igb_ptp.c revision 167f3f71c7e31da56c907b7363a36667a59dde85
1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/pci.h>
22#include <linux/ptp_classify.h>
23
24#include "igb.h"
25
26#define INCVALUE_MASK		0x7fffffff
27#define ISGN			0x80000000
28
29/* The 82580 timesync updates the system timer every 8ns by 8ns,
30 * and this update value cannot be reprogrammed.
31 *
32 * Neither the 82576 nor the 82580 offer registers wide enough to hold
33 * nanoseconds time values for very long. For the 82580, SYSTIM always
34 * counts nanoseconds, but the upper 24 bits are not availible. The
35 * frequency is adjusted by changing the 32 bit fractional nanoseconds
36 * register, TIMINCA.
37 *
38 * For the 82576, the SYSTIM register time unit is affect by the
39 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
40 * field are needed to provide the nominal 16 nanosecond period,
41 * leaving 19 bits for fractional nanoseconds.
42 *
43 * We scale the NIC clock cycle by a large factor so that relatively
44 * small clock corrections can be added or subtracted at each clock
45 * tick. The drawbacks of a large factor are a) that the clock
46 * register overflows more quickly (not such a big deal) and b) that
47 * the increment per tick has to fit into 24 bits.  As a result we
48 * need to use a shift of 19 so we can fit a value of 16 into the
49 * TIMINCA register.
50 *
51 *
52 *             SYSTIMH            SYSTIML
53 *        +--------------+   +---+---+------+
54 *  82576 |      32      |   | 8 | 5 |  19  |
55 *        +--------------+   +---+---+------+
56 *         \________ 45 bits _______/  fract
57 *
58 *        +----------+---+   +--------------+
59 *  82580 |    24    | 8 |   |      32      |
60 *        +----------+---+   +--------------+
61 *          reserved  \______ 40 bits _____/
62 *
63 *
64 * The 45 bit 82576 SYSTIM overflows every
65 *   2^45 * 10^-9 / 3600 = 9.77 hours.
66 *
67 * The 40 bit 82580 SYSTIM overflows every
68 *   2^40 * 10^-9 /  60  = 18.3 minutes.
69 */
70
71#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
72#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
73#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
74#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
76#define IGB_NBITS_82580			40
77
78static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
79
80/* SYSTIM read access for the 82576 */
81static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
82{
83	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
84	struct e1000_hw *hw = &igb->hw;
85	u64 val;
86	u32 lo, hi;
87
88	lo = rd32(E1000_SYSTIML);
89	hi = rd32(E1000_SYSTIMH);
90
91	val = ((u64) hi) << 32;
92	val |= lo;
93
94	return val;
95}
96
97/* SYSTIM read access for the 82580 */
98static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
99{
100	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
101	struct e1000_hw *hw = &igb->hw;
102	u32 lo, hi;
103	u64 val;
104
105	/* The timestamp latches on lowest register read. For the 82580
106	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
107	 * need to provide nanosecond resolution, so we just ignore it.
108	 */
109	rd32(E1000_SYSTIMR);
110	lo = rd32(E1000_SYSTIML);
111	hi = rd32(E1000_SYSTIMH);
112
113	val = ((u64) hi) << 32;
114	val |= lo;
115
116	return val;
117}
118
119/* SYSTIM read access for I210/I211 */
120static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
121{
122	struct e1000_hw *hw = &adapter->hw;
123	u32 sec, nsec;
124
125	/* The timestamp latches on lowest register read. For I210/I211, the
126	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127	 * resolution, we can ignore it.
128	 */
129	rd32(E1000_SYSTIMR);
130	nsec = rd32(E1000_SYSTIML);
131	sec = rd32(E1000_SYSTIMH);
132
133	ts->tv_sec = sec;
134	ts->tv_nsec = nsec;
135}
136
137static void igb_ptp_write_i210(struct igb_adapter *adapter,
138			       const struct timespec *ts)
139{
140	struct e1000_hw *hw = &adapter->hw;
141
142	/* Writing the SYSTIMR register is not necessary as it only provides
143	 * sub-nanosecond resolution.
144	 */
145	wr32(E1000_SYSTIML, ts->tv_nsec);
146	wr32(E1000_SYSTIMH, ts->tv_sec);
147}
148
149/**
150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151 * @adapter: board private structure
152 * @hwtstamps: timestamp structure to update
153 * @systim: unsigned 64bit system time value.
