ixgbevf_main.c revision 77d5dfca41ef00dbe4368ba05297adc32d5e5741
1/*******************************************************************************
2
3  Intel 82599 Virtual Function driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29/******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31******************************************************************************/
32
33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35#include <linux/types.h>
36#include <linux/bitops.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/vmalloc.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/ip.h>
44#include <linux/tcp.h>
45#include <linux/ipv6.h>
46#include <linux/slab.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/ethtool.h>
50#include <linux/if.h>
51#include <linux/if_vlan.h>
52#include <linux/prefetch.h>
53
54#include "ixgbevf.h"
55
56const char ixgbevf_driver_name[] = "ixgbevf";
57static const char ixgbevf_driver_string[] =
58	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60#define DRV_VERSION "2.6.0-k"
61const char ixgbevf_driver_version[] = DRV_VERSION;
62static char ixgbevf_copyright[] =
63	"Copyright (c) 2009 - 2012 Intel Corporation.";
64
65static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66	[board_82599_vf] = &ixgbevf_82599_vf_info,
67	[board_X540_vf]  = &ixgbevf_X540_vf_info,
68};
69
70/* ixgbevf_pci_tbl - PCI Device ID Table
71 *
72 * Wildcard entries (PCI_ANY_ID) should come last
73 * Last entry must be all 0s
74 *
75 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76 *   Class, Class Mask, private data (not used) }
77 */
78static struct pci_device_id ixgbevf_pci_tbl[] = {
79	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80	board_82599_vf},
81	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82	board_X540_vf},
83
84	/* required last entry */
85	{0, }
86};
87MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_VERSION);
93
94#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95static int debug = -1;
96module_param(debug, int, 0);
97MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99/* forward decls */
100static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
101static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
102			       u32 itr_reg);
103
104static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
105					   struct ixgbevf_ring *rx_ring,
106					   u32 val)
107{
108	/*
109	 * Force memory writes to complete before letting h/w
110	 * know there are new descriptors to fetch.  (Only
111	 * applicable for weak-ordered memory model archs,
112	 * such as IA-64).
113	 */
114	wmb();
115	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
116}
117
118/**
119 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
120 * @adapter: pointer to adapter struct
121 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
122 * @queue: queue to map the corresponding interrupt to
123 * @msix_vector: the vector to map to the corresponding queue
124 *
125 */
126static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
127			     u8 queue, u8 msix_vector)
128{
129	u32 ivar, index;
130	struct ixgbe_hw *hw = &adapter->hw;
131	if (direction == -1) {
132		/* other causes */
133		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
134		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
135		ivar &= ~0xFF;
136		ivar |= msix_vector;
137		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
138	} else {
139		/* tx or rx causes */
140		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
141		index = ((16 * (queue & 1)) + (8 * direction));
142		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
143		ivar &= ~(0xFF << index);
144		ivar |= (msix_vector << index);
145		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
146	}
147}
148
149static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
150					       struct ixgbevf_tx_buffer
151					       *tx_buffer_info)
152{
153	if (tx_buffer_info->dma) {
154		if (tx_buffer_info->mapped_as_page)
155			dma_unmap_page(&adapter->pdev->dev,
156				       tx_buffer_info->dma,
157				       tx_buffer_info->length,
158				       DMA_TO_DEVICE);
159		else
160			dma_unmap_single(&adapter->pdev->dev,
161					 tx_buffer_info->dma,
162					 tx_buffer_info->length,
163					 DMA_TO_DEVICE);
164		tx_buffer_info->dma = 0;
165	}
166	if (tx_buffer_info->skb) {
167		dev_kfree_skb_any(tx_buffer_info->skb);
168		tx_buffer_info->skb = NULL;
169	}
170	tx_buffer_info->time_stamp = 0;
171	/* tx_buffer_info must be completely set up in the transmit path */
172}
173
174#define IXGBE_MAX_TXD_PWR	14
175#define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
176
177/* Tx Descriptors needed, worst case */
178#define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
179			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
180#define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
181	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
182
183static void ixgbevf_tx_timeout(struct net_device *netdev);
184
185/**
186 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
187 * @adapter: board private structure
188 * @tx_ring: tx ring to clean
189 **/
190static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
191				 struct ixgbevf_ring *tx_ring)
192{
193	struct net_device *netdev = adapter->netdev;
194	struct ixgbe_hw *hw = &adapter->hw;
195	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
196	struct ixgbevf_tx_buffer *tx_buffer_info;
197	unsigned int i, eop, count = 0;
198	unsigned int total_bytes = 0, total_packets = 0;
199
200	i = tx_ring->next_to_clean;
201	eop = tx_ring->tx_buffer_info[i].next_to_watch;
202	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
203
204	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
205	       (count < tx_ring->work_limit)) {
206		bool cleaned = false;
207		rmb(); /* read buffer_info after eop_desc */
208		/* eop could change between read and DD-check */
209		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
210			goto cont_loop;
211		for ( ; !cleaned; count++) {
212			struct sk_buff *skb;
213			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
214			tx_buffer_info = &tx_ring->tx_buffer_info[i];
215			cleaned = (i == eop);
216			skb = tx_buffer_info->skb;
217
218			if (cleaned && skb) {
219				unsigned int segs, bytecount;
220
221				/* gso_segs is currently only valid for tcp */
222				segs = skb_shinfo(skb)->gso_segs ?: 1;
223				/* multiply data chunks by size of headers */
224				bytecount = ((segs - 1) * skb_headlen(skb)) +
225					    skb->len;
226				total_packets += segs;
227				total_bytes += bytecount;
228			}
229
230			ixgbevf_unmap_and_free_tx_resource(adapter,
231							   tx_buffer_info);
232
233			tx_desc->wb.status = 0;
234
235			i++;
236			if (i == tx_ring->count)
237				i = 0;
238		}
239
240cont_loop:
241		eop = tx_ring->tx_buffer_info[i].next_to_watch;
242		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
243	}
244
245	tx_ring->next_to_clean = i;
246
247#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
248	if (unlikely(count && netif_carrier_ok(netdev) &&
249		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
250		/* Make sure that anybody stopping the queue after this
251		 * sees the new next_to_clean.
252		 */
253		smp_mb();
254		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
255		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
256			netif_wake_subqueue(netdev, tx_ring->queue_index);
257			++adapter->restart_queue;
258		}
259	}
260
261	/* re-arm the interrupt */
262	if ((count >= tx_ring->work_limit) &&
263	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
264		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
265	}
266
267	u64_stats_update_begin(&tx_ring->syncp);
268	tx_ring->total_bytes += total_bytes;
269	tx_ring->total_packets += total_packets;
270	u64_stats_update_end(&tx_ring->syncp);
271
272	return count < tx_ring->work_limit;
273}
274
275/**
276 * ixgbevf_receive_skb - Send a completed packet up the stack
277 * @q_vector: structure containing interrupt and ring information
278 * @skb: packet to send up
279 * @status: hardware indication of status of receive
280 * @rx_ring: rx descriptor ring (for a specific queue) to setup
281 * @rx_desc: rx descriptor
282 **/
283static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
284				struct sk_buff *skb, u8 status,
285				struct ixgbevf_ring *ring,
286				union ixgbe_adv_rx_desc *rx_desc)
287{
288	struct ixgbevf_adapter *adapter = q_vector->adapter;
289	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
290	u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
291
292	if (is_vlan && test_bit(tag, adapter->active_vlans))
293		__vlan_hwaccel_put_tag(skb, tag);
294
295	napi_gro_receive(&q_vector->napi, skb);
296}
297
298/**
299 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
300 * @adapter: address of board private structure
301 * @status_err: hardware indication of status of receive
302 * @skb: skb currently being received and modified
303 **/
304static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
305				       u32 status_err, struct sk_buff *skb)
306{
307	skb_checksum_none_assert(skb);
308
309	/* Rx csum disabled */
310	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
311		return;
312
313	/* if IP and error */
314	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
315	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
316		adapter->hw_csum_rx_error++;
317		return;
318	}
319
320	if (!(status_err & IXGBE_RXD_STAT_L4CS))
321		return;
322
323	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
324		adapter->hw_csum_rx_error++;
325		return;
326	}
327
328	/* It must be a TCP or UDP packet with a valid checksum */
329	skb->ip_summed = CHECKSUM_UNNECESSARY;
330	adapter->hw_csum_rx_good++;
331}
332
333/**
334 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
335 * @adapter: address of board private structure
336 **/
337static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
338				     struct ixgbevf_ring *rx_ring,
339				     int cleaned_count)
340{
341	struct pci_dev *pdev = adapter->pdev;
342	union ixgbe_adv_rx_desc *rx_desc;
343	struct ixgbevf_rx_buffer *bi;
344	struct sk_buff *skb;
345	unsigned int i;
346	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
347
348	i = rx_ring->next_to_use;
349	bi = &rx_ring->rx_buffer_info[i];
350
351	while (cleaned_count--) {
352		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
353		skb = bi->skb;
354		if (!skb) {
355			skb = netdev_alloc_skb(adapter->netdev,
356							       bufsz);
357
358			if (!skb) {
359				adapter->alloc_rx_buff_failed++;
360				goto no_buffers;
361			}
362
363			/*
364			 * Make buffer alignment 2 beyond a 16 byte boundary
365			 * this will result in a 16 byte aligned IP header after
366			 * the 14 byte MAC header is removed
367			 */
368			skb_reserve(skb, NET_IP_ALIGN);
369
370			bi->skb = skb;
371		}
372		if (!bi->dma) {
373			bi->dma = dma_map_single(&pdev->dev, skb->data,
374						 rx_ring->rx_buf_len,
375						 DMA_FROM_DEVICE);
376		}
377		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
378
379		i++;
380		if (i == rx_ring->count)
381			i = 0;
382		bi = &rx_ring->rx_buffer_info[i];
383	}
384
385no_buffers:
386	if (rx_ring->next_to_use != i) {
387		rx_ring->next_to_use = i;
388		if (i-- == 0)
389			i = (rx_ring->count - 1);
390
391		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
392	}
393}
394
395static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
396					     u64 qmask)
397{
398	u32 mask;
399	struct ixgbe_hw *hw = &adapter->hw;
400
401	mask = (qmask & 0xFFFFFFFF);
402	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
403}
404
405static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
406				 struct ixgbevf_ring *rx_ring,
407				 int *work_done, int work_to_do)
408{
409	struct ixgbevf_adapter *adapter = q_vector->adapter;
410	struct pci_dev *pdev = adapter->pdev;
411	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
412	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
413	struct sk_buff *skb;
414	unsigned int i;
415	u32 len, staterr;
416	bool cleaned = false;
417	int cleaned_count = 0;
418	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
419
420	i = rx_ring->next_to_clean;
421	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
422	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
423	rx_buffer_info = &rx_ring->rx_buffer_info[i];
424
425	while (staterr & IXGBE_RXD_STAT_DD) {
426		if (*work_done >= work_to_do)
427			break;
428		(*work_done)++;
429
430		rmb(); /* read descriptor and rx_buffer_info after status DD */
431		len = le16_to_cpu(rx_desc->wb.upper.length);
432		cleaned = true;
433		skb = rx_buffer_info->skb;
434		prefetch(skb->data - NET_IP_ALIGN);
435		rx_buffer_info->skb = NULL;
436
437		if (rx_buffer_info->dma) {
438			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
439					 rx_ring->rx_buf_len,
440					 DMA_FROM_DEVICE);
441			rx_buffer_info->dma = 0;
442			skb_put(skb, len);
443		}
444
445		i++;
446		if (i == rx_ring->count)
447			i = 0;
448
449		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
450		prefetch(next_rxd);
451		cleaned_count++;
452
453		next_buffer = &rx_ring->rx_buffer_info[i];
454
455		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
456			skb->next = next_buffer->skb;
457			skb->next->prev = skb;
458			adapter->non_eop_descs++;
459			goto next_desc;
460		}
461
462		/* ERR_MASK will only have valid bits if EOP set */
463		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
464			dev_kfree_skb_irq(skb);
465			goto next_desc;
466		}
467
468		ixgbevf_rx_checksum(adapter, staterr, skb);
469
470		/* probably a little skewed due to removing CRC */
471		total_rx_bytes += skb->len;
472		total_rx_packets++;
473
474		/*
475		 * Work around issue of some types of VM to VM loop back
476		 * packets not getting split correctly
477		 */
478		if (staterr & IXGBE_RXD_STAT_LB) {
479			u32 header_fixup_len = skb_headlen(skb);
480			if (header_fixup_len < 14)
481				skb_push(skb, header_fixup_len);
482		}
483		skb->protocol = eth_type_trans(skb, adapter->netdev);
484
485		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
486
487next_desc:
488		rx_desc->wb.upper.status_error = 0;
489
490		/* return some buffers to hardware, one at a time is too slow */
491		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
492			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
493						 cleaned_count);
494			cleaned_count = 0;
495		}
496
497		/* use prefetched values */
498		rx_desc = next_rxd;
499		rx_buffer_info = &rx_ring->rx_buffer_info[i];
500
501		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
502	}
503
504	rx_ring->next_to_clean = i;
505	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
506
507	if (cleaned_count)
508		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
509
510	u64_stats_update_begin(&rx_ring->syncp);
511	rx_ring->total_packets += total_rx_packets;
512	rx_ring->total_bytes += total_rx_bytes;
513	u64_stats_update_end(&rx_ring->syncp);
514
515	return cleaned;
516}
517
518/**
519 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
520 * @napi: napi struct with our devices info in it
521 * @budget: amount of work driver is allowed to do this pass, in packets
522 *
523 * This function is optimized for cleaning one queue only on a single
524 * q_vector!!!
