ixgbevf_main.c revision dd1ed3b7bfed15f6162f63840941e9cf4f3611a1
1/*******************************************************************************
2
3  Intel 82599 Virtual Function driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29/******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31******************************************************************************/
32#include <linux/types.h>
33#include <linux/bitops.h>
34#include <linux/module.h>
35#include <linux/pci.h>
36#include <linux/netdevice.h>
37#include <linux/vmalloc.h>
38#include <linux/string.h>
39#include <linux/in.h>
40#include <linux/ip.h>
41#include <linux/tcp.h>
42#include <linux/ipv6.h>
43#include <linux/slab.h>
44#include <net/checksum.h>
45#include <net/ip6_checksum.h>
46#include <linux/ethtool.h>
47#include <linux/if.h>
48#include <linux/if_vlan.h>
49#include <linux/prefetch.h>
50
51#include "ixgbevf.h"
52
53char ixgbevf_driver_name[] = "ixgbevf";
54static const char ixgbevf_driver_string[] =
55	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
56
57#define DRV_VERSION "2.1.0-k"
58const char ixgbevf_driver_version[] = DRV_VERSION;
59static char ixgbevf_copyright[] =
60	"Copyright (c) 2009 - 2010 Intel Corporation.";
61
62static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
63	[board_82599_vf] = &ixgbevf_82599_vf_info,
64	[board_X540_vf]  = &ixgbevf_X540_vf_info,
65};
66
67/* ixgbevf_pci_tbl - PCI Device ID Table
68 *
69 * Wildcard entries (PCI_ANY_ID) should come last
70 * Last entry must be all 0s
71 *
72 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
73 *   Class, Class Mask, private data (not used) }
74 */
75static struct pci_device_id ixgbevf_pci_tbl[] = {
76	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
77	board_82599_vf},
78	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
79	board_X540_vf},
80
81	/* required last entry */
82	{0, }
83};
84MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
85
86MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
87MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
88MODULE_LICENSE("GPL");
89MODULE_VERSION(DRV_VERSION);
90
91#define DEFAULT_DEBUG_LEVEL_SHIFT 3
92
93/* forward decls */
94static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
95static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
96			       u32 itr_reg);
97
98static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
99					   struct ixgbevf_ring *rx_ring,
100					   u32 val)
101{
102	/*
103	 * Force memory writes to complete before letting h/w
104	 * know there are new descriptors to fetch.  (Only
105	 * applicable for weak-ordered memory model archs,
106	 * such as IA-64).
107	 */
108	wmb();
109	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
110}
111
112/*
113 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
114 * @adapter: pointer to adapter struct
115 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
116 * @queue: queue to map the corresponding interrupt to
117 * @msix_vector: the vector to map to the corresponding queue
118 *
119 */
120static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
121			     u8 queue, u8 msix_vector)
122{
123	u32 ivar, index;
124	struct ixgbe_hw *hw = &adapter->hw;
125	if (direction == -1) {
126		/* other causes */
127		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
129		ivar &= ~0xFF;
130		ivar |= msix_vector;
131		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
132	} else {
133		/* tx or rx causes */
134		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
135		index = ((16 * (queue & 1)) + (8 * direction));
136		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
137		ivar &= ~(0xFF << index);
138		ivar |= (msix_vector << index);
139		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
140	}
141}
142
143static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
144					       struct ixgbevf_tx_buffer
145					       *tx_buffer_info)
146{
147	if (tx_buffer_info->dma) {
148		if (tx_buffer_info->mapped_as_page)
149			dma_unmap_page(&adapter->pdev->dev,
150				       tx_buffer_info->dma,
151				       tx_buffer_info->length,
152				       DMA_TO_DEVICE);
153		else
154			dma_unmap_single(&adapter->pdev->dev,
155					 tx_buffer_info->dma,
156					 tx_buffer_info->length,
157					 DMA_TO_DEVICE);
158		tx_buffer_info->dma = 0;
159	}
160	if (tx_buffer_info->skb) {
161		dev_kfree_skb_any(tx_buffer_info->skb);
162		tx_buffer_info->skb = NULL;
163	}
164	tx_buffer_info->time_stamp = 0;
165	/* tx_buffer_info must be completely set up in the transmit path */
166}
167
168#define IXGBE_MAX_TXD_PWR	14
169#define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
170
171/* Tx Descriptors needed, worst case */
172#define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
173			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
174#ifdef MAX_SKB_FRAGS
175#define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
176	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
177#else
178#define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
179#endif
180
181static void ixgbevf_tx_timeout(struct net_device *netdev);
182
183/**
184 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
185 * @adapter: board private structure
186 * @tx_ring: tx ring to clean
187 **/
188static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
189				 struct ixgbevf_ring *tx_ring)
190{
191	struct net_device *netdev = adapter->netdev;
192	struct ixgbe_hw *hw = &adapter->hw;
193	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
194	struct ixgbevf_tx_buffer *tx_buffer_info;
195	unsigned int i, eop, count = 0;
196	unsigned int total_bytes = 0, total_packets = 0;
197
198	i = tx_ring->next_to_clean;
199	eop = tx_ring->tx_buffer_info[i].next_to_watch;
200	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
201
202	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
203	       (count < tx_ring->work_limit)) {
204		bool cleaned = false;
205		rmb(); /* read buffer_info after eop_desc */
206		/* eop could change between read and DD-check */
207		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
208			goto cont_loop;
209		for ( ; !cleaned; count++) {
210			struct sk_buff *skb;
211			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
212			tx_buffer_info = &tx_ring->tx_buffer_info[i];
213			cleaned = (i == eop);
214			skb = tx_buffer_info->skb;
215
216			if (cleaned && skb) {
217				unsigned int segs, bytecount;
218
219				/* gso_segs is currently only valid for tcp */
220				segs = skb_shinfo(skb)->gso_segs ?: 1;
221				/* multiply data chunks by size of headers */
222				bytecount = ((segs - 1) * skb_headlen(skb)) +
223					    skb->len;
224				total_packets += segs;
225				total_bytes += bytecount;
226			}
227
228			ixgbevf_unmap_and_free_tx_resource(adapter,
229							   tx_buffer_info);
230
231			tx_desc->wb.status = 0;
232
233			i++;
234			if (i == tx_ring->count)
235				i = 0;
236		}
237
238cont_loop:
239		eop = tx_ring->tx_buffer_info[i].next_to_watch;
240		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
241	}
242
243	tx_ring->next_to_clean = i;
244
245#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
246	if (unlikely(count && netif_carrier_ok(netdev) &&
247		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
248		/* Make sure that anybody stopping the queue after this
249		 * sees the new next_to_clean.
250		 */
251		smp_mb();
252#ifdef HAVE_TX_MQ
253		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
254		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
255			netif_wake_subqueue(netdev, tx_ring->queue_index);
256			++adapter->restart_queue;
257		}
258#else
259		if (netif_queue_stopped(netdev) &&
260		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
261			netif_wake_queue(netdev);
262			++adapter->restart_queue;
263		}
264#endif
265	}
266
267	/* re-arm the interrupt */
268	if ((count >= tx_ring->work_limit) &&
269	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
270		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
271	}
272
273	u64_stats_update_begin(&tx_ring->syncp);
274	tx_ring->total_bytes += total_bytes;
275	tx_ring->total_packets += total_packets;
276	u64_stats_update_end(&tx_ring->syncp);
277
278	return count < tx_ring->work_limit;
279}
280
281/**
282 * ixgbevf_receive_skb - Send a completed packet up the stack
283 * @q_vector: structure containing interrupt and ring information
284 * @skb: packet to send up
285 * @status: hardware indication of status of receive
286 * @rx_ring: rx descriptor ring (for a specific queue) to setup
287 * @rx_desc: rx descriptor
288 **/
289static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
290				struct sk_buff *skb, u8 status,
291				struct ixgbevf_ring *ring,
292				union ixgbe_adv_rx_desc *rx_desc)
293{
294	struct ixgbevf_adapter *adapter = q_vector->adapter;
295	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
296	u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
297
298	if (is_vlan && test_bit(tag, adapter->active_vlans))
299		__vlan_hwaccel_put_tag(skb, tag);
300
301	if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
302			napi_gro_receive(&q_vector->napi, skb);
303	else
304			netif_rx(skb);
305}
306
307/**
308 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
309 * @adapter: address of board private structure
310 * @status_err: hardware indication of status of receive
311 * @skb: skb currently being received and modified
312 **/
313static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
314				       u32 status_err, struct sk_buff *skb)
315{
316	skb_checksum_none_assert(skb);
317
318	/* Rx csum disabled */
319	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
320		return;
321
322	/* if IP and error */
323	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
324	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
325		adapter->hw_csum_rx_error++;
326		return;
327	}
328
329	if (!(status_err & IXGBE_RXD_STAT_L4CS))
330		return;
331
332	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
333		adapter->hw_csum_rx_error++;
334		return;
335	}
336
337	/* It must be a TCP or UDP packet with a valid checksum */
338	skb->ip_summed = CHECKSUM_UNNECESSARY;
339	adapter->hw_csum_rx_good++;
340}
341
342/**
343 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
344 * @adapter: address of board private structure
345 **/
346static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
347				     struct ixgbevf_ring *rx_ring,
348				     int cleaned_count)
349{
350	struct pci_dev *pdev = adapter->pdev;
351	union ixgbe_adv_rx_desc *rx_desc;
352	struct ixgbevf_rx_buffer *bi;
353	struct sk_buff *skb;
354	unsigned int i;
355	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
356
357	i = rx_ring->next_to_use;
358	bi = &rx_ring->rx_buffer_info[i];
359
360	while (cleaned_count--) {
361		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
362
363		if (!bi->page_dma &&
364		    (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
365			if (!bi->page) {
366				bi->page = netdev_alloc_page(adapter->netdev);
367				if (!bi->page) {
368					adapter->alloc_rx_page_failed++;
369					goto no_buffers;
370				}
371				bi->page_offset = 0;
372			} else {
373				/* use a half page if we're re-using */
374				bi->page_offset ^= (PAGE_SIZE / 2);
375			}
376
377			bi->page_dma = dma_map_page(&pdev->dev, bi->page,
378						    bi->page_offset,
379						    (PAGE_SIZE / 2),
380						    DMA_FROM_DEVICE);
381		}
382
383		skb = bi->skb;
384		if (!skb) {
385			skb = netdev_alloc_skb(adapter->netdev,
386							       bufsz);
387
388			if (!skb) {
389				adapter->alloc_rx_buff_failed++;
390				goto no_buffers;
391			}
392
393			/*
394			 * Make buffer alignment 2 beyond a 16 byte boundary
395			 * this will result in a 16 byte aligned IP header after
396			 * the 14 byte MAC header is removed
397			 */
398			skb_reserve(skb, NET_IP_ALIGN);
399
400			bi->skb = skb;
401		}
402		if (!bi->dma) {
403			bi->dma = dma_map_single(&pdev->dev, skb->data,
404						 rx_ring->rx_buf_len,
405						 DMA_FROM_DEVICE);
406		}
407		/* Refresh the desc even if buffer_addrs didn't change because
408		 * each write-back erases this info. */
409		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
410			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
411			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
412		} else {
413			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
414		}
415
416		i++;
417		if (i == rx_ring->count)
418			i = 0;
419		bi = &rx_ring->rx_buffer_info[i];
420	}
421
422no_buffers:
423	if (rx_ring->next_to_use != i) {
424		rx_ring->next_to_use = i;
425		if (i-- == 0)
426			i = (rx_ring->count - 1);
427
428		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
429	}
430}
431
432static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
433					     u64 qmask)
434{
435	u32 mask;
436	struct ixgbe_hw *hw = &adapter->hw;
437
438	mask = (qmask & 0xFFFFFFFF);
439	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
440}
441
442static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
443{
444	return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
445}
446
447static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
448{
449	return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
450}
451
452static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
453				 struct ixgbevf_ring *rx_ring,
454				 int *work_done, int work_to_do)
455{
456	struct ixgbevf_adapter *adapter = q_vector->adapter;
457	struct pci_dev *pdev = adapter->pdev;
458	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
459	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
460	struct sk_buff *skb;
461	unsigned int i;
462	u32 len, staterr;
463	u16 hdr_info;
464	bool cleaned = false;
465	int cleaned_count = 0;
466	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
467
468	i = rx_ring->next_to_clean;
469	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
470	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
471	rx_buffer_info = &rx_ring->rx_buffer_info[i];
472
473	while (staterr & IXGBE_RXD_STAT_DD) {
474		u32 upper_len = 0;
475		if (*work_done >= work_to_do)
476			break;
477		(*work_done)++;
478
479		rmb(); /* read descriptor and rx_buffer_info after status DD */
480		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
481			hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
482			len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
483			       IXGBE_RXDADV_HDRBUFLEN_SHIFT;
484			if (hdr_info & IXGBE_RXDADV_SPH)
485				adapter->rx_hdr_split++;
486			if (len > IXGBEVF_RX_HDR_SIZE)
487				len = IXGBEVF_RX_HDR_SIZE;
488			upper_len = le16_to_cpu(rx_desc->wb.upper.length);
489		} else {
490			len = le16_to_cpu(rx_desc->wb.upper.length);
491		}
492		cleaned = true;
493		skb = rx_buffer_info->skb;
494		prefetch(skb->data - NET_IP_ALIGN);
495		rx_buffer_info->skb = NULL;
496
497		if (rx_buffer_info->dma) {
498			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
499					 rx_ring->rx_buf_len,
500					 DMA_FROM_DEVICE);
501			rx_buffer_info->dma = 0;
502			skb_put(skb, len);
503		}
504
505		if (upper_len) {
506			dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
507				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
508			rx_buffer_info->page_dma = 0;
509			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
510					   rx_buffer_info->page,
511					   rx_buffer_info->page_offset,
512					   upper_len);
513
514			if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
515			    (page_count(rx_buffer_info->page) != 1))
516				rx_buffer_info->page = NULL;
517			else
518				get_page(rx_buffer_info->page);
519
520			skb->len += upper_len;
521			skb->data_len += upper_len;
522			skb->truesize += upper_len;
523		}
524
525		i++;
526		if (i == rx_ring->count)
527			i = 0;
528
529		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
530		prefetch(next_rxd);
531		cleaned_count++;
532
533		next_buffer = &rx_ring->rx_buffer_info[i];
534
535		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
536			if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
537				rx_buffer_info->skb = next_buffer->skb;
538				rx_buffer_info->dma = next_buffer->dma;
539				next_buffer->skb = skb;
540				next_buffer->dma = 0;
541			} else {
542				skb->next = next_buffer->skb;
543				skb->next->prev = skb;
544			}
545			adapter->non_eop_descs++;
546			goto next_desc;
547		}
548
549		/* ERR_MASK will only have valid bits if EOP set */
550		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
551			dev_kfree_skb_irq(skb);
552			goto next_desc;
553		}
554
555		ixgbevf_rx_checksum(adapter, staterr, skb);
556
557		/* probably a little skewed due to removing CRC */
558		total_rx_bytes += skb->len;
559		total_rx_packets++;
560
561		/*
562		 * Work around issue of some types of VM to VM loop back
563		 * packets not getting split correctly
564		 */
565		if (staterr & IXGBE_RXD_STAT_LB) {
566			u32 header_fixup_len = skb_headlen(skb);
567			if (header_fixup_len < 14)
568				skb_push(skb, header_fixup_len);
569		}
570		skb->protocol = eth_type_trans(skb, adapter->netdev);
571
572		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
573
574next_desc:
575		rx_desc->wb.upper.status_error = 0;
576
577		/* return some buffers to hardware, one at a time is too slow */
578		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
579			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
580						 cleaned_count);
581			cleaned_count = 0;
582		}
583
584		/* use prefetched values */
585		rx_desc = next_rxd;
586		rx_buffer_info = &rx_ring->rx_buffer_info[i];
587
588		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
589	}
590
591	rx_ring->next_to_clean = i;
592	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
593
594	if (cleaned_count)
595		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
596
597	u64_stats_update_begin(&rx_ring->syncp);
598	rx_ring->total_packets += total_rx_packets;
599	rx_ring->total_bytes += total_rx_bytes;
600	u64_stats_update_end(&rx_ring->syncp);
601
602	return cleaned;
603}
604
605/**
606 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
607 * @napi: napi struct with our devices info in it
608 * @budget: amount of work driver is allowed to do this pass, in packets
609 *
610 * This function is optimized for cleaning one queue only on a single
611 * q_vector!!!
