ixgbevf_main.c revision 877749bf3f2f7a517ae74cd2c2fa4eed7aa9b51d
1/*******************************************************************************
2
3  Intel 82599 Virtual Function driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29/******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31******************************************************************************/
32#include <linux/types.h>
33#include <linux/bitops.h>
34#include <linux/module.h>
35#include <linux/pci.h>
36#include <linux/netdevice.h>
37#include <linux/vmalloc.h>
38#include <linux/string.h>
39#include <linux/in.h>
40#include <linux/ip.h>
41#include <linux/tcp.h>
42#include <linux/ipv6.h>
43#include <linux/slab.h>
44#include <net/checksum.h>
45#include <net/ip6_checksum.h>
46#include <linux/ethtool.h>
47#include <linux/if.h>
48#include <linux/if_vlan.h>
49#include <linux/prefetch.h>
50
51#include "ixgbevf.h"
52
53char ixgbevf_driver_name[] = "ixgbevf";
54static const char ixgbevf_driver_string[] =
55	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
56
57#define DRV_VERSION "2.1.0-k"
58const char ixgbevf_driver_version[] = DRV_VERSION;
59static char ixgbevf_copyright[] =
60	"Copyright (c) 2009 - 2010 Intel Corporation.";
61
62static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
63	[board_82599_vf] = &ixgbevf_82599_vf_info,
64	[board_X540_vf]  = &ixgbevf_X540_vf_info,
65};
66
67/* ixgbevf_pci_tbl - PCI Device ID Table
68 *
69 * Wildcard entries (PCI_ANY_ID) should come last
70 * Last entry must be all 0s
71 *
72 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
73 *   Class, Class Mask, private data (not used) }
74 */
75static struct pci_device_id ixgbevf_pci_tbl[] = {
76	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
77	board_82599_vf},
78	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
79	board_X540_vf},
80
81	/* required last entry */
82	{0, }
83};
84MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
85
86MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
87MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
88MODULE_LICENSE("GPL");
89MODULE_VERSION(DRV_VERSION);
90
91#define DEFAULT_DEBUG_LEVEL_SHIFT 3
92
93/* forward decls */
94static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
95static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
96			       u32 itr_reg);
97
98static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
99					   struct ixgbevf_ring *rx_ring,
100					   u32 val)
101{
102	/*
103	 * Force memory writes to complete before letting h/w
104	 * know there are new descriptors to fetch.  (Only
105	 * applicable for weak-ordered memory model archs,
106	 * such as IA-64).
107	 */
108	wmb();
109	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
110}
111
112/*
113 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
114 * @adapter: pointer to adapter struct
115 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
116 * @queue: queue to map the corresponding interrupt to
117 * @msix_vector: the vector to map to the corresponding queue
118 *
119 */
120static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
121			     u8 queue, u8 msix_vector)
122{
123	u32 ivar, index;
124	struct ixgbe_hw *hw = &adapter->hw;
125	if (direction == -1) {
126		/* other causes */
127		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
129		ivar &= ~0xFF;
130		ivar |= msix_vector;
131		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
132	} else {
133		/* tx or rx causes */
134		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
135		index = ((16 * (queue & 1)) + (8 * direction));
136		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
137		ivar &= ~(0xFF << index);
138		ivar |= (msix_vector << index);
139		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
140	}
141}
142
143static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
144					       struct ixgbevf_tx_buffer
145					       *tx_buffer_info)
146{
147	if (tx_buffer_info->dma) {
148		if (tx_buffer_info->mapped_as_page)
149			dma_unmap_page(&adapter->pdev->dev,
150				       tx_buffer_info->dma,
151				       tx_buffer_info->length,
152				       DMA_TO_DEVICE);
153		else
154			dma_unmap_single(&adapter->pdev->dev,
155					 tx_buffer_info->dma,
156					 tx_buffer_info->length,
157					 DMA_TO_DEVICE);
158		tx_buffer_info->dma = 0;
159	}
160	if (tx_buffer_info->skb) {
161		dev_kfree_skb_any(tx_buffer_info->skb);
162		tx_buffer_info->skb = NULL;
163	}
164	tx_buffer_info->time_stamp = 0;
165	/* tx_buffer_info must be completely set up in the transmit path */
166}
167
168#define IXGBE_MAX_TXD_PWR	14
169#define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
170
171/* Tx Descriptors needed, worst case */
172#define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
173			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
174#ifdef MAX_SKB_FRAGS
175#define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
176	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
177#else
178#define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
179#endif
180
181static void ixgbevf_tx_timeout(struct net_device *netdev);
182
183/**
184 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
185 * @adapter: board private structure
186 * @tx_ring: tx ring to clean
187 **/
188static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
189				 struct ixgbevf_ring *tx_ring)
190{
191	struct net_device *netdev = adapter->netdev;
192	struct ixgbe_hw *hw = &adapter->hw;
193	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
194	struct ixgbevf_tx_buffer *tx_buffer_info;
195	unsigned int i, eop, count = 0;
196	unsigned int total_bytes = 0, total_packets = 0;
197
198	i = tx_ring->next_to_clean;
199	eop = tx_ring->tx_buffer_info[i].next_to_watch;
200	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
201
202	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
203	       (count < tx_ring->work_limit)) {
204		bool cleaned = false;
205		rmb(); /* read buffer_info after eop_desc */
206		/* eop could change between read and DD-check */
207		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
208			goto cont_loop;
209		for ( ; !cleaned; count++) {
210			struct sk_buff *skb;
211			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
212			tx_buffer_info = &tx_ring->tx_buffer_info[i];
213			cleaned = (i == eop);
214			skb = tx_buffer_info->skb;
215
216			if (cleaned && skb) {
217				unsigned int segs, bytecount;
218
219				/* gso_segs is currently only valid for tcp */
220				segs = skb_shinfo(skb)->gso_segs ?: 1;
221				/* multiply data chunks by size of headers */
222				bytecount = ((segs - 1) * skb_headlen(skb)) +
223					    skb->len;
224				total_packets += segs;
225				total_bytes += bytecount;
226			}
227
228			ixgbevf_unmap_and_free_tx_resource(adapter,
229							   tx_buffer_info);
230
231			tx_desc->wb.status = 0;
232
233			i++;
234			if (i == tx_ring->count)
235				i = 0;
236		}
237
238cont_loop:
239		eop = tx_ring->tx_buffer_info[i].next_to_watch;
240		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
241	}
242
243	tx_ring->next_to_clean = i;
244
245#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
246	if (unlikely(count && netif_carrier_ok(netdev) &&
247		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
248		/* Make sure that anybody stopping the queue after this
249		 * sees the new next_to_clean.
250		 */
251		smp_mb();
252#ifdef HAVE_TX_MQ
253		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
254		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
255			netif_wake_subqueue(netdev, tx_ring->queue_index);
256			++adapter->restart_queue;
257		}
258#else
259		if (netif_queue_stopped(netdev) &&
260		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
261			netif_wake_queue(netdev);
262			++adapter->restart_queue;
263		}
264#endif
265	}
266
267	/* re-arm the interrupt */
268	if ((count >= tx_ring->work_limit) &&
269	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
270		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
271	}
272
273	u64_stats_update_begin(&tx_ring->syncp);
274	tx_ring->total_bytes += total_bytes;
275	tx_ring->total_packets += total_packets;
276	u64_stats_update_end(&tx_ring->syncp);
277
278	return count < tx_ring->work_limit;
279}
280
281/**
282 * ixgbevf_receive_skb - Send a completed packet up the stack
283 * @q_vector: structure containing interrupt and ring information
284 * @skb: packet to send up
285 * @status: hardware indication of status of receive
286 * @rx_ring: rx descriptor ring (for a specific queue) to setup
287 * @rx_desc: rx descriptor
288 **/
289static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
290				struct sk_buff *skb, u8 status,
291				struct ixgbevf_ring *ring,
292				union ixgbe_adv_rx_desc *rx_desc)
293{
294	struct ixgbevf_adapter *adapter = q_vector->adapter;
295	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
296
297	if (is_vlan) {
298		u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
299
300		__vlan_hwaccel_put_tag(skb, tag);
301	}
302
303	if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
304			napi_gro_receive(&q_vector->napi, skb);
305	else
306			netif_rx(skb);
307}
308
309/**
310 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
311 * @adapter: address of board private structure
312 * @status_err: hardware indication of status of receive
313 * @skb: skb currently being received and modified
314 **/
315static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
316				       u32 status_err, struct sk_buff *skb)
317{
318	skb_checksum_none_assert(skb);
319
320	/* Rx csum disabled */
321	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
322		return;
323
324	/* if IP and error */
325	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
326	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
327		adapter->hw_csum_rx_error++;
328		return;
329	}
330
331	if (!(status_err & IXGBE_RXD_STAT_L4CS))
332		return;
333
334	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
335		adapter->hw_csum_rx_error++;
336		return;
337	}
338
339	/* It must be a TCP or UDP packet with a valid checksum */
340	skb->ip_summed = CHECKSUM_UNNECESSARY;
341	adapter->hw_csum_rx_good++;
342}
343
344/**
345 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
346 * @adapter: address of board private structure
347 **/
348static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
349				     struct ixgbevf_ring *rx_ring,
350				     int cleaned_count)
351{
352	struct pci_dev *pdev = adapter->pdev;
353	union ixgbe_adv_rx_desc *rx_desc;
354	struct ixgbevf_rx_buffer *bi;
355	struct sk_buff *skb;
356	unsigned int i;
357	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
358
359	i = rx_ring->next_to_use;
360	bi = &rx_ring->rx_buffer_info[i];
361
362	while (cleaned_count--) {
363		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
364
365		if (!bi->page_dma &&
366		    (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
367			if (!bi->page) {
368				bi->page = netdev_alloc_page(adapter->netdev);
369				if (!bi->page) {
370					adapter->alloc_rx_page_failed++;
371					goto no_buffers;
372				}
373				bi->page_offset = 0;
374			} else {
375				/* use a half page if we're re-using */
376				bi->page_offset ^= (PAGE_SIZE / 2);
377			}
378
379			bi->page_dma = dma_map_page(&pdev->dev, bi->page,
380						    bi->page_offset,
381						    (PAGE_SIZE / 2),
382						    DMA_FROM_DEVICE);
383		}
384
385		skb = bi->skb;
386		if (!skb) {
387			skb = netdev_alloc_skb(adapter->netdev,
388							       bufsz);
389
390			if (!skb) {
391				adapter->alloc_rx_buff_failed++;
392				goto no_buffers;
393			}
394
395			/*
396			 * Make buffer alignment 2 beyond a 16 byte boundary
397			 * this will result in a 16 byte aligned IP header after
398			 * the 14 byte MAC header is removed
399			 */
400			skb_reserve(skb, NET_IP_ALIGN);
401
402			bi->skb = skb;
403		}
404		if (!bi->dma) {
405			bi->dma = dma_map_single(&pdev->dev, skb->data,
406						 rx_ring->rx_buf_len,
407						 DMA_FROM_DEVICE);
408		}
409		/* Refresh the desc even if buffer_addrs didn't change because
410		 * each write-back erases this info. */
411		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
412			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
413			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
414		} else {
415			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
416		}
417
418		i++;
419		if (i == rx_ring->count)
420			i = 0;
421		bi = &rx_ring->rx_buffer_info[i];
422	}
423
424no_buffers:
425	if (rx_ring->next_to_use != i) {
426		rx_ring->next_to_use = i;
427		if (i-- == 0)
428			i = (rx_ring->count - 1);
429
430		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
431	}
432}
433
434static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
435					     u64 qmask)
436{
437	u32 mask;
438	struct ixgbe_hw *hw = &adapter->hw;
439
440	mask = (qmask & 0xFFFFFFFF);
441	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
442}
443
444static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
445{
446	return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
447}
448
449static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
450{
451	return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
452}
453
454static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
455				 struct ixgbevf_ring *rx_ring,
456				 int *work_done, int work_to_do)
457{
458	struct ixgbevf_adapter *adapter = q_vector->adapter;
459	struct pci_dev *pdev = adapter->pdev;
460	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
461	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
462	struct sk_buff *skb;
463	unsigned int i;
464	u32 len, staterr;
465	u16 hdr_info;
466	bool cleaned = false;
467	int cleaned_count = 0;
468	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
469
470	i = rx_ring->next_to_clean;
471	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
472	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
473	rx_buffer_info = &rx_ring->rx_buffer_info[i];
474
475	while (staterr & IXGBE_RXD_STAT_DD) {
476		u32 upper_len = 0;
477		if (*work_done >= work_to_do)
478			break;
479		(*work_done)++;
480
481		rmb(); /* read descriptor and rx_buffer_info after status DD */
482		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
483			hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
484			len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
485			       IXGBE_RXDADV_HDRBUFLEN_SHIFT;
486			if (hdr_info & IXGBE_RXDADV_SPH)
487				adapter->rx_hdr_split++;
488			if (len > IXGBEVF_RX_HDR_SIZE)
489				len = IXGBEVF_RX_HDR_SIZE;
490			upper_len = le16_to_cpu(rx_desc->wb.upper.length);
491		} else {
492			len = le16_to_cpu(rx_desc->wb.upper.length);
493		}
494		cleaned = true;
495		skb = rx_buffer_info->skb;
496		prefetch(skb->data - NET_IP_ALIGN);
497		rx_buffer_info->skb = NULL;
498
499		if (rx_buffer_info->dma) {
500			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
501					 rx_ring->rx_buf_len,
502					 DMA_FROM_DEVICE);
503			rx_buffer_info->dma = 0;
504			skb_put(skb, len);
505		}
506
507		if (upper_len) {
508			dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
509				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
510			rx_buffer_info->page_dma = 0;
511			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
512					   rx_buffer_info->page,
513					   rx_buffer_info->page_offset,
514					   upper_len);
515
516			if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
517			    (page_count(rx_buffer_info->page) != 1))
518				rx_buffer_info->page = NULL;
519			else
520				get_page(rx_buffer_info->page);
521
522			skb->len += upper_len;
523			skb->data_len += upper_len;
524			skb->truesize += upper_len;
525		}
526
527		i++;
528		if (i == rx_ring->count)
529			i = 0;
530
531		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
532		prefetch(next_rxd);
533		cleaned_count++;
534
535		next_buffer = &rx_ring->rx_buffer_info[i];
536
537		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
538			if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
539				rx_buffer_info->skb = next_buffer->skb;
540				rx_buffer_info->dma = next_buffer->dma;
541				next_buffer->skb = skb;
542				next_buffer->dma = 0;
543			} else {
544				skb->next = next_buffer->skb;
545				skb->next->prev = skb;
546			}
547			adapter->non_eop_descs++;
548			goto next_desc;
549		}
550
551		/* ERR_MASK will only have valid bits if EOP set */
552		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
553			dev_kfree_skb_irq(skb);
554			goto next_desc;
555		}
556
557		ixgbevf_rx_checksum(adapter, staterr, skb);
558
559		/* probably a little skewed due to removing CRC */
560		total_rx_bytes += skb->len;
561		total_rx_packets++;
562
563		/*
564		 * Work around issue of some types of VM to VM loop back
565		 * packets not getting split correctly
566		 */
567		if (staterr & IXGBE_RXD_STAT_LB) {
568			u32 header_fixup_len = skb_headlen(skb);
569			if (header_fixup_len < 14)
570				skb_push(skb, header_fixup_len);
571		}
572		skb->protocol = eth_type_trans(skb, adapter->netdev);
573
574		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
575
576next_desc:
577		rx_desc->wb.upper.status_error = 0;
578
579		/* return some buffers to hardware, one at a time is too slow */
580		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
581			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
582						 cleaned_count);
583			cleaned_count = 0;
584		}
585
586		/* use prefetched values */
587		rx_desc = next_rxd;
588		rx_buffer_info = &rx_ring->rx_buffer_info[i];
589
590		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
591	}
592
593	rx_ring->next_to_clean = i;
594	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
595
596	if (cleaned_count)
597		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
598
599	u64_stats_update_begin(&rx_ring->syncp);
600	rx_ring->total_packets += total_rx_packets;
601	rx_ring->total_bytes += total_rx_bytes;
602	u64_stats_update_end(&rx_ring->syncp);
603
604	return cleaned;
605}
606
607/**
608 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
609 * @napi: napi struct with our devices info in it
610 * @budget: amount of work driver is allowed to do this pass, in packets
611 *
612 * This function is optimized for cleaning one queue only on a single
613 * q_vector!!!
