sh_eth.c revision 3340d2aae3433ad9147f6bf0adc452b324e31591
1/*
2 *  SuperH Ethernet device driver
3 *
4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 *  Copyright (C) 2008-2012 Renesas Solutions Corp.
6 *
7 *  This program is free software; you can redistribute it and/or modify it
8 *  under the terms and conditions of the GNU General Public License,
9 *  version 2, as published by the Free Software Foundation.
10 *
11 *  This program is distributed in the hope it will be useful, but WITHOUT
12 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 *  more details.
15 *  You should have received a copy of the GNU General Public License along with
16 *  this program; if not, write to the Free Software Foundation, Inc.,
17 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 *  The full GNU General Public License is included in this distribution in
20 *  the file called "COPYING".
21 */
22
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/spinlock.h>
27#include <linux/interrupt.h>
28#include <linux/dma-mapping.h>
29#include <linux/etherdevice.h>
30#include <linux/delay.h>
31#include <linux/platform_device.h>
32#include <linux/mdio-bitbang.h>
33#include <linux/netdevice.h>
34#include <linux/phy.h>
35#include <linux/cache.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38#include <linux/slab.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/clk.h>
42#include <linux/sh_eth.h>
43
44#include "sh_eth.h"
45
46#define SH_ETH_DEF_MSG_ENABLE \
47		(NETIF_MSG_LINK	| \
48		NETIF_MSG_TIMER	| \
49		NETIF_MSG_RX_ERR| \
50		NETIF_MSG_TX_ERR)
51
52#if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
53	defined(CONFIG_CPU_SUBTYPE_SH7763) || \
54	defined(CONFIG_ARCH_R8A7740)
55static void sh_eth_select_mii(struct net_device *ndev)
56{
57	u32 value = 0x0;
58	struct sh_eth_private *mdp = netdev_priv(ndev);
59
60	switch (mdp->phy_interface) {
61	case PHY_INTERFACE_MODE_GMII:
62		value = 0x2;
63		break;
64	case PHY_INTERFACE_MODE_MII:
65		value = 0x1;
66		break;
67	case PHY_INTERFACE_MODE_RMII:
68		value = 0x0;
69		break;
70	default:
71		pr_warn("PHY interface mode was not setup. Set to MII.\n");
72		value = 0x1;
73		break;
74	}
75
76	sh_eth_write(ndev, value, RMII_MII);
77}
78#endif
79
80/* There is CPU dependent code */
81#if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
82#define SH_ETH_RESET_DEFAULT	1
83static void sh_eth_set_duplex(struct net_device *ndev)
84{
85	struct sh_eth_private *mdp = netdev_priv(ndev);
86
87	if (mdp->duplex) /* Full */
88		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
89	else		/* Half */
90		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
91}
92
93static void sh_eth_set_rate(struct net_device *ndev)
94{
95	struct sh_eth_private *mdp = netdev_priv(ndev);
96	unsigned int bits = ECMR_RTM;
97
98#if defined(CONFIG_ARCH_R8A7779)
99	bits |= ECMR_ELB;
100#endif
101
102	switch (mdp->speed) {
103	case 10: /* 10BASE */
104		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
105		break;
106	case 100:/* 100BASE */
107		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
108		break;
109	default:
110		break;
111	}
112}
113
114/* SH7724 */
115static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
116	.set_duplex	= sh_eth_set_duplex,
117	.set_rate	= sh_eth_set_rate,
118
119	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
120	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
121	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
122
123	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
124	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
125			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
126	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
127
128	.apr		= 1,
129	.mpr		= 1,
130	.tpauser	= 1,
131	.hw_swap	= 1,
132	.rpadir		= 1,
133	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
134};
135#elif defined(CONFIG_CPU_SUBTYPE_SH7757)
136#define SH_ETH_HAS_BOTH_MODULES	1
137#define SH_ETH_HAS_TSU	1
138static int sh_eth_check_reset(struct net_device *ndev);
139
140static void sh_eth_set_duplex(struct net_device *ndev)
141{
142	struct sh_eth_private *mdp = netdev_priv(ndev);
143
144	if (mdp->duplex) /* Full */
145		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
146	else		/* Half */