612 **/
613static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
614{
615	struct ixgbevf_q_vector *q_vector =
616		container_of(napi, struct ixgbevf_q_vector, napi);
617	struct ixgbevf_adapter *adapter = q_vector->adapter;
618	struct ixgbevf_ring *rx_ring = NULL;
619	int work_done = 0;
620	long r_idx;
621
622	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
623	rx_ring = &(adapter->rx_ring[r_idx]);
624
625	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
626
627	/* If all Rx work done, exit the polling mode */
628	if (work_done < budget) {
629		napi_complete(napi);
630		if (adapter->itr_setting & 1)
631			ixgbevf_set_itr_msix(q_vector);
632		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
633			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
634	}
635
636	return work_done;
637}
638
639/**
640 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
641 * @napi: napi struct with our devices info in it
642 * @budget: amount of work driver is allowed to do this pass, in packets
643 *
644 * This function will clean more than one rx queue associated with a
645 * q_vector.
646 **/
647static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
648{
649	struct ixgbevf_q_vector *q_vector =
650		container_of(napi, struct ixgbevf_q_vector, napi);
651	struct ixgbevf_adapter *adapter = q_vector->adapter;
652	struct ixgbevf_ring *rx_ring = NULL;
653	int work_done = 0, i;
654	long r_idx;
655	u64 enable_mask = 0;
656
657	/* attempt to distribute budget to each queue fairly, but don't allow
658	 * the budget to go below 1 because we'll exit polling */
659	budget /= (q_vector->rxr_count ?: 1);
660	budget = max(budget, 1);
661	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
662	for (i = 0; i < q_vector->rxr_count; i++) {
663		rx_ring = &(adapter->rx_ring[r_idx]);
664		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
665		enable_mask |= rx_ring->v_idx;
666		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
667				      r_idx + 1);
668	}
669
670#ifndef HAVE_NETDEV_NAPI_LIST
671	if (!netif_running(adapter->netdev))
672		work_done = 0;
673
674#endif
675	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
676	rx_ring = &(adapter->rx_ring[r_idx]);
677
678	/* If all Rx work done, exit the polling mode */
679	if (work_done < budget) {
680		napi_complete(napi);
681		if (adapter->itr_setting & 1)
682			ixgbevf_set_itr_msix(q_vector);
683		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
684			ixgbevf_irq_enable_queues(adapter, enable_mask);
685	}
686
687	return work_done;
688}
689
690
691/**
692 * ixgbevf_configure_msix - Configure MSI-X hardware
693 * @adapter: board private structure
694 *
695 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
696 * interrupts.
697 **/
698static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
699{
700	struct ixgbevf_q_vector *q_vector;
701	struct ixgbe_hw *hw = &adapter->hw;
702	int i, j, q_vectors, v_idx, r_idx;
703	u32 mask;
704
705	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
706
707	/*
708	 * Populate the IVAR table and set the ITR values to the
709	 * corresponding register.
710	 */
711	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
712		q_vector = adapter->q_vector[v_idx];
713		/* XXX for_each_set_bit(...) */
714		r_idx = find_first_bit(q_vector->rxr_idx,
715				       adapter->num_rx_queues);
716
717		for (i = 0; i < q_vector->rxr_count; i++) {
718			j = adapter->rx_ring[r_idx].reg_idx;
719			ixgbevf_set_ivar(adapter, 0, j, v_idx);
720			r_idx = find_next_bit(q_vector->rxr_idx,
721					      adapter->num_rx_queues,
722					      r_idx + 1);
723		}
724		r_idx = find_first_bit(q_vector->txr_idx,
725				       adapter->num_tx_queues);
726
727		for (i = 0; i < q_vector->txr_count; i++) {
728			j = adapter->tx_ring[r_idx].reg_idx;
729			ixgbevf_set_ivar(adapter, 1, j, v_idx);
730			r_idx = find_next_bit(q_vector->txr_idx,
731					      adapter->num_tx_queues,
732					      r_idx + 1);
733		}
734
735		/* if this is a tx only vector halve the interrupt rate */
736		if (q_vector->txr_count && !q_vector->rxr_count)
737			q_vector->eitr = (adapter->eitr_param >> 1);
738		else if (q_vector->rxr_count)
739			/* rx only */
740			q_vector->eitr = adapter->eitr_param;
741
742		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
743	}
744
745	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
746
747	/* set up to autoclear timer, and the vectors */
748	mask = IXGBE_EIMS_ENABLE_MASK;
749	mask &= ~IXGBE_EIMS_OTHER;
750	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
751}
752
753enum latency_range {
754	lowest_latency = 0,
755	low_latency = 1,
756	bulk_latency = 2,
757	latency_invalid = 255
758};
759
760/**
761 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
762 * @adapter: pointer to adapter
763 * @eitr: eitr setting (ints per sec) to give last timeslice
764 * @itr_setting: current throttle rate in ints/second
765 * @packets: the number of packets during this measurement interval
766 * @bytes: the number of bytes during this measurement interval
767 *
768 *      Stores a new ITR value based on packets and byte
769 *      counts during the last interrupt.  The advantage of per interrupt
770 *      computation is faster updates and more accurate ITR for the current
771 *      traffic pattern.  Constants in this function were computed
772 *      based on theoretical maximum wire speed and thresholds were set based
773 *      on testing data as well as attempting to minimize response time
774 *      while increasing bulk throughput.
775 **/
776static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
777			     u32 eitr, u8 itr_setting,
778			     int packets, int bytes)
779{
780	unsigned int retval = itr_setting;
781	u32 timepassed_us;
782	u64 bytes_perint;
783
784	if (packets == 0)
785		goto update_itr_done;
786
787
788	/* simple throttlerate management
789	 *    0-20MB/s lowest (100000 ints/s)
790	 *   20-100MB/s low   (20000 ints/s)
791	 *  100-1249MB/s bulk (8000 ints/s)
792	 */
793	/* what was last interrupt timeslice? */
794	timepassed_us = 1000000/eitr;
795	bytes_perint = bytes / timepassed_us; /* bytes/usec */
796
797	switch (itr_setting) {
798	case lowest_latency:
799		if (bytes_perint > adapter->eitr_low)
800			retval = low_latency;
801		break;
802	case low_latency:
803		if (bytes_perint > adapter->eitr_high)
804			retval = bulk_latency;
805		else if (bytes_perint <= adapter->eitr_low)
806			retval = lowest_latency;
807		break;
808	case bulk_latency:
809		if (bytes_perint <= adapter->eitr_high)
810			retval = low_latency;
811		break;
812	}
813
814update_itr_done:
815	return retval;
816}
817
818/**
819 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
820 * @adapter: pointer to adapter struct
821 * @v_idx: vector index into q_vector array
822 * @itr_reg: new value to be written in *register* format, not ints/s
823 *
824 * This function is made to be called by ethtool and by the driver
825 * when it needs to update VTEITR registers at runtime.  Hardware
826 * specific quirks/differences are taken care of here.
827 */
828static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
829			       u32 itr_reg)
830{
831	struct ixgbe_hw *hw = &adapter->hw;
832
833	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
834
835	/*
836	 * set the WDIS bit to not clear the timer bits and cause an
837	 * immediate assertion of the interrupt
838	 */
839	itr_reg |= IXGBE_EITR_CNT_WDIS;
840
841	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
842}
843
844static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
845{
846	struct ixgbevf_adapter *adapter = q_vector->adapter;
847	u32 new_itr;
848	u8 current_itr, ret_itr;
849	int i, r_idx, v_idx = q_vector->v_idx;
850	struct ixgbevf_ring *rx_ring, *tx_ring;
851
852	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
853	for (i = 0; i < q_vector->txr_count; i++) {
854		tx_ring = &(adapter->tx_ring[r_idx]);
855		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
856					     q_vector->tx_itr,
857					     tx_ring->total_packets,
858					     tx_ring->total_bytes);
859		/* if the result for this queue would decrease interrupt
860		 * rate for this vector then use that result */
861		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
862				    q_vector->tx_itr - 1 : ret_itr);
863		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
864				      r_idx + 1);
865	}
866
867	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
868	for (i = 0; i < q_vector->rxr_count; i++) {
869		rx_ring = &(adapter->rx_ring[r_idx]);
870		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
871					     q_vector->rx_itr,
872					     rx_ring->total_packets,
873					     rx_ring->total_bytes);
874		/* if the result for this queue would decrease interrupt
875		 * rate for this vector then use that result */
876		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
877				    q_vector->rx_itr - 1 : ret_itr);
878		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
879				      r_idx + 1);
880	}
881
882	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
883
884	switch (current_itr) {
885	/* counts and packets in update_itr are dependent on these numbers */
886	case lowest_latency:
887		new_itr = 100000;
888		break;
889	case low_latency:
890		new_itr = 20000; /* aka hwitr = ~200 */
891		break;
892	case bulk_latency:
893	default:
894		new_itr = 8000;
895		break;
896	}
897
898	if (new_itr != q_vector->eitr) {
899		u32 itr_reg;
900
901		/* save the algorithm value here, not the smoothed one */
902		q_vector->eitr = new_itr;
903		/* do an exponential smoothing */
904		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
905		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
906		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
907	}
908}
909
910static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
911{
912	struct net_device *netdev = data;
913	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
914	struct ixgbe_hw *hw = &adapter->hw;
915	u32 eicr;
916	u32 msg;
917
918	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
919	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
920
921	if (!hw->mbx.ops.check_for_ack(hw)) {
922		/*
923		 * checking for the ack clears the PFACK bit.  Place
924		 * it back in the v2p_mailbox cache so that anyone
925		 * polling for an ack will not miss it.  Also
926		 * avoid the read below because the code to read
927		 * the mailbox will also clear the ack bit.  This was
928		 * causing lost acks.  Just cache the bit and exit
929		 * the IRQ handler.