614 **/
615static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
616{
617	struct ixgbevf_q_vector *q_vector =
618		container_of(napi, struct ixgbevf_q_vector, napi);
619	struct ixgbevf_adapter *adapter = q_vector->adapter;
620	struct ixgbevf_ring *rx_ring = NULL;
621	int work_done = 0;
622	long r_idx;
623
624	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
625	rx_ring = &(adapter->rx_ring[r_idx]);
626
627	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
628
629	/* If all Rx work done, exit the polling mode */
630	if (work_done < budget) {
631		napi_complete(napi);
632		if (adapter->itr_setting & 1)
633			ixgbevf_set_itr_msix(q_vector);
634		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
635			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
636	}
637
638	return work_done;
639}
640
641/**
642 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
643 * @napi: napi struct with our devices info in it
644 * @budget: amount of work driver is allowed to do this pass, in packets
645 *
646 * This function will clean more than one rx queue associated with a
647 * q_vector.
648 **/
649static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
650{
651	struct ixgbevf_q_vector *q_vector =
652		container_of(napi, struct ixgbevf_q_vector, napi);
653	struct ixgbevf_adapter *adapter = q_vector->adapter;
654	struct ixgbevf_ring *rx_ring = NULL;
655	int work_done = 0, i;
656	long r_idx;
657	u64 enable_mask = 0;
658
659	/* attempt to distribute budget to each queue fairly, but don't allow
660	 * the budget to go below 1 because we'll exit polling */
661	budget /= (q_vector->rxr_count ?: 1);
662	budget = max(budget, 1);
663	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664	for (i = 0; i < q_vector->rxr_count; i++) {
665		rx_ring = &(adapter->rx_ring[r_idx]);
666		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
667		enable_mask |= rx_ring->v_idx;
668		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
669				      r_idx + 1);
670	}
671
672#ifndef HAVE_NETDEV_NAPI_LIST
673	if (!netif_running(adapter->netdev))
674		work_done = 0;
675
676#endif
677	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
678	rx_ring = &(adapter->rx_ring[r_idx]);
679
680	/* If all Rx work done, exit the polling mode */
681	if (work_done < budget) {
682		napi_complete(napi);
683		if (adapter->itr_setting & 1)
684			ixgbevf_set_itr_msix(q_vector);
685		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
686			ixgbevf_irq_enable_queues(adapter, enable_mask);
687	}
688
689	return work_done;
690}
691
692
693/**
694 * ixgbevf_configure_msix - Configure MSI-X hardware
695 * @adapter: board private structure
696 *
697 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
698 * interrupts.
699 **/
700static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
701{
702	struct ixgbevf_q_vector *q_vector;
703	struct ixgbe_hw *hw = &adapter->hw;
704	int i, j, q_vectors, v_idx, r_idx;
705	u32 mask;
706
707	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
708
709	/*
710	 * Populate the IVAR table and set the ITR values to the
711	 * corresponding register.
712	 */
713	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
714		q_vector = adapter->q_vector[v_idx];
715		/* XXX for_each_set_bit(...) */
716		r_idx = find_first_bit(q_vector->rxr_idx,
717				       adapter->num_rx_queues);
718
719		for (i = 0; i < q_vector->rxr_count; i++) {
720			j = adapter->rx_ring[r_idx].reg_idx;
721			ixgbevf_set_ivar(adapter, 0, j, v_idx);
722			r_idx = find_next_bit(q_vector->rxr_idx,
723					      adapter->num_rx_queues,
724					      r_idx + 1);
725		}
726		r_idx = find_first_bit(q_vector->txr_idx,
727				       adapter->num_tx_queues);
728
729		for (i = 0; i < q_vector->txr_count; i++) {
730			j = adapter->tx_ring[r_idx].reg_idx;
731			ixgbevf_set_ivar(adapter, 1, j, v_idx);
732			r_idx = find_next_bit(q_vector->txr_idx,
733					      adapter->num_tx_queues,
734					      r_idx + 1);
735		}
736
737		/* if this is a tx only vector halve the interrupt rate */
738		if (q_vector->txr_count && !q_vector->rxr_count)
739			q_vector->eitr = (adapter->eitr_param >> 1);
740		else if (q_vector->rxr_count)
741			/* rx only */
742			q_vector->eitr = adapter->eitr_param;
743
744		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
745	}
746
747	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
748
749	/* set up to autoclear timer, and the vectors */
750	mask = IXGBE_EIMS_ENABLE_MASK;
751	mask &= ~IXGBE_EIMS_OTHER;
752	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
753}
754
755enum latency_range {
756	lowest_latency = 0,
757	low_latency = 1,
758	bulk_latency = 2,
759	latency_invalid = 255
760};
761
762/**
763 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
764 * @adapter: pointer to adapter
765 * @eitr: eitr setting (ints per sec) to give last timeslice
766 * @itr_setting: current throttle rate in ints/second
767 * @packets: the number of packets during this measurement interval
768 * @bytes: the number of bytes during this measurement interval
769 *
770 *      Stores a new ITR value based on packets and byte
771 *      counts during the last interrupt.  The advantage of per interrupt
772 *      computation is faster updates and more accurate ITR for the current
773 *      traffic pattern.  Constants in this function were computed
774 *      based on theoretical maximum wire speed and thresholds were set based
775 *      on testing data as well as attempting to minimize response time
776 *      while increasing bulk throughput.
777 **/
778static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
779			     u32 eitr, u8 itr_setting,
780			     int packets, int bytes)
781{
782	unsigned int retval = itr_setting;
783	u32 timepassed_us;
784	u64 bytes_perint;
785
786	if (packets == 0)
787		goto update_itr_done;
788
789
790	/* simple throttlerate management
791	 *    0-20MB/s lowest (100000 ints/s)
792	 *   20-100MB/s low   (20000 ints/s)
793	 *  100-1249MB/s bulk (8000 ints/s)
794	 */
795	/* what was last interrupt timeslice? */
796	timepassed_us = 1000000/eitr;
797	bytes_perint = bytes / timepassed_us; /* bytes/usec */
798
799	switch (itr_setting) {
800	case lowest_latency:
801		if (bytes_perint > adapter->eitr_low)
802			retval = low_latency;
803		break;
804	case low_latency:
805		if (bytes_perint > adapter->eitr_high)
806			retval = bulk_latency;
807		else if (bytes_perint <= adapter->eitr_low)
808			retval = lowest_latency;
809		break;
810	case bulk_latency:
811		if (bytes_perint <= adapter->eitr_high)
812			retval = low_latency;
813		break;
814	}
815
816update_itr_done:
817	return retval;
818}
819
820/**
821 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
822 * @adapter: pointer to adapter struct
823 * @v_idx: vector index into q_vector array
824 * @itr_reg: new value to be written in *register* format, not ints/s
825 *
826 * This function is made to be called by ethtool and by the driver
827 * when it needs to update VTEITR registers at runtime.  Hardware
828 * specific quirks/differences are taken care of here.
829 */
830static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
831			       u32 itr_reg)
832{
833	struct ixgbe_hw *hw = &adapter->hw;
834
835	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
836
837	/*
838	 * set the WDIS bit to not clear the timer bits and cause an
839	 * immediate assertion of the interrupt
840	 */
841	itr_reg |= IXGBE_EITR_CNT_WDIS;
842
843	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
844}
845
846static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
847{
848	struct ixgbevf_adapter *adapter = q_vector->adapter;
849	u32 new_itr;
850	u8 current_itr, ret_itr;
851	int i, r_idx, v_idx = q_vector->v_idx;
852	struct ixgbevf_ring *rx_ring, *tx_ring;
853
854	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
855	for (i = 0; i < q_vector->txr_count; i++) {
856		tx_ring = &(adapter->tx_ring[r_idx]);
857		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
858					     q_vector->tx_itr,
859					     tx_ring->total_packets,
860					     tx_ring->total_bytes);
861		/* if the result for this queue would decrease interrupt
862		 * rate for this vector then use that result */
863		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
864				    q_vector->tx_itr - 1 : ret_itr);
865		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
866				      r_idx + 1);
867	}
868
869	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
870	for (i = 0; i < q_vector->rxr_count; i++) {
871		rx_ring = &(adapter->rx_ring[r_idx]);
872		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
873					     q_vector->rx_itr,
874					     rx_ring->total_packets,
875					     rx_ring->total_bytes);
876		/* if the result for this queue would decrease interrupt
877		 * rate for this vector then use that result */
878		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
879				    q_vector->rx_itr - 1 : ret_itr);
880		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
881				      r_idx + 1);
882	}
883
884	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
885
886	switch (current_itr) {
887	/* counts and packets in update_itr are dependent on these numbers */
888	case lowest_latency:
889		new_itr = 100000;
890		break;
891	case low_latency:
892		new_itr = 20000; /* aka hwitr = ~200 */
893		break;
894	case bulk_latency:
895	default:
896		new_itr = 8000;
897		break;
898	}
899
900	if (new_itr != q_vector->eitr) {
901		u32 itr_reg;
902
903		/* save the algorithm value here, not the smoothed one */
904		q_vector->eitr = new_itr;
905		/* do an exponential smoothing */
906		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
907		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
908		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
909	}
910}
911
912static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
913{
914	struct net_device *netdev = data;
915	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
916	struct ixgbe_hw *hw = &adapter->hw;
917	u32 eicr;
918	u32 msg;
919
920	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
921	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
922
923	if (!hw->mbx.ops.check_for_ack(hw)) {
924		/*
925		 * checking for the ack clears the PFACK bit.  Place
926		 * it back in the v2p_mailbox cache so that anyone
927		 * polling for an ack will not miss it.  Also
928		 * avoid the read below because the code to read
929		 * the mailbox will also clear the ack bit.  This was
930		 * causing lost acks.  Just cache the bit and exit
931		 * the IRQ handler.