154 *
155 * We need to convert the system time value stored in the RX/TXSTMP registers
156 * into a hwtstamp which can be used by the upper level timestamping functions.
157 *
158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
159 * system time value. This is needed because reading the 64 bit time
160 * value involves reading two (or three) 32 bit registers. The first
161 * read latches the value. Ditto for writing.
162 *
163 * In addition, here have extended the system time with an overflow
164 * counter in software.
165 **/
166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167				       struct skb_shared_hwtstamps *hwtstamps,
168				       u64 systim)
169{
170	unsigned long flags;
171	u64 ns;
172
173	switch (adapter->hw.mac.type) {
174	case e1000_82576:
175	case e1000_82580:
176	case e1000_i354:
177	case e1000_i350:
178		spin_lock_irqsave(&adapter->tmreg_lock, flags);
179
180		ns = timecounter_cyc2time(&adapter->tc, systim);
181
182		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183
184		memset(hwtstamps, 0, sizeof(*hwtstamps));
185		hwtstamps->hwtstamp = ns_to_ktime(ns);
186		break;
187	case e1000_i210:
188	case e1000_i211:
189		memset(hwtstamps, 0, sizeof(*hwtstamps));
190		/* Upper 32 bits contain s, lower 32 bits contain ns. */
191		hwtstamps->hwtstamp = ktime_set(systim >> 32,
192						systim & 0xFFFFFFFF);
193		break;
194	default:
195		break;
196	}
197}
198
199/* PTP clock operations */
200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201{
202	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203					       ptp_caps);
204	struct e1000_hw *hw = &igb->hw;
205	int neg_adj = 0;
206	u64 rate;
207	u32 incvalue;
208
209	if (ppb < 0) {
210		neg_adj = 1;
211		ppb = -ppb;
212	}
213	rate = ppb;
214	rate <<= 14;
215	rate = div_u64(rate, 1953125);
216
217	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218
219	if (neg_adj)
220		incvalue -= rate;
221	else
222		incvalue += rate;
223
224	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225
226	return 0;
227}
228
229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230{
231	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232					       ptp_caps);
233	struct e1000_hw *hw = &igb->hw;
234	int neg_adj = 0;
235	u64 rate;
236	u32 inca;
237
238	if (ppb < 0) {
239		neg_adj = 1;
240		ppb = -ppb;
241	}
242	rate = ppb;
243	rate <<= 26;
244	rate = div_u64(rate, 1953125);
245
246	inca = rate & INCVALUE_MASK;
247	if (neg_adj)
248		inca |= ISGN;
249
250	wr32(E1000_TIMINCA, inca);
251
252	return 0;
253}
254
255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256{
257	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258					       ptp_caps);
259	unsigned long flags;
260	s64 now;
261
262	spin_lock_irqsave(&igb->tmreg_lock, flags);
263
264	now = timecounter_read(&igb->tc);
265	now += delta;
266	timecounter_init(&igb->tc, &igb->cc, now);
267
268	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
269
270	return 0;
271}
272
273static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
274{
275	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
276					       ptp_caps);
277	unsigned long flags;
278	struct timespec now, then = ns_to_timespec(delta);
279
280	spin_lock_irqsave(&igb->tmreg_lock, flags);
281
282	igb_ptp_read_i210(igb, &now);
283	now = timespec_add(now, then);
284	igb_ptp_write_i210(igb, (const struct timespec *)&now);
285
286	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
287
288	return 0;
289}
290
291static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
292				 struct timespec *ts)
293{
294	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
295					       ptp_caps);
296	unsigned long flags;
297	u64 ns;
298	u32 remainder;
299
300	spin_lock_irqsave(&igb->tmreg_lock, flags);
301
302	ns = timecounter_read(&igb->tc);
303
304	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
305
306	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
307	ts->tv_nsec = remainder;
308
309	return 0;
310}
311
312static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
313				struct timespec *ts)
314{
315	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
316					       ptp_caps);
317	unsigned long flags;
318
319	spin_lock_irqsave(&igb->tmreg_lock, flags);
320
321	igb_ptp_read_i210(igb, ts);
322
323	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
324
325	return 0;
326}
327
328static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
329				 const struct timespec *ts)
330{
331	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
332					       ptp_caps);
333	unsigned long flags;
334	u64 ns;
335
336	ns = ts->tv_sec * 1000000000ULL;
337	ns += ts->tv_nsec;
338
339	spin_lock_irqsave(&igb->tmreg_lock, flags);
340
341	timecounter_init(&igb->tc, &igb->cc, ns);
342
343	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
344
345	return 0;
346}
347
348static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
349				const struct timespec *ts)
350{
351	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
352					       ptp_caps);
353	unsigned long flags;
354
355	spin_lock_irqsave(&igb->tmreg_lock, flags);
356
357	igb_ptp_write_i210(igb, ts);
358
359	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
360
361	return 0;
362}
363
364static int igb_ptp_enable(struct ptp_clock_info *ptp,
365			  struct ptp_clock_request *rq, int on)
366{
367	return -EOPNOTSUPP;
368}
369
370/**
371 * igb_ptp_tx_work
372 * @work: pointer to work struct
373 *
374 * This work function polls the TSYNCTXCTL valid bit to determine when a
375 * timestamp has been taken for the current stored skb.
