DCMD_IFCS;
4428
4429	/* set HW vlan bit if vlan is present */
4430	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4431				 (E1000_ADVTXD_DCMD_VLE));
4432
4433	/* set segmentation bits for TSO */
4434	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4435				 (E1000_ADVTXD_DCMD_TSE));
4436
4437	/* set timestamp bit if present */
4438	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4439				 (E1000_ADVTXD_MAC_TSTAMP));
4440
4441	/* insert frame checksum */
4442	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4443
4444	return cmd_type;
4445}
4446
4447static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4448				 union e1000_adv_tx_desc *tx_desc,
4449				 u32 tx_flags, unsigned int paylen)
4450{
4451	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4452
4453	/* 82575 requires a unique index per ring */
4454	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4455		olinfo_status |= tx_ring->reg_idx << 4;
4456
4457	/* insert L4 checksum */
4458	olinfo_status |= IGB_SET_FLAG(tx_flags,
4459				      IGB_TX_FLAGS_CSUM,
4460				      (E1000_TXD_POPTS_TXSM << 8));
4461
4462	/* insert IPv4 checksum */
4463	olinfo_status |= IGB_SET_FLAG(tx_flags,
4464				      IGB_TX_FLAGS_IPV4,
4465				      (E1000_TXD_POPTS_IXSM << 8));
4466
4467	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4468}
4469
4470static void igb_tx_map(struct igb_ring *tx_ring,
4471		       struct igb_tx_buffer *first,
4472		       const u8 hdr_len)
4473{
4474	struct sk_buff *skb = first->skb;
4475	struct igb_tx_buffer *tx_buffer;
4476	union e1000_adv_tx_desc *tx_desc;
4477	struct skb_frag_struct *frag;
4478	dma_addr_t dma;
4479	unsigned int data_len, size;
4480	u32 tx_flags = first->tx_flags;
4481	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4482	u16 i = tx_ring->next_to_use;
4483
4484	tx_desc = IGB_TX_DESC(tx_ring, i);
4485
4486	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4487
4488	size = skb_headlen(skb);
4489	data_len = skb->data_len;
4490
4491	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4492
4493	tx_buffer = first;
4494
4495	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4496		if (dma_mapping_error(tx_ring->dev, dma))
4497			goto dma_error;
4498
4499		/* record length, and DMA address */
4500		dma_unmap_len_set(tx_buffer, len, size);
4501		dma_unmap_addr_set(tx_buffer, dma, dma);
4502
4503		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4504
4505		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4506			tx_desc->read.cmd_type_len =
4507				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4508
4509			i++;
4510			tx_desc++;
4511			if (i == tx_ring->count) {
4512				tx_desc = IGB_TX_DESC(tx_ring, 0);
4513				i = 0;
4514			}
4515			tx_desc->read.olinfo_status = 0;
4516
4517			dma += IGB_MAX_DATA_PER_TXD;
4518			size -= IGB_MAX_DATA_PER_TXD;
4519
4520			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4521		}
4522
4523		if (likely(!data_len))
4524			break;
4525
4526		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4527
4528		i++;
4529		tx_desc++;
4530		if (i == tx_ring->count) {
4531			tx_desc = IGB_TX_DESC(tx_ring, 0);
4532			i = 0;
4533		}
4534		tx_desc->read.olinfo_status = 0;
4535
4536		size = skb_frag_size(frag);
4537		data_len -= size;
4538
4539		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4540				       size, DMA_TO_DEVICE);
4541
4542		tx_buffer = &tx_ring->tx_buffer_info[i];
4543	}
4544
4545	/* write last descriptor with RS and EOP bits */
4546	cmd_type |= size | IGB_TXD_DCMD;
4547	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4548
4549	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4550
4551	/* set the timestamp */
4552	first->time_stamp = jiffies;
4553
4554	/* Force memory writes to complete before letting h/w know there
4555	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4556	 * memory model archs, such as IA-64).
4557	 *
4558	 * We also need this memory barrier to make certain all of the
4559	 * status bits have been updated before next_to_watch is written.
4560	 */
4561	wmb();
4562
4563	/* set next_to_watch value indicating a packet is present */
4564	first->next_to_watch = tx_desc;
4565
4566	i++;
4567	if (i == tx_ring->count)
4568		i = 0;
4569
4570	tx_ring->next_to_use = i;
4571
4572	writel(i, tx_ring->tail);
4573
4574	/* we need this if more than one processor can write to our tail
4575	 * at a time, it synchronizes IO on IA64/Altix systems
4576	 */
4577	mmiowb();
4578
4579	return;
4580
4581dma_error:
4582	dev_err(tx_ring->dev, "TX DMA map failed\n");
4583
4584	/* clear dma mappings for failed tx_buffer_info map */
4585	for (;;) {
4586		tx_buffer = &tx_ring->tx_buffer_info[i];
4587		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4588		if (tx_buffer == first)
4589			break;
4590		if (i == 0)
4591			i = tx_ring->count;
4592		i--;
4593	}
4594
4595	tx_ring->next_to_use = i;
4596}
4597
4598static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4599{
4600	struct net_device *netdev = tx_ring->netdev;
4601
4602	netif_stop_subqueue(netdev, tx_ring->queue_index);
4603
4604	/* Herbert's original patch had:
4605	 *  smp_mb__after_netif_stop_queue();
4606	 * but since that doesn't exist yet, just open code it.
4607	 */
4608	smp_mb();
4609
4610	/* We need to check again in a case another CPU has just
4611	 * made room available.
4612	 */
4613	if (igb_desc_unused(tx_ring) < size)
4614		return -EBUSY;
4615
4616	/* A reprieve! */
4617	netif_wake_subqueue(netdev, tx_ring->queue_index);
4618
4619	u64_stats_update_begin(&tx_ring->tx_syncp2);
4620	tx_ring->tx_stats.restart_queue2++;
4621	u64_stats_update_end(&tx_ring->tx_syncp2);
4622
4623	return 0;
4624}
4625
4626static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4627{
4628	if (igb_desc_unused(tx_ring) >= size)
4629		return 0;
4630	return __igb_maybe_stop_tx(tx_ring, size);
4631}
4632
4633netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4634				struct igb_ring *tx_ring)
4635{
4636	struct igb_tx_buffer *first;
4637	int tso;
4638	u32 tx_flags = 0;
4639	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4640	__be16 protocol = vlan_get_protocol(skb);
4641	u8 hdr_len = 0;
4642
4643	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4644	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4645	 *       + 2 desc gap to keep tail from touching head,
4646	 *       + 1 desc for context descriptor,
4647	 * otherwise try next time
4648	 */
4649	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4650		unsigned short f;
4651		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4652			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4653	} else {
4654		count += skb_shinfo(skb)->nr_frags;
4655	}
4656
4657	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4658		/* this is a hard error */
4659		return NETDEV_TX_BUSY;
4660	}
4661
4662	/* record the location of the first descriptor for this packet */
4663	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4664	first->skb = skb;
4665	first->bytecount = skb->len;
4666	first->gso_segs = 1;
4667
4668	skb_tx_timestamp(skb);
4669
4670	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4671		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4672
4673		if (!(adapter->ptp_tx_skb)) {
4674			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4675			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4676
4677			adapter->ptp_tx_skb = skb_get(skb);
4678			adapter->ptp_tx_start = jiffies;
4679			if (adapter->hw.mac.type == e1000_82576)
4680				schedule_work(&adapter->ptp_tx_work);
4681		}
4682	}
4683
4684	if (vlan_tx_tag_present(skb)) {
4685		tx_flags |= IGB_TX_FLAGS_VLAN;
4686		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4687	}
4688
4689	/* record initial flags and protocol */
4690	first->tx_flags = tx_flags;
4691	first->protocol = protocol;
4692
4693	tso = igb_tso(tx_ring, first, &hdr_len);
4694	if (tso < 0)
4695		goto out_drop;
4696	else if (!tso)
4697		igb_tx_csum(tx_ring, first);
4698
4699	igb_tx_map(tx_ring, first, hdr_len);
4700
4701	/* Make sure there is space in the ring for the next send. */
4702	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4703
4704	return NETDEV_TX_OK;
4705
4706out_drop:
4707	igb_unmap_and_free_tx_resource(tx_ring, first);
4708
4709	return NETDEV_TX_OK;
4710}
4711
4712static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4713						    struct sk_buff *skb)
4714{
4715	unsigned int r_idx = skb->queue_mapping;
4716
4717	if (r_idx >= adapter->num_tx_queues)
4718		r_idx = r_idx % adapter->num_tx_queues;
4719
4720	return adapter->tx_ring[r_idx];
4721}
4722
4723static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4724				  struct net_device *netdev)
4725{
4726	struct igb_adapter *adapter = netdev_priv(netdev);
4727
4728	if (test_bit(__IGB_DOWN, &adapter->state)) {
4729		dev_kfree_skb_any(skb);
4730		return NETDEV_TX_OK;
4731	}
4732
4733	if (skb->len <= 0) {
4734		dev_kfree_skb_any(skb);
4735		return NETDEV_TX_OK;
4736	}
4737
4738	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4739	 * in order to meet this minimum size requirement.
4740	 */
4741	if (unlikely(skb->len < 17)) {
4742		if (skb_pad(skb, 17 - skb->len))
4743			return NETDEV_TX_OK;
4744		skb->len = 17;
4745		skb_set_tail_pointer(skb, 17);
4746	}
4747
4748	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4749}
4750
4751/**
4752 *  igb_tx_timeout - Respond to a Tx Hang
4753 *  @netdev: network interface device structure
4754 **/
4755static void igb_tx_timeout(struct net_device *netdev)
4756{
4757	struct igb_adapter *adapter = netdev_priv(netdev);
4758	struct e1000_hw *hw = &adapter->hw;
4759
4760	/* Do the reset outside of interrupt context */
4761	adapter->tx_timeout_count++;
4762
4763	if (hw->mac.type >= e1000_82580)
4764		hw->dev_spec._82575.global_device_reset = true;
4765
4766	schedule_work(&adapter->reset_task);
4767	wr32(E1000_EICS,
4768	     (adapter->eims_enable_mask & ~adapter->eims_other));
4769}
4770
4771static void igb_reset_task(struct work_struct *work)
4772{
4773	struct igb_adapter *adapter;
4774	adapter = container_of(work, struct igb_adapter, reset_task);
4775
4776	igb_dump(adapter);
4777	netdev_err(adapter->netdev, "Reset adapter\n");
4778	igb_reinit_locked(adapter);
4779}
4780
4781/**
4782 *  igb_get_stats64 - Get System Network Statistics
4783 *  @netdev: network interface device structure
4784 *  @stats: rtnl_link_stats64 pointer
4785 **/
4786static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4787						struct rtnl_link_stats64 *stats)
4788{
4789	struct igb_adapter *adapter = netdev_priv(netdev);
4790
4791	spin_lock(&adapter->stats64_lock);
4792	igb_update_stats(adapter, &adapter->stats64);
4793	memcpy(stats, &adapter->stats64, sizeof(*stats));
4794	spin_unlock(&adapter->stats64_lock);
4795
4796	return stats;
4797}
4798
4799/**
4800 *  igb_change_mtu - Change the Maximum Transfer Unit
4801 *  @netdev: network interface device structure
4802 *  @new_mtu: new value for maximum frame size
4803 *
4804 *  Returns 0 on success, negative on failure
4805 **/
4806static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4807{
4808	struct igb_adapter *adapter = netdev_priv(netdev);
4809	struct pci_dev *pdev = adapter->pdev;
4810	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4811
4812	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4813		dev_err(&pdev->dev, "Invalid MTU setting\n");
4814		return -EINVAL;
4815	}
4816
4817#define MAX_STD_JUMBO_FRAME_SIZE 9238
4818	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4819		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4820		return -EINVAL;
4821	}
4822
4823	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4824		msleep(1);
4825
4826	/* igb_down has a dependency on max_frame_size */
4827	adapter->max_frame_size = max_frame;
4828
4829	if (netif_running(netdev))
4830		igb_down(adapter);
4831
4832	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4833		 netdev->mtu, new_mtu);
4834	netdev->mtu = new_mtu;
4835
4836	if (netif_running(netdev))
4837		igb_up(adapter);
4838	else
4839		igb_reset(adapter);
4840
4841	clear_bit(__IGB_RESETTING, &adapter->state);
4842
4843	return 0;
4844}
4845
4846/**
4847 *  igb_update_stats - Update the board statistics counters
4848 *  @adapter: board private structure
4849 **/
4850void igb_update_stats(struct igb_adapter *adapter,
4851		      struct rtnl_link_stats64 *net_stats)
4852{
4853	struct e1000_hw *hw = &adapter->hw;
4854	struct pci_dev *pdev = adapter->pdev;
4855	u32 reg, mpc;
4856	u16 phy_tmp;
4857	int i;
4858	u64 bytes, packets;
4859	unsigned int start;
4860	u64 _bytes, _packets;
4861
4862#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4863
4864	/* Prevent stats update while adapter is being reset, or if the pci
4865	 * connection is down.