932		 */
933		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
934		goto out;
935	}
936
937	/* Not an ack interrupt, go ahead and read the message */
938	hw->mbx.ops.read(hw, &msg, 1);
939
940	if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
941		mod_timer(&adapter->watchdog_timer,
942			  round_jiffies(jiffies + 1));
943
944out:
945	return IRQ_HANDLED;
946}
947
948static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
949{
950	struct ixgbevf_q_vector *q_vector = data;
951	struct ixgbevf_adapter  *adapter = q_vector->adapter;
952	struct ixgbevf_ring     *tx_ring;
953	int i, r_idx;
954
955	if (!q_vector->txr_count)
956		return IRQ_HANDLED;
957
958	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
959	for (i = 0; i < q_vector->txr_count; i++) {
960		tx_ring = &(adapter->tx_ring[r_idx]);
961		tx_ring->total_bytes = 0;
962		tx_ring->total_packets = 0;
963		ixgbevf_clean_tx_irq(adapter, tx_ring);
964		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
965				      r_idx + 1);
966	}
967
968	if (adapter->itr_setting & 1)
969		ixgbevf_set_itr_msix(q_vector);
970
971	return IRQ_HANDLED;
972}
973
974/**
975 * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
976 * @irq: unused
977 * @data: pointer to our q_vector struct for this interrupt vector
978 **/
979static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
980{
981	struct ixgbevf_q_vector *q_vector = data;
982	struct ixgbevf_adapter  *adapter = q_vector->adapter;
983	struct ixgbe_hw *hw = &adapter->hw;
984	struct ixgbevf_ring  *rx_ring;
985	int r_idx;
986	int i;
987
988	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
989	for (i = 0; i < q_vector->rxr_count; i++) {
990		rx_ring = &(adapter->rx_ring[r_idx]);
991		rx_ring->total_bytes = 0;
992		rx_ring->total_packets = 0;
993		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
994				      r_idx + 1);
995	}
996
997	if (!q_vector->rxr_count)
998		return IRQ_HANDLED;
999
1000	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1001	rx_ring = &(adapter->rx_ring[r_idx]);
1002	/* disable interrupts on this vector only */
1003	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1004	napi_schedule(&q_vector->napi);
1005
1006
1007	return IRQ_HANDLED;
1008}
1009
1010static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1011{
1012	ixgbevf_msix_clean_rx(irq, data);
1013	ixgbevf_msix_clean_tx(irq, data);
1014
1015	return IRQ_HANDLED;
1016}
1017
1018static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1019				     int r_idx)
1020{
1021	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1022
1023	set_bit(r_idx, q_vector->rxr_idx);
1024	q_vector->rxr_count++;
1025	a->rx_ring[r_idx].v_idx = 1 << v_idx;
1026}
1027
1028static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1029				     int t_idx)
1030{
1031	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1032
1033	set_bit(t_idx, q_vector->txr_idx);
1034	q_vector->txr_count++;
1035	a->tx_ring[t_idx].v_idx = 1 << v_idx;
1036}
1037
1038/**
1039 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1040 * @adapter: board private structure to initialize
1041 *
1042 * This function maps descriptor rings to the queue-specific vectors
1043 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1044 * one vector per ring/queue, but on a constrained vector budget, we
1045 * group the rings as "efficiently" as possible.  You would add new
1046 * mapping configurations in here.
1047 **/
1048static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1049{
1050	int q_vectors;
1051	int v_start = 0;
1052	int rxr_idx = 0, txr_idx = 0;
1053	int rxr_remaining = adapter->num_rx_queues;
1054	int txr_remaining = adapter->num_tx_queues;
1055	int i, j;
1056	int rqpv, tqpv;
1057	int err = 0;
1058
1059	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1060
1061	/*
1062	 * The ideal configuration...
1063	 * We have enough vectors to map one per queue.
1064	 */
1065	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1066		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1067			map_vector_to_rxq(adapter, v_start, rxr_idx);
1068
1069		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1070			map_vector_to_txq(adapter, v_start, txr_idx);
1071		goto out;
1072	}
1073
1074	/*
1075	 * If we don't have enough vectors for a 1-to-1
1076	 * mapping, we'll have to group them so there are
1077	 * multiple queues per vector.
1078	 */
1079	/* Re-adjusting *qpv takes care of the remainder. */
1080	for (i = v_start; i < q_vectors; i++) {
1081		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1082		for (j = 0; j < rqpv; j++) {
1083			map_vector_to_rxq(adapter, i, rxr_idx);
1084			rxr_idx++;
1085			rxr_remaining--;
1086		}
1087	}
1088	for (i = v_start; i < q_vectors; i++) {
1089		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1090		for (j = 0; j < tqpv; j++) {
1091			map_vector_to_txq(adapter, i, txr_idx);
1092			txr_idx++;
1093			txr_remaining--;
1094		}
1095	}
1096
1097out:
1098	return err;
1099}
1100
1101/**
1102 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1103 * @adapter: board private structure
1104 *
1105 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1106 * interrupts from the kernel.
1107 **/
1108static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1109{
1110	struct net_device *netdev = adapter->netdev;
1111	irqreturn_t (*handler)(int, void *);
1112	int i, vector, q_vectors, err;
1113	int ri = 0, ti = 0;
1114
1115	/* Decrement for Other and TCP Timer vectors */
1116	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1117
1118#define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1119					  ? &ixgbevf_msix_clean_many : \
1120			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1121			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1122			  NULL)
1123	for (vector = 0; vector < q_vectors; vector++) {
1124		handler = SET_HANDLER(adapter->q_vector[vector]);
1125
1126		if (handler == &ixgbevf_msix_clean_rx) {
1127			sprintf(adapter->name[vector], "%s-%s-%d",
1128				netdev->name, "rx", ri++);
1129		} else if (handler == &ixgbevf_msix_clean_tx) {
1130			sprintf(adapter->name[vector], "%s-%s-%d",
1131				netdev->name, "tx", ti++);
1132		} else if (handler == &ixgbevf_msix_clean_many) {
1133			sprintf(adapter->name[vector], "%s-%s-%d",
1134				netdev->name, "TxRx", vector);
1135		} else {
1136			/* skip this unused q_vector */
1137			continue;
1138		}
1139		err = request_irq(adapter->msix_entries[vector].vector,
1140				  handler, 0, adapter->name[vector],
1141				  adapter->q_vector[vector]);
1142		if (err) {
1143			hw_dbg(&adapter->hw,
1144			       "request_irq failed for MSIX interrupt "
1145			       "Error: %d\n", err);
1146			goto free_queue_irqs;
1147		}
1148	}
1149
1150	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1151	err = request_irq(adapter->msix_entries[vector].vector,
1152			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1153	if (err) {
1154		hw_dbg(&adapter->hw,
1155		       "request_irq for msix_mbx failed: %d\n", err);
1156		goto free_queue_irqs;
1157	}
1158
1159	return 0;
1160
1161free_queue_irqs:
1162	for (i = vector - 1; i >= 0; i--)
1163		free_irq(adapter->msix_entries[--vector].vector,
1164			 &(adapter->q_vector[i]));
1165	pci_disable_msix(adapter->pdev);
1166	kfree(adapter->msix_entries);
1167	adapter->msix_entries = NULL;
1168	return err;
1169}
1170
1171static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1172{
1173	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1174
1175	for (i = 0; i < q_vectors; i++) {
1176		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1177		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1178		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1179		q_vector->rxr_count = 0;
1180		q_vector->txr_count = 0;
1181		q_vector->eitr = adapter->eitr_param;
1182	}
1183}
1184
1185/**
1186 * ixgbevf_request_irq - initialize interrupts
1187 * @adapter: board private structure
1188 *
1189 * Attempts to configure interrupts using the best available
1190 * capabilities of the hardware and kernel.
1191 **/
1192static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1193{
1194	int err = 0;
1195
1196	err = ixgbevf_request_msix_irqs(adapter);
1197
1198	if (err)
1199		hw_dbg(&adapter->hw,
1200		       "request_irq failed, Error %d\n", err);
1201
1202	return err;
1203}
1204
1205static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1206{
1207	struct net_device *netdev = adapter->netdev;
1208	int i, q_vectors;
1209
1210	q_vectors = adapter->num_msix_vectors;
1211
1212	i = q_vectors - 1;
1213
1214	free_irq(adapter->msix_entries[i].vector, netdev);
1215	i--;
1216
1217	for (; i >= 0; i--) {
1218		free_irq(adapter->msix_entries[i].vector,
1219			 adapter->q_vector[i]);
1220	}
1221
1222	ixgbevf_reset_q_vectors(adapter);
1223}
1224
1225/**
1226 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1227 * @adapter: board private structure
1228 **/
1229static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1230{
1231	int i;
1232	struct ixgbe_hw *hw = &adapter->hw;
1233
1234	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1235
1236	IXGBE_WRITE_FLUSH(hw);
1237
1238	for (i = 0; i < adapter->num_msix_vectors; i++)
1239		synchronize_irq(adapter->msix_entries[i].vector);
1240}
1241
1242/**
1243 * ixgbevf_irq_enable - Enable default interrupt generation settings
1244 * @adapter: board private structure
1245 **/
1246static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1247				      bool queues, bool flush)
1248{
1249	struct ixgbe_hw *hw = &adapter->hw;
1250	u32 mask;
1251	u64 qmask;
1252
1253	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1254	qmask = ~0;
1255
1256	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1257
1258	if (queues)
1259		ixgbevf_irq_enable_queues(adapter, qmask);
1260
1261	if (flush)
1262		IXGBE_WRITE_FLUSH(hw);
1263}
1264
1265/**
1266 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1267 * @adapter: board private structure
1268 *
1269 * Configure the Tx unit of the MAC after a reset.
1270 **/
1271static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1272{
1273	u64 tdba;
1274	struct ixgbe_hw *hw = &adapter->hw;
1275	u32 i, j, tdlen, txctrl;
1276
1277	/* Setup the HW Tx Head and Tail descriptor pointers */
1278	for (i = 0; i < adapter->num_tx_queues; i++) {
1279		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1280		j = ring->reg_idx;
1281		tdba = ring->dma;
1282		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1283		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1284				(tdba & DMA_BIT_MASK(32)));
1285		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1286		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1287		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1288		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1289		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1290		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1291		/* Disable Tx Head Writeback RO bit, since this hoses
1292		 * bookkeeping if things aren't delivered in order.
1293		 */
1294		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1295		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1296		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1297	}
1298}
1299
1300#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1301
1302static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1303{
1304	struct ixgbevf_ring *rx_ring;
1305	struct ixgbe_hw *hw = &adapter->hw;
1306	u32 srrctl;
1307
1308	rx_ring = &adapter->rx_ring[index];
1309
1310	srrctl = IXGBE_SRRCTL_DROP_EN;
1311
1312	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1313		u16 bufsz = IXGBEVF_RXBUFFER_2048;
1314		/* grow the amount we can receive on large page machines */
1315		if (bufsz < (PAGE_SIZE / 2))
1316			bufsz = (PAGE_SIZE / 2);
1317		/* cap the bufsz at our largest descriptor size */
1318		bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1319
1320		srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1321		srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1322		srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1323			   IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1324			   IXGBE_SRRCTL_BSIZEHDR_MASK);
1325	} else {
1326		srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1327
1328		if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1329			srrctl |= IXGBEVF_RXBUFFER_2048 >>
1330				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1331		else
1332			srrctl |= rx_ring->rx_buf_len >>
1333				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1334	}
1335	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1336}
1337
1338/**
1339 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1340 * @adapter: board private structure
1341 *
1342 * Configure the Rx unit of the MAC after a reset.