376 **/
377static void igb_ptp_tx_work(struct work_struct *work)
378{
379	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
380						   ptp_tx_work);
381	struct e1000_hw *hw = &adapter->hw;
382	u32 tsynctxctl;
383
384	if (!adapter->ptp_tx_skb)
385		return;
386
387	if (time_is_before_jiffies(adapter->ptp_tx_start +
388				   IGB_PTP_TX_TIMEOUT)) {
389		dev_kfree_skb_any(adapter->ptp_tx_skb);
390		adapter->ptp_tx_skb = NULL;
391		adapter->tx_hwtstamp_timeouts++;
392		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
393		return;
394	}
395
396	tsynctxctl = rd32(E1000_TSYNCTXCTL);
397	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398		igb_ptp_tx_hwtstamp(adapter);
399	else
400		/* reschedule to check later */
401		schedule_work(&adapter->ptp_tx_work);
402}
403
404static void igb_ptp_overflow_check(struct work_struct *work)
405{
406	struct igb_adapter *igb =
407		container_of(work, struct igb_adapter, ptp_overflow_work.work);
408	struct timespec ts;
409
410	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411
412	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413
414	schedule_delayed_work(&igb->ptp_overflow_work,
415			      IGB_SYSTIM_OVERFLOW_PERIOD);
416}
417
418/**
419 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420 * @adapter: private network adapter structure
421 *
422 * This watchdog task is scheduled to detect error case where hardware has
423 * dropped an Rx packet that was timestamped when the ring is full. The
424 * particular error is rare but leaves the device in a state unable to timestamp
425 * any future packets.
426 **/
427void igb_ptp_rx_hang(struct igb_adapter *adapter)
428{
429	struct e1000_hw *hw = &adapter->hw;
430	struct igb_ring *rx_ring;
431	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
432	unsigned long rx_event;
433	int n;
434
435	if (hw->mac.type != e1000_82576)
436		return;
437
438	/* If we don't have a valid timestamp in the registers, just update the
439	 * timeout counter and exit
440	 */
441	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
442		adapter->last_rx_ptp_check = jiffies;
443		return;
444	}
445
446	/* Determine the most recent watchdog or rx_timestamp event */
447	rx_event = adapter->last_rx_ptp_check;
448	for (n = 0; n < adapter->num_rx_queues; n++) {
449		rx_ring = adapter->rx_ring[n];
450		if (time_after(rx_ring->last_rx_timestamp, rx_event))
451			rx_event = rx_ring->last_rx_timestamp;
452	}
453
454	/* Only need to read the high RXSTMP register to clear the lock */
455	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
456		rd32(E1000_RXSTMPH);
457		adapter->last_rx_ptp_check = jiffies;
458		adapter->rx_hwtstamp_cleared++;
459		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
460	}
461}
462
463/**
464 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
465 * @adapter: Board private structure.
466 *
467 * If we were asked to do hardware stamping and such a time stamp is
468 * available, then it must have been for this skb here because we only
469 * allow only one such packet into the queue.