525 **/
526static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
527{
528	struct ixgbevf_q_vector *q_vector =
529		container_of(napi, struct ixgbevf_q_vector, napi);
530	struct ixgbevf_adapter *adapter = q_vector->adapter;
531	struct ixgbevf_ring *rx_ring = NULL;
532	int work_done = 0;
533	long r_idx;
534
535	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
536	rx_ring = &(adapter->rx_ring[r_idx]);
537
538	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
539
540	/* If all Rx work done, exit the polling mode */
541	if (work_done < budget) {
542		napi_complete(napi);
543		if (adapter->itr_setting & 1)
544			ixgbevf_set_itr_msix(q_vector);
545		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
546			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
547	}
548
549	return work_done;
550}
551
552/**
553 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
554 * @napi: napi struct with our devices info in it
555 * @budget: amount of work driver is allowed to do this pass, in packets
556 *
557 * This function will clean more than one rx queue associated with a
558 * q_vector.
559 **/
560static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
561{
562	struct ixgbevf_q_vector *q_vector =
563		container_of(napi, struct ixgbevf_q_vector, napi);
564	struct ixgbevf_adapter *adapter = q_vector->adapter;
565	struct ixgbevf_ring *rx_ring = NULL;
566	int work_done = 0, i;
567	long r_idx;
568	u64 enable_mask = 0;
569
570	/* attempt to distribute budget to each queue fairly, but don't allow
571	 * the budget to go below 1 because we'll exit polling */
572	budget /= (q_vector->rxr_count ?: 1);
573	budget = max(budget, 1);
574	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
575	for (i = 0; i < q_vector->rxr_count; i++) {
576		rx_ring = &(adapter->rx_ring[r_idx]);
577		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
578		enable_mask |= rx_ring->v_idx;
579		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
580				      r_idx + 1);
581	}
582
583	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
584	rx_ring = &(adapter->rx_ring[r_idx]);
585
586	/* If all Rx work done, exit the polling mode */
587	if (work_done < budget) {
588		napi_complete(napi);
589		if (adapter->itr_setting & 1)
590			ixgbevf_set_itr_msix(q_vector);
591		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
592			ixgbevf_irq_enable_queues(adapter, enable_mask);
593	}
594
595	return work_done;
596}
597
598
599/**
600 * ixgbevf_configure_msix - Configure MSI-X hardware
601 * @adapter: board private structure
602 *
603 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
604 * interrupts.
605 **/
606static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
607{
608	struct ixgbevf_q_vector *q_vector;
609	struct ixgbe_hw *hw = &adapter->hw;
610	int i, j, q_vectors, v_idx, r_idx;
611	u32 mask;
612
613	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
614
615	/*
616	 * Populate the IVAR table and set the ITR values to the
617	 * corresponding register.
618	 */
619	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
620		q_vector = adapter->q_vector[v_idx];
621		/* XXX for_each_set_bit(...) */
622		r_idx = find_first_bit(q_vector->rxr_idx,
623				       adapter->num_rx_queues);
624
625		for (i = 0; i < q_vector->rxr_count; i++) {
626			j = adapter->rx_ring[r_idx].reg_idx;
627			ixgbevf_set_ivar(adapter, 0, j, v_idx);
628			r_idx = find_next_bit(q_vector->rxr_idx,
629					      adapter->num_rx_queues,
630					      r_idx + 1);
631		}
632		r_idx = find_first_bit(q_vector->txr_idx,
633				       adapter->num_tx_queues);
634
635		for (i = 0; i < q_vector->txr_count; i++) {
636			j = adapter->tx_ring[r_idx].reg_idx;
637			ixgbevf_set_ivar(adapter, 1, j, v_idx);
638			r_idx = find_next_bit(q_vector->txr_idx,
639					      adapter->num_tx_queues,
640					      r_idx + 1);
641		}
642
643		/* if this is a tx only vector halve the interrupt rate */
644		if (q_vector->txr_count && !q_vector->rxr_count)
645			q_vector->eitr = (adapter->eitr_param >> 1);
646		else if (q_vector->rxr_count)
647			/* rx only */
648			q_vector->eitr = adapter->eitr_param;
649
650		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
651	}
652
653	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
654
655	/* set up to autoclear timer, and the vectors */
656	mask = IXGBE_EIMS_ENABLE_MASK;
657	mask &= ~IXGBE_EIMS_OTHER;
658	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
659}
660
661enum latency_range {
662	lowest_latency = 0,
663	low_latency = 1,
664	bulk_latency = 2,
665	latency_invalid = 255
666};
667
668/**
669 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
670 * @adapter: pointer to adapter
671 * @eitr: eitr setting (ints per sec) to give last timeslice
672 * @itr_setting: current throttle rate in ints/second
673 * @packets: the number of packets during this measurement interval
674 * @bytes: the number of bytes during this measurement interval
675 *
676 *      Stores a new ITR value based on packets and byte
677 *      counts during the last interrupt.  The advantage of per interrupt
678 *      computation is faster updates and more accurate ITR for the current
679 *      traffic pattern.  Constants in this function were computed
680 *      based on theoretical maximum wire speed and thresholds were set based
681 *      on testing data as well as attempting to minimize response time
682 *      while increasing bulk throughput.
683 **/
684static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
685			     u32 eitr, u8 itr_setting,
686			     int packets, int bytes)
687{
688	unsigned int retval = itr_setting;
689	u32 timepassed_us;
690	u64 bytes_perint;
691
692	if (packets == 0)
693		goto update_itr_done;
694
695
696	/* simple throttlerate management
697	 *    0-20MB/s lowest (100000 ints/s)
698	 *   20-100MB/s low   (20000 ints/s)
699	 *  100-1249MB/s bulk (8000 ints/s)
700	 */
701	/* what was last interrupt timeslice? */
702	timepassed_us = 1000000/eitr;
703	bytes_perint = bytes / timepassed_us; /* bytes/usec */
704
705	switch (itr_setting) {
706	case lowest_latency:
707		if (bytes_perint > adapter->eitr_low)
708			retval = low_latency;
709		break;
710	case low_latency:
711		if (bytes_perint > adapter->eitr_high)
712			retval = bulk_latency;
713		else if (bytes_perint <= adapter->eitr_low)
714			retval = lowest_latency;
715		break;
716	case bulk_latency:
717		if (bytes_perint <= adapter->eitr_high)
718			retval = low_latency;
719		break;
720	}
721
722update_itr_done:
723	return retval;
724}
725
726/**
727 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
728 * @adapter: pointer to adapter struct
729 * @v_idx: vector index into q_vector array
730 * @itr_reg: new value to be written in *register* format, not ints/s
731 *
732 * This function is made to be called by ethtool and by the driver
733 * when it needs to update VTEITR registers at runtime.  Hardware
734 * specific quirks/differences are taken care of here.
735 */
736static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
737			       u32 itr_reg)
738{
739	struct ixgbe_hw *hw = &adapter->hw;
740
741	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
742
743	/*
744	 * set the WDIS bit to not clear the timer bits and cause an
745	 * immediate assertion of the interrupt
746	 */
747	itr_reg |= IXGBE_EITR_CNT_WDIS;
748
749	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
750}
751
752static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
753{
754	struct ixgbevf_adapter *adapter = q_vector->adapter;
755	u32 new_itr;
756	u8 current_itr, ret_itr;
757	int i, r_idx, v_idx = q_vector->v_idx;
758	struct ixgbevf_ring *rx_ring, *tx_ring;
759
760	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
761	for (i = 0; i < q_vector->txr_count; i++) {
762		tx_ring = &(adapter->tx_ring[r_idx]);
763		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
764					     q_vector->tx_itr,
765					     tx_ring->total_packets,
766					     tx_ring->total_bytes);
767		/* if the result for this queue would decrease interrupt
768		 * rate for this vector then use that result */
769		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
770				    q_vector->tx_itr - 1 : ret_itr);
771		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
772				      r_idx + 1);
773	}
774
775	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
776	for (i = 0; i < q_vector->rxr_count; i++) {
777		rx_ring = &(adapter->rx_ring[r_idx]);
778		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
779					     q_vector->rx_itr,
780					     rx_ring->total_packets,
781					     rx_ring->total_bytes);
782		/* if the result for this queue would decrease interrupt
783		 * rate for this vector then use that result */
784		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
785				    q_vector->rx_itr - 1 : ret_itr);
786		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
787				      r_idx + 1);
788	}
789
790	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
791
792	switch (current_itr) {
793	/* counts and packets in update_itr are dependent on these numbers */
794	case lowest_latency:
795		new_itr = 100000;
796		break;
797	case low_latency:
798		new_itr = 20000; /* aka hwitr = ~200 */
799		break;
800	case bulk_latency:
801	default:
802		new_itr = 8000;
803		break;
804	}
805
806	if (new_itr != q_vector->eitr) {
807		u32 itr_reg;
808
809		/* save the algorithm value here, not the smoothed one */
810		q_vector->eitr = new_itr;
811		/* do an exponential smoothing */
812		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
813		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
814		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
815	}
816}
817
818static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
819{
820	struct net_device *netdev = data;
821	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
822	struct ixgbe_hw *hw = &adapter->hw;
823	u32 eicr;
824	u32 msg;
825	bool got_ack = false;
826
827	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
828	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
829
830	if (!hw->mbx.ops.check_for_ack(hw))
831		got_ack = true;
832
833	if (!hw->mbx.ops.check_for_msg(hw)) {
834		hw->mbx.ops.read(hw, &msg, 1);
835
836		if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
837			mod_timer(&adapter->watchdog_timer,
838				  round_jiffies(jiffies + 1));
839
840		if (msg & IXGBE_VT_MSGTYPE_NACK)
841			pr_warn("Last Request of type %2.2x to PF Nacked\n",
842				msg & 0xFF);
843		/*
844		 * Restore the PFSTS bit in case someone is polling for a
845		 * return message from the PF
846		 */
847		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
848	}
849
850	/*
851	 * checking for the ack clears the PFACK bit.  Place
852	 * it back in the v2p_mailbox cache so that anyone
853	 * polling for an ack will not miss it
854	 */
855	if (got_ack)
856		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
857
858	return IRQ_HANDLED;
859}
860
861static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
862{
863	struct ixgbevf_q_vector *q_vector = data;
864	struct ixgbevf_adapter  *adapter = q_vector->adapter;
865	struct ixgbevf_ring     *tx_ring;
866	int i, r_idx;
867
868	if (!q_vector->txr_count)
869		return IRQ_HANDLED;
870
871	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
872	for (i = 0; i < q_vector->txr_count; i++) {
873		tx_ring = &(adapter->tx_ring[r_idx]);
874		tx_ring->total_bytes = 0;
875		tx_ring->total_packets = 0;
876		ixgbevf_clean_tx_irq(adapter, tx_ring);
877		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
878				      r_idx + 1);
879	}
880
881	if (adapter->itr_setting & 1)
882		ixgbevf_set_itr_msix(q_vector);
883
884	return IRQ_HANDLED;
885}
886
887/**
888 * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
889 * @irq: unused
890 * @data: pointer to our q_vector struct for this interrupt vector
891 **/
892static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
893{
894	struct ixgbevf_q_vector *q_vector = data;
895	struct ixgbevf_adapter  *adapter = q_vector->adapter;
896	struct ixgbe_hw *hw = &adapter->hw;
897	struct ixgbevf_ring  *rx_ring;
898	int r_idx;
899	int i;
900
901	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
902	for (i = 0; i < q_vector->rxr_count; i++) {
903		rx_ring = &(adapter->rx_ring[r_idx]);
904		rx_ring->total_bytes = 0;
905		rx_ring->total_packets = 0;
906		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
907				      r_idx + 1);
908	}
909
910	if (!q_vector->rxr_count)
911		return IRQ_HANDLED;
912
913	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
914	rx_ring = &(adapter->rx_ring[r_idx]);
915	/* disable interrupts on this vector only */
916	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
917	napi_schedule(&q_vector->napi);
918
919
920	return IRQ_HANDLED;
921}
922
923static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
924{
925	ixgbevf_msix_clean_rx(irq, data);
926	ixgbevf_msix_clean_tx(irq, data);
927
928	return IRQ_HANDLED;
929}
930
931static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
932				     int r_idx)
933{
934	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
935
936	set_bit(r_idx, q_vector->rxr_idx);
937	q_vector->rxr_count++;
938	a->rx_ring[r_idx].v_idx = 1 << v_idx;
939}
940
941static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
942				     int t_idx)
943{
944	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
945
946	set_bit(t_idx, q_vector->txr_idx);
947	q_vector->txr_count++;
948	a->tx_ring[t_idx].v_idx = 1 << v_idx;
949}
950
951/**
952 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
953 * @adapter: board private structure to initialize
954 *
955 * This function maps descriptor rings to the queue-specific vectors
956 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
957 * one vector per ring/queue, but on a constrained vector budget, we
958 * group the rings as "efficiently" as possible.  You would add new
959 * mapping configurations in here.