4866	 */
4867	if (adapter->link_speed == 0)
4868		return;
4869	if (pci_channel_offline(pdev))
4870		return;
4871
4872	bytes = 0;
4873	packets = 0;
4874	for (i = 0; i < adapter->num_rx_queues; i++) {
4875		u32 rqdpc = rd32(E1000_RQDPC(i));
4876		struct igb_ring *ring = adapter->rx_ring[i];
4877
4878		if (rqdpc) {
4879			ring->rx_stats.drops += rqdpc;
4880			net_stats->rx_fifo_errors += rqdpc;
4881		}
4882
4883		do {
4884			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4885			_bytes = ring->rx_stats.bytes;
4886			_packets = ring->rx_stats.packets;
4887		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4888		bytes += _bytes;
4889		packets += _packets;
4890	}
4891
4892	net_stats->rx_bytes = bytes;
4893	net_stats->rx_packets = packets;
4894
4895	bytes = 0;
4896	packets = 0;
4897	for (i = 0; i < adapter->num_tx_queues; i++) {
4898		struct igb_ring *ring = adapter->tx_ring[i];
4899		do {
4900			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4901			_bytes = ring->tx_stats.bytes;
4902			_packets = ring->tx_stats.packets;
4903		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4904		bytes += _bytes;
4905		packets += _packets;
4906	}
4907	net_stats->tx_bytes = bytes;
4908	net_stats->tx_packets = packets;
4909
4910	/* read stats registers */
4911	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4912	adapter->stats.gprc += rd32(E1000_GPRC);
4913	adapter->stats.gorc += rd32(E1000_GORCL);
4914	rd32(E1000_GORCH); /* clear GORCL */
4915	adapter->stats.bprc += rd32(E1000_BPRC);
4916	adapter->stats.mprc += rd32(E1000_MPRC);
4917	adapter->stats.roc += rd32(E1000_ROC);
4918
4919	adapter->stats.prc64 += rd32(E1000_PRC64);
4920	adapter->stats.prc127 += rd32(E1000_PRC127);
4921	adapter->stats.prc255 += rd32(E1000_PRC255);
4922	adapter->stats.prc511 += rd32(E1000_PRC511);
4923	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4924	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4925	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4926	adapter->stats.sec += rd32(E1000_SEC);
4927
4928	mpc = rd32(E1000_MPC);
4929	adapter->stats.mpc += mpc;
4930	net_stats->rx_fifo_errors += mpc;
4931	adapter->stats.scc += rd32(E1000_SCC);
4932	adapter->stats.ecol += rd32(E1000_ECOL);
4933	adapter->stats.mcc += rd32(E1000_MCC);
4934	adapter->stats.latecol += rd32(E1000_LATECOL);
4935	adapter->stats.dc += rd32(E1000_DC);
4936	adapter->stats.rlec += rd32(E1000_RLEC);
4937	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4938	adapter->stats.xontxc += rd32(E1000_XONTXC);
4939	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4940	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4941	adapter->stats.fcruc += rd32(E1000_FCRUC);
4942	adapter->stats.gptc += rd32(E1000_GPTC);
4943	adapter->stats.gotc += rd32(E1000_GOTCL);
4944	rd32(E1000_GOTCH); /* clear GOTCL */
4945	adapter->stats.rnbc += rd32(E1000_RNBC);
4946	adapter->stats.ruc += rd32(E1000_RUC);
4947	adapter->stats.rfc += rd32(E1000_RFC);
4948	adapter->stats.rjc += rd32(E1000_RJC);
4949	adapter->stats.tor += rd32(E1000_TORH);
4950	adapter->stats.tot += rd32(E1000_TOTH);
4951	adapter->stats.tpr += rd32(E1000_TPR);
4952
4953	adapter->stats.ptc64 += rd32(E1000_PTC64);
4954	adapter->stats.ptc127 += rd32(E1000_PTC127);
4955	adapter->stats.ptc255 += rd32(E1000_PTC255);
4956	adapter->stats.ptc511 += rd32(E1000_PTC511);
4957	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4958	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4959
4960	adapter->stats.mptc += rd32(E1000_MPTC);
4961	adapter->stats.bptc += rd32(E1000_BPTC);
4962
4963	adapter->stats.tpt += rd32(E1000_TPT);
4964	adapter->stats.colc += rd32(E1000_COLC);
4965
4966	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4967	/* read internal phy specific stats */
4968	reg = rd32(E1000_CTRL_EXT);
4969	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4970		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4971
4972		/* this stat has invalid values on i210/i211 */
4973		if ((hw->mac.type != e1000_i210) &&
4974		    (hw->mac.type != e1000_i211))
4975			adapter->stats.tncrs += rd32(E1000_TNCRS);
4976	}
4977
4978	adapter->stats.tsctc += rd32(E1000_TSCTC);
4979	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4980
4981	adapter->stats.iac += rd32(E1000_IAC);
4982	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4983	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4984	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4985	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4986	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4987	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4988	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4989	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4990
4991	/* Fill out the OS statistics structure */
4992	net_stats->multicast = adapter->stats.mprc;
4993	net_stats->collisions = adapter->stats.colc;
4994
4995	/* Rx Errors */
4996
4997	/* RLEC on some newer hardware can be incorrect so build
4998	 * our own version based on RUC and ROC
4999	 */
5000	net_stats->rx_errors = adapter->stats.rxerrc +
5001		adapter->stats.crcerrs + adapter->stats.algnerrc +
5002		adapter->stats.ruc + adapter->stats.roc +
5003		adapter->stats.cexterr;
5004	net_stats->rx_length_errors = adapter->stats.ruc +
5005				      adapter->stats.roc;
5006	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5007	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5008	net_stats->rx_missed_errors = adapter->stats.mpc;
5009
5010	/* Tx Errors */
5011	net_stats->tx_errors = adapter->stats.ecol +
5012			       adapter->stats.latecol;
5013	net_stats->tx_aborted_errors = adapter->stats.ecol;
5014	net_stats->tx_window_errors = adapter->stats.latecol;
5015	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5016
5017	/* Tx Dropped needs to be maintained elsewhere */
5018
5019	/* Phy Stats */
5020	if (hw->phy.media_type == e1000_media_type_copper) {
5021		if ((adapter->link_speed == SPEED_1000) &&
5022		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5023			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5024			adapter->phy_stats.idle_errors += phy_tmp;
5025		}
5026	}
5027
5028	/* Management Stats */
5029	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5030	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5031	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5032
5033	/* OS2BMC Stats */
5034	reg = rd32(E1000_MANC);
5035	if (reg & E1000_MANC_EN_BMC2OS) {
5036		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5037		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5038		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5039		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5040	}
5041}
5042
5043static irqreturn_t igb_msix_other(int irq, void *data)
5044{
5045	struct igb_adapter *adapter = data;
5046	struct e1000_hw *hw = &adapter->hw;
5047	u32 icr = rd32(E1000_ICR);
5048	/* reading ICR causes bit 31 of EICR to be cleared */
5049
5050	if (icr & E1000_ICR_DRSTA)
5051		schedule_work(&adapter->reset_task);
5052
5053	if (icr & E1000_ICR_DOUTSYNC) {
5054		/* HW is reporting DMA is out of sync */
5055		adapter->stats.doosync++;
5056		/* The DMA Out of Sync is also indication of a spoof event
5057		 * in IOV mode. Check the Wrong VM Behavior register to
5058		 * see if it is really a spoof event.
5059		 */
5060		igb_check_wvbr(adapter);
5061	}
5062
5063	/* Check for a mailbox event */
5064	if (icr & E1000_ICR_VMMB)
5065		igb_msg_task(adapter);
5066
5067	if (icr & E1000_ICR_LSC) {
5068		hw->mac.get_link_status = 1;
5069		/* guard against interrupt when we're going down */
5070		if (!test_bit(__IGB_DOWN, &adapter->state))
5071			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5072	}
5073
5074	if (icr & E1000_ICR_TS) {
5075		u32 tsicr = rd32(E1000_TSICR);
5076
5077		if (tsicr & E1000_TSICR_TXTS) {
5078			/* acknowledge the interrupt */
5079			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5080			/* retrieve hardware timestamp */
5081			schedule_work(&adapter->ptp_tx_work);
5082		}
5083	}
5084
5085	wr32(E1000_EIMS, adapter->eims_other);
5086
5087	return IRQ_HANDLED;
5088}
5089
5090static void igb_write_itr(struct igb_q_vector *q_vector)
5091{
5092	struct igb_adapter *adapter = q_vector->adapter;
5093	u32 itr_val = q_vector->itr_val & 0x7FFC;
5094
5095	if (!q_vector->set_itr)
5096		return;
5097
5098	if (!itr_val)
5099		itr_val = 0x4;
5100
5101	if (adapter->hw.mac.type == e1000_82575)
5102		itr_val |= itr_val << 16;
5103	else
5104		itr_val |= E1000_EITR_CNT_IGNR;
5105
5106	writel(itr_val, q_vector->itr_register);
5107	q_vector->set_itr = 0;
5108}
5109
5110static irqreturn_t igb_msix_ring(int irq, void *data)
5111{
5112	struct igb_q_vector *q_vector = data;
5113
5114	/* Write the ITR value calculated from the previous interrupt. */
5115	igb_write_itr(q_vector);
5116
5117	napi_schedule(&q_vector->napi);
5118
5119	return IRQ_HANDLED;
5120}
5121
5122#ifdef CONFIG_IGB_DCA
5123static void igb_update_tx_dca(struct igb_adapter *adapter,
5124			      struct igb_ring *tx_ring,
5125			      int cpu)
5126{
5127	struct e1000_hw *hw = &adapter->hw;
5128	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5129
5130	if (hw->mac.type != e1000_82575)
5131		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5132
5133	/* We can enable relaxed ordering for reads, but not writes when
5134	 * DCA is enabled.  This is due to a known issue in some chipsets
5135	 * which will cause the DCA tag to be cleared.
5136	 */
5137	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5138		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5139		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5140
5141	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5142}
5143
5144static void igb_update_rx_dca(struct igb_adapter *adapter,
5145			      struct igb_ring *rx_ring,
5146			      int cpu)
5147{
5148	struct e1000_hw *hw = &adapter->hw;
5149	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5150
5151	if (hw->mac.type != e1000_82575)
5152		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5153
5154	/* We can enable relaxed ordering for reads, but not writes when
5155	 * DCA is enabled.  This is due to a known issue in some chipsets
5156	 * which will cause the DCA tag to be cleared.