1343 **/
1344static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1345{
1346	u64 rdba;
1347	struct ixgbe_hw *hw = &adapter->hw;
1348	struct net_device *netdev = adapter->netdev;
1349	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1350	int i, j;
1351	u32 rdlen;
1352	int rx_buf_len;
1353
1354	/* Decide whether to use packet split mode or not */
1355	if (netdev->mtu > ETH_DATA_LEN) {
1356		if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1357			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1358		else
1359			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1360	} else {
1361		if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1362			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1363		else
1364			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1365	}
1366
1367	/* Set the RX buffer length according to the mode */
1368	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1369		/* PSRTYPE must be initialized in 82599 */
1370		u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1371			IXGBE_PSRTYPE_UDPHDR |
1372			IXGBE_PSRTYPE_IPV4HDR |
1373			IXGBE_PSRTYPE_IPV6HDR |
1374			IXGBE_PSRTYPE_L2HDR;
1375		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1376		rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1377	} else {
1378		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1379		if (netdev->mtu <= ETH_DATA_LEN)
1380			rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1381		else
1382			rx_buf_len = ALIGN(max_frame, 1024);
1383	}
1384
1385	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1386	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1387	 * the Base and Length of the Rx Descriptor Ring */
1388	for (i = 0; i < adapter->num_rx_queues; i++) {
1389		rdba = adapter->rx_ring[i].dma;
1390		j = adapter->rx_ring[i].reg_idx;
1391		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1392				(rdba & DMA_BIT_MASK(32)));
1393		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1394		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1395		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1396		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1397		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1398		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1399		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1400
1401		ixgbevf_configure_srrctl(adapter, j);
1402	}
1403}
1404
1405static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1406{
1407	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1408	struct ixgbe_hw *hw = &adapter->hw;
1409
1410	/* add VID to filter table */
1411	if (hw->mac.ops.set_vfta)
1412		hw->mac.ops.set_vfta(hw, vid, 0, true);
1413	set_bit(vid, adapter->active_vlans);
1414}
1415
1416static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1417{
1418	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1419	struct ixgbe_hw *hw = &adapter->hw;
1420
1421	/* remove VID from filter table */
1422	if (hw->mac.ops.set_vfta)
1423		hw->mac.ops.set_vfta(hw, vid, 0, false);
1424	clear_bit(vid, adapter->active_vlans);
1425}
1426
1427static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1428{
1429	u16 vid;
1430
1431	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1432		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1433}
1434
1435static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1436{
1437	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1438	struct ixgbe_hw *hw = &adapter->hw;
1439	int count = 0;
1440
1441	if ((netdev_uc_count(netdev)) > 10) {
1442		printk(KERN_ERR "Too many unicast filters - No Space\n");
1443		return -ENOSPC;
1444	}
1445
1446	if (!netdev_uc_empty(netdev)) {
1447		struct netdev_hw_addr *ha;
1448		netdev_for_each_uc_addr(ha, netdev) {
1449			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1450			udelay(200);
1451		}
1452	} else {
1453		/*
1454		 * If the list is empty then send message to PF driver to
1455		 * clear all macvlans on this VF.
1456		 */
1457		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1458	}
1459
1460	return count;
1461}
1462
1463/**
1464 * ixgbevf_set_rx_mode - Multicast set
1465 * @netdev: network interface device structure
1466 *
1467 * The set_rx_method entry point is called whenever the multicast address
1468 * list or the network interface flags are updated.  This routine is
1469 * responsible for configuring the hardware for proper multicast mode.
1470 **/
1471static void ixgbevf_set_rx_mode(struct net_device *netdev)
1472{
1473	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1474	struct ixgbe_hw *hw = &adapter->hw;
1475
1476	/* reprogram multicast list */
1477	if (hw->mac.ops.update_mc_addr_list)
1478		hw->mac.ops.update_mc_addr_list(hw, netdev);
1479
1480	ixgbevf_write_uc_addr_list(netdev);
1481}
1482
1483static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1484{
1485	int q_idx;
1486	struct ixgbevf_q_vector *q_vector;
1487	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1488
1489	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1490		struct napi_struct *napi;
1491		q_vector = adapter->q_vector[q_idx];
1492		if (!q_vector->rxr_count)
1493			continue;
1494		napi = &q_vector->napi;
1495		if (q_vector->rxr_count > 1)
1496			napi->poll = &ixgbevf_clean_rxonly_many;
1497
1498		napi_enable(napi);
1499	}
1500}
1501
1502static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1503{
1504	int q_idx;
1505	struct ixgbevf_q_vector *q_vector;
1506	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1507
1508	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1509		q_vector = adapter->q_vector[q_idx];
1510		if (!q_vector->rxr_count)
1511			continue;
1512		napi_disable(&q_vector->napi);
1513	}
1514}
1515
1516static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1517{
1518	struct net_device *netdev = adapter->netdev;
1519	int i;
1520
1521	ixgbevf_set_rx_mode(netdev);
1522
1523	ixgbevf_restore_vlan(adapter);
1524
1525	ixgbevf_configure_tx(adapter);
1526	ixgbevf_configure_rx(adapter);
1527	for (i = 0; i < adapter->num_rx_queues; i++) {
1528		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1529		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1530		ring->next_to_use = ring->count - 1;
1531		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1532	}
1533}
1534
1535#define IXGBE_MAX_RX_DESC_POLL 10
1536static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1537						int rxr)
1538{
1539	struct ixgbe_hw *hw = &adapter->hw;
1540	int j = adapter->rx_ring[rxr].reg_idx;
1541	int k;
1542
1543	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1544		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1545			break;
1546		else
1547			msleep(1);
1548	}
1549	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1550		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1551		       "not set within the polling period\n", rxr);
1552	}
1553
1554	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1555				(adapter->rx_ring[rxr].count - 1));
1556}
1557
1558static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1559{
1560	/* Only save pre-reset stats if there are some */
1561	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1562		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1563			adapter->stats.base_vfgprc;
1564		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1565			adapter->stats.base_vfgptc;
1566		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1567			adapter->stats.base_vfgorc;
1568		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1569			adapter->stats.base_vfgotc;
1570		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1571			adapter->stats.base_vfmprc;
1572	}
1573}
1574
1575static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1576{
1577	struct ixgbe_hw *hw = &adapter->hw;
1578
1579	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1580	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1581	adapter->stats.last_vfgorc |=
1582		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1583	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1584	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1585	adapter->stats.last_vfgotc |=
1586		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1587	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1588
1589	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1590	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1591	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1592	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1593	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1594}
1595
1596static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1597{
1598	struct net_device *netdev = adapter->netdev;
1599	struct ixgbe_hw *hw = &adapter->hw;
1600	int i, j = 0;
1601	int num_rx_rings = adapter->num_rx_queues;
1602	u32 txdctl, rxdctl;
1603
1604	for (i = 0; i < adapter->num_tx_queues; i++) {
1605		j = adapter->tx_ring[i].reg_idx;
1606		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1607		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1608		txdctl |= (8 << 16);
1609		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1610	}
1611
1612	for (i = 0; i < adapter->num_tx_queues; i++) {
1613		j = adapter->tx_ring[i].reg_idx;
1614		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1615		txdctl |= IXGBE_TXDCTL_ENABLE;
1616		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1617	}
1618
1619	for (i = 0; i < num_rx_rings; i++) {
1620		j = adapter->rx_ring[i].reg_idx;
1621		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1622		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1623		if (hw->mac.type == ixgbe_mac_X540_vf) {
1624			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1625			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1626				   IXGBE_RXDCTL_RLPML_EN);
1627		}
1628		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1629		ixgbevf_rx_desc_queue_enable(adapter, i);
1630	}
1631
1632	ixgbevf_configure_msix(adapter);
1633
1634	if (hw->mac.ops.set_rar) {
1635		if (is_valid_ether_addr(hw->mac.addr))
1636			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1637		else
1638			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1639	}
1640
1641	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1642	ixgbevf_napi_enable_all(adapter);
1643
1644	/* enable transmits */
1645	netif_tx_start_all_queues(netdev);
1646
1647	ixgbevf_save_reset_stats(adapter);
1648	ixgbevf_init_last_counter_stats(adapter);
1649
1650	/* bring the link up in the watchdog, this could race with our first
1651	 * link up interrupt but shouldn't be a problem */
1652	adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1653	adapter->link_check_timeout = jiffies;
1654	mod_timer(&adapter->watchdog_timer, jiffies);
1655	return 0;
1656}
1657
1658int ixgbevf_up(struct ixgbevf_adapter *adapter)
1659{
1660	int err;
1661	struct ixgbe_hw *hw = &adapter->hw;
1662
1663	ixgbevf_configure(adapter);
1664
1665	err = ixgbevf_up_complete(adapter);
1666
1667	/* clear any pending interrupts, may auto mask */
1668	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1669
1670	ixgbevf_irq_enable(adapter, true, true);
1671
1672	return err;
1673}
1674
1675/**
1676 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1677 * @adapter: board private structure
1678 * @rx_ring: ring to free buffers from
1679 **/
1680static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1681				  struct ixgbevf_ring *rx_ring)
1682{
1683	struct pci_dev *pdev = adapter->pdev;
1684	unsigned long size;
1685	unsigned int i;
1686
1687	if (!rx_ring->rx_buffer_info)
1688		return;
1689
1690	/* Free all the Rx ring sk_buffs */
1691	for (i = 0; i < rx_ring->count; i++) {
1692		struct ixgbevf_rx_buffer *rx_buffer_info;
1693
1694		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1695		if (rx_buffer_info->dma) {
1696			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1697					 rx_ring->rx_buf_len,
1698					 DMA_FROM_DEVICE);
1699			rx_buffer_info->dma = 0;
1700		}
1701		if (rx_buffer_info->skb) {
1702			struct sk_buff *skb = rx_buffer_info->skb;
1703			rx_buffer_info->skb = NULL;
1704			do {
1705				struct sk_buff *this = skb;
1706				skb = skb->prev;
1707				dev_kfree_skb(this);
1708			} while (skb);
1709		}
1710		if (!rx_buffer_info->page)
1711			continue;
1712		dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1713			       PAGE_SIZE / 2, DMA_FROM_DEVICE);
1714		rx_buffer_info->page_dma = 0;
1715		put_page(rx_buffer_info->page);
1716		rx_buffer_info->page = NULL;
1717		rx_buffer_info->page_offset = 0;
1718	}
1719
1720	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1721	memset(rx_ring->rx_buffer_info, 0, size);
1722
1723	/* Zero out the descriptor ring */
1724	memset(rx_ring->desc, 0, rx_ring->size);
1725
1726	rx_ring->next_to_clean = 0;
1727	rx_ring->next_to_use = 0;
1728
1729	if (rx_ring->head)
1730		writel(0, adapter->hw.hw_addr + rx_ring->head);
1731	if (rx_ring->tail)
1732		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1733}
1734
1735/**
1736 * ixgbevf_clean_tx_ring - Free Tx Buffers
1737 * @adapter: board private structure
1738 * @tx_ring: ring to be cleaned
1739 **/
1740static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1741				  struct ixgbevf_ring *tx_ring)
1742{
1743	struct ixgbevf_tx_buffer *tx_buffer_info;
1744	unsigned long size;
1745	unsigned int i;
1746
1747	if (!tx_ring->tx_buffer_info)
1748		return;
1749
1750	/* Free all the Tx ring sk_buffs */
1751
1752	for (i = 0; i < tx_ring->count; i++) {
1753		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1754		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1755	}
1756
1757	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1758	memset(tx_ring->tx_buffer_info, 0, size);
1759
1760	memset(tx_ring->desc, 0, tx_ring->size);
1761
1762	tx_ring->next_to_use = 0;
1763	tx_ring->next_to_clean = 0;
1764
1765	if (tx_ring->head)
1766		writel(0, adapter->hw.hw_addr + tx_ring->head);
1767	if (tx_ring->tail)
1768		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1769}
1770
1771/**
1772 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1773 * @adapter: board private structure
1774 **/
1775static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1776{
1777	int i;
1778
1779	for (i = 0; i < adapter->num_rx_queues; i++)
1780		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1781}
1782
1783/**
1784 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1785 * @adapter: board private structure
1786 **/
1787static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1788{
1789	int i;
1790
1791	for (i = 0; i < adapter->num_tx_queues; i++)
1792		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1793}
1794
1795void ixgbevf_down(struct ixgbevf_adapter *adapter)
1796{
1797	struct net_device *netdev = adapter->netdev;
1798	struct ixgbe_hw *hw = &adapter->hw;
1799	u32 txdctl;
1800	int i, j;
1801
1802	/* signal that we are down to the interrupt handler */
1803	set_bit(__IXGBEVF_DOWN, &adapter->state);
1804	/* disable receives */
1805
1806	netif_tx_disable(netdev);
1807
1808	msleep(10);
1809
1810	netif_tx_stop_all_queues(netdev);
1811
1812	ixgbevf_irq_disable(adapter);
1813
1814	ixgbevf_napi_disable_all(adapter);
1815
1816	del_timer_sync(&adapter->watchdog_timer);
1817	/* can't call flush scheduled work here because it can deadlock
1818	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1819	 * holding */
1820	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1821		msleep(1);
1822
1823	/* disable transmits in the hardware now that interrupts are off */
1824	for (i = 0; i < adapter->num_tx_queues; i++) {
1825		j = adapter->tx_ring[i].reg_idx;
1826		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1827		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1828				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1829	}
1830
1831	netif_carrier_off(netdev);
1832
1833	if (!pci_channel_offline(adapter->pdev))
1834		ixgbevf_reset(adapter);
1835
1836	ixgbevf_clean_all_tx_rings(adapter);
1837	ixgbevf_clean_all_rx_rings(adapter);
1838}
1839
1840void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1841{
1842	struct ixgbe_hw *hw = &adapter->hw;
1843
1844	WARN_ON(in_interrupt());
1845
1846	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1847		msleep(1);
1848
1849	/*
1850	 * Check if PF is up before re-init.  If not then skip until
1851	 * later when the PF is up and ready to service requests from
1852	 * the VF via mailbox.  If the VF is up and running then the
1853	 * watchdog task will continue to schedule reset tasks until
1854	 * the PF is up and running.
