ixgbevf_main.c revision b3f4d5990bfc8b060e5010c1464789fca1f4c5b4
1/*******************************************************************************
2
3  Intel 82599 Virtual Function driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29/******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31******************************************************************************/
32
33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35#include <linux/types.h>
36#include <linux/bitops.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/vmalloc.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/ip.h>
44#include <linux/tcp.h>
45#include <linux/ipv6.h>
46#include <linux/slab.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/ethtool.h>
50#include <linux/if.h>
51#include <linux/if_vlan.h>
52#include <linux/prefetch.h>
53
54#include "ixgbevf.h"
55
56const char ixgbevf_driver_name[] = "ixgbevf";
57static const char ixgbevf_driver_string[] =
58	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60#define DRV_VERSION "2.2.0-k"
61const char ixgbevf_driver_version[] = DRV_VERSION;
62static char ixgbevf_copyright[] =
63	"Copyright (c) 2009 - 2012 Intel Corporation.";
64
65static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66	[board_82599_vf] = &ixgbevf_82599_vf_info,
67	[board_X540_vf]  = &ixgbevf_X540_vf_info,
68};
69
70/* ixgbevf_pci_tbl - PCI Device ID Table
71 *
72 * Wildcard entries (PCI_ANY_ID) should come last
73 * Last entry must be all 0s
74 *
75 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76 *   Class, Class Mask, private data (not used) }
77 */
78static struct pci_device_id ixgbevf_pci_tbl[] = {
79	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80	board_82599_vf},
81	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82	board_X540_vf},
83
84	/* required last entry */
85	{0, }
86};
87MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_VERSION);
93
94#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95static int debug = -1;
96module_param(debug, int, 0);
97MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99/* forward decls */
100static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
101static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
102			       u32 itr_reg);
103
104static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
105					   struct ixgbevf_ring *rx_ring,
106					   u32 val)
107{
108	/*
109	 * Force memory writes to complete before letting h/w
110	 * know there are new descriptors to fetch.  (Only
111	 * applicable for weak-ordered memory model archs,
112	 * such as IA-64).
113	 */
114	wmb();
115	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
116}
117
118/*
119 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
120 * @adapter: pointer to adapter struct
121 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
122 * @queue: queue to map the corresponding interrupt to
123 * @msix_vector: the vector to map to the corresponding queue
124 *
125 */
126static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
127			     u8 queue, u8 msix_vector)
128{
129	u32 ivar, index;
130	struct ixgbe_hw *hw = &adapter->hw;
131	if (direction == -1) {
132		/* other causes */
133		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
134		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
135		ivar &= ~0xFF;
136		ivar |= msix_vector;
137		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
138	} else {
139		/* tx or rx causes */
140		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
141		index = ((16 * (queue & 1)) + (8 * direction));
142		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
143		ivar &= ~(0xFF << index);
144		ivar |= (msix_vector << index);
145		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
146	}
147}
148
149static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
150					       struct ixgbevf_tx_buffer
151					       *tx_buffer_info)
152{
153	if (tx_buffer_info->dma) {
154		if (tx_buffer_info->mapped_as_page)
155			dma_unmap_page(&adapter->pdev->dev,
156				       tx_buffer_info->dma,
157				       tx_buffer_info->length,
158				       DMA_TO_DEVICE);
159		else
160			dma_unmap_single(&adapter->pdev->dev,
161					 tx_buffer_info->dma,
162					 tx_buffer_info->length,
163					 DMA_TO_DEVICE);
164		tx_buffer_info->dma = 0;
165	}
166	if (tx_buffer_info->skb) {
167		dev_kfree_skb_any(tx_buffer_info->skb);
168		tx_buffer_info->skb = NULL;
169	}
170	tx_buffer_info->time_stamp = 0;
171	/* tx_buffer_info must be completely set up in the transmit path */
172}
173
174#define IXGBE_MAX_TXD_PWR	14
175#define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
176
177/* Tx Descriptors needed, worst case */
178#define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
179			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
180#ifdef MAX_SKB_FRAGS
181#define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
182	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
183#else
184#define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
185#endif
186
187static void ixgbevf_tx_timeout(struct net_device *netdev);
188
189/**
190 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
191 * @adapter: board private structure
192 * @tx_ring: tx ring to clean
193 **/
194static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
195				 struct ixgbevf_ring *tx_ring)
196{
197	struct net_device *netdev = adapter->netdev;
198	struct ixgbe_hw *hw = &adapter->hw;
199	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
200	struct ixgbevf_tx_buffer *tx_buffer_info;
201	unsigned int i, eop, count = 0;
202	unsigned int total_bytes = 0, total_packets = 0;
203
204	i = tx_ring->next_to_clean;
205	eop = tx_ring->tx_buffer_info[i].next_to_watch;
206	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
207
208	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
209	       (count < tx_ring->work_limit)) {
210		bool cleaned = false;
211		rmb(); /* read buffer_info after eop_desc */
212		/* eop could change between read and DD-check */
213		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
214			goto cont_loop;
215		for ( ; !cleaned; count++) {
216			struct sk_buff *skb;
217			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
218			tx_buffer_info = &tx_ring->tx_buffer_info[i];
219			cleaned = (i == eop);
220			skb = tx_buffer_info->skb;
221
222			if (cleaned && skb) {
223				unsigned int segs, bytecount;
224
225				/* gso_segs is currently only valid for tcp */
226				segs = skb_shinfo(skb)->gso_segs ?: 1;
227				/* multiply data chunks by size of headers */
228				bytecount = ((segs - 1) * skb_headlen(skb)) +
229					    skb->len;
230				total_packets += segs;
231				total_bytes += bytecount;
232			}
233
234			ixgbevf_unmap_and_free_tx_resource(adapter,
235							   tx_buffer_info);
236
237			tx_desc->wb.status = 0;
238
239			i++;
240			if (i == tx_ring->count)
241				i = 0;
242		}
243
244cont_loop:
245		eop = tx_ring->tx_buffer_info[i].next_to_watch;
246		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
247	}
248
249	tx_ring->next_to_clean = i;
250
251#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
252	if (unlikely(count && netif_carrier_ok(netdev) &&
253		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
254		/* Make sure that anybody stopping the queue after this
255		 * sees the new next_to_clean.
256		 */
257		smp_mb();
258#ifdef HAVE_TX_MQ
259		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
260		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
261			netif_wake_subqueue(netdev, tx_ring->queue_index);
262			++adapter->restart_queue;
263		}
264#else
265		if (netif_queue_stopped(netdev) &&
266		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
267			netif_wake_queue(netdev);
268			++adapter->restart_queue;
269		}
270#endif
271	}
272
273	/* re-arm the interrupt */
274	if ((count >= tx_ring->work_limit) &&
275	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
276		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
277	}
278
279	u64_stats_update_begin(&tx_ring->syncp);
280	tx_ring->total_bytes += total_bytes;
281	tx_ring->total_packets += total_packets;
282	u64_stats_update_end(&tx_ring->syncp);
283
284	return count < tx_ring->work_limit;
285}
286
287/**
288 * ixgbevf_receive_skb - Send a completed packet up the stack
289 * @q_vector: structure containing interrupt and ring information
290 * @skb: packet to send up
291 * @status: hardware indication of status of receive
292 * @rx_ring: rx descriptor ring (for a specific queue) to setup
293 * @rx_desc: rx descriptor
294 **/
295static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
296				struct sk_buff *skb, u8 status,
297				struct ixgbevf_ring *ring,
298				union ixgbe_adv_rx_desc *rx_desc)
299{
300	struct ixgbevf_adapter *adapter = q_vector->adapter;
301	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
302	u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
303
304	if (is_vlan && test_bit(tag, adapter->active_vlans))
305		__vlan_hwaccel_put_tag(skb, tag);
306
307	if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
308			napi_gro_receive(&q_vector->napi, skb);
309	else
310			netif_rx(skb);
311}
312
313/**
314 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
315 * @adapter: address of board private structure
316 * @status_err: hardware indication of status of receive
317 * @skb: skb currently being received and modified
318 **/
319static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
320				       u32 status_err, struct sk_buff *skb)
321{
322	skb_checksum_none_assert(skb);
323
324	/* Rx csum disabled */
325	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
326		return;
327
328	/* if IP and error */
329	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
330	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
331		adapter->hw_csum_rx_error++;
332		return;
333	}
334
335	if (!(status_err & IXGBE_RXD_STAT_L4CS))
336		return;
337
338	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
339		adapter->hw_csum_rx_error++;
340		return;
341	}
342
343	/* It must be a TCP or UDP packet with a valid checksum */
344	skb->ip_summed = CHECKSUM_UNNECESSARY;
345	adapter->hw_csum_rx_good++;
346}
347
348/**
349 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
350 * @adapter: address of board private structure
351 **/
352static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
353				     struct ixgbevf_ring *rx_ring,
354				     int cleaned_count)
355{
356	struct pci_dev *pdev = adapter->pdev;
357	union ixgbe_adv_rx_desc *rx_desc;
358	struct ixgbevf_rx_buffer *bi;
359	struct sk_buff *skb;
360	unsigned int i;
361	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
362
363	i = rx_ring->next_to_use;
364	bi = &rx_ring->rx_buffer_info[i];
365
366	while (cleaned_count--) {
367		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
368
369		if (!bi->page_dma &&
370		    (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
371			if (!bi->page) {
372				bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
373				if (!bi->page) {
374					adapter->alloc_rx_page_failed++;
375					goto no_buffers;
376				}
377				bi->page_offset = 0;
378			} else {
379				/* use a half page if we're re-using */
380				bi->page_offset ^= (PAGE_SIZE / 2);
381			}
382
383			bi->page_dma = dma_map_page(&pdev->dev, bi->page,
384						    bi->page_offset,
385						    (PAGE_SIZE / 2),
386						    DMA_FROM_DEVICE);
387		}
388
389		skb = bi->skb;
390		if (!skb) {
391			skb = netdev_alloc_skb(adapter->netdev,
392							       bufsz);
393
394			if (!skb) {
395				adapter->alloc_rx_buff_failed++;
396				goto no_buffers;
397			}
398
399			/*
400			 * Make buffer alignment 2 beyond a 16 byte boundary
401			 * this will result in a 16 byte aligned IP header after
402			 * the 14 byte MAC header is removed
403			 */
404			skb_reserve(skb, NET_IP_ALIGN);
405
406			bi->skb = skb;
407		}
408		if (!bi->dma) {
409			bi->dma = dma_map_single(&pdev->dev, skb->data,
410						 rx_ring->rx_buf_len,
411						 DMA_FROM_DEVICE);
412		}
413		/* Refresh the desc even if buffer_addrs didn't change because
414		 * each write-back erases this info. */
415		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
416			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
417			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
418		} else {
419			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
420		}
421
422		i++;
423		if (i == rx_ring->count)
424			i = 0;
425		bi = &rx_ring->rx_buffer_info[i];
426	}
427
428no_buffers:
429	if (rx_ring->next_to_use != i) {
430		rx_ring->next_to_use = i;
431		if (i-- == 0)
432			i = (rx_ring->count - 1);
433
434		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
435	}
436}
437
438static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
439					     u64 qmask)
440{
441	u32 mask;
442	struct ixgbe_hw *hw = &adapter->hw;
443
444	mask = (qmask & 0xFFFFFFFF);
445	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
446}
447
448static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
449{
450	return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
451}
452
453static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
454{
455	return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
456}
457
458static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
459				 struct ixgbevf_ring *rx_ring,
460				 int *work_done, int work_to_do)
461{
462	struct ixgbevf_adapter *adapter = q_vector->adapter;
463	struct pci_dev *pdev = adapter->pdev;
464	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
465	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
466	struct sk_buff *skb;
467	unsigned int i;
468	u32 len, staterr;
469	u16 hdr_info;
470	bool cleaned = false;
471	int cleaned_count = 0;
472	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
473
474	i = rx_ring->next_to_clean;
475	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
476	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
477	rx_buffer_info = &rx_ring->rx_buffer_info[i];
478
479	while (staterr & IXGBE_RXD_STAT_DD) {
480		u32 upper_len = 0;
481		if (*work_done >= work_to_do)
482			break;
483		(*work_done)++;
484
485		rmb(); /* read descriptor and rx_buffer_info after status DD */
486		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
487			hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
488			len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
489			       IXGBE_RXDADV_HDRBUFLEN_SHIFT;
490			if (hdr_info & IXGBE_RXDADV_SPH)
491				adapter->rx_hdr_split++;
492			if (len > IXGBEVF_RX_HDR_SIZE)
493				len = IXGBEVF_RX_HDR_SIZE;
494			upper_len = le16_to_cpu(rx_desc->wb.upper.length);
495		} else {
496			len = le16_to_cpu(rx_desc->wb.upper.length);
497		}
498		cleaned = true;
499		skb = rx_buffer_info->skb;
500		prefetch(skb->data - NET_IP_ALIGN);
501		rx_buffer_info->skb = NULL;
502
503		if (rx_buffer_info->dma) {
504			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
505					 rx_ring->rx_buf_len,
506					 DMA_FROM_DEVICE);
507			rx_buffer_info->dma = 0;
508			skb_put(skb, len);
509		}
510
511		if (upper_len) {
512			dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
513				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
514			rx_buffer_info->page_dma = 0;
515			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
516					   rx_buffer_info->page,
517					   rx_buffer_info->page_offset,
518					   upper_len);
519
520			if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
521			    (page_count(rx_buffer_info->page) != 1))
522				rx_buffer_info->page = NULL;
523			else
524				get_page(rx_buffer_info->page);
525
526			skb->len += upper_len;
527			skb->data_len += upper_len;
528			skb->truesize += upper_len;
529		}
530
531		i++;
532		if (i == rx_ring->count)
533			i = 0;
534
535		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
536		prefetch(next_rxd);
537		cleaned_count++;
538
539		next_buffer = &rx_ring->rx_buffer_info[i];
540
541		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
542			if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
543				rx_buffer_info->skb = next_buffer->skb;
544				rx_buffer_info->dma = next_buffer->dma;
545				next_buffer->skb = skb;
546				next_buffer->dma = 0;
547			} else {
548				skb->next = next_buffer->skb;
549				skb->next->prev = skb;
550			}
551			adapter->non_eop_descs++;
552			goto next_desc;
553		}
554
555		/* ERR_MASK will only have valid bits if EOP set */
556		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
557			dev_kfree_skb_irq(skb);
558			goto next_desc;
559		}
560
561		ixgbevf_rx_checksum(adapter, staterr, skb);
562
563		/* probably a little skewed due to removing CRC */
564		total_rx_bytes += skb->len;
565		total_rx_packets++;
566
567		/*
568		 * Work around issue of some types of VM to VM loop back
569		 * packets not getting split correctly
570		 */
571		if (staterr & IXGBE_RXD_STAT_LB) {
572			u32 header_fixup_len = skb_headlen(skb);
573			if (header_fixup_len < 14)
574				skb_push(skb, header_fixup_len);
575		}
576		skb->protocol = eth_type_trans(skb, adapter->netdev);
577
578		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
579
580next_desc:
581		rx_desc->wb.upper.status_error = 0;
582
583		/* return some buffers to hardware, one at a time is too slow */
584		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
585			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
586						 cleaned_count);
587			cleaned_count = 0;
588		}
589
590		/* use prefetched values */
591		rx_desc = next_rxd;
592		rx_buffer_info = &rx_ring->rx_buffer_info[i];
593
594		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
595	}
596
597	rx_ring->next_to_clean = i;
598	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
599
600	if (cleaned_count)
601		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
602
603	u64_stats_update_begin(&rx_ring->syncp);
604	rx_ring->total_packets += total_rx_packets;
605	rx_ring->total_bytes += total_rx_bytes;
606	u64_stats_update_end(&rx_ring->syncp);
607
608	return cleaned;
609}
610
611/**
612 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
613 * @napi: napi struct with our devices info in it
614 * @budget: amount of work driver is allowed to do this pass, in packets
615 *
616 * This function is optimized for cleaning one queue only on a single
617 * q_vector!!!
