sh_eth.c revision 2c6221e4a5aab417cb18bef6f1130d1374240258
1/*
2 *  SuperH Ethernet device driver
3 *
4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 *  Copyright (C) 2008-2013 Renesas Solutions Corp.
6 *  Copyright (C) 2013 Cogent Embedded, Inc.
7 *
8 *  This program is free software; you can redistribute it and/or modify it
9 *  under the terms and conditions of the GNU General Public License,
10 *  version 2, as published by the Free Software Foundation.
11 *
12 *  This program is distributed in the hope it will be useful, but WITHOUT
13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 *  more details.
16 *  You should have received a copy of the GNU General Public License along with
17 *  this program; if not, write to the Free Software Foundation, Inc.,
18 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 *  The full GNU General Public License is included in this distribution in
21 *  the file called "COPYING".
22 */
23
24#include <linux/init.h>
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/spinlock.h>
28#include <linux/interrupt.h>
29#include <linux/dma-mapping.h>
30#include <linux/etherdevice.h>
31#include <linux/delay.h>
32#include <linux/platform_device.h>
33#include <linux/mdio-bitbang.h>
34#include <linux/netdevice.h>
35#include <linux/phy.h>
36#include <linux/cache.h>
37#include <linux/io.h>
38#include <linux/pm_runtime.h>
39#include <linux/slab.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/clk.h>
43#include <linux/sh_eth.h>
44
45#include "sh_eth.h"
46
47#define SH_ETH_DEF_MSG_ENABLE \
48		(NETIF_MSG_LINK	| \
49		NETIF_MSG_TIMER	| \
50		NETIF_MSG_RX_ERR| \
51		NETIF_MSG_TX_ERR)
52
53static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54	[EDSR]		= 0x0000,
55	[EDMR]		= 0x0400,
56	[EDTRR]		= 0x0408,
57	[EDRRR]		= 0x0410,
58	[EESR]		= 0x0428,
59	[EESIPR]	= 0x0430,
60	[TDLAR]		= 0x0010,
61	[TDFAR]		= 0x0014,
62	[TDFXR]		= 0x0018,
63	[TDFFR]		= 0x001c,
64	[RDLAR]		= 0x0030,
65	[RDFAR]		= 0x0034,
66	[RDFXR]		= 0x0038,
67	[RDFFR]		= 0x003c,
68	[TRSCER]	= 0x0438,
69	[RMFCR]		= 0x0440,
70	[TFTR]		= 0x0448,
71	[FDR]		= 0x0450,
72	[RMCR]		= 0x0458,
73	[RPADIR]	= 0x0460,
74	[FCFTR]		= 0x0468,
75	[CSMR]		= 0x04E4,
76
77	[ECMR]		= 0x0500,
78	[ECSR]		= 0x0510,
79	[ECSIPR]	= 0x0518,
80	[PIR]		= 0x0520,
81	[PSR]		= 0x0528,
82	[PIPR]		= 0x052c,
83	[RFLR]		= 0x0508,
84	[APR]		= 0x0554,
85	[MPR]		= 0x0558,
86	[PFTCR]		= 0x055c,
87	[PFRCR]		= 0x0560,
88	[TPAUSER]	= 0x0564,
89	[GECMR]		= 0x05b0,
90	[BCULR]		= 0x05b4,
91	[MAHR]		= 0x05c0,
92	[MALR]		= 0x05c8,
93	[TROCR]		= 0x0700,
94	[CDCR]		= 0x0708,
95	[LCCR]		= 0x0710,
96	[CEFCR]		= 0x0740,
97	[FRECR]		= 0x0748,
98	[TSFRCR]	= 0x0750,
99	[TLFRCR]	= 0x0758,
100	[RFCR]		= 0x0760,
101	[CERCR]		= 0x0768,
102	[CEECR]		= 0x0770,
103	[MAFCR]		= 0x0778,
104	[RMII_MII]	= 0x0790,
105
106	[ARSTR]		= 0x0000,
107	[TSU_CTRST]	= 0x0004,
108	[TSU_FWEN0]	= 0x0010,
109	[TSU_FWEN1]	= 0x0014,
110	[TSU_FCM]	= 0x0018,
111	[TSU_BSYSL0]	= 0x0020,
112	[TSU_BSYSL1]	= 0x0024,
113	[TSU_PRISL0]	= 0x0028,
114	[TSU_PRISL1]	= 0x002c,
115	[TSU_FWSL0]	= 0x0030,
116	[TSU_FWSL1]	= 0x0034,
117	[TSU_FWSLC]	= 0x0038,
118	[TSU_QTAG0]	= 0x0040,
119	[TSU_QTAG1]	= 0x0044,
120	[TSU_FWSR]	= 0x0050,
121	[TSU_FWINMK]	= 0x0054,
122	[TSU_ADQT0]	= 0x0048,
123	[TSU_ADQT1]	= 0x004c,
124	[TSU_VTAG0]	= 0x0058,
125	[TSU_VTAG1]	= 0x005c,
126	[TSU_ADSBSY]	= 0x0060,
127	[TSU_TEN]	= 0x0064,
128	[TSU_POST1]	= 0x0070,
129	[TSU_POST2]	= 0x0074,
130	[TSU_POST3]	= 0x0078,
131	[TSU_POST4]	= 0x007c,
132	[TSU_ADRH0]	= 0x0100,
133	[TSU_ADRL0]	= 0x0104,
134	[TSU_ADRH31]	= 0x01f8,
135	[TSU_ADRL31]	= 0x01fc,
136
137	[TXNLCR0]	= 0x0080,
138	[TXALCR0]	= 0x0084,
139	[RXNLCR0]	= 0x0088,
140	[RXALCR0]	= 0x008c,
141	[FWNLCR0]	= 0x0090,
142	[FWALCR0]	= 0x0094,
143	[TXNLCR1]	= 0x00a0,
144	[TXALCR1]	= 0x00a0,
145	[RXNLCR1]	= 0x00a8,
146	[RXALCR1]	= 0x00ac,
147	[FWNLCR1]	= 0x00b0,
148	[FWALCR1]	= 0x00b4,
149};
150
151static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152	[ECMR]		= 0x0300,
153	[RFLR]		= 0x0308,
154	[ECSR]		= 0x0310,
155	[ECSIPR]	= 0x0318,
156	[PIR]		= 0x0320,
157	[PSR]		= 0x0328,
158	[RDMLR]		= 0x0340,
159	[IPGR]		= 0x0350,
160	[APR]		= 0x0354,
161	[MPR]		= 0x0358,
162	[RFCF]		= 0x0360,
163	[TPAUSER]	= 0x0364,
164	[TPAUSECR]	= 0x0368,
165	[MAHR]		= 0x03c0,
166	[MALR]		= 0x03c8,
167	[TROCR]		= 0x03d0,
168	[CDCR]		= 0x03d4,
169	[LCCR]		= 0x03d8,
170	[CNDCR]		= 0x03dc,
171	[CEFCR]		= 0x03e4,
172	[FRECR]		= 0x03e8,
173	[TSFRCR]	= 0x03ec,
174	[TLFRCR]	= 0x03f0,
175	[RFCR]		= 0x03f4,
176	[MAFCR]		= 0x03f8,
177
178	[EDMR]		= 0x0200,
179	[EDTRR]		= 0x0208,
180	[EDRRR]		= 0x0210,
181	[TDLAR]		= 0x0218,
182	[RDLAR]		= 0x0220,
183	[EESR]		= 0x0228,
184	[EESIPR]	= 0x0230,
185	[TRSCER]	= 0x0238,
186	[RMFCR]		= 0x0240,
187	[TFTR]		= 0x0248,
188	[FDR]		= 0x0250,
189	[RMCR]		= 0x0258,
190	[TFUCR]		= 0x0264,
191	[RFOCR]		= 0x0268,
192	[RMIIMODE]      = 0x026c,
193	[FCFTR]		= 0x0270,
194	[TRIMD]		= 0x027c,
195};
196
197static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
198	[ECMR]		= 0x0100,
199	[RFLR]		= 0x0108,
200	[ECSR]		= 0x0110,
201	[ECSIPR]	= 0x0118,
202	[PIR]		= 0x0120,
203	[PSR]		= 0x0128,
204	[RDMLR]		= 0x0140,
205	[IPGR]		= 0x0150,
206	[APR]		= 0x0154,
207	[MPR]		= 0x0158,
208	[TPAUSER]	= 0x0164,
209	[RFCF]		= 0x0160,
210	[TPAUSECR]	= 0x0168,
211	[BCFRR]		= 0x016c,
212	[MAHR]		= 0x01c0,
213	[MALR]		= 0x01c8,
214	[TROCR]		= 0x01d0,
215	[CDCR]		= 0x01d4,
216	[LCCR]		= 0x01d8,
217	[CNDCR]		= 0x01dc,
218	[CEFCR]		= 0x01e4,
219	[FRECR]		= 0x01e8,
220	[TSFRCR]	= 0x01ec,
221	[TLFRCR]	= 0x01f0,
222	[RFCR]		= 0x01f4,
223	[MAFCR]		= 0x01f8,
224	[RTRATE]	= 0x01fc,
225
226	[EDMR]		= 0x0000,
227	[EDTRR]		= 0x0008,
228	[EDRRR]		= 0x0010,
229	[TDLAR]		= 0x0018,
230	[RDLAR]		= 0x0020,
231	[EESR]		= 0x0028,
232	[EESIPR]	= 0x0030,
233	[TRSCER]	= 0x0038,
234	[RMFCR]		= 0x0040,
235	[TFTR]		= 0x0048,
236	[FDR]		= 0x0050,
237	[RMCR]		= 0x0058,
238	[TFUCR]		= 0x0064,
239	[RFOCR]		= 0x0068,
240	[FCFTR]		= 0x0070,
241	[RPADIR]	= 0x0078,
242	[TRIMD]		= 0x007c,
243	[RBWAR]		= 0x00c8,
244	[RDFAR]		= 0x00cc,
245	[TBRAR]		= 0x00d4,
246	[TDFAR]		= 0x00d8,
247};
248
249static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
250	[ECMR]		= 0x0160,
251	[ECSR]		= 0x0164,
252	[ECSIPR]	= 0x0168,
253	[PIR]		= 0x016c,
254	[MAHR]		= 0x0170,
255	[MALR]		= 0x0174,
256	[RFLR]		= 0x0178,
257	[PSR]		= 0x017c,
258	[TROCR]		= 0x0180,
259	[CDCR]		= 0x0184,
260	[LCCR]		= 0x0188,
261	[CNDCR]		= 0x018c,
262	[CEFCR]		= 0x0194,
263	[FRECR]		= 0x0198,
264	[TSFRCR]	= 0x019c,
265	[TLFRCR]	= 0x01a0,
266	[RFCR]		= 0x01a4,
267	[MAFCR]		= 0x01a8,
268	[IPGR]		= 0x01b4,
269	[APR]		= 0x01b8,
270	[MPR]		= 0x01bc,
271	[TPAUSER]	= 0x01c4,
272	[BCFR]		= 0x01cc,
273
274	[ARSTR]		= 0x0000,
275	[TSU_CTRST]	= 0x0004,
276	[TSU_FWEN0]	= 0x0010,
277	[TSU_FWEN1]	= 0x0014,
278	[TSU_FCM]	= 0x0018,
279	[TSU_BSYSL0]	= 0x0020,
280	[TSU_BSYSL1]	= 0x0024,
281	[TSU_PRISL0]	= 0x0028,
282	[TSU_PRISL1]	= 0x002c,
283	[TSU_FWSL0]	= 0x0030,
284	[TSU_FWSL1]	= 0x0034,
285	[TSU_FWSLC]	= 0x0038,
286	[TSU_QTAGM0]	= 0x0040,
287	[TSU_QTAGM1]	= 0x0044,
288	[TSU_ADQT0]	= 0x0048,
289	[TSU_ADQT1]	= 0x004c,
290	[TSU_FWSR]	= 0x0050,
291	[TSU_FWINMK]	= 0x0054,
292	[TSU_ADSBSY]	= 0x0060,
293	[TSU_TEN]	= 0x0064,
294	[TSU_POST1]	= 0x0070,
295	[TSU_POST2]	= 0x0074,
296	[TSU_POST3]	= 0x0078,
297	[TSU_POST4]	= 0x007c,
298
299	[TXNLCR0]	= 0x0080,
300	[TXALCR0]	= 0x0084,
301	[RXNLCR0]	= 0x0088,
302	[RXALCR0]	= 0x008c,
303	[FWNLCR0]	= 0x0090,
304	[FWALCR0]	= 0x0094,
305	[TXNLCR1]	= 0x00a0,
306	[TXALCR1]	= 0x00a0,
307	[RXNLCR1]	= 0x00a8,
308	[RXALCR1]	= 0x00ac,
309	[FWNLCR1]	= 0x00b0,
310	[FWALCR1]	= 0x00b4,
311
312	[TSU_ADRH0]	= 0x0100,
313	[TSU_ADRL0]	= 0x0104,
314	[TSU_ADRL31]	= 0x01fc,
315};
316
317static int sh_eth_is_gether(struct sh_eth_private *mdp)
318{
319	if (mdp->reg_offset == sh_eth_offset_gigabit)
320		return 1;
321	else
322		return 0;
323}
324
325static void sh_eth_select_mii(struct net_device *ndev)
326{
327	u32 value = 0x0;
328	struct sh_eth_private *mdp = netdev_priv(ndev);
329
330	switch (mdp->phy_interface) {
331	case PHY_INTERFACE_MODE_GMII:
332		value = 0x2;
333		break;
334	case PHY_INTERFACE_MODE_MII:
335		value = 0x1;
336		break;
337	case PHY_INTERFACE_MODE_RMII:
338		value = 0x0;
339		break;
340	default:
341		pr_warn("PHY interface mode was not setup. Set to MII.\n");
342		value = 0x1;
343		break;
344	}
345
346	sh_eth_write(ndev, value, RMII_MII);
347}
348
349static void sh_eth_set_duplex(struct net_device *ndev)
350{
351	struct sh_eth_private *mdp = netdev_priv(ndev);
352
353	if (mdp->duplex) /* Full */
354		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
355	else		/* Half */
356		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
357}
358
359/* There is CPU dependent code */
360static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
361{
362	struct sh_eth_private *mdp = netdev_priv(ndev);
363
364	switch (mdp->speed) {
365	case 10: /* 10BASE */
366		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
367		break;
368	case 100:/* 100BASE */
369		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
370		break;
371	default:
372		break;
373	}
374}
375
376/* R8A7778/9 */
377static struct sh_eth_cpu_data r8a777x_data = {
378	.set_duplex	= sh_eth_set_duplex,
379	.set_rate	= sh_eth_set_rate_r8a777x,
380
381	.register_type	= SH_ETH_REG_FAST_RCAR,
382
383	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