470 **/
471static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
472{
473	struct e1000_hw *hw = &adapter->hw;
474	struct skb_shared_hwtstamps shhwtstamps;
475	u64 regval;
476
477	regval = rd32(E1000_TXSTMPL);
478	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
479
480	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
481	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
482	dev_kfree_skb_any(adapter->ptp_tx_skb);
483	adapter->ptp_tx_skb = NULL;
484}
485
486/**
487 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
488 * @q_vector: Pointer to interrupt specific structure
489 * @va: Pointer to address containing Rx buffer
490 * @skb: Buffer containing timestamp and packet
491 *
492 * This function is meant to retrieve a timestamp from the first buffer of an
493 * incoming frame.  The value is stored in little endian format starting on
494 * byte 8.
495 **/
496void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
497			 unsigned char *va,
498			 struct sk_buff *skb)
499{
500	__le64 *regval = (__le64 *)va;
501
502	/* The timestamp is recorded in little endian format.
503	 * DWORD: 0        1        2        3
504	 * Field: Reserved Reserved SYSTIML  SYSTIMH
505	 */
506	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
507				   le64_to_cpu(regval[1]));
508}
509
510/**
511 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
512 * @q_vector: Pointer to interrupt specific structure
513 * @skb: Buffer containing timestamp and packet
514 *
515 * This function is meant to retrieve a timestamp from the internal registers
516 * of the adapter and store it in the skb.
517 **/
518void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
519			 struct sk_buff *skb)
520{
521	struct igb_adapter *adapter = q_vector->adapter;
522	struct e1000_hw *hw = &adapter->hw;
523	u64 regval;
524
525	/* If this bit is set, then the RX registers contain the time stamp. No
526	 * other packet will be time stamped until we read these registers, so
527	 * read the registers to make them available again. Because only one
528	 * packet can be time stamped at a time, we know that the register
529	 * values must belong to this one here and therefore we don't need to
530	 * compare any of the additional attributes stored for it.
531	 *
532	 * If nothing went wrong, then it should have a shared tx_flags that we
533	 * can turn into a skb_shared_hwtstamps.
534	 */
535	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
536		return;
537
538	regval = rd32(E1000_RXSTMPL);
539	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
540
541	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
542}
543
544/**
545 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
546 * @netdev:
547 * @ifreq:
548 * @cmd:
549 *
550 * Outgoing time stamping can be enabled and disabled. Play nice and
551 * disable it when requested, although it shouldn't case any overhead
552 * when no packet needs it. At most one packet in the queue may be
553 * marked for time stamping, otherwise it would be impossible to tell
554 * for sure to which packet the hardware time stamp belongs.
555 *
556 * Incoming time stamping has to be configured via the hardware
557 * filters. Not all combinations are supported, in particular event
558 * type has to be specified. Matching the kind of event packet is
559 * not supported, with the exception of "all V2 events regardless of
560 * level 2 or 4".
561 **/
562int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
563			   struct ifreq *ifr, int cmd)
564{
565	struct igb_adapter *adapter = netdev_priv(netdev);
566	struct e1000_hw *hw = &adapter->hw;
567	struct hwtstamp_config config;
568	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
569	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
570	u32 tsync_rx_cfg = 0;
571	bool is_l4 = false;
572	bool is_l2 = false;
573	u32 regval;
574
575	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
576		return -EFAULT;
577
578	/* reserved for future extensions */
579	if (config.flags)
580		return -EINVAL;
581
582	switch (config.tx_type) {
583	case HWTSTAMP_TX_OFF:
584		tsync_tx_ctl = 0;
585	case HWTSTAMP_TX_ON:
586		break;
587	default:
588		return -ERANGE;
589	}
590
591	switch (config.rx_filter) {
592	case HWTSTAMP_FILTER_NONE:
593		tsync_rx_ctl = 0;
594		break;
595	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
596		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
597		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
598		is_l4 = true;
599		break;
600	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
601		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
602		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
603		is_l4 = true;
604		break;
605	case HWTSTAMP_FILTER_PTP_V2_EVENT:
606	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
607	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
608	case HWTSTAMP_FILTER_PTP_V2_SYNC:
609	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
610	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
611	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
612	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
613	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
614		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
615		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
616		is_l2 = true;
617		is_l4 = true;
618		break;
619	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
620	case HWTSTAMP_FILTER_ALL:
621		/* 82576 cannot timestamp all packets, which it needs to do to
622		 * support both V1 Sync and Delay_Req messages
623		 */
624		if (hw->mac.type != e1000_82576) {
625			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
626			config.rx_filter = HWTSTAMP_FILTER_ALL;
627			break;
628		}
629		/* fall through */
630	default:
631		config.rx_filter = HWTSTAMP_FILTER_NONE;
632		return -ERANGE;
633	}
634
635	if (hw->mac.type == e1000_82575) {
636		if (tsync_rx_ctl | tsync_tx_ctl)
637			return -EINVAL;
638		return 0;
639	}
640
641	/* Per-packet timestamping only works if all packets are
642	 * timestamped, so enable timestamping in all packets as
643	 * long as one Rx filter was configured.