960 **/
961static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
962{
963	int q_vectors;
964	int v_start = 0;
965	int rxr_idx = 0, txr_idx = 0;
966	int rxr_remaining = adapter->num_rx_queues;
967	int txr_remaining = adapter->num_tx_queues;
968	int i, j;
969	int rqpv, tqpv;
970	int err = 0;
971
972	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
973
974	/*
975	 * The ideal configuration...
976	 * We have enough vectors to map one per queue.
977	 */
978	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
979		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
980			map_vector_to_rxq(adapter, v_start, rxr_idx);
981
982		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
983			map_vector_to_txq(adapter, v_start, txr_idx);
984		goto out;
985	}
986
987	/*
988	 * If we don't have enough vectors for a 1-to-1
989	 * mapping, we'll have to group them so there are
990	 * multiple queues per vector.
991	 */
992	/* Re-adjusting *qpv takes care of the remainder. */
993	for (i = v_start; i < q_vectors; i++) {
994		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
995		for (j = 0; j < rqpv; j++) {
996			map_vector_to_rxq(adapter, i, rxr_idx);
997			rxr_idx++;
998			rxr_remaining--;
999		}
1000	}
1001	for (i = v_start; i < q_vectors; i++) {
1002		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1003		for (j = 0; j < tqpv; j++) {
1004			map_vector_to_txq(adapter, i, txr_idx);
1005			txr_idx++;
1006			txr_remaining--;
1007		}
1008	}
1009
1010out:
1011	return err;
1012}
1013
1014/**
1015 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1016 * @adapter: board private structure
1017 *
1018 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1019 * interrupts from the kernel.
1020 **/
1021static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1022{
1023	struct net_device *netdev = adapter->netdev;
1024	irqreturn_t (*handler)(int, void *);
1025	int i, vector, q_vectors, err;
1026	int ri = 0, ti = 0;
1027
1028	/* Decrement for Other and TCP Timer vectors */
1029	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1030
1031#define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1032					  ? &ixgbevf_msix_clean_many : \
1033			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1034			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1035			  NULL)
1036	for (vector = 0; vector < q_vectors; vector++) {
1037		handler = SET_HANDLER(adapter->q_vector[vector]);
1038
1039		if (handler == &ixgbevf_msix_clean_rx) {
1040			sprintf(adapter->name[vector], "%s-%s-%d",
1041				netdev->name, "rx", ri++);
1042		} else if (handler == &ixgbevf_msix_clean_tx) {
1043			sprintf(adapter->name[vector], "%s-%s-%d",
1044				netdev->name, "tx", ti++);
1045		} else if (handler == &ixgbevf_msix_clean_many) {
1046			sprintf(adapter->name[vector], "%s-%s-%d",
1047				netdev->name, "TxRx", vector);
1048		} else {
1049			/* skip this unused q_vector */
1050			continue;
1051		}
1052		err = request_irq(adapter->msix_entries[vector].vector,
1053				  handler, 0, adapter->name[vector],
1054				  adapter->q_vector[vector]);
1055		if (err) {
1056			hw_dbg(&adapter->hw,
1057			       "request_irq failed for MSIX interrupt "
1058			       "Error: %d\n", err);
1059			goto free_queue_irqs;
1060		}
1061	}
1062
1063	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1064	err = request_irq(adapter->msix_entries[vector].vector,
1065			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1066	if (err) {
1067		hw_dbg(&adapter->hw,
1068		       "request_irq for msix_mbx failed: %d\n", err);
1069		goto free_queue_irqs;
1070	}
1071
1072	return 0;
1073
1074free_queue_irqs:
1075	for (i = vector - 1; i >= 0; i--)
1076		free_irq(adapter->msix_entries[--vector].vector,
1077			 &(adapter->q_vector[i]));
1078	pci_disable_msix(adapter->pdev);
1079	kfree(adapter->msix_entries);
1080	adapter->msix_entries = NULL;
1081	return err;
1082}
1083
1084static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1085{
1086	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1087
1088	for (i = 0; i < q_vectors; i++) {
1089		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1090		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1091		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1092		q_vector->rxr_count = 0;
1093		q_vector->txr_count = 0;
1094		q_vector->eitr = adapter->eitr_param;
1095	}
1096}
1097
1098/**
1099 * ixgbevf_request_irq - initialize interrupts
1100 * @adapter: board private structure
1101 *
1102 * Attempts to configure interrupts using the best available
1103 * capabilities of the hardware and kernel.
1104 **/
1105static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1106{
1107	int err = 0;
1108
1109	err = ixgbevf_request_msix_irqs(adapter);
1110
1111	if (err)
1112		hw_dbg(&adapter->hw,
1113		       "request_irq failed, Error %d\n", err);
1114
1115	return err;
1116}
1117
1118static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1119{
1120	struct net_device *netdev = adapter->netdev;
1121	int i, q_vectors;
1122
1123	q_vectors = adapter->num_msix_vectors;
1124
1125	i = q_vectors - 1;
1126
1127	free_irq(adapter->msix_entries[i].vector, netdev);
1128	i--;
1129
1130	for (; i >= 0; i--) {
1131		free_irq(adapter->msix_entries[i].vector,
1132			 adapter->q_vector[i]);
1133	}
1134
1135	ixgbevf_reset_q_vectors(adapter);
1136}
1137
1138/**
1139 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1140 * @adapter: board private structure
1141 **/
1142static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1143{
1144	int i;
1145	struct ixgbe_hw *hw = &adapter->hw;
1146
1147	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1148
1149	IXGBE_WRITE_FLUSH(hw);
1150
1151	for (i = 0; i < adapter->num_msix_vectors; i++)
1152		synchronize_irq(adapter->msix_entries[i].vector);
1153}
1154
1155/**
1156 * ixgbevf_irq_enable - Enable default interrupt generation settings
1157 * @adapter: board private structure
1158 **/
1159static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1160				      bool queues, bool flush)
1161{
1162	struct ixgbe_hw *hw = &adapter->hw;
1163	u32 mask;
1164	u64 qmask;
1165
1166	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1167	qmask = ~0;
1168
1169	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1170
1171	if (queues)
1172		ixgbevf_irq_enable_queues(adapter, qmask);
1173
1174	if (flush)
1175		IXGBE_WRITE_FLUSH(hw);
1176}
1177
1178/**
1179 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1180 * @adapter: board private structure
1181 *
1182 * Configure the Tx unit of the MAC after a reset.
1183 **/
1184static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1185{
1186	u64 tdba;
1187	struct ixgbe_hw *hw = &adapter->hw;
1188	u32 i, j, tdlen, txctrl;
1189
1190	/* Setup the HW Tx Head and Tail descriptor pointers */
1191	for (i = 0; i < adapter->num_tx_queues; i++) {
1192		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1193		j = ring->reg_idx;
1194		tdba = ring->dma;
1195		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1196		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1197				(tdba & DMA_BIT_MASK(32)));
1198		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1199		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1200		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1201		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1202		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1203		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1204		/* Disable Tx Head Writeback RO bit, since this hoses
1205		 * bookkeeping if things aren't delivered in order.
1206		 */
1207		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1208		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1209		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1210	}
1211}
1212
1213#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1214
1215static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1216{
1217	struct ixgbevf_ring *rx_ring;
1218	struct ixgbe_hw *hw = &adapter->hw;
1219	u32 srrctl;
1220
1221	rx_ring = &adapter->rx_ring[index];
1222
1223	srrctl = IXGBE_SRRCTL_DROP_EN;
1224
1225	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1226
1227	if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1228		srrctl |= IXGBEVF_RXBUFFER_2048 >>
1229			IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1230	else
1231		srrctl |= rx_ring->rx_buf_len >>
1232			IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1233	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1234}
1235
1236/**
1237 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1238 * @adapter: board private structure
1239 *
1240 * Configure the Rx unit of the MAC after a reset.
1241 **/
1242static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1243{
1244	u64 rdba;
1245	struct ixgbe_hw *hw = &adapter->hw;
1246	struct net_device *netdev = adapter->netdev;
1247	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1248	int i, j;
1249	u32 rdlen;
1250	int rx_buf_len;
1251
1252	/* PSRTYPE must be initialized in 82599 */
1253	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1254	if (netdev->mtu <= ETH_DATA_LEN)
1255		rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1256	else
1257		rx_buf_len = ALIGN(max_frame, 1024);
1258
1259	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1260	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1261	 * the Base and Length of the Rx Descriptor Ring */
1262	for (i = 0; i < adapter->num_rx_queues; i++) {
1263		rdba = adapter->rx_ring[i].dma;
1264		j = adapter->rx_ring[i].reg_idx;
1265		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1266				(rdba & DMA_BIT_MASK(32)));
1267		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1268		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1269		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1270		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1271		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1272		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1273		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1274
1275		ixgbevf_configure_srrctl(adapter, j);
1276	}
1277}
1278
1279static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1280{
1281	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1282	struct ixgbe_hw *hw = &adapter->hw;
1283
1284	/* add VID to filter table */
1285	if (hw->mac.ops.set_vfta)
1286		hw->mac.ops.set_vfta(hw, vid, 0, true);
1287	set_bit(vid, adapter->active_vlans);
1288
1289	return 0;
1290}
1291
1292static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1293{
1294	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1295	struct ixgbe_hw *hw = &adapter->hw;
1296
1297	/* remove VID from filter table */
1298	if (hw->mac.ops.set_vfta)
1299		hw->mac.ops.set_vfta(hw, vid, 0, false);
1300	clear_bit(vid, adapter->active_vlans);
1301
1302	return 0;
1303}
1304
1305static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1306{
1307	u16 vid;
1308
1309	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1310		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1311}
1312
1313static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1314{
1315	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1316	struct ixgbe_hw *hw = &adapter->hw;
1317	int count = 0;
1318
1319	if ((netdev_uc_count(netdev)) > 10) {
1320		pr_err("Too many unicast filters - No Space\n");
1321		return -ENOSPC;
1322	}
1323
1324	if (!netdev_uc_empty(netdev)) {
1325		struct netdev_hw_addr *ha;
1326		netdev_for_each_uc_addr(ha, netdev) {
1327			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1328			udelay(200);
1329		}
1330	} else {
1331		/*
1332		 * If the list is empty then send message to PF driver to
1333		 * clear all macvlans on this VF.