618 **/
619static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
620{
621	struct ixgbevf_q_vector *q_vector =
622		container_of(napi, struct ixgbevf_q_vector, napi);
623	struct ixgbevf_adapter *adapter = q_vector->adapter;
624	struct ixgbevf_ring *rx_ring = NULL;
625	int work_done = 0;
626	long r_idx;
627
628	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
629	rx_ring = &(adapter->rx_ring[r_idx]);
630
631	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
632
633	/* If all Rx work done, exit the polling mode */
634	if (work_done < budget) {
635		napi_complete(napi);
636		if (adapter->itr_setting & 1)
637			ixgbevf_set_itr_msix(q_vector);
638		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
639			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
640	}
641
642	return work_done;
643}
644
645/**
646 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
647 * @napi: napi struct with our devices info in it
648 * @budget: amount of work driver is allowed to do this pass, in packets
649 *
650 * This function will clean more than one rx queue associated with a
651 * q_vector.
652 **/
653static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
654{
655	struct ixgbevf_q_vector *q_vector =
656		container_of(napi, struct ixgbevf_q_vector, napi);
657	struct ixgbevf_adapter *adapter = q_vector->adapter;
658	struct ixgbevf_ring *rx_ring = NULL;
659	int work_done = 0, i;
660	long r_idx;
661	u64 enable_mask = 0;
662
663	/* attempt to distribute budget to each queue fairly, but don't allow
664	 * the budget to go below 1 because we'll exit polling */
665	budget /= (q_vector->rxr_count ?: 1);
666	budget = max(budget, 1);
667	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
668	for (i = 0; i < q_vector->rxr_count; i++) {
669		rx_ring = &(adapter->rx_ring[r_idx]);
670		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
671		enable_mask |= rx_ring->v_idx;
672		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
673				      r_idx + 1);
674	}
675
676#ifndef HAVE_NETDEV_NAPI_LIST
677	if (!netif_running(adapter->netdev))
678		work_done = 0;
679
680#endif
681	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
682	rx_ring = &(adapter->rx_ring[r_idx]);
683
684	/* If all Rx work done, exit the polling mode */
685	if (work_done < budget) {
686		napi_complete(napi);
687		if (adapter->itr_setting & 1)
688			ixgbevf_set_itr_msix(q_vector);
689		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
690			ixgbevf_irq_enable_queues(adapter, enable_mask);
691	}
692
693	return work_done;
694}
695
696
697/**
698 * ixgbevf_configure_msix - Configure MSI-X hardware
699 * @adapter: board private structure
700 *
701 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
702 * interrupts.
703 **/
704static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
705{
706	struct ixgbevf_q_vector *q_vector;
707	struct ixgbe_hw *hw = &adapter->hw;
708	int i, j, q_vectors, v_idx, r_idx;
709	u32 mask;
710
711	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
712
713	/*
714	 * Populate the IVAR table and set the ITR values to the
715	 * corresponding register.
716	 */
717	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
718		q_vector = adapter->q_vector[v_idx];
719		/* XXX for_each_set_bit(...) */
720		r_idx = find_first_bit(q_vector->rxr_idx,
721				       adapter->num_rx_queues);
722
723		for (i = 0; i < q_vector->rxr_count; i++) {
724			j = adapter->rx_ring[r_idx].reg_idx;
725			ixgbevf_set_ivar(adapter, 0, j, v_idx);
726			r_idx = find_next_bit(q_vector->rxr_idx,
727					      adapter->num_rx_queues,
728					      r_idx + 1);
729		}
730		r_idx = find_first_bit(q_vector->txr_idx,
731				       adapter->num_tx_queues);
732
733		for (i = 0; i < q_vector->txr_count; i++) {
734			j = adapter->tx_ring[r_idx].reg_idx;
735			ixgbevf_set_ivar(adapter, 1, j, v_idx);
736			r_idx = find_next_bit(q_vector->txr_idx,
737					      adapter->num_tx_queues,
738					      r_idx + 1);
739		}
740
741		/* if this is a tx only vector halve the interrupt rate */
742		if (q_vector->txr_count && !q_vector->rxr_count)
743			q_vector->eitr = (adapter->eitr_param >> 1);
744		else if (q_vector->rxr_count)
745			/* rx only */
746			q_vector->eitr = adapter->eitr_param;
747
748		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
749	}
750
751	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
752
753	/* set up to autoclear timer, and the vectors */
754	mask = IXGBE_EIMS_ENABLE_MASK;
755	mask &= ~IXGBE_EIMS_OTHER;
756	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
757}
758
759enum latency_range {
760	lowest_latency = 0,
761	low_latency = 1,
762	bulk_latency = 2,
763	latency_invalid = 255
764};
765
766/**
767 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
768 * @adapter: pointer to adapter
769 * @eitr: eitr setting (ints per sec) to give last timeslice
770 * @itr_setting: current throttle rate in ints/second
771 * @packets: the number of packets during this measurement interval
772 * @bytes: the number of bytes during this measurement interval
773 *
774 *      Stores a new ITR value based on packets and byte
775 *      counts during the last interrupt.  The advantage of per interrupt
776 *      computation is faster updates and more accurate ITR for the current
777 *      traffic pattern.  Constants in this function were computed
778 *      based on theoretical maximum wire speed and thresholds were set based
779 *      on testing data as well as attempting to minimize response time
780 *      while increasing bulk throughput.
781 **/
782static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
783			     u32 eitr, u8 itr_setting,
784			     int packets, int bytes)
785{
786	unsigned int retval = itr_setting;
787	u32 timepassed_us;
788	u64 bytes_perint;
789
790	if (packets == 0)
791		goto update_itr_done;
792
793
794	/* simple throttlerate management
795	 *    0-20MB/s lowest (100000 ints/s)
796	 *   20-100MB/s low   (20000 ints/s)
797	 *  100-1249MB/s bulk (8000 ints/s)
798	 */
799	/* what was last interrupt timeslice? */
800	timepassed_us = 1000000/eitr;
801	bytes_perint = bytes / timepassed_us; /* bytes/usec */
802
803	switch (itr_setting) {
804	case lowest_latency:
805		if (bytes_perint > adapter->eitr_low)
806			retval = low_latency;
807		break;
808	case low_latency:
809		if (bytes_perint > adapter->eitr_high)
810			retval = bulk_latency;
811		else if (bytes_perint <= adapter->eitr_low)
812			retval = lowest_latency;
813		break;
814	case bulk_latency:
815		if (bytes_perint <= adapter->eitr_high)
816			retval = low_latency;
817		break;
818	}
819
820update_itr_done:
821	return retval;
822}
823
824/**
825 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
826 * @adapter: pointer to adapter struct
827 * @v_idx: vector index into q_vector array
828 * @itr_reg: new value to be written in *register* format, not ints/s
829 *
830 * This function is made to be called by ethtool and by the driver
831 * when it needs to update VTEITR registers at runtime.  Hardware
832 * specific quirks/differences are taken care of here.