1855	 */
1856	if (!hw->mac.ops.reset_hw(hw)) {
1857		ixgbevf_down(adapter);
1858		ixgbevf_up(adapter);
1859	}
1860
1861	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1862}
1863
1864void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1865{
1866	struct ixgbe_hw *hw = &adapter->hw;
1867	struct net_device *netdev = adapter->netdev;
1868
1869	if (hw->mac.ops.reset_hw(hw))
1870		hw_dbg(hw, "PF still resetting\n");
1871	else
1872		hw->mac.ops.init_hw(hw);
1873
1874	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1875		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1876		       netdev->addr_len);
1877		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1878		       netdev->addr_len);
1879	}
1880}
1881
1882static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1883					 int vectors)
1884{
1885	int err, vector_threshold;
1886
1887	/* We'll want at least 3 (vector_threshold):
1888	 * 1) TxQ[0] Cleanup
1889	 * 2) RxQ[0] Cleanup
1890	 * 3) Other (Link Status Change, etc.)
1891	 */
1892	vector_threshold = MIN_MSIX_COUNT;
1893
1894	/* The more we get, the more we will assign to Tx/Rx Cleanup
1895	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1896	 * Right now, we simply care about how many we'll get; we'll
1897	 * set them up later while requesting irq's.
1898	 */
1899	while (vectors >= vector_threshold) {
1900		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1901				      vectors);
1902		if (!err) /* Success in acquiring all requested vectors. */
1903			break;
1904		else if (err < 0)
1905			vectors = 0; /* Nasty failure, quit now */
1906		else /* err == number of vectors we should try again with */
1907			vectors = err;
1908	}
1909
1910	if (vectors < vector_threshold) {
1911		/* Can't allocate enough MSI-X interrupts?  Oh well.
1912		 * This just means we'll go with either a single MSI
1913		 * vector or fall back to legacy interrupts.
1914		 */
1915		hw_dbg(&adapter->hw,
1916		       "Unable to allocate MSI-X interrupts\n");
1917		kfree(adapter->msix_entries);
1918		adapter->msix_entries = NULL;
1919	} else {
1920		/*
1921		 * Adjust for only the vectors we'll use, which is minimum
1922		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1923		 * vectors we were allocated.
1924		 */
1925		adapter->num_msix_vectors = vectors;
1926	}
1927}
1928
1929/*
1930 * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1931 * @adapter: board private structure to initialize
1932 *
1933 * This is the top level queue allocation routine.  The order here is very
1934 * important, starting with the "most" number of features turned on at once,
1935 * and ending with the smallest set of features.  This way large combinations
1936 * can be allocated if they're turned on, and smaller combinations are the
1937 * fallthrough conditions.
1938 *
1939 **/
1940static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1941{
1942	/* Start with base case */
1943	adapter->num_rx_queues = 1;
1944	adapter->num_tx_queues = 1;
1945	adapter->num_rx_pools = adapter->num_rx_queues;
1946	adapter->num_rx_queues_per_pool = 1;
1947}
1948
1949/**
1950 * ixgbevf_alloc_queues - Allocate memory for all rings
1951 * @adapter: board private structure to initialize
1952 *
1953 * We allocate one ring per queue at run-time since we don't know the
1954 * number of queues at compile-time.  The polling_netdev array is
1955 * intended for Multiqueue, but should work fine with a single queue.
1956 **/
1957static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1958{
1959	int i;
1960
1961	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1962				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1963	if (!adapter->tx_ring)
1964		goto err_tx_ring_allocation;
1965
1966	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1967				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1968	if (!adapter->rx_ring)
1969		goto err_rx_ring_allocation;
1970
1971	for (i = 0; i < adapter->num_tx_queues; i++) {
1972		adapter->tx_ring[i].count = adapter->tx_ring_count;
1973		adapter->tx_ring[i].queue_index = i;
1974		adapter->tx_ring[i].reg_idx = i;
1975	}
1976
1977	for (i = 0; i < adapter->num_rx_queues; i++) {
1978		adapter->rx_ring[i].count = adapter->rx_ring_count;
1979		adapter->rx_ring[i].queue_index = i;
1980		adapter->rx_ring[i].reg_idx = i;
1981	}
1982
1983	return 0;
1984
1985err_rx_ring_allocation:
1986	kfree(adapter->tx_ring);
1987err_tx_ring_allocation:
1988	return -ENOMEM;
1989}
1990
1991/**
1992 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1993 * @adapter: board private structure to initialize
1994 *
1995 * Attempt to configure the interrupts using the best available
1996 * capabilities of the hardware and the kernel.
1997 **/
1998static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1999{
2000	int err = 0;
2001	int vector, v_budget;
2002
2003	/*
2004	 * It's easy to be greedy for MSI-X vectors, but it really
2005	 * doesn't do us much good if we have a lot more vectors
2006	 * than CPU's.  So let's be conservative and only ask for
2007	 * (roughly) twice the number of vectors as there are CPU's.
2008	 */
2009	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2010		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2011
2012	/* A failure in MSI-X entry allocation isn't fatal, but it does
2013	 * mean we disable MSI-X capabilities of the adapter. */
2014	adapter->msix_entries = kcalloc(v_budget,
2015					sizeof(struct msix_entry), GFP_KERNEL);
2016	if (!adapter->msix_entries) {
2017		err = -ENOMEM;
2018		goto out;
2019	}
2020
2021	for (vector = 0; vector < v_budget; vector++)
2022		adapter->msix_entries[vector].entry = vector;
2023
2024	ixgbevf_acquire_msix_vectors(adapter, v_budget);
2025
2026out:
2027	return err;
2028}
2029
2030/**
2031 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2032 * @adapter: board private structure to initialize
2033 *
2034 * We allocate one q_vector per queue interrupt.  If allocation fails we
2035 * return -ENOMEM.
2036 **/
2037static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2038{
2039	int q_idx, num_q_vectors;
2040	struct ixgbevf_q_vector *q_vector;
2041	int napi_vectors;
2042	int (*poll)(struct napi_struct *, int);
2043
2044	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2045	napi_vectors = adapter->num_rx_queues;
2046	poll = &ixgbevf_clean_rxonly;
2047
2048	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2049		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2050		if (!q_vector)
2051			goto err_out;
2052		q_vector->adapter = adapter;
2053		q_vector->v_idx = q_idx;
2054		q_vector->eitr = adapter->eitr_param;
2055		if (q_idx < napi_vectors)
2056			netif_napi_add(adapter->netdev, &q_vector->napi,
2057				       (*poll), 64);
2058		adapter->q_vector[q_idx] = q_vector;
2059	}
2060
2061	return 0;
2062
2063err_out:
2064	while (q_idx) {
2065		q_idx--;
2066		q_vector = adapter->q_vector[q_idx];
2067		netif_napi_del(&q_vector->napi);
2068		kfree(q_vector);
2069		adapter->q_vector[q_idx] = NULL;
2070	}
2071	return -ENOMEM;
2072}
2073
2074/**
2075 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2076 * @adapter: board private structure to initialize
2077 *
2078 * This function frees the memory allocated to the q_vectors.  In addition if
2079 * NAPI is enabled it will delete any references to the NAPI struct prior
2080 * to freeing the q_vector.
2081 **/
2082static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2083{
2084	int q_idx, num_q_vectors;
2085	int napi_vectors;
2086
2087	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2088	napi_vectors = adapter->num_rx_queues;
2089
2090	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2091		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2092
2093		adapter->q_vector[q_idx] = NULL;
2094		if (q_idx < napi_vectors)
2095			netif_napi_del(&q_vector->napi);
2096		kfree(q_vector);
2097	}
2098}
2099
2100/**
2101 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2102 * @adapter: board private structure
2103 *
2104 **/
2105static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2106{
2107	pci_disable_msix(adapter->pdev);
2108	kfree(adapter->msix_entries);
2109	adapter->msix_entries = NULL;
2110}
2111
2112/**
2113 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2114 * @adapter: board private structure to initialize
2115 *
2116 **/
2117static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2118{
2119	int err;
2120
2121	/* Number of supported queues */
2122	ixgbevf_set_num_queues(adapter);
2123
2124	err = ixgbevf_set_interrupt_capability(adapter);
2125	if (err) {
2126		hw_dbg(&adapter->hw,
2127		       "Unable to setup interrupt capabilities\n");
2128		goto err_set_interrupt;
2129	}
2130
2131	err = ixgbevf_alloc_q_vectors(adapter);
2132	if (err) {
2133		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2134		       "vectors\n");
2135		goto err_alloc_q_vectors;
2136	}
2137
2138	err = ixgbevf_alloc_queues(adapter);
2139	if (err) {
2140		printk(KERN_ERR "Unable to allocate memory for queues\n");
2141		goto err_alloc_queues;
2142	}
2143
2144	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2145	       "Tx Queue count = %u\n",
2146	       (adapter->num_rx_queues > 1) ? "Enabled" :
2147	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2148
2149	set_bit(__IXGBEVF_DOWN, &adapter->state);
2150
2151	return 0;
2152err_alloc_queues:
2153	ixgbevf_free_q_vectors(adapter);
2154err_alloc_q_vectors:
2155	ixgbevf_reset_interrupt_capability(adapter);
2156err_set_interrupt:
2157	return err;
2158}
2159
2160/**
2161 * ixgbevf_sw_init - Initialize general software structures
2162 * (struct ixgbevf_adapter)
2163 * @adapter: board private structure to initialize
2164 *
2165 * ixgbevf_sw_init initializes the Adapter private data structure.
2166 * Fields are initialized based on PCI device information and
2167 * OS network device settings (MTU size).
2168 **/
2169static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2170{
2171	struct ixgbe_hw *hw = &adapter->hw;
2172	struct pci_dev *pdev = adapter->pdev;
2173	int err;
2174
2175	/* PCI config space info */
2176
2177	hw->vendor_id = pdev->vendor;
2178	hw->device_id = pdev->device;
2179	hw->revision_id = pdev->revision;
2180	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2181	hw->subsystem_device_id = pdev->subsystem_device;
2182
2183	hw->mbx.ops.init_params(hw);
2184	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2185	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2186	err = hw->mac.ops.reset_hw(hw);
2187	if (err) {
2188		dev_info(&pdev->dev,
2189		         "PF still in reset state, assigning new address\n");
2190		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2191	} else {
2192		err = hw->mac.ops.init_hw(hw);
2193		if (err) {
2194			printk(KERN_ERR "init_shared_code failed: %d\n", err);
2195			goto out;
2196		}
2197	}
2198
2199	/* Enable dynamic interrupt throttling rates */
2200	adapter->eitr_param = 20000;
2201	adapter->itr_setting = 1;
2202
2203	/* set defaults for eitr in MegaBytes */
2204	adapter->eitr_low = 10;
2205	adapter->eitr_high = 20;
2206
2207	/* set default ring sizes */
2208	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2209	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2210
2211	/* enable rx csum by default */
2212	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2213
2214	set_bit(__IXGBEVF_DOWN, &adapter->state);
2215
2216out:
2217	return err;
2218}
2219
2220#define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2221	{							\
2222		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2223		if (current_counter < last_counter)		\
2224			counter += 0x100000000LL;		\
2225		last_counter = current_counter;			\
2226		counter &= 0xFFFFFFFF00000000LL;		\
2227		counter |= current_counter;			\
2228	}
2229
2230#define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2231	{								 \
2232		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2233		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2234		u64 current_counter = (current_counter_msb << 32) |      \
2235			current_counter_lsb;                             \
2236		if (current_counter < last_counter)			 \
2237			counter += 0x1000000000LL;			 \
2238		last_counter = current_counter;				 \
2239		counter &= 0xFFFFFFF000000000LL;			 \
2240		counter |= current_counter;				 \
2241	}
2242/**
2243 * ixgbevf_update_stats - Update the board statistics counters.