1334		 */
1335		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1336	}
1337
1338	return count;
1339}
1340
1341/**
1342 * ixgbevf_set_rx_mode - Multicast set
1343 * @netdev: network interface device structure
1344 *
1345 * The set_rx_method entry point is called whenever the multicast address
1346 * list or the network interface flags are updated.  This routine is
1347 * responsible for configuring the hardware for proper multicast mode.
1348 **/
1349static void ixgbevf_set_rx_mode(struct net_device *netdev)
1350{
1351	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1352	struct ixgbe_hw *hw = &adapter->hw;
1353
1354	/* reprogram multicast list */
1355	if (hw->mac.ops.update_mc_addr_list)
1356		hw->mac.ops.update_mc_addr_list(hw, netdev);
1357
1358	ixgbevf_write_uc_addr_list(netdev);
1359}
1360
1361static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1362{
1363	int q_idx;
1364	struct ixgbevf_q_vector *q_vector;
1365	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1366
1367	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1368		struct napi_struct *napi;
1369		q_vector = adapter->q_vector[q_idx];
1370		if (!q_vector->rxr_count)
1371			continue;
1372		napi = &q_vector->napi;
1373		if (q_vector->rxr_count > 1)
1374			napi->poll = &ixgbevf_clean_rxonly_many;
1375
1376		napi_enable(napi);
1377	}
1378}
1379
1380static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1381{
1382	int q_idx;
1383	struct ixgbevf_q_vector *q_vector;
1384	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1385
1386	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1387		q_vector = adapter->q_vector[q_idx];
1388		if (!q_vector->rxr_count)
1389			continue;
1390		napi_disable(&q_vector->napi);
1391	}
1392}
1393
1394static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1395{
1396	struct net_device *netdev = adapter->netdev;
1397	int i;
1398
1399	ixgbevf_set_rx_mode(netdev);
1400
1401	ixgbevf_restore_vlan(adapter);
1402
1403	ixgbevf_configure_tx(adapter);
1404	ixgbevf_configure_rx(adapter);
1405	for (i = 0; i < adapter->num_rx_queues; i++) {
1406		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1407		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1408		ring->next_to_use = ring->count - 1;
1409		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1410	}
1411}
1412
1413#define IXGBE_MAX_RX_DESC_POLL 10
1414static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1415						int rxr)
1416{
1417	struct ixgbe_hw *hw = &adapter->hw;
1418	int j = adapter->rx_ring[rxr].reg_idx;
1419	int k;
1420
1421	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1422		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1423			break;
1424		else
1425			msleep(1);
1426	}
1427	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1428		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1429		       "not set within the polling period\n", rxr);
1430	}
1431
1432	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1433				(adapter->rx_ring[rxr].count - 1));
1434}
1435
1436static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1437{
1438	/* Only save pre-reset stats if there are some */
1439	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1440		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1441			adapter->stats.base_vfgprc;
1442		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1443			adapter->stats.base_vfgptc;
1444		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1445			adapter->stats.base_vfgorc;
1446		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1447			adapter->stats.base_vfgotc;
1448		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1449			adapter->stats.base_vfmprc;
1450	}
1451}
1452
1453static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1454{
1455	struct ixgbe_hw *hw = &adapter->hw;
1456
1457	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1458	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1459	adapter->stats.last_vfgorc |=
1460		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1461	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1462	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1463	adapter->stats.last_vfgotc |=
1464		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1465	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1466
1467	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1468	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1469	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1470	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1471	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1472}
1473
1474static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1475{
1476	struct net_device *netdev = adapter->netdev;
1477	struct ixgbe_hw *hw = &adapter->hw;
1478	int i, j = 0;
1479	int num_rx_rings = adapter->num_rx_queues;
1480	u32 txdctl, rxdctl;
1481	u32 msg[2];
1482
1483	for (i = 0; i < adapter->num_tx_queues; i++) {
1484		j = adapter->tx_ring[i].reg_idx;
1485		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1486		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1487		txdctl |= (8 << 16);
1488		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1489	}
1490
1491	for (i = 0; i < adapter->num_tx_queues; i++) {
1492		j = adapter->tx_ring[i].reg_idx;
1493		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1494		txdctl |= IXGBE_TXDCTL_ENABLE;
1495		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1496	}
1497
1498	for (i = 0; i < num_rx_rings; i++) {
1499		j = adapter->rx_ring[i].reg_idx;
1500		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1501		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1502		if (hw->mac.type == ixgbe_mac_X540_vf) {
1503			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1504			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1505				   IXGBE_RXDCTL_RLPML_EN);
1506		}
1507		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1508		ixgbevf_rx_desc_queue_enable(adapter, i);
1509	}
1510
1511	ixgbevf_configure_msix(adapter);
1512
1513	if (hw->mac.ops.set_rar) {
1514		if (is_valid_ether_addr(hw->mac.addr))
1515			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1516		else
1517			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1518	}
1519
1520	msg[0] = IXGBE_VF_SET_LPE;
1521	msg[1] = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1522	hw->mbx.ops.write_posted(hw, msg, 2);
1523
1524	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1525	ixgbevf_napi_enable_all(adapter);
1526
1527	/* enable transmits */
1528	netif_tx_start_all_queues(netdev);
1529
1530	ixgbevf_save_reset_stats(adapter);
1531	ixgbevf_init_last_counter_stats(adapter);
1532
1533	mod_timer(&adapter->watchdog_timer, jiffies);
1534}
1535
1536void ixgbevf_up(struct ixgbevf_adapter *adapter)
1537{
1538	struct ixgbe_hw *hw = &adapter->hw;
1539
1540	ixgbevf_configure(adapter);
1541
1542	ixgbevf_up_complete(adapter);
1543
1544	/* clear any pending interrupts, may auto mask */
1545	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1546
1547	ixgbevf_irq_enable(adapter, true, true);
1548}
1549
1550/**
1551 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1552 * @adapter: board private structure
1553 * @rx_ring: ring to free buffers from
1554 **/
1555static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1556				  struct ixgbevf_ring *rx_ring)
1557{
1558	struct pci_dev *pdev = adapter->pdev;
1559	unsigned long size;
1560	unsigned int i;
1561
1562	if (!rx_ring->rx_buffer_info)
1563		return;
1564
1565	/* Free all the Rx ring sk_buffs */
1566	for (i = 0; i < rx_ring->count; i++) {
1567		struct ixgbevf_rx_buffer *rx_buffer_info;
1568
1569		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1570		if (rx_buffer_info->dma) {
1571			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1572					 rx_ring->rx_buf_len,
1573					 DMA_FROM_DEVICE);
1574			rx_buffer_info->dma = 0;
1575		}
1576		if (rx_buffer_info->skb) {
1577			struct sk_buff *skb = rx_buffer_info->skb;
1578			rx_buffer_info->skb = NULL;
1579			do {
1580				struct sk_buff *this = skb;
1581				skb = skb->prev;
1582				dev_kfree_skb(this);
1583			} while (skb);
1584		}
1585	}
1586
1587	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1588	memset(rx_ring->rx_buffer_info, 0, size);
1589
1590	/* Zero out the descriptor ring */
1591	memset(rx_ring->desc, 0, rx_ring->size);
1592
1593	rx_ring->next_to_clean = 0;
1594	rx_ring->next_to_use = 0;
1595
1596	if (rx_ring->head)
1597		writel(0, adapter->hw.hw_addr + rx_ring->head);
1598	if (rx_ring->tail)
1599		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1600}
1601
1602/**
1603 * ixgbevf_clean_tx_ring - Free Tx Buffers
1604 * @adapter: board private structure
1605 * @tx_ring: ring to be cleaned
1606 **/
1607static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1608				  struct ixgbevf_ring *tx_ring)
1609{
1610	struct ixgbevf_tx_buffer *tx_buffer_info;
1611	unsigned long size;
1612	unsigned int i;
1613
1614	if (!tx_ring->tx_buffer_info)
1615		return;
1616
1617	/* Free all the Tx ring sk_buffs */
1618
1619	for (i = 0; i < tx_ring->count; i++) {
1620		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1621		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1622	}
1623
1624	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1625	memset(tx_ring->tx_buffer_info, 0, size);
1626
1627	memset(tx_ring->desc, 0, tx_ring->size);
1628
1629	tx_ring->next_to_use = 0;
1630	tx_ring->next_to_clean = 0;
1631
1632	if (tx_ring->head)
1633		writel(0, adapter->hw.hw_addr + tx_ring->head);
1634	if (tx_ring->tail)
1635		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1636}
1637
1638/**
1639 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1640 * @adapter: board private structure
1641 **/
1642static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1643{
1644	int i;
1645
1646	for (i = 0; i < adapter->num_rx_queues; i++)
1647		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1648}
1649
1650/**
1651 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1652 * @adapter: board private structure
1653 **/
1654static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1655{
1656	int i;
1657
1658	for (i = 0; i < adapter->num_tx_queues; i++)
1659		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1660}
1661
1662void ixgbevf_down(struct ixgbevf_adapter *adapter)
1663{
1664	struct net_device *netdev = adapter->netdev;
1665	struct ixgbe_hw *hw = &adapter->hw;
1666	u32 txdctl;
1667	int i, j;
1668
1669	/* signal that we are down to the interrupt handler */
1670	set_bit(__IXGBEVF_DOWN, &adapter->state);
1671	/* disable receives */
1672
1673	netif_tx_disable(netdev);
1674
1675	msleep(10);
1676
1677	netif_tx_stop_all_queues(netdev);
1678
1679	ixgbevf_irq_disable(adapter);
1680
1681	ixgbevf_napi_disable_all(adapter);
1682
1683	del_timer_sync(&adapter->watchdog_timer);
1684	/* can't call flush scheduled work here because it can deadlock
1685	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1686	 * holding */
1687	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1688		msleep(1);
1689
1690	/* disable transmits in the hardware now that interrupts are off */
1691	for (i = 0; i < adapter->num_tx_queues; i++) {
1692		j = adapter->tx_ring[i].reg_idx;
1693		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1694		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1695				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1696	}
1697
1698	netif_carrier_off(netdev);
1699
1700	if (!pci_channel_offline(adapter->pdev))
1701		ixgbevf_reset(adapter);
1702
1703	ixgbevf_clean_all_tx_rings(adapter);
1704	ixgbevf_clean_all_rx_rings(adapter);
1705}
1706
1707void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1708{
1709	struct ixgbe_hw *hw = &adapter->hw;
1710
1711	WARN_ON(in_interrupt());
1712
1713	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1714		msleep(1);
1715
1716	/*
1717	 * Check if PF is up before re-init.  If not then skip until
1718	 * later when the PF is up and ready to service requests from
1719	 * the VF via mailbox.  If the VF is up and running then the
1720	 * watchdog task will continue to schedule reset tasks until
1721	 * the PF is up and running.
1722	 */
1723	if (!hw->mac.ops.reset_hw(hw)) {
1724		ixgbevf_down(adapter);
1725		ixgbevf_up(adapter);
1726	}
1727
1728	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1729}
1730
1731void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1732{
1733	struct ixgbe_hw *hw = &adapter->hw;
1734	struct net_device *netdev = adapter->netdev;
1735
1736	if (hw->mac.ops.reset_hw(hw))
1737		hw_dbg(hw, "PF still resetting\n");
1738	else
1739		hw->mac.ops.init_hw(hw);
1740
1741	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1742		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1743		       netdev->addr_len);
1744		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1745		       netdev->addr_len);
1746	}
1747}
1748
1749static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1750					 int vectors)
1751{
1752	int err, vector_threshold;
1753
1754	/* We'll want at least 3 (vector_threshold):
1755	 * 1) TxQ[0] Cleanup
1756	 * 2) RxQ[0] Cleanup
1757	 * 3) Other (Link Status Change, etc.)