930		 */
931		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
932		goto out;
933	}
934
935	/* Not an ack interrupt, go ahead and read the message */
936	hw->mbx.ops.read(hw, &msg, 1);
937
938	if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
939		mod_timer(&adapter->watchdog_timer,
940			  round_jiffies(jiffies + 1));
941
942out:
943	return IRQ_HANDLED;
944}
945
946static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
947{
948	struct ixgbevf_q_vector *q_vector = data;
949	struct ixgbevf_adapter  *adapter = q_vector->adapter;
950	struct ixgbevf_ring     *tx_ring;
951	int i, r_idx;
952
953	if (!q_vector->txr_count)
954		return IRQ_HANDLED;
955
956	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
957	for (i = 0; i < q_vector->txr_count; i++) {
958		tx_ring = &(adapter->tx_ring[r_idx]);
959		tx_ring->total_bytes = 0;
960		tx_ring->total_packets = 0;
961		ixgbevf_clean_tx_irq(adapter, tx_ring);
962		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
963				      r_idx + 1);
964	}
965
966	if (adapter->itr_setting & 1)
967		ixgbevf_set_itr_msix(q_vector);
968
969	return IRQ_HANDLED;
970}
971
972/**
973 * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
974 * @irq: unused
975 * @data: pointer to our q_vector struct for this interrupt vector
976 **/
977static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
978{
979	struct ixgbevf_q_vector *q_vector = data;
980	struct ixgbevf_adapter  *adapter = q_vector->adapter;
981	struct ixgbe_hw *hw = &adapter->hw;
982	struct ixgbevf_ring  *rx_ring;
983	int r_idx;
984	int i;
985
986	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
987	for (i = 0; i < q_vector->rxr_count; i++) {
988		rx_ring = &(adapter->rx_ring[r_idx]);
989		rx_ring->total_bytes = 0;
990		rx_ring->total_packets = 0;
991		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
992				      r_idx + 1);
993	}
994
995	if (!q_vector->rxr_count)
996		return IRQ_HANDLED;
997
998	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
999	rx_ring = &(adapter->rx_ring[r_idx]);
1000	/* disable interrupts on this vector only */
1001	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1002	napi_schedule(&q_vector->napi);
1003
1004
1005	return IRQ_HANDLED;
1006}
1007
1008static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1009{
1010	ixgbevf_msix_clean_rx(irq, data);
1011	ixgbevf_msix_clean_tx(irq, data);
1012
1013	return IRQ_HANDLED;
1014}
1015
1016static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1017				     int r_idx)
1018{
1019	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1020
1021	set_bit(r_idx, q_vector->rxr_idx);
1022	q_vector->rxr_count++;
1023	a->rx_ring[r_idx].v_idx = 1 << v_idx;
1024}
1025
1026static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1027				     int t_idx)
1028{
1029	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1030
1031	set_bit(t_idx, q_vector->txr_idx);
1032	q_vector->txr_count++;
1033	a->tx_ring[t_idx].v_idx = 1 << v_idx;
1034}
1035
1036/**
1037 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1038 * @adapter: board private structure to initialize
1039 *
1040 * This function maps descriptor rings to the queue-specific vectors
1041 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1042 * one vector per ring/queue, but on a constrained vector budget, we
1043 * group the rings as "efficiently" as possible.  You would add new
1044 * mapping configurations in here.
1045 **/
1046static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1047{
1048	int q_vectors;
1049	int v_start = 0;
1050	int rxr_idx = 0, txr_idx = 0;
1051	int rxr_remaining = adapter->num_rx_queues;
1052	int txr_remaining = adapter->num_tx_queues;
1053	int i, j;
1054	int rqpv, tqpv;
1055	int err = 0;
1056
1057	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1058
1059	/*
1060	 * The ideal configuration...
1061	 * We have enough vectors to map one per queue.
1062	 */
1063	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1064		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1065			map_vector_to_rxq(adapter, v_start, rxr_idx);
1066
1067		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1068			map_vector_to_txq(adapter, v_start, txr_idx);
1069		goto out;
1070	}
1071
1072	/*
1073	 * If we don't have enough vectors for a 1-to-1
1074	 * mapping, we'll have to group them so there are
1075	 * multiple queues per vector.
1076	 */
1077	/* Re-adjusting *qpv takes care of the remainder. */
1078	for (i = v_start; i < q_vectors; i++) {
1079		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1080		for (j = 0; j < rqpv; j++) {
1081			map_vector_to_rxq(adapter, i, rxr_idx);
1082			rxr_idx++;
1083			rxr_remaining--;
1084		}
1085	}
1086	for (i = v_start; i < q_vectors; i++) {
1087		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1088		for (j = 0; j < tqpv; j++) {
1089			map_vector_to_txq(adapter, i, txr_idx);
1090			txr_idx++;
1091			txr_remaining--;
1092		}
1093	}
1094
1095out:
1096	return err;
1097}
1098
1099/**
1100 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1101 * @adapter: board private structure
1102 *
1103 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1104 * interrupts from the kernel.
1105 **/
1106static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1107{
1108	struct net_device *netdev = adapter->netdev;
1109	irqreturn_t (*handler)(int, void *);
1110	int i, vector, q_vectors, err;
1111	int ri = 0, ti = 0;
1112
1113	/* Decrement for Other and TCP Timer vectors */
1114	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1115
1116#define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1117					  ? &ixgbevf_msix_clean_many : \
1118			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1119			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1120			  NULL)
1121	for (vector = 0; vector < q_vectors; vector++) {
1122		handler = SET_HANDLER(adapter->q_vector[vector]);
1123
1124		if (handler == &ixgbevf_msix_clean_rx) {
1125			sprintf(adapter->name[vector], "%s-%s-%d",
1126				netdev->name, "rx", ri++);
1127		} else if (handler == &ixgbevf_msix_clean_tx) {
1128			sprintf(adapter->name[vector], "%s-%s-%d",
1129				netdev->name, "tx", ti++);
1130		} else if (handler == &ixgbevf_msix_clean_many) {
1131			sprintf(adapter->name[vector], "%s-%s-%d",
1132				netdev->name, "TxRx", vector);
1133		} else {
1134			/* skip this unused q_vector */
1135			continue;
1136		}
1137		err = request_irq(adapter->msix_entries[vector].vector,
1138				  handler, 0, adapter->name[vector],
1139				  adapter->q_vector[vector]);
1140		if (err) {
1141			hw_dbg(&adapter->hw,
1142			       "request_irq failed for MSIX interrupt "
1143			       "Error: %d\n", err);
1144			goto free_queue_irqs;
1145		}
1146	}
1147
1148	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1149	err = request_irq(adapter->msix_entries[vector].vector,
1150			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1151	if (err) {
1152		hw_dbg(&adapter->hw,
1153		       "request_irq for msix_mbx failed: %d\n", err);
1154		goto free_queue_irqs;
1155	}
1156
1157	return 0;
1158
1159free_queue_irqs:
1160	for (i = vector - 1; i >= 0; i--)
1161		free_irq(adapter->msix_entries[--vector].vector,
1162			 &(adapter->q_vector[i]));
1163	pci_disable_msix(adapter->pdev);
1164	kfree(adapter->msix_entries);
1165	adapter->msix_entries = NULL;
1166	return err;
1167}
1168
1169static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1170{
1171	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1172
1173	for (i = 0; i < q_vectors; i++) {
1174		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1175		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1176		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1177		q_vector->rxr_count = 0;
1178		q_vector->txr_count = 0;
1179		q_vector->eitr = adapter->eitr_param;
1180	}
1181}
1182
1183/**
1184 * ixgbevf_request_irq - initialize interrupts
1185 * @adapter: board private structure
1186 *
1187 * Attempts to configure interrupts using the best available
1188 * capabilities of the hardware and kernel.
1189 **/
1190static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1191{
1192	int err = 0;
1193
1194	err = ixgbevf_request_msix_irqs(adapter);
1195
1196	if (err)
1197		hw_dbg(&adapter->hw,
1198		       "request_irq failed, Error %d\n", err);
1199
1200	return err;
1201}
1202
1203static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1204{
1205	struct net_device *netdev = adapter->netdev;
1206	int i, q_vectors;
1207
1208	q_vectors = adapter->num_msix_vectors;
1209
1210	i = q_vectors - 1;
1211
1212	free_irq(adapter->msix_entries[i].vector, netdev);
1213	i--;
1214
1215	for (; i >= 0; i--) {
1216		free_irq(adapter->msix_entries[i].vector,
1217			 adapter->q_vector[i]);
1218	}
1219
1220	ixgbevf_reset_q_vectors(adapter);
1221}
1222
1223/**
1224 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1225 * @adapter: board private structure
1226 **/
1227static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1228{
1229	int i;
1230	struct ixgbe_hw *hw = &adapter->hw;
1231
1232	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1233
1234	IXGBE_WRITE_FLUSH(hw);
1235
1236	for (i = 0; i < adapter->num_msix_vectors; i++)
1237		synchronize_irq(adapter->msix_entries[i].vector);
1238}
1239
1240/**
1241 * ixgbevf_irq_enable - Enable default interrupt generation settings
1242 * @adapter: board private structure
1243 **/
1244static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1245				      bool queues, bool flush)
1246{
1247	struct ixgbe_hw *hw = &adapter->hw;
1248	u32 mask;
1249	u64 qmask;
1250
1251	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1252	qmask = ~0;
1253
1254	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1255
1256	if (queues)
1257		ixgbevf_irq_enable_queues(adapter, qmask);
1258
1259	if (flush)
1260		IXGBE_WRITE_FLUSH(hw);
1261}
1262
1263/**
1264 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1265 * @adapter: board private structure
1266 *
1267 * Configure the Tx unit of the MAC after a reset.
1268 **/
1269static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1270{
1271	u64 tdba;
1272	struct ixgbe_hw *hw = &adapter->hw;
1273	u32 i, j, tdlen, txctrl;
1274
1275	/* Setup the HW Tx Head and Tail descriptor pointers */
1276	for (i = 0; i < adapter->num_tx_queues; i++) {
1277		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1278		j = ring->reg_idx;
1279		tdba = ring->dma;
1280		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1281		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1282				(tdba & DMA_BIT_MASK(32)));
1283		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1284		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1285		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1286		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1287		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1288		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1289		/* Disable Tx Head Writeback RO bit, since this hoses
1290		 * bookkeeping if things aren't delivered in order.
1291		 */
1292		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1293		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1294		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1295	}
1296}
1297
1298#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1299
1300static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1301{
1302	struct ixgbevf_ring *rx_ring;
1303	struct ixgbe_hw *hw = &adapter->hw;
1304	u32 srrctl;
1305
1306	rx_ring = &adapter->rx_ring[index];
1307
1308	srrctl = IXGBE_SRRCTL_DROP_EN;
1309
1310	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1311		u16 bufsz = IXGBEVF_RXBUFFER_2048;
1312		/* grow the amount we can receive on large page machines */
1313		if (bufsz < (PAGE_SIZE / 2))
1314			bufsz = (PAGE_SIZE / 2);
1315		/* cap the bufsz at our largest descriptor size */
1316		bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1317
1318		srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1319		srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1320		srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1321			   IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1322			   IXGBE_SRRCTL_BSIZEHDR_MASK);
1323	} else {
1324		srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1325
1326		if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1327			srrctl |= IXGBEVF_RXBUFFER_2048 >>
1328				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1329		else
1330			srrctl |= rx_ring->rx_buf_len >>
1331				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1332	}
1333	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1334}
1335
1336/**
1337 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1338 * @adapter: board private structure
1339 *
1340 * Configure the Rx unit of the MAC after a reset.