384	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
385	.eesipr_value	= 0x01ff009f,
386
387	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
388	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
389			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
390			  EESR_ECI,
391
392	.apr		= 1,
393	.mpr		= 1,
394	.tpauser	= 1,
395	.hw_swap	= 1,
396};
397
398/* R8A7790 */
399static struct sh_eth_cpu_data r8a7790_data = {
400	.set_duplex	= sh_eth_set_duplex,
401	.set_rate	= sh_eth_set_rate_r8a777x,
402
403	.register_type	= SH_ETH_REG_FAST_RCAR,
404
405	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
406	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
407	.eesipr_value	= 0x01ff009f,
408
409	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
410	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
411			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
412			  EESR_ECI,
413
414	.apr		= 1,
415	.mpr		= 1,
416	.tpauser	= 1,
417	.hw_swap	= 1,
418	.rmiimode	= 1,
419	.shift_rd0	= 1,
420};
421
422static void sh_eth_set_rate_sh7724(struct net_device *ndev)
423{
424	struct sh_eth_private *mdp = netdev_priv(ndev);
425
426	switch (mdp->speed) {
427	case 10: /* 10BASE */
428		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
429		break;
430	case 100:/* 100BASE */
431		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
432		break;
433	default:
434		break;
435	}
436}
437
438/* SH7724 */
439static struct sh_eth_cpu_data sh7724_data = {
440	.set_duplex	= sh_eth_set_duplex,
441	.set_rate	= sh_eth_set_rate_sh7724,
442
443	.register_type	= SH_ETH_REG_FAST_SH4,
444
445	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
446	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
447	.eesipr_value	= 0x01ff009f,
448
449	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
450	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
451			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
452			  EESR_ECI,
453
454	.apr		= 1,
455	.mpr		= 1,
456	.tpauser	= 1,
457	.hw_swap	= 1,
458	.rpadir		= 1,
459	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
460};
461
462static void sh_eth_set_rate_sh7757(struct net_device *ndev)
463{
464	struct sh_eth_private *mdp = netdev_priv(ndev);
465
466	switch (mdp->speed) {
467	case 10: /* 10BASE */
468		sh_eth_write(ndev, 0, RTRATE);
469		break;
470	case 100:/* 100BASE */
471		sh_eth_write(ndev, 1, RTRATE);
472		break;
473	default:
474		break;
475	}
476}
477
478/* SH7757 */
479static struct sh_eth_cpu_data sh7757_data = {
480	.set_duplex	= sh_eth_set_duplex,
481	.set_rate	= sh_eth_set_rate_sh7757,
482
483	.register_type	= SH_ETH_REG_FAST_SH4,
484
485	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
486	.rmcr_value	= 0x00000001,
487
488	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
489	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
490			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
491			  EESR_ECI,
492
493	.irq_flags	= IRQF_SHARED,
494	.apr		= 1,
495	.mpr		= 1,
496	.tpauser	= 1,
497	.hw_swap	= 1,
498	.no_ade		= 1,
499	.rpadir		= 1,
500	.rpadir_value   = 2 << 16,
501};
502
503#define SH_GIGA_ETH_BASE	0xfee00000UL
504#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
505#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
506static void sh_eth_chip_reset_giga(struct net_device *ndev)
507{
508	int i;
509	unsigned long mahr[2], malr[2];
510
511	/* save MAHR and MALR */
512	for (i = 0; i < 2; i++) {
513		malr[i] = ioread32((void *)GIGA_MALR(i));
514		mahr[i] = ioread32((void *)GIGA_MAHR(i));
515	}
516
517	/* reset device */
518	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
519	mdelay(1);
520
521	/* restore MAHR and MALR */
522	for (i = 0; i < 2; i++) {
523		iowrite32(malr[i], (void *)GIGA_MALR(i));
524		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
525	}
526}
527
528static void sh_eth_set_rate_giga(struct net_device *ndev)
529{
530	struct sh_eth_private *mdp = netdev_priv(ndev);
531
532	switch (mdp->speed) {
533	case 10: /* 10BASE */
534		sh_eth_write(ndev, 0x00000000, GECMR);
535		break;
536	case 100:/* 100BASE */
537		sh_eth_write(ndev, 0x00000010, GECMR);
538		break;
539	case 1000: /* 1000BASE */
540		sh_eth_write(ndev, 0x00000020, GECMR);
541		break;
542	default:
543		break;
544	}
545}
546
547/* SH7757(GETHERC) */
548static struct sh_eth_cpu_data sh7757_data_giga = {
549	.chip_reset	= sh_eth_chip_reset_giga,
550	.set_duplex	= sh_eth_set_duplex,
551	.set_rate	= sh_eth_set_rate_giga,
552
553	.register_type	= SH_ETH_REG_GIGABIT,
554
555	.ecsr_value	= ECSR_ICD | ECSR_MPD,
556	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
557	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
558
559	.tx_check	= EESR_TC1 | EESR_FTC,
560	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
561			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
562			  EESR_TDE | EESR_ECI,
563	.fdr_value	= 0x0000072f,
564	.rmcr_value	= 0x00000001,
565
566	.irq_flags	= IRQF_SHARED,
567	.apr		= 1,
568	.mpr		= 1,
569	.tpauser	= 1,
570	.bculr		= 1,
571	.hw_swap	= 1,
572	.rpadir		= 1,
573	.rpadir_value   = 2 << 16,
574	.no_trimd	= 1,
575	.no_ade		= 1,
576	.tsu		= 1,
577};
578
579static void sh_eth_chip_reset(struct net_device *ndev)
580{
581	struct sh_eth_private *mdp = netdev_priv(ndev);
582
583	/* reset device */
584	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
585	mdelay(1);
586}
587
588static void sh_eth_set_rate_gether(struct net_device *ndev)
589{
590	struct sh_eth_private *mdp = netdev_priv(ndev);
591
592	switch (mdp->speed) {
593	case 10: /* 10BASE */
594		sh_eth_write(ndev, GECMR_10, GECMR);
595		break;
596	case 100:/* 100BASE */
597		sh_eth_write(ndev, GECMR_100, GECMR);
598		break;
599	case 1000: /* 1000BASE */
600		sh_eth_write(ndev, GECMR_1000, GECMR);
601		break;
602	default:
603		break;
604	}
605}
606
607/* SH7734 */
608static struct sh_eth_cpu_data sh7734_data = {
609	.chip_reset	= sh_eth_chip_reset,
610	.set_duplex	= sh_eth_set_duplex,
611	.set_rate	= sh_eth_set_rate_gether,
612
613	.register_type	= SH_ETH_REG_GIGABIT,
614
615	.ecsr_value	= ECSR_ICD | ECSR_MPD,
616	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
617	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
618
619	.tx_check	= EESR_TC1 | EESR_FTC,
620	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
621			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
622			  EESR_TDE | EESR_ECI,
623	.fdr_value	= 0x0000070f,
624	.rmcr_value	= 0x00000001,
625
626	.apr		= 1,
627	.mpr		= 1,
628	.tpauser	= 1,
629	.bculr		= 1,
630	.hw_swap	= 1,
631	.rpadir		= 1,
632	.rpadir_value   = 2 << 16,
633	.no_trimd	= 1,
634	.no_ade		= 1,
635	.tsu		= 1,
636	.hw_crc		= 1,
637	.select_mii	= 1,
638};
639
640/* SH7763 */
641static struct sh_eth_cpu_data sh7763_data = {
642	.chip_reset	= sh_eth_chip_reset,
643	.set_duplex	= sh_eth_set_duplex,
644	.set_rate	= sh_eth_set_rate_gether,
645
646	.register_type	= SH_ETH_REG_GIGABIT,
647
648	.ecsr_value	= ECSR_ICD | ECSR_MPD,
649	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
650	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
651
652	.tx_check	= EESR_TC1 | EESR_FTC,
653	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
654			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
655			  EESR_ECI,
656
657	.apr		= 1,
658	.mpr		= 1,
659	.tpauser	= 1,
660	.bculr		= 1,
661	.hw_swap	= 1,
662	.no_trimd	= 1,
663	.no_ade		= 1,
664	.tsu		= 1,
665	.irq_flags	= IRQF_SHARED,
666};
667
668static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
669{
670	struct sh_eth_private *mdp = netdev_priv(ndev);
671
672	/* reset device */
673	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
674	mdelay(1);
675
676	sh_eth_select_mii(ndev);
677}
678
679/* R8A7740 */
680static struct sh_eth_cpu_data r8a7740_data = {
681	.chip_reset	= sh_eth_chip_reset_r8a7740,
682	.set_duplex	= sh_eth_set_duplex,
683	.set_rate	= sh_eth_set_rate_gether,
684
685	.register_type	= SH_ETH_REG_GIGABIT,
686
687	.ecsr_value	= ECSR_ICD | ECSR_MPD,
688	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
689	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
690
691	.tx_check	= EESR_TC1 | EESR_FTC,
692	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
693			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
694			  EESR_TDE | EESR_ECI,
695
696	.apr		= 1,
697	.mpr		= 1,
698	.tpauser	= 1,
699	.bculr		= 1,
700	.hw_swap	= 1,
701	.no_trimd	= 1,
702	.no_ade		= 1,
703	.tsu		= 1,
704	.select_mii	= 1,
705	.shift_rd0	= 1,
706};
707
708static struct sh_eth_cpu_data sh7619_data = {
709	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
710
711	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
712
713	.apr		= 1,
714	.mpr		= 1,
715	.tpauser	= 1,
716	.hw_swap	= 1,
717};
718
719static struct sh_eth_cpu_data sh771x_data = {
720	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
721
722	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
723	.tsu		= 1,
724};
725
726static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
727{
728	if (!cd->ecsr_value)
729		cd->ecsr_value = DEFAULT_ECSR_INIT;
730
731	if (!cd->ecsipr_value)
732		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
733
734	if (!cd->fcftr_value)
735		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
736				  DEFAULT_FIFO_F_D_RFD;
737
738	if (!cd->fdr_value)
739		cd->fdr_value = DEFAULT_FDR_INIT;
740
741	if (!cd->rmcr_value)
742		cd->rmcr_value = DEFAULT_RMCR_VALUE;