833 */
834static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
835			       u32 itr_reg)
836{
837	struct ixgbe_hw *hw = &adapter->hw;
838
839	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
840
841	/*
842	 * set the WDIS bit to not clear the timer bits and cause an
843	 * immediate assertion of the interrupt
844	 */
845	itr_reg |= IXGBE_EITR_CNT_WDIS;
846
847	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
848}
849
850static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
851{
852	struct ixgbevf_adapter *adapter = q_vector->adapter;
853	u32 new_itr;
854	u8 current_itr, ret_itr;
855	int i, r_idx, v_idx = q_vector->v_idx;
856	struct ixgbevf_ring *rx_ring, *tx_ring;
857
858	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
859	for (i = 0; i < q_vector->txr_count; i++) {
860		tx_ring = &(adapter->tx_ring[r_idx]);
861		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
862					     q_vector->tx_itr,
863					     tx_ring->total_packets,
864					     tx_ring->total_bytes);
865		/* if the result for this queue would decrease interrupt
866		 * rate for this vector then use that result */
867		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
868				    q_vector->tx_itr - 1 : ret_itr);
869		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
870				      r_idx + 1);
871	}
872
873	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
874	for (i = 0; i < q_vector->rxr_count; i++) {
875		rx_ring = &(adapter->rx_ring[r_idx]);
876		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
877					     q_vector->rx_itr,
878					     rx_ring->total_packets,
879					     rx_ring->total_bytes);
880		/* if the result for this queue would decrease interrupt
881		 * rate for this vector then use that result */
882		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
883				    q_vector->rx_itr - 1 : ret_itr);
884		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
885				      r_idx + 1);
886	}
887
888	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
889
890	switch (current_itr) {
891	/* counts and packets in update_itr are dependent on these numbers */
892	case lowest_latency:
893		new_itr = 100000;
894		break;
895	case low_latency:
896		new_itr = 20000; /* aka hwitr = ~200 */
897		break;
898	case bulk_latency:
899	default:
900		new_itr = 8000;
901		break;
902	}
903
904	if (new_itr != q_vector->eitr) {
905		u32 itr_reg;
906
907		/* save the algorithm value here, not the smoothed one */
908		q_vector->eitr = new_itr;
909		/* do an exponential smoothing */
910		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
911		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
912		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
913	}
914}
915
916static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
917{
918	struct net_device *netdev = data;
919	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
920	struct ixgbe_hw *hw = &adapter->hw;
921	u32 eicr;
922	u32 msg;
923	bool got_ack = false;
924
925	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
926	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
927
928	if (!hw->mbx.ops.check_for_ack(hw))
929		got_ack = true;
930
931	if (!hw->mbx.ops.check_for_msg(hw)) {
932		hw->mbx.ops.read(hw, &msg, 1);
933
934		if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
935			mod_timer(&adapter->watchdog_timer,
936				  round_jiffies(jiffies + 1));
937
938		if (msg & IXGBE_VT_MSGTYPE_NACK)
939			pr_warn("Last Request of type %2.2x to PF Nacked\n",
940				msg & 0xFF);
941		/*
942		 * Restore the PFSTS bit in case someone is polling for a
943		 * return message from the PF
944		 */
945		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
946	}
947
948	/*
949	 * checking for the ack clears the PFACK bit.  Place
950	 * it back in the v2p_mailbox cache so that anyone
951	 * polling for an ack will not miss it
952	 */
953	if (got_ack)
954		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
955
956	return IRQ_HANDLED;
957}
958
959static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
960{
961	struct ixgbevf_q_vector *q_vector = data;
962	struct ixgbevf_adapter  *adapter = q_vector->adapter;
963	struct ixgbevf_ring     *tx_ring;
964	int i, r_idx;
965
966	if (!q_vector->txr_count)
967		return IRQ_HANDLED;
968
969	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
970	for (i = 0; i < q_vector->txr_count; i++) {
971		tx_ring = &(adapter->tx_ring[r_idx]);
972		tx_ring->total_bytes = 0;
973		tx_ring->total_packets = 0;
974		ixgbevf_clean_tx_irq(adapter, tx_ring);
975		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
976				      r_idx + 1);
977	}
978
979	if (adapter->itr_setting & 1)
980		ixgbevf_set_itr_msix(q_vector);
981
982	return IRQ_HANDLED;
983}
984
985/**
986 * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
987 * @irq: unused
988 * @data: pointer to our q_vector struct for this interrupt vector
989 **/
990static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
991{
992	struct ixgbevf_q_vector *q_vector = data;
993	struct ixgbevf_adapter  *adapter = q_vector->adapter;
994	struct ixgbe_hw *hw = &adapter->hw;
995	struct ixgbevf_ring  *rx_ring;
996	int r_idx;
997	int i;
998
999	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1000	for (i = 0; i < q_vector->rxr_count; i++) {
1001		rx_ring = &(adapter->rx_ring[r_idx]);
1002		rx_ring->total_bytes = 0;
1003		rx_ring->total_packets = 0;
1004		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1005				      r_idx + 1);
1006	}
1007
1008	if (!q_vector->rxr_count)
1009		return IRQ_HANDLED;
1010
1011	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1012	rx_ring = &(adapter->rx_ring[r_idx]);
1013	/* disable interrupts on this vector only */
1014	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1015	napi_schedule(&q_vector->napi);
1016
1017
1018	return IRQ_HANDLED;
1019}
1020
1021static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1022{
1023	ixgbevf_msix_clean_rx(irq, data);
1024	ixgbevf_msix_clean_tx(irq, data);
1025
1026	return IRQ_HANDLED;
1027}
1028
1029static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1030				     int r_idx)
1031{
1032	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1033
1034	set_bit(r_idx, q_vector->rxr_idx);
1035	q_vector->rxr_count++;
1036	a->rx_ring[r_idx].v_idx = 1 << v_idx;
1037}
1038
1039static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1040				     int t_idx)
1041{
1042	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1043
1044	set_bit(t_idx, q_vector->txr_idx);
1045	q_vector->txr_count++;
1046	a->tx_ring[t_idx].v_idx = 1 << v_idx;
1047}
1048
1049/**
1050 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1051 * @adapter: board private structure to initialize
1052 *
1053 * This function maps descriptor rings to the queue-specific vectors
1054 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1055 * one vector per ring/queue, but on a constrained vector budget, we
1056 * group the rings as "efficiently" as possible.  You would add new
1057 * mapping configurations in here.
1058 **/
1059static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1060{
1061	int q_vectors;
1062	int v_start = 0;
1063	int rxr_idx = 0, txr_idx = 0;
1064	int rxr_remaining = adapter->num_rx_queues;
1065	int txr_remaining = adapter->num_tx_queues;
1066	int i, j;
1067	int rqpv, tqpv;
1068	int err = 0;
1069
1070	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1071
1072	/*
1073	 * The ideal configuration...
1074	 * We have enough vectors to map one per queue.
1075	 */
1076	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1077		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1078			map_vector_to_rxq(adapter, v_start, rxr_idx);
1079
1080		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1081			map_vector_to_txq(adapter, v_start, txr_idx);
1082		goto out;
1083	}
1084
1085	/*
1086	 * If we don't have enough vectors for a 1-to-1
1087	 * mapping, we'll have to group them so there are
1088	 * multiple queues per vector.
1089	 */
1090	/* Re-adjusting *qpv takes care of the remainder. */
1091	for (i = v_start; i < q_vectors; i++) {
1092		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1093		for (j = 0; j < rqpv; j++) {
1094			map_vector_to_rxq(adapter, i, rxr_idx);
1095			rxr_idx++;
1096			rxr_remaining--;
1097		}
1098	}
1099	for (i = v_start; i < q_vectors; i++) {
1100		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1101		for (j = 0; j < tqpv; j++) {
1102			map_vector_to_txq(adapter, i, txr_idx);
1103			txr_idx++;
1104			txr_remaining--;
1105		}
1106	}
1107
1108out:
1109	return err;
1110}
1111
1112/**
1113 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1114 * @adapter: board private structure
1115 *
1116 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1117 * interrupts from the kernel.
1118 **/
1119static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1120{
1121	struct net_device *netdev = adapter->netdev;
1122	irqreturn_t (*handler)(int, void *);
1123	int i, vector, q_vectors, err;
1124	int ri = 0, ti = 0;
1125
1126	/* Decrement for Other and TCP Timer vectors */
1127	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1128
1129#define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1130					  ? &ixgbevf_msix_clean_many : \
1131			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1132			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1133			  NULL)
1134	for (vector = 0; vector < q_vectors; vector++) {
1135		handler = SET_HANDLER(adapter->q_vector[vector]);
1136
1137		if (handler == &ixgbevf_msix_clean_rx) {
1138			sprintf(adapter->name[vector], "%s-%s-%d",
1139				netdev->name, "rx", ri++);
1140		} else if (handler == &ixgbevf_msix_clean_tx) {
1141			sprintf(adapter->name[vector], "%s-%s-%d",
1142				netdev->name, "tx", ti++);
1143		} else if (handler == &ixgbevf_msix_clean_many) {
1144			sprintf(adapter->name[vector], "%s-%s-%d",
1145				netdev->name, "TxRx", vector);
1146		} else {
1147			/* skip this unused q_vector */
1148			continue;
1149		}
1150		err = request_irq(adapter->msix_entries[vector].vector,
1151				  handler, 0, adapter->name[vector],
1152				  adapter->q_vector[vector]);
1153		if (err) {
1154			hw_dbg(&adapter->hw,
1155			       "request_irq failed for MSIX interrupt "
1156			       "Error: %d\n", err);
1157			goto free_queue_irqs;
1158		}
1159	}
1160
1161	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1162	err = request_irq(adapter->msix_entries[vector].vector,
1163			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1164	if (err) {
1165		hw_dbg(&adapter->hw,
1166		       "request_irq for msix_mbx failed: %d\n", err);
1167		goto free_queue_irqs;
1168	}
1169
1170	return 0;
1171
1172free_queue_irqs:
1173	for (i = vector - 1; i >= 0; i--)
1174		free_irq(adapter->msix_entries[--vector].vector,
1175			 &(adapter->q_vector[i]));
1176	pci_disable_msix(adapter->pdev);
1177	kfree(adapter->msix_entries);
1178	adapter->msix_entries = NULL;
1179	return err;
1180}
1181
1182static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1183{
1184	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1185
1186	for (i = 0; i < q_vectors; i++) {
1187		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1188		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1189		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1190		q_vector->rxr_count = 0;
1191		q_vector->txr_count = 0;
1192		q_vector->eitr = adapter->eitr_param;
1193	}
1194}
1195
1196/**
1197 * ixgbevf_request_irq - initialize interrupts
1198 * @adapter: board private structure
1199 *
1200 * Attempts to configure interrupts using the best available
1201 * capabilities of the hardware and kernel.
1202 **/
1203static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1204{
1205	int err = 0;
1206
1207	err = ixgbevf_request_msix_irqs(adapter);
1208
1209	if (err)
1210		hw_dbg(&adapter->hw,
1211		       "request_irq failed, Error %d\n", err);
1212
1213	return err;
1214}
1215
1216static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1217{
1218	struct net_device *netdev = adapter->netdev;
1219	int i, q_vectors;
1220
1221	q_vectors = adapter->num_msix_vectors;
1222
1223	i = q_vectors - 1;
1224
1225	free_irq(adapter->msix_entries[i].vector, netdev);
1226	i--;
1227
1228	for (; i >= 0; i--) {
1229		free_irq(adapter->msix_entries[i].vector,
1230			 adapter->q_vector[i]);
1231	}
1232
1233	ixgbevf_reset_q_vectors(adapter);
1234}
1235
1236/**
1237 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1238 * @adapter: board private structure
1239 **/
1240static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1241{
1242	int i;
1243	struct ixgbe_hw *hw = &adapter->hw;
1244
1245	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1246
1247	IXGBE_WRITE_FLUSH(hw);
1248
1249	for (i = 0; i < adapter->num_msix_vectors; i++)
1250		synchronize_irq(adapter->msix_entries[i].vector);
1251}
1252
1253/**
1254 * ixgbevf_irq_enable - Enable default interrupt generation settings
1255 * @adapter: board private structure
1256 **/
1257static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1258				      bool queues, bool flush)
1259{
1260	struct ixgbe_hw *hw = &adapter->hw;
1261	u32 mask;
1262	u64 qmask;
1263
1264	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1265	qmask = ~0;
1266
1267	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1268
1269	if (queues)
1270		ixgbevf_irq_enable_queues(adapter, qmask);
1271
1272	if (flush)
1273		IXGBE_WRITE_FLUSH(hw);
1274}
1275
1276/**
1277 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1278 * @adapter: board private structure
1279 *
1280 * Configure the Tx unit of the MAC after a reset.
1281 **/
1282static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1283{
1284	u64 tdba;
1285	struct ixgbe_hw *hw = &adapter->hw;
1286	u32 i, j, tdlen, txctrl;
1287
1288	/* Setup the HW Tx Head and Tail descriptor pointers */
1289	for (i = 0; i < adapter->num_tx_queues; i++) {
1290		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1291		j = ring->reg_idx;
1292		tdba = ring->dma;
1293		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1294		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1295				(tdba & DMA_BIT_MASK(32)));
1296		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1297		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1298		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1299		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1300		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1301		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1302		/* Disable Tx Head Writeback RO bit, since this hoses
1303		 * bookkeeping if things aren't delivered in order.
1304		 */
1305		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1306		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1307		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1308	}
1309}
1310
1311#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1312
1313static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1314{
1315	struct ixgbevf_ring *rx_ring;
1316	struct ixgbe_hw *hw = &adapter->hw;
1317	u32 srrctl;
1318
1319	rx_ring = &adapter->rx_ring[index];
1320
1321	srrctl = IXGBE_SRRCTL_DROP_EN;
1322
1323	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1324		u16 bufsz = IXGBEVF_RXBUFFER_2048;
1325		/* grow the amount we can receive on large page machines */
1326		if (bufsz < (PAGE_SIZE / 2))
1327			bufsz = (PAGE_SIZE / 2);
1328		/* cap the bufsz at our largest descriptor size */
1329		bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1330
1331		srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1332		srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1333		srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1334			   IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1335			   IXGBE_SRRCTL_BSIZEHDR_MASK);
1336	} else {
1337		srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1338
1339		if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1340			srrctl |= IXGBEVF_RXBUFFER_2048 >>
1341				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1342		else
1343			srrctl |= rx_ring->rx_buf_len >>
1344				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1345	}
1346	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1347}
1348
1349/**
1350 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1351 * @adapter: board private structure
1352 *
1353 * Configure the Rx unit of the MAC after a reset.