5157	 */
5158	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5159		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5160
5161	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5162}
5163
5164static void igb_update_dca(struct igb_q_vector *q_vector)
5165{
5166	struct igb_adapter *adapter = q_vector->adapter;
5167	int cpu = get_cpu();
5168
5169	if (q_vector->cpu == cpu)
5170		goto out_no_update;
5171
5172	if (q_vector->tx.ring)
5173		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5174
5175	if (q_vector->rx.ring)
5176		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5177
5178	q_vector->cpu = cpu;
5179out_no_update:
5180	put_cpu();
5181}
5182
5183static void igb_setup_dca(struct igb_adapter *adapter)
5184{
5185	struct e1000_hw *hw = &adapter->hw;
5186	int i;
5187
5188	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5189		return;
5190
5191	/* Always use CB2 mode, difference is masked in the CB driver. */
5192	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5193
5194	for (i = 0; i < adapter->num_q_vectors; i++) {
5195		adapter->q_vector[i]->cpu = -1;
5196		igb_update_dca(adapter->q_vector[i]);
5197	}
5198}
5199
5200static int __igb_notify_dca(struct device *dev, void *data)
5201{
5202	struct net_device *netdev = dev_get_drvdata(dev);
5203	struct igb_adapter *adapter = netdev_priv(netdev);
5204	struct pci_dev *pdev = adapter->pdev;
5205	struct e1000_hw *hw = &adapter->hw;
5206	unsigned long event = *(unsigned long *)data;
5207
5208	switch (event) {
5209	case DCA_PROVIDER_ADD:
5210		/* if already enabled, don't do it again */
5211		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5212			break;
5213		if (dca_add_requester(dev) == 0) {
5214			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5215			dev_info(&pdev->dev, "DCA enabled\n");
5216			igb_setup_dca(adapter);
5217			break;
5218		}
5219		/* Fall Through since DCA is disabled. */
5220	case DCA_PROVIDER_REMOVE:
5221		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5222			/* without this a class_device is left
5223			 * hanging around in the sysfs model
5224			 */
5225			dca_remove_requester(dev);
5226			dev_info(&pdev->dev, "DCA disabled\n");
5227			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5228			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5229		}
5230		break;
5231	}
5232
5233	return 0;
5234}
5235
5236static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5237			  void *p)
5238{
5239	int ret_val;
5240
5241	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5242					 __igb_notify_dca);
5243
5244	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5245}
5246#endif /* CONFIG_IGB_DCA */
5247
5248#ifdef CONFIG_PCI_IOV
5249static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5250{
5251	unsigned char mac_addr[ETH_ALEN];
5252
5253	eth_zero_addr(mac_addr);
5254	igb_set_vf_mac(adapter, vf, mac_addr);
5255
5256	/* By default spoof check is enabled for all VFs */
5257	adapter->vf_data[vf].spoofchk_enabled = true;
5258
5259	return 0;
5260}
5261
5262static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5263{
5264	struct pci_dev *pdev = adapter->pdev;
5265	struct pci_dev *vfdev;
5266	int dev_id;
5267
5268	switch (adapter->hw.mac.type) {
5269	case e1000_82576:
5270		dev_id = IGB_82576_VF_DEV_ID;
5271		break;
5272	case e1000_i350:
5273		dev_id = IGB_I350_VF_DEV_ID;
5274		break;
5275	default:
5276		return false;
5277	}
5278
5279	/* loop through all the VFs to see if we own any that are assigned */
5280	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5281	while (vfdev) {
5282		/* if we don't own it we don't care */
5283		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5284			/* if it is assigned we cannot release it */
5285			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5286				return true;
5287		}
5288
5289		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5290	}
5291
5292	return false;
5293}
5294
5295#endif
5296static void igb_ping_all_vfs(struct igb_adapter *adapter)
5297{
5298	struct e1000_hw *hw = &adapter->hw;
5299	u32 ping;
5300	int i;
5301
5302	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5303		ping = E1000_PF_CONTROL_MSG;
5304		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5305			ping |= E1000_VT_MSGTYPE_CTS;
5306		igb_write_mbx(hw, &ping, 1, i);
5307	}
5308}
5309
5310static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5311{
5312	struct e1000_hw *hw = &adapter->hw;
5313	u32 vmolr = rd32(E1000_VMOLR(vf));
5314	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315
5316	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5317			    IGB_VF_FLAG_MULTI_PROMISC);
5318	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5319
5320	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5321		vmolr |= E1000_VMOLR_MPME;
5322		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5323		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5324	} else {
5325		/* if we have hashes and we are clearing a multicast promisc
5326		 * flag we need to write the hashes to the MTA as this step
5327		 * was previously skipped
5328		 */
5329		if (vf_data->num_vf_mc_hashes > 30) {
5330			vmolr |= E1000_VMOLR_MPME;
5331		} else if (vf_data->num_vf_mc_hashes) {
5332			int j;
5333			vmolr |= E1000_VMOLR_ROMPE;
5334			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5335				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5336		}
5337	}
5338
5339	wr32(E1000_VMOLR(vf), vmolr);
5340
5341	/* there are flags left unprocessed, likely not supported */
5342	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5343		return -EINVAL;
5344
5345	return 0;
5346}
5347
5348static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5349				  u32 *msgbuf, u32 vf)
5350{
5351	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5352	u16 *hash_list = (u16 *)&msgbuf[1];
5353	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5354	int i;
5355
5356	/* salt away the number of multicast addresses assigned
5357	 * to this VF for later use to restore when the PF multi cast
5358	 * list changes
5359	 */
5360	vf_data->num_vf_mc_hashes = n;
5361
5362	/* only up to 30 hash values supported */
5363	if (n > 30)
5364		n = 30;
5365
5366	/* store the hashes for later use */
5367	for (i = 0; i < n; i++)
5368		vf_data->vf_mc_hashes[i] = hash_list[i];
5369
5370	/* Flush and reset the mta with the new values */
5371	igb_set_rx_mode(adapter->netdev);
5372
5373	return 0;
5374}
5375
5376static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5377{
5378	struct e1000_hw *hw = &adapter->hw;
5379	struct vf_data_storage *vf_data;
5380	int i, j;
5381
5382	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5383		u32 vmolr = rd32(E1000_VMOLR(i));
5384		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5385
5386		vf_data = &adapter->vf_data[i];
5387
5388		if ((vf_data->num_vf_mc_hashes > 30) ||
5389		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5390			vmolr |= E1000_VMOLR_MPME;
5391		} else if (vf_data->num_vf_mc_hashes) {
5392			vmolr |= E1000_VMOLR_ROMPE;
5393			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5394				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5395		}
5396		wr32(E1000_VMOLR(i), vmolr);
5397	}
5398}
5399
5400static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5401{
5402	struct e1000_hw *hw = &adapter->hw;
5403	u32 pool_mask, reg, vid;
5404	int i;
5405
5406	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5407
5408	/* Find the vlan filter for this id */
5409	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5410		reg = rd32(E1000_VLVF(i));
5411
5412		/* remove the vf from the pool */
5413		reg &= ~pool_mask;
5414
5415		/* if pool is empty then remove entry from vfta */
5416		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5417		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5418			reg = 0;
5419			vid = reg & E1000_VLVF_VLANID_MASK;
5420			igb_vfta_set(hw, vid, false);
5421		}
5422
5423		wr32(E1000_VLVF(i), reg);
5424	}
5425
5426	adapter->vf_data[vf].vlans_enabled = 0;
5427}
5428
5429static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5430{
5431	struct e1000_hw *hw = &adapter->hw;
5432	u32 reg, i;
5433
5434	/* The vlvf table only exists on 82576 hardware and newer */
5435	if (hw->mac.type < e1000_82576)
5436		return -1;
5437
5438	/* we only need to do this if VMDq is enabled */
5439	if (!adapter->vfs_allocated_count)
5440		return -1;
5441
5442	/* Find the vlan filter for this id */
5443	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5444		reg = rd32(E1000_VLVF(i));
5445		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5446		    vid == (reg & E1000_VLVF_VLANID_MASK))
5447			break;
5448	}
5449
5450	if (add) {
5451		if (i == E1000_VLVF_ARRAY_SIZE) {
5452			/* Did not find a matching VLAN ID entry that was
5453			 * enabled.  Search for a free filter entry, i.e.
5454			 * one without the enable bit set
5455			 */
5456			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5457				reg = rd32(E1000_VLVF(i));
5458				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5459					break;
5460			}
5461		}
5462		if (i < E1000_VLVF_ARRAY_SIZE) {
5463			/* Found an enabled/available entry */
5464			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5465
5466			/* if !enabled we need to set this up in vfta */
5467			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5468				/* add VID to filter table */
5469				igb_vfta_set(hw, vid, true);
5470				reg |= E1000_VLVF_VLANID_ENABLE;
5471			}
5472			reg &= ~E1000_VLVF_VLANID_MASK;
5473			reg |= vid;
5474			wr32(E1000_VLVF(i), reg);
5475
5476			/* do not modify RLPML for PF devices */
5477			if (vf >= adapter->vfs_allocated_count)
5478				return 0;
5479
5480			if (!adapter->vf_data[vf].vlans_enabled) {
5481				u32 size;
5482				reg = rd32(E1000_VMOLR(vf));
5483				size = reg & E1000_VMOLR_RLPML_MASK;
5484				size += 4;
5485				reg &= ~E1000_VMOLR_RLPML_MASK;
5486				reg |= size;
5487				wr32(E1000_VMOLR(vf), reg);
5488			}
5489
5490			adapter->vf_data[vf].vlans_enabled++;
5491		}
5492	} else {
5493		if (i < E1000_VLVF_ARRAY_SIZE) {
5494			/* remove vf from the pool */
5495			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5496			/* if pool is empty then remove entry from vfta */
5497			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5498				reg = 0;
5499				igb_vfta_set(hw, vid, false);
5500			}
5501			wr32(E1000_VLVF(i), reg);
5502
5503			/* do not modify RLPML for PF devices */
5504			if (vf >= adapter->vfs_allocated_count)
5505				return 0;
5506
5507			adapter->vf_data[vf].vlans_enabled--;
5508			if (!adapter->vf_data[vf].vlans_enabled) {
5509				u32 size;
5510				reg = rd32(E1000_VMOLR(vf));
5511				size = reg & E1000_VMOLR_RLPML_MASK;
5512				size -= 4;
5513				reg &= ~E1000_VMOLR_RLPML_MASK;
5514				reg |= size;
5515				wr32(E1000_VMOLR(vf), reg);
5516			}
5517		}
5518	}
5519	return 0;
5520}
5521
5522static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5523{
5524	struct e1000_hw *hw = &adapter->hw;
5525
5526	if (vid)
5527		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5528	else
5529		wr32(E1000_VMVIR(vf), 0);
5530}
5531
5532static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5533			       int vf, u16 vlan, u8 qos)
5534{
5535	int err = 0;
5536	struct igb_adapter *adapter = netdev_priv(netdev);
5537
5538	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5539		return -EINVAL;
5540	if (vlan || qos) {
5541		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5542		if (err)
5543			goto out;
5544		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5545		igb_set_vmolr(adapter, vf, !vlan);
5546		adapter->vf_data[vf].pf_vlan = vlan;
5547		adapter->vf_data[vf].pf_qos = qos;
5548		dev_info(&adapter->pdev->dev,
5549			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5550		if (test_bit(__IGB_DOWN, &adapter->state)) {
5551			dev_warn(&adapter->pdev->dev,
5552				 "The VF VLAN has been set, but the PF device is not up.\n");
5553			dev_warn(&adapter->pdev->dev,
5554				 "Bring the PF device up before attempting to use the VF device.\n");
5555		}
5556	} else {
5557		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5558			     false, vf);
5559		igb_set_vmvir(adapter, vlan, vf);
5560		igb_set_vmolr(adapter, vf, true);
5561		adapter->vf_data[vf].pf_vlan = 0;
5562		adapter->vf_data[vf].pf_qos = 0;
5563	}
5564out:
5565	return err;
5566}
5567
5568static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5569{
5570	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5571	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5572
5573	return igb_vlvf_set(adapter, vid, add, vf);
5574}
5575
5576static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5577{
5578	/* clear flags - except flag that indicates PF has set the MAC */
5579	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5580	adapter->vf_data[vf].last_nack = jiffies;
5581
5582	/* reset offloads to defaults */
5583	igb_set_vmolr(adapter, vf, true);
5584
5585	/* reset vlans for device */
5586	igb_clear_vf_vfta(adapter, vf);
5587	if (adapter->vf_data[vf].pf_vlan)
5588		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5589				    adapter->vf_data[vf].pf_vlan,
5590				    adapter->vf_data[vf].pf_qos);
5591	else
5592		igb_clear_vf_vfta(adapter, vf);
5593
5594	/* reset multicast table array for vf */
5595	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5596
5597	/* Flush and reset the mta with the new values */
5598	igb_set_rx_mode(adapter->netdev);
5599}
5600
5601static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5602{
5603	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5604
5605	/* clear mac address as we were hotplug removed/added */
5606	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5607		eth_zero_addr(vf_mac);
5608
5609	/* process remaining reset events */
5610	igb_vf_reset(adapter, vf);
5611}
5612
5613static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5614{
5615	struct e1000_hw *hw = &adapter->hw;
5616	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5617	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5618	u32 reg, msgbuf[3];
5619	u8 *addr = (u8 *)(&msgbuf[1]);
5620
5621	/* process all the same items cleared in a function level reset */
5622	igb_vf_reset(adapter, vf);
5623
5624	/* set vf mac address */
5625	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5626
5627	/* enable transmit and receive for vf */
5628	reg = rd32(E1000_VFTE);
5629	wr32(E1000_VFTE, reg | (1 << vf));
5630	reg = rd32(E1000_VFRE);
5631	wr32(E1000_VFRE, reg | (1 << vf));
5632
5633	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5634
5635	/* reply to reset with ack and vf mac address */
5636	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5637	memcpy(addr, vf_mac, 6);
5638	igb_write_mbx(hw, msgbuf, 3, vf);
5639}
5640
5641static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5642{
5643	/* The VF MAC Address is stored in a packed array of bytes
5644	 * starting at the second 32 bit word of the msg array
5645	 */
5646	unsigned char *addr = (char *)&msg[1];
5647	int err = -1;
5648
5649	if (is_valid_ether_addr(addr))
5650		err = igb_set_vf_mac(adapter, vf, addr);
5651
5652	return err;
5653}
5654
5655static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5656{
5657	struct e1000_hw *hw = &adapter->hw;
5658	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5659	u32 msg = E1000_VT_MSGTYPE_NACK;
5660
5661	/* if device isn't clear to send it shouldn't be reading either */
5662	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5663	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5664		igb_write_mbx(hw, &msg, 1, vf);
5665		vf_data->last_nack = jiffies;
5666	}
5667}
5668
5669static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5670{
5671	struct pci_dev *pdev = adapter->pdev;
5672	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5673	struct e1000_hw *hw = &adapter->hw;
5674	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675	s32 retval;
5676
5677	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5678
5679	if (retval) {
5680		/* if receive failed revoke VF CTS stats and restart init */
5681		dev_err(&pdev->dev, "Error receiving message from VF\n");
5682		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5683		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5684			return;
5685		goto out;
5686	}
5687
5688	/* this is a message we already processed, do nothing */
5689	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5690		return;
5691
5692	/* until the vf completes a reset it should not be
5693	 * allowed to start any configuration.