644	 */
645	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
646		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
647		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
648		config.rx_filter = HWTSTAMP_FILTER_ALL;
649		is_l2 = true;
650		is_l4 = true;
651
652		if ((hw->mac.type == e1000_i210) ||
653		    (hw->mac.type == e1000_i211)) {
654			regval = rd32(E1000_RXPBS);
655			regval |= E1000_RXPBS_CFG_TS_EN;
656			wr32(E1000_RXPBS, regval);
657		}
658	}
659
660	/* enable/disable TX */
661	regval = rd32(E1000_TSYNCTXCTL);
662	regval &= ~E1000_TSYNCTXCTL_ENABLED;
663	regval |= tsync_tx_ctl;
664	wr32(E1000_TSYNCTXCTL, regval);
665
666	/* enable/disable RX */
667	regval = rd32(E1000_TSYNCRXCTL);
668	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
669	regval |= tsync_rx_ctl;
670	wr32(E1000_TSYNCRXCTL, regval);
671
672	/* define which PTP packets are time stamped */
673	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
674
675	/* define ethertype filter for timestamped packets */
676	if (is_l2)
677		wr32(E1000_ETQF(3),
678		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
679		      E1000_ETQF_1588 | /* enable timestamping */
680		      ETH_P_1588));     /* 1588 eth protocol type */
681	else
682		wr32(E1000_ETQF(3), 0);
683
684	/* L4 Queue Filter[3]: filter by destination port and protocol */
685	if (is_l4) {
686		u32 ftqf = (IPPROTO_UDP /* UDP */
687			| E1000_FTQF_VF_BP /* VF not compared */
688			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
689			| E1000_FTQF_MASK); /* mask all inputs */
690		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
691
692		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
693		wr32(E1000_IMIREXT(3),
694		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
695		if (hw->mac.type == e1000_82576) {
696			/* enable source port check */
697			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
698			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
699		}
700		wr32(E1000_FTQF(3), ftqf);
701	} else {
702		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
703	}
704	wrfl();
705
706	/* clear TX/RX time stamp registers, just to be sure */
707	regval = rd32(E1000_TXSTMPL);
708	regval = rd32(E1000_TXSTMPH);
709	regval = rd32(E1000_RXSTMPL);
710	regval = rd32(E1000_RXSTMPH);
711
712	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
713		-EFAULT : 0;
714}
715
716void igb_ptp_init(struct igb_adapter *adapter)
717{
718	struct e1000_hw *hw = &adapter->hw;
719	struct net_device *netdev = adapter->netdev;
720
721	switch (hw->mac.type) {
722	case e1000_82576:
723		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
724		adapter->ptp_caps.owner = THIS_MODULE;
725		adapter->ptp_caps.max_adj = 999999881;
726		adapter->ptp_caps.n_ext_ts = 0;
727		adapter->ptp_caps.pps = 0;
728		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
729		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
730		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
731		adapter->ptp_caps.settime = igb_ptp_settime_82576;
732		adapter->ptp_caps.enable = igb_ptp_enable;
733		adapter->cc.read = igb_ptp_read_82576;
734		adapter->cc.mask = CLOCKSOURCE_MASK(64);
735		adapter->cc.mult = 1;
736		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
737		/* Dial the nominal frequency. */
738		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
739		break;
740	case e1000_82580:
741	case e1000_i354:
742	case e1000_i350:
743		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
744		adapter->ptp_caps.owner = THIS_MODULE;
745		adapter->ptp_caps.max_adj = 62499999;
746		adapter->ptp_caps.n_ext_ts = 0;
747		adapter->ptp_caps.pps = 0;
748		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
749		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
750		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
751		adapter->ptp_caps.settime = igb_ptp_settime_82576;
752		adapter->ptp_caps.enable = igb_ptp_enable;
753		adapter->cc.read = igb_ptp_read_82580;
754		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
755		adapter->cc.mult = 1;
756		adapter->cc.shift = 0;
757		/* Enable the timer functions by clearing bit 31. */
758		wr32(E1000_TSAUXC, 0x0);