1758	 */
1759	vector_threshold = MIN_MSIX_COUNT;
1760
1761	/* The more we get, the more we will assign to Tx/Rx Cleanup
1762	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1763	 * Right now, we simply care about how many we'll get; we'll
1764	 * set them up later while requesting irq's.
1765	 */
1766	while (vectors >= vector_threshold) {
1767		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1768				      vectors);
1769		if (!err) /* Success in acquiring all requested vectors. */
1770			break;
1771		else if (err < 0)
1772			vectors = 0; /* Nasty failure, quit now */
1773		else /* err == number of vectors we should try again with */
1774			vectors = err;
1775	}
1776
1777	if (vectors < vector_threshold) {
1778		/* Can't allocate enough MSI-X interrupts?  Oh well.
1779		 * This just means we'll go with either a single MSI
1780		 * vector or fall back to legacy interrupts.
1781		 */
1782		hw_dbg(&adapter->hw,
1783		       "Unable to allocate MSI-X interrupts\n");
1784		kfree(adapter->msix_entries);
1785		adapter->msix_entries = NULL;
1786	} else {
1787		/*
1788		 * Adjust for only the vectors we'll use, which is minimum
1789		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1790		 * vectors we were allocated.
1791		 */
1792		adapter->num_msix_vectors = vectors;
1793	}
1794}
1795
1796/**
1797 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
1798 * @adapter: board private structure to initialize
1799 *
1800 * This is the top level queue allocation routine.  The order here is very
1801 * important, starting with the "most" number of features turned on at once,
1802 * and ending with the smallest set of features.  This way large combinations
1803 * can be allocated if they're turned on, and smaller combinations are the
1804 * fallthrough conditions.
1805 *
1806 **/
1807static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1808{
1809	/* Start with base case */
1810	adapter->num_rx_queues = 1;
1811	adapter->num_tx_queues = 1;
1812}
1813
1814/**
1815 * ixgbevf_alloc_queues - Allocate memory for all rings
1816 * @adapter: board private structure to initialize
1817 *
1818 * We allocate one ring per queue at run-time since we don't know the
1819 * number of queues at compile-time.  The polling_netdev array is
1820 * intended for Multiqueue, but should work fine with a single queue.
1821 **/
1822static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1823{
1824	int i;
1825
1826	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1827				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1828	if (!adapter->tx_ring)
1829		goto err_tx_ring_allocation;
1830
1831	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1832				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1833	if (!adapter->rx_ring)
1834		goto err_rx_ring_allocation;
1835
1836	for (i = 0; i < adapter->num_tx_queues; i++) {
1837		adapter->tx_ring[i].count = adapter->tx_ring_count;
1838		adapter->tx_ring[i].queue_index = i;
1839		adapter->tx_ring[i].reg_idx = i;
1840	}
1841
1842	for (i = 0; i < adapter->num_rx_queues; i++) {
1843		adapter->rx_ring[i].count = adapter->rx_ring_count;
1844		adapter->rx_ring[i].queue_index = i;
1845		adapter->rx_ring[i].reg_idx = i;
1846	}
1847
1848	return 0;
1849
1850err_rx_ring_allocation:
1851	kfree(adapter->tx_ring);
1852err_tx_ring_allocation:
1853	return -ENOMEM;
1854}
1855
1856/**
1857 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1858 * @adapter: board private structure to initialize
1859 *
1860 * Attempt to configure the interrupts using the best available
1861 * capabilities of the hardware and the kernel.
1862 **/
1863static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1864{
1865	int err = 0;
1866	int vector, v_budget;
1867
1868	/*
1869	 * It's easy to be greedy for MSI-X vectors, but it really
1870	 * doesn't do us much good if we have a lot more vectors
1871	 * than CPU's.  So let's be conservative and only ask for
1872	 * (roughly) twice the number of vectors as there are CPU's.
1873	 */
1874	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
1875		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
1876
1877	/* A failure in MSI-X entry allocation isn't fatal, but it does
1878	 * mean we disable MSI-X capabilities of the adapter. */
1879	adapter->msix_entries = kcalloc(v_budget,
1880					sizeof(struct msix_entry), GFP_KERNEL);
1881	if (!adapter->msix_entries) {
1882		err = -ENOMEM;
1883		goto out;
1884	}
1885
1886	for (vector = 0; vector < v_budget; vector++)
1887		adapter->msix_entries[vector].entry = vector;
1888
1889	ixgbevf_acquire_msix_vectors(adapter, v_budget);
1890
1891out:
1892	return err;
1893}
1894
1895/**
1896 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
1897 * @adapter: board private structure to initialize
1898 *
1899 * We allocate one q_vector per queue interrupt.  If allocation fails we
1900 * return -ENOMEM.
1901 **/
1902static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
1903{
1904	int q_idx, num_q_vectors;
1905	struct ixgbevf_q_vector *q_vector;
1906	int napi_vectors;
1907	int (*poll)(struct napi_struct *, int);
1908
1909	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1910	napi_vectors = adapter->num_rx_queues;
1911	poll = &ixgbevf_clean_rxonly;
1912
1913	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1914		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
1915		if (!q_vector)
1916			goto err_out;
1917		q_vector->adapter = adapter;
1918		q_vector->v_idx = q_idx;
1919		q_vector->eitr = adapter->eitr_param;
1920		if (q_idx < napi_vectors)
1921			netif_napi_add(adapter->netdev, &q_vector->napi,
1922				       (*poll), 64);
1923		adapter->q_vector[q_idx] = q_vector;
1924	}
1925
1926	return 0;
1927
1928err_out:
1929	while (q_idx) {
1930		q_idx--;
1931		q_vector = adapter->q_vector[q_idx];
1932		netif_napi_del(&q_vector->napi);
1933		kfree(q_vector);
1934		adapter->q_vector[q_idx] = NULL;
1935	}
1936	return -ENOMEM;
1937}
1938
1939/**
1940 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
1941 * @adapter: board private structure to initialize
1942 *
1943 * This function frees the memory allocated to the q_vectors.  In addition if
1944 * NAPI is enabled it will delete any references to the NAPI struct prior
1945 * to freeing the q_vector.
1946 **/
1947static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
1948{
1949	int q_idx, num_q_vectors;
1950	int napi_vectors;
1951
1952	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1953	napi_vectors = adapter->num_rx_queues;
1954
1955	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1956		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
1957
1958		adapter->q_vector[q_idx] = NULL;
1959		if (q_idx < napi_vectors)
1960			netif_napi_del(&q_vector->napi);
1961		kfree(q_vector);
1962	}
1963}
1964
1965/**
1966 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
1967 * @adapter: board private structure
1968 *
1969 **/
1970static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
1971{
1972	pci_disable_msix(adapter->pdev);
1973	kfree(adapter->msix_entries);
1974	adapter->msix_entries = NULL;
1975}
1976
1977/**
1978 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
1979 * @adapter: board private structure to initialize
1980 *
1981 **/
1982static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
1983{
1984	int err;
1985
1986	/* Number of supported queues */
1987	ixgbevf_set_num_queues(adapter);
1988
1989	err = ixgbevf_set_interrupt_capability(adapter);
1990	if (err) {
1991		hw_dbg(&adapter->hw,
1992		       "Unable to setup interrupt capabilities\n");
1993		goto err_set_interrupt;
1994	}
1995
1996	err = ixgbevf_alloc_q_vectors(adapter);
1997	if (err) {
1998		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
1999		       "vectors\n");
2000		goto err_alloc_q_vectors;
2001	}
2002
2003	err = ixgbevf_alloc_queues(adapter);
2004	if (err) {
2005		pr_err("Unable to allocate memory for queues\n");
2006		goto err_alloc_queues;
2007	}
2008
2009	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2010	       "Tx Queue count = %u\n",
2011	       (adapter->num_rx_queues > 1) ? "Enabled" :
2012	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2013
2014	set_bit(__IXGBEVF_DOWN, &adapter->state);
2015
2016	return 0;
2017err_alloc_queues:
2018	ixgbevf_free_q_vectors(adapter);
2019err_alloc_q_vectors:
2020	ixgbevf_reset_interrupt_capability(adapter);
2021err_set_interrupt:
2022	return err;
2023}
2024
2025/**
2026 * ixgbevf_sw_init - Initialize general software structures
2027 * (struct ixgbevf_adapter)
2028 * @adapter: board private structure to initialize
2029 *
2030 * ixgbevf_sw_init initializes the Adapter private data structure.
2031 * Fields are initialized based on PCI device information and
2032 * OS network device settings (MTU size).
2033 **/
2034static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2035{
2036	struct ixgbe_hw *hw = &adapter->hw;
2037	struct pci_dev *pdev = adapter->pdev;
2038	int err;
2039
2040	/* PCI config space info */
2041
2042	hw->vendor_id = pdev->vendor;
2043	hw->device_id = pdev->device;
2044	hw->revision_id = pdev->revision;
2045	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2046	hw->subsystem_device_id = pdev->subsystem_device;
2047
2048	hw->mbx.ops.init_params(hw);
2049	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2050	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2051	err = hw->mac.ops.reset_hw(hw);
2052	if (err) {
2053		dev_info(&pdev->dev,
2054		         "PF still in reset state, assigning new address\n");
2055		eth_hw_addr_random(adapter->netdev);
2056		memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
2057			adapter->netdev->addr_len);
2058	} else {
2059		err = hw->mac.ops.init_hw(hw);
2060		if (err) {
2061			pr_err("init_shared_code failed: %d\n", err);
2062			goto out;
2063		}
2064		memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
2065			adapter->netdev->addr_len);
2066	}
2067
2068	/* Enable dynamic interrupt throttling rates */
2069	adapter->eitr_param = 20000;
2070	adapter->itr_setting = 1;
2071
2072	/* set defaults for eitr in MegaBytes */
2073	adapter->eitr_low = 10;
2074	adapter->eitr_high = 20;
2075
2076	/* set default ring sizes */
2077	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2078	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2079
2080	/* enable rx csum by default */
2081	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2082
2083	set_bit(__IXGBEVF_DOWN, &adapter->state);
2084	return 0;
2085
2086out:
2087	return err;
2088}
2089
2090#define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2091	{							\
2092		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2093		if (current_counter < last_counter)		\
2094			counter += 0x100000000LL;		\
2095		last_counter = current_counter;			\
2096		counter &= 0xFFFFFFFF00000000LL;		\
2097		counter |= current_counter;			\
2098	}
2099
2100#define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2101	{								 \
2102		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2103		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2104		u64 current_counter = (current_counter_msb << 32) |      \
2105			current_counter_lsb;                             \
2106		if (current_counter < last_counter)			 \
2107			counter += 0x1000000000LL;			 \
2108		last_counter = current_counter;				 \
2109		counter &= 0xFFFFFFF000000000LL;			 \
2110		counter |= current_counter;				 \
2111	}
2112/**
2113 * ixgbevf_update_stats - Update the board statistics counters.