147		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
148}
149
150static void sh_eth_set_rate(struct net_device *ndev)
151{
152	struct sh_eth_private *mdp = netdev_priv(ndev);
153
154	switch (mdp->speed) {
155	case 10: /* 10BASE */
156		sh_eth_write(ndev, 0, RTRATE);
157		break;
158	case 100:/* 100BASE */
159		sh_eth_write(ndev, 1, RTRATE);
160		break;
161	default:
162		break;
163	}
164}
165
166/* SH7757 */
167static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
168	.set_duplex		= sh_eth_set_duplex,
169	.set_rate		= sh_eth_set_rate,
170
171	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
172	.rmcr_value	= 0x00000001,
173
174	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
175	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
176			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
177	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
178
179	.apr		= 1,
180	.mpr		= 1,
181	.tpauser	= 1,
182	.hw_swap	= 1,
183	.no_ade		= 1,
184	.rpadir		= 1,
185	.rpadir_value   = 2 << 16,
186};
187
188#define SH_GIGA_ETH_BASE	0xfee00000
189#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
190#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
191static void sh_eth_chip_reset_giga(struct net_device *ndev)
192{
193	int i;
194	unsigned long mahr[2], malr[2];
195
196	/* save MAHR and MALR */
197	for (i = 0; i < 2; i++) {
198		malr[i] = ioread32((void *)GIGA_MALR(i));
199		mahr[i] = ioread32((void *)GIGA_MAHR(i));
200	}
201
202	/* reset device */
203	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
204	mdelay(1);
205
206	/* restore MAHR and MALR */
207	for (i = 0; i < 2; i++) {
208		iowrite32(malr[i], (void *)GIGA_MALR(i));
209		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
210	}
211}
212
213static int sh_eth_is_gether(struct sh_eth_private *mdp);
214static int sh_eth_reset(struct net_device *ndev)
215{
216	struct sh_eth_private *mdp = netdev_priv(ndev);
217	int ret = 0;
218
219	if (sh_eth_is_gether(mdp)) {
220		sh_eth_write(ndev, 0x03, EDSR);
221		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
222				EDMR);
223
224		ret = sh_eth_check_reset(ndev);
225		if (ret)
226			goto out;
227
228		/* Table Init */
229		sh_eth_write(ndev, 0x0, TDLAR);
230		sh_eth_write(ndev, 0x0, TDFAR);
231		sh_eth_write(ndev, 0x0, TDFXR);
232		sh_eth_write(ndev, 0x0, TDFFR);
233		sh_eth_write(ndev, 0x0, RDLAR);
234		sh_eth_write(ndev, 0x0, RDFAR);
235		sh_eth_write(ndev, 0x0, RDFXR);
236		sh_eth_write(ndev, 0x0, RDFFR);
237	} else {
238		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
239				EDMR);
240		mdelay(3);
241		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
242				EDMR);
243	}
244
245out:
246	return ret;
247}
248
249static void sh_eth_set_duplex_giga(struct net_device *ndev)
250{
251	struct sh_eth_private *mdp = netdev_priv(ndev);
252
253	if (mdp->duplex) /* Full */
254		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
255	else		/* Half */
256		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
257}
258
259static void sh_eth_set_rate_giga(struct net_device *ndev)
260{
261	struct sh_eth_private *mdp = netdev_priv(ndev);
262
263	switch (mdp->speed) {
264	case 10: /* 10BASE */
265		sh_eth_write(ndev, 0x00000000, GECMR);
266		break;
267	case 100:/* 100BASE */
268		sh_eth_write(ndev, 0x00000010, GECMR);
269		break;
270	case 1000: /* 1000BASE */
271		sh_eth_write(ndev, 0x00000020, GECMR);
272		break;
273	default:
274		break;
275	}
276}
277
278/* SH7757(GETHERC) */
279static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
280	.chip_reset	= sh_eth_chip_reset_giga,
281	.set_duplex	= sh_eth_set_duplex_giga,
282	.set_rate	= sh_eth_set_rate_giga,
283
284	.ecsr_value	= ECSR_ICD | ECSR_MPD,
285	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
286	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
287
288	.tx_check	= EESR_TC1 | EESR_FTC,
289	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
290			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
291			  EESR_ECI,
292	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
293			  EESR_TFE,
294	.fdr_value	= 0x0000072f,
295	.rmcr_value	= 0x00000001,
296
297	.apr		= 1,
298	.mpr		= 1,
299	.tpauser	= 1,
300	.bculr		= 1,
301	.hw_swap	= 1,
302	.rpadir		= 1,
303	.rpadir_value   = 2 << 16,
304	.no_trimd	= 1,
305	.no_ade		= 1,