759		break;
760	case e1000_i210:
761	case e1000_i211:
762		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
763		adapter->ptp_caps.owner = THIS_MODULE;
764		adapter->ptp_caps.max_adj = 62499999;
765		adapter->ptp_caps.n_ext_ts = 0;
766		adapter->ptp_caps.pps = 0;
767		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
768		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
769		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
770		adapter->ptp_caps.settime = igb_ptp_settime_i210;
771		adapter->ptp_caps.enable = igb_ptp_enable;
772		/* Enable the timer functions by clearing bit 31. */
773		wr32(E1000_TSAUXC, 0x0);
774		break;
775	default:
776		adapter->ptp_clock = NULL;
777		return;
778	}
779
780	wrfl();
781
782	spin_lock_init(&adapter->tmreg_lock);
783	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
784
785	/* Initialize the clock and overflow work for devices that need it. */
786	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
787		struct timespec ts = ktime_to_timespec(ktime_get_real());
788
789		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
790	} else {
791		timecounter_init(&adapter->tc, &adapter->cc,
792				 ktime_to_ns(ktime_get_real()));
793
794		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
795				  igb_ptp_overflow_check);
796
797		schedule_delayed_work(&adapter->ptp_overflow_work,
798				      IGB_SYSTIM_OVERFLOW_PERIOD);
799	}
800
801	/* Initialize the time sync interrupts for devices that support it. */
802	if (hw->mac.type >= e1000_82580) {
803		wr32(E1000_TSIM, E1000_TSIM_TXTS);
804		wr32(E1000_IMS, E1000_IMS_TS);
805	}
806
807	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
808						&adapter->pdev->dev);
809	if (IS_ERR(adapter->ptp_clock)) {
810		adapter->ptp_clock = NULL;
811		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
812	} else {
813		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
814			 adapter->netdev->name);
815		adapter->flags |= IGB_FLAG_PTP;
816	}
817}
818
819/**
820 * igb_ptp_stop - Disable PTP device and stop the overflow check.
821 * @adapter: Board private structure.
822 *
823 * This function stops the PTP support and cancels the delayed work.
824 **/
825void igb_ptp_stop(struct igb_adapter *adapter)
826{
827	switch (adapter->hw.mac.type) {
828	case e1000_82576:
829	case e1000_82580:
830	case e1000_i354:
831	case e1000_i350:
832		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
833		break;
834	case e1000_i210:
835	case e1000_i211:
836		/* No delayed work to cancel. */
837		break;
838	default:
839		return;
840	}
841
842	cancel_work_sync(&adapter->ptp_tx_work);
843	if (adapter->ptp_tx_skb) {
844		dev_kfree_skb_any(adapter->ptp_tx_skb);
845		adapter->ptp_tx_skb = NULL;
846	}
847
848	if (adapter->ptp_clock) {
849		ptp_clock_unregister(adapter->ptp_clock);
850		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
851			 adapter->netdev->name);
852		adapter->flags &= ~IGB_FLAG_PTP;
853	}
854}
855
856/**
857 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
858 * @adapter: Board private structure.
859 *
860 * This function handles the reset work required to re-enable the PTP device.
861 **/
862void igb_ptp_reset(struct igb_adapter *adapter)
863{
864	struct e1000_hw *hw = &adapter->hw;
865
866	if (!(adapter->flags & IGB_FLAG_PTP))
867		return;
868
869	switch (adapter->hw.mac.type) {
870	case e1000_82576:
871		/* Dial the nominal frequency. */
872		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
873		break;
874	case e1000_82580:
875	case e1000_i354:
876	case e1000_i350:
877	case e1000_i210:
878	case e1000_i211:
879		/* Enable the timer functions and interrupts. */
880		wr32(E1000_TSAUXC, 0x0);
881		wr32(E1000_TSIM, E1000_TSIM_TXTS);
882		wr32(E1000_IMS, E1000_IMS_TS);
883		break;
884	default:
885		/* No work to do. */
886		return;
887	}
888
889	/* Re-initialize the timer. */
890	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
891		struct timespec ts = ktime_to_timespec(ktime_get_real());
892
893		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
894	} else {
895		timecounter_init(&adapter->tc, &adapter->cc,
896				 ktime_to_ns(ktime_get_real()));
897	}
898}
899