743
744	if (!cd->tx_check)
745		cd->tx_check = DEFAULT_TX_CHECK;
746
747	if (!cd->eesr_err_check)
748		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
749}
750
751static int sh_eth_check_reset(struct net_device *ndev)
752{
753	int ret = 0;
754	int cnt = 100;
755
756	while (cnt > 0) {
757		if (!(sh_eth_read(ndev, EDMR) & 0x3))
758			break;
759		mdelay(1);
760		cnt--;
761	}
762	if (cnt <= 0) {
763		pr_err("Device reset failed\n");
764		ret = -ETIMEDOUT;
765	}
766	return ret;
767}
768
769static int sh_eth_reset(struct net_device *ndev)
770{
771	struct sh_eth_private *mdp = netdev_priv(ndev);
772	int ret = 0;
773
774	if (sh_eth_is_gether(mdp)) {
775		sh_eth_write(ndev, EDSR_ENALL, EDSR);
776		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
777			     EDMR);
778
779		ret = sh_eth_check_reset(ndev);
780		if (ret)
781			goto out;
782
783		/* Table Init */
784		sh_eth_write(ndev, 0x0, TDLAR);
785		sh_eth_write(ndev, 0x0, TDFAR);
786		sh_eth_write(ndev, 0x0, TDFXR);
787		sh_eth_write(ndev, 0x0, TDFFR);
788		sh_eth_write(ndev, 0x0, RDLAR);
789		sh_eth_write(ndev, 0x0, RDFAR);
790		sh_eth_write(ndev, 0x0, RDFXR);
791		sh_eth_write(ndev, 0x0, RDFFR);
792
793		/* Reset HW CRC register */
794		if (mdp->cd->hw_crc)
795			sh_eth_write(ndev, 0x0, CSMR);
796
797		/* Select MII mode */
798		if (mdp->cd->select_mii)
799			sh_eth_select_mii(ndev);
800	} else {
801		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
802			     EDMR);
803		mdelay(3);
804		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
805			     EDMR);
806	}
807
808out:
809	return ret;
810}
811
812#if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
813static void sh_eth_set_receive_align(struct sk_buff *skb)
814{
815	int reserve;
816
817	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
818	if (reserve)
819		skb_reserve(skb, reserve);
820}
821#else
822static void sh_eth_set_receive_align(struct sk_buff *skb)
823{
824	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
825}
826#endif
827
828
829/* CPU <-> EDMAC endian convert */
830static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
831{
832	switch (mdp->edmac_endian) {
833	case EDMAC_LITTLE_ENDIAN:
834		return cpu_to_le32(x);
835	case EDMAC_BIG_ENDIAN:
836		return cpu_to_be32(x);
837	}
838	return x;
839}
840
841static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
842{
843	switch (mdp->edmac_endian) {
844	case EDMAC_LITTLE_ENDIAN:
845		return le32_to_cpu(x);
846	case EDMAC_BIG_ENDIAN:
847		return be32_to_cpu(x);
848	}
849	return x;
850}
851
852/*
853 * Program the hardware MAC address from dev->dev_addr.
854 */
855static void update_mac_address(struct net_device *ndev)
856{
857	sh_eth_write(ndev,
858		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
859		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
860	sh_eth_write(ndev,
861		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
862}
863
864/*
865 * Get MAC address from SuperH MAC address register
866 *
867 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
868 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
869 * When you want use this device, you must set MAC address in bootloader.
870 *
871 */
872static void read_mac_address(struct net_device *ndev, unsigned char *mac)
873{
874	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
875		memcpy(ndev->dev_addr, mac, 6);
876	} else {
877		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
878		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
879		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
880		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
881		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
882		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
883	}
884}
885
886static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
887{
888	if (sh_eth_is_gether(mdp))
889		return EDTRR_TRNS_GETHER;
890	else
891		return EDTRR_TRNS_ETHER;
892}
893
894struct bb_info {
895	void (*set_gate)(void *addr);
896	struct mdiobb_ctrl ctrl;
897	void *addr;
898	u32 mmd_msk;/* MMD */
899	u32 mdo_msk;
900	u32 mdi_msk;
901	u32 mdc_msk;
902};
903
904/* PHY bit set */
905static void bb_set(void *addr, u32 msk)
906{
907	iowrite32(ioread32(addr) | msk, addr);
908}
909
910/* PHY bit clear */
911static void bb_clr(void *addr, u32 msk)
912{
913	iowrite32((ioread32(addr) & ~msk), addr);
914}
915
916/* PHY bit read */
917static int bb_read(void *addr, u32 msk)
918{
919	return (ioread32(addr) & msk) != 0;
920}
921
922/* Data I/O pin control */
923static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
924{
925	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
926
927	if (bitbang->set_gate)
928		bitbang->set_gate(bitbang->addr);
929
930	if (bit)
931		bb_set(bitbang->addr, bitbang->mmd_msk);
932	else
933		bb_clr(bitbang->addr, bitbang->mmd_msk);
934}
935
936/* Set bit data*/
937static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
938{
939	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
940
941	if (bitbang->set_gate)
942		bitbang->set_gate(bitbang->addr);
943
944	if (bit)
945		bb_set(bitbang->addr, bitbang->mdo_msk);
946	else
947		bb_clr(bitbang->addr, bitbang->mdo_msk);
948}
949
950/* Get bit data*/
951static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
952{
953	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
954
955	if (bitbang->set_gate)
956		bitbang->set_gate(bitbang->addr);
957
958	return bb_read(bitbang->addr, bitbang->mdi_msk);
959}
960
961/* MDC pin control */
962static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
963{
964	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
965
966	if (bitbang->set_gate)
967		bitbang->set_gate(bitbang->addr);
968
969	if (bit)
970		bb_set(bitbang->addr, bitbang->mdc_msk);
971	else
972		bb_clr(bitbang->addr, bitbang->mdc_msk);
973}
974
975/* mdio bus control struct */
976static struct mdiobb_ops bb_ops = {
977	.owner = THIS_MODULE,
978	.set_mdc = sh_mdc_ctrl,
979	.set_mdio_dir = sh_mmd_ctrl,
980	.set_mdio_data = sh_set_mdio,
981	.get_mdio_data = sh_get_mdio,
982};
983
984/* free skb and descriptor buffer */
985static void sh_eth_ring_free(struct net_device *ndev)
986{
987	struct sh_eth_private *mdp = netdev_priv(ndev);
988	int i;
989
990	/* Free Rx skb ringbuffer */
991	if (mdp->rx_skbuff) {
992		for (i = 0; i < mdp->num_rx_ring; i++) {
993			if (mdp->rx_skbuff[i])
994				dev_kfree_skb(mdp->rx_skbuff[i]);
995		}
996	}
997	kfree(mdp->rx_skbuff);
998	mdp->rx_skbuff = NULL;
999
1000	/* Free Tx skb ringbuffer */
1001	if (mdp->tx_skbuff) {
1002		for (i = 0; i < mdp->num_tx_ring; i++) {
1003			if (mdp->tx_skbuff[i])
1004				dev_kfree_skb(mdp->tx_skbuff[i]);
1005		}
1006	}
1007	kfree(mdp->tx_skbuff);
1008	mdp->tx_skbuff = NULL;
1009}
1010
1011/* format skb and descriptor buffer */
1012static void sh_eth_ring_format(struct net_device *ndev)
1013{
1014	struct sh_eth_private *mdp = netdev_priv(ndev);
1015	int i;
1016	struct sk_buff *skb;
1017	struct sh_eth_rxdesc *rxdesc = NULL;
1018	struct sh_eth_txdesc *txdesc = NULL;
1019	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1020	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1021
1022	mdp->cur_rx = mdp->cur_tx = 0;
1023	mdp->dirty_rx = mdp->dirty_tx = 0;
1024
1025	memset(mdp->rx_ring, 0, rx_ringsize);
1026
1027	/* build Rx ring buffer */
1028	for (i = 0; i < mdp->num_rx_ring; i++) {
1029		/* skb */
1030		mdp->rx_skbuff[i] = NULL;
1031		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1032		mdp->rx_skbuff[i] = skb;
1033		if (skb == NULL)
1034			break;
1035		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1036				DMA_FROM_DEVICE);
1037		sh_eth_set_receive_align(skb);
1038
1039		/* RX descriptor */
1040		rxdesc = &mdp->rx_ring[i];
1041		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1042		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1043
1044		/* The size of the buffer is 16 byte boundary. */
1045		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1046		/* Rx descriptor address set */
1047		if (i == 0) {
1048			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1049			if (sh_eth_is_gether(mdp))
1050				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1051		}
1052	}
1053
1054	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1055
1056	/* Mark the last entry as wrapping the ring. */
1057	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1058
1059	memset(mdp->tx_ring, 0, tx_ringsize);
1060
1061	/* build Tx ring buffer */
1062	for (i = 0; i < mdp->num_tx_ring; i++) {
1063		mdp->tx_skbuff[i] = NULL;
1064		txdesc = &mdp->tx_ring[i];
1065		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1066		txdesc->buffer_length = 0;
1067		if (i == 0) {
1068			/* Tx descriptor address set */
1069			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1070			if (sh_eth_is_gether(mdp))
1071				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1072		}
1073	}
1074
1075	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1076}
1077
1078/* Get skb and descriptor buffer */
1079static int sh_eth_ring_init(struct net_device *ndev)
1080{
1081	struct sh_eth_private *mdp = netdev_priv(ndev);
1082	int rx_ringsize, tx_ringsize, ret = 0;
1083
1084	/*
1085	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1086	 * card needs room to do 8 byte alignment, +2 so we can reserve
1087	 * the first 2 bytes, and +16 gets room for the status word from the
1088	 * card.