306	.tsu		= 1,
307};
308
309static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
310{
311	if (sh_eth_is_gether(mdp))
312		return &sh_eth_my_cpu_data_giga;
313	else
314		return &sh_eth_my_cpu_data;
315}
316
317#elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
318#define SH_ETH_HAS_TSU	1
319static int sh_eth_check_reset(struct net_device *ndev);
320static void sh_eth_reset_hw_crc(struct net_device *ndev);
321
322static void sh_eth_chip_reset(struct net_device *ndev)
323{
324	struct sh_eth_private *mdp = netdev_priv(ndev);
325
326	/* reset device */
327	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
328	mdelay(1);
329}
330
331static void sh_eth_set_duplex(struct net_device *ndev)
332{
333	struct sh_eth_private *mdp = netdev_priv(ndev);
334
335	if (mdp->duplex) /* Full */
336		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
337	else		/* Half */
338		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
339}
340
341static void sh_eth_set_rate(struct net_device *ndev)
342{
343	struct sh_eth_private *mdp = netdev_priv(ndev);
344
345	switch (mdp->speed) {
346	case 10: /* 10BASE */
347		sh_eth_write(ndev, GECMR_10, GECMR);
348		break;
349	case 100:/* 100BASE */
350		sh_eth_write(ndev, GECMR_100, GECMR);
351		break;
352	case 1000: /* 1000BASE */
353		sh_eth_write(ndev, GECMR_1000, GECMR);
354		break;
355	default:
356		break;
357	}
358}
359
360/* sh7763 */
361static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
362	.chip_reset	= sh_eth_chip_reset,
363	.set_duplex	= sh_eth_set_duplex,
364	.set_rate	= sh_eth_set_rate,
365
366	.ecsr_value	= ECSR_ICD | ECSR_MPD,
367	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
368	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
369
370	.tx_check	= EESR_TC1 | EESR_FTC,
371	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
372			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
373			  EESR_ECI,
374	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
375			  EESR_TFE,
376
377	.apr		= 1,
378	.mpr		= 1,
379	.tpauser	= 1,
380	.bculr		= 1,
381	.hw_swap	= 1,
382	.no_trimd	= 1,
383	.no_ade		= 1,
384	.tsu		= 1,
385#if defined(CONFIG_CPU_SUBTYPE_SH7734)
386	.hw_crc     = 1,
387	.select_mii = 1,
388#endif
389};
390
391static int sh_eth_reset(struct net_device *ndev)
392{
393	int ret = 0;
394
395	sh_eth_write(ndev, EDSR_ENALL, EDSR);
396	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
397
398	ret = sh_eth_check_reset(ndev);
399	if (ret)
400		goto out;
401
402	/* Table Init */
403	sh_eth_write(ndev, 0x0, TDLAR);
404	sh_eth_write(ndev, 0x0, TDFAR);
405	sh_eth_write(ndev, 0x0, TDFXR);
406	sh_eth_write(ndev, 0x0, TDFFR);
407	sh_eth_write(ndev, 0x0, RDLAR);
408	sh_eth_write(ndev, 0x0, RDFAR);
409	sh_eth_write(ndev, 0x0, RDFXR);
410	sh_eth_write(ndev, 0x0, RDFFR);
411
412	/* Reset HW CRC register */
413	sh_eth_reset_hw_crc(ndev);
414
415	/* Select MII mode */
416	if (sh_eth_my_cpu_data.select_mii)
417		sh_eth_select_mii(ndev);
418out:
419	return ret;
420}
421
422static void sh_eth_reset_hw_crc(struct net_device *ndev)
423{
424	if (sh_eth_my_cpu_data.hw_crc)
425		sh_eth_write(ndev, 0x0, CSMR);
426}
427
428#elif defined(CONFIG_ARCH_R8A7740)
429#define SH_ETH_HAS_TSU	1
430static int sh_eth_check_reset(struct net_device *ndev);
431
432static void sh_eth_chip_reset(struct net_device *ndev)
433{
434	struct sh_eth_private *mdp = netdev_priv(ndev);
435
436	/* reset device */
437	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
438	mdelay(1);
439
440	sh_eth_select_mii(ndev);
441}
442
443static int sh_eth_reset(struct net_device *ndev)
444{
445	int ret = 0;
446
447	sh_eth_write(ndev, EDSR_ENALL, EDSR);
448	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
449
450	ret = sh_eth_check_reset(ndev);
451	if (ret)
452		goto out;
453
454	/* Table Init */
455	sh_eth_write(ndev, 0x0, TDLAR);
456	sh_eth_write(ndev, 0x0, TDFAR);
457	sh_eth_write(ndev, 0x0, TDFXR);
458	sh_eth_write(ndev, 0x0, TDFFR);
459	sh_eth_write(ndev, 0x0, RDLAR);
460	sh_eth_write(ndev, 0x0, RDFAR);
461	sh_eth_write(ndev, 0x0, RDFXR);
462	sh_eth_write(ndev, 0x0, RDFFR);
463
464out:
465	return ret;
466}
467
468static void sh_eth_set_duplex(struct net_device *ndev)
469{
470	struct sh_eth_private *mdp = netdev_priv(ndev);
471
472	if (mdp->duplex) /* Full */