2114 * @adapter: board private structure
2115 **/
2116void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2117{
2118	struct ixgbe_hw *hw = &adapter->hw;
2119
2120	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2121				adapter->stats.vfgprc);
2122	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2123				adapter->stats.vfgptc);
2124	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2125				adapter->stats.last_vfgorc,
2126				adapter->stats.vfgorc);
2127	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2128				adapter->stats.last_vfgotc,
2129				adapter->stats.vfgotc);
2130	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2131				adapter->stats.vfmprc);
2132}
2133
2134/**
2135 * ixgbevf_watchdog - Timer Call-back
2136 * @data: pointer to adapter cast into an unsigned long
2137 **/
2138static void ixgbevf_watchdog(unsigned long data)
2139{
2140	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2141	struct ixgbe_hw *hw = &adapter->hw;
2142	u64 eics = 0;
2143	int i;
2144
2145	/*
2146	 * Do the watchdog outside of interrupt context due to the lovely
2147	 * delays that some of the newer hardware requires
2148	 */
2149
2150	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2151		goto watchdog_short_circuit;
2152
2153	/* get one bit for every active tx/rx interrupt vector */
2154	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2155		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2156		if (qv->rxr_count || qv->txr_count)
2157			eics |= (1 << i);
2158	}
2159
2160	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2161
2162watchdog_short_circuit:
2163	schedule_work(&adapter->watchdog_task);
2164}
2165
2166/**
2167 * ixgbevf_tx_timeout - Respond to a Tx Hang
2168 * @netdev: network interface device structure
2169 **/
2170static void ixgbevf_tx_timeout(struct net_device *netdev)
2171{
2172	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2173
2174	/* Do the reset outside of interrupt context */
2175	schedule_work(&adapter->reset_task);
2176}
2177
2178static void ixgbevf_reset_task(struct work_struct *work)
2179{
2180	struct ixgbevf_adapter *adapter;
2181	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2182
2183	/* If we're already down or resetting, just bail */
2184	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2185	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2186		return;
2187
2188	adapter->tx_timeout_count++;
2189
2190	ixgbevf_reinit_locked(adapter);
2191}
2192
2193/**
2194 * ixgbevf_watchdog_task - worker thread to bring link up
2195 * @work: pointer to work_struct containing our data
2196 **/
2197static void ixgbevf_watchdog_task(struct work_struct *work)
2198{
2199	struct ixgbevf_adapter *adapter = container_of(work,
2200						       struct ixgbevf_adapter,
2201						       watchdog_task);
2202	struct net_device *netdev = adapter->netdev;
2203	struct ixgbe_hw *hw = &adapter->hw;
2204	u32 link_speed = adapter->link_speed;
2205	bool link_up = adapter->link_up;
2206
2207	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2208
2209	/*
2210	 * Always check the link on the watchdog because we have
2211	 * no LSC interrupt
2212	 */
2213	if (hw->mac.ops.check_link) {
2214		if ((hw->mac.ops.check_link(hw, &link_speed,
2215					    &link_up, false)) != 0) {
2216			adapter->link_up = link_up;
2217			adapter->link_speed = link_speed;
2218			netif_carrier_off(netdev);
2219			netif_tx_stop_all_queues(netdev);
2220			schedule_work(&adapter->reset_task);
2221			goto pf_has_reset;
2222		}
2223	} else {
2224		/* always assume link is up, if no check link
2225		 * function */
2226		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2227		link_up = true;
2228	}
2229	adapter->link_up = link_up;
2230	adapter->link_speed = link_speed;
2231
2232	if (link_up) {
2233		if (!netif_carrier_ok(netdev)) {
2234			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2235			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2236			       10 : 1);
2237			netif_carrier_on(netdev);
2238			netif_tx_wake_all_queues(netdev);
2239		}
2240	} else {
2241		adapter->link_up = false;
2242		adapter->link_speed = 0;
2243		if (netif_carrier_ok(netdev)) {
2244			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2245			netif_carrier_off(netdev);
2246			netif_tx_stop_all_queues(netdev);
2247		}
2248	}
2249
2250	ixgbevf_update_stats(adapter);
2251
2252pf_has_reset:
2253	/* Reset the timer */
2254	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2255		mod_timer(&adapter->watchdog_timer,
2256			  round_jiffies(jiffies + (2 * HZ)));
2257
2258	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2259}
2260
2261/**
2262 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2263 * @adapter: board private structure
2264 * @tx_ring: Tx descriptor ring for a specific queue
2265 *
2266 * Free all transmit software resources
2267 **/
2268void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2269			       struct ixgbevf_ring *tx_ring)
2270{
2271	struct pci_dev *pdev = adapter->pdev;
2272
2273	ixgbevf_clean_tx_ring(adapter, tx_ring);
2274
2275	vfree(tx_ring->tx_buffer_info);
2276	tx_ring->tx_buffer_info = NULL;
2277
2278	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2279			  tx_ring->dma);
2280
2281	tx_ring->desc = NULL;
2282}
2283
2284/**
2285 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2286 * @adapter: board private structure
2287 *
2288 * Free all transmit software resources
2289 **/
2290static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2291{
2292	int i;
2293
2294	for (i = 0; i < adapter->num_tx_queues; i++)
2295		if (adapter->tx_ring[i].desc)
2296			ixgbevf_free_tx_resources(adapter,
2297						  &adapter->tx_ring[i]);
2298
2299}
2300
2301/**
2302 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2303 * @adapter: board private structure
2304 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2305 *
2306 * Return 0 on success, negative on failure
2307 **/
2308int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2309			       struct ixgbevf_ring *tx_ring)
2310{
2311	struct pci_dev *pdev = adapter->pdev;
2312	int size;
2313
2314	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2315	tx_ring->tx_buffer_info = vzalloc(size);
2316	if (!tx_ring->tx_buffer_info)
2317		goto err;
2318
2319	/* round up to nearest 4K */
2320	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2321	tx_ring->size = ALIGN(tx_ring->size, 4096);
2322
2323	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2324					   &tx_ring->dma, GFP_KERNEL);
2325	if (!tx_ring->desc)
2326		goto err;
2327
2328	tx_ring->next_to_use = 0;
2329	tx_ring->next_to_clean = 0;
2330	tx_ring->work_limit = tx_ring->count;
2331	return 0;
2332
2333err:
2334	vfree(tx_ring->tx_buffer_info);
2335	tx_ring->tx_buffer_info = NULL;
2336	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2337	       "descriptor ring\n");
2338	return -ENOMEM;
2339}
2340
2341/**
2342 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2343 * @adapter: board private structure
2344 *
2345 * If this function returns with an error, then it's possible one or
2346 * more of the rings is populated (while the rest are not).  It is the
2347 * callers duty to clean those orphaned rings.
2348 *
2349 * Return 0 on success, negative on failure
2350 **/
2351static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2352{
2353	int i, err = 0;
2354
2355	for (i = 0; i < adapter->num_tx_queues; i++) {
2356		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2357		if (!err)
2358			continue;
2359		hw_dbg(&adapter->hw,
2360		       "Allocation for Tx Queue %u failed\n", i);
2361		break;
2362	}
2363
2364	return err;
2365}
2366
2367/**
2368 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2369 * @adapter: board private structure
2370 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2371 *
2372 * Returns 0 on success, negative on failure
2373 **/
2374int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2375			       struct ixgbevf_ring *rx_ring)
2376{
2377	struct pci_dev *pdev = adapter->pdev;
2378	int size;
2379
2380	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2381	rx_ring->rx_buffer_info = vzalloc(size);
2382	if (!rx_ring->rx_buffer_info)
2383		goto alloc_failed;
2384
2385	/* Round up to nearest 4K */
2386	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2387	rx_ring->size = ALIGN(rx_ring->size, 4096);
2388
2389	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2390					   &rx_ring->dma, GFP_KERNEL);
2391
2392	if (!rx_ring->desc) {
2393		hw_dbg(&adapter->hw,
2394		       "Unable to allocate memory for "
2395		       "the receive descriptor ring\n");
2396		vfree(rx_ring->rx_buffer_info);
2397		rx_ring->rx_buffer_info = NULL;
2398		goto alloc_failed;
2399	}
2400
2401	rx_ring->next_to_clean = 0;
2402	rx_ring->next_to_use = 0;
2403
2404	return 0;
2405alloc_failed:
2406	return -ENOMEM;
2407}
2408
2409/**
2410 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2411 * @adapter: board private structure
2412 *
2413 * If this function returns with an error, then it's possible one or
2414 * more of the rings is populated (while the rest are not).  It is the
2415 * callers duty to clean those orphaned rings.
2416 *
2417 * Return 0 on success, negative on failure
2418 **/
2419static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2420{
2421	int i, err = 0;
2422
2423	for (i = 0; i < adapter->num_rx_queues; i++) {
2424		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2425		if (!err)
2426			continue;
2427		hw_dbg(&adapter->hw,
2428		       "Allocation for Rx Queue %u failed\n", i);
2429		break;
2430	}
2431	return err;
2432}
2433
2434/**
2435 * ixgbevf_free_rx_resources - Free Rx Resources
2436 * @adapter: board private structure
2437 * @rx_ring: ring to clean the resources from
2438 *
2439 * Free all receive software resources
2440 **/
2441void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2442			       struct ixgbevf_ring *rx_ring)
2443{
2444	struct pci_dev *pdev = adapter->pdev;
2445
2446	ixgbevf_clean_rx_ring(adapter, rx_ring);
2447
2448	vfree(rx_ring->rx_buffer_info);
2449	rx_ring->rx_buffer_info = NULL;
2450
2451	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2452			  rx_ring->dma);
2453
2454	rx_ring->desc = NULL;
2455}
2456
2457/**
2458 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2459 * @adapter: board private structure
2460 *
2461 * Free all receive software resources
2462 **/
2463static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2464{
2465	int i;
2466
2467	for (i = 0; i < adapter->num_rx_queues; i++)
2468		if (adapter->rx_ring[i].desc)
2469			ixgbevf_free_rx_resources(adapter,
2470						  &adapter->rx_ring[i]);
2471}
2472
2473/**
2474 * ixgbevf_open - Called when a network interface is made active
2475 * @netdev: network interface device structure
2476 *
2477 * Returns 0 on success, negative value on failure
2478 *
2479 * The open entry point is called when a network interface is made
2480 * active by the system (IFF_UP).  At this point all resources needed
2481 * for transmit and receive operations are allocated, the interrupt
2482 * handler is registered with the OS, the watchdog timer is started,
2483 * and the stack is notified that the interface is ready.
2484 **/
2485static int ixgbevf_open(struct net_device *netdev)
2486{
2487	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2488	struct ixgbe_hw *hw = &adapter->hw;
2489	int err;
2490
2491	/* disallow open during test */
2492	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2493		return -EBUSY;
2494
2495	if (hw->adapter_stopped) {
2496		ixgbevf_reset(adapter);
2497		/* if adapter is still stopped then PF isn't up and
2498		 * the vf can't start. */
2499		if (hw->adapter_stopped) {
2500			err = IXGBE_ERR_MBX;
2501			pr_err("Unable to start - perhaps the PF Driver isn't "
2502			       "up yet\n");
2503			goto err_setup_reset;
2504		}
2505	}
2506
2507	/* allocate transmit descriptors */
2508	err = ixgbevf_setup_all_tx_resources(adapter);
2509	if (err)
2510		goto err_setup_tx;
2511
2512	/* allocate receive descriptors */
2513	err = ixgbevf_setup_all_rx_resources(adapter);
2514	if (err)
2515		goto err_setup_rx;
2516
2517	ixgbevf_configure(adapter);
2518
2519	/*
2520	 * Map the Tx/Rx rings to the vectors we were allotted.
2521	 * if request_irq will be called in this function map_rings
2522	 * must be called *before* up_complete
2523	 */
2524	ixgbevf_map_rings_to_vectors(adapter);
2525
2526	ixgbevf_up_complete(adapter);
2527
2528	/* clear any pending interrupts, may auto mask */
2529	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2530	err = ixgbevf_request_irq(adapter);
2531	if (err)
2532		goto err_req_irq;
2533
2534	ixgbevf_irq_enable(adapter, true, true);
2535
2536	return 0;
2537
2538err_req_irq:
2539	ixgbevf_down(adapter);
2540	ixgbevf_free_irq(adapter);
2541err_setup_rx:
2542	ixgbevf_free_all_rx_resources(adapter);
2543err_setup_tx:
2544	ixgbevf_free_all_tx_resources(adapter);
2545	ixgbevf_reset(adapter);
2546
2547err_setup_reset:
2548
2549	return err;
2550}
2551
2552/**
2553 * ixgbevf_close - Disables a network interface
2554 * @netdev: network interface device structure
2555 *
2556 * Returns 0, this is not allowed to fail
2557 *
2558 * The close entry point is called when an interface is de-activated
2559 * by the OS.  The hardware is still under the drivers control, but
2560 * needs to be disabled.  A global MAC reset is issued to stop the
2561 * hardware, and all transmit and receive resources are freed.