1354 **/
1355static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1356{
1357	u64 rdba;
1358	struct ixgbe_hw *hw = &adapter->hw;
1359	struct net_device *netdev = adapter->netdev;
1360	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1361	int i, j;
1362	u32 rdlen;
1363	int rx_buf_len;
1364
1365	/* Decide whether to use packet split mode or not */
1366	if (netdev->mtu > ETH_DATA_LEN) {
1367		if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1368			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1369		else
1370			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1371	} else {
1372		if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1373			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1374		else
1375			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1376	}
1377
1378	/* Set the RX buffer length according to the mode */
1379	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1380		/* PSRTYPE must be initialized in 82599 */
1381		u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1382			IXGBE_PSRTYPE_UDPHDR |
1383			IXGBE_PSRTYPE_IPV4HDR |
1384			IXGBE_PSRTYPE_IPV6HDR |
1385			IXGBE_PSRTYPE_L2HDR;
1386		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1387		rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1388	} else {
1389		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1390		if (netdev->mtu <= ETH_DATA_LEN)
1391			rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1392		else
1393			rx_buf_len = ALIGN(max_frame, 1024);
1394	}
1395
1396	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1397	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1398	 * the Base and Length of the Rx Descriptor Ring */
1399	for (i = 0; i < adapter->num_rx_queues; i++) {
1400		rdba = adapter->rx_ring[i].dma;
1401		j = adapter->rx_ring[i].reg_idx;
1402		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1403				(rdba & DMA_BIT_MASK(32)));
1404		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1405		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1406		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1407		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1408		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1409		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1410		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1411
1412		ixgbevf_configure_srrctl(adapter, j);
1413	}
1414}
1415
1416static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1417{
1418	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1419	struct ixgbe_hw *hw = &adapter->hw;
1420
1421	/* add VID to filter table */
1422	if (hw->mac.ops.set_vfta)
1423		hw->mac.ops.set_vfta(hw, vid, 0, true);
1424	set_bit(vid, adapter->active_vlans);
1425
1426	return 0;
1427}
1428
1429static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1430{
1431	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1432	struct ixgbe_hw *hw = &adapter->hw;
1433
1434	/* remove VID from filter table */
1435	if (hw->mac.ops.set_vfta)
1436		hw->mac.ops.set_vfta(hw, vid, 0, false);
1437	clear_bit(vid, adapter->active_vlans);
1438
1439	return 0;
1440}
1441
1442static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1443{
1444	u16 vid;
1445
1446	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1447		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1448}
1449
1450static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1451{
1452	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1453	struct ixgbe_hw *hw = &adapter->hw;
1454	int count = 0;
1455
1456	if ((netdev_uc_count(netdev)) > 10) {
1457		pr_err("Too many unicast filters - No Space\n");
1458		return -ENOSPC;
1459	}
1460
1461	if (!netdev_uc_empty(netdev)) {
1462		struct netdev_hw_addr *ha;
1463		netdev_for_each_uc_addr(ha, netdev) {
1464			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1465			udelay(200);
1466		}
1467	} else {
1468		/*
1469		 * If the list is empty then send message to PF driver to
1470		 * clear all macvlans on this VF.
1471		 */
1472		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1473	}
1474
1475	return count;
1476}
1477
1478/**
1479 * ixgbevf_set_rx_mode - Multicast set
1480 * @netdev: network interface device structure
1481 *
1482 * The set_rx_method entry point is called whenever the multicast address
1483 * list or the network interface flags are updated.  This routine is
1484 * responsible for configuring the hardware for proper multicast mode.
1485 **/
1486static void ixgbevf_set_rx_mode(struct net_device *netdev)
1487{
1488	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1489	struct ixgbe_hw *hw = &adapter->hw;
1490
1491	/* reprogram multicast list */
1492	if (hw->mac.ops.update_mc_addr_list)
1493		hw->mac.ops.update_mc_addr_list(hw, netdev);
1494
1495	ixgbevf_write_uc_addr_list(netdev);
1496}
1497
1498static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1499{
1500	int q_idx;
1501	struct ixgbevf_q_vector *q_vector;
1502	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1503
1504	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1505		struct napi_struct *napi;
1506		q_vector = adapter->q_vector[q_idx];
1507		if (!q_vector->rxr_count)
1508			continue;
1509		napi = &q_vector->napi;
1510		if (q_vector->rxr_count > 1)
1511			napi->poll = &ixgbevf_clean_rxonly_many;
1512
1513		napi_enable(napi);
1514	}
1515}
1516
1517static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1518{
1519	int q_idx;
1520	struct ixgbevf_q_vector *q_vector;
1521	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1522
1523	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1524		q_vector = adapter->q_vector[q_idx];
1525		if (!q_vector->rxr_count)
1526			continue;
1527		napi_disable(&q_vector->napi);
1528	}
1529}
1530
1531static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1532{
1533	struct net_device *netdev = adapter->netdev;
1534	int i;
1535
1536	ixgbevf_set_rx_mode(netdev);
1537
1538	ixgbevf_restore_vlan(adapter);
1539
1540	ixgbevf_configure_tx(adapter);
1541	ixgbevf_configure_rx(adapter);
1542	for (i = 0; i < adapter->num_rx_queues; i++) {
1543		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1544		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1545		ring->next_to_use = ring->count - 1;
1546		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1547	}
1548}
1549
1550#define IXGBE_MAX_RX_DESC_POLL 10
1551static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1552						int rxr)
1553{
1554	struct ixgbe_hw *hw = &adapter->hw;
1555	int j = adapter->rx_ring[rxr].reg_idx;
1556	int k;
1557
1558	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1559		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1560			break;
1561		else
1562			msleep(1);
1563	}
1564	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1565		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1566		       "not set within the polling period\n", rxr);
1567	}
1568
1569	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1570				(adapter->rx_ring[rxr].count - 1));
1571}
1572
1573static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1574{
1575	/* Only save pre-reset stats if there are some */
1576	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1577		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1578			adapter->stats.base_vfgprc;
1579		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1580			adapter->stats.base_vfgptc;
1581		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1582			adapter->stats.base_vfgorc;
1583		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1584			adapter->stats.base_vfgotc;
1585		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1586			adapter->stats.base_vfmprc;
1587	}
1588}
1589
1590static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1591{
1592	struct ixgbe_hw *hw = &adapter->hw;
1593
1594	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1595	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1596	adapter->stats.last_vfgorc |=
1597		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1598	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1599	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1600	adapter->stats.last_vfgotc |=
1601		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1602	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1603
1604	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1605	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1606	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1607	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1608	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1609}
1610
1611static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1612{
1613	struct net_device *netdev = adapter->netdev;
1614	struct ixgbe_hw *hw = &adapter->hw;
1615	int i, j = 0;
1616	int num_rx_rings = adapter->num_rx_queues;
1617	u32 txdctl, rxdctl;
1618
1619	for (i = 0; i < adapter->num_tx_queues; i++) {
1620		j = adapter->tx_ring[i].reg_idx;
1621		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1622		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1623		txdctl |= (8 << 16);
1624		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1625	}
1626
1627	for (i = 0; i < adapter->num_tx_queues; i++) {
1628		j = adapter->tx_ring[i].reg_idx;
1629		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1630		txdctl |= IXGBE_TXDCTL_ENABLE;
1631		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1632	}
1633
1634	for (i = 0; i < num_rx_rings; i++) {
1635		j = adapter->rx_ring[i].reg_idx;
1636		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1637		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1638		if (hw->mac.type == ixgbe_mac_X540_vf) {
1639			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1640			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1641				   IXGBE_RXDCTL_RLPML_EN);
1642		}
1643		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1644		ixgbevf_rx_desc_queue_enable(adapter, i);
1645	}
1646
1647	ixgbevf_configure_msix(adapter);
1648
1649	if (hw->mac.ops.set_rar) {
1650		if (is_valid_ether_addr(hw->mac.addr))
1651			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1652		else
1653			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1654	}
1655
1656	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1657	ixgbevf_napi_enable_all(adapter);
1658
1659	/* enable transmits */
1660	netif_tx_start_all_queues(netdev);
1661
1662	ixgbevf_save_reset_stats(adapter);
1663	ixgbevf_init_last_counter_stats(adapter);
1664
1665	/* bring the link up in the watchdog, this could race with our first
1666	 * link up interrupt but shouldn't be a problem */
1667	adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1668	adapter->link_check_timeout = jiffies;
1669	mod_timer(&adapter->watchdog_timer, jiffies);
1670	return 0;
1671}
1672
1673int ixgbevf_up(struct ixgbevf_adapter *adapter)
1674{
1675	int err;
1676	struct ixgbe_hw *hw = &adapter->hw;
1677
1678	ixgbevf_configure(adapter);
1679
1680	err = ixgbevf_up_complete(adapter);
1681
1682	/* clear any pending interrupts, may auto mask */
1683	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1684
1685	ixgbevf_irq_enable(adapter, true, true);
1686
1687	return err;
1688}
1689
1690/**
1691 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1692 * @adapter: board private structure
1693 * @rx_ring: ring to free buffers from
1694 **/
1695static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1696				  struct ixgbevf_ring *rx_ring)
1697{
1698	struct pci_dev *pdev = adapter->pdev;
1699	unsigned long size;
1700	unsigned int i;
1701
1702	if (!rx_ring->rx_buffer_info)
1703		return;
1704
1705	/* Free all the Rx ring sk_buffs */
1706	for (i = 0; i < rx_ring->count; i++) {
1707		struct ixgbevf_rx_buffer *rx_buffer_info;
1708
1709		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1710		if (rx_buffer_info->dma) {
1711			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1712					 rx_ring->rx_buf_len,
1713					 DMA_FROM_DEVICE);
1714			rx_buffer_info->dma = 0;
1715		}
1716		if (rx_buffer_info->skb) {
1717			struct sk_buff *skb = rx_buffer_info->skb;
1718			rx_buffer_info->skb = NULL;
1719			do {
1720				struct sk_buff *this = skb;
1721				skb = skb->prev;
1722				dev_kfree_skb(this);
1723			} while (skb);
1724		}
1725		if (!rx_buffer_info->page)
1726			continue;
1727		dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1728			       PAGE_SIZE / 2, DMA_FROM_DEVICE);
1729		rx_buffer_info->page_dma = 0;
1730		put_page(rx_buffer_info->page);
1731		rx_buffer_info->page = NULL;
1732		rx_buffer_info->page_offset = 0;
1733	}
1734
1735	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1736	memset(rx_ring->rx_buffer_info, 0, size);
1737
1738	/* Zero out the descriptor ring */
1739	memset(rx_ring->desc, 0, rx_ring->size);
1740
1741	rx_ring->next_to_clean = 0;
1742	rx_ring->next_to_use = 0;
1743
1744	if (rx_ring->head)
1745		writel(0, adapter->hw.hw_addr + rx_ring->head);
1746	if (rx_ring->tail)
1747		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1748}
1749
1750/**
1751 * ixgbevf_clean_tx_ring - Free Tx Buffers
1752 * @adapter: board private structure
1753 * @tx_ring: ring to be cleaned
1754 **/
1755static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1756				  struct ixgbevf_ring *tx_ring)
1757{
1758	struct ixgbevf_tx_buffer *tx_buffer_info;
1759	unsigned long size;
1760	unsigned int i;
1761
1762	if (!tx_ring->tx_buffer_info)
1763		return;
1764
1765	/* Free all the Tx ring sk_buffs */
1766
1767	for (i = 0; i < tx_ring->count; i++) {
1768		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1769		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1770	}
1771
1772	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1773	memset(tx_ring->tx_buffer_info, 0, size);
1774
1775	memset(tx_ring->desc, 0, tx_ring->size);
1776
1777	tx_ring->next_to_use = 0;
1778	tx_ring->next_to_clean = 0;
1779
1780	if (tx_ring->head)
1781		writel(0, adapter->hw.hw_addr + tx_ring->head);
1782	if (tx_ring->tail)
1783		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1784}
1785
1786/**
1787 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1788 * @adapter: board private structure
1789 **/
1790static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1791{
1792	int i;
1793
1794	for (i = 0; i < adapter->num_rx_queues; i++)
1795		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1796}
1797
1798/**
1799 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1800 * @adapter: board private structure
1801 **/
1802static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1803{
1804	int i;
1805
1806	for (i = 0; i < adapter->num_tx_queues; i++)
1807		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1808}
1809
1810void ixgbevf_down(struct ixgbevf_adapter *adapter)
1811{
1812	struct net_device *netdev = adapter->netdev;
1813	struct ixgbe_hw *hw = &adapter->hw;
1814	u32 txdctl;
1815	int i, j;
1816
1817	/* signal that we are down to the interrupt handler */
1818	set_bit(__IXGBEVF_DOWN, &adapter->state);
1819	/* disable receives */
1820
1821	netif_tx_disable(netdev);
1822
1823	msleep(10);
1824
1825	netif_tx_stop_all_queues(netdev);
1826
1827	ixgbevf_irq_disable(adapter);
1828
1829	ixgbevf_napi_disable_all(adapter);
1830
1831	del_timer_sync(&adapter->watchdog_timer);
1832	/* can't call flush scheduled work here because it can deadlock
1833	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1834	 * holding */
1835	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1836		msleep(1);
1837
1838	/* disable transmits in the hardware now that interrupts are off */
1839	for (i = 0; i < adapter->num_tx_queues; i++) {
1840		j = adapter->tx_ring[i].reg_idx;
1841		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1842		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1843				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1844	}
1845
1846	netif_carrier_off(netdev);
1847
1848	if (!pci_channel_offline(adapter->pdev))
1849		ixgbevf_reset(adapter);
1850
1851	ixgbevf_clean_all_tx_rings(adapter);
1852	ixgbevf_clean_all_rx_rings(adapter);
1853}
1854
1855void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1856{
1857	struct ixgbe_hw *hw = &adapter->hw;
1858
1859	WARN_ON(in_interrupt());
1860
1861	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1862		msleep(1);
1863
1864	/*
1865	 * Check if PF is up before re-init.  If not then skip until
1866	 * later when the PF is up and ready to service requests from
1867	 * the VF via mailbox.  If the VF is up and running then the
1868	 * watchdog task will continue to schedule reset tasks until
1869	 * the PF is up and running.