5694	 */
5695	if (msgbuf[0] == E1000_VF_RESET) {
5696		igb_vf_reset_msg(adapter, vf);
5697		return;
5698	}
5699
5700	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5701		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5702			return;
5703		retval = -1;
5704		goto out;
5705	}
5706
5707	switch ((msgbuf[0] & 0xFFFF)) {
5708	case E1000_VF_SET_MAC_ADDR:
5709		retval = -EINVAL;
5710		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5711			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5712		else
5713			dev_warn(&pdev->dev,
5714				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5715				 vf);
5716		break;
5717	case E1000_VF_SET_PROMISC:
5718		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5719		break;
5720	case E1000_VF_SET_MULTICAST:
5721		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5722		break;
5723	case E1000_VF_SET_LPE:
5724		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5725		break;
5726	case E1000_VF_SET_VLAN:
5727		retval = -1;
5728		if (vf_data->pf_vlan)
5729			dev_warn(&pdev->dev,
5730				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5731				 vf);
5732		else
5733			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5734		break;
5735	default:
5736		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5737		retval = -1;
5738		break;
5739	}
5740
5741	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5742out:
5743	/* notify the VF of the results of what it sent us */
5744	if (retval)
5745		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5746	else
5747		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5748
5749	igb_write_mbx(hw, msgbuf, 1, vf);
5750}
5751
5752static void igb_msg_task(struct igb_adapter *adapter)
5753{
5754	struct e1000_hw *hw = &adapter->hw;
5755	u32 vf;
5756
5757	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5758		/* process any reset requests */
5759		if (!igb_check_for_rst(hw, vf))
5760			igb_vf_reset_event(adapter, vf);
5761
5762		/* process any messages pending */
5763		if (!igb_check_for_msg(hw, vf))
5764			igb_rcv_msg_from_vf(adapter, vf);
5765
5766		/* process any acks */
5767		if (!igb_check_for_ack(hw, vf))
5768			igb_rcv_ack_from_vf(adapter, vf);
5769	}
5770}
5771
5772/**
5773 *  igb_set_uta - Set unicast filter table address
5774 *  @adapter: board private structure
5775 *
5776 *  The unicast table address is a register array of 32-bit registers.
5777 *  The table is meant to be used in a way similar to how the MTA is used
5778 *  however due to certain limitations in the hardware it is necessary to
5779 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5780 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5781 **/
5782static void igb_set_uta(struct igb_adapter *adapter)
5783{
5784	struct e1000_hw *hw = &adapter->hw;
5785	int i;
5786
5787	/* The UTA table only exists on 82576 hardware and newer */
5788	if (hw->mac.type < e1000_82576)
5789		return;
5790
5791	/* we only need to do this if VMDq is enabled */
5792	if (!adapter->vfs_allocated_count)
5793		return;
5794
5795	for (i = 0; i < hw->mac.uta_reg_count; i++)
5796		array_wr32(E1000_UTA, i, ~0);
5797}
5798
5799/**
5800 *  igb_intr_msi - Interrupt Handler
5801 *  @irq: interrupt number
5802 *  @data: pointer to a network interface device structure
5803 **/
5804static irqreturn_t igb_intr_msi(int irq, void *data)
5805{
5806	struct igb_adapter *adapter = data;
5807	struct igb_q_vector *q_vector = adapter->q_vector[0];
5808	struct e1000_hw *hw = &adapter->hw;
5809	/* read ICR disables interrupts using IAM */
5810	u32 icr = rd32(E1000_ICR);
5811
5812	igb_write_itr(q_vector);
5813
5814	if (icr & E1000_ICR_DRSTA)
5815		schedule_work(&adapter->reset_task);
5816
5817	if (icr & E1000_ICR_DOUTSYNC) {
5818		/* HW is reporting DMA is out of sync */
5819		adapter->stats.doosync++;
5820	}
5821
5822	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5823		hw->mac.get_link_status = 1;
5824		if (!test_bit(__IGB_DOWN, &adapter->state))
5825			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5826	}
5827
5828	if (icr & E1000_ICR_TS) {
5829		u32 tsicr = rd32(E1000_TSICR);
5830
5831		if (tsicr & E1000_TSICR_TXTS) {
5832			/* acknowledge the interrupt */
5833			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5834			/* retrieve hardware timestamp */
5835			schedule_work(&adapter->ptp_tx_work);
5836		}
5837	}
5838
5839	napi_schedule(&q_vector->napi);
5840
5841	return IRQ_HANDLED;
5842}
5843
5844/**
5845 *  igb_intr - Legacy Interrupt Handler
5846 *  @irq: interrupt number
5847 *  @data: pointer to a network interface device structure
5848 **/
5849static irqreturn_t igb_intr(int irq, void *data)
5850{
5851	struct igb_adapter *adapter = data;
5852	struct igb_q_vector *q_vector = adapter->q_vector[0];
5853	struct e1000_hw *hw = &adapter->hw;
5854	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5855	 * need for the IMC write
5856	 */
5857	u32 icr = rd32(E1000_ICR);
5858
5859	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5860	 * not set, then the adapter didn't send an interrupt
5861	 */
5862	if (!(icr & E1000_ICR_INT_ASSERTED))
5863		return IRQ_NONE;
5864
5865	igb_write_itr(q_vector);
5866
5867	if (icr & E1000_ICR_DRSTA)
5868		schedule_work(&adapter->reset_task);
5869
5870	if (icr & E1000_ICR_DOUTSYNC) {
5871		/* HW is reporting DMA is out of sync */
5872		adapter->stats.doosync++;
5873	}
5874
5875	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5876		hw->mac.get_link_status = 1;
5877		/* guard against interrupt when we're going down */
5878		if (!test_bit(__IGB_DOWN, &adapter->state))
5879			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5880	}
5881
5882	if (icr & E1000_ICR_TS) {
5883		u32 tsicr = rd32(E1000_TSICR);
5884
5885		if (tsicr & E1000_TSICR_TXTS) {
5886			/* acknowledge the interrupt */
5887			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5888			/* retrieve hardware timestamp */
5889			schedule_work(&adapter->ptp_tx_work);
5890		}
5891	}
5892
5893	napi_schedule(&q_vector->napi);
5894
5895	return IRQ_HANDLED;
5896}
5897
5898static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5899{
5900	struct igb_adapter *adapter = q_vector->adapter;
5901	struct e1000_hw *hw = &adapter->hw;
5902
5903	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5904	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5905		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5906			igb_set_itr(q_vector);
5907		else
5908			igb_update_ring_itr(q_vector);
5909	}
5910
5911	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5912		if (adapter->msix_entries)
5913			wr32(E1000_EIMS, q_vector->eims_value);
5914		else
5915			igb_irq_enable(adapter);
5916	}
5917}
5918
5919/**
5920 *  igb_poll - NAPI Rx polling callback
5921 *  @napi: napi polling structure
5922 *  @budget: count of how many packets we should handle
5923 **/
5924static int igb_poll(struct napi_struct *napi, int budget)
5925{
5926	struct igb_q_vector *q_vector = container_of(napi,
5927						     struct igb_q_vector,
5928						     napi);
5929	bool clean_complete = true;
5930
5931#ifdef CONFIG_IGB_DCA
5932	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5933		igb_update_dca(q_vector);
5934#endif
5935	if (q_vector->tx.ring)
5936		clean_complete = igb_clean_tx_irq(q_vector);
5937
5938	if (q_vector->rx.ring)
5939		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5940
5941	/* If all work not completed, return budget and keep polling */
5942	if (!clean_complete)
5943		return budget;
5944
5945	/* If not enough Rx work done, exit the polling mode */
5946	napi_complete(napi);
5947	igb_ring_irq_enable(q_vector);
5948
5949	return 0;
5950}
5951
5952/**
5953 *  igb_clean_tx_irq - Reclaim resources after transmit completes
5954 *  @q_vector: pointer to q_vector containing needed info
5955 *
5956 *  returns true if ring is completely cleaned
5957 **/
5958static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5959{
5960	struct igb_adapter *adapter = q_vector->adapter;
5961	struct igb_ring *tx_ring = q_vector->tx.ring;
5962	struct igb_tx_buffer *tx_buffer;
5963	union e1000_adv_tx_desc *tx_desc;
5964	unsigned int total_bytes = 0, total_packets = 0;
5965	unsigned int budget = q_vector->tx.work_limit;
5966	unsigned int i = tx_ring->next_to_clean;
5967
5968	if (test_bit(__IGB_DOWN, &adapter->state))
5969		return true;
5970
5971	tx_buffer = &tx_ring->tx_buffer_info[i];
5972	tx_desc = IGB_TX_DESC(tx_ring, i);
5973	i -= tx_ring->count;
5974
5975	do {
5976		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5977
5978		/* if next_to_watch is not set then there is no work pending */
5979		if (!eop_desc)
5980			break;
5981
5982		/* prevent any other reads prior to eop_desc */
5983		read_barrier_depends();
5984
5985		/* if DD is not set pending work has not been completed */
5986		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5987			break;
5988
5989		/* clear next_to_watch to prevent false hangs */
5990		tx_buffer->next_to_watch = NULL;
5991
5992		/* update the statistics for this packet */
5993		total_bytes += tx_buffer->bytecount;
5994		total_packets += tx_buffer->gso_segs;
5995
5996		/* free the skb */
5997		dev_kfree_skb_any(tx_buffer->skb);
5998
5999		/* unmap skb header data */
6000		dma_unmap_single(tx_ring->dev,
6001				 dma_unmap_addr(tx_buffer, dma),
6002				 dma_unmap_len(tx_buffer, len),
6003				 DMA_TO_DEVICE);
6004
6005		/* clear tx_buffer data */
6006		tx_buffer->skb = NULL;
6007		dma_unmap_len_set(tx_buffer, len, 0);
6008
6009		/* clear last DMA location and unmap remaining buffers */
6010		while (tx_desc != eop_desc) {
6011			tx_buffer++;
6012			tx_desc++;
6013			i++;
6014			if (unlikely(!i)) {
6015				i -= tx_ring->count;
6016				tx_buffer = tx_ring->tx_buffer_info;
6017				tx_desc = IGB_TX_DESC(tx_ring, 0);
6018			}
6019
6020			/* unmap any remaining paged data */
6021			if (dma_unmap_len(tx_buffer, len)) {
6022				dma_unmap_page(tx_ring->dev,
6023					       dma_unmap_addr(tx_buffer, dma),
6024					       dma_unmap_len(tx_buffer, len),
6025					       DMA_TO_DEVICE);
6026				dma_unmap_len_set(tx_buffer, len, 0);
6027			}
6028		}
6029
6030		/* move us one more past the eop_desc for start of next pkt */
6031		tx_buffer++;
6032		tx_desc++;
6033		i++;
6034		if (unlikely(!i)) {
6035			i -= tx_ring->count;
6036			tx_buffer = tx_ring->tx_buffer_info;
6037			tx_desc = IGB_TX_DESC(tx_ring, 0);
6038		}
6039
6040		/* issue prefetch for next Tx descriptor */
6041		prefetch(tx_desc);
6042
6043		/* update budget accounting */
6044		budget--;
6045	} while (likely(budget));
6046
6047	netdev_tx_completed_queue(txring_txq(tx_ring),
6048				  total_packets, total_bytes);
6049	i += tx_ring->count;
6050	tx_ring->next_to_clean = i;
6051	u64_stats_update_begin(&tx_ring->tx_syncp);
6052	tx_ring->tx_stats.bytes += total_bytes;
6053	tx_ring->tx_stats.packets += total_packets;
6054	u64_stats_update_end(&tx_ring->tx_syncp);
6055	q_vector->tx.total_bytes += total_bytes;
6056	q_vector->tx.total_packets += total_packets;
6057
6058	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6059		struct e1000_hw *hw = &adapter->hw;
6060
6061		/* Detect a transmit hang in hardware, this serializes the
6062		 * check with the clearing of time_stamp and movement of i
6063		 */
6064		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6065		if (tx_buffer->next_to_watch &&
6066		    time_after(jiffies, tx_buffer->time_stamp +
6067			       (adapter->tx_timeout_factor * HZ)) &&
6068		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6069
6070			/* detected Tx unit hang */
6071			dev_err(tx_ring->dev,
6072				"Detected Tx Unit Hang\n"
6073				"  Tx Queue             <%d>\n"
6074				"  TDH                  <%x>\n"
6075				"  TDT                  <%x>\n"
6076				"  next_to_use          <%x>\n"
6077				"  next_to_clean        <%x>\n"
6078				"buffer_info[next_to_clean]\n"
6079				"  time_stamp           <%lx>\n"
6080				"  next_to_watch        <%p>\n"
6081				"  jiffies              <%lx>\n"
6082				"  desc.status          <%x>\n",
6083				tx_ring->queue_index,
6084				rd32(E1000_TDH(tx_ring->reg_idx)),
6085				readl(tx_ring->tail),
6086				tx_ring->next_to_use,
6087				tx_ring->next_to_clean,
6088				tx_buffer->time_stamp,
6089				tx_buffer->next_to_watch,
6090				jiffies,
6091				tx_buffer->next_to_watch->wb.status);
6092			netif_stop_subqueue(tx_ring->netdev,
6093					    tx_ring->queue_index);
6094
6095			/* we are about to reset, no point in enabling stuff */
6096			return true;
6097		}
6098	}
6099
6100#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6101	if (unlikely(total_packets &&
6102	    netif_carrier_ok(tx_ring->netdev) &&
6103	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6104		/* Make sure that anybody stopping the queue after this
6105		 * sees the new next_to_clean.