1089	 */
1090	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1091			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1092	if (mdp->cd->rpadir)
1093		mdp->rx_buf_sz += NET_IP_ALIGN;
1094
1095	/* Allocate RX and TX skb rings */
1096	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1097				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1098	if (!mdp->rx_skbuff) {
1099		ret = -ENOMEM;
1100		return ret;
1101	}
1102
1103	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1104				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1105	if (!mdp->tx_skbuff) {
1106		ret = -ENOMEM;
1107		goto skb_ring_free;
1108	}
1109
1110	/* Allocate all Rx descriptors. */
1111	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1112	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1113					  GFP_KERNEL);
1114	if (!mdp->rx_ring) {
1115		ret = -ENOMEM;
1116		goto desc_ring_free;
1117	}
1118
1119	mdp->dirty_rx = 0;
1120
1121	/* Allocate all Tx descriptors. */
1122	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1123	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1124					  GFP_KERNEL);
1125	if (!mdp->tx_ring) {
1126		ret = -ENOMEM;
1127		goto desc_ring_free;
1128	}
1129	return ret;
1130
1131desc_ring_free:
1132	/* free DMA buffer */
1133	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1134
1135skb_ring_free:
1136	/* Free Rx and Tx skb ring buffer */
1137	sh_eth_ring_free(ndev);
1138	mdp->tx_ring = NULL;
1139	mdp->rx_ring = NULL;
1140
1141	return ret;
1142}
1143
1144static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1145{
1146	int ringsize;
1147
1148	if (mdp->rx_ring) {
1149		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1150		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1151				  mdp->rx_desc_dma);
1152		mdp->rx_ring = NULL;
1153	}
1154
1155	if (mdp->tx_ring) {
1156		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1157		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1158				  mdp->tx_desc_dma);
1159		mdp->tx_ring = NULL;
1160	}
1161}
1162
1163static int sh_eth_dev_init(struct net_device *ndev, bool start)
1164{
1165	int ret = 0;
1166	struct sh_eth_private *mdp = netdev_priv(ndev);
1167	u32 val;
1168
1169	/* Soft Reset */
1170	ret = sh_eth_reset(ndev);
1171	if (ret)
1172		goto out;
1173
1174	if (mdp->cd->rmiimode)
1175		sh_eth_write(ndev, 0x1, RMIIMODE);
1176
1177	/* Descriptor format */
1178	sh_eth_ring_format(ndev);
1179	if (mdp->cd->rpadir)
1180		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1181
1182	/* all sh_eth int mask */
1183	sh_eth_write(ndev, 0, EESIPR);
1184
1185#if defined(__LITTLE_ENDIAN)
1186	if (mdp->cd->hw_swap)
1187		sh_eth_write(ndev, EDMR_EL, EDMR);
1188	else
1189#endif
1190		sh_eth_write(ndev, 0, EDMR);
1191
1192	/* FIFO size set */
1193	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1194	sh_eth_write(ndev, 0, TFTR);
1195
1196	/* Frame recv control */
1197	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1198
1199	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1200
1201	if (mdp->cd->bculr)
1202		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1203
1204	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1205
1206	if (!mdp->cd->no_trimd)
1207		sh_eth_write(ndev, 0, TRIMD);
1208
1209	/* Recv frame limit set register */
1210	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1211		     RFLR);
1212
1213	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1214	if (start)
1215		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1216
1217	/* PAUSE Prohibition */
1218	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1219		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1220
1221	sh_eth_write(ndev, val, ECMR);
1222
1223	if (mdp->cd->set_rate)
1224		mdp->cd->set_rate(ndev);
1225
1226	/* E-MAC Status Register clear */
1227	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1228
1229	/* E-MAC Interrupt Enable register */
1230	if (start)
1231		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1232
1233	/* Set MAC address */
1234	update_mac_address(ndev);
1235
1236	/* mask reset */
1237	if (mdp->cd->apr)
1238		sh_eth_write(ndev, APR_AP, APR);
1239	if (mdp->cd->mpr)
1240		sh_eth_write(ndev, MPR_MP, MPR);
1241	if (mdp->cd->tpauser)
1242		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1243
1244	if (start) {
1245		/* Setting the Rx mode will start the Rx process. */
1246		sh_eth_write(ndev, EDRRR_R, EDRRR);
1247
1248		netif_start_queue(ndev);
1249	}
1250
1251out:
1252	return ret;
1253}
1254
1255/* free Tx skb function */
1256static int sh_eth_txfree(struct net_device *ndev)
1257{
1258	struct sh_eth_private *mdp = netdev_priv(ndev);
1259	struct sh_eth_txdesc *txdesc;
1260	int freeNum = 0;
1261	int entry = 0;
1262
1263	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1264		entry = mdp->dirty_tx % mdp->num_tx_ring;
1265		txdesc = &mdp->tx_ring[entry];
1266		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1267			break;
1268		/* Free the original skb. */
1269		if (mdp->tx_skbuff[entry]) {
1270			dma_unmap_single(&ndev->dev, txdesc->addr,
1271					 txdesc->buffer_length, DMA_TO_DEVICE);
1272			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1273			mdp->tx_skbuff[entry] = NULL;
1274			freeNum++;
1275		}
1276		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1277		if (entry >= mdp->num_tx_ring - 1)
1278			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1279
1280		ndev->stats.tx_packets++;
1281		ndev->stats.tx_bytes += txdesc->buffer_length;
1282	}
1283	return freeNum;
1284}
1285
1286/* Packet receive function */
1287static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1288{
1289	struct sh_eth_private *mdp = netdev_priv(ndev);
1290	struct sh_eth_rxdesc *rxdesc;
1291
1292	int entry = mdp->cur_rx % mdp->num_rx_ring;
1293	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1294	struct sk_buff *skb;
1295	int exceeded = 0;
1296	u16 pkt_len = 0;
1297	u32 desc_status;
1298
1299	rxdesc = &mdp->rx_ring[entry];
1300	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1301		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1302		pkt_len = rxdesc->frame_length;
1303
1304		if (--boguscnt < 0)
1305			break;
1306
1307		if (*quota <= 0) {
1308			exceeded = 1;
1309			break;
1310		}
1311		(*quota)--;
1312
1313		if (!(desc_status & RDFEND))
1314			ndev->stats.rx_length_errors++;
1315
1316		/*
1317		 * In case of almost all GETHER/ETHERs, the Receive Frame State
1318		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1319		 * bit 0. However, in case of the R8A7740's GETHER, the RFS
1320		 * bits are from bit 25 to bit 16. So, the driver needs right
1321		 * shifting by 16.