2562 **/
2563static int ixgbevf_close(struct net_device *netdev)
2564{
2565	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2566
2567	ixgbevf_down(adapter);
2568	ixgbevf_free_irq(adapter);
2569
2570	ixgbevf_free_all_tx_resources(adapter);
2571	ixgbevf_free_all_rx_resources(adapter);
2572
2573	return 0;
2574}
2575
2576static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2577		       struct ixgbevf_ring *tx_ring,
2578		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2579{
2580	struct ixgbe_adv_tx_context_desc *context_desc;
2581	unsigned int i;
2582	int err;
2583	struct ixgbevf_tx_buffer *tx_buffer_info;
2584	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2585	u32 mss_l4len_idx, l4len;
2586
2587	if (skb_is_gso(skb)) {
2588		if (skb_header_cloned(skb)) {
2589			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2590			if (err)
2591				return err;
2592		}
2593		l4len = tcp_hdrlen(skb);
2594		*hdr_len += l4len;
2595
2596		if (skb->protocol == htons(ETH_P_IP)) {
2597			struct iphdr *iph = ip_hdr(skb);
2598			iph->tot_len = 0;
2599			iph->check = 0;
2600			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2601								 iph->daddr, 0,
2602								 IPPROTO_TCP,
2603								 0);
2604			adapter->hw_tso_ctxt++;
2605		} else if (skb_is_gso_v6(skb)) {
2606			ipv6_hdr(skb)->payload_len = 0;
2607			tcp_hdr(skb)->check =
2608			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2609					     &ipv6_hdr(skb)->daddr,
2610					     0, IPPROTO_TCP, 0);
2611			adapter->hw_tso6_ctxt++;
2612		}
2613
2614		i = tx_ring->next_to_use;
2615
2616		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2617		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2618
2619		/* VLAN MACLEN IPLEN */
2620		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2621			vlan_macip_lens |=
2622				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2623		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2624				    IXGBE_ADVTXD_MACLEN_SHIFT);
2625		*hdr_len += skb_network_offset(skb);
2626		vlan_macip_lens |=
2627			(skb_transport_header(skb) - skb_network_header(skb));
2628		*hdr_len +=
2629			(skb_transport_header(skb) - skb_network_header(skb));
2630		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2631		context_desc->seqnum_seed = 0;
2632
2633		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2634		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2635				    IXGBE_ADVTXD_DTYP_CTXT);
2636
2637		if (skb->protocol == htons(ETH_P_IP))
2638			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2639		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2640		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2641
2642		/* MSS L4LEN IDX */
2643		mss_l4len_idx =
2644			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2645		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2646		/* use index 1 for TSO */
2647		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2648		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2649
2650		tx_buffer_info->time_stamp = jiffies;
2651		tx_buffer_info->next_to_watch = i;
2652
2653		i++;
2654		if (i == tx_ring->count)
2655			i = 0;
2656		tx_ring->next_to_use = i;
2657
2658		return true;
2659	}
2660
2661	return false;
2662}
2663
2664static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2665			    struct ixgbevf_ring *tx_ring,
2666			    struct sk_buff *skb, u32 tx_flags)
2667{
2668	struct ixgbe_adv_tx_context_desc *context_desc;
2669	unsigned int i;
2670	struct ixgbevf_tx_buffer *tx_buffer_info;
2671	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2672
2673	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2674	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2675		i = tx_ring->next_to_use;
2676		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2677		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2678
2679		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2680			vlan_macip_lens |= (tx_flags &
2681					    IXGBE_TX_FLAGS_VLAN_MASK);
2682		vlan_macip_lens |= (skb_network_offset(skb) <<
2683				    IXGBE_ADVTXD_MACLEN_SHIFT);
2684		if (skb->ip_summed == CHECKSUM_PARTIAL)
2685			vlan_macip_lens |= (skb_transport_header(skb) -
2686					    skb_network_header(skb));
2687
2688		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2689		context_desc->seqnum_seed = 0;
2690
2691		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2692				    IXGBE_ADVTXD_DTYP_CTXT);
2693
2694		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2695			switch (skb->protocol) {
2696			case __constant_htons(ETH_P_IP):
2697				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2698				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2699					type_tucmd_mlhl |=
2700					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2701				break;
2702			case __constant_htons(ETH_P_IPV6):
2703				/* XXX what about other V6 headers?? */
2704				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2705					type_tucmd_mlhl |=
2706						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2707				break;
2708			default:
2709				if (unlikely(net_ratelimit())) {
2710					pr_warn("partial checksum but "
2711						"proto=%x!\n", skb->protocol);
2712				}
2713				break;
2714			}
2715		}
2716
2717		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2718		/* use index zero for tx checksum offload */
2719		context_desc->mss_l4len_idx = 0;
2720
2721		tx_buffer_info->time_stamp = jiffies;
2722		tx_buffer_info->next_to_watch = i;
2723
2724		adapter->hw_csum_tx_good++;
2725		i++;
2726		if (i == tx_ring->count)
2727			i = 0;
2728		tx_ring->next_to_use = i;
2729
2730		return true;
2731	}
2732
2733	return false;
2734}
2735
2736static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2737			  struct ixgbevf_ring *tx_ring,
2738			  struct sk_buff *skb, u32 tx_flags,
2739			  unsigned int first)
2740{
2741	struct pci_dev *pdev = adapter->pdev;
2742	struct ixgbevf_tx_buffer *tx_buffer_info;
2743	unsigned int len;
2744	unsigned int total = skb->len;
2745	unsigned int offset = 0, size;
2746	int count = 0;
2747	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2748	unsigned int f;
2749	int i;
2750
2751	i = tx_ring->next_to_use;
2752
2753	len = min(skb_headlen(skb), total);
2754	while (len) {
2755		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2756		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2757
2758		tx_buffer_info->length = size;
2759		tx_buffer_info->mapped_as_page = false;
2760		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2761						     skb->data + offset,
2762						     size, DMA_TO_DEVICE);
2763		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2764			goto dma_error;
2765		tx_buffer_info->time_stamp = jiffies;
2766		tx_buffer_info->next_to_watch = i;
2767
2768		len -= size;
2769		total -= size;
2770		offset += size;
2771		count++;
2772		i++;
2773		if (i == tx_ring->count)
2774			i = 0;
2775	}
2776
2777	for (f = 0; f < nr_frags; f++) {
2778		const struct skb_frag_struct *frag;
2779
2780		frag = &skb_shinfo(skb)->frags[f];
2781		len = min((unsigned int)skb_frag_size(frag), total);
2782		offset = 0;
2783
2784		while (len) {
2785			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2786			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2787
2788			tx_buffer_info->length = size;
2789			tx_buffer_info->dma =
2790				skb_frag_dma_map(&adapter->pdev->dev, frag,
2791						 offset, size, DMA_TO_DEVICE);
2792			tx_buffer_info->mapped_as_page = true;
2793			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2794				goto dma_error;
2795			tx_buffer_info->time_stamp = jiffies;
2796			tx_buffer_info->next_to_watch = i;
2797
2798			len -= size;
2799			total -= size;
2800			offset += size;
2801			count++;
2802			i++;
2803			if (i == tx_ring->count)
2804				i = 0;
2805		}
2806		if (total == 0)
2807			break;
2808	}
2809
2810	if (i == 0)
2811		i = tx_ring->count - 1;
2812	else
2813		i = i - 1;
2814	tx_ring->tx_buffer_info[i].skb = skb;
2815	tx_ring->tx_buffer_info[first].next_to_watch = i;
2816
2817	return count;
2818
2819dma_error:
2820	dev_err(&pdev->dev, "TX DMA map failed\n");
2821
2822	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2823	tx_buffer_info->dma = 0;
2824	tx_buffer_info->time_stamp = 0;
2825	tx_buffer_info->next_to_watch = 0;
2826	count--;
2827
2828	/* clear timestamp and dma mappings for remaining portion of packet */
2829	while (count >= 0) {
2830		count--;
2831		i--;
2832		if (i < 0)
2833			i += tx_ring->count;
2834		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2835		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2836	}
2837
2838	return count;
2839}
2840
2841static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2842			     struct ixgbevf_ring *tx_ring, int tx_flags,
2843			     int count, u32 paylen, u8 hdr_len)
2844{
2845	union ixgbe_adv_tx_desc *tx_desc = NULL;
2846	struct ixgbevf_tx_buffer *tx_buffer_info;
2847	u32 olinfo_status = 0, cmd_type_len = 0;
2848	unsigned int i;
2849
2850	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2851
2852	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2853
2854	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2855
2856	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2857		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2858
2859	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2860		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2861
2862		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
2863			IXGBE_ADVTXD_POPTS_SHIFT;
2864
2865		/* use index 1 context for tso */
2866		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2867		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
2868			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
2869				IXGBE_ADVTXD_POPTS_SHIFT;
2870
2871	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
2872		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
2873			IXGBE_ADVTXD_POPTS_SHIFT;
2874
2875	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
2876
2877	i = tx_ring->next_to_use;
2878	while (count--) {
2879		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2880		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
2881		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
2882		tx_desc->read.cmd_type_len =
2883			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
2884		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2885		i++;
2886		if (i == tx_ring->count)
2887			i = 0;
2888	}
2889
2890	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
2891
2892	/*
2893	 * Force memory writes to complete before letting h/w
2894	 * know there are new descriptors to fetch.  (Only
2895	 * applicable for weak-ordered memory model archs,
2896	 * such as IA-64).