6106		 */
6107		smp_mb();
6108		if (__netif_subqueue_stopped(tx_ring->netdev,
6109					     tx_ring->queue_index) &&
6110		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6111			netif_wake_subqueue(tx_ring->netdev,
6112					    tx_ring->queue_index);
6113
6114			u64_stats_update_begin(&tx_ring->tx_syncp);
6115			tx_ring->tx_stats.restart_queue++;
6116			u64_stats_update_end(&tx_ring->tx_syncp);
6117		}
6118	}
6119
6120	return !!budget;
6121}
6122
6123/**
6124 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6125 *  @rx_ring: rx descriptor ring to store buffers on
6126 *  @old_buff: donor buffer to have page reused
6127 *
6128 *  Synchronizes page for reuse by the adapter
6129 **/
6130static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6131			      struct igb_rx_buffer *old_buff)
6132{
6133	struct igb_rx_buffer *new_buff;
6134	u16 nta = rx_ring->next_to_alloc;
6135
6136	new_buff = &rx_ring->rx_buffer_info[nta];
6137
6138	/* update, and store next to alloc */
6139	nta++;
6140	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6141
6142	/* transfer page from old buffer to new buffer */
6143	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6144
6145	/* sync the buffer for use by the device */
6146	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6147					 old_buff->page_offset,
6148					 IGB_RX_BUFSZ,
6149					 DMA_FROM_DEVICE);
6150}
6151
6152static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6153				  struct page *page,
6154				  unsigned int truesize)
6155{
6156	/* avoid re-using remote pages */
6157	if (unlikely(page_to_nid(page) != numa_node_id()))
6158		return false;
6159
6160#if (PAGE_SIZE < 8192)
6161	/* if we are only owner of page we can reuse it */
6162	if (unlikely(page_count(page) != 1))
6163		return false;
6164
6165	/* flip page offset to other buffer */
6166	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6167
6168	/* since we are the only owner of the page and we need to
6169	 * increment it, just set the value to 2 in order to avoid
6170	 * an unnecessary locked operation
6171	 */
6172	atomic_set(&page->_count, 2);
6173#else
6174	/* move offset up to the next cache line */
6175	rx_buffer->page_offset += truesize;
6176
6177	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6178		return false;
6179
6180	/* bump ref count on page before it is given to the stack */
6181	get_page(page);
6182#endif
6183
6184	return true;
6185}
6186
6187/**
6188 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6189 *  @rx_ring: rx descriptor ring to transact packets on
6190 *  @rx_buffer: buffer containing page to add
6191 *  @rx_desc: descriptor containing length of buffer written by hardware
6192 *  @skb: sk_buff to place the data into
6193 *
6194 *  This function will add the data contained in rx_buffer->page to the skb.
6195 *  This is done either through a direct copy if the data in the buffer is
6196 *  less than the skb header size, otherwise it will just attach the page as
6197 *  a frag to the skb.
6198 *
6199 *  The function will then update the page offset if necessary and return
6200 *  true if the buffer can be reused by the adapter.
6201 **/
6202static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6203			    struct igb_rx_buffer *rx_buffer,
6204			    union e1000_adv_rx_desc *rx_desc,
6205			    struct sk_buff *skb)
6206{
6207	struct page *page = rx_buffer->page;
6208	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6209#if (PAGE_SIZE < 8192)
6210	unsigned int truesize = IGB_RX_BUFSZ;
6211#else
6212	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6213#endif
6214
6215	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6216		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6217
6218		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6219			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6220			va += IGB_TS_HDR_LEN;
6221			size -= IGB_TS_HDR_LEN;
6222		}
6223
6224		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6225
6226		/* we can reuse buffer as-is, just make sure it is local */
6227		if (likely(page_to_nid(page) == numa_node_id()))
6228			return true;
6229
6230		/* this page cannot be reused so discard it */
6231		put_page(page);
6232		return false;
6233	}
6234
6235	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6236			rx_buffer->page_offset, size, truesize);
6237
6238	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6239}
6240
6241static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6242					   union e1000_adv_rx_desc *rx_desc)
6243{
6244	struct igb_rx_buffer *rx_buffer;
6245	struct sk_buff *skb;
6246	struct page *page;
6247	void *page_addr;
6248	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6249#if (PAGE_SIZE < 8192)
6250	unsigned int truesize = IGB_RX_BUFSZ;
6251#else
6252	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6253				SKB_DATA_ALIGN(NET_SKB_PAD +
6254					       NET_IP_ALIGN +
6255					       size);
6256#endif
6257
6258	/* If we spanned a buffer we have a huge mess so test for it */
6259	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6260
6261	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6262	page = rx_buffer->page;
6263	prefetchw(page);
6264
6265	page_addr = page_address(page) + rx_buffer->page_offset;
6266
6267	/* prefetch first cache line of first page */
6268	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6269#if L1_CACHE_BYTES < 128
6270	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6271#endif
6272
6273	/* build an skb to around the page buffer */
6274	skb = build_skb(page_addr, truesize);
6275	if (unlikely(!skb)) {
6276		rx_ring->rx_stats.alloc_failed++;
6277		return NULL;
6278	}
6279
6280	/* we are reusing so sync this buffer for CPU use */
6281	dma_sync_single_range_for_cpu(rx_ring->dev,
6282				      rx_buffer->dma,
6283				      rx_buffer->page_offset,
6284				      IGB_RX_BUFSZ,
6285				      DMA_FROM_DEVICE);
6286
6287	/* update pointers within the skb to store the data */
6288	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6289	__skb_put(skb, size);
6290
6291	/* pull timestamp out of packet data */
6292	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6293		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6294		__skb_pull(skb, IGB_TS_HDR_LEN);
6295	}
6296
6297	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6298		/* hand second half of page back to the ring */
6299		igb_reuse_rx_page(rx_ring, rx_buffer);
6300	} else {
6301		/* we are not reusing the buffer so unmap it */
6302		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6303			       PAGE_SIZE, DMA_FROM_DEVICE);
6304	}
6305
6306	/* clear contents of buffer_info */
6307	rx_buffer->dma = 0;
6308	rx_buffer->page = NULL;
6309
6310	return skb;
6311}
6312
6313static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6314					   union e1000_adv_rx_desc *rx_desc,
6315					   struct sk_buff *skb)
6316{
6317	struct igb_rx_buffer *rx_buffer;
6318	struct page *page;
6319
6320	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6321
6322	page = rx_buffer->page;
6323	prefetchw(page);
6324
6325	if (likely(!skb)) {
6326		void *page_addr = page_address(page) +
6327				  rx_buffer->page_offset;
6328
6329		/* prefetch first cache line of first page */
6330		prefetch(page_addr);
6331#if L1_CACHE_BYTES < 128
6332		prefetch(page_addr + L1_CACHE_BYTES);
6333#endif
6334
6335		/* allocate a skb to store the frags */
6336		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6337						IGB_RX_HDR_LEN);
6338		if (unlikely(!skb)) {
6339			rx_ring->rx_stats.alloc_failed++;
6340			return NULL;
6341		}
6342
6343		/* we will be copying header into skb->data in
6344		 * pskb_may_pull so it is in our interest to prefetch
6345		 * it now to avoid a possible cache miss
6346		 */
6347		prefetchw(skb->data);
6348	}
6349
6350	/* we are reusing so sync this buffer for CPU use */
6351	dma_sync_single_range_for_cpu(rx_ring->dev,
6352				      rx_buffer->dma,
6353				      rx_buffer->page_offset,
6354				      IGB_RX_BUFSZ,
6355				      DMA_FROM_DEVICE);
6356
6357	/* pull page into skb */
6358	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6359		/* hand second half of page back to the ring */
6360		igb_reuse_rx_page(rx_ring, rx_buffer);
6361	} else {
6362		/* we are not reusing the buffer so unmap it */
6363		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6364			       PAGE_SIZE, DMA_FROM_DEVICE);
6365	}
6366
6367	/* clear contents of rx_buffer */
6368	rx_buffer->page = NULL;
6369
6370	return skb;
6371}
6372
6373static inline void igb_rx_checksum(struct igb_ring *ring,
6374				   union e1000_adv_rx_desc *rx_desc,
6375				   struct sk_buff *skb)
6376{
6377	skb_checksum_none_assert(skb);
6378
6379	/* Ignore Checksum bit is set */
6380	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6381		return;
6382
6383	/* Rx checksum disabled via ethtool */
6384	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6385		return;
6386
6387	/* TCP/UDP checksum error bit is set */
6388	if (igb_test_staterr(rx_desc,
6389			     E1000_RXDEXT_STATERR_TCPE |
6390			     E1000_RXDEXT_STATERR_IPE)) {
6391		/* work around errata with sctp packets where the TCPE aka
6392		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6393		 * packets, (aka let the stack check the crc32c)
6394		 */
6395		if (!((skb->len == 60) &&
6396		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6397			u64_stats_update_begin(&ring->rx_syncp);
6398			ring->rx_stats.csum_err++;
6399			u64_stats_update_end(&ring->rx_syncp);
6400		}
6401		/* let the stack verify checksum errors */
6402		return;
6403	}
6404	/* It must be a TCP or UDP packet with a valid checksum */
6405	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6406				      E1000_RXD_STAT_UDPCS))
6407		skb->ip_summed = CHECKSUM_UNNECESSARY;
6408
6409	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6410		le32_to_cpu(rx_desc->wb.upper.status_error));
6411}
6412
6413static inline void igb_rx_hash(struct igb_ring *ring,
6414			       union e1000_adv_rx_desc *rx_desc,
6415			       struct sk_buff *skb)
6416{
6417	if (ring->netdev->features & NETIF_F_RXHASH)
6418		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6419}
6420
6421/**
6422 *  igb_is_non_eop - process handling of non-EOP buffers
6423 *  @rx_ring: Rx ring being processed
6424 *  @rx_desc: Rx descriptor for current buffer
6425 *  @skb: current socket buffer containing buffer in progress
6426 *
6427 *  This function updates next to clean.  If the buffer is an EOP buffer
6428 *  this function exits returning false, otherwise it will place the
6429 *  sk_buff in the next buffer to be chained and return true indicating
6430 *  that this is in fact a non-EOP buffer.
6431 **/
6432static bool igb_is_non_eop(struct igb_ring *rx_ring,
6433			   union e1000_adv_rx_desc *rx_desc)
6434{
6435	u32 ntc = rx_ring->next_to_clean + 1;
6436
6437	/* fetch, update, and store next to clean */
6438	ntc = (ntc < rx_ring->count) ? ntc : 0;
6439	rx_ring->next_to_clean = ntc;
6440
6441	prefetch(IGB_RX_DESC(rx_ring, ntc));
6442
6443	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6444		return false;
6445
6446	return true;
6447}
6448
6449/**
6450 *  igb_get_headlen - determine size of header for LRO/GRO
6451 *  @data: pointer to the start of the headers
6452 *  @max_len: total length of section to find headers in
6453 *
6454 *  This function is meant to determine the length of headers that will
6455 *  be recognized by hardware for LRO, and GRO offloads.  The main
6456 *  motivation of doing this is to only perform one pull for IPv4 TCP
6457 *  packets so that we can do basic things like calculating the gso_size
6458 *  based on the average data per packet.
6459 **/
6460static unsigned int igb_get_headlen(unsigned char *data,
6461				    unsigned int max_len)
6462{
6463	union {
6464		unsigned char *network;
6465		/* l2 headers */
6466		struct ethhdr *eth;
6467		struct vlan_hdr *vlan;
6468		/* l3 headers */
6469		struct iphdr *ipv4;
6470		struct ipv6hdr *ipv6;
6471	} hdr;
6472	__be16 protocol;
6473	u8 nexthdr = 0;	/* default to not TCP */
6474	u8 hlen;
6475
6476	/* this should never happen, but better safe than sorry */
6477	if (max_len < ETH_HLEN)
6478		return max_len;
6479
6480	/* initialize network frame pointer */
6481	hdr.network = data;
6482
6483	/* set first protocol and move network header forward */
6484	protocol = hdr.eth->h_proto;
6485	hdr.network += ETH_HLEN;
6486
6487	/* handle any vlan tag if present */
6488	if (protocol == __constant_htons(ETH_P_8021Q)) {
6489		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6490			return max_len;
6491
6492		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6493		hdr.network += VLAN_HLEN;
6494	}
6495
6496	/* handle L3 protocols */
6497	if (protocol == __constant_htons(ETH_P_IP)) {
6498		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6499			return max_len;
6500
6501		/* access ihl as a u8 to avoid unaligned access on ia64 */
6502		hlen = (hdr.network[0] & 0x0F) << 2;
6503
6504		/* verify hlen meets minimum size requirements */
6505		if (hlen < sizeof(struct iphdr))
6506			return hdr.network - data;
6507
6508		/* record next protocol if header is present */
6509		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6510			nexthdr = hdr.ipv4->protocol;
6511	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6512		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6513			return max_len;
6514
6515		/* record next protocol */
6516		nexthdr = hdr.ipv6->nexthdr;
6517		hlen = sizeof(struct ipv6hdr);
6518	} else {
6519		return hdr.network - data;
6520	}
6521
6522	/* relocate pointer to start of L4 header */
6523	hdr.network += hlen;
6524
6525	/* finally sort out TCP */
6526	if (nexthdr == IPPROTO_TCP) {
6527		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6528			return max_len;
6529
6530		/* access doff as a u8 to avoid unaligned access on ia64 */
6531		hlen = (hdr.network[12] & 0xF0) >> 2;
6532
6533		/* verify hlen meets minimum size requirements */
6534		if (hlen < sizeof(struct tcphdr))
6535			return hdr.network - data;
6536
6537		hdr.network += hlen;
6538	} else if (nexthdr == IPPROTO_UDP) {
6539		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6540			return max_len;
6541
6542		hdr.network += sizeof(struct udphdr);
6543	}
6544
6545	/* If everything has gone correctly hdr.network should be the
6546	 * data section of the packet and will be the end of the header.