2244 * @adapter: board private structure
2245 **/
2246void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2247{
2248	struct ixgbe_hw *hw = &adapter->hw;
2249
2250	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2251				adapter->stats.vfgprc);
2252	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2253				adapter->stats.vfgptc);
2254	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2255				adapter->stats.last_vfgorc,
2256				adapter->stats.vfgorc);
2257	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2258				adapter->stats.last_vfgotc,
2259				adapter->stats.vfgotc);
2260	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2261				adapter->stats.vfmprc);
2262}
2263
2264/**
2265 * ixgbevf_watchdog - Timer Call-back
2266 * @data: pointer to adapter cast into an unsigned long
2267 **/
2268static void ixgbevf_watchdog(unsigned long data)
2269{
2270	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2271	struct ixgbe_hw *hw = &adapter->hw;
2272	u64 eics = 0;
2273	int i;
2274
2275	/*
2276	 * Do the watchdog outside of interrupt context due to the lovely
2277	 * delays that some of the newer hardware requires
2278	 */
2279
2280	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2281		goto watchdog_short_circuit;
2282
2283	/* get one bit for every active tx/rx interrupt vector */
2284	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2285		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2286		if (qv->rxr_count || qv->txr_count)
2287			eics |= (1 << i);
2288	}
2289
2290	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2291
2292watchdog_short_circuit:
2293	schedule_work(&adapter->watchdog_task);
2294}
2295
2296/**
2297 * ixgbevf_tx_timeout - Respond to a Tx Hang
2298 * @netdev: network interface device structure
2299 **/
2300static void ixgbevf_tx_timeout(struct net_device *netdev)
2301{
2302	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2303
2304	/* Do the reset outside of interrupt context */
2305	schedule_work(&adapter->reset_task);
2306}
2307
2308static void ixgbevf_reset_task(struct work_struct *work)
2309{
2310	struct ixgbevf_adapter *adapter;
2311	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2312
2313	/* If we're already down or resetting, just bail */
2314	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2315	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2316		return;
2317
2318	adapter->tx_timeout_count++;
2319
2320	ixgbevf_reinit_locked(adapter);
2321}
2322
2323/**
2324 * ixgbevf_watchdog_task - worker thread to bring link up
2325 * @work: pointer to work_struct containing our data
2326 **/
2327static void ixgbevf_watchdog_task(struct work_struct *work)
2328{
2329	struct ixgbevf_adapter *adapter = container_of(work,
2330						       struct ixgbevf_adapter,
2331						       watchdog_task);
2332	struct net_device *netdev = adapter->netdev;
2333	struct ixgbe_hw *hw = &adapter->hw;
2334	u32 link_speed = adapter->link_speed;
2335	bool link_up = adapter->link_up;
2336
2337	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2338
2339	/*
2340	 * Always check the link on the watchdog because we have
2341	 * no LSC interrupt
2342	 */
2343	if (hw->mac.ops.check_link) {
2344		if ((hw->mac.ops.check_link(hw, &link_speed,
2345					    &link_up, false)) != 0) {
2346			adapter->link_up = link_up;
2347			adapter->link_speed = link_speed;
2348			netif_carrier_off(netdev);
2349			netif_tx_stop_all_queues(netdev);
2350			schedule_work(&adapter->reset_task);
2351			goto pf_has_reset;
2352		}
2353	} else {
2354		/* always assume link is up, if no check link
2355		 * function */
2356		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2357		link_up = true;
2358	}
2359	adapter->link_up = link_up;
2360	adapter->link_speed = link_speed;
2361
2362	if (link_up) {
2363		if (!netif_carrier_ok(netdev)) {
2364			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2365			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2366			       10 : 1);
2367			netif_carrier_on(netdev);
2368			netif_tx_wake_all_queues(netdev);
2369		}
2370	} else {
2371		adapter->link_up = false;
2372		adapter->link_speed = 0;
2373		if (netif_carrier_ok(netdev)) {
2374			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2375			netif_carrier_off(netdev);
2376			netif_tx_stop_all_queues(netdev);
2377		}
2378	}
2379
2380	ixgbevf_update_stats(adapter);
2381
2382pf_has_reset:
2383	/* Reset the timer */
2384	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2385		mod_timer(&adapter->watchdog_timer,
2386			  round_jiffies(jiffies + (2 * HZ)));
2387
2388	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2389}
2390
2391/**
2392 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2393 * @adapter: board private structure
2394 * @tx_ring: Tx descriptor ring for a specific queue
2395 *
2396 * Free all transmit software resources
2397 **/
2398void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2399			       struct ixgbevf_ring *tx_ring)
2400{
2401	struct pci_dev *pdev = adapter->pdev;
2402
2403	ixgbevf_clean_tx_ring(adapter, tx_ring);
2404
2405	vfree(tx_ring->tx_buffer_info);
2406	tx_ring->tx_buffer_info = NULL;
2407
2408	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2409			  tx_ring->dma);
2410
2411	tx_ring->desc = NULL;
2412}
2413
2414/**
2415 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2416 * @adapter: board private structure
2417 *
2418 * Free all transmit software resources
2419 **/
2420static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2421{
2422	int i;
2423
2424	for (i = 0; i < adapter->num_tx_queues; i++)
2425		if (adapter->tx_ring[i].desc)
2426			ixgbevf_free_tx_resources(adapter,
2427						  &adapter->tx_ring[i]);
2428
2429}
2430
2431/**
2432 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2433 * @adapter: board private structure
2434 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2435 *
2436 * Return 0 on success, negative on failure
2437 **/
2438int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2439			       struct ixgbevf_ring *tx_ring)
2440{
2441	struct pci_dev *pdev = adapter->pdev;
2442	int size;
2443
2444	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2445	tx_ring->tx_buffer_info = vzalloc(size);
2446	if (!tx_ring->tx_buffer_info)
2447		goto err;
2448
2449	/* round up to nearest 4K */
2450	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2451	tx_ring->size = ALIGN(tx_ring->size, 4096);
2452
2453	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2454					   &tx_ring->dma, GFP_KERNEL);
2455	if (!tx_ring->desc)
2456		goto err;
2457
2458	tx_ring->next_to_use = 0;
2459	tx_ring->next_to_clean = 0;
2460	tx_ring->work_limit = tx_ring->count;
2461	return 0;
2462
2463err:
2464	vfree(tx_ring->tx_buffer_info);
2465	tx_ring->tx_buffer_info = NULL;
2466	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2467	       "descriptor ring\n");
2468	return -ENOMEM;
2469}
2470
2471/**
2472 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2473 * @adapter: board private structure
2474 *
2475 * If this function returns with an error, then it's possible one or
2476 * more of the rings is populated (while the rest are not).  It is the
2477 * callers duty to clean those orphaned rings.
2478 *
2479 * Return 0 on success, negative on failure
2480 **/
2481static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2482{
2483	int i, err = 0;
2484
2485	for (i = 0; i < adapter->num_tx_queues; i++) {
2486		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2487		if (!err)
2488			continue;
2489		hw_dbg(&adapter->hw,
2490		       "Allocation for Tx Queue %u failed\n", i);
2491		break;
2492	}
2493
2494	return err;
2495}
2496
2497/**
2498 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2499 * @adapter: board private structure
2500 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2501 *
2502 * Returns 0 on success, negative on failure
2503 **/
2504int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2505			       struct ixgbevf_ring *rx_ring)
2506{
2507	struct pci_dev *pdev = adapter->pdev;
2508	int size;
2509
2510	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2511	rx_ring->rx_buffer_info = vzalloc(size);
2512	if (!rx_ring->rx_buffer_info) {
2513		hw_dbg(&adapter->hw,
2514		       "Unable to vmalloc buffer memory for "
2515		       "the receive descriptor ring\n");
2516		goto alloc_failed;
2517	}
2518
2519	/* Round up to nearest 4K */
2520	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2521	rx_ring->size = ALIGN(rx_ring->size, 4096);
2522
2523	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2524					   &rx_ring->dma, GFP_KERNEL);
2525
2526	if (!rx_ring->desc) {
2527		hw_dbg(&adapter->hw,
2528		       "Unable to allocate memory for "
2529		       "the receive descriptor ring\n");
2530		vfree(rx_ring->rx_buffer_info);
2531		rx_ring->rx_buffer_info = NULL;
2532		goto alloc_failed;
2533	}
2534
2535	rx_ring->next_to_clean = 0;
2536	rx_ring->next_to_use = 0;
2537
2538	return 0;
2539alloc_failed:
2540	return -ENOMEM;
2541}
2542
2543/**
2544 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2545 * @adapter: board private structure
2546 *
2547 * If this function returns with an error, then it's possible one or
2548 * more of the rings is populated (while the rest are not).  It is the
2549 * callers duty to clean those orphaned rings.
2550 *
2551 * Return 0 on success, negative on failure
2552 **/
2553static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2554{
2555	int i, err = 0;
2556
2557	for (i = 0; i < adapter->num_rx_queues; i++) {
2558		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2559		if (!err)
2560			continue;
2561		hw_dbg(&adapter->hw,
2562		       "Allocation for Rx Queue %u failed\n", i);
2563		break;
2564	}
2565	return err;
2566}
2567
2568/**
2569 * ixgbevf_free_rx_resources - Free Rx Resources
2570 * @adapter: board private structure
2571 * @rx_ring: ring to clean the resources from
2572 *
2573 * Free all receive software resources
2574 **/
2575void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2576			       struct ixgbevf_ring *rx_ring)
2577{
2578	struct pci_dev *pdev = adapter->pdev;
2579
2580	ixgbevf_clean_rx_ring(adapter, rx_ring);
2581
2582	vfree(rx_ring->rx_buffer_info);
2583	rx_ring->rx_buffer_info = NULL;
2584
2585	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2586			  rx_ring->dma);
2587
2588	rx_ring->desc = NULL;
2589}
2590
2591/**
2592 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2593 * @adapter: board private structure
2594 *
2595 * Free all receive software resources
2596 **/
2597static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2598{
2599	int i;
2600
2601	for (i = 0; i < adapter->num_rx_queues; i++)
2602		if (adapter->rx_ring[i].desc)
2603			ixgbevf_free_rx_resources(adapter,
2604						  &adapter->rx_ring[i]);
2605}
2606
2607/**
2608 * ixgbevf_open - Called when a network interface is made active
2609 * @netdev: network interface device structure
2610 *
2611 * Returns 0 on success, negative value on failure
2612 *
2613 * The open entry point is called when a network interface is made
2614 * active by the system (IFF_UP).  At this point all resources needed
2615 * for transmit and receive operations are allocated, the interrupt
2616 * handler is registered with the OS, the watchdog timer is started,
2617 * and the stack is notified that the interface is ready.
2618 **/
2619static int ixgbevf_open(struct net_device *netdev)
2620{
2621	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2622	struct ixgbe_hw *hw = &adapter->hw;
2623	int err;
2624
2625	/* disallow open during test */
2626	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2627		return -EBUSY;
2628
2629	if (hw->adapter_stopped) {
2630		ixgbevf_reset(adapter);
2631		/* if adapter is still stopped then PF isn't up and
2632		 * the vf can't start. */
2633		if (hw->adapter_stopped) {
2634			err = IXGBE_ERR_MBX;
2635			printk(KERN_ERR "Unable to start - perhaps the PF"
2636			       " Driver isn't up yet\n");
2637			goto err_setup_reset;
2638		}
2639	}
2640
2641	/* allocate transmit descriptors */
2642	err = ixgbevf_setup_all_tx_resources(adapter);
2643	if (err)
2644		goto err_setup_tx;
2645
2646	/* allocate receive descriptors */
2647	err = ixgbevf_setup_all_rx_resources(adapter);
2648	if (err)
2649		goto err_setup_rx;
2650
2651	ixgbevf_configure(adapter);
2652
2653	/*
2654	 * Map the Tx/Rx rings to the vectors we were allotted.
2655	 * if request_irq will be called in this function map_rings
2656	 * must be called *before* up_complete
2657	 */
2658	ixgbevf_map_rings_to_vectors(adapter);
2659
2660	err = ixgbevf_up_complete(adapter);
2661	if (err)
2662		goto err_up;
2663
2664	/* clear any pending interrupts, may auto mask */
2665	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2666	err = ixgbevf_request_irq(adapter);
2667	if (err)
2668		goto err_req_irq;
2669
2670	ixgbevf_irq_enable(adapter, true, true);
2671
2672	return 0;
2673
2674err_req_irq:
2675	ixgbevf_down(adapter);
2676err_up:
2677	ixgbevf_free_irq(adapter);
2678err_setup_rx:
2679	ixgbevf_free_all_rx_resources(adapter);
2680err_setup_tx:
2681	ixgbevf_free_all_tx_resources(adapter);
2682	ixgbevf_reset(adapter);
2683
2684err_setup_reset:
2685
2686	return err;
2687}
2688
2689/**
2690 * ixgbevf_close - Disables a network interface
2691 * @netdev: network interface device structure
2692 *
2693 * Returns 0, this is not allowed to fail
2694 *
2695 * The close entry point is called when an interface is de-activated
2696 * by the OS.  The hardware is still under the drivers control, but
2697 * needs to be disabled.  A global MAC reset is issued to stop the
2698 * hardware, and all transmit and receive resources are freed.