1341 **/
1342static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1343{
1344	u64 rdba;
1345	struct ixgbe_hw *hw = &adapter->hw;
1346	struct net_device *netdev = adapter->netdev;
1347	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1348	int i, j;
1349	u32 rdlen;
1350	int rx_buf_len;
1351
1352	/* Decide whether to use packet split mode or not */
1353	if (netdev->mtu > ETH_DATA_LEN) {
1354		if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1355			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1356		else
1357			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1358	} else {
1359		if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1360			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1361		else
1362			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1363	}
1364
1365	/* Set the RX buffer length according to the mode */
1366	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1367		/* PSRTYPE must be initialized in 82599 */
1368		u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1369			IXGBE_PSRTYPE_UDPHDR |
1370			IXGBE_PSRTYPE_IPV4HDR |
1371			IXGBE_PSRTYPE_IPV6HDR |
1372			IXGBE_PSRTYPE_L2HDR;
1373		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1374		rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1375	} else {
1376		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1377		if (netdev->mtu <= ETH_DATA_LEN)
1378			rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1379		else
1380			rx_buf_len = ALIGN(max_frame, 1024);
1381	}
1382
1383	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1384	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1385	 * the Base and Length of the Rx Descriptor Ring */
1386	for (i = 0; i < adapter->num_rx_queues; i++) {
1387		rdba = adapter->rx_ring[i].dma;
1388		j = adapter->rx_ring[i].reg_idx;
1389		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1390				(rdba & DMA_BIT_MASK(32)));
1391		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1392		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1393		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1394		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1395		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1396		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1397		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1398
1399		ixgbevf_configure_srrctl(adapter, j);
1400	}
1401}
1402
1403static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1404{
1405	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1406	struct ixgbe_hw *hw = &adapter->hw;
1407
1408	/* add VID to filter table */
1409	if (hw->mac.ops.set_vfta)
1410		hw->mac.ops.set_vfta(hw, vid, 0, true);
1411	set_bit(vid, adapter->active_vlans);
1412}
1413
1414static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1415{
1416	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1417	struct ixgbe_hw *hw = &adapter->hw;
1418
1419	/* remove VID from filter table */
1420	if (hw->mac.ops.set_vfta)
1421		hw->mac.ops.set_vfta(hw, vid, 0, false);
1422	clear_bit(vid, adapter->active_vlans);
1423}
1424
1425static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1426{
1427	u16 vid;
1428
1429	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1430		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1431}
1432
1433static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1434{
1435	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1436	struct ixgbe_hw *hw = &adapter->hw;
1437	int count = 0;
1438
1439	if ((netdev_uc_count(netdev)) > 10) {
1440		printk(KERN_ERR "Too many unicast filters - No Space\n");
1441		return -ENOSPC;
1442	}
1443
1444	if (!netdev_uc_empty(netdev)) {
1445		struct netdev_hw_addr *ha;
1446		netdev_for_each_uc_addr(ha, netdev) {
1447			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1448			udelay(200);
1449		}
1450	} else {
1451		/*
1452		 * If the list is empty then send message to PF driver to
1453		 * clear all macvlans on this VF.
1454		 */
1455		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1456	}
1457
1458	return count;
1459}
1460
1461/**
1462 * ixgbevf_set_rx_mode - Multicast set
1463 * @netdev: network interface device structure
1464 *
1465 * The set_rx_method entry point is called whenever the multicast address
1466 * list or the network interface flags are updated.  This routine is
1467 * responsible for configuring the hardware for proper multicast mode.
1468 **/
1469static void ixgbevf_set_rx_mode(struct net_device *netdev)
1470{
1471	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1472	struct ixgbe_hw *hw = &adapter->hw;
1473
1474	/* reprogram multicast list */
1475	if (hw->mac.ops.update_mc_addr_list)
1476		hw->mac.ops.update_mc_addr_list(hw, netdev);
1477
1478	ixgbevf_write_uc_addr_list(netdev);
1479}
1480
1481static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1482{
1483	int q_idx;
1484	struct ixgbevf_q_vector *q_vector;
1485	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1486
1487	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1488		struct napi_struct *napi;
1489		q_vector = adapter->q_vector[q_idx];
1490		if (!q_vector->rxr_count)
1491			continue;
1492		napi = &q_vector->napi;
1493		if (q_vector->rxr_count > 1)
1494			napi->poll = &ixgbevf_clean_rxonly_many;
1495
1496		napi_enable(napi);
1497	}
1498}
1499
1500static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1501{
1502	int q_idx;
1503	struct ixgbevf_q_vector *q_vector;
1504	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1505
1506	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1507		q_vector = adapter->q_vector[q_idx];
1508		if (!q_vector->rxr_count)
1509			continue;
1510		napi_disable(&q_vector->napi);
1511	}
1512}
1513
1514static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1515{
1516	struct net_device *netdev = adapter->netdev;
1517	int i;
1518
1519	ixgbevf_set_rx_mode(netdev);
1520
1521	ixgbevf_restore_vlan(adapter);
1522
1523	ixgbevf_configure_tx(adapter);
1524	ixgbevf_configure_rx(adapter);
1525	for (i = 0; i < adapter->num_rx_queues; i++) {
1526		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1527		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1528		ring->next_to_use = ring->count - 1;
1529		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1530	}
1531}
1532
1533#define IXGBE_MAX_RX_DESC_POLL 10
1534static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1535						int rxr)
1536{
1537	struct ixgbe_hw *hw = &adapter->hw;
1538	int j = adapter->rx_ring[rxr].reg_idx;
1539	int k;
1540
1541	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1542		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1543			break;
1544		else
1545			msleep(1);
1546	}
1547	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1548		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1549		       "not set within the polling period\n", rxr);
1550	}
1551
1552	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1553				(adapter->rx_ring[rxr].count - 1));
1554}
1555
1556static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1557{
1558	/* Only save pre-reset stats if there are some */
1559	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1560		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1561			adapter->stats.base_vfgprc;
1562		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1563			adapter->stats.base_vfgptc;
1564		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1565			adapter->stats.base_vfgorc;
1566		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1567			adapter->stats.base_vfgotc;
1568		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1569			adapter->stats.base_vfmprc;
1570	}
1571}
1572
1573static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1574{
1575	struct ixgbe_hw *hw = &adapter->hw;
1576
1577	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1578	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1579	adapter->stats.last_vfgorc |=
1580		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1581	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1582	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1583	adapter->stats.last_vfgotc |=
1584		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1585	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1586
1587	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1588	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1589	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1590	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1591	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1592}
1593
1594static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1595{
1596	struct net_device *netdev = adapter->netdev;
1597	struct ixgbe_hw *hw = &adapter->hw;
1598	int i, j = 0;
1599	int num_rx_rings = adapter->num_rx_queues;
1600	u32 txdctl, rxdctl;
1601
1602	for (i = 0; i < adapter->num_tx_queues; i++) {
1603		j = adapter->tx_ring[i].reg_idx;
1604		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1605		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1606		txdctl |= (8 << 16);
1607		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1608	}
1609
1610	for (i = 0; i < adapter->num_tx_queues; i++) {
1611		j = adapter->tx_ring[i].reg_idx;
1612		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1613		txdctl |= IXGBE_TXDCTL_ENABLE;
1614		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1615	}
1616
1617	for (i = 0; i < num_rx_rings; i++) {
1618		j = adapter->rx_ring[i].reg_idx;
1619		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1620		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1621		if (hw->mac.type == ixgbe_mac_X540_vf) {
1622			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1623			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1624				   IXGBE_RXDCTL_RLPML_EN);
1625		}
1626		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1627		ixgbevf_rx_desc_queue_enable(adapter, i);
1628	}
1629
1630	ixgbevf_configure_msix(adapter);
1631
1632	if (hw->mac.ops.set_rar) {
1633		if (is_valid_ether_addr(hw->mac.addr))
1634			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1635		else
1636			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1637	}
1638
1639	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1640	ixgbevf_napi_enable_all(adapter);
1641
1642	/* enable transmits */
1643	netif_tx_start_all_queues(netdev);
1644
1645	ixgbevf_save_reset_stats(adapter);
1646	ixgbevf_init_last_counter_stats(adapter);
1647
1648	/* bring the link up in the watchdog, this could race with our first
1649	 * link up interrupt but shouldn't be a problem */
1650	adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1651	adapter->link_check_timeout = jiffies;
1652	mod_timer(&adapter->watchdog_timer, jiffies);
1653	return 0;
1654}
1655
1656int ixgbevf_up(struct ixgbevf_adapter *adapter)
1657{
1658	int err;
1659	struct ixgbe_hw *hw = &adapter->hw;
1660
1661	ixgbevf_configure(adapter);
1662
1663	err = ixgbevf_up_complete(adapter);
1664
1665	/* clear any pending interrupts, may auto mask */
1666	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1667
1668	ixgbevf_irq_enable(adapter, true, true);
1669
1670	return err;
1671}
1672
1673/**
1674 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1675 * @adapter: board private structure
1676 * @rx_ring: ring to free buffers from
1677 **/
1678static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1679				  struct ixgbevf_ring *rx_ring)
1680{
1681	struct pci_dev *pdev = adapter->pdev;
1682	unsigned long size;
1683	unsigned int i;
1684
1685	if (!rx_ring->rx_buffer_info)
1686		return;
1687
1688	/* Free all the Rx ring sk_buffs */
1689	for (i = 0; i < rx_ring->count; i++) {
1690		struct ixgbevf_rx_buffer *rx_buffer_info;
1691
1692		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1693		if (rx_buffer_info->dma) {
1694			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1695					 rx_ring->rx_buf_len,
1696					 DMA_FROM_DEVICE);
1697			rx_buffer_info->dma = 0;
1698		}
1699		if (rx_buffer_info->skb) {
1700			struct sk_buff *skb = rx_buffer_info->skb;
1701			rx_buffer_info->skb = NULL;
1702			do {
1703				struct sk_buff *this = skb;
1704				skb = skb->prev;
1705				dev_kfree_skb(this);
1706			} while (skb);
1707		}
1708		if (!rx_buffer_info->page)
1709			continue;
1710		dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1711			       PAGE_SIZE / 2, DMA_FROM_DEVICE);
1712		rx_buffer_info->page_dma = 0;
1713		put_page(rx_buffer_info->page);
1714		rx_buffer_info->page = NULL;
1715		rx_buffer_info->page_offset = 0;
1716	}
1717
1718	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1719	memset(rx_ring->rx_buffer_info, 0, size);
1720
1721	/* Zero out the descriptor ring */
1722	memset(rx_ring->desc, 0, rx_ring->size);
1723
1724	rx_ring->next_to_clean = 0;
1725	rx_ring->next_to_use = 0;
1726
1727	if (rx_ring->head)
1728		writel(0, adapter->hw.hw_addr + rx_ring->head);
1729	if (rx_ring->tail)
1730		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1731}
1732
1733/**
1734 * ixgbevf_clean_tx_ring - Free Tx Buffers
1735 * @adapter: board private structure
1736 * @tx_ring: ring to be cleaned
1737 **/
1738static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1739				  struct ixgbevf_ring *tx_ring)
1740{
1741	struct ixgbevf_tx_buffer *tx_buffer_info;
1742	unsigned long size;
1743	unsigned int i;
1744
1745	if (!tx_ring->tx_buffer_info)
1746		return;
1747
1748	/* Free all the Tx ring sk_buffs */
1749
1750	for (i = 0; i < tx_ring->count; i++) {
1751		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1752		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1753	}
1754
1755	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1756	memset(tx_ring->tx_buffer_info, 0, size);
1757
1758	memset(tx_ring->desc, 0, tx_ring->size);
1759
1760	tx_ring->next_to_use = 0;
1761	tx_ring->next_to_clean = 0;
1762
1763	if (tx_ring->head)
1764		writel(0, adapter->hw.hw_addr + tx_ring->head);
1765	if (tx_ring->tail)
1766		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1767}
1768
1769/**
1770 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1771 * @adapter: board private structure
1772 **/
1773static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1774{
1775	int i;
1776
1777	for (i = 0; i < adapter->num_rx_queues; i++)
1778		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1779}
1780
1781/**
1782 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1783 * @adapter: board private structure
1784 **/
1785static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1786{
1787	int i;
1788
1789	for (i = 0; i < adapter->num_tx_queues; i++)
1790		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1791}
1792
1793void ixgbevf_down(struct ixgbevf_adapter *adapter)
1794{
1795	struct net_device *netdev = adapter->netdev;
1796	struct ixgbe_hw *hw = &adapter->hw;
1797	u32 txdctl;
1798	int i, j;
1799
1800	/* signal that we are down to the interrupt handler */
1801	set_bit(__IXGBEVF_DOWN, &adapter->state);
1802	/* disable receives */
1803
1804	netif_tx_disable(netdev);
1805
1806	msleep(10);
1807
1808	netif_tx_stop_all_queues(netdev);
1809
1810	ixgbevf_irq_disable(adapter);
1811
1812	ixgbevf_napi_disable_all(adapter);
1813
1814	del_timer_sync(&adapter->watchdog_timer);
1815	/* can't call flush scheduled work here because it can deadlock
1816	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1817	 * holding */
1818	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1819		msleep(1);
1820
1821	/* disable transmits in the hardware now that interrupts are off */
1822	for (i = 0; i < adapter->num_tx_queues; i++) {
1823		j = adapter->tx_ring[i].reg_idx;
1824		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1825		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1826				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1827	}
1828
1829	netif_carrier_off(netdev);
1830
1831	if (!pci_channel_offline(adapter->pdev))
1832		ixgbevf_reset(adapter);
1833
1834	ixgbevf_clean_all_tx_rings(adapter);
1835	ixgbevf_clean_all_rx_rings(adapter);
1836}
1837
1838void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1839{
1840	struct ixgbe_hw *hw = &adapter->hw;
1841
1842	WARN_ON(in_interrupt());
1843
1844	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1845		msleep(1);
1846
1847	/*
1848	 * Check if PF is up before re-init.  If not then skip until
1849	 * later when the PF is up and ready to service requests from
1850	 * the VF via mailbox.  If the VF is up and running then the
1851	 * watchdog task will continue to schedule reset tasks until
1852	 * the PF is up and running.