1322		 */
1323		if (mdp->cd->shift_rd0)
1324			desc_status >>= 16;
1325
1326		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1327				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1328			ndev->stats.rx_errors++;
1329			if (desc_status & RD_RFS1)
1330				ndev->stats.rx_crc_errors++;
1331			if (desc_status & RD_RFS2)
1332				ndev->stats.rx_frame_errors++;
1333			if (desc_status & RD_RFS3)
1334				ndev->stats.rx_length_errors++;
1335			if (desc_status & RD_RFS4)
1336				ndev->stats.rx_length_errors++;
1337			if (desc_status & RD_RFS6)
1338				ndev->stats.rx_missed_errors++;
1339			if (desc_status & RD_RFS10)
1340				ndev->stats.rx_over_errors++;
1341		} else {
1342			if (!mdp->cd->hw_swap)
1343				sh_eth_soft_swap(
1344					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1345					pkt_len + 2);
1346			skb = mdp->rx_skbuff[entry];
1347			mdp->rx_skbuff[entry] = NULL;
1348			if (mdp->cd->rpadir)
1349				skb_reserve(skb, NET_IP_ALIGN);
1350			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1351						mdp->rx_buf_sz,
1352						DMA_FROM_DEVICE);
1353			skb_put(skb, pkt_len);
1354			skb->protocol = eth_type_trans(skb, ndev);
1355			netif_receive_skb(skb);
1356			ndev->stats.rx_packets++;
1357			ndev->stats.rx_bytes += pkt_len;
1358		}
1359		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1360		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1361		rxdesc = &mdp->rx_ring[entry];
1362	}
1363
1364	/* Refill the Rx ring buffers. */
1365	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1366		entry = mdp->dirty_rx % mdp->num_rx_ring;
1367		rxdesc = &mdp->rx_ring[entry];
1368		/* The size of the buffer is 16 byte boundary. */
1369		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1370
1371		if (mdp->rx_skbuff[entry] == NULL) {
1372			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1373			mdp->rx_skbuff[entry] = skb;
1374			if (skb == NULL)
1375				break;	/* Better luck next round. */
1376			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1377					DMA_FROM_DEVICE);
1378			sh_eth_set_receive_align(skb);
1379
1380			skb_checksum_none_assert(skb);
1381			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1382		}
1383		if (entry >= mdp->num_rx_ring - 1)
1384			rxdesc->status |=
1385				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1386		else
1387			rxdesc->status |=
1388				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1389	}
1390
1391	/* Restart Rx engine if stopped. */
1392	/* If we don't need to check status, don't. -KDU */
1393	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1394		/* fix the values for the next receiving if RDE is set */
1395		if (intr_status & EESR_RDE)
1396			mdp->cur_rx = mdp->dirty_rx =
1397				(sh_eth_read(ndev, RDFAR) -
1398				 sh_eth_read(ndev, RDLAR)) >> 4;
1399		sh_eth_write(ndev, EDRRR_R, EDRRR);
1400	}
1401
1402	return exceeded;
1403}
1404
1405static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1406{
1407	/* disable tx and rx */
1408	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1409		~(ECMR_RE | ECMR_TE), ECMR);
1410}
1411
1412static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1413{
1414	/* enable tx and rx */
1415	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1416		(ECMR_RE | ECMR_TE), ECMR);
1417}
1418
1419/* error control function */
1420static void sh_eth_error(struct net_device *ndev, int intr_status)
1421{
1422	struct sh_eth_private *mdp = netdev_priv(ndev);
1423	u32 felic_stat;
1424	u32 link_stat;
1425	u32 mask;
1426
1427	if (intr_status & EESR_ECI) {
1428		felic_stat = sh_eth_read(ndev, ECSR);
1429		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1430		if (felic_stat & ECSR_ICD)
1431			ndev->stats.tx_carrier_errors++;
1432		if (felic_stat & ECSR_LCHNG) {
1433			/* Link Changed */
1434			if (mdp->cd->no_psr || mdp->no_ether_link) {
1435				goto ignore_link;
1436			} else {
1437				link_stat = (sh_eth_read(ndev, PSR));
1438				if (mdp->ether_link_active_low)
1439					link_stat = ~link_stat;
1440			}
1441			if (!(link_stat & PHY_ST_LINK))
1442				sh_eth_rcv_snd_disable(ndev);
1443			else {
1444				/* Link Up */
1445				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1446					  ~DMAC_M_ECI, EESIPR);
1447				/*clear int */
1448				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1449					  ECSR);
1450				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1451					  DMAC_M_ECI, EESIPR);
1452				/* enable tx and rx */
1453				sh_eth_rcv_snd_enable(ndev);
1454			}
1455		}
1456	}
1457
1458ignore_link:
1459	if (intr_status & EESR_TWB) {
1460		/* Unused write back interrupt */
1461		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1462			ndev->stats.tx_aborted_errors++;
1463			if (netif_msg_tx_err(mdp))
1464				dev_err(&ndev->dev, "Transmit Abort\n");
1465		}
1466	}
1467
1468	if (intr_status & EESR_RABT) {
1469		/* Receive Abort int */
1470		if (intr_status & EESR_RFRMER) {
1471			/* Receive Frame Overflow int */
1472			ndev->stats.rx_frame_errors++;
1473			if (netif_msg_rx_err(mdp))
1474				dev_err(&ndev->dev, "Receive Abort\n");
1475		}
1476	}
1477
1478	if (intr_status & EESR_TDE) {
1479		/* Transmit Descriptor Empty int */
1480		ndev->stats.tx_fifo_errors++;
1481		if (netif_msg_tx_err(mdp))
1482			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1483	}
1484
1485	if (intr_status & EESR_TFE) {
1486		/* FIFO under flow */
1487		ndev->stats.tx_fifo_errors++;
1488		if (netif_msg_tx_err(mdp))
1489			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1490	}
1491
1492	if (intr_status & EESR_RDE) {
1493		/* Receive Descriptor Empty int */
1494		ndev->stats.rx_over_errors++;
1495
1496		if (netif_msg_rx_err(mdp))
1497			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1498	}
1499
1500	if (intr_status & EESR_RFE) {
1501		/* Receive FIFO Overflow int */
1502		ndev->stats.rx_fifo_errors++;
1503		if (netif_msg_rx_err(mdp))
1504			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1505	}
1506
1507	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1508		/* Address Error */
1509		ndev->stats.tx_fifo_errors++;
1510		if (netif_msg_tx_err(mdp))
1511			dev_err(&ndev->dev, "Address Error\n");
1512	}
1513
1514	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1515	if (mdp->cd->no_ade)
1516		mask &= ~EESR_ADE;
1517	if (intr_status & mask) {
1518		/* Tx error */
1519		u32 edtrr = sh_eth_read(ndev, EDTRR);
1520		/* dmesg */
1521		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1522				intr_status, mdp->cur_tx);
1523		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1524				mdp->dirty_tx, (u32) ndev->state, edtrr);
1525		/* dirty buffer free */
1526		sh_eth_txfree(ndev);
1527
1528		/* SH7712 BUG */
1529		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1530			/* tx dma start */
1531			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1532		}
1533		/* wakeup */
1534		netif_wake_queue(ndev);
1535	}
1536}
1537
1538static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1539{
1540	struct net_device *ndev = netdev;
1541	struct sh_eth_private *mdp = netdev_priv(ndev);
1542	struct sh_eth_cpu_data *cd = mdp->cd;
1543	irqreturn_t ret = IRQ_NONE;
1544	unsigned long intr_status, intr_enable;
1545
1546	spin_lock(&mdp->lock);
1547
1548	/* Get interrupt status */
1549	intr_status = sh_eth_read(ndev, EESR);
1550	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1551	 * enabled since it's the one that  comes thru regardless of the mask,
1552	 * and we need to fully handle it in sh_eth_error() in order to quench
1553	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1554	 */
1555	intr_enable = sh_eth_read(ndev, EESIPR);
1556	intr_status &= intr_enable | DMAC_M_ECI;
1557	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1558		ret = IRQ_HANDLED;
1559	else
1560		goto other_irq;
1561
1562	if (intr_status & EESR_RX_CHECK) {
1563		if (napi_schedule_prep(&mdp->napi)) {
1564			/* Mask Rx interrupts */
1565			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1566				     EESIPR);
1567			__napi_schedule(&mdp->napi);
1568		} else {
1569			dev_warn(&ndev->dev,
1570				 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1571				 intr_status, intr_enable);
1572		}
1573	}
1574
1575	/* Tx Check */
1576	if (intr_status & cd->tx_check) {
1577		/* Clear Tx interrupts */
1578		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1579
1580		sh_eth_txfree(ndev);
1581		netif_wake_queue(ndev);
1582	}
1583
1584	if (intr_status & cd->eesr_err_check) {
1585		/* Clear error interrupts */
1586		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1587
1588		sh_eth_error(ndev, intr_status);
1589	}
1590
1591other_irq:
1592	spin_unlock(&mdp->lock);
1593
1594	return ret;
1595}
1596
1597static int sh_eth_poll(struct napi_struct *napi, int budget)
1598{
1599	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1600						  napi);
1601	struct net_device *ndev = napi->dev;
1602	int quota = budget;
1603	unsigned long intr_status;
1604
1605	for (;;) {
1606		intr_status = sh_eth_read(ndev, EESR);
1607		if (!(intr_status & EESR_RX_CHECK))
1608			break;
1609		/* Clear Rx interrupts */
1610		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1611
1612		if (sh_eth_rx(ndev, intr_status, &quota))
1613			goto out;
1614	}
1615
1616	napi_complete(napi);
1617
1618	/* Reenable Rx interrupts */
1619	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1620out:
1621	return budget - quota;
1622}
1623
1624/* PHY state control function */
1625static void sh_eth_adjust_link(struct net_device *ndev)
1626{
1627	struct sh_eth_private *mdp = netdev_priv(ndev);
1628	struct phy_device *phydev = mdp->phydev;
1629	int new_state = 0;
1630
1631	if (phydev->link) {
1632		if (phydev->duplex != mdp->duplex) {
1633			new_state = 1;
1634			mdp->duplex = phydev->duplex;
1635			if (mdp->cd->set_duplex)
1636				mdp->cd->set_duplex(ndev);
1637		}
1638
1639		if (phydev->speed != mdp->speed) {
1640			new_state = 1;
1641			mdp->speed = phydev->speed;
1642			if (mdp->cd->set_rate)
1643				mdp->cd->set_rate(ndev);
1644		}
1645		if (!mdp->link) {
1646			sh_eth_write(ndev,
1647				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1648			new_state = 1;
1649			mdp->link = phydev->link;
1650			if (mdp->cd->no_psr || mdp->no_ether_link)
1651				sh_eth_rcv_snd_enable(ndev);
1652		}
1653	} else if (mdp->link) {
1654		new_state = 1;
1655		mdp->link = 0;
1656		mdp->speed = 0;
1657		mdp->duplex = -1;
1658		if (mdp->cd->no_psr || mdp->no_ether_link)
1659			sh_eth_rcv_snd_disable(ndev);
1660	}
1661
1662	if (new_state && netif_msg_link(mdp))
1663		phy_print_status(phydev);
1664}
1665
1666/* PHY init function */
1667static int sh_eth_phy_init(struct net_device *ndev)
1668{
1669	struct sh_eth_private *mdp = netdev_priv(ndev);
1670	char phy_id[MII_BUS_ID_SIZE + 3];
1671	struct phy_device *phydev = NULL;
1672