2699 **/
2700static int ixgbevf_close(struct net_device *netdev)
2701{
2702	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2703
2704	ixgbevf_down(adapter);
2705	ixgbevf_free_irq(adapter);
2706
2707	ixgbevf_free_all_tx_resources(adapter);
2708	ixgbevf_free_all_rx_resources(adapter);
2709
2710	return 0;
2711}
2712
2713static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2714		       struct ixgbevf_ring *tx_ring,
2715		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2716{
2717	struct ixgbe_adv_tx_context_desc *context_desc;
2718	unsigned int i;
2719	int err;
2720	struct ixgbevf_tx_buffer *tx_buffer_info;
2721	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2722	u32 mss_l4len_idx, l4len;
2723
2724	if (skb_is_gso(skb)) {
2725		if (skb_header_cloned(skb)) {
2726			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2727			if (err)
2728				return err;
2729		}
2730		l4len = tcp_hdrlen(skb);
2731		*hdr_len += l4len;
2732
2733		if (skb->protocol == htons(ETH_P_IP)) {
2734			struct iphdr *iph = ip_hdr(skb);
2735			iph->tot_len = 0;
2736			iph->check = 0;
2737			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2738								 iph->daddr, 0,
2739								 IPPROTO_TCP,
2740								 0);
2741			adapter->hw_tso_ctxt++;
2742		} else if (skb_is_gso_v6(skb)) {
2743			ipv6_hdr(skb)->payload_len = 0;
2744			tcp_hdr(skb)->check =
2745			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2746					     &ipv6_hdr(skb)->daddr,
2747					     0, IPPROTO_TCP, 0);
2748			adapter->hw_tso6_ctxt++;
2749		}
2750
2751		i = tx_ring->next_to_use;
2752
2753		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2754		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2755
2756		/* VLAN MACLEN IPLEN */
2757		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2758			vlan_macip_lens |=
2759				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2760		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2761				    IXGBE_ADVTXD_MACLEN_SHIFT);
2762		*hdr_len += skb_network_offset(skb);
2763		vlan_macip_lens |=
2764			(skb_transport_header(skb) - skb_network_header(skb));
2765		*hdr_len +=
2766			(skb_transport_header(skb) - skb_network_header(skb));
2767		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2768		context_desc->seqnum_seed = 0;
2769
2770		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2771		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2772				    IXGBE_ADVTXD_DTYP_CTXT);
2773
2774		if (skb->protocol == htons(ETH_P_IP))
2775			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2776		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2777		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2778
2779		/* MSS L4LEN IDX */
2780		mss_l4len_idx =
2781			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2782		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2783		/* use index 1 for TSO */
2784		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2785		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2786
2787		tx_buffer_info->time_stamp = jiffies;
2788		tx_buffer_info->next_to_watch = i;
2789
2790		i++;
2791		if (i == tx_ring->count)
2792			i = 0;
2793		tx_ring->next_to_use = i;
2794
2795		return true;
2796	}
2797
2798	return false;
2799}
2800
2801static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2802			    struct ixgbevf_ring *tx_ring,
2803			    struct sk_buff *skb, u32 tx_flags)
2804{
2805	struct ixgbe_adv_tx_context_desc *context_desc;
2806	unsigned int i;
2807	struct ixgbevf_tx_buffer *tx_buffer_info;
2808	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2809
2810	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2811	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2812		i = tx_ring->next_to_use;
2813		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2814		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2815
2816		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2817			vlan_macip_lens |= (tx_flags &
2818					    IXGBE_TX_FLAGS_VLAN_MASK);
2819		vlan_macip_lens |= (skb_network_offset(skb) <<
2820				    IXGBE_ADVTXD_MACLEN_SHIFT);
2821		if (skb->ip_summed == CHECKSUM_PARTIAL)
2822			vlan_macip_lens |= (skb_transport_header(skb) -
2823					    skb_network_header(skb));
2824
2825		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2826		context_desc->seqnum_seed = 0;
2827
2828		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2829				    IXGBE_ADVTXD_DTYP_CTXT);
2830
2831		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2832			switch (skb->protocol) {
2833			case __constant_htons(ETH_P_IP):
2834				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2835				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2836					type_tucmd_mlhl |=
2837					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2838				break;
2839			case __constant_htons(ETH_P_IPV6):
2840				/* XXX what about other V6 headers?? */
2841				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2842					type_tucmd_mlhl |=
2843						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2844				break;
2845			default:
2846				if (unlikely(net_ratelimit())) {
2847					printk(KERN_WARNING
2848					       "partial checksum but "
2849					       "proto=%x!\n",
2850					       skb->protocol);
2851				}
2852				break;
2853			}
2854		}
2855
2856		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2857		/* use index zero for tx checksum offload */
2858		context_desc->mss_l4len_idx = 0;
2859
2860		tx_buffer_info->time_stamp = jiffies;
2861		tx_buffer_info->next_to_watch = i;
2862
2863		adapter->hw_csum_tx_good++;
2864		i++;
2865		if (i == tx_ring->count)
2866			i = 0;
2867		tx_ring->next_to_use = i;
2868
2869		return true;
2870	}
2871
2872	return false;
2873}
2874
2875static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2876			  struct ixgbevf_ring *tx_ring,
2877			  struct sk_buff *skb, u32 tx_flags,
2878			  unsigned int first)
2879{
2880	struct pci_dev *pdev = adapter->pdev;
2881	struct ixgbevf_tx_buffer *tx_buffer_info;
2882	unsigned int len;
2883	unsigned int total = skb->len;
2884	unsigned int offset = 0, size;
2885	int count = 0;
2886	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2887	unsigned int f;
2888	int i;
2889
2890	i = tx_ring->next_to_use;
2891
2892	len = min(skb_headlen(skb), total);
2893	while (len) {
2894		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2895		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2896
2897		tx_buffer_info->length = size;
2898		tx_buffer_info->mapped_as_page = false;
2899		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2900						     skb->data + offset,
2901						     size, DMA_TO_DEVICE);
2902		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2903			goto dma_error;
2904		tx_buffer_info->time_stamp = jiffies;
2905		tx_buffer_info->next_to_watch = i;
2906
2907		len -= size;
2908		total -= size;
2909		offset += size;
2910		count++;
2911		i++;
2912		if (i == tx_ring->count)
2913			i = 0;
2914	}
2915
2916	for (f = 0; f < nr_frags; f++) {
2917		struct skb_frag_struct *frag;
2918
2919		frag = &skb_shinfo(skb)->frags[f];
2920		len = min((unsigned int)frag->size, total);
2921		offset = 0;
2922
2923		while (len) {
2924			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2925			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2926
2927			tx_buffer_info->length = size;
2928			tx_buffer_info->dma =
2929				skb_frag_dma_map(&adapter->pdev->dev, frag,
2930						 offset, size, DMA_TO_DEVICE);
2931			tx_buffer_info->mapped_as_page = true;
2932			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2933				goto dma_error;
2934			tx_buffer_info->time_stamp = jiffies;
2935			tx_buffer_info->next_to_watch = i;
2936
2937			len -= size;
2938			total -= size;
2939			offset += size;
2940			count++;
2941			i++;
2942			if (i == tx_ring->count)
2943				i = 0;
2944		}
2945		if (total == 0)
2946			break;
2947	}
2948
2949	if (i == 0)
2950		i = tx_ring->count - 1;
2951	else
2952		i = i - 1;
2953	tx_ring->tx_buffer_info[i].skb = skb;
2954	tx_ring->tx_buffer_info[first].next_to_watch = i;
2955
2956	return count;
2957
2958dma_error:
2959	dev_err(&pdev->dev, "TX DMA map failed\n");
2960
2961	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2962	tx_buffer_info->dma = 0;
2963	tx_buffer_info->time_stamp = 0;
2964	tx_buffer_info->next_to_watch = 0;
2965	count--;
2966
2967	/* clear timestamp and dma mappings for remaining portion of packet */
2968	while (count >= 0) {
2969		count--;
2970		i--;
2971		if (i < 0)
2972			i += tx_ring->count;
2973		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2974		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2975	}
2976
2977	return count;
2978}
2979
2980static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2981			     struct ixgbevf_ring *tx_ring, int tx_flags,
2982			     int count, u32 paylen, u8 hdr_len)
2983{
2984	union ixgbe_adv_tx_desc *tx_desc = NULL;
2985	struct ixgbevf_tx_buffer *tx_buffer_info;
2986	u32 olinfo_status = 0, cmd_type_len = 0;
2987	unsigned int i;
2988
2989	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2990
2991	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2992
2993	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2994
2995	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2996		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2997
2998	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2999		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3000
3001		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3002			IXGBE_ADVTXD_POPTS_SHIFT;
3003
3004		/* use index 1 context for tso */
3005		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3006		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3007			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3008				IXGBE_ADVTXD_POPTS_SHIFT;
3009
3010	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3011		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3012			IXGBE_ADVTXD_POPTS_SHIFT;
3013
3014	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3015
3016	i = tx_ring->next_to_use;
3017	while (count--) {
3018		tx_buffer_info = &tx_ring->tx_buffer_info[i];
3019		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3020		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3021		tx_desc->read.cmd_type_len =
3022			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3023		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3024		i++;
3025		if (i == tx_ring->count)
3026			i = 0;
3027	}
3028
3029	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3030
3031	/*
3032	 * Force memory writes to complete before letting h/w
3033	 * know there are new descriptors to fetch.  (Only
3034	 * applicable for weak-ordered memory model archs,
3035	 * such as IA-64).