1853	 */
1854	if (!hw->mac.ops.reset_hw(hw)) {
1855		ixgbevf_down(adapter);
1856		ixgbevf_up(adapter);
1857	}
1858
1859	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1860}
1861
1862void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1863{
1864	struct ixgbe_hw *hw = &adapter->hw;
1865	struct net_device *netdev = adapter->netdev;
1866
1867	if (hw->mac.ops.reset_hw(hw))
1868		hw_dbg(hw, "PF still resetting\n");
1869	else
1870		hw->mac.ops.init_hw(hw);
1871
1872	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1873		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1874		       netdev->addr_len);
1875		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1876		       netdev->addr_len);
1877	}
1878}
1879
1880static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1881					 int vectors)
1882{
1883	int err, vector_threshold;
1884
1885	/* We'll want at least 3 (vector_threshold):
1886	 * 1) TxQ[0] Cleanup
1887	 * 2) RxQ[0] Cleanup
1888	 * 3) Other (Link Status Change, etc.)
1889	 */
1890	vector_threshold = MIN_MSIX_COUNT;
1891
1892	/* The more we get, the more we will assign to Tx/Rx Cleanup
1893	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1894	 * Right now, we simply care about how many we'll get; we'll
1895	 * set them up later while requesting irq's.
1896	 */
1897	while (vectors >= vector_threshold) {
1898		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1899				      vectors);
1900		if (!err) /* Success in acquiring all requested vectors. */
1901			break;
1902		else if (err < 0)
1903			vectors = 0; /* Nasty failure, quit now */
1904		else /* err == number of vectors we should try again with */
1905			vectors = err;
1906	}
1907
1908	if (vectors < vector_threshold) {
1909		/* Can't allocate enough MSI-X interrupts?  Oh well.
1910		 * This just means we'll go with either a single MSI
1911		 * vector or fall back to legacy interrupts.
1912		 */
1913		hw_dbg(&adapter->hw,
1914		       "Unable to allocate MSI-X interrupts\n");
1915		kfree(adapter->msix_entries);
1916		adapter->msix_entries = NULL;
1917	} else {
1918		/*
1919		 * Adjust for only the vectors we'll use, which is minimum
1920		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1921		 * vectors we were allocated.
1922		 */
1923		adapter->num_msix_vectors = vectors;
1924	}
1925}
1926
1927/*
1928 * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1929 * @adapter: board private structure to initialize
1930 *
1931 * This is the top level queue allocation routine.  The order here is very
1932 * important, starting with the "most" number of features turned on at once,
1933 * and ending with the smallest set of features.  This way large combinations
1934 * can be allocated if they're turned on, and smaller combinations are the
1935 * fallthrough conditions.
1936 *
1937 **/
1938static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1939{
1940	/* Start with base case */
1941	adapter->num_rx_queues = 1;
1942	adapter->num_tx_queues = 1;
1943	adapter->num_rx_pools = adapter->num_rx_queues;
1944	adapter->num_rx_queues_per_pool = 1;
1945}
1946
1947/**
1948 * ixgbevf_alloc_queues - Allocate memory for all rings
1949 * @adapter: board private structure to initialize
1950 *
1951 * We allocate one ring per queue at run-time since we don't know the
1952 * number of queues at compile-time.  The polling_netdev array is
1953 * intended for Multiqueue, but should work fine with a single queue.
1954 **/
1955static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1956{
1957	int i;
1958
1959	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1960				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1961	if (!adapter->tx_ring)
1962		goto err_tx_ring_allocation;
1963
1964	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1965				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1966	if (!adapter->rx_ring)
1967		goto err_rx_ring_allocation;
1968
1969	for (i = 0; i < adapter->num_tx_queues; i++) {
1970		adapter->tx_ring[i].count = adapter->tx_ring_count;
1971		adapter->tx_ring[i].queue_index = i;
1972		adapter->tx_ring[i].reg_idx = i;
1973	}
1974
1975	for (i = 0; i < adapter->num_rx_queues; i++) {
1976		adapter->rx_ring[i].count = adapter->rx_ring_count;
1977		adapter->rx_ring[i].queue_index = i;
1978		adapter->rx_ring[i].reg_idx = i;
1979	}
1980
1981	return 0;
1982
1983err_rx_ring_allocation:
1984	kfree(adapter->tx_ring);
1985err_tx_ring_allocation:
1986	return -ENOMEM;
1987}
1988
1989/**
1990 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1991 * @adapter: board private structure to initialize
1992 *
1993 * Attempt to configure the interrupts using the best available
1994 * capabilities of the hardware and the kernel.
1995 **/
1996static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1997{
1998	int err = 0;
1999	int vector, v_budget;
2000
2001	/*
2002	 * It's easy to be greedy for MSI-X vectors, but it really
2003	 * doesn't do us much good if we have a lot more vectors
2004	 * than CPU's.  So let's be conservative and only ask for
2005	 * (roughly) twice the number of vectors as there are CPU's.
2006	 */
2007	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2008		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2009
2010	/* A failure in MSI-X entry allocation isn't fatal, but it does
2011	 * mean we disable MSI-X capabilities of the adapter. */
2012	adapter->msix_entries = kcalloc(v_budget,
2013					sizeof(struct msix_entry), GFP_KERNEL);
2014	if (!adapter->msix_entries) {
2015		err = -ENOMEM;
2016		goto out;
2017	}
2018
2019	for (vector = 0; vector < v_budget; vector++)
2020		adapter->msix_entries[vector].entry = vector;
2021
2022	ixgbevf_acquire_msix_vectors(adapter, v_budget);
2023
2024out:
2025	return err;
2026}
2027
2028/**
2029 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2030 * @adapter: board private structure to initialize
2031 *
2032 * We allocate one q_vector per queue interrupt.  If allocation fails we
2033 * return -ENOMEM.
2034 **/
2035static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2036{
2037	int q_idx, num_q_vectors;
2038	struct ixgbevf_q_vector *q_vector;
2039	int napi_vectors;
2040	int (*poll)(struct napi_struct *, int);
2041
2042	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2043	napi_vectors = adapter->num_rx_queues;
2044	poll = &ixgbevf_clean_rxonly;
2045
2046	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2047		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2048		if (!q_vector)
2049			goto err_out;
2050		q_vector->adapter = adapter;
2051		q_vector->v_idx = q_idx;
2052		q_vector->eitr = adapter->eitr_param;
2053		if (q_idx < napi_vectors)
2054			netif_napi_add(adapter->netdev, &q_vector->napi,
2055				       (*poll), 64);
2056		adapter->q_vector[q_idx] = q_vector;
2057	}
2058
2059	return 0;
2060
2061err_out:
2062	while (q_idx) {
2063		q_idx--;
2064		q_vector = adapter->q_vector[q_idx];
2065		netif_napi_del(&q_vector->napi);
2066		kfree(q_vector);
2067		adapter->q_vector[q_idx] = NULL;
2068	}
2069	return -ENOMEM;
2070}
2071
2072/**
2073 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2074 * @adapter: board private structure to initialize
2075 *
2076 * This function frees the memory allocated to the q_vectors.  In addition if
2077 * NAPI is enabled it will delete any references to the NAPI struct prior
2078 * to freeing the q_vector.
2079 **/
2080static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2081{
2082	int q_idx, num_q_vectors;
2083	int napi_vectors;
2084
2085	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2086	napi_vectors = adapter->num_rx_queues;
2087
2088	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2089		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2090
2091		adapter->q_vector[q_idx] = NULL;
2092		if (q_idx < napi_vectors)
2093			netif_napi_del(&q_vector->napi);
2094		kfree(q_vector);
2095	}
2096}
2097
2098/**
2099 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2100 * @adapter: board private structure
2101 *
2102 **/
2103static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2104{
2105	pci_disable_msix(adapter->pdev);
2106	kfree(adapter->msix_entries);
2107	adapter->msix_entries = NULL;
2108}
2109
2110/**
2111 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2112 * @adapter: board private structure to initialize
2113 *
2114 **/
2115static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2116{
2117	int err;
2118
2119	/* Number of supported queues */
2120	ixgbevf_set_num_queues(adapter);
2121
2122	err = ixgbevf_set_interrupt_capability(adapter);
2123	if (err) {
2124		hw_dbg(&adapter->hw,
2125		       "Unable to setup interrupt capabilities\n");
2126		goto err_set_interrupt;
2127	}
2128
2129	err = ixgbevf_alloc_q_vectors(adapter);
2130	if (err) {
2131		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2132		       "vectors\n");
2133		goto err_alloc_q_vectors;
2134	}
2135
2136	err = ixgbevf_alloc_queues(adapter);
2137	if (err) {
2138		printk(KERN_ERR "Unable to allocate memory for queues\n");
2139		goto err_alloc_queues;
2140	}
2141
2142	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2143	       "Tx Queue count = %u\n",
2144	       (adapter->num_rx_queues > 1) ? "Enabled" :
2145	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2146
2147	set_bit(__IXGBEVF_DOWN, &adapter->state);
2148
2149	return 0;
2150err_alloc_queues:
2151	ixgbevf_free_q_vectors(adapter);
2152err_alloc_q_vectors:
2153	ixgbevf_reset_interrupt_capability(adapter);
2154err_set_interrupt:
2155	return err;
2156}
2157
2158/**
2159 * ixgbevf_sw_init - Initialize general software structures
2160 * (struct ixgbevf_adapter)
2161 * @adapter: board private structure to initialize
2162 *
2163 * ixgbevf_sw_init initializes the Adapter private data structure.
2164 * Fields are initialized based on PCI device information and
2165 * OS network device settings (MTU size).
2166 **/
2167static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2168{
2169	struct ixgbe_hw *hw = &adapter->hw;
2170	struct pci_dev *pdev = adapter->pdev;
2171	int err;
2172
2173	/* PCI config space info */
2174
2175	hw->vendor_id = pdev->vendor;
2176	hw->device_id = pdev->device;
2177	hw->revision_id = pdev->revision;
2178	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2179	hw->subsystem_device_id = pdev->subsystem_device;
2180
2181	hw->mbx.ops.init_params(hw);
2182	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2183	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2184	err = hw->mac.ops.reset_hw(hw);
2185	if (err) {
2186		dev_info(&pdev->dev,
2187		         "PF still in reset state, assigning new address\n");
2188		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2189	} else {
2190		err = hw->mac.ops.init_hw(hw);
2191		if (err) {
2192			printk(KERN_ERR "init_shared_code failed: %d\n", err);
2193			goto out;
2194		}
2195	}
2196
2197	/* Enable dynamic interrupt throttling rates */
2198	adapter->eitr_param = 20000;
2199	adapter->itr_setting = 1;
2200
2201	/* set defaults for eitr in MegaBytes */
2202	adapter->eitr_low = 10;
2203	adapter->eitr_high = 20;
2204
2205	/* set default ring sizes */
2206	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2207	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2208
2209	/* enable rx csum by default */
2210	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2211
2212	set_bit(__IXGBEVF_DOWN, &adapter->state);
2213
2214out:
2215	return err;
2216}
2217
2218#define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2219	{							\
2220		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2221		if (current_counter < last_counter)		\
2222			counter += 0x100000000LL;		\
2223		last_counter = current_counter;			\
2224		counter &= 0xFFFFFFFF00000000LL;		\
2225		counter |= current_counter;			\
2226	}
2227
2228#define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2229	{								 \
2230		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2231		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2232		u64 current_counter = (current_counter_msb << 32) |      \
2233			current_counter_lsb;                             \
2234		if (current_counter < last_counter)			 \
2235			counter += 0x1000000000LL;			 \
2236		last_counter = current_counter;				 \
2237		counter &= 0xFFFFFFF000000000LL;			 \
2238		counter |= current_counter;				 \
2239	}
2240/**
2241 * ixgbevf_update_stats - Update the board statistics counters.