1870	 */
1871	if (!hw->mac.ops.reset_hw(hw)) {
1872		ixgbevf_down(adapter);
1873		ixgbevf_up(adapter);
1874	}
1875
1876	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1877}
1878
1879void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1880{
1881	struct ixgbe_hw *hw = &adapter->hw;
1882	struct net_device *netdev = adapter->netdev;
1883
1884	if (hw->mac.ops.reset_hw(hw))
1885		hw_dbg(hw, "PF still resetting\n");
1886	else
1887		hw->mac.ops.init_hw(hw);
1888
1889	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1890		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1891		       netdev->addr_len);
1892		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1893		       netdev->addr_len);
1894	}
1895}
1896
1897static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1898					 int vectors)
1899{
1900	int err, vector_threshold;
1901
1902	/* We'll want at least 3 (vector_threshold):
1903	 * 1) TxQ[0] Cleanup
1904	 * 2) RxQ[0] Cleanup
1905	 * 3) Other (Link Status Change, etc.)
1906	 */
1907	vector_threshold = MIN_MSIX_COUNT;
1908
1909	/* The more we get, the more we will assign to Tx/Rx Cleanup
1910	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1911	 * Right now, we simply care about how many we'll get; we'll
1912	 * set them up later while requesting irq's.
1913	 */
1914	while (vectors >= vector_threshold) {
1915		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1916				      vectors);
1917		if (!err) /* Success in acquiring all requested vectors. */
1918			break;
1919		else if (err < 0)
1920			vectors = 0; /* Nasty failure, quit now */
1921		else /* err == number of vectors we should try again with */
1922			vectors = err;
1923	}
1924
1925	if (vectors < vector_threshold) {
1926		/* Can't allocate enough MSI-X interrupts?  Oh well.
1927		 * This just means we'll go with either a single MSI
1928		 * vector or fall back to legacy interrupts.
1929		 */
1930		hw_dbg(&adapter->hw,
1931		       "Unable to allocate MSI-X interrupts\n");
1932		kfree(adapter->msix_entries);
1933		adapter->msix_entries = NULL;
1934	} else {
1935		/*
1936		 * Adjust for only the vectors we'll use, which is minimum
1937		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1938		 * vectors we were allocated.
1939		 */
1940		adapter->num_msix_vectors = vectors;
1941	}
1942}
1943
1944/*
1945 * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1946 * @adapter: board private structure to initialize
1947 *
1948 * This is the top level queue allocation routine.  The order here is very
1949 * important, starting with the "most" number of features turned on at once,
1950 * and ending with the smallest set of features.  This way large combinations
1951 * can be allocated if they're turned on, and smaller combinations are the
1952 * fallthrough conditions.
1953 *
1954 **/
1955static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1956{
1957	/* Start with base case */
1958	adapter->num_rx_queues = 1;
1959	adapter->num_tx_queues = 1;
1960	adapter->num_rx_pools = adapter->num_rx_queues;
1961	adapter->num_rx_queues_per_pool = 1;
1962}
1963
1964/**
1965 * ixgbevf_alloc_queues - Allocate memory for all rings
1966 * @adapter: board private structure to initialize
1967 *
1968 * We allocate one ring per queue at run-time since we don't know the
1969 * number of queues at compile-time.  The polling_netdev array is
1970 * intended for Multiqueue, but should work fine with a single queue.
1971 **/
1972static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1973{
1974	int i;
1975
1976	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1977				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1978	if (!adapter->tx_ring)
1979		goto err_tx_ring_allocation;
1980
1981	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1982				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1983	if (!adapter->rx_ring)
1984		goto err_rx_ring_allocation;
1985
1986	for (i = 0; i < adapter->num_tx_queues; i++) {
1987		adapter->tx_ring[i].count = adapter->tx_ring_count;
1988		adapter->tx_ring[i].queue_index = i;
1989		adapter->tx_ring[i].reg_idx = i;
1990	}
1991
1992	for (i = 0; i < adapter->num_rx_queues; i++) {
1993		adapter->rx_ring[i].count = adapter->rx_ring_count;
1994		adapter->rx_ring[i].queue_index = i;
1995		adapter->rx_ring[i].reg_idx = i;
1996	}
1997
1998	return 0;
1999
2000err_rx_ring_allocation:
2001	kfree(adapter->tx_ring);
2002err_tx_ring_allocation:
2003	return -ENOMEM;
2004}
2005
2006/**
2007 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2008 * @adapter: board private structure to initialize
2009 *
2010 * Attempt to configure the interrupts using the best available
2011 * capabilities of the hardware and the kernel.
2012 **/
2013static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2014{
2015	int err = 0;
2016	int vector, v_budget;
2017
2018	/*
2019	 * It's easy to be greedy for MSI-X vectors, but it really
2020	 * doesn't do us much good if we have a lot more vectors
2021	 * than CPU's.  So let's be conservative and only ask for
2022	 * (roughly) twice the number of vectors as there are CPU's.
2023	 */
2024	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2025		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2026
2027	/* A failure in MSI-X entry allocation isn't fatal, but it does
2028	 * mean we disable MSI-X capabilities of the adapter. */
2029	adapter->msix_entries = kcalloc(v_budget,
2030					sizeof(struct msix_entry), GFP_KERNEL);
2031	if (!adapter->msix_entries) {
2032		err = -ENOMEM;
2033		goto out;
2034	}
2035
2036	for (vector = 0; vector < v_budget; vector++)
2037		adapter->msix_entries[vector].entry = vector;
2038
2039	ixgbevf_acquire_msix_vectors(adapter, v_budget);
2040
2041out:
2042	return err;
2043}
2044
2045/**
2046 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2047 * @adapter: board private structure to initialize
2048 *
2049 * We allocate one q_vector per queue interrupt.  If allocation fails we
2050 * return -ENOMEM.
2051 **/
2052static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2053{
2054	int q_idx, num_q_vectors;
2055	struct ixgbevf_q_vector *q_vector;
2056	int napi_vectors;
2057	int (*poll)(struct napi_struct *, int);
2058
2059	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2060	napi_vectors = adapter->num_rx_queues;
2061	poll = &ixgbevf_clean_rxonly;
2062
2063	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2064		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2065		if (!q_vector)
2066			goto err_out;
2067		q_vector->adapter = adapter;
2068		q_vector->v_idx = q_idx;
2069		q_vector->eitr = adapter->eitr_param;
2070		if (q_idx < napi_vectors)
2071			netif_napi_add(adapter->netdev, &q_vector->napi,
2072				       (*poll), 64);
2073		adapter->q_vector[q_idx] = q_vector;
2074	}
2075
2076	return 0;
2077
2078err_out:
2079	while (q_idx) {
2080		q_idx--;
2081		q_vector = adapter->q_vector[q_idx];
2082		netif_napi_del(&q_vector->napi);
2083		kfree(q_vector);
2084		adapter->q_vector[q_idx] = NULL;
2085	}
2086	return -ENOMEM;
2087}
2088
2089/**
2090 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2091 * @adapter: board private structure to initialize
2092 *
2093 * This function frees the memory allocated to the q_vectors.  In addition if
2094 * NAPI is enabled it will delete any references to the NAPI struct prior
2095 * to freeing the q_vector.
2096 **/
2097static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2098{
2099	int q_idx, num_q_vectors;
2100	int napi_vectors;
2101
2102	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2103	napi_vectors = adapter->num_rx_queues;
2104
2105	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2106		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2107
2108		adapter->q_vector[q_idx] = NULL;
2109		if (q_idx < napi_vectors)
2110			netif_napi_del(&q_vector->napi);
2111		kfree(q_vector);
2112	}
2113}
2114
2115/**
2116 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2117 * @adapter: board private structure
2118 *
2119 **/
2120static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2121{
2122	pci_disable_msix(adapter->pdev);
2123	kfree(adapter->msix_entries);
2124	adapter->msix_entries = NULL;
2125}
2126
2127/**
2128 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2129 * @adapter: board private structure to initialize
2130 *
2131 **/
2132static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2133{
2134	int err;
2135
2136	/* Number of supported queues */
2137	ixgbevf_set_num_queues(adapter);
2138
2139	err = ixgbevf_set_interrupt_capability(adapter);
2140	if (err) {
2141		hw_dbg(&adapter->hw,
2142		       "Unable to setup interrupt capabilities\n");
2143		goto err_set_interrupt;
2144	}
2145
2146	err = ixgbevf_alloc_q_vectors(adapter);
2147	if (err) {
2148		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2149		       "vectors\n");
2150		goto err_alloc_q_vectors;
2151	}
2152
2153	err = ixgbevf_alloc_queues(adapter);
2154	if (err) {
2155		pr_err("Unable to allocate memory for queues\n");
2156		goto err_alloc_queues;
2157	}
2158
2159	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2160	       "Tx Queue count = %u\n",
2161	       (adapter->num_rx_queues > 1) ? "Enabled" :
2162	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2163
2164	set_bit(__IXGBEVF_DOWN, &adapter->state);
2165
2166	return 0;
2167err_alloc_queues:
2168	ixgbevf_free_q_vectors(adapter);
2169err_alloc_q_vectors:
2170	ixgbevf_reset_interrupt_capability(adapter);
2171err_set_interrupt:
2172	return err;
2173}
2174
2175/**
2176 * ixgbevf_sw_init - Initialize general software structures
2177 * (struct ixgbevf_adapter)
2178 * @adapter: board private structure to initialize
2179 *
2180 * ixgbevf_sw_init initializes the Adapter private data structure.
2181 * Fields are initialized based on PCI device information and
2182 * OS network device settings (MTU size).
2183 **/
2184static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2185{
2186	struct ixgbe_hw *hw = &adapter->hw;
2187	struct pci_dev *pdev = adapter->pdev;
2188	int err;
2189
2190	/* PCI config space info */
2191
2192	hw->vendor_id = pdev->vendor;
2193	hw->device_id = pdev->device;
2194	hw->revision_id = pdev->revision;
2195	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2196	hw->subsystem_device_id = pdev->subsystem_device;
2197
2198	hw->mbx.ops.init_params(hw);
2199	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2200	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2201	err = hw->mac.ops.reset_hw(hw);
2202	if (err) {
2203		dev_info(&pdev->dev,
2204		         "PF still in reset state, assigning new address\n");
2205		eth_hw_addr_random(adapter->netdev);
2206		memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
2207			adapter->netdev->addr_len);
2208	} else {
2209		err = hw->mac.ops.init_hw(hw);
2210		if (err) {
2211			pr_err("init_shared_code failed: %d\n", err);
2212			goto out;
2213		}
2214		memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
2215			adapter->netdev->addr_len);
2216	}
2217
2218	/* Enable dynamic interrupt throttling rates */
2219	adapter->eitr_param = 20000;
2220	adapter->itr_setting = 1;
2221
2222	/* set defaults for eitr in MegaBytes */
2223	adapter->eitr_low = 10;
2224	adapter->eitr_high = 20;
2225
2226	/* set default ring sizes */
2227	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2228	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2229
2230	/* enable rx csum by default */
2231	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2232
2233	set_bit(__IXGBEVF_DOWN, &adapter->state);
2234	return 0;
2235
2236out:
2237	return err;
2238}
2239
2240#define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2241	{							\
2242		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2243		if (current_counter < last_counter)		\
2244			counter += 0x100000000LL;		\
2245		last_counter = current_counter;			\
2246		counter &= 0xFFFFFFFF00000000LL;		\
2247		counter |= current_counter;			\
2248	}
2249
2250#define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2251	{								 \
2252		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2253		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2254		u64 current_counter = (current_counter_msb << 32) |      \
2255			current_counter_lsb;                             \
2256		if (current_counter < last_counter)			 \
2257			counter += 0x1000000000LL;			 \
2258		last_counter = current_counter;				 \
2259		counter &= 0xFFFFFFF000000000LL;			 \
2260		counter |= current_counter;				 \
2261	}
2262/**
2263 * ixgbevf_update_stats - Update the board statistics counters.