1673	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1674		mdp->mii_bus->id , mdp->phy_id);
1675
1676	mdp->link = 0;
1677	mdp->speed = 0;
1678	mdp->duplex = -1;
1679
1680	/* Try connect to PHY */
1681	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1682			     mdp->phy_interface);
1683	if (IS_ERR(phydev)) {
1684		dev_err(&ndev->dev, "phy_connect failed\n");
1685		return PTR_ERR(phydev);
1686	}
1687
1688	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1689		phydev->addr, phydev->drv->name);
1690
1691	mdp->phydev = phydev;
1692
1693	return 0;
1694}
1695
1696/* PHY control start function */
1697static int sh_eth_phy_start(struct net_device *ndev)
1698{
1699	struct sh_eth_private *mdp = netdev_priv(ndev);
1700	int ret;
1701
1702	ret = sh_eth_phy_init(ndev);
1703	if (ret)
1704		return ret;
1705
1706	/* reset phy - this also wakes it from PDOWN */
1707	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1708	phy_start(mdp->phydev);
1709
1710	return 0;
1711}
1712
1713static int sh_eth_get_settings(struct net_device *ndev,
1714			struct ethtool_cmd *ecmd)
1715{
1716	struct sh_eth_private *mdp = netdev_priv(ndev);
1717	unsigned long flags;
1718	int ret;
1719
1720	spin_lock_irqsave(&mdp->lock, flags);
1721	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1722	spin_unlock_irqrestore(&mdp->lock, flags);
1723
1724	return ret;
1725}
1726
1727static int sh_eth_set_settings(struct net_device *ndev,
1728		struct ethtool_cmd *ecmd)
1729{
1730	struct sh_eth_private *mdp = netdev_priv(ndev);
1731	unsigned long flags;
1732	int ret;
1733
1734	spin_lock_irqsave(&mdp->lock, flags);
1735
1736	/* disable tx and rx */
1737	sh_eth_rcv_snd_disable(ndev);
1738
1739	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1740	if (ret)
1741		goto error_exit;
1742
1743	if (ecmd->duplex == DUPLEX_FULL)
1744		mdp->duplex = 1;
1745	else
1746		mdp->duplex = 0;
1747
1748	if (mdp->cd->set_duplex)
1749		mdp->cd->set_duplex(ndev);
1750
1751error_exit:
1752	mdelay(1);
1753
1754	/* enable tx and rx */
1755	sh_eth_rcv_snd_enable(ndev);
1756
1757	spin_unlock_irqrestore(&mdp->lock, flags);
1758
1759	return ret;
1760}
1761
1762static int sh_eth_nway_reset(struct net_device *ndev)
1763{
1764	struct sh_eth_private *mdp = netdev_priv(ndev);
1765	unsigned long flags;
1766	int ret;
1767
1768	spin_lock_irqsave(&mdp->lock, flags);
1769	ret = phy_start_aneg(mdp->phydev);
1770	spin_unlock_irqrestore(&mdp->lock, flags);
1771
1772	return ret;
1773}
1774
1775static u32 sh_eth_get_msglevel(struct net_device *ndev)
1776{
1777	struct sh_eth_private *mdp = netdev_priv(ndev);
1778	return mdp->msg_enable;
1779}
1780
1781static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1782{
1783	struct sh_eth_private *mdp = netdev_priv(ndev);
1784	mdp->msg_enable = value;
1785}
1786
1787static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1788	"rx_current", "tx_current",
1789	"rx_dirty", "tx_dirty",
1790};
1791#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1792
1793static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1794{
1795	switch (sset) {
1796	case ETH_SS_STATS:
1797		return SH_ETH_STATS_LEN;
1798	default:
1799		return -EOPNOTSUPP;
1800	}
1801}
1802
1803static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1804			struct ethtool_stats *stats, u64 *data)
1805{
1806	struct sh_eth_private *mdp = netdev_priv(ndev);
1807	int i = 0;
1808
1809	/* device-specific stats */
1810	data[i++] = mdp->cur_rx;
1811	data[i++] = mdp->cur_tx;
1812	data[i++] = mdp->dirty_rx;
1813	data[i++] = mdp->dirty_tx;
1814}
1815
1816static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1817{
1818	switch (stringset) {
1819	case ETH_SS_STATS:
1820		memcpy(data, *sh_eth_gstrings_stats,
1821					sizeof(sh_eth_gstrings_stats));
1822		break;
1823	}
1824}
1825
1826static void sh_eth_get_ringparam(struct net_device *ndev,
1827				 struct ethtool_ringparam *ring)
1828{
1829	struct sh_eth_private *mdp = netdev_priv(ndev);
1830
1831	ring->rx_max_pending = RX_RING_MAX;
1832	ring->tx_max_pending = TX_RING_MAX;
1833	ring->rx_pending = mdp->num_rx_ring;
1834	ring->tx_pending = mdp->num_tx_ring;
1835}
1836
1837static int sh_eth_set_ringparam(struct net_device *ndev,
1838				struct ethtool_ringparam *ring)
1839{
1840	struct sh_eth_private *mdp = netdev_priv(ndev);
1841	int ret;
1842
1843	if (ring->tx_pending > TX_RING_MAX ||
1844	    ring->rx_pending > RX_RING_MAX ||
1845	    ring->tx_pending < TX_RING_MIN ||
1846	    ring->rx_pending < RX_RING_MIN)
1847		return -EINVAL;
1848	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1849		return -EINVAL;
1850
1851	if (netif_running(ndev)) {
1852		netif_tx_disable(ndev);
1853		/* Disable interrupts by clearing the interrupt mask. */
1854		sh_eth_write(ndev, 0x0000, EESIPR);
1855		/* Stop the chip's Tx and Rx processes. */
1856		sh_eth_write(ndev, 0, EDTRR);
1857		sh_eth_write(ndev, 0, EDRRR);
1858		synchronize_irq(ndev->irq);
1859	}
1860
1861	/* Free all the skbuffs in the Rx queue. */
1862	sh_eth_ring_free(ndev);
1863	/* Free DMA buffer */
1864	sh_eth_free_dma_buffer(mdp);
1865
1866	/* Set new parameters */
1867	mdp->num_rx_ring = ring->rx_pending;
1868	mdp->num_tx_ring = ring->tx_pending;
1869
1870	ret = sh_eth_ring_init(ndev);
1871	if (ret < 0) {
1872		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1873		return ret;
1874	}
1875	ret = sh_eth_dev_init(ndev, false);
1876	if (ret < 0) {
1877		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1878		return ret;
1879	}
1880
1881	if (netif_running(ndev)) {
1882		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1883		/* Setting the Rx mode will start the Rx process. */
1884		sh_eth_write(ndev, EDRRR_R, EDRRR);
1885		netif_wake_queue(ndev);
1886	}
1887
1888	return 0;
1889}
1890
1891static const struct ethtool_ops sh_eth_ethtool_ops = {
1892	.get_settings	= sh_eth_get_settings,
1893	.set_settings	= sh_eth_set_settings,
1894	.nway_reset	= sh_eth_nway_reset,
1895	.get_msglevel	= sh_eth_get_msglevel,
1896	.set_msglevel	= sh_eth_set_msglevel,
1897	.get_link	= ethtool_op_get_link,
1898	.get_strings	= sh_eth_get_strings,
1899	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1900	.get_sset_count     = sh_eth_get_sset_count,
1901	.get_ringparam	= sh_eth_get_ringparam,
1902	.set_ringparam	= sh_eth_set_ringparam,
1903};
1904
1905/* network device open function */
1906static int sh_eth_open(struct net_device *ndev)
1907{
1908	int ret = 0;
1909	struct sh_eth_private *mdp = netdev_priv(ndev);
1910
1911	pm_runtime_get_sync(&mdp->pdev->dev);
1912
1913	napi_enable(&mdp->napi);
1914
1915	ret = request_irq(ndev->irq, sh_eth_interrupt,
1916			  mdp->cd->irq_flags, ndev->name, ndev);
1917	if (ret) {
1918		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1919		goto out_napi_off;
1920	}
1921
1922	/* Descriptor set */
1923	ret = sh_eth_ring_init(ndev);
1924	if (ret)
1925		goto out_free_irq;
1926
1927	/* device init */
1928	ret = sh_eth_dev_init(ndev, true);
1929	if (ret)
1930		goto out_free_irq;
1931
1932	/* PHY control start*/
1933	ret = sh_eth_phy_start(ndev);
1934	if (ret)
1935		goto out_free_irq;
1936
1937	return ret;
1938
1939out_free_irq:
1940	free_irq(ndev->irq, ndev);
1941out_napi_off:
1942	napi_disable(&mdp->napi);
1943	pm_runtime_put_sync(&mdp->pdev->dev);
1944	return ret;
1945}
1946
1947/* Timeout function */
1948static void sh_eth_tx_timeout(struct net_device *ndev)
1949{
1950	struct sh_eth_private *mdp = netdev_priv(ndev);
1951	struct sh_eth_rxdesc *rxdesc;
1952	int i;
1953
1954	netif_stop_queue(ndev);
1955
1956	if (netif_msg_timer(mdp))
1957		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1958	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1959
1960	/* tx_errors count up */
1961	ndev->stats.tx_errors++;
1962
1963	/* Free all the skbuffs in the Rx queue. */
1964	for (i = 0; i < mdp->num_rx_ring; i++) {
1965		rxdesc = &mdp->rx_ring[i];
1966		rxdesc->status = 0;
1967		rxdesc->addr = 0xBADF00D0;
1968		if (mdp->rx_skbuff[i])
1969			dev_kfree_skb(mdp->rx_skbuff[i]);
1970		mdp->rx_skbuff[i] = NULL;
1971	}
1972	for (i = 0; i < mdp->num_tx_ring; i++) {
1973		if (mdp->tx_skbuff[i])
1974			dev_kfree_skb(mdp->tx_skbuff[i]);
1975		mdp->tx_skbuff[i] = NULL;
1976	}
1977
1978	/* device init */
1979	sh_eth_dev_init(ndev, true);
1980}
1981
1982/* Packet transmit function */
1983static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1984{
1985	struct sh_eth_private *mdp = netdev_priv(ndev);
1986	struct sh_eth_txdesc *txdesc;
1987	u32 entry;
1988	unsigned long flags;
1989
1990	spin_lock_irqsave(&mdp->lock, flags);
1991	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1992		if (!sh_eth_txfree(ndev)) {
1993			if (netif_msg_tx_queued(mdp))
1994				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1995			netif_stop_queue(ndev);
1996			spin_unlock_irqrestore(&mdp->lock, flags);
1997			return NETDEV_TX_BUSY;
1998		}
1999	}
2000	spin_unlock_irqrestore(&mdp->lock, flags);
2001
2002	entry = mdp->cur_tx % mdp->num_tx_ring;
2003	mdp->tx_skbuff[entry] = skb;
2004	txdesc = &mdp->tx_ring[entry];
2005	/* soft swap. */
2006	if (!mdp->cd->hw_swap)
2007		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2008				 skb->len + 2);
2009	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2010				      DMA_TO_DEVICE);
2011	if (skb->len < ETHERSMALL)
2012		txdesc->buffer_length = ETHERSMALL;
2013	else
2014		txdesc->buffer_length = skb->len;
2015
2016	if (entry >= mdp->num_tx_ring - 1)
2017		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2018	else
2019		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2020
2021	mdp->cur_tx++;
2022
2023	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2024		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2025
2026	return NETDEV_TX_OK;
2027}
2028
2029/* device close function */
2030static int sh_eth_close(struct net_device *ndev)
2031{
2032	struct sh_eth_private *mdp = netdev_priv(ndev);
2033
2034	netif_stop_queue(ndev);
2035
2036	/* Disable interrupts by clearing the interrupt mask. */
2037	sh_eth_write(ndev, 0x0000, EESIPR);
2038
2039	/* Stop the chip's Tx and Rx processes. */
2040	sh_eth_write(ndev, 0, EDTRR);
2041	sh_eth_write(ndev, 0, EDRRR);
2042
2043	/* PHY Disconnect */
2044	if (mdp->phydev) {
2045		phy_stop(mdp->phydev);
2046		phy_disconnect(mdp->phydev);
2047	}
2048
2049	free_irq(ndev->irq, ndev);
2050
2051	napi_disable(&mdp->napi);
2052
2053	/* Free all the skbuffs in the Rx queue. */
2054	sh_eth_ring_free(ndev);
2055
2056	/* free DMA buffer */
2057	sh_eth_free_dma_buffer(mdp);
2058
2059	pm_runtime_put_sync(&mdp->pdev->dev);
2060
2061	return 0;
2062}
2063
2064static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2065{
2066	struct sh_eth_private *mdp = netdev_priv(ndev);
2067
2068	pm_runtime_get_sync(&mdp->pdev->dev);
2069