6547	 * If not then it probably represents the end of the last recognized
6548	 * header.
6549	 */
6550	if ((hdr.network - data) < max_len)
6551		return hdr.network - data;
6552	else
6553		return max_len;
6554}
6555
6556/**
6557 *  igb_pull_tail - igb specific version of skb_pull_tail
6558 *  @rx_ring: rx descriptor ring packet is being transacted on
6559 *  @rx_desc: pointer to the EOP Rx descriptor
6560 *  @skb: pointer to current skb being adjusted
6561 *
6562 *  This function is an igb specific version of __pskb_pull_tail.  The
6563 *  main difference between this version and the original function is that
6564 *  this function can make several assumptions about the state of things
6565 *  that allow for significant optimizations versus the standard function.
6566 *  As a result we can do things like drop a frag and maintain an accurate
6567 *  truesize for the skb.
6568 */
6569static void igb_pull_tail(struct igb_ring *rx_ring,
6570			  union e1000_adv_rx_desc *rx_desc,
6571			  struct sk_buff *skb)
6572{
6573	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6574	unsigned char *va;
6575	unsigned int pull_len;
6576
6577	/* it is valid to use page_address instead of kmap since we are
6578	 * working with pages allocated out of the lomem pool per
6579	 * alloc_page(GFP_ATOMIC)
6580	 */
6581	va = skb_frag_address(frag);
6582
6583	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6584		/* retrieve timestamp from buffer */
6585		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6586
6587		/* update pointers to remove timestamp header */
6588		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6589		frag->page_offset += IGB_TS_HDR_LEN;
6590		skb->data_len -= IGB_TS_HDR_LEN;
6591		skb->len -= IGB_TS_HDR_LEN;
6592
6593		/* move va to start of packet data */
6594		va += IGB_TS_HDR_LEN;
6595	}
6596
6597	/* we need the header to contain the greater of either ETH_HLEN or
6598	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6599	 */
6600	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6601
6602	/* align pull length to size of long to optimize memcpy performance */
6603	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6604
6605	/* update all of the pointers */
6606	skb_frag_size_sub(frag, pull_len);
6607	frag->page_offset += pull_len;
6608	skb->data_len -= pull_len;
6609	skb->tail += pull_len;
6610}
6611
6612/**
6613 *  igb_cleanup_headers - Correct corrupted or empty headers
6614 *  @rx_ring: rx descriptor ring packet is being transacted on
6615 *  @rx_desc: pointer to the EOP Rx descriptor
6616 *  @skb: pointer to current skb being fixed
6617 *
6618 *  Address the case where we are pulling data in on pages only
6619 *  and as such no data is present in the skb header.
6620 *
6621 *  In addition if skb is not at least 60 bytes we need to pad it so that
6622 *  it is large enough to qualify as a valid Ethernet frame.
6623 *
6624 *  Returns true if an error was encountered and skb was freed.
6625 **/
6626static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6627				union e1000_adv_rx_desc *rx_desc,
6628				struct sk_buff *skb)
6629{
6630	if (unlikely((igb_test_staterr(rx_desc,
6631				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6632		struct net_device *netdev = rx_ring->netdev;
6633		if (!(netdev->features & NETIF_F_RXALL)) {
6634			dev_kfree_skb_any(skb);
6635			return true;
6636		}
6637	}
6638
6639	/* place header in linear portion of buffer */
6640	if (skb_is_nonlinear(skb))
6641		igb_pull_tail(rx_ring, rx_desc, skb);
6642
6643	/* if skb_pad returns an error the skb was freed */
6644	if (unlikely(skb->len < 60)) {
6645		int pad_len = 60 - skb->len;
6646
6647		if (skb_pad(skb, pad_len))
6648			return true;
6649		__skb_put(skb, pad_len);
6650	}
6651
6652	return false;
6653}
6654
6655/**
6656 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6657 *  @rx_ring: rx descriptor ring packet is being transacted on
6658 *  @rx_desc: pointer to the EOP Rx descriptor
6659 *  @skb: pointer to current skb being populated
6660 *
6661 *  This function checks the ring, descriptor, and packet information in
6662 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6663 *  other fields within the skb.
6664 **/
6665static void igb_process_skb_fields(struct igb_ring *rx_ring,
6666				   union e1000_adv_rx_desc *rx_desc,
6667				   struct sk_buff *skb)
6668{
6669	struct net_device *dev = rx_ring->netdev;
6670
6671	igb_rx_hash(rx_ring, rx_desc, skb);
6672
6673	igb_rx_checksum(rx_ring, rx_desc, skb);
6674
6675	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6676
6677	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6678	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6679		u16 vid;
6680		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6681		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6682			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6683		else
6684			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6685
6686		__vlan_hwaccel_put_tag(skb, vid);
6687	}
6688
6689	skb_record_rx_queue(skb, rx_ring->queue_index);
6690
6691	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6692}
6693
6694static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6695{
6696	struct igb_ring *rx_ring = q_vector->rx.ring;
6697	struct sk_buff *skb = rx_ring->skb;
6698	unsigned int total_bytes = 0, total_packets = 0;
6699	u16 cleaned_count = igb_desc_unused(rx_ring);
6700
6701	do {
6702		union e1000_adv_rx_desc *rx_desc;
6703
6704		/* return some buffers to hardware, one at a time is too slow */
6705		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6706			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6707			cleaned_count = 0;
6708		}
6709
6710		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6711
6712		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6713			break;
6714
6715		/* This memory barrier is needed to keep us from reading
6716		 * any other fields out of the rx_desc until we know the
6717		 * RXD_STAT_DD bit is set
6718		 */
6719		rmb();
6720
6721		/* retrieve a buffer from the ring */
6722		if (ring_uses_build_skb(rx_ring))
6723			skb = igb_build_rx_buffer(rx_ring, rx_desc);
6724		else
6725			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6726
6727		/* exit if we failed to retrieve a buffer */
6728		if (!skb)
6729			break;
6730
6731		cleaned_count++;
6732
6733		/* fetch next buffer in frame if non-eop */
6734		if (igb_is_non_eop(rx_ring, rx_desc))
6735			continue;
6736
6737		/* verify the packet layout is correct */
6738		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6739			skb = NULL;
6740			continue;
6741		}
6742
6743		/* probably a little skewed due to removing CRC */
6744		total_bytes += skb->len;
6745
6746		/* populate checksum, timestamp, VLAN, and protocol */
6747		igb_process_skb_fields(rx_ring, rx_desc, skb);
6748
6749		napi_gro_receive(&q_vector->napi, skb);
6750
6751		/* reset skb pointer */
6752		skb = NULL;
6753
6754		/* update budget accounting */
6755		total_packets++;
6756	} while (likely(total_packets < budget));
6757
6758	/* place incomplete frames back on ring for completion */
6759	rx_ring->skb = skb;
6760
6761	u64_stats_update_begin(&rx_ring->rx_syncp);
6762	rx_ring->rx_stats.packets += total_packets;
6763	rx_ring->rx_stats.bytes += total_bytes;
6764	u64_stats_update_end(&rx_ring->rx_syncp);
6765	q_vector->rx.total_packets += total_packets;
6766	q_vector->rx.total_bytes += total_bytes;
6767
6768	if (cleaned_count)
6769		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6770
6771	return (total_packets < budget);
6772}
6773
6774static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6775				  struct igb_rx_buffer *bi)
6776{
6777	struct page *page = bi->page;
6778	dma_addr_t dma;
6779
6780	/* since we are recycling buffers we should seldom need to alloc */
6781	if (likely(page))
6782		return true;
6783
6784	/* alloc new page for storage */
6785	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6786	if (unlikely(!page)) {
6787		rx_ring->rx_stats.alloc_failed++;
6788		return false;
6789	}
6790
6791	/* map page for use */
6792	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6793
6794	/* if mapping failed free memory back to system since
6795	 * there isn't much point in holding memory we can't use
6796	 */
6797	if (dma_mapping_error(rx_ring->dev, dma)) {
6798		__free_page(page);
6799
6800		rx_ring->rx_stats.alloc_failed++;
6801		return false;
6802	}
6803
6804	bi->dma = dma;
6805	bi->page = page;
6806	bi->page_offset = 0;
6807
6808	return true;
6809}
6810
6811static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6812{
6813	if (ring_uses_build_skb(rx_ring))
6814		return NET_SKB_PAD + NET_IP_ALIGN;
6815	else
6816		return 0;
6817}
6818
6819/**
6820 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6821 *  @adapter: address of board private structure
6822 **/
6823void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6824{
6825	union e1000_adv_rx_desc *rx_desc;
6826	struct igb_rx_buffer *bi;
6827	u16 i = rx_ring->next_to_use;
6828
6829	/* nothing to do */
6830	if (!cleaned_count)
6831		return;
6832
6833	rx_desc = IGB_RX_DESC(rx_ring, i);
6834	bi = &rx_ring->rx_buffer_info[i];
6835	i -= rx_ring->count;
6836
6837	do {
6838		if (!igb_alloc_mapped_page(rx_ring, bi))
6839			break;
6840
6841		/* Refresh the desc even if buffer_addrs didn't change
6842		 * because each write-back erases this info.
6843		 */
6844		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6845						     bi->page_offset +
6846						     igb_rx_offset(rx_ring));
6847
6848		rx_desc++;
6849		bi++;
6850		i++;
6851		if (unlikely(!i)) {
6852			rx_desc = IGB_RX_DESC(rx_ring, 0);
6853			bi = rx_ring->rx_buffer_info;
6854			i -= rx_ring->count;
6855		}
6856
6857		/* clear the hdr_addr for the next_to_use descriptor */
6858		rx_desc->read.hdr_addr = 0;
6859
6860		cleaned_count--;
6861	} while (cleaned_count);
6862
6863	i += rx_ring->count;
6864
6865	if (rx_ring->next_to_use != i) {
6866		/* record the next descriptor to use */
6867		rx_ring->next_to_use = i;
6868
6869		/* update next to alloc since we have filled the ring */
6870		rx_ring->next_to_alloc = i;
6871
6872		/* Force memory writes to complete before letting h/w
6873		 * know there are new descriptors to fetch.  (Only
6874		 * applicable for weak-ordered memory model archs,
6875		 * such as IA-64).