2264 * @adapter: board private structure
2265 **/
2266void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2267{
2268	struct ixgbe_hw *hw = &adapter->hw;
2269
2270	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2271				adapter->stats.vfgprc);
2272	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2273				adapter->stats.vfgptc);
2274	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2275				adapter->stats.last_vfgorc,
2276				adapter->stats.vfgorc);
2277	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2278				adapter->stats.last_vfgotc,
2279				adapter->stats.vfgotc);
2280	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2281				adapter->stats.vfmprc);
2282}
2283
2284/**
2285 * ixgbevf_watchdog - Timer Call-back
2286 * @data: pointer to adapter cast into an unsigned long
2287 **/
2288static void ixgbevf_watchdog(unsigned long data)
2289{
2290	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2291	struct ixgbe_hw *hw = &adapter->hw;
2292	u64 eics = 0;
2293	int i;
2294
2295	/*
2296	 * Do the watchdog outside of interrupt context due to the lovely
2297	 * delays that some of the newer hardware requires
2298	 */
2299
2300	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2301		goto watchdog_short_circuit;
2302
2303	/* get one bit for every active tx/rx interrupt vector */
2304	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2305		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2306		if (qv->rxr_count || qv->txr_count)
2307			eics |= (1 << i);
2308	}
2309
2310	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2311
2312watchdog_short_circuit:
2313	schedule_work(&adapter->watchdog_task);
2314}
2315
2316/**
2317 * ixgbevf_tx_timeout - Respond to a Tx Hang
2318 * @netdev: network interface device structure
2319 **/
2320static void ixgbevf_tx_timeout(struct net_device *netdev)
2321{
2322	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2323
2324	/* Do the reset outside of interrupt context */
2325	schedule_work(&adapter->reset_task);
2326}
2327
2328static void ixgbevf_reset_task(struct work_struct *work)
2329{
2330	struct ixgbevf_adapter *adapter;
2331	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2332
2333	/* If we're already down or resetting, just bail */
2334	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2335	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2336		return;
2337
2338	adapter->tx_timeout_count++;
2339
2340	ixgbevf_reinit_locked(adapter);
2341}
2342
2343/**
2344 * ixgbevf_watchdog_task - worker thread to bring link up
2345 * @work: pointer to work_struct containing our data
2346 **/
2347static void ixgbevf_watchdog_task(struct work_struct *work)
2348{
2349	struct ixgbevf_adapter *adapter = container_of(work,
2350						       struct ixgbevf_adapter,
2351						       watchdog_task);
2352	struct net_device *netdev = adapter->netdev;
2353	struct ixgbe_hw *hw = &adapter->hw;
2354	u32 link_speed = adapter->link_speed;
2355	bool link_up = adapter->link_up;
2356
2357	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2358
2359	/*
2360	 * Always check the link on the watchdog because we have
2361	 * no LSC interrupt
2362	 */
2363	if (hw->mac.ops.check_link) {
2364		if ((hw->mac.ops.check_link(hw, &link_speed,
2365					    &link_up, false)) != 0) {
2366			adapter->link_up = link_up;
2367			adapter->link_speed = link_speed;
2368			netif_carrier_off(netdev);
2369			netif_tx_stop_all_queues(netdev);
2370			schedule_work(&adapter->reset_task);
2371			goto pf_has_reset;
2372		}
2373	} else {
2374		/* always assume link is up, if no check link
2375		 * function */
2376		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2377		link_up = true;
2378	}
2379	adapter->link_up = link_up;
2380	adapter->link_speed = link_speed;
2381
2382	if (link_up) {
2383		if (!netif_carrier_ok(netdev)) {
2384			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2385			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2386			       10 : 1);
2387			netif_carrier_on(netdev);
2388			netif_tx_wake_all_queues(netdev);
2389		}
2390	} else {
2391		adapter->link_up = false;
2392		adapter->link_speed = 0;
2393		if (netif_carrier_ok(netdev)) {
2394			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2395			netif_carrier_off(netdev);
2396			netif_tx_stop_all_queues(netdev);
2397		}
2398	}
2399
2400	ixgbevf_update_stats(adapter);
2401
2402pf_has_reset:
2403	/* Reset the timer */
2404	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2405		mod_timer(&adapter->watchdog_timer,
2406			  round_jiffies(jiffies + (2 * HZ)));
2407
2408	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2409}
2410
2411/**
2412 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2413 * @adapter: board private structure
2414 * @tx_ring: Tx descriptor ring for a specific queue
2415 *
2416 * Free all transmit software resources
2417 **/
2418void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2419			       struct ixgbevf_ring *tx_ring)
2420{
2421	struct pci_dev *pdev = adapter->pdev;
2422
2423	ixgbevf_clean_tx_ring(adapter, tx_ring);
2424
2425	vfree(tx_ring->tx_buffer_info);
2426	tx_ring->tx_buffer_info = NULL;
2427
2428	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2429			  tx_ring->dma);
2430
2431	tx_ring->desc = NULL;
2432}
2433
2434/**
2435 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2436 * @adapter: board private structure
2437 *
2438 * Free all transmit software resources
2439 **/
2440static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2441{
2442	int i;
2443
2444	for (i = 0; i < adapter->num_tx_queues; i++)
2445		if (adapter->tx_ring[i].desc)
2446			ixgbevf_free_tx_resources(adapter,
2447						  &adapter->tx_ring[i]);
2448
2449}
2450
2451/**
2452 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2453 * @adapter: board private structure
2454 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2455 *
2456 * Return 0 on success, negative on failure
2457 **/
2458int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2459			       struct ixgbevf_ring *tx_ring)
2460{
2461	struct pci_dev *pdev = adapter->pdev;
2462	int size;
2463
2464	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2465	tx_ring->tx_buffer_info = vzalloc(size);
2466	if (!tx_ring->tx_buffer_info)
2467		goto err;
2468
2469	/* round up to nearest 4K */
2470	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2471	tx_ring->size = ALIGN(tx_ring->size, 4096);
2472
2473	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2474					   &tx_ring->dma, GFP_KERNEL);
2475	if (!tx_ring->desc)
2476		goto err;
2477
2478	tx_ring->next_to_use = 0;
2479	tx_ring->next_to_clean = 0;
2480	tx_ring->work_limit = tx_ring->count;
2481	return 0;
2482
2483err:
2484	vfree(tx_ring->tx_buffer_info);
2485	tx_ring->tx_buffer_info = NULL;
2486	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2487	       "descriptor ring\n");
2488	return -ENOMEM;
2489}
2490
2491/**
2492 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2493 * @adapter: board private structure
2494 *
2495 * If this function returns with an error, then it's possible one or
2496 * more of the rings is populated (while the rest are not).  It is the
2497 * callers duty to clean those orphaned rings.
2498 *
2499 * Return 0 on success, negative on failure
2500 **/
2501static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2502{
2503	int i, err = 0;
2504
2505	for (i = 0; i < adapter->num_tx_queues; i++) {
2506		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2507		if (!err)
2508			continue;
2509		hw_dbg(&adapter->hw,
2510		       "Allocation for Tx Queue %u failed\n", i);
2511		break;
2512	}
2513
2514	return err;
2515}
2516
2517/**
2518 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2519 * @adapter: board private structure
2520 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2521 *
2522 * Returns 0 on success, negative on failure
2523 **/
2524int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2525			       struct ixgbevf_ring *rx_ring)
2526{
2527	struct pci_dev *pdev = adapter->pdev;
2528	int size;
2529
2530	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2531	rx_ring->rx_buffer_info = vzalloc(size);
2532	if (!rx_ring->rx_buffer_info)
2533		goto alloc_failed;
2534
2535	/* Round up to nearest 4K */
2536	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2537	rx_ring->size = ALIGN(rx_ring->size, 4096);
2538
2539	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2540					   &rx_ring->dma, GFP_KERNEL);
2541
2542	if (!rx_ring->desc) {
2543		hw_dbg(&adapter->hw,
2544		       "Unable to allocate memory for "
2545		       "the receive descriptor ring\n");
2546		vfree(rx_ring->rx_buffer_info);
2547		rx_ring->rx_buffer_info = NULL;
2548		goto alloc_failed;
2549	}
2550
2551	rx_ring->next_to_clean = 0;
2552	rx_ring->next_to_use = 0;
2553
2554	return 0;
2555alloc_failed:
2556	return -ENOMEM;
2557}
2558
2559/**
2560 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2561 * @adapter: board private structure
2562 *
2563 * If this function returns with an error, then it's possible one or
2564 * more of the rings is populated (while the rest are not).  It is the
2565 * callers duty to clean those orphaned rings.
2566 *
2567 * Return 0 on success, negative on failure
2568 **/
2569static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2570{
2571	int i, err = 0;
2572
2573	for (i = 0; i < adapter->num_rx_queues; i++) {
2574		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2575		if (!err)
2576			continue;
2577		hw_dbg(&adapter->hw,
2578		       "Allocation for Rx Queue %u failed\n", i);
2579		break;
2580	}
2581	return err;
2582}
2583
2584/**
2585 * ixgbevf_free_rx_resources - Free Rx Resources
2586 * @adapter: board private structure
2587 * @rx_ring: ring to clean the resources from
2588 *
2589 * Free all receive software resources
2590 **/
2591void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2592			       struct ixgbevf_ring *rx_ring)
2593{
2594	struct pci_dev *pdev = adapter->pdev;
2595
2596	ixgbevf_clean_rx_ring(adapter, rx_ring);
2597
2598	vfree(rx_ring->rx_buffer_info);
2599	rx_ring->rx_buffer_info = NULL;
2600
2601	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2602			  rx_ring->dma);
2603
2604	rx_ring->desc = NULL;
2605}
2606
2607/**
2608 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2609 * @adapter: board private structure
2610 *
2611 * Free all receive software resources
2612 **/
2613static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2614{
2615	int i;
2616
2617	for (i = 0; i < adapter->num_rx_queues; i++)
2618		if (adapter->rx_ring[i].desc)
2619			ixgbevf_free_rx_resources(adapter,
2620						  &adapter->rx_ring[i]);
2621}
2622
2623/**
2624 * ixgbevf_open - Called when a network interface is made active
2625 * @netdev: network interface device structure
2626 *
2627 * Returns 0 on success, negative value on failure
2628 *
2629 * The open entry point is called when a network interface is made
2630 * active by the system (IFF_UP).  At this point all resources needed
2631 * for transmit and receive operations are allocated, the interrupt
2632 * handler is registered with the OS, the watchdog timer is started,
2633 * and the stack is notified that the interface is ready.
2634 **/
2635static int ixgbevf_open(struct net_device *netdev)
2636{
2637	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2638	struct ixgbe_hw *hw = &adapter->hw;
2639	int err;
2640
2641	/* disallow open during test */
2642	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2643		return -EBUSY;
2644
2645	if (hw->adapter_stopped) {
2646		ixgbevf_reset(adapter);
2647		/* if adapter is still stopped then PF isn't up and
2648		 * the vf can't start. */
2649		if (hw->adapter_stopped) {
2650			err = IXGBE_ERR_MBX;
2651			pr_err("Unable to start - perhaps the PF Driver isn't "
2652			       "up yet\n");
2653			goto err_setup_reset;
2654		}
2655	}
2656
2657	/* allocate transmit descriptors */
2658	err = ixgbevf_setup_all_tx_resources(adapter);
2659	if (err)
2660		goto err_setup_tx;
2661
2662	/* allocate receive descriptors */
2663	err = ixgbevf_setup_all_rx_resources(adapter);
2664	if (err)
2665		goto err_setup_rx;
2666
2667	ixgbevf_configure(adapter);
2668
2669	/*
2670	 * Map the Tx/Rx rings to the vectors we were allotted.
2671	 * if request_irq will be called in this function map_rings
2672	 * must be called *before* up_complete
2673	 */
2674	ixgbevf_map_rings_to_vectors(adapter);
2675
2676	err = ixgbevf_up_complete(adapter);
2677	if (err)
2678		goto err_up;
2679
2680	/* clear any pending interrupts, may auto mask */
2681	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2682	err = ixgbevf_request_irq(adapter);
2683	if (err)
2684		goto err_req_irq;
2685
2686	ixgbevf_irq_enable(adapter, true, true);
2687
2688	return 0;
2689
2690err_req_irq:
2691	ixgbevf_down(adapter);
2692err_up:
2693	ixgbevf_free_irq(adapter);
2694err_setup_rx:
2695	ixgbevf_free_all_rx_resources(adapter);
2696err_setup_tx:
2697	ixgbevf_free_all_tx_resources(adapter);
2698	ixgbevf_reset(adapter);
2699
2700err_setup_reset:
2701
2702	return err;
2703}
2704
2705/**
2706 * ixgbevf_close - Disables a network interface
2707 * @netdev: network interface device structure
2708 *
2709 * Returns 0, this is not allowed to fail
2710 *
2711 * The close entry point is called when an interface is de-activated
2712 * by the OS.  The hardware is still under the drivers control, but
2713 * needs to be disabled.  A global MAC reset is issued to stop the
2714 * hardware, and all transmit and receive resources are freed.