473		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
474	else		/* Half */
475		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
476}
477
478static void sh_eth_set_rate(struct net_device *ndev)
479{
480	struct sh_eth_private *mdp = netdev_priv(ndev);
481
482	switch (mdp->speed) {
483	case 10: /* 10BASE */
484		sh_eth_write(ndev, GECMR_10, GECMR);
485		break;
486	case 100:/* 100BASE */
487		sh_eth_write(ndev, GECMR_100, GECMR);
488		break;
489	case 1000: /* 1000BASE */
490		sh_eth_write(ndev, GECMR_1000, GECMR);
491		break;
492	default:
493		break;
494	}
495}
496
497/* R8A7740 */
498static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
499	.chip_reset	= sh_eth_chip_reset,
500	.set_duplex	= sh_eth_set_duplex,
501	.set_rate	= sh_eth_set_rate,
502
503	.ecsr_value	= ECSR_ICD | ECSR_MPD,
504	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
505	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
506
507	.tx_check	= EESR_TC1 | EESR_FTC,
508	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
509			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
510			  EESR_ECI,
511	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
512			  EESR_TFE,
513
514	.apr		= 1,
515	.mpr		= 1,
516	.tpauser	= 1,
517	.bculr		= 1,
518	.hw_swap	= 1,
519	.no_trimd	= 1,
520	.no_ade		= 1,
521	.tsu		= 1,
522	.select_mii	= 1,
523};
524
525#elif defined(CONFIG_CPU_SUBTYPE_SH7619)
526#define SH_ETH_RESET_DEFAULT	1
527static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
528	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
529
530	.apr		= 1,
531	.mpr		= 1,
532	.tpauser	= 1,
533	.hw_swap	= 1,
534};
535#elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
536#define SH_ETH_RESET_DEFAULT	1
537#define SH_ETH_HAS_TSU	1
538static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
539	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
540	.tsu		= 1,
541};
542#endif
543
544static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
545{
546	if (!cd->ecsr_value)
547		cd->ecsr_value = DEFAULT_ECSR_INIT;
548
549	if (!cd->ecsipr_value)
550		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
551
552	if (!cd->fcftr_value)
553		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
554				  DEFAULT_FIFO_F_D_RFD;
555
556	if (!cd->fdr_value)
557		cd->fdr_value = DEFAULT_FDR_INIT;
558
559	if (!cd->rmcr_value)
560		cd->rmcr_value = DEFAULT_RMCR_VALUE;
561
562	if (!cd->tx_check)
563		cd->tx_check = DEFAULT_TX_CHECK;
564
565	if (!cd->eesr_err_check)
566		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
567
568	if (!cd->tx_error_check)
569		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
570}
571
572#if defined(SH_ETH_RESET_DEFAULT)
573/* Chip Reset */
574static int  sh_eth_reset(struct net_device *ndev)
575{
576	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
577	mdelay(3);
578	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
579
580	return 0;
581}
582#else
583static int sh_eth_check_reset(struct net_device *ndev)
584{
585	int ret = 0;
586	int cnt = 100;
587
588	while (cnt > 0) {
589		if (!(sh_eth_read(ndev, EDMR) & 0x3))
590			break;
591		mdelay(1);
592		cnt--;
593	}
594	if (cnt < 0) {
595		printk(KERN_ERR "Device reset fail\n");
596		ret = -ETIMEDOUT;
597	}
598	return ret;
599}
600#endif
601
602#if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
603static void sh_eth_set_receive_align(struct sk_buff *skb)
604{
605	int reserve;
606
607	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
608	if (reserve)
609		skb_reserve(skb, reserve);
610}
611#else
612static void sh_eth_set_receive_align(struct sk_buff *skb)
613{
614	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
615}
616#endif
617
618
619/* CPU <-> EDMAC endian convert */
620static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
621{
622	switch (mdp->edmac_endian) {
623	case EDMAC_LITTLE_ENDIAN:
624		return cpu_to_le32(x);
625	case EDMAC_BIG_ENDIAN:
626		return cpu_to_be32(x);
627	}
628	return x;
629}
630
631static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
632{
633	switch (mdp->edmac_endian) {
634	case EDMAC_LITTLE_ENDIAN:
635		return le32_to_cpu(x);
636	case EDMAC_BIG_ENDIAN:
637		return be32_to_cpu(x);
638	}
639	return x;
640}
641
642/*
643 * Program the hardware MAC address from dev->dev_addr.