2242 * @adapter: board private structure
2243 **/
2244void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2245{
2246	struct ixgbe_hw *hw = &adapter->hw;
2247
2248	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2249				adapter->stats.vfgprc);
2250	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2251				adapter->stats.vfgptc);
2252	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2253				adapter->stats.last_vfgorc,
2254				adapter->stats.vfgorc);
2255	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2256				adapter->stats.last_vfgotc,
2257				adapter->stats.vfgotc);
2258	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2259				adapter->stats.vfmprc);
2260}
2261
2262/**
2263 * ixgbevf_watchdog - Timer Call-back
2264 * @data: pointer to adapter cast into an unsigned long
2265 **/
2266static void ixgbevf_watchdog(unsigned long data)
2267{
2268	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2269	struct ixgbe_hw *hw = &adapter->hw;
2270	u64 eics = 0;
2271	int i;
2272
2273	/*
2274	 * Do the watchdog outside of interrupt context due to the lovely
2275	 * delays that some of the newer hardware requires
2276	 */
2277
2278	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2279		goto watchdog_short_circuit;
2280
2281	/* get one bit for every active tx/rx interrupt vector */
2282	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2283		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2284		if (qv->rxr_count || qv->txr_count)
2285			eics |= (1 << i);
2286	}
2287
2288	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2289
2290watchdog_short_circuit:
2291	schedule_work(&adapter->watchdog_task);
2292}
2293
2294/**
2295 * ixgbevf_tx_timeout - Respond to a Tx Hang
2296 * @netdev: network interface device structure
2297 **/
2298static void ixgbevf_tx_timeout(struct net_device *netdev)
2299{
2300	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2301
2302	/* Do the reset outside of interrupt context */
2303	schedule_work(&adapter->reset_task);
2304}
2305
2306static void ixgbevf_reset_task(struct work_struct *work)
2307{
2308	struct ixgbevf_adapter *adapter;
2309	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2310
2311	/* If we're already down or resetting, just bail */
2312	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2313	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2314		return;
2315
2316	adapter->tx_timeout_count++;
2317
2318	ixgbevf_reinit_locked(adapter);
2319}
2320
2321/**
2322 * ixgbevf_watchdog_task - worker thread to bring link up
2323 * @work: pointer to work_struct containing our data
2324 **/
2325static void ixgbevf_watchdog_task(struct work_struct *work)
2326{
2327	struct ixgbevf_adapter *adapter = container_of(work,
2328						       struct ixgbevf_adapter,
2329						       watchdog_task);
2330	struct net_device *netdev = adapter->netdev;
2331	struct ixgbe_hw *hw = &adapter->hw;
2332	u32 link_speed = adapter->link_speed;
2333	bool link_up = adapter->link_up;
2334
2335	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2336
2337	/*
2338	 * Always check the link on the watchdog because we have
2339	 * no LSC interrupt
2340	 */
2341	if (hw->mac.ops.check_link) {
2342		if ((hw->mac.ops.check_link(hw, &link_speed,
2343					    &link_up, false)) != 0) {
2344			adapter->link_up = link_up;
2345			adapter->link_speed = link_speed;
2346			netif_carrier_off(netdev);
2347			netif_tx_stop_all_queues(netdev);
2348			schedule_work(&adapter->reset_task);
2349			goto pf_has_reset;
2350		}
2351	} else {
2352		/* always assume link is up, if no check link
2353		 * function */
2354		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2355		link_up = true;
2356	}
2357	adapter->link_up = link_up;
2358	adapter->link_speed = link_speed;
2359
2360	if (link_up) {
2361		if (!netif_carrier_ok(netdev)) {
2362			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2363			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2364			       10 : 1);
2365			netif_carrier_on(netdev);
2366			netif_tx_wake_all_queues(netdev);
2367		}
2368	} else {
2369		adapter->link_up = false;
2370		adapter->link_speed = 0;
2371		if (netif_carrier_ok(netdev)) {
2372			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2373			netif_carrier_off(netdev);
2374			netif_tx_stop_all_queues(netdev);
2375		}
2376	}
2377
2378	ixgbevf_update_stats(adapter);
2379
2380pf_has_reset:
2381	/* Reset the timer */
2382	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2383		mod_timer(&adapter->watchdog_timer,
2384			  round_jiffies(jiffies + (2 * HZ)));
2385
2386	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2387}
2388
2389/**
2390 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2391 * @adapter: board private structure
2392 * @tx_ring: Tx descriptor ring for a specific queue
2393 *
2394 * Free all transmit software resources
2395 **/
2396void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2397			       struct ixgbevf_ring *tx_ring)
2398{
2399	struct pci_dev *pdev = adapter->pdev;
2400
2401	ixgbevf_clean_tx_ring(adapter, tx_ring);
2402
2403	vfree(tx_ring->tx_buffer_info);
2404	tx_ring->tx_buffer_info = NULL;
2405
2406	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2407			  tx_ring->dma);
2408
2409	tx_ring->desc = NULL;
2410}
2411
2412/**
2413 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2414 * @adapter: board private structure
2415 *
2416 * Free all transmit software resources
2417 **/
2418static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2419{
2420	int i;
2421
2422	for (i = 0; i < adapter->num_tx_queues; i++)
2423		if (adapter->tx_ring[i].desc)
2424			ixgbevf_free_tx_resources(adapter,
2425						  &adapter->tx_ring[i]);
2426
2427}
2428
2429/**
2430 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2431 * @adapter: board private structure
2432 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2433 *
2434 * Return 0 on success, negative on failure
2435 **/
2436int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2437			       struct ixgbevf_ring *tx_ring)
2438{
2439	struct pci_dev *pdev = adapter->pdev;
2440	int size;
2441
2442	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2443	tx_ring->tx_buffer_info = vzalloc(size);
2444	if (!tx_ring->tx_buffer_info)
2445		goto err;
2446
2447	/* round up to nearest 4K */
2448	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2449	tx_ring->size = ALIGN(tx_ring->size, 4096);
2450
2451	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2452					   &tx_ring->dma, GFP_KERNEL);
2453	if (!tx_ring->desc)
2454		goto err;
2455
2456	tx_ring->next_to_use = 0;
2457	tx_ring->next_to_clean = 0;
2458	tx_ring->work_limit = tx_ring->count;
2459	return 0;
2460
2461err:
2462	vfree(tx_ring->tx_buffer_info);
2463	tx_ring->tx_buffer_info = NULL;
2464	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2465	       "descriptor ring\n");
2466	return -ENOMEM;
2467}
2468
2469/**
2470 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2471 * @adapter: board private structure
2472 *
2473 * If this function returns with an error, then it's possible one or
2474 * more of the rings is populated (while the rest are not).  It is the
2475 * callers duty to clean those orphaned rings.
2476 *
2477 * Return 0 on success, negative on failure
2478 **/
2479static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2480{
2481	int i, err = 0;
2482
2483	for (i = 0; i < adapter->num_tx_queues; i++) {
2484		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2485		if (!err)
2486			continue;
2487		hw_dbg(&adapter->hw,
2488		       "Allocation for Tx Queue %u failed\n", i);
2489		break;
2490	}
2491
2492	return err;
2493}
2494
2495/**
2496 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2497 * @adapter: board private structure
2498 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2499 *
2500 * Returns 0 on success, negative on failure
2501 **/
2502int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2503			       struct ixgbevf_ring *rx_ring)
2504{
2505	struct pci_dev *pdev = adapter->pdev;
2506	int size;
2507
2508	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2509	rx_ring->rx_buffer_info = vzalloc(size);
2510	if (!rx_ring->rx_buffer_info) {
2511		hw_dbg(&adapter->hw,
2512		       "Unable to vmalloc buffer memory for "
2513		       "the receive descriptor ring\n");
2514		goto alloc_failed;
2515	}
2516
2517	/* Round up to nearest 4K */
2518	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2519	rx_ring->size = ALIGN(rx_ring->size, 4096);
2520
2521	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2522					   &rx_ring->dma, GFP_KERNEL);
2523
2524	if (!rx_ring->desc) {
2525		hw_dbg(&adapter->hw,
2526		       "Unable to allocate memory for "
2527		       "the receive descriptor ring\n");
2528		vfree(rx_ring->rx_buffer_info);
2529		rx_ring->rx_buffer_info = NULL;
2530		goto alloc_failed;
2531	}
2532
2533	rx_ring->next_to_clean = 0;
2534	rx_ring->next_to_use = 0;
2535
2536	return 0;
2537alloc_failed:
2538	return -ENOMEM;
2539}
2540
2541/**
2542 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2543 * @adapter: board private structure
2544 *
2545 * If this function returns with an error, then it's possible one or
2546 * more of the rings is populated (while the rest are not).  It is the
2547 * callers duty to clean those orphaned rings.
2548 *
2549 * Return 0 on success, negative on failure
2550 **/
2551static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2552{
2553	int i, err = 0;
2554
2555	for (i = 0; i < adapter->num_rx_queues; i++) {
2556		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2557		if (!err)
2558			continue;
2559		hw_dbg(&adapter->hw,
2560		       "Allocation for Rx Queue %u failed\n", i);
2561		break;
2562	}
2563	return err;
2564}
2565
2566/**
2567 * ixgbevf_free_rx_resources - Free Rx Resources
2568 * @adapter: board private structure
2569 * @rx_ring: ring to clean the resources from
2570 *
2571 * Free all receive software resources
2572 **/
2573void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2574			       struct ixgbevf_ring *rx_ring)
2575{
2576	struct pci_dev *pdev = adapter->pdev;
2577
2578	ixgbevf_clean_rx_ring(adapter, rx_ring);
2579
2580	vfree(rx_ring->rx_buffer_info);
2581	rx_ring->rx_buffer_info = NULL;
2582
2583	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2584			  rx_ring->dma);
2585
2586	rx_ring->desc = NULL;
2587}
2588
2589/**
2590 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2591 * @adapter: board private structure
2592 *
2593 * Free all receive software resources
2594 **/
2595static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2596{
2597	int i;
2598
2599	for (i = 0; i < adapter->num_rx_queues; i++)
2600		if (adapter->rx_ring[i].desc)
2601			ixgbevf_free_rx_resources(adapter,
2602						  &adapter->rx_ring[i]);
2603}
2604
2605/**
2606 * ixgbevf_open - Called when a network interface is made active
2607 * @netdev: network interface device structure
2608 *
2609 * Returns 0 on success, negative value on failure
2610 *
2611 * The open entry point is called when a network interface is made
2612 * active by the system (IFF_UP).  At this point all resources needed
2613 * for transmit and receive operations are allocated, the interrupt
2614 * handler is registered with the OS, the watchdog timer is started,
2615 * and the stack is notified that the interface is ready.
2616 **/
2617static int ixgbevf_open(struct net_device *netdev)
2618{
2619	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2620	struct ixgbe_hw *hw = &adapter->hw;
2621	int err;
2622
2623	/* disallow open during test */
2624	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2625		return -EBUSY;
2626
2627	if (hw->adapter_stopped) {
2628		ixgbevf_reset(adapter);
2629		/* if adapter is still stopped then PF isn't up and
2630		 * the vf can't start. */
2631		if (hw->adapter_stopped) {
2632			err = IXGBE_ERR_MBX;
2633			printk(KERN_ERR "Unable to start - perhaps the PF"
2634			       " Driver isn't up yet\n");
2635			goto err_setup_reset;
2636		}
2637	}
2638
2639	/* allocate transmit descriptors */
2640	err = ixgbevf_setup_all_tx_resources(adapter);
2641	if (err)
2642		goto err_setup_tx;
2643
2644	/* allocate receive descriptors */
2645	err = ixgbevf_setup_all_rx_resources(adapter);
2646	if (err)
2647		goto err_setup_rx;
2648
2649	ixgbevf_configure(adapter);
2650
2651	/*
2652	 * Map the Tx/Rx rings to the vectors we were allotted.
2653	 * if request_irq will be called in this function map_rings
2654	 * must be called *before* up_complete
2655	 */
2656	ixgbevf_map_rings_to_vectors(adapter);
2657
2658	err = ixgbevf_up_complete(adapter);
2659	if (err)
2660		goto err_up;
2661
2662	/* clear any pending interrupts, may auto mask */
2663	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2664	err = ixgbevf_request_irq(adapter);
2665	if (err)
2666		goto err_req_irq;
2667
2668	ixgbevf_irq_enable(adapter, true, true);
2669
2670	return 0;
2671
2672err_req_irq:
2673	ixgbevf_down(adapter);
2674err_up:
2675	ixgbevf_free_irq(adapter);
2676err_setup_rx:
2677	ixgbevf_free_all_rx_resources(adapter);
2678err_setup_tx:
2679	ixgbevf_free_all_tx_resources(adapter);
2680	ixgbevf_reset(adapter);
2681
2682err_setup_reset:
2683
2684	return err;
2685}
2686
2687/**
2688 * ixgbevf_close - Disables a network interface
2689 * @netdev: network interface device structure
2690 *
2691 * Returns 0, this is not allowed to fail
2692 *
2693 * The close entry point is called when an interface is de-activated
2694 * by the OS.  The hardware is still under the drivers control, but
2695 * needs to be disabled.  A global MAC reset is issued to stop the
2696 * hardware, and all transmit and receive resources are freed.