2897	 */
2898	wmb();
2899
2900	tx_ring->next_to_use = i;
2901	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2902}
2903
2904static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
2905				   struct ixgbevf_ring *tx_ring, int size)
2906{
2907	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2908
2909	netif_stop_subqueue(netdev, tx_ring->queue_index);
2910	/* Herbert's original patch had:
2911	 *  smp_mb__after_netif_stop_queue();
2912	 * but since that doesn't exist yet, just open code it. */
2913	smp_mb();
2914
2915	/* We need to check again in a case another CPU has just
2916	 * made room available. */
2917	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
2918		return -EBUSY;
2919
2920	/* A reprieve! - use start_queue because it doesn't call schedule */
2921	netif_start_subqueue(netdev, tx_ring->queue_index);
2922	++adapter->restart_queue;
2923	return 0;
2924}
2925
2926static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
2927				 struct ixgbevf_ring *tx_ring, int size)
2928{
2929	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
2930		return 0;
2931	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
2932}
2933
2934static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2935{
2936	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2937	struct ixgbevf_ring *tx_ring;
2938	unsigned int first;
2939	unsigned int tx_flags = 0;
2940	u8 hdr_len = 0;
2941	int r_idx = 0, tso;
2942	int count = 0;
2943
2944	unsigned int f;
2945
2946	tx_ring = &adapter->tx_ring[r_idx];
2947
2948	if (vlan_tx_tag_present(skb)) {
2949		tx_flags |= vlan_tx_tag_get(skb);
2950		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
2951		tx_flags |= IXGBE_TX_FLAGS_VLAN;
2952	}
2953
2954	/* four things can cause us to need a context descriptor */
2955	if (skb_is_gso(skb) ||
2956	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
2957	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
2958		count++;
2959
2960	count += TXD_USE_COUNT(skb_headlen(skb));
2961	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2962		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
2963
2964	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
2965		adapter->tx_busy++;
2966		return NETDEV_TX_BUSY;
2967	}
2968
2969	first = tx_ring->next_to_use;
2970
2971	if (skb->protocol == htons(ETH_P_IP))
2972		tx_flags |= IXGBE_TX_FLAGS_IPV4;
2973	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
2974	if (tso < 0) {
2975		dev_kfree_skb_any(skb);
2976		return NETDEV_TX_OK;
2977	}
2978
2979	if (tso)
2980		tx_flags |= IXGBE_TX_FLAGS_TSO;
2981	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2982		 (skb->ip_summed == CHECKSUM_PARTIAL))
2983		tx_flags |= IXGBE_TX_FLAGS_CSUM;
2984
2985	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
2986			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
2987			 skb->len, hdr_len);
2988
2989	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
2990
2991	return NETDEV_TX_OK;
2992}
2993
2994/**
2995 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
2996 * @netdev: network interface device structure
2997 * @p: pointer to an address structure
2998 *
2999 * Returns 0 on success, negative on failure
3000 **/
3001static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3002{
3003	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3004	struct ixgbe_hw *hw = &adapter->hw;
3005	struct sockaddr *addr = p;
3006
3007	if (!is_valid_ether_addr(addr->sa_data))
3008		return -EADDRNOTAVAIL;
3009
3010	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3011	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3012
3013	if (hw->mac.ops.set_rar)
3014		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3015
3016	return 0;
3017}
3018
3019/**
3020 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3021 * @netdev: network interface device structure
3022 * @new_mtu: new value for maximum frame size
3023 *
3024 * Returns 0 on success, negative on failure
3025 **/
3026static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3027{
3028	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3029	struct ixgbe_hw *hw = &adapter->hw;
3030	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3031	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3032	u32 msg[2];
3033
3034	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3035		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3036
3037	/* MTU < 68 is an error and causes problems on some kernels */
3038	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3039		return -EINVAL;
3040
3041	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3042	       netdev->mtu, new_mtu);
3043	/* must set new MTU before calling down or up */
3044	netdev->mtu = new_mtu;
3045
3046	if (!netif_running(netdev)) {
3047		msg[0] = IXGBE_VF_SET_LPE;
3048		msg[1] = max_frame;
3049		hw->mbx.ops.write_posted(hw, msg, 2);
3050	}
3051
3052	if (netif_running(netdev))
3053		ixgbevf_reinit_locked(adapter);
3054
3055	return 0;
3056}
3057
3058static void ixgbevf_shutdown(struct pci_dev *pdev)
3059{
3060	struct net_device *netdev = pci_get_drvdata(pdev);
3061	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3062
3063	netif_device_detach(netdev);
3064
3065	if (netif_running(netdev)) {
3066		ixgbevf_down(adapter);
3067		ixgbevf_free_irq(adapter);
3068		ixgbevf_free_all_tx_resources(adapter);
3069		ixgbevf_free_all_rx_resources(adapter);
3070	}
3071
3072	pci_save_state(pdev);
3073
3074	pci_disable_device(pdev);
3075}
3076
3077static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3078						struct rtnl_link_stats64 *stats)
3079{
3080	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3081	unsigned int start;
3082	u64 bytes, packets;
3083	const struct ixgbevf_ring *ring;
3084	int i;
3085
3086	ixgbevf_update_stats(adapter);
3087
3088	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3089
3090	for (i = 0; i < adapter->num_rx_queues; i++) {
3091		ring = &adapter->rx_ring[i];
3092		do {
3093			start = u64_stats_fetch_begin_bh(&ring->syncp);
3094			bytes = ring->total_bytes;
3095			packets = ring->total_packets;
3096		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3097		stats->rx_bytes += bytes;
3098		stats->rx_packets += packets;
3099	}
3100
3101	for (i = 0; i < adapter->num_tx_queues; i++) {
3102		ring = &adapter->tx_ring[i];
3103		do {
3104			start = u64_stats_fetch_begin_bh(&ring->syncp);
3105			bytes = ring->total_bytes;
3106			packets = ring->total_packets;
3107		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3108		stats->tx_bytes += bytes;
3109		stats->tx_packets += packets;
3110	}
3111
3112	return stats;
3113}
3114
3115static int ixgbevf_set_features(struct net_device *netdev,
3116	netdev_features_t features)
3117{
3118	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3119
3120	if (features & NETIF_F_RXCSUM)
3121		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3122	else
3123		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3124
3125	return 0;
3126}
3127
3128static const struct net_device_ops ixgbe_netdev_ops = {
3129	.ndo_open		= ixgbevf_open,
3130	.ndo_stop		= ixgbevf_close,
3131	.ndo_start_xmit		= ixgbevf_xmit_frame,
3132	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3133	.ndo_get_stats64	= ixgbevf_get_stats,
3134	.ndo_validate_addr	= eth_validate_addr,
3135	.ndo_set_mac_address	= ixgbevf_set_mac,
3136	.ndo_change_mtu		= ixgbevf_change_mtu,
3137	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3138	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3139	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3140	.ndo_set_features	= ixgbevf_set_features,
3141};
3142
3143static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3144{
3145	dev->netdev_ops = &ixgbe_netdev_ops;
3146	ixgbevf_set_ethtool_ops(dev);
3147	dev->watchdog_timeo = 5 * HZ;
3148}
3149
3150/**
3151 * ixgbevf_probe - Device Initialization Routine
3152 * @pdev: PCI device information struct
3153 * @ent: entry in ixgbevf_pci_tbl
3154 *
3155 * Returns 0 on success, negative on failure
3156 *
3157 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3158 * The OS initialization, configuring of the adapter private structure,
3159 * and a hardware reset occur.
3160 **/
3161static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3162				   const struct pci_device_id *ent)
3163{
3164	struct net_device *netdev;
3165	struct ixgbevf_adapter *adapter = NULL;
3166	struct ixgbe_hw *hw = NULL;
3167	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3168	static int cards_found;
3169	int err, pci_using_dac;
3170
3171	err = pci_enable_device(pdev);
3172	if (err)
3173		return err;
3174
3175	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3176	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3177		pci_using_dac = 1;
3178	} else {
3179		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3180		if (err) {
3181			err = dma_set_coherent_mask(&pdev->dev,
3182						    DMA_BIT_MASK(32));
3183			if (err) {
3184				dev_err(&pdev->dev, "No usable DMA "
3185					"configuration, aborting\n");
3186				goto err_dma;
3187			}
3188		}
3189		pci_using_dac = 0;
3190	}
3191
3192	err = pci_request_regions(pdev, ixgbevf_driver_name);
3193	if (err) {
3194		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3195		goto err_pci_reg;
3196	}
3197
3198	pci_set_master(pdev);
3199
3200	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3201				   MAX_TX_QUEUES);
3202	if (!netdev) {
3203		err = -ENOMEM;
3204		goto err_alloc_etherdev;
3205	}
3206
3207	SET_NETDEV_DEV(netdev, &pdev->dev);
3208
3209	pci_set_drvdata(pdev, netdev);
3210	adapter = netdev_priv(netdev);
3211
3212	adapter->netdev = netdev;
3213	adapter->pdev = pdev;
3214	hw = &adapter->hw;
3215	hw->back = adapter;
3216	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3217
3218	/*
3219	 * call save state here in standalone driver because it relies on
3220	 * adapter struct to exist, and needs to call netdev_priv
3221	 */
3222	pci_save_state(pdev);
3223
3224	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3225			      pci_resource_len(pdev, 0));
3226	if (!hw->hw_addr) {
3227		err = -EIO;
3228		goto err_ioremap;
3229	}
3230
3231	ixgbevf_assign_netdev_ops(netdev);
3232
3233	adapter->bd_number = cards_found;
3234
3235	/* Setup hw api */
3236	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3237	hw->mac.type  = ii->mac;
3238
3239	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3240	       sizeof(struct ixgbe_mbx_operations));
3241
3242	/* setup the private structure */
3243	err = ixgbevf_sw_init(adapter);
3244	if (err)
3245		goto err_sw_init;
3246
3247	/* The HW MAC address was set and/or determined in sw_init */
3248	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3249
3250	if (!is_valid_ether_addr(netdev->dev_addr)) {
3251		pr_err("invalid MAC address\n");
3252		err = -EIO;
3253		goto err_sw_init;
3254	}
3255
3256	netdev->hw_features = NETIF_F_SG |
3257			   NETIF_F_IP_CSUM |
3258			   NETIF_F_IPV6_CSUM |
3259			   NETIF_F_TSO |
3260			   NETIF_F_TSO6 |
3261			   NETIF_F_RXCSUM;
3262
3263	netdev->features = netdev->hw_features |
3264			   NETIF_F_HW_VLAN_TX |
3265			   NETIF_F_HW_VLAN_RX |
3266			   NETIF_F_HW_VLAN_FILTER;
3267
3268	netdev->vlan_features |= NETIF_F_TSO;
3269	netdev->vlan_features |= NETIF_F_TSO6;
3270	netdev->vlan_features |= NETIF_F_IP_CSUM;
3271	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3272	netdev->vlan_features |= NETIF_F_SG;
3273
3274	if (pci_using_dac)
3275		netdev->features |= NETIF_F_HIGHDMA;
3276
3277	netdev->priv_flags |= IFF_UNICAST_FLT;
3278
3279	init_timer(&adapter->watchdog_timer);
3280	adapter->watchdog_timer.function = ixgbevf_watchdog;
3281	adapter->watchdog_timer.data = (unsigned long)adapter;
3282
3283	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3284	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3285
3286	err = ixgbevf_init_interrupt_scheme(adapter);
3287	if (err)
3288		goto err_sw_init;
3289
3290	/* pick up the PCI bus settings for reporting later */
3291	if (hw->mac.ops.get_bus_info)
3292		hw->mac.ops.get_bus_info(hw);
3293
3294	strcpy(netdev->name, "eth%d");
3295
3296	err = register_netdev(netdev);
3297	if (err)
3298		goto err_register;
3299
3300	adapter->netdev_registered = true;
3301
3302	netif_carrier_off(netdev);
3303
3304	ixgbevf_init_last_counter_stats(adapter);
3305
3306	/* print the MAC address */
3307	hw_dbg(hw, "%pM\n", netdev->dev_addr);
3308
3309	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3310
3311	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3312	cards_found++;
3313	return 0;
3314
3315err_register:
3316err_sw_init:
3317	ixgbevf_reset_interrupt_capability(adapter);
3318	iounmap(hw->hw_addr);
3319err_ioremap:
3320	free_netdev(netdev);
3321err_alloc_etherdev:
3322	pci_release_regions(pdev);
3323err_pci_reg:
3324err_dma:
3325	pci_disable_device(pdev);
3326	return err;
3327}
3328
3329/**
3330 * ixgbevf_remove - Device Removal Routine
3331 * @pdev: PCI device information struct
3332 *
3333 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3334 * that it should release a PCI device.  The could be caused by a
3335 * Hot-Plug event, or because the driver is going to be removed from
3336 * memory.
3337 **/
3338static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3339{
3340	struct net_device *netdev = pci_get_drvdata(pdev);
3341	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3342
3343	set_bit(__IXGBEVF_DOWN, &adapter->state);
3344
3345	del_timer_sync(&adapter->watchdog_timer);
3346
3347	cancel_work_sync(&adapter->reset_task);
3348	cancel_work_sync(&adapter->watchdog_task);
3349
3350	if (adapter->netdev_registered) {
3351		unregister_netdev(netdev);
3352		adapter->netdev_registered = false;
3353	}
3354
3355	ixgbevf_reset_interrupt_capability(adapter);
3356
3357	iounmap(adapter->hw.hw_addr);
3358	pci_release_regions(pdev);
3359
3360	hw_dbg(&adapter->hw, "Remove complete\n");
3361
3362	kfree(adapter->tx_ring);
3363	kfree(adapter->rx_ring);
3364
3365	free_netdev(netdev);
3366
3367	pci_disable_device(pdev);
3368}
3369
3370static struct pci_driver ixgbevf_driver = {
3371	.name     = ixgbevf_driver_name,
3372	.id_table = ixgbevf_pci_tbl,
3373	.probe    = ixgbevf_probe,
3374	.remove   = __devexit_p(ixgbevf_remove),
3375	.shutdown = ixgbevf_shutdown,
3376};
3377
3378/**
3379 * ixgbevf_init_module - Driver Registration Routine
3380 *
3381 * ixgbevf_init_module is the first routine called when the driver is
3382 * loaded. All it does is register with the PCI subsystem.
3383 **/
3384static int __init ixgbevf_init_module(void)
3385{
3386	int ret;
3387	pr_info("%s - version %s\n", ixgbevf_driver_string,
3388		ixgbevf_driver_version);
3389
3390	pr_info("%s\n", ixgbevf_copyright);
3391
3392	ret = pci_register_driver(&ixgbevf_driver);
3393	return ret;
3394}
3395
3396module_init(ixgbevf_init_module);
3397
3398/**
3399 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3400 *
3401 * ixgbevf_exit_module is called just before the driver is removed
3402 * from memory.
3403 **/
3404static void __exit ixgbevf_exit_module(void)
3405{
3406	pci_unregister_driver(&ixgbevf_driver);
3407}
3408
3409#ifdef DEBUG
3410/**
3411 * ixgbevf_get_hw_dev_name - return device name string
3412 * used by hardware layer to print debugging information
3413 **/
3414char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3415{
3416	struct ixgbevf_adapter *adapter = hw->back;
3417	return adapter->netdev->name;
3418}
3419
3420#endif
3421module_exit(ixgbevf_exit_module);
3422
3423/* ixgbevf_main.c */
3424