6876		 */
6877		wmb();
6878		writel(i, rx_ring->tail);
6879	}
6880}
6881
6882/**
6883 * igb_mii_ioctl -
6884 * @netdev:
6885 * @ifreq:
6886 * @cmd:
6887 **/
6888static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6889{
6890	struct igb_adapter *adapter = netdev_priv(netdev);
6891	struct mii_ioctl_data *data = if_mii(ifr);
6892
6893	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6894		return -EOPNOTSUPP;
6895
6896	switch (cmd) {
6897	case SIOCGMIIPHY:
6898		data->phy_id = adapter->hw.phy.addr;
6899		break;
6900	case SIOCGMIIREG:
6901		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6902		                     &data->val_out))
6903			return -EIO;
6904		break;
6905	case SIOCSMIIREG:
6906	default:
6907		return -EOPNOTSUPP;
6908	}
6909	return 0;
6910}
6911
6912/**
6913 * igb_ioctl -
6914 * @netdev:
6915 * @ifreq:
6916 * @cmd:
6917 **/
6918static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6919{
6920	switch (cmd) {
6921	case SIOCGMIIPHY:
6922	case SIOCGMIIREG:
6923	case SIOCSMIIREG:
6924		return igb_mii_ioctl(netdev, ifr, cmd);
6925	case SIOCSHWTSTAMP:
6926		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6927	default:
6928		return -EOPNOTSUPP;
6929	}
6930}
6931
6932s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6933{
6934	struct igb_adapter *adapter = hw->back;
6935
6936	if (pcie_capability_read_word(adapter->pdev, reg, value))
6937		return -E1000_ERR_CONFIG;
6938
6939	return 0;
6940}
6941
6942s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6943{
6944	struct igb_adapter *adapter = hw->back;
6945
6946	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6947		return -E1000_ERR_CONFIG;
6948
6949	return 0;
6950}
6951
6952static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6953{
6954	struct igb_adapter *adapter = netdev_priv(netdev);
6955	struct e1000_hw *hw = &adapter->hw;
6956	u32 ctrl, rctl;
6957	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6958
6959	if (enable) {
6960		/* enable VLAN tag insert/strip */
6961		ctrl = rd32(E1000_CTRL);
6962		ctrl |= E1000_CTRL_VME;
6963		wr32(E1000_CTRL, ctrl);
6964
6965		/* Disable CFI check */
6966		rctl = rd32(E1000_RCTL);
6967		rctl &= ~E1000_RCTL_CFIEN;
6968		wr32(E1000_RCTL, rctl);
6969	} else {
6970		/* disable VLAN tag insert/strip */
6971		ctrl = rd32(E1000_CTRL);
6972		ctrl &= ~E1000_CTRL_VME;
6973		wr32(E1000_CTRL, ctrl);
6974	}
6975
6976	igb_rlpml_set(adapter);
6977}
6978
6979static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6980{
6981	struct igb_adapter *adapter = netdev_priv(netdev);
6982	struct e1000_hw *hw = &adapter->hw;
6983	int pf_id = adapter->vfs_allocated_count;
6984
6985	/* attempt to add filter to vlvf array */
6986	igb_vlvf_set(adapter, vid, true, pf_id);
6987
6988	/* add the filter since PF can receive vlans w/o entry in vlvf */
6989	igb_vfta_set(hw, vid, true);
6990
6991	set_bit(vid, adapter->active_vlans);
6992
6993	return 0;
6994}
6995
6996static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6997{
6998	struct igb_adapter *adapter = netdev_priv(netdev);
6999	struct e1000_hw *hw = &adapter->hw;
7000	int pf_id = adapter->vfs_allocated_count;
7001	s32 err;
7002
7003	/* remove vlan from VLVF table array */
7004	err = igb_vlvf_set(adapter, vid, false, pf_id);
7005
7006	/* if vid was not present in VLVF just remove it from table */
7007	if (err)
7008		igb_vfta_set(hw, vid, false);
7009
7010	clear_bit(vid, adapter->active_vlans);
7011
7012	return 0;
7013}
7014
7015static void igb_restore_vlan(struct igb_adapter *adapter)
7016{
7017	u16 vid;
7018
7019	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7020
7021	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7022		igb_vlan_rx_add_vid(adapter->netdev, vid);
7023}
7024
7025int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7026{
7027	struct pci_dev *pdev = adapter->pdev;
7028	struct e1000_mac_info *mac = &adapter->hw.mac;
7029
7030	mac->autoneg = 0;
7031
7032	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7033	 * for the switch() below to work
7034	 */
7035	if ((spd & 1) || (dplx & ~1))
7036		goto err_inval;
7037
7038	/* Fiber NIC's only allow 1000 gbps Full duplex
7039	 * and 100Mbps Full duplex for 100baseFx sfp
7040	 */
7041	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7042		switch (spd + dplx) {
7043		case SPEED_10 + DUPLEX_HALF:
7044		case SPEED_10 + DUPLEX_FULL:
7045		case SPEED_100 + DUPLEX_HALF:
7046			goto err_inval;
7047		default:
7048			break;
7049		}
7050	}
7051
7052	switch (spd + dplx) {
7053	case SPEED_10 + DUPLEX_HALF:
7054		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7055		break;
7056	case SPEED_10 + DUPLEX_FULL:
7057		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7058		break;
7059	case SPEED_100 + DUPLEX_HALF:
7060		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7061		break;
7062	case SPEED_100 + DUPLEX_FULL:
7063		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7064		break;
7065	case SPEED_1000 + DUPLEX_FULL:
7066		mac->autoneg = 1;
7067		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7068		break;
7069	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7070	default:
7071		goto err_inval;
7072	}
7073
7074	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7075	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7076
7077	return 0;
7078
7079err_inval:
7080	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7081	return -EINVAL;
7082}
7083
7084static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7085			  bool runtime)
7086{
7087	struct net_device *netdev = pci_get_drvdata(pdev);
7088	struct igb_adapter *adapter = netdev_priv(netdev);
7089	struct e1000_hw *hw = &adapter->hw;
7090	u32 ctrl, rctl, status;
7091	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7092#ifdef CONFIG_PM
7093	int retval = 0;
7094#endif
7095
7096	netif_device_detach(netdev);
7097
7098	if (netif_running(netdev))
7099		__igb_close(netdev, true);
7100
7101	igb_clear_interrupt_scheme(adapter);
7102
7103#ifdef CONFIG_PM
7104	retval = pci_save_state(pdev);
7105	if (retval)
7106		return retval;
7107#endif
7108
7109	status = rd32(E1000_STATUS);
7110	if (status & E1000_STATUS_LU)
7111		wufc &= ~E1000_WUFC_LNKC;
7112
7113	if (wufc) {
7114		igb_setup_rctl(adapter);
7115		igb_set_rx_mode(netdev);
7116
7117		/* turn on all-multi mode if wake on multicast is enabled */
7118		if (wufc & E1000_WUFC_MC) {
7119			rctl = rd32(E1000_RCTL);
7120			rctl |= E1000_RCTL_MPE;
7121			wr32(E1000_RCTL, rctl);
7122		}
7123
7124		ctrl = rd32(E1000_CTRL);
7125		/* advertise wake from D3Cold */
7126		#define E1000_CTRL_ADVD3WUC 0x00100000
7127		/* phy power management enable */
7128		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7129		ctrl |= E1000_CTRL_ADVD3WUC;
7130		wr32(E1000_CTRL, ctrl);
7131
7132		/* Allow time for pending master requests to run */
7133		igb_disable_pcie_master(hw);
7134
7135		wr32(E1000_WUC, E1000_WUC_PME_EN);
7136		wr32(E1000_WUFC, wufc);
7137	} else {
7138		wr32(E1000_WUC, 0);
7139		wr32(E1000_WUFC, 0);
7140	}
7141
7142	*enable_wake = wufc || adapter->en_mng_pt;
7143	if (!*enable_wake)
7144		igb_power_down_link(adapter);
7145	else
7146		igb_power_up_link(adapter);
7147
7148	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7149	 * would have already happened in close and is redundant.
7150	 */
7151	igb_release_hw_control(adapter);
7152
7153	pci_disable_device(pdev);
7154
7155	return 0;
7156}
7157
7158#ifdef CONFIG_PM
7159#ifdef CONFIG_PM_SLEEP
7160static int igb_suspend(struct device *dev)
7161{
7162	int retval;
7163	bool wake;
7164	struct pci_dev *pdev = to_pci_dev(dev);
7165
7166	retval = __igb_shutdown(pdev, &wake, 0);
7167	if (retval)
7168		return retval;
7169
7170	if (wake) {
7171		pci_prepare_to_sleep(pdev);
7172	} else {
7173		pci_wake_from_d3(pdev, false);
7174		pci_set_power_state(pdev, PCI_D3hot);
7175	}
7176
7177	return 0;
7178}
7179#endif /* CONFIG_PM_SLEEP */
7180
7181static int igb_resume(struct device *dev)
7182{
7183	struct pci_dev *pdev = to_pci_dev(dev);
7184	struct net_device *netdev = pci_get_drvdata(pdev);
7185	struct igb_adapter *adapter = netdev_priv(netdev);
7186	struct e1000_hw *hw = &adapter->hw;
7187	u32 err;
7188
7189	pci_set_power_state(pdev, PCI_D0);
7190	pci_restore_state(pdev);
7191	pci_save_state(pdev);
7192
7193	err = pci_enable_device_mem(pdev);
7194	if (err) {
7195		dev_err(&pdev->dev,
7196			"igb: Cannot enable PCI device from suspend\n");
7197		return err;
7198	}
7199	pci_set_master(pdev);
7200
7201	pci_enable_wake(pdev, PCI_D3hot, 0);
7202	pci_enable_wake(pdev, PCI_D3cold, 0);
7203
7204	if (igb_init_interrupt_scheme(adapter, true)) {
7205		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7206		return -ENOMEM;
7207	}
7208
7209	igb_reset(adapter);
7210
7211	/* let the f/w know that the h/w is now under the control of the
7212	 * driver.
7213	 */
7214	igb_get_hw_control(adapter);
7215
7216	wr32(E1000_WUS, ~0);
7217
7218	if (netdev->flags & IFF_UP) {
7219		rtnl_lock();
7220		err = __igb_open(netdev, true);
7221		rtnl_unlock();
7222		if (err)
7223			return err;
7224	}
7225
7226	netif_device_attach(netdev);
7227	return 0;
7228}
7229
7230#ifdef CONFIG_PM_RUNTIME
7231static int igb_runtime_idle(struct device *dev)
7232{
7233	struct pci_dev *pdev = to_pci_dev(dev);
7234	struct net_device *netdev = pci_get_drvdata(pdev);
7235	struct igb_adapter *adapter = netdev_priv(netdev);
7236
7237	if (!igb_has_link(adapter))
7238		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7239
7240	return -EBUSY;
7241}
7242
7243static int igb_runtime_suspend(struct device *dev)
7244{
7245	struct pci_dev *pdev = to_pci_dev(dev);
7246	int retval;
7247	bool wake;
7248
7249	retval = __igb_shutdown(pdev, &wake, 1);
7250	if (retval)
7251		return retval;
7252
7253	if (wake) {
7254		pci_prepare_to_sleep(pdev);
7255	} else {
7256		pci_wake_from_d3(pdev, false);
7257		pci_set_power_state(pdev, PCI_D3hot);
7258	}
7259
7260	return 0;
7261}
7262
7263static int igb_runtime_resume(struct device *dev)
7264{
7265	return igb_resume(dev);
7266}
7267#endif /* CONFIG_PM_RUNTIME */
7268#endif
7269
7270static void igb_shutdown(struct pci_dev *pdev)
7271{
7272	bool wake;
7273
7274	__igb_shutdown(pdev, &wake, 0);
7275
7276	if (system_state == SYSTEM_POWER_OFF) {
7277		pci_wake_from_d3(pdev, wake);
7278		pci_set_power_state(pdev, PCI_D3hot);
7279	}
7280}
7281
7282#ifdef CONFIG_PCI_IOV
7283static int igb_sriov_reinit(struct pci_dev *dev)
7284{
7285	struct net_device *netdev = pci_get_drvdata(dev);
7286	struct igb_adapter *adapter = netdev_priv(netdev);
7287	struct pci_dev *pdev = adapter->pdev;
7288
7289	rtnl_lock();
7290
7291	if (netif_running(netdev))
7292		igb_close(netdev);
7293
7294	igb_clear_interrupt_scheme(adapter);
7295
7296	igb_init_queue_configuration(adapter);
7297
7298	if (igb_init_interrupt_scheme(adapter, true)) {
7299		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7300		return -ENOMEM;
7301	}
7302
7303	if (netif_running(netdev))
7304		igb_open(netdev);
7305
7306	rtnl_unlock();
7307
7308	return 0;
7309}
7310
7311static int igb_pci_disable_sriov(struct pci_dev *dev)
7312{
7313	int err = igb_disable_sriov(dev);
7314
7315	if (!err)
7316		err = igb_sriov_reinit(dev);
7317
7318	return err;
7319}
7320
7321static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7322{
7323	int err = igb_enable_sriov(dev, num_vfs);
7324
7325	if (err)
7326		goto out;
7327
7328	err = igb_sriov_reinit(dev);
7329	if (!err)
7330		return num_vfs;
7331
7332out:
7333	return err;
7334}
7335
7336#endif
7337static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7338{
7339#ifdef CONFIG_PCI_IOV
7340	if (num_vfs == 0)
7341		return igb_pci_disable_sriov(dev);
7342	else
7343		return igb_pci_enable_sriov(dev, num_vfs);
7344#endif
7345	return 0;
7346}
7347
7348#ifdef CONFIG_NET_POLL_CONTROLLER
7349/* Polling 'interrupt' - used by things like netconsole to send skbs
7350 * without having to re-enable interrupts. It's not called while
7351 * the interrupt routine is executing.
7352 */
7353static void igb_netpoll(struct net_device *netdev)
7354{
7355	struct igb_adapter *adapter = netdev_priv(netdev);
7356	struct e1000_hw *hw = &adapter->hw;
7357	struct igb_q_vector *q_vector;
7358	int i;
7359
7360	for (i = 0; i < adapter->num_q_vectors; i++) {
7361		q_vector = adapter->q_vector[i];
7362		if (adapter->msix_entries)
7363			wr32(E1000_EIMC, q_vector->eims_value);
7364		else
7365			igb_irq_disable(adapter);
7366		napi_schedule(&q_vector->napi);
7367	}
7368}
7369#endif /* CONFIG_NET_POLL_CONTROLLER */
7370
7371/**
7372 *  igb_io_error_detected - called when PCI error is detected
7373 *  @pdev: Pointer to PCI device
7374 *  @state: The current pci connection state
7375 *
7376 *  This function is called after a PCI bus error affecting
7377 *  this device has been detected.
7378 **/
7379static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7380					      pci_channel_state_t state)
7381{
7382	struct net_device *netdev = pci_get_drvdata(pdev);
7383	struct igb_adapter *adapter = netdev_priv(netdev);
7384
7385	netif_device_detach(netdev);
7386
7387	if (state == pci_channel_io_perm_failure)
7388		return PCI_ERS_RESULT_DISCONNECT;
7389
7390	if (netif_running(netdev))
7391		igb_down(adapter);
7392	pci_disable_device(pdev);
7393
7394	/* Request a slot slot reset. */
7395	return PCI_ERS_RESULT_NEED_RESET;
7396}
7397
7398/**
7399 *  igb_io_slot_reset - called after the pci bus has been reset.
7400 *  @pdev: Pointer to PCI device
7401 *
7402 *  Restart the card from scratch, as if from a cold-boot. Implementation
7403 *  resembles the first-half of the igb_resume routine.
7404 **/
7405static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7406{
7407	struct net_device *netdev = pci_get_drvdata(pdev);
7408	struct igb_adapter *adapter = netdev_priv(netdev);
7409	struct e1000_hw *hw = &adapter->hw;
7410	pci_ers_result_t result;
7411	int err;
7412
7413	if (pci_enable_device_mem(pdev)) {
7414		dev_err(&pdev->dev,
7415			"Cannot re-enable PCI device after reset.\n");
7416		result = PCI_ERS_RESULT_DISCONNECT;
7417	} else {
7418		pci_set_master(pdev);
7419		pci_restore_state(pdev);
7420		pci_save_state(pdev);
7421
7422		pci_enable_wake(pdev, PCI_D3hot, 0);
7423		pci_enable_wake(pdev, PCI_D3cold, 0);
7424
7425		igb_reset(adapter);
7426		wr32(E1000_WUS, ~0);
7427		result = PCI_ERS_RESULT_RECOVERED;
7428	}
7429
7430	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7431	if (err) {
7432		dev_err(&pdev->dev,
7433			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7434			err);
7435		/* non-fatal, continue */
7436	}
7437
7438	return result;
7439}
7440
7441/**
7442 *  igb_io_resume - called when traffic can start flowing again.