2697 **/
2698static int ixgbevf_close(struct net_device *netdev)
2699{
2700	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2701
2702	ixgbevf_down(adapter);
2703	ixgbevf_free_irq(adapter);
2704
2705	ixgbevf_free_all_tx_resources(adapter);
2706	ixgbevf_free_all_rx_resources(adapter);
2707
2708	return 0;
2709}
2710
2711static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2712		       struct ixgbevf_ring *tx_ring,
2713		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2714{
2715	struct ixgbe_adv_tx_context_desc *context_desc;
2716	unsigned int i;
2717	int err;
2718	struct ixgbevf_tx_buffer *tx_buffer_info;
2719	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2720	u32 mss_l4len_idx, l4len;
2721
2722	if (skb_is_gso(skb)) {
2723		if (skb_header_cloned(skb)) {
2724			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2725			if (err)
2726				return err;
2727		}
2728		l4len = tcp_hdrlen(skb);
2729		*hdr_len += l4len;
2730
2731		if (skb->protocol == htons(ETH_P_IP)) {
2732			struct iphdr *iph = ip_hdr(skb);
2733			iph->tot_len = 0;
2734			iph->check = 0;
2735			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2736								 iph->daddr, 0,
2737								 IPPROTO_TCP,
2738								 0);
2739			adapter->hw_tso_ctxt++;
2740		} else if (skb_is_gso_v6(skb)) {
2741			ipv6_hdr(skb)->payload_len = 0;
2742			tcp_hdr(skb)->check =
2743			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2744					     &ipv6_hdr(skb)->daddr,
2745					     0, IPPROTO_TCP, 0);
2746			adapter->hw_tso6_ctxt++;
2747		}
2748
2749		i = tx_ring->next_to_use;
2750
2751		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2752		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2753
2754		/* VLAN MACLEN IPLEN */
2755		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2756			vlan_macip_lens |=
2757				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2758		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2759				    IXGBE_ADVTXD_MACLEN_SHIFT);
2760		*hdr_len += skb_network_offset(skb);
2761		vlan_macip_lens |=
2762			(skb_transport_header(skb) - skb_network_header(skb));
2763		*hdr_len +=
2764			(skb_transport_header(skb) - skb_network_header(skb));
2765		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2766		context_desc->seqnum_seed = 0;
2767
2768		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2769		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2770				    IXGBE_ADVTXD_DTYP_CTXT);
2771
2772		if (skb->protocol == htons(ETH_P_IP))
2773			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2774		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2775		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2776
2777		/* MSS L4LEN IDX */
2778		mss_l4len_idx =
2779			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2780		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2781		/* use index 1 for TSO */
2782		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2783		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2784
2785		tx_buffer_info->time_stamp = jiffies;
2786		tx_buffer_info->next_to_watch = i;
2787
2788		i++;
2789		if (i == tx_ring->count)
2790			i = 0;
2791		tx_ring->next_to_use = i;
2792
2793		return true;
2794	}
2795
2796	return false;
2797}
2798
2799static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2800			    struct ixgbevf_ring *tx_ring,
2801			    struct sk_buff *skb, u32 tx_flags)
2802{
2803	struct ixgbe_adv_tx_context_desc *context_desc;
2804	unsigned int i;
2805	struct ixgbevf_tx_buffer *tx_buffer_info;
2806	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2807
2808	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2809	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2810		i = tx_ring->next_to_use;
2811		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2812		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2813
2814		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2815			vlan_macip_lens |= (tx_flags &
2816					    IXGBE_TX_FLAGS_VLAN_MASK);
2817		vlan_macip_lens |= (skb_network_offset(skb) <<
2818				    IXGBE_ADVTXD_MACLEN_SHIFT);
2819		if (skb->ip_summed == CHECKSUM_PARTIAL)
2820			vlan_macip_lens |= (skb_transport_header(skb) -
2821					    skb_network_header(skb));
2822
2823		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2824		context_desc->seqnum_seed = 0;
2825
2826		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2827				    IXGBE_ADVTXD_DTYP_CTXT);
2828
2829		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2830			switch (skb->protocol) {
2831			case __constant_htons(ETH_P_IP):
2832				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2833				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2834					type_tucmd_mlhl |=
2835					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2836				break;
2837			case __constant_htons(ETH_P_IPV6):
2838				/* XXX what about other V6 headers?? */
2839				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2840					type_tucmd_mlhl |=
2841						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2842				break;
2843			default:
2844				if (unlikely(net_ratelimit())) {
2845					printk(KERN_WARNING
2846					       "partial checksum but "
2847					       "proto=%x!\n",
2848					       skb->protocol);
2849				}
2850				break;
2851			}
2852		}
2853
2854		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2855		/* use index zero for tx checksum offload */
2856		context_desc->mss_l4len_idx = 0;
2857
2858		tx_buffer_info->time_stamp = jiffies;
2859		tx_buffer_info->next_to_watch = i;
2860
2861		adapter->hw_csum_tx_good++;
2862		i++;
2863		if (i == tx_ring->count)
2864			i = 0;
2865		tx_ring->next_to_use = i;
2866
2867		return true;
2868	}
2869
2870	return false;
2871}
2872
2873static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2874			  struct ixgbevf_ring *tx_ring,
2875			  struct sk_buff *skb, u32 tx_flags,
2876			  unsigned int first)
2877{
2878	struct pci_dev *pdev = adapter->pdev;
2879	struct ixgbevf_tx_buffer *tx_buffer_info;
2880	unsigned int len;
2881	unsigned int total = skb->len;
2882	unsigned int offset = 0, size;
2883	int count = 0;
2884	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2885	unsigned int f;
2886	int i;
2887
2888	i = tx_ring->next_to_use;
2889
2890	len = min(skb_headlen(skb), total);
2891	while (len) {
2892		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2893		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2894
2895		tx_buffer_info->length = size;
2896		tx_buffer_info->mapped_as_page = false;
2897		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2898						     skb->data + offset,
2899						     size, DMA_TO_DEVICE);
2900		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2901			goto dma_error;
2902		tx_buffer_info->time_stamp = jiffies;
2903		tx_buffer_info->next_to_watch = i;
2904
2905		len -= size;
2906		total -= size;
2907		offset += size;
2908		count++;
2909		i++;
2910		if (i == tx_ring->count)
2911			i = 0;
2912	}
2913
2914	for (f = 0; f < nr_frags; f++) {
2915		struct skb_frag_struct *frag;
2916
2917		frag = &skb_shinfo(skb)->frags[f];
2918		len = min((unsigned int)frag->size, total);
2919		offset = 0;
2920
2921		while (len) {
2922			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2923			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2924
2925			tx_buffer_info->length = size;
2926			tx_buffer_info->dma =
2927				skb_frag_dma_map(&adapter->pdev->dev, frag,
2928						 offset, size, DMA_TO_DEVICE);
2929			tx_buffer_info->mapped_as_page = true;
2930			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2931				goto dma_error;
2932			tx_buffer_info->time_stamp = jiffies;
2933			tx_buffer_info->next_to_watch = i;
2934
2935			len -= size;
2936			total -= size;
2937			offset += size;
2938			count++;
2939			i++;
2940			if (i == tx_ring->count)
2941				i = 0;
2942		}
2943		if (total == 0)
2944			break;
2945	}
2946
2947	if (i == 0)
2948		i = tx_ring->count - 1;
2949	else
2950		i = i - 1;
2951	tx_ring->tx_buffer_info[i].skb = skb;
2952	tx_ring->tx_buffer_info[first].next_to_watch = i;
2953
2954	return count;
2955
2956dma_error:
2957	dev_err(&pdev->dev, "TX DMA map failed\n");
2958
2959	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2960	tx_buffer_info->dma = 0;
2961	tx_buffer_info->time_stamp = 0;
2962	tx_buffer_info->next_to_watch = 0;
2963	count--;
2964
2965	/* clear timestamp and dma mappings for remaining portion of packet */
2966	while (count >= 0) {
2967		count--;
2968		i--;
2969		if (i < 0)
2970			i += tx_ring->count;
2971		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2972		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2973	}
2974
2975	return count;
2976}
2977
2978static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2979			     struct ixgbevf_ring *tx_ring, int tx_flags,
2980			     int count, u32 paylen, u8 hdr_len)
2981{
2982	union ixgbe_adv_tx_desc *tx_desc = NULL;
2983	struct ixgbevf_tx_buffer *tx_buffer_info;
2984	u32 olinfo_status = 0, cmd_type_len = 0;
2985	unsigned int i;
2986
2987	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2988
2989	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2990
2991	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2992
2993	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2994		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2995
2996	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2997		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2998
2999		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3000			IXGBE_ADVTXD_POPTS_SHIFT;
3001
3002		/* use index 1 context for tso */
3003		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3004		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3005			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3006				IXGBE_ADVTXD_POPTS_SHIFT;
3007
3008	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3009		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3010			IXGBE_ADVTXD_POPTS_SHIFT;
3011
3012	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3013
3014	i = tx_ring->next_to_use;
3015	while (count--) {
3016		tx_buffer_info = &tx_ring->tx_buffer_info[i];
3017		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3018		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3019		tx_desc->read.cmd_type_len =
3020			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3021		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3022		i++;
3023		if (i == tx_ring->count)
3024			i = 0;
3025	}
3026
3027	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3028
3029	/*
3030	 * Force memory writes to complete before letting h/w
3031	 * know there are new descriptors to fetch.  (Only
3032	 * applicable for weak-ordered memory model archs,
3033	 * such as IA-64).