2070	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2071	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2072	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2073	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2074	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2075	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2076	if (sh_eth_is_gether(mdp)) {
2077		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2078		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2079		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2080		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2081	} else {
2082		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2083		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2084	}
2085	pm_runtime_put_sync(&mdp->pdev->dev);
2086
2087	return &ndev->stats;
2088}
2089
2090/* ioctl to device function */
2091static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2092				int cmd)
2093{
2094	struct sh_eth_private *mdp = netdev_priv(ndev);
2095	struct phy_device *phydev = mdp->phydev;
2096
2097	if (!netif_running(ndev))
2098		return -EINVAL;
2099
2100	if (!phydev)
2101		return -ENODEV;
2102
2103	return phy_mii_ioctl(phydev, rq, cmd);
2104}
2105
2106/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2107static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2108					    int entry)
2109{
2110	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2111}
2112
2113static u32 sh_eth_tsu_get_post_mask(int entry)
2114{
2115	return 0x0f << (28 - ((entry % 8) * 4));
2116}
2117
2118static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2119{
2120	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2121}
2122
2123static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2124					     int entry)
2125{
2126	struct sh_eth_private *mdp = netdev_priv(ndev);
2127	u32 tmp;
2128	void *reg_offset;
2129
2130	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2131	tmp = ioread32(reg_offset);
2132	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2133}
2134
2135static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2136					      int entry)
2137{
2138	struct sh_eth_private *mdp = netdev_priv(ndev);
2139	u32 post_mask, ref_mask, tmp;
2140	void *reg_offset;
2141
2142	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2143	post_mask = sh_eth_tsu_get_post_mask(entry);
2144	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2145
2146	tmp = ioread32(reg_offset);
2147	iowrite32(tmp & ~post_mask, reg_offset);
2148
2149	/* If other port enables, the function returns "true" */
2150	return tmp & ref_mask;
2151}
2152
2153static int sh_eth_tsu_busy(struct net_device *ndev)
2154{
2155	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2156	struct sh_eth_private *mdp = netdev_priv(ndev);
2157
2158	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2159		udelay(10);
2160		timeout--;
2161		if (timeout <= 0) {
2162			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2163			return -ETIMEDOUT;
2164		}
2165	}
2166
2167	return 0;
2168}
2169
2170static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2171				  const u8 *addr)
2172{
2173	u32 val;
2174
2175	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2176	iowrite32(val, reg);
2177	if (sh_eth_tsu_busy(ndev) < 0)
2178		return -EBUSY;
2179
2180	val = addr[4] << 8 | addr[5];
2181	iowrite32(val, reg + 4);
2182	if (sh_eth_tsu_busy(ndev) < 0)
2183		return -EBUSY;
2184
2185	return 0;
2186}
2187
2188static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2189{
2190	u32 val;
2191
2192	val = ioread32(reg);
2193	addr[0] = (val >> 24) & 0xff;
2194	addr[1] = (val >> 16) & 0xff;
2195	addr[2] = (val >> 8) & 0xff;
2196	addr[3] = val & 0xff;
2197	val = ioread32(reg + 4);
2198	addr[4] = (val >> 8) & 0xff;
2199	addr[5] = val & 0xff;
2200}
2201
2202
2203static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2204{
2205	struct sh_eth_private *mdp = netdev_priv(ndev);
2206	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2207	int i;
2208	u8 c_addr[ETH_ALEN];
2209
2210	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2211		sh_eth_tsu_read_entry(reg_offset, c_addr);
2212		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2213			return i;
2214	}
2215
2216	return -ENOENT;
2217}
2218
2219static int sh_eth_tsu_find_empty(struct net_device *ndev)
2220{
2221	u8 blank[ETH_ALEN];
2222	int entry;
2223
2224	memset(blank, 0, sizeof(blank));
2225	entry = sh_eth_tsu_find_entry(ndev, blank);
2226	return (entry < 0) ? -ENOMEM : entry;
2227}
2228
2229static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2230					      int entry)
2231{
2232	struct sh_eth_private *mdp = netdev_priv(ndev);
2233	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2234	int ret;
2235	u8 blank[ETH_ALEN];
2236
2237	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2238			 ~(1 << (31 - entry)), TSU_TEN);
2239
2240	memset(blank, 0, sizeof(blank));
2241	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2242	if (ret < 0)
2243		return ret;
2244	return 0;
2245}
2246
2247static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2248{
2249	struct sh_eth_private *mdp = netdev_priv(ndev);
2250	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2251	int i, ret;
2252
2253	if (!mdp->cd->tsu)
2254		return 0;
2255
2256	i = sh_eth_tsu_find_entry(ndev, addr);
2257	if (i < 0) {
2258		/* No entry found, create one */
2259		i = sh_eth_tsu_find_empty(ndev);
2260		if (i < 0)
2261			return -ENOMEM;
2262		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2263		if (ret < 0)
2264			return ret;
2265
2266		/* Enable the entry */
2267		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2268				 (1 << (31 - i)), TSU_TEN);
2269	}
2270
2271	/* Entry found or created, enable POST */
2272	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2273
2274	return 0;
2275}
2276
2277static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2278{
2279	struct sh_eth_private *mdp = netdev_priv(ndev);
2280	int i, ret;
2281
2282	if (!mdp->cd->tsu)
2283		return 0;
2284
2285	i = sh_eth_tsu_find_entry(ndev, addr);
2286	if (i) {
2287		/* Entry found */
2288		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2289			goto done;
2290
2291		/* Disable the entry if both ports was disabled */
2292		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2293		if (ret < 0)
2294			return ret;
2295	}
2296done:
2297	return 0;
2298}
2299
2300static int sh_eth_tsu_purge_all(struct net_device *ndev)
2301{
2302	struct sh_eth_private *mdp = netdev_priv(ndev);
2303	int i, ret;
2304
2305	if (unlikely(!mdp->cd->tsu))
2306		return 0;
2307
2308	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2309		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2310			continue;
2311
2312		/* Disable the entry if both ports was disabled */
2313		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2314		if (ret < 0)
2315			return ret;
2316	}
2317
2318	return 0;
2319}
2320
2321static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2322{
2323	struct sh_eth_private *mdp = netdev_priv(ndev);
2324	u8 addr[ETH_ALEN];
2325	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2326	int i;
2327
2328	if (unlikely(!mdp->cd->tsu))
2329		return;
2330
2331	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2332		sh_eth_tsu_read_entry(reg_offset, addr);
2333		if (is_multicast_ether_addr(addr))
2334			sh_eth_tsu_del_entry(ndev, addr);
2335	}
2336}
2337
2338/* Multicast reception directions set */
2339static void sh_eth_set_multicast_list(struct net_device *ndev)
2340{
2341	struct sh_eth_private *mdp = netdev_priv(ndev);
2342	u32 ecmr_bits;
2343	int mcast_all = 0;
2344	unsigned long flags;
2345
2346	spin_lock_irqsave(&mdp->lock, flags);
2347	/*
2348	 * Initial condition is MCT = 1, PRM = 0.
2349	 * Depending on ndev->flags, set PRM or clear MCT
2350	 */
2351	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2352
2353	if (!(ndev->flags & IFF_MULTICAST)) {
2354		sh_eth_tsu_purge_mcast(ndev);
2355		mcast_all = 1;
2356	}
2357	if (ndev->flags & IFF_ALLMULTI) {
2358		sh_eth_tsu_purge_mcast(ndev);
2359		ecmr_bits &= ~ECMR_MCT;
2360		mcast_all = 1;
2361	}
2362
2363	if (ndev->flags & IFF_PROMISC) {
2364		sh_eth_tsu_purge_all(ndev);
2365		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2366	} else if (mdp->cd->tsu) {
2367		struct netdev_hw_addr *ha;
2368		netdev_for_each_mc_addr(ha, ndev) {
2369			if (mcast_all && is_multicast_ether_addr(ha->addr))
2370				continue;
2371
2372			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2373				if (!mcast_all) {
2374					sh_eth_tsu_purge_mcast(ndev);
2375					ecmr_bits &= ~ECMR_MCT;
2376					mcast_all = 1;
2377				}
2378			}
2379		}
2380	} else {
2381		/* Normal, unicast/broadcast-only mode. */
2382		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2383	}
2384
2385	/* update the ethernet mode */
2386	sh_eth_write(ndev, ecmr_bits, ECMR);
2387
2388	spin_unlock_irqrestore(&mdp->lock, flags);
2389}
2390
2391static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2392{
2393	if (!mdp->port)
2394		return TSU_VTAG0;
2395	else
2396		return TSU_VTAG1;
2397}
2398
2399static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2400				  __be16 proto, u16 vid)
2401{
2402	struct sh_eth_private *mdp = netdev_priv(ndev);
2403	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2404
2405	if (unlikely(!mdp->cd->tsu))
2406		return -EPERM;
2407
2408	/* No filtering if vid = 0 */
2409	if (!vid)
2410		return 0;
2411
2412	mdp->vlan_num_ids++;
2413
2414	/*
2415	 * The controller has one VLAN tag HW filter. So, if the filter is
2416	 * already enabled, the driver disables it and the filte
2417	 */
2418	if (mdp->vlan_num_ids > 1) {
2419		/* disable VLAN filter */
2420		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2421		return 0;
2422	}
2423
2424	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2425			 vtag_reg_index);
2426
2427	return 0;
2428}
2429
2430static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2431				   __be16 proto, u16 vid)
2432{
2433	struct sh_eth_private *mdp = netdev_priv(ndev);
2434	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2435
2436	if (unlikely(!mdp->cd->tsu))
2437		return -EPERM;
2438
2439	/* No filtering if vid = 0 */
2440	if (!vid)
2441		return 0;
2442
2443	mdp->vlan_num_ids--;
2444	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2445
2446	return 0;
2447}
2448
2449/* SuperH's TSU register init function */
2450static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2451{
2452	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2453	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2454	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2455	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2456	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2457	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2458	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2459	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2460	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2461	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2462	if (sh_eth_is_gether(mdp)) {