3036	 */
3037	wmb();
3038
3039	tx_ring->next_to_use = i;
3040	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3041}
3042
3043static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3044				   struct ixgbevf_ring *tx_ring, int size)
3045{
3046	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3047
3048	netif_stop_subqueue(netdev, tx_ring->queue_index);
3049	/* Herbert's original patch had:
3050	 *  smp_mb__after_netif_stop_queue();
3051	 * but since that doesn't exist yet, just open code it. */
3052	smp_mb();
3053
3054	/* We need to check again in a case another CPU has just
3055	 * made room available. */
3056	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3057		return -EBUSY;
3058
3059	/* A reprieve! - use start_queue because it doesn't call schedule */
3060	netif_start_subqueue(netdev, tx_ring->queue_index);
3061	++adapter->restart_queue;
3062	return 0;
3063}
3064
3065static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3066				 struct ixgbevf_ring *tx_ring, int size)
3067{
3068	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3069		return 0;
3070	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3071}
3072
3073static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3074{
3075	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3076	struct ixgbevf_ring *tx_ring;
3077	unsigned int first;
3078	unsigned int tx_flags = 0;
3079	u8 hdr_len = 0;
3080	int r_idx = 0, tso;
3081	int count = 0;
3082
3083	unsigned int f;
3084
3085	tx_ring = &adapter->tx_ring[r_idx];
3086
3087	if (vlan_tx_tag_present(skb)) {
3088		tx_flags |= vlan_tx_tag_get(skb);
3089		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3090		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3091	}
3092
3093	/* four things can cause us to need a context descriptor */
3094	if (skb_is_gso(skb) ||
3095	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
3096	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
3097		count++;
3098
3099	count += TXD_USE_COUNT(skb_headlen(skb));
3100	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3101		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3102
3103	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3104		adapter->tx_busy++;
3105		return NETDEV_TX_BUSY;
3106	}
3107
3108	first = tx_ring->next_to_use;
3109
3110	if (skb->protocol == htons(ETH_P_IP))
3111		tx_flags |= IXGBE_TX_FLAGS_IPV4;
3112	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3113	if (tso < 0) {
3114		dev_kfree_skb_any(skb);
3115		return NETDEV_TX_OK;
3116	}
3117
3118	if (tso)
3119		tx_flags |= IXGBE_TX_FLAGS_TSO;
3120	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3121		 (skb->ip_summed == CHECKSUM_PARTIAL))
3122		tx_flags |= IXGBE_TX_FLAGS_CSUM;
3123
3124	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3125			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3126			 skb->len, hdr_len);
3127
3128	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3129
3130	return NETDEV_TX_OK;
3131}
3132
3133/**
3134 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3135 * @netdev: network interface device structure
3136 * @p: pointer to an address structure
3137 *
3138 * Returns 0 on success, negative on failure
3139 **/
3140static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3141{
3142	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3143	struct ixgbe_hw *hw = &adapter->hw;
3144	struct sockaddr *addr = p;
3145
3146	if (!is_valid_ether_addr(addr->sa_data))
3147		return -EADDRNOTAVAIL;
3148
3149	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3150	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3151
3152	if (hw->mac.ops.set_rar)
3153		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3154
3155	return 0;
3156}
3157
3158/**
3159 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3160 * @netdev: network interface device structure
3161 * @new_mtu: new value for maximum frame size
3162 *
3163 * Returns 0 on success, negative on failure
3164 **/
3165static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3166{
3167	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3168	struct ixgbe_hw *hw = &adapter->hw;
3169	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3170	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3171	u32 msg[2];
3172
3173	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3174		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3175
3176	/* MTU < 68 is an error and causes problems on some kernels */
3177	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3178		return -EINVAL;
3179
3180	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3181	       netdev->mtu, new_mtu);
3182	/* must set new MTU before calling down or up */
3183	netdev->mtu = new_mtu;
3184
3185	msg[0] = IXGBE_VF_SET_LPE;
3186	msg[1] = max_frame;
3187	hw->mbx.ops.write_posted(hw, msg, 2);
3188
3189	if (netif_running(netdev))
3190		ixgbevf_reinit_locked(adapter);
3191
3192	return 0;
3193}
3194
3195static void ixgbevf_shutdown(struct pci_dev *pdev)
3196{
3197	struct net_device *netdev = pci_get_drvdata(pdev);
3198	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3199
3200	netif_device_detach(netdev);
3201
3202	if (netif_running(netdev)) {
3203		ixgbevf_down(adapter);
3204		ixgbevf_free_irq(adapter);
3205		ixgbevf_free_all_tx_resources(adapter);
3206		ixgbevf_free_all_rx_resources(adapter);
3207	}
3208
3209#ifdef CONFIG_PM
3210	pci_save_state(pdev);
3211#endif
3212
3213	pci_disable_device(pdev);
3214}
3215
3216static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3217						struct rtnl_link_stats64 *stats)
3218{
3219	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3220	unsigned int start;
3221	u64 bytes, packets;
3222	const struct ixgbevf_ring *ring;
3223	int i;
3224
3225	ixgbevf_update_stats(adapter);
3226
3227	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3228
3229	for (i = 0; i < adapter->num_rx_queues; i++) {
3230		ring = &adapter->rx_ring[i];
3231		do {
3232			start = u64_stats_fetch_begin_bh(&ring->syncp);
3233			bytes = ring->total_bytes;
3234			packets = ring->total_packets;
3235		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3236		stats->rx_bytes += bytes;
3237		stats->rx_packets += packets;
3238	}
3239
3240	for (i = 0; i < adapter->num_tx_queues; i++) {
3241		ring = &adapter->tx_ring[i];
3242		do {
3243			start = u64_stats_fetch_begin_bh(&ring->syncp);
3244			bytes = ring->total_bytes;
3245			packets = ring->total_packets;
3246		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3247		stats->tx_bytes += bytes;
3248		stats->tx_packets += packets;
3249	}
3250
3251	return stats;
3252}
3253
3254static int ixgbevf_set_features(struct net_device *netdev, u32 features)
3255{
3256	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3257
3258	if (features & NETIF_F_RXCSUM)
3259		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3260	else
3261		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3262
3263	return 0;
3264}
3265
3266static const struct net_device_ops ixgbe_netdev_ops = {
3267	.ndo_open		= ixgbevf_open,
3268	.ndo_stop		= ixgbevf_close,
3269	.ndo_start_xmit		= ixgbevf_xmit_frame,
3270	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3271	.ndo_get_stats64	= ixgbevf_get_stats,
3272	.ndo_validate_addr	= eth_validate_addr,
3273	.ndo_set_mac_address	= ixgbevf_set_mac,
3274	.ndo_change_mtu		= ixgbevf_change_mtu,
3275	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3276	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3277	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3278	.ndo_set_features	= ixgbevf_set_features,
3279};
3280
3281static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3282{
3283	dev->netdev_ops = &ixgbe_netdev_ops;
3284	ixgbevf_set_ethtool_ops(dev);
3285	dev->watchdog_timeo = 5 * HZ;
3286}
3287
3288/**
3289 * ixgbevf_probe - Device Initialization Routine
3290 * @pdev: PCI device information struct
3291 * @ent: entry in ixgbevf_pci_tbl
3292 *
3293 * Returns 0 on success, negative on failure
3294 *
3295 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3296 * The OS initialization, configuring of the adapter private structure,
3297 * and a hardware reset occur.
3298 **/
3299static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3300				   const struct pci_device_id *ent)
3301{
3302	struct net_device *netdev;
3303	struct ixgbevf_adapter *adapter = NULL;
3304	struct ixgbe_hw *hw = NULL;
3305	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3306	static int cards_found;
3307	int err, pci_using_dac;
3308
3309	err = pci_enable_device(pdev);
3310	if (err)
3311		return err;
3312
3313	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3314	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3315		pci_using_dac = 1;
3316	} else {
3317		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3318		if (err) {
3319			err = dma_set_coherent_mask(&pdev->dev,
3320						    DMA_BIT_MASK(32));
3321			if (err) {
3322				dev_err(&pdev->dev, "No usable DMA "
3323					"configuration, aborting\n");
3324				goto err_dma;
3325			}
3326		}
3327		pci_using_dac = 0;
3328	}
3329
3330	err = pci_request_regions(pdev, ixgbevf_driver_name);
3331	if (err) {
3332		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3333		goto err_pci_reg;
3334	}
3335
3336	pci_set_master(pdev);
3337
3338#ifdef HAVE_TX_MQ
3339	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3340				   MAX_TX_QUEUES);
3341#else
3342	netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3343#endif
3344	if (!netdev) {
3345		err = -ENOMEM;
3346		goto err_alloc_etherdev;
3347	}
3348
3349	SET_NETDEV_DEV(netdev, &pdev->dev);
3350
3351	pci_set_drvdata(pdev, netdev);
3352	adapter = netdev_priv(netdev);
3353
3354	adapter->netdev = netdev;
3355	adapter->pdev = pdev;
3356	hw = &adapter->hw;
3357	hw->back = adapter;
3358	adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3359
3360	/*
3361	 * call save state here in standalone driver because it relies on
3362	 * adapter struct to exist, and needs to call netdev_priv
3363	 */
3364	pci_save_state(pdev);
3365
3366	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3367			      pci_resource_len(pdev, 0));
3368	if (!hw->hw_addr) {
3369		err = -EIO;
3370		goto err_ioremap;
3371	}
3372
3373	ixgbevf_assign_netdev_ops(netdev);
3374
3375	adapter->bd_number = cards_found;
3376
3377	/* Setup hw api */
3378	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3379	hw->mac.type  = ii->mac;
3380
3381	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3382	       sizeof(struct ixgbe_mbx_operations));
3383
3384	adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3385	adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3386	adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3387
3388	/* setup the private structure */
3389	err = ixgbevf_sw_init(adapter);
3390
3391	netdev->hw_features = NETIF_F_SG |
3392			   NETIF_F_IP_CSUM |
3393			   NETIF_F_IPV6_CSUM |
3394			   NETIF_F_TSO |
3395			   NETIF_F_TSO6 |
3396			   NETIF_F_RXCSUM;
3397
3398	netdev->features = netdev->hw_features |
3399			   NETIF_F_HW_VLAN_TX |
3400			   NETIF_F_HW_VLAN_RX |
3401			   NETIF_F_HW_VLAN_FILTER;
3402
3403	netdev->vlan_features |= NETIF_F_TSO;
3404	netdev->vlan_features |= NETIF_F_TSO6;
3405	netdev->vlan_features |= NETIF_F_IP_CSUM;
3406	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3407	netdev->vlan_features |= NETIF_F_SG;
3408
3409	if (pci_using_dac)
3410		netdev->features |= NETIF_F_HIGHDMA;
3411
3412	netdev->priv_flags |= IFF_UNICAST_FLT;
3413
3414	/* The HW MAC address was set and/or determined in sw_init */
3415	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3416	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3417
3418	if (!is_valid_ether_addr(netdev->dev_addr)) {
3419		printk(KERN_ERR "invalid MAC address\n");
3420		err = -EIO;
3421		goto err_sw_init;
3422	}
3423
3424	init_timer(&adapter->watchdog_timer);
3425	adapter->watchdog_timer.function = ixgbevf_watchdog;
3426	adapter->watchdog_timer.data = (unsigned long)adapter;
3427
3428	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3429	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3430
3431	err = ixgbevf_init_interrupt_scheme(adapter);
3432	if (err)
3433		goto err_sw_init;
3434
3435	/* pick up the PCI bus settings for reporting later */
3436	if (hw->mac.ops.get_bus_info)
3437		hw->mac.ops.get_bus_info(hw);
3438
3439	strcpy(netdev->name, "eth%d");
3440
3441	err = register_netdev(netdev);
3442	if (err)
3443		goto err_register;
3444
3445	adapter->netdev_registered = true;
3446
3447	netif_carrier_off(netdev);
3448
3449	ixgbevf_init_last_counter_stats(adapter);
3450
3451	/* print the MAC address */
3452	hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3453	       netdev->dev_addr[0],
3454	       netdev->dev_addr[1],
3455	       netdev->dev_addr[2],
3456	       netdev->dev_addr[3],
3457	       netdev->dev_addr[4],
3458	       netdev->dev_addr[5]);
3459
3460	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3461
3462	hw_dbg(hw, "LRO is disabled\n");
3463
3464	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3465	cards_found++;
3466	return 0;
3467
3468err_register:
3469err_sw_init:
3470	ixgbevf_reset_interrupt_capability(adapter);
3471	iounmap(hw->hw_addr);
3472err_ioremap:
3473	free_netdev(netdev);
3474err_alloc_etherdev:
3475	pci_release_regions(pdev);
3476err_pci_reg:
3477err_dma:
3478	pci_disable_device(pdev);
3479	return err;
3480}
3481
3482/**
3483 * ixgbevf_remove - Device Removal Routine
3484 * @pdev: PCI device information struct
3485 *
3486 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3487 * that it should release a PCI device.  The could be caused by a
3488 * Hot-Plug event, or because the driver is going to be removed from
3489 * memory.
3490 **/
3491static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3492{
3493	struct net_device *netdev = pci_get_drvdata(pdev);
3494	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3495
3496	set_bit(__IXGBEVF_DOWN, &adapter->state);
3497
3498	del_timer_sync(&adapter->watchdog_timer);
3499
3500	cancel_work_sync(&adapter->reset_task);
3501	cancel_work_sync(&adapter->watchdog_task);
3502
3503	if (adapter->netdev_registered) {
3504		unregister_netdev(netdev);
3505		adapter->netdev_registered = false;
3506	}
3507
3508	ixgbevf_reset_interrupt_capability(adapter);
3509
3510	iounmap(adapter->hw.hw_addr);
3511	pci_release_regions(pdev);
3512
3513	hw_dbg(&adapter->hw, "Remove complete\n");
3514
3515	kfree(adapter->tx_ring);
3516	kfree(adapter->rx_ring);
3517
3518	free_netdev(netdev);
3519
3520	pci_disable_device(pdev);
3521}
3522
3523static struct pci_driver ixgbevf_driver = {
3524	.name     = ixgbevf_driver_name,
3525	.id_table = ixgbevf_pci_tbl,
3526	.probe    = ixgbevf_probe,
3527	.remove   = __devexit_p(ixgbevf_remove),
3528	.shutdown = ixgbevf_shutdown,
3529};
3530
3531/**
3532 * ixgbevf_init_module - Driver Registration Routine
3533 *
3534 * ixgbevf_init_module is the first routine called when the driver is
3535 * loaded. All it does is register with the PCI subsystem.
3536 **/
3537static int __init ixgbevf_init_module(void)
3538{
3539	int ret;
3540	printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3541	       ixgbevf_driver_version);
3542
3543	printk(KERN_INFO "%s\n", ixgbevf_copyright);
3544
3545	ret = pci_register_driver(&ixgbevf_driver);
3546	return ret;
3547}
3548
3549module_init(ixgbevf_init_module);
3550
3551/**
3552 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3553 *
3554 * ixgbevf_exit_module is called just before the driver is removed
3555 * from memory.
3556 **/
3557static void __exit ixgbevf_exit_module(void)
3558{
3559	pci_unregister_driver(&ixgbevf_driver);
3560}
3561
3562#ifdef DEBUG
3563/**
3564 * ixgbevf_get_hw_dev_name - return device name string
3565 * used by hardware layer to print debugging information
3566 **/
3567char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3568{
3569	struct ixgbevf_adapter *adapter = hw->back;
3570	return adapter->netdev->name;
3571}
3572
3573#endif
3574module_exit(ixgbevf_exit_module);
3575
3576/* ixgbevf_main.c */
3577