3034	 */
3035	wmb();
3036
3037	tx_ring->next_to_use = i;
3038	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3039}
3040
3041static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3042				   struct ixgbevf_ring *tx_ring, int size)
3043{
3044	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3045
3046	netif_stop_subqueue(netdev, tx_ring->queue_index);
3047	/* Herbert's original patch had:
3048	 *  smp_mb__after_netif_stop_queue();
3049	 * but since that doesn't exist yet, just open code it. */
3050	smp_mb();
3051
3052	/* We need to check again in a case another CPU has just
3053	 * made room available. */
3054	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3055		return -EBUSY;
3056
3057	/* A reprieve! - use start_queue because it doesn't call schedule */
3058	netif_start_subqueue(netdev, tx_ring->queue_index);
3059	++adapter->restart_queue;
3060	return 0;
3061}
3062
3063static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3064				 struct ixgbevf_ring *tx_ring, int size)
3065{
3066	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3067		return 0;
3068	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3069}
3070
3071static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3072{
3073	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3074	struct ixgbevf_ring *tx_ring;
3075	unsigned int first;
3076	unsigned int tx_flags = 0;
3077	u8 hdr_len = 0;
3078	int r_idx = 0, tso;
3079	int count = 0;
3080
3081	unsigned int f;
3082
3083	tx_ring = &adapter->tx_ring[r_idx];
3084
3085	if (vlan_tx_tag_present(skb)) {
3086		tx_flags |= vlan_tx_tag_get(skb);
3087		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3088		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3089	}
3090
3091	/* four things can cause us to need a context descriptor */
3092	if (skb_is_gso(skb) ||
3093	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
3094	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
3095		count++;
3096
3097	count += TXD_USE_COUNT(skb_headlen(skb));
3098	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3099		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3100
3101	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3102		adapter->tx_busy++;
3103		return NETDEV_TX_BUSY;
3104	}
3105
3106	first = tx_ring->next_to_use;
3107
3108	if (skb->protocol == htons(ETH_P_IP))
3109		tx_flags |= IXGBE_TX_FLAGS_IPV4;
3110	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3111	if (tso < 0) {
3112		dev_kfree_skb_any(skb);
3113		return NETDEV_TX_OK;
3114	}
3115
3116	if (tso)
3117		tx_flags |= IXGBE_TX_FLAGS_TSO;
3118	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3119		 (skb->ip_summed == CHECKSUM_PARTIAL))
3120		tx_flags |= IXGBE_TX_FLAGS_CSUM;
3121
3122	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3123			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3124			 skb->len, hdr_len);
3125
3126	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3127
3128	return NETDEV_TX_OK;
3129}
3130
3131/**
3132 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3133 * @netdev: network interface device structure
3134 * @p: pointer to an address structure
3135 *
3136 * Returns 0 on success, negative on failure
3137 **/
3138static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3139{
3140	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3141	struct ixgbe_hw *hw = &adapter->hw;
3142	struct sockaddr *addr = p;
3143
3144	if (!is_valid_ether_addr(addr->sa_data))
3145		return -EADDRNOTAVAIL;
3146
3147	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3148	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3149
3150	if (hw->mac.ops.set_rar)
3151		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3152
3153	return 0;
3154}
3155
3156/**
3157 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3158 * @netdev: network interface device structure
3159 * @new_mtu: new value for maximum frame size
3160 *
3161 * Returns 0 on success, negative on failure
3162 **/
3163static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3164{
3165	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3166	struct ixgbe_hw *hw = &adapter->hw;
3167	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3168	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3169	u32 msg[2];
3170
3171	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3172		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3173
3174	/* MTU < 68 is an error and causes problems on some kernels */
3175	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3176		return -EINVAL;
3177
3178	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3179	       netdev->mtu, new_mtu);
3180	/* must set new MTU before calling down or up */
3181	netdev->mtu = new_mtu;
3182
3183	msg[0] = IXGBE_VF_SET_LPE;
3184	msg[1] = max_frame;
3185	hw->mbx.ops.write_posted(hw, msg, 2);
3186
3187	if (netif_running(netdev))
3188		ixgbevf_reinit_locked(adapter);
3189
3190	return 0;
3191}
3192
3193static void ixgbevf_shutdown(struct pci_dev *pdev)
3194{
3195	struct net_device *netdev = pci_get_drvdata(pdev);
3196	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3197
3198	netif_device_detach(netdev);
3199
3200	if (netif_running(netdev)) {
3201		ixgbevf_down(adapter);
3202		ixgbevf_free_irq(adapter);
3203		ixgbevf_free_all_tx_resources(adapter);
3204		ixgbevf_free_all_rx_resources(adapter);
3205	}
3206
3207#ifdef CONFIG_PM
3208	pci_save_state(pdev);
3209#endif
3210
3211	pci_disable_device(pdev);
3212}
3213
3214static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3215						struct rtnl_link_stats64 *stats)
3216{
3217	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3218	unsigned int start;
3219	u64 bytes, packets;
3220	const struct ixgbevf_ring *ring;
3221	int i;
3222
3223	ixgbevf_update_stats(adapter);
3224
3225	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3226
3227	for (i = 0; i < adapter->num_rx_queues; i++) {
3228		ring = &adapter->rx_ring[i];
3229		do {
3230			start = u64_stats_fetch_begin_bh(&ring->syncp);
3231			bytes = ring->total_bytes;
3232			packets = ring->total_packets;
3233		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3234		stats->rx_bytes += bytes;
3235		stats->rx_packets += packets;
3236	}
3237
3238	for (i = 0; i < adapter->num_tx_queues; i++) {
3239		ring = &adapter->tx_ring[i];
3240		do {
3241			start = u64_stats_fetch_begin_bh(&ring->syncp);
3242			bytes = ring->total_bytes;
3243			packets = ring->total_packets;
3244		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3245		stats->tx_bytes += bytes;
3246		stats->tx_packets += packets;
3247	}
3248
3249	return stats;
3250}
3251
3252static int ixgbevf_set_features(struct net_device *netdev, u32 features)
3253{
3254	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3255
3256	if (features & NETIF_F_RXCSUM)
3257		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3258	else
3259		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3260
3261	return 0;
3262}
3263
3264static const struct net_device_ops ixgbe_netdev_ops = {
3265	.ndo_open		= ixgbevf_open,
3266	.ndo_stop		= ixgbevf_close,
3267	.ndo_start_xmit		= ixgbevf_xmit_frame,
3268	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3269	.ndo_get_stats64	= ixgbevf_get_stats,
3270	.ndo_validate_addr	= eth_validate_addr,
3271	.ndo_set_mac_address	= ixgbevf_set_mac,
3272	.ndo_change_mtu		= ixgbevf_change_mtu,
3273	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3274	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3275	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3276	.ndo_set_features	= ixgbevf_set_features,
3277};
3278
3279static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3280{
3281	dev->netdev_ops = &ixgbe_netdev_ops;
3282	ixgbevf_set_ethtool_ops(dev);
3283	dev->watchdog_timeo = 5 * HZ;
3284}
3285
3286/**
3287 * ixgbevf_probe - Device Initialization Routine
3288 * @pdev: PCI device information struct
3289 * @ent: entry in ixgbevf_pci_tbl
3290 *
3291 * Returns 0 on success, negative on failure
3292 *
3293 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3294 * The OS initialization, configuring of the adapter private structure,
3295 * and a hardware reset occur.
3296 **/
3297static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3298				   const struct pci_device_id *ent)
3299{
3300	struct net_device *netdev;
3301	struct ixgbevf_adapter *adapter = NULL;
3302	struct ixgbe_hw *hw = NULL;
3303	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3304	static int cards_found;
3305	int err, pci_using_dac;
3306
3307	err = pci_enable_device(pdev);
3308	if (err)
3309		return err;
3310
3311	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3312	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3313		pci_using_dac = 1;
3314	} else {
3315		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3316		if (err) {
3317			err = dma_set_coherent_mask(&pdev->dev,
3318						    DMA_BIT_MASK(32));
3319			if (err) {
3320				dev_err(&pdev->dev, "No usable DMA "
3321					"configuration, aborting\n");
3322				goto err_dma;
3323			}
3324		}
3325		pci_using_dac = 0;
3326	}
3327
3328	err = pci_request_regions(pdev, ixgbevf_driver_name);
3329	if (err) {
3330		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3331		goto err_pci_reg;
3332	}
3333
3334	pci_set_master(pdev);
3335
3336#ifdef HAVE_TX_MQ
3337	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3338				   MAX_TX_QUEUES);
3339#else
3340	netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3341#endif
3342	if (!netdev) {
3343		err = -ENOMEM;
3344		goto err_alloc_etherdev;
3345	}
3346
3347	SET_NETDEV_DEV(netdev, &pdev->dev);
3348
3349	pci_set_drvdata(pdev, netdev);
3350	adapter = netdev_priv(netdev);
3351
3352	adapter->netdev = netdev;
3353	adapter->pdev = pdev;
3354	hw = &adapter->hw;
3355	hw->back = adapter;
3356	adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3357
3358	/*
3359	 * call save state here in standalone driver because it relies on
3360	 * adapter struct to exist, and needs to call netdev_priv
3361	 */
3362	pci_save_state(pdev);
3363
3364	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3365			      pci_resource_len(pdev, 0));
3366	if (!hw->hw_addr) {
3367		err = -EIO;
3368		goto err_ioremap;
3369	}
3370
3371	ixgbevf_assign_netdev_ops(netdev);
3372
3373	adapter->bd_number = cards_found;
3374
3375	/* Setup hw api */
3376	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3377	hw->mac.type  = ii->mac;
3378
3379	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3380	       sizeof(struct ixgbe_mbx_operations));
3381
3382	adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3383	adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3384	adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3385
3386	/* setup the private structure */
3387	err = ixgbevf_sw_init(adapter);
3388
3389	netdev->hw_features = NETIF_F_SG |
3390			   NETIF_F_IP_CSUM |
3391			   NETIF_F_IPV6_CSUM |
3392			   NETIF_F_TSO |
3393			   NETIF_F_TSO6 |
3394			   NETIF_F_RXCSUM;
3395
3396	netdev->features = netdev->hw_features |
3397			   NETIF_F_HW_VLAN_TX |
3398			   NETIF_F_HW_VLAN_RX |
3399			   NETIF_F_HW_VLAN_FILTER;
3400
3401	netdev->vlan_features |= NETIF_F_TSO;
3402	netdev->vlan_features |= NETIF_F_TSO6;
3403	netdev->vlan_features |= NETIF_F_IP_CSUM;
3404	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3405	netdev->vlan_features |= NETIF_F_SG;
3406
3407	if (pci_using_dac)
3408		netdev->features |= NETIF_F_HIGHDMA;
3409
3410	netdev->priv_flags |= IFF_UNICAST_FLT;
3411
3412	/* The HW MAC address was set and/or determined in sw_init */
3413	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3414	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3415
3416	if (!is_valid_ether_addr(netdev->dev_addr)) {
3417		printk(KERN_ERR "invalid MAC address\n");
3418		err = -EIO;
3419		goto err_sw_init;
3420	}
3421
3422	init_timer(&adapter->watchdog_timer);
3423	adapter->watchdog_timer.function = ixgbevf_watchdog;
3424	adapter->watchdog_timer.data = (unsigned long)adapter;
3425
3426	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3427	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3428
3429	err = ixgbevf_init_interrupt_scheme(adapter);
3430	if (err)
3431		goto err_sw_init;
3432
3433	/* pick up the PCI bus settings for reporting later */
3434	if (hw->mac.ops.get_bus_info)
3435		hw->mac.ops.get_bus_info(hw);
3436
3437	strcpy(netdev->name, "eth%d");
3438
3439	err = register_netdev(netdev);
3440	if (err)
3441		goto err_register;
3442
3443	adapter->netdev_registered = true;
3444
3445	netif_carrier_off(netdev);
3446
3447	ixgbevf_init_last_counter_stats(adapter);
3448
3449	/* print the MAC address */
3450	hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3451	       netdev->dev_addr[0],
3452	       netdev->dev_addr[1],
3453	       netdev->dev_addr[2],
3454	       netdev->dev_addr[3],
3455	       netdev->dev_addr[4],
3456	       netdev->dev_addr[5]);
3457
3458	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3459
3460	hw_dbg(hw, "LRO is disabled\n");
3461
3462	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3463	cards_found++;
3464	return 0;
3465
3466err_register:
3467err_sw_init:
3468	ixgbevf_reset_interrupt_capability(adapter);
3469	iounmap(hw->hw_addr);
3470err_ioremap:
3471	free_netdev(netdev);
3472err_alloc_etherdev:
3473	pci_release_regions(pdev);
3474err_pci_reg:
3475err_dma:
3476	pci_disable_device(pdev);
3477	return err;
3478}
3479
3480/**
3481 * ixgbevf_remove - Device Removal Routine
3482 * @pdev: PCI device information struct
3483 *
3484 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3485 * that it should release a PCI device.  The could be caused by a
3486 * Hot-Plug event, or because the driver is going to be removed from
3487 * memory.
3488 **/
3489static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3490{
3491	struct net_device *netdev = pci_get_drvdata(pdev);
3492	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3493
3494	set_bit(__IXGBEVF_DOWN, &adapter->state);
3495
3496	del_timer_sync(&adapter->watchdog_timer);
3497
3498	cancel_work_sync(&adapter->reset_task);
3499	cancel_work_sync(&adapter->watchdog_task);
3500
3501	if (adapter->netdev_registered) {
3502		unregister_netdev(netdev);
3503		adapter->netdev_registered = false;
3504	}
3505
3506	ixgbevf_reset_interrupt_capability(adapter);
3507
3508	iounmap(adapter->hw.hw_addr);
3509	pci_release_regions(pdev);
3510
3511	hw_dbg(&adapter->hw, "Remove complete\n");
3512
3513	kfree(adapter->tx_ring);
3514	kfree(adapter->rx_ring);
3515
3516	free_netdev(netdev);
3517
3518	pci_disable_device(pdev);
3519}
3520
3521static struct pci_driver ixgbevf_driver = {
3522	.name     = ixgbevf_driver_name,
3523	.id_table = ixgbevf_pci_tbl,
3524	.probe    = ixgbevf_probe,
3525	.remove   = __devexit_p(ixgbevf_remove),
3526	.shutdown = ixgbevf_shutdown,
3527};
3528
3529/**
3530 * ixgbevf_init_module - Driver Registration Routine
3531 *
3532 * ixgbevf_init_module is the first routine called when the driver is
3533 * loaded. All it does is register with the PCI subsystem.
3534 **/
3535static int __init ixgbevf_init_module(void)
3536{
3537	int ret;
3538	printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3539	       ixgbevf_driver_version);
3540
3541	printk(KERN_INFO "%s\n", ixgbevf_copyright);
3542
3543	ret = pci_register_driver(&ixgbevf_driver);
3544	return ret;
3545}
3546
3547module_init(ixgbevf_init_module);
3548
3549/**
3550 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3551 *
3552 * ixgbevf_exit_module is called just before the driver is removed
3553 * from memory.
3554 **/
3555static void __exit ixgbevf_exit_module(void)
3556{
3557	pci_unregister_driver(&ixgbevf_driver);
3558}
3559
3560#ifdef DEBUG
3561/**
3562 * ixgbevf_get_hw_dev_name - return device name string
3563 * used by hardware layer to print debugging information
3564 **/
3565char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3566{
3567	struct ixgbevf_adapter *adapter = hw->back;
3568	return adapter->netdev->name;
3569}
3570
3571#endif
3572module_exit(ixgbevf_exit_module);
3573
3574/* ixgbevf_main.c */
3575