2463		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2464		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2465	} else {
2466		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2467		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2468	}
2469	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2470	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2471	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2472	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2473	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2474	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2475	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2476}
2477
2478/* MDIO bus release function */
2479static int sh_mdio_release(struct net_device *ndev)
2480{
2481	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2482
2483	/* unregister mdio bus */
2484	mdiobus_unregister(bus);
2485
2486	/* remove mdio bus info from net_device */
2487	dev_set_drvdata(&ndev->dev, NULL);
2488
2489	/* free bitbang info */
2490	free_mdio_bitbang(bus);
2491
2492	return 0;
2493}
2494
2495/* MDIO bus init function */
2496static int sh_mdio_init(struct net_device *ndev, int id,
2497			struct sh_eth_plat_data *pd)
2498{
2499	int ret, i;
2500	struct bb_info *bitbang;
2501	struct sh_eth_private *mdp = netdev_priv(ndev);
2502
2503	/* create bit control struct for PHY */
2504	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2505			       GFP_KERNEL);
2506	if (!bitbang) {
2507		ret = -ENOMEM;
2508		goto out;
2509	}
2510
2511	/* bitbang init */
2512	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2513	bitbang->set_gate = pd->set_mdio_gate;
2514	bitbang->mdi_msk = PIR_MDI;
2515	bitbang->mdo_msk = PIR_MDO;
2516	bitbang->mmd_msk = PIR_MMD;
2517	bitbang->mdc_msk = PIR_MDC;
2518	bitbang->ctrl.ops = &bb_ops;
2519
2520	/* MII controller setting */
2521	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2522	if (!mdp->mii_bus) {
2523		ret = -ENOMEM;
2524		goto out;
2525	}
2526
2527	/* Hook up MII support for ethtool */
2528	mdp->mii_bus->name = "sh_mii";
2529	mdp->mii_bus->parent = &ndev->dev;
2530	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2531		mdp->pdev->name, id);
2532
2533	/* PHY IRQ */
2534	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2535					 sizeof(int) * PHY_MAX_ADDR,
2536					 GFP_KERNEL);
2537	if (!mdp->mii_bus->irq) {
2538		ret = -ENOMEM;
2539		goto out_free_bus;
2540	}
2541
2542	for (i = 0; i < PHY_MAX_ADDR; i++)
2543		mdp->mii_bus->irq[i] = PHY_POLL;
2544
2545	/* register mdio bus */
2546	ret = mdiobus_register(mdp->mii_bus);
2547	if (ret)
2548		goto out_free_bus;
2549
2550	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2551
2552	return 0;
2553
2554out_free_bus:
2555	free_mdio_bitbang(mdp->mii_bus);
2556
2557out:
2558	return ret;
2559}
2560
2561static const u16 *sh_eth_get_register_offset(int register_type)
2562{
2563	const u16 *reg_offset = NULL;
2564
2565	switch (register_type) {
2566	case SH_ETH_REG_GIGABIT:
2567		reg_offset = sh_eth_offset_gigabit;
2568		break;
2569	case SH_ETH_REG_FAST_RCAR:
2570		reg_offset = sh_eth_offset_fast_rcar;
2571		break;
2572	case SH_ETH_REG_FAST_SH4:
2573		reg_offset = sh_eth_offset_fast_sh4;
2574		break;
2575	case SH_ETH_REG_FAST_SH3_SH2:
2576		reg_offset = sh_eth_offset_fast_sh3_sh2;
2577		break;
2578	default:
2579		pr_err("Unknown register type (%d)\n", register_type);
2580		break;
2581	}
2582
2583	return reg_offset;
2584}
2585
2586static const struct net_device_ops sh_eth_netdev_ops = {
2587	.ndo_open		= sh_eth_open,
2588	.ndo_stop		= sh_eth_close,
2589	.ndo_start_xmit		= sh_eth_start_xmit,
2590	.ndo_get_stats		= sh_eth_get_stats,
2591	.ndo_tx_timeout		= sh_eth_tx_timeout,
2592	.ndo_do_ioctl		= sh_eth_do_ioctl,
2593	.ndo_validate_addr	= eth_validate_addr,
2594	.ndo_set_mac_address	= eth_mac_addr,
2595	.ndo_change_mtu		= eth_change_mtu,
2596};
2597
2598static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2599	.ndo_open		= sh_eth_open,
2600	.ndo_stop		= sh_eth_close,
2601	.ndo_start_xmit		= sh_eth_start_xmit,
2602	.ndo_get_stats		= sh_eth_get_stats,
2603	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2604	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2605	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2606	.ndo_tx_timeout		= sh_eth_tx_timeout,
2607	.ndo_do_ioctl		= sh_eth_do_ioctl,
2608	.ndo_validate_addr	= eth_validate_addr,
2609	.ndo_set_mac_address	= eth_mac_addr,
2610	.ndo_change_mtu		= eth_change_mtu,
2611};
2612
2613static int sh_eth_drv_probe(struct platform_device *pdev)
2614{
2615	int ret, devno = 0;
2616	struct resource *res;
2617	struct net_device *ndev = NULL;
2618	struct sh_eth_private *mdp = NULL;
2619	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2620	const struct platform_device_id *id = platform_get_device_id(pdev);
2621
2622	/* get base addr */
2623	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2624	if (unlikely(res == NULL)) {
2625		dev_err(&pdev->dev, "invalid resource\n");
2626		ret = -EINVAL;
2627		goto out;
2628	}
2629
2630	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2631	if (!ndev) {
2632		ret = -ENOMEM;
2633		goto out;
2634	}
2635
2636	/* The sh Ether-specific entries in the device structure. */
2637	ndev->base_addr = res->start;
2638	devno = pdev->id;
2639	if (devno < 0)
2640		devno = 0;
2641
2642	ndev->dma = -1;
2643	ret = platform_get_irq(pdev, 0);
2644	if (ret < 0) {
2645		ret = -ENODEV;
2646		goto out_release;
2647	}
2648	ndev->irq = ret;
2649
2650	SET_NETDEV_DEV(ndev, &pdev->dev);
2651
2652	mdp = netdev_priv(ndev);
2653	mdp->num_tx_ring = TX_RING_SIZE;
2654	mdp->num_rx_ring = RX_RING_SIZE;
2655	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2656	if (IS_ERR(mdp->addr)) {
2657		ret = PTR_ERR(mdp->addr);
2658		goto out_release;
2659	}
2660
2661	spin_lock_init(&mdp->lock);
2662	mdp->pdev = pdev;
2663	pm_runtime_enable(&pdev->dev);
2664	pm_runtime_resume(&pdev->dev);
2665
2666	/* get PHY ID */
2667	mdp->phy_id = pd->phy;
2668	mdp->phy_interface = pd->phy_interface;
2669	/* EDMAC endian */
2670	mdp->edmac_endian = pd->edmac_endian;
2671	mdp->no_ether_link = pd->no_ether_link;
2672	mdp->ether_link_active_low = pd->ether_link_active_low;
2673
2674	/* set cpu data */
2675	mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2676	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2677	sh_eth_set_default_cpu_data(mdp->cd);
2678
2679	/* set function */
2680	if (mdp->cd->tsu)
2681		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2682	else
2683		ndev->netdev_ops = &sh_eth_netdev_ops;
2684	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2685	ndev->watchdog_timeo = TX_TIMEOUT;
2686
2687	/* debug message level */
2688	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2689
2690	/* read and set MAC address */
2691	read_mac_address(ndev, pd->mac_addr);
2692	if (!is_valid_ether_addr(ndev->dev_addr)) {
2693		dev_warn(&pdev->dev,
2694			 "no valid MAC address supplied, using a random one.\n");
2695		eth_hw_addr_random(ndev);
2696	}
2697
2698	/* ioremap the TSU registers */
2699	if (mdp->cd->tsu) {
2700		struct resource *rtsu;
2701		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2702		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2703		if (IS_ERR(mdp->tsu_addr)) {
2704			ret = PTR_ERR(mdp->tsu_addr);
2705			goto out_release;
2706		}
2707		mdp->port = devno % 2;
2708		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2709	}
2710
2711	/* initialize first or needed device */
2712	if (!devno || pd->needs_init) {
2713		if (mdp->cd->chip_reset)
2714			mdp->cd->chip_reset(ndev);
2715
2716		if (mdp->cd->tsu) {
2717			/* TSU init (Init only)*/
2718			sh_eth_tsu_init(mdp);
2719		}
2720	}
2721
2722	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2723
2724	/* network device register */
2725	ret = register_netdev(ndev);
2726	if (ret)
2727		goto out_napi_del;
2728
2729	/* mdio bus init */
2730	ret = sh_mdio_init(ndev, pdev->id, pd);
2731	if (ret)
2732		goto out_unregister;
2733
2734	/* print device information */
2735	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2736	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2737
2738	platform_set_drvdata(pdev, ndev);
2739
2740	return ret;
2741
2742out_unregister:
2743	unregister_netdev(ndev);
2744
2745out_napi_del:
2746	netif_napi_del(&mdp->napi);
2747
2748out_release:
2749	/* net_dev free */
2750	if (ndev)
2751		free_netdev(ndev);
2752
2753out:
2754	return ret;
2755}
2756
2757static int sh_eth_drv_remove(struct platform_device *pdev)
2758{
2759	struct net_device *ndev = platform_get_drvdata(pdev);
2760	struct sh_eth_private *mdp = netdev_priv(ndev);
2761
2762	sh_mdio_release(ndev);
2763	unregister_netdev(ndev);
2764	netif_napi_del(&mdp->napi);
2765	pm_runtime_disable(&pdev->dev);
2766	free_netdev(ndev);
2767
2768	return 0;
2769}
2770
2771#ifdef CONFIG_PM
2772static int sh_eth_runtime_nop(struct device *dev)
2773{
2774	/*
2775	 * Runtime PM callback shared between ->runtime_suspend()
2776	 * and ->runtime_resume(). Simply returns success.
2777	 *
2778	 * This driver re-initializes all registers after
2779	 * pm_runtime_get_sync() anyway so there is no need
2780	 * to save and restore registers here.
2781	 */
2782	return 0;
2783}
2784
2785static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2786	.runtime_suspend = sh_eth_runtime_nop,
2787	.runtime_resume = sh_eth_runtime_nop,
2788};
2789#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2790#else
2791#define SH_ETH_PM_OPS NULL
2792#endif
2793
2794static struct platform_device_id sh_eth_id_table[] = {
2795	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2796	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2797	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2798	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2799	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2800	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2801	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2802	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2803	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2804	{ "r8a7790-ether", (kernel_ulong_t)&r8a7790_data },
2805	{ }
2806};
2807MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2808
2809static struct platform_driver sh_eth_driver = {
2810	.probe = sh_eth_drv_probe,
2811	.remove = sh_eth_drv_remove,
2812	.id_table = sh_eth_id_table,
2813	.driver = {
2814		   .name = CARDNAME,
2815		   .pm = SH_ETH_PM_OPS,
2816	},
2817};
2818
2819module_platform_driver(sh_eth_driver);
2820
2821MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2822MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2823MODULE_LICENSE("GPL v2");
2824