2715 **/
2716static int ixgbevf_close(struct net_device *netdev)
2717{
2718	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2719
2720	ixgbevf_down(adapter);
2721	ixgbevf_free_irq(adapter);
2722
2723	ixgbevf_free_all_tx_resources(adapter);
2724	ixgbevf_free_all_rx_resources(adapter);
2725
2726	return 0;
2727}
2728
2729static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2730		       struct ixgbevf_ring *tx_ring,
2731		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2732{
2733	struct ixgbe_adv_tx_context_desc *context_desc;
2734	unsigned int i;
2735	int err;
2736	struct ixgbevf_tx_buffer *tx_buffer_info;
2737	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2738	u32 mss_l4len_idx, l4len;
2739
2740	if (skb_is_gso(skb)) {
2741		if (skb_header_cloned(skb)) {
2742			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2743			if (err)
2744				return err;
2745		}
2746		l4len = tcp_hdrlen(skb);
2747		*hdr_len += l4len;
2748
2749		if (skb->protocol == htons(ETH_P_IP)) {
2750			struct iphdr *iph = ip_hdr(skb);
2751			iph->tot_len = 0;
2752			iph->check = 0;
2753			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2754								 iph->daddr, 0,
2755								 IPPROTO_TCP,
2756								 0);
2757			adapter->hw_tso_ctxt++;
2758		} else if (skb_is_gso_v6(skb)) {
2759			ipv6_hdr(skb)->payload_len = 0;
2760			tcp_hdr(skb)->check =
2761			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2762					     &ipv6_hdr(skb)->daddr,
2763					     0, IPPROTO_TCP, 0);
2764			adapter->hw_tso6_ctxt++;
2765		}
2766
2767		i = tx_ring->next_to_use;
2768
2769		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2770		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2771
2772		/* VLAN MACLEN IPLEN */
2773		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2774			vlan_macip_lens |=
2775				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2776		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2777				    IXGBE_ADVTXD_MACLEN_SHIFT);
2778		*hdr_len += skb_network_offset(skb);
2779		vlan_macip_lens |=
2780			(skb_transport_header(skb) - skb_network_header(skb));
2781		*hdr_len +=
2782			(skb_transport_header(skb) - skb_network_header(skb));
2783		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2784		context_desc->seqnum_seed = 0;
2785
2786		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2787		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2788				    IXGBE_ADVTXD_DTYP_CTXT);
2789
2790		if (skb->protocol == htons(ETH_P_IP))
2791			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2792		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2793		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2794
2795		/* MSS L4LEN IDX */
2796		mss_l4len_idx =
2797			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2798		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2799		/* use index 1 for TSO */
2800		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2801		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2802
2803		tx_buffer_info->time_stamp = jiffies;
2804		tx_buffer_info->next_to_watch = i;
2805
2806		i++;
2807		if (i == tx_ring->count)
2808			i = 0;
2809		tx_ring->next_to_use = i;
2810
2811		return true;
2812	}
2813
2814	return false;
2815}
2816
2817static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2818			    struct ixgbevf_ring *tx_ring,
2819			    struct sk_buff *skb, u32 tx_flags)
2820{
2821	struct ixgbe_adv_tx_context_desc *context_desc;
2822	unsigned int i;
2823	struct ixgbevf_tx_buffer *tx_buffer_info;
2824	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2825
2826	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2827	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2828		i = tx_ring->next_to_use;
2829		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2830		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2831
2832		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2833			vlan_macip_lens |= (tx_flags &
2834					    IXGBE_TX_FLAGS_VLAN_MASK);
2835		vlan_macip_lens |= (skb_network_offset(skb) <<
2836				    IXGBE_ADVTXD_MACLEN_SHIFT);
2837		if (skb->ip_summed == CHECKSUM_PARTIAL)
2838			vlan_macip_lens |= (skb_transport_header(skb) -
2839					    skb_network_header(skb));
2840
2841		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2842		context_desc->seqnum_seed = 0;
2843
2844		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2845				    IXGBE_ADVTXD_DTYP_CTXT);
2846
2847		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2848			switch (skb->protocol) {
2849			case __constant_htons(ETH_P_IP):
2850				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2851				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2852					type_tucmd_mlhl |=
2853					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2854				break;
2855			case __constant_htons(ETH_P_IPV6):
2856				/* XXX what about other V6 headers?? */
2857				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2858					type_tucmd_mlhl |=
2859						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2860				break;
2861			default:
2862				if (unlikely(net_ratelimit())) {
2863					pr_warn("partial checksum but "
2864						"proto=%x!\n", skb->protocol);
2865				}
2866				break;
2867			}
2868		}
2869
2870		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2871		/* use index zero for tx checksum offload */
2872		context_desc->mss_l4len_idx = 0;
2873
2874		tx_buffer_info->time_stamp = jiffies;
2875		tx_buffer_info->next_to_watch = i;
2876
2877		adapter->hw_csum_tx_good++;
2878		i++;
2879		if (i == tx_ring->count)
2880			i = 0;
2881		tx_ring->next_to_use = i;
2882
2883		return true;
2884	}
2885
2886	return false;
2887}
2888
2889static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2890			  struct ixgbevf_ring *tx_ring,
2891			  struct sk_buff *skb, u32 tx_flags,
2892			  unsigned int first)
2893{
2894	struct pci_dev *pdev = adapter->pdev;
2895	struct ixgbevf_tx_buffer *tx_buffer_info;
2896	unsigned int len;
2897	unsigned int total = skb->len;
2898	unsigned int offset = 0, size;
2899	int count = 0;
2900	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2901	unsigned int f;
2902	int i;
2903
2904	i = tx_ring->next_to_use;
2905
2906	len = min(skb_headlen(skb), total);
2907	while (len) {
2908		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2909		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2910
2911		tx_buffer_info->length = size;
2912		tx_buffer_info->mapped_as_page = false;
2913		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2914						     skb->data + offset,
2915						     size, DMA_TO_DEVICE);
2916		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2917			goto dma_error;
2918		tx_buffer_info->time_stamp = jiffies;
2919		tx_buffer_info->next_to_watch = i;
2920
2921		len -= size;
2922		total -= size;
2923		offset += size;
2924		count++;
2925		i++;
2926		if (i == tx_ring->count)
2927			i = 0;
2928	}
2929
2930	for (f = 0; f < nr_frags; f++) {
2931		const struct skb_frag_struct *frag;
2932
2933		frag = &skb_shinfo(skb)->frags[f];
2934		len = min((unsigned int)skb_frag_size(frag), total);
2935		offset = 0;
2936
2937		while (len) {
2938			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2939			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2940
2941			tx_buffer_info->length = size;
2942			tx_buffer_info->dma =
2943				skb_frag_dma_map(&adapter->pdev->dev, frag,
2944						 offset, size, DMA_TO_DEVICE);
2945			tx_buffer_info->mapped_as_page = true;
2946			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2947				goto dma_error;
2948			tx_buffer_info->time_stamp = jiffies;
2949			tx_buffer_info->next_to_watch = i;
2950
2951			len -= size;
2952			total -= size;
2953			offset += size;
2954			count++;
2955			i++;
2956			if (i == tx_ring->count)
2957				i = 0;
2958		}
2959		if (total == 0)
2960			break;
2961	}
2962
2963	if (i == 0)
2964		i = tx_ring->count - 1;
2965	else
2966		i = i - 1;
2967	tx_ring->tx_buffer_info[i].skb = skb;
2968	tx_ring->tx_buffer_info[first].next_to_watch = i;
2969
2970	return count;
2971
2972dma_error:
2973	dev_err(&pdev->dev, "TX DMA map failed\n");
2974
2975	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2976	tx_buffer_info->dma = 0;
2977	tx_buffer_info->time_stamp = 0;
2978	tx_buffer_info->next_to_watch = 0;
2979	count--;
2980
2981	/* clear timestamp and dma mappings for remaining portion of packet */
2982	while (count >= 0) {
2983		count--;
2984		i--;
2985		if (i < 0)
2986			i += tx_ring->count;
2987		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2988		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2989	}
2990
2991	return count;
2992}
2993
2994static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2995			     struct ixgbevf_ring *tx_ring, int tx_flags,
2996			     int count, u32 paylen, u8 hdr_len)
2997{
2998	union ixgbe_adv_tx_desc *tx_desc = NULL;
2999	struct ixgbevf_tx_buffer *tx_buffer_info;
3000	u32 olinfo_status = 0, cmd_type_len = 0;
3001	unsigned int i;
3002
3003	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3004
3005	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3006
3007	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3008
3009	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3010		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3011
3012	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3013		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3014
3015		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3016			IXGBE_ADVTXD_POPTS_SHIFT;
3017
3018		/* use index 1 context for tso */
3019		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3020		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3021			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3022				IXGBE_ADVTXD_POPTS_SHIFT;
3023
3024	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3025		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3026			IXGBE_ADVTXD_POPTS_SHIFT;
3027
3028	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3029
3030	i = tx_ring->next_to_use;
3031	while (count--) {
3032		tx_buffer_info = &tx_ring->tx_buffer_info[i];
3033		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3034		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3035		tx_desc->read.cmd_type_len =
3036			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3037		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3038		i++;
3039		if (i == tx_ring->count)
3040			i = 0;
3041	}
3042
3043	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3044
3045	/*
3046	 * Force memory writes to complete before letting h/w
3047	 * know there are new descriptors to fetch.  (Only
3048	 * applicable for weak-ordered memory model archs,
3049	 * such as IA-64).