7443 *  @pdev: Pointer to PCI device
7444 *
7445 *  This callback is called when the error recovery driver tells us that
7446 *  its OK to resume normal operation. Implementation resembles the
7447 *  second-half of the igb_resume routine.
7448 */
7449static void igb_io_resume(struct pci_dev *pdev)
7450{
7451	struct net_device *netdev = pci_get_drvdata(pdev);
7452	struct igb_adapter *adapter = netdev_priv(netdev);
7453
7454	if (netif_running(netdev)) {
7455		if (igb_up(adapter)) {
7456			dev_err(&pdev->dev, "igb_up failed after reset\n");
7457			return;
7458		}
7459	}
7460
7461	netif_device_attach(netdev);
7462
7463	/* let the f/w know that the h/w is now under the control of the
7464	 * driver.
7465	 */
7466	igb_get_hw_control(adapter);
7467}
7468
7469static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7470			     u8 qsel)
7471{
7472	u32 rar_low, rar_high;
7473	struct e1000_hw *hw = &adapter->hw;
7474
7475	/* HW expects these in little endian so we reverse the byte order
7476	 * from network order (big endian) to little endian
7477	 */
7478	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7479		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7480	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7481
7482	/* Indicate to hardware the Address is Valid. */
7483	rar_high |= E1000_RAH_AV;
7484
7485	if (hw->mac.type == e1000_82575)
7486		rar_high |= E1000_RAH_POOL_1 * qsel;
7487	else
7488		rar_high |= E1000_RAH_POOL_1 << qsel;
7489
7490	wr32(E1000_RAL(index), rar_low);
7491	wrfl();
7492	wr32(E1000_RAH(index), rar_high);
7493	wrfl();
7494}
7495
7496static int igb_set_vf_mac(struct igb_adapter *adapter,
7497			  int vf, unsigned char *mac_addr)
7498{
7499	struct e1000_hw *hw = &adapter->hw;
7500	/* VF MAC addresses start at end of receive addresses and moves
7501	 * towards the first, as a result a collision should not be possible
7502	 */
7503	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7504
7505	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7506
7507	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7508
7509	return 0;
7510}
7511
7512static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7513{
7514	struct igb_adapter *adapter = netdev_priv(netdev);
7515	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7516		return -EINVAL;
7517	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7518	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7519	dev_info(&adapter->pdev->dev,
7520		 "Reload the VF driver to make this change effective.");
7521	if (test_bit(__IGB_DOWN, &adapter->state)) {
7522		dev_warn(&adapter->pdev->dev,
7523			 "The VF MAC address has been set, but the PF device is not up.\n");
7524		dev_warn(&adapter->pdev->dev,
7525			 "Bring the PF device up before attempting to use the VF device.\n");
7526	}
7527	return igb_set_vf_mac(adapter, vf, mac);
7528}
7529
7530static int igb_link_mbps(int internal_link_speed)
7531{
7532	switch (internal_link_speed) {
7533	case SPEED_100:
7534		return 100;
7535	case SPEED_1000:
7536		return 1000;
7537	default:
7538		return 0;
7539	}
7540}
7541
7542static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7543				  int link_speed)
7544{
7545	int rf_dec, rf_int;
7546	u32 bcnrc_val;
7547
7548	if (tx_rate != 0) {
7549		/* Calculate the rate factor values to set */
7550		rf_int = link_speed / tx_rate;
7551		rf_dec = (link_speed - (rf_int * tx_rate));
7552		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7553			 tx_rate;
7554
7555		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7556		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7557			      E1000_RTTBCNRC_RF_INT_MASK);
7558		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7559	} else {
7560		bcnrc_val = 0;
7561	}
7562
7563	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7564	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7565	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7566	 */
7567	wr32(E1000_RTTBCNRM, 0x14);
7568	wr32(E1000_RTTBCNRC, bcnrc_val);
7569}
7570
7571static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7572{
7573	int actual_link_speed, i;
7574	bool reset_rate = false;
7575
7576	/* VF TX rate limit was not set or not supported */
7577	if ((adapter->vf_rate_link_speed == 0) ||
7578	    (adapter->hw.mac.type != e1000_82576))
7579		return;
7580
7581	actual_link_speed = igb_link_mbps(adapter->link_speed);
7582	if (actual_link_speed != adapter->vf_rate_link_speed) {
7583		reset_rate = true;
7584		adapter->vf_rate_link_speed = 0;
7585		dev_info(&adapter->pdev->dev,
7586			 "Link speed has been changed. VF Transmit rate is disabled\n");
7587	}
7588
7589	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7590		if (reset_rate)
7591			adapter->vf_data[i].tx_rate = 0;
7592
7593		igb_set_vf_rate_limit(&adapter->hw, i,
7594				      adapter->vf_data[i].tx_rate,
7595				      actual_link_speed);
7596	}
7597}
7598
7599static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7600{
7601	struct igb_adapter *adapter = netdev_priv(netdev);
7602	struct e1000_hw *hw = &adapter->hw;
7603	int actual_link_speed;
7604
7605	if (hw->mac.type != e1000_82576)
7606		return -EOPNOTSUPP;
7607
7608	actual_link_speed = igb_link_mbps(adapter->link_speed);
7609	if ((vf >= adapter->vfs_allocated_count) ||
7610	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7611	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7612		return -EINVAL;
7613
7614	adapter->vf_rate_link_speed = actual_link_speed;
7615	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7616	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7617
7618	return 0;
7619}
7620
7621static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7622				   bool setting)
7623{
7624	struct igb_adapter *adapter = netdev_priv(netdev);
7625	struct e1000_hw *hw = &adapter->hw;
7626	u32 reg_val, reg_offset;
7627
7628	if (!adapter->vfs_allocated_count)
7629		return -EOPNOTSUPP;
7630
7631	if (vf >= adapter->vfs_allocated_count)
7632		return -EINVAL;
7633
7634	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7635	reg_val = rd32(reg_offset);
7636	if (setting)
7637		reg_val |= ((1 << vf) |
7638			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7639	else
7640		reg_val &= ~((1 << vf) |
7641			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7642	wr32(reg_offset, reg_val);
7643
7644	adapter->vf_data[vf].spoofchk_enabled = setting;
7645	return E1000_SUCCESS;
7646}
7647
7648static int igb_ndo_get_vf_config(struct net_device *netdev,
7649				 int vf, struct ifla_vf_info *ivi)
7650{
7651	struct igb_adapter *adapter = netdev_priv(netdev);
7652	if (vf >= adapter->vfs_allocated_count)
7653		return -EINVAL;
7654	ivi->vf = vf;
7655	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7656	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7657	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7658	ivi->qos = adapter->vf_data[vf].pf_qos;
7659	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7660	return 0;
7661}
7662
7663static void igb_vmm_control(struct igb_adapter *adapter)
7664{
7665	struct e1000_hw *hw = &adapter->hw;
7666	u32 reg;
7667
7668	switch (hw->mac.type) {
7669	case e1000_82575:
7670	case e1000_i210:
7671	case e1000_i211:
7672	case e1000_i354:
7673	default:
7674		/* replication is not supported for 82575 */
7675		return;
7676	case e1000_82576:
7677		/* notify HW that the MAC is adding vlan tags */
7678		reg = rd32(E1000_DTXCTL);
7679		reg |= E1000_DTXCTL_VLAN_ADDED;
7680		wr32(E1000_DTXCTL, reg);
7681	case e1000_82580:
7682		/* enable replication vlan tag stripping */
7683		reg = rd32(E1000_RPLOLR);
7684		reg |= E1000_RPLOLR_STRVLAN;
7685		wr32(E1000_RPLOLR, reg);
7686	case e1000_i350:
7687		/* none of the above registers are supported by i350 */
7688		break;
7689	}
7690
7691	if (adapter->vfs_allocated_count) {
7692		igb_vmdq_set_loopback_pf(hw, true);
7693		igb_vmdq_set_replication_pf(hw, true);
7694		igb_vmdq_set_anti_spoofing_pf(hw, true,
7695					      adapter->vfs_allocated_count);
7696	} else {
7697		igb_vmdq_set_loopback_pf(hw, false);
7698		igb_vmdq_set_replication_pf(hw, false);
7699	}
7700}
7701
7702static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7703{
7704	struct e1000_hw *hw = &adapter->hw;
7705	u32 dmac_thr;
7706	u16 hwm;
7707
7708	if (hw->mac.type > e1000_82580) {
7709		if (adapter->flags & IGB_FLAG_DMAC) {
7710			u32 reg;
7711
7712			/* force threshold to 0. */
7713			wr32(E1000_DMCTXTH, 0);
7714
7715			/* DMA Coalescing high water mark needs to be greater
7716			 * than the Rx threshold. Set hwm to PBA - max frame
7717			 * size in 16B units, capping it at PBA - 6KB.
7718			 */
7719			hwm = 64 * pba - adapter->max_frame_size / 16;
7720			if (hwm < 64 * (pba - 6))
7721				hwm = 64 * (pba - 6);
7722			reg = rd32(E1000_FCRTC);
7723			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7724			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7725				& E1000_FCRTC_RTH_COAL_MASK);
7726			wr32(E1000_FCRTC, reg);
7727
7728			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7729			 * frame size, capping it at PBA - 10KB.
7730			 */
7731			dmac_thr = pba - adapter->max_frame_size / 512;
7732			if (dmac_thr < pba - 10)
7733				dmac_thr = pba - 10;
7734			reg = rd32(E1000_DMACR);
7735			reg &= ~E1000_DMACR_DMACTHR_MASK;
7736			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7737				& E1000_DMACR_DMACTHR_MASK);
7738
7739			/* transition to L0x or L1 if available..*/
7740			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7741
7742			/* watchdog timer= +-1000 usec in 32usec intervals */
7743			reg |= (1000 >> 5);
7744
7745			/* Disable BMC-to-OS Watchdog Enable */
7746			if (hw->mac.type != e1000_i354)
7747				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7748
7749			wr32(E1000_DMACR, reg);
7750
7751			/* no lower threshold to disable
7752			 * coalescing(smart fifb)-UTRESH=0
7753			 */
7754			wr32(E1000_DMCRTRH, 0);
7755
7756			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7757
7758			wr32(E1000_DMCTLX, reg);
7759
7760			/* free space in tx packet buffer to wake from
7761			 * DMA coal
7762			 */
7763			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7764			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7765
7766			/* make low power state decision controlled
7767			 * by DMA coal
7768			 */
7769			reg = rd32(E1000_PCIEMISC);
7770			reg &= ~E1000_PCIEMISC_LX_DECISION;
7771			wr32(E1000_PCIEMISC, reg);
7772		} /* endif adapter->dmac is not disabled */
7773	} else if (hw->mac.type == e1000_82580) {
7774		u32 reg = rd32(E1000_PCIEMISC);
7775		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7776		wr32(E1000_DMACR, 0);
7777	}
7778}
7779
7780/**
7781 *  igb_read_i2c_byte - Reads 8 bit word over I2C
7782 *  @hw: pointer to hardware structure
7783 *  @byte_offset: byte offset to read
7784 *  @dev_addr: device address
7785 *  @data: value read
7786 *
7787 *  Performs byte read operation over I2C interface at
7788 *  a specified device address.
7789 **/
7790s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7791		      u8 dev_addr, u8 *data)
7792{
7793	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7794	struct i2c_client *this_client = adapter->i2c_client;
7795	s32 status;
7796	u16 swfw_mask = 0;
7797
7798	if (!this_client)
7799		return E1000_ERR_I2C;
7800
7801	swfw_mask = E1000_SWFW_PHY0_SM;
7802
7803	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7804	    != E1000_SUCCESS)
7805		return E1000_ERR_SWFW_SYNC;
7806
7807	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7808	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7809
7810	if (status < 0)
7811		return E1000_ERR_I2C;
7812	else {
7813		*data = status;
7814		return E1000_SUCCESS;
7815	}
7816}
7817
7818/**
7819 *  igb_write_i2c_byte - Writes 8 bit word over I2C
7820 *  @hw: pointer to hardware structure
7821 *  @byte_offset: byte offset to write
7822 *  @dev_addr: device address
7823 *  @data: value to write
7824 *
7825 *  Performs byte write operation over I2C interface at
7826 *  a specified device address.
7827 **/
7828s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7829		       u8 dev_addr, u8 data)
7830{
7831	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7832	struct i2c_client *this_client = adapter->i2c_client;
7833	s32 status;
7834	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7835
7836	if (!this_client)
7837		return E1000_ERR_I2C;
7838
7839	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7840		return E1000_ERR_SWFW_SYNC;
7841	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7842	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7843
7844	if (status)
7845		return E1000_ERR_I2C;
7846	else
7847		return E1000_SUCCESS;
7848
7849}
7850/* igb_main.c */
7851