3050	 */
3051	wmb();
3052
3053	tx_ring->next_to_use = i;
3054	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3055}
3056
3057static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3058				   struct ixgbevf_ring *tx_ring, int size)
3059{
3060	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3061
3062	netif_stop_subqueue(netdev, tx_ring->queue_index);
3063	/* Herbert's original patch had:
3064	 *  smp_mb__after_netif_stop_queue();
3065	 * but since that doesn't exist yet, just open code it. */
3066	smp_mb();
3067
3068	/* We need to check again in a case another CPU has just
3069	 * made room available. */
3070	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3071		return -EBUSY;
3072
3073	/* A reprieve! - use start_queue because it doesn't call schedule */
3074	netif_start_subqueue(netdev, tx_ring->queue_index);
3075	++adapter->restart_queue;
3076	return 0;
3077}
3078
3079static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3080				 struct ixgbevf_ring *tx_ring, int size)
3081{
3082	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3083		return 0;
3084	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3085}
3086
3087static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3088{
3089	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3090	struct ixgbevf_ring *tx_ring;
3091	unsigned int first;
3092	unsigned int tx_flags = 0;
3093	u8 hdr_len = 0;
3094	int r_idx = 0, tso;
3095	int count = 0;
3096
3097	unsigned int f;
3098
3099	tx_ring = &adapter->tx_ring[r_idx];
3100
3101	if (vlan_tx_tag_present(skb)) {
3102		tx_flags |= vlan_tx_tag_get(skb);
3103		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3104		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3105	}
3106
3107	/* four things can cause us to need a context descriptor */
3108	if (skb_is_gso(skb) ||
3109	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
3110	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
3111		count++;
3112
3113	count += TXD_USE_COUNT(skb_headlen(skb));
3114	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3115		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3116
3117	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3118		adapter->tx_busy++;
3119		return NETDEV_TX_BUSY;
3120	}
3121
3122	first = tx_ring->next_to_use;
3123
3124	if (skb->protocol == htons(ETH_P_IP))
3125		tx_flags |= IXGBE_TX_FLAGS_IPV4;
3126	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3127	if (tso < 0) {
3128		dev_kfree_skb_any(skb);
3129		return NETDEV_TX_OK;
3130	}
3131
3132	if (tso)
3133		tx_flags |= IXGBE_TX_FLAGS_TSO;
3134	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3135		 (skb->ip_summed == CHECKSUM_PARTIAL))
3136		tx_flags |= IXGBE_TX_FLAGS_CSUM;
3137
3138	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3139			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3140			 skb->len, hdr_len);
3141
3142	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3143
3144	return NETDEV_TX_OK;
3145}
3146
3147/**
3148 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3149 * @netdev: network interface device structure
3150 * @p: pointer to an address structure
3151 *
3152 * Returns 0 on success, negative on failure
3153 **/
3154static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3155{
3156	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3157	struct ixgbe_hw *hw = &adapter->hw;
3158	struct sockaddr *addr = p;
3159
3160	if (!is_valid_ether_addr(addr->sa_data))
3161		return -EADDRNOTAVAIL;
3162
3163	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3164	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3165
3166	if (hw->mac.ops.set_rar)
3167		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3168
3169	return 0;
3170}
3171
3172/**
3173 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3174 * @netdev: network interface device structure
3175 * @new_mtu: new value for maximum frame size
3176 *
3177 * Returns 0 on success, negative on failure
3178 **/
3179static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3180{
3181	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3182	struct ixgbe_hw *hw = &adapter->hw;
3183	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3184	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3185	u32 msg[2];
3186
3187	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3188		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3189
3190	/* MTU < 68 is an error and causes problems on some kernels */
3191	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3192		return -EINVAL;
3193
3194	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3195	       netdev->mtu, new_mtu);
3196	/* must set new MTU before calling down or up */
3197	netdev->mtu = new_mtu;
3198
3199	msg[0] = IXGBE_VF_SET_LPE;
3200	msg[1] = max_frame;
3201	hw->mbx.ops.write_posted(hw, msg, 2);
3202
3203	if (netif_running(netdev))
3204		ixgbevf_reinit_locked(adapter);
3205
3206	return 0;
3207}
3208
3209static void ixgbevf_shutdown(struct pci_dev *pdev)
3210{
3211	struct net_device *netdev = pci_get_drvdata(pdev);
3212	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3213
3214	netif_device_detach(netdev);
3215
3216	if (netif_running(netdev)) {
3217		ixgbevf_down(adapter);
3218		ixgbevf_free_irq(adapter);
3219		ixgbevf_free_all_tx_resources(adapter);
3220		ixgbevf_free_all_rx_resources(adapter);
3221	}
3222
3223#ifdef CONFIG_PM
3224	pci_save_state(pdev);
3225#endif
3226
3227	pci_disable_device(pdev);
3228}
3229
3230static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3231						struct rtnl_link_stats64 *stats)
3232{
3233	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3234	unsigned int start;
3235	u64 bytes, packets;
3236	const struct ixgbevf_ring *ring;
3237	int i;
3238
3239	ixgbevf_update_stats(adapter);
3240
3241	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3242
3243	for (i = 0; i < adapter->num_rx_queues; i++) {
3244		ring = &adapter->rx_ring[i];
3245		do {
3246			start = u64_stats_fetch_begin_bh(&ring->syncp);
3247			bytes = ring->total_bytes;
3248			packets = ring->total_packets;
3249		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3250		stats->rx_bytes += bytes;
3251		stats->rx_packets += packets;
3252	}
3253
3254	for (i = 0; i < adapter->num_tx_queues; i++) {
3255		ring = &adapter->tx_ring[i];
3256		do {
3257			start = u64_stats_fetch_begin_bh(&ring->syncp);
3258			bytes = ring->total_bytes;
3259			packets = ring->total_packets;
3260		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3261		stats->tx_bytes += bytes;
3262		stats->tx_packets += packets;
3263	}
3264
3265	return stats;
3266}
3267
3268static int ixgbevf_set_features(struct net_device *netdev,
3269	netdev_features_t features)
3270{
3271	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3272
3273	if (features & NETIF_F_RXCSUM)
3274		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3275	else
3276		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3277
3278	return 0;
3279}
3280
3281static const struct net_device_ops ixgbe_netdev_ops = {
3282	.ndo_open		= ixgbevf_open,
3283	.ndo_stop		= ixgbevf_close,
3284	.ndo_start_xmit		= ixgbevf_xmit_frame,
3285	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3286	.ndo_get_stats64	= ixgbevf_get_stats,
3287	.ndo_validate_addr	= eth_validate_addr,
3288	.ndo_set_mac_address	= ixgbevf_set_mac,
3289	.ndo_change_mtu		= ixgbevf_change_mtu,
3290	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3291	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3292	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3293	.ndo_set_features	= ixgbevf_set_features,
3294};
3295
3296static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3297{
3298	dev->netdev_ops = &ixgbe_netdev_ops;
3299	ixgbevf_set_ethtool_ops(dev);
3300	dev->watchdog_timeo = 5 * HZ;
3301}
3302
3303/**
3304 * ixgbevf_probe - Device Initialization Routine
3305 * @pdev: PCI device information struct
3306 * @ent: entry in ixgbevf_pci_tbl
3307 *
3308 * Returns 0 on success, negative on failure
3309 *
3310 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3311 * The OS initialization, configuring of the adapter private structure,
3312 * and a hardware reset occur.
3313 **/
3314static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3315				   const struct pci_device_id *ent)
3316{
3317	struct net_device *netdev;
3318	struct ixgbevf_adapter *adapter = NULL;
3319	struct ixgbe_hw *hw = NULL;
3320	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3321	static int cards_found;
3322	int err, pci_using_dac;
3323
3324	err = pci_enable_device(pdev);
3325	if (err)
3326		return err;
3327
3328	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3329	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3330		pci_using_dac = 1;
3331	} else {
3332		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3333		if (err) {
3334			err = dma_set_coherent_mask(&pdev->dev,
3335						    DMA_BIT_MASK(32));
3336			if (err) {
3337				dev_err(&pdev->dev, "No usable DMA "
3338					"configuration, aborting\n");
3339				goto err_dma;
3340			}
3341		}
3342		pci_using_dac = 0;
3343	}
3344
3345	err = pci_request_regions(pdev, ixgbevf_driver_name);
3346	if (err) {
3347		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3348		goto err_pci_reg;
3349	}
3350
3351	pci_set_master(pdev);
3352
3353#ifdef HAVE_TX_MQ
3354	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3355				   MAX_TX_QUEUES);
3356#else
3357	netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3358#endif
3359	if (!netdev) {
3360		err = -ENOMEM;
3361		goto err_alloc_etherdev;
3362	}
3363
3364	SET_NETDEV_DEV(netdev, &pdev->dev);
3365
3366	pci_set_drvdata(pdev, netdev);
3367	adapter = netdev_priv(netdev);
3368
3369	adapter->netdev = netdev;
3370	adapter->pdev = pdev;
3371	hw = &adapter->hw;
3372	hw->back = adapter;
3373	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3374
3375	/*
3376	 * call save state here in standalone driver because it relies on
3377	 * adapter struct to exist, and needs to call netdev_priv
3378	 */
3379	pci_save_state(pdev);
3380
3381	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3382			      pci_resource_len(pdev, 0));
3383	if (!hw->hw_addr) {
3384		err = -EIO;
3385		goto err_ioremap;
3386	}
3387
3388	ixgbevf_assign_netdev_ops(netdev);
3389
3390	adapter->bd_number = cards_found;
3391
3392	/* Setup hw api */
3393	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3394	hw->mac.type  = ii->mac;
3395
3396	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3397	       sizeof(struct ixgbe_mbx_operations));
3398
3399	adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3400	adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3401	adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3402
3403	/* setup the private structure */
3404	err = ixgbevf_sw_init(adapter);
3405	if (err)
3406		goto err_sw_init;
3407
3408	/* The HW MAC address was set and/or determined in sw_init */
3409	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3410
3411	if (!is_valid_ether_addr(netdev->dev_addr)) {
3412		pr_err("invalid MAC address\n");
3413		err = -EIO;
3414		goto err_sw_init;
3415	}
3416
3417	netdev->hw_features = NETIF_F_SG |
3418			   NETIF_F_IP_CSUM |
3419			   NETIF_F_IPV6_CSUM |
3420			   NETIF_F_TSO |
3421			   NETIF_F_TSO6 |
3422			   NETIF_F_RXCSUM;
3423
3424	netdev->features = netdev->hw_features |
3425			   NETIF_F_HW_VLAN_TX |
3426			   NETIF_F_HW_VLAN_RX |
3427			   NETIF_F_HW_VLAN_FILTER;
3428
3429	netdev->vlan_features |= NETIF_F_TSO;
3430	netdev->vlan_features |= NETIF_F_TSO6;
3431	netdev->vlan_features |= NETIF_F_IP_CSUM;
3432	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3433	netdev->vlan_features |= NETIF_F_SG;
3434
3435	if (pci_using_dac)
3436		netdev->features |= NETIF_F_HIGHDMA;
3437
3438	netdev->priv_flags |= IFF_UNICAST_FLT;
3439
3440	init_timer(&adapter->watchdog_timer);
3441	adapter->watchdog_timer.function = ixgbevf_watchdog;
3442	adapter->watchdog_timer.data = (unsigned long)adapter;
3443
3444	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3445	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3446
3447	err = ixgbevf_init_interrupt_scheme(adapter);
3448	if (err)
3449		goto err_sw_init;
3450
3451	/* pick up the PCI bus settings for reporting later */
3452	if (hw->mac.ops.get_bus_info)
3453		hw->mac.ops.get_bus_info(hw);
3454
3455	strcpy(netdev->name, "eth%d");
3456
3457	err = register_netdev(netdev);
3458	if (err)
3459		goto err_register;
3460
3461	adapter->netdev_registered = true;
3462
3463	netif_carrier_off(netdev);
3464
3465	ixgbevf_init_last_counter_stats(adapter);
3466
3467	/* print the MAC address */
3468	hw_dbg(hw, "%pM\n", netdev->dev_addr);
3469
3470	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3471
3472	hw_dbg(hw, "LRO is disabled\n");
3473
3474	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3475	cards_found++;
3476	return 0;
3477
3478err_register:
3479err_sw_init:
3480	ixgbevf_reset_interrupt_capability(adapter);
3481	iounmap(hw->hw_addr);
3482err_ioremap:
3483	free_netdev(netdev);
3484err_alloc_etherdev:
3485	pci_release_regions(pdev);
3486err_pci_reg:
3487err_dma:
3488	pci_disable_device(pdev);
3489	return err;
3490}
3491
3492/**
3493 * ixgbevf_remove - Device Removal Routine
3494 * @pdev: PCI device information struct
3495 *
3496 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3497 * that it should release a PCI device.  The could be caused by a
3498 * Hot-Plug event, or because the driver is going to be removed from
3499 * memory.
3500 **/
3501static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3502{
3503	struct net_device *netdev = pci_get_drvdata(pdev);
3504	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3505
3506	set_bit(__IXGBEVF_DOWN, &adapter->state);
3507
3508	del_timer_sync(&adapter->watchdog_timer);
3509
3510	cancel_work_sync(&adapter->reset_task);
3511	cancel_work_sync(&adapter->watchdog_task);
3512
3513	if (adapter->netdev_registered) {
3514		unregister_netdev(netdev);
3515		adapter->netdev_registered = false;
3516	}
3517
3518	ixgbevf_reset_interrupt_capability(adapter);
3519
3520	iounmap(adapter->hw.hw_addr);
3521	pci_release_regions(pdev);
3522
3523	hw_dbg(&adapter->hw, "Remove complete\n");
3524
3525	kfree(adapter->tx_ring);
3526	kfree(adapter->rx_ring);
3527
3528	free_netdev(netdev);
3529
3530	pci_disable_device(pdev);
3531}
3532
3533static struct pci_driver ixgbevf_driver = {
3534	.name     = ixgbevf_driver_name,
3535	.id_table = ixgbevf_pci_tbl,
3536	.probe    = ixgbevf_probe,
3537	.remove   = __devexit_p(ixgbevf_remove),
3538	.shutdown = ixgbevf_shutdown,
3539};
3540
3541/**
3542 * ixgbevf_init_module - Driver Registration Routine
3543 *
3544 * ixgbevf_init_module is the first routine called when the driver is
3545 * loaded. All it does is register with the PCI subsystem.
3546 **/
3547static int __init ixgbevf_init_module(void)
3548{
3549	int ret;
3550	pr_info("%s - version %s\n", ixgbevf_driver_string,
3551		ixgbevf_driver_version);
3552
3553	pr_info("%s\n", ixgbevf_copyright);
3554
3555	ret = pci_register_driver(&ixgbevf_driver);
3556	return ret;
3557}
3558
3559module_init(ixgbevf_init_module);
3560
3561/**
3562 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3563 *
3564 * ixgbevf_exit_module is called just before the driver is removed
3565 * from memory.
3566 **/
3567static void __exit ixgbevf_exit_module(void)
3568{
3569	pci_unregister_driver(&ixgbevf_driver);
3570}
3571
3572#ifdef DEBUG
3573/**
3574 * ixgbevf_get_hw_dev_name - return device name string
3575 * used by hardware layer to print debugging information
3576 **/
3577char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3578{
3579	struct ixgbevf_adapter *adapter = hw->back;
3580	return adapter->netdev->name;
3581}
3582
3583#endif
3584module_exit(ixgbevf_exit_module);
3585
3586/* ixgbevf_main.c */
3587