644 */
645static void update_mac_address(struct net_device *ndev)
646{
647	sh_eth_write(ndev,
648		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
649		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
650	sh_eth_write(ndev,
651		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
652}
653
654/*
655 * Get MAC address from SuperH MAC address register
656 *
657 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
658 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
659 * When you want use this device, you must set MAC address in bootloader.
660 *
661 */
662static void read_mac_address(struct net_device *ndev, unsigned char *mac)
663{
664	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
665		memcpy(ndev->dev_addr, mac, 6);
666	} else {
667		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
668		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
669		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
670		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
671		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
672		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
673	}
674}
675
676static int sh_eth_is_gether(struct sh_eth_private *mdp)
677{
678	if (mdp->reg_offset == sh_eth_offset_gigabit)
679		return 1;
680	else
681		return 0;
682}
683
684static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
685{
686	if (sh_eth_is_gether(mdp))
687		return EDTRR_TRNS_GETHER;
688	else
689		return EDTRR_TRNS_ETHER;
690}
691
692struct bb_info {
693	void (*set_gate)(void *addr);
694	struct mdiobb_ctrl ctrl;
695	void *addr;
696	u32 mmd_msk;/* MMD */
697	u32 mdo_msk;
698	u32 mdi_msk;
699	u32 mdc_msk;
700};
701
702/* PHY bit set */
703static void bb_set(void *addr, u32 msk)
704{
705	iowrite32(ioread32(addr) | msk, addr);
706}
707
708/* PHY bit clear */
709static void bb_clr(void *addr, u32 msk)
710{
711	iowrite32((ioread32(addr) & ~msk), addr);
712}
713
714/* PHY bit read */
715static int bb_read(void *addr, u32 msk)
716{
717	return (ioread32(addr) & msk) != 0;
718}
719
720/* Data I/O pin control */
721static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
722{
723	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
724
725	if (bitbang->set_gate)
726		bitbang->set_gate(bitbang->addr);
727
728	if (bit)
729		bb_set(bitbang->addr, bitbang->mmd_msk);
730	else
731		bb_clr(bitbang->addr, bitbang->mmd_msk);
732}
733
734/* Set bit data*/
735static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
736{
737	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
738
739	if (bitbang->set_gate)
740		bitbang->set_gate(bitbang->addr);
741
742	if (bit)
743		bb_set(bitbang->addr, bitbang->mdo_msk);
744	else
745		bb_clr(bitbang->addr, bitbang->mdo_msk);
746}
747
748/* Get bit data*/
749static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
750{
751	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
752
753	if (bitbang->set_gate)
754		bitbang->set_gate(bitbang->addr);
755
756	return bb_read(bitbang->addr, bitbang->mdi_msk);
757}
758
759/* MDC pin control */
760static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
761{
762	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
763
764	if (bitbang->set_gate)
765		bitbang->set_gate(bitbang->addr);
766
767	if (bit)
768		bb_set(bitbang->addr, bitbang->mdc_msk);
769	else
770		bb_clr(bitbang->addr, bitbang->mdc_msk);
771}
772
773/* mdio bus control struct */
774static struct mdiobb_ops bb_ops = {
775	.owner = THIS_MODULE,
776	.set_mdc = sh_mdc_ctrl,
777	.set_mdio_dir = sh_mmd_ctrl,
778	.set_mdio_data = sh_set_mdio,
779	.get_mdio_data = sh_get_mdio,
780};
781
782/* free skb and descriptor buffer */
783static void sh_eth_ring_free(struct net_device *ndev)
784{
785	struct sh_eth_private *mdp = netdev_priv(ndev);
786	int i;
787
788	/* Free Rx skb ringbuffer */
789	if (mdp->rx_skbuff) {
790		for (i = 0; i < mdp->num_rx_ring; i++) {
791			if (mdp->rx_skbuff[i])
792				dev_kfree_skb(mdp->rx_skbuff[i]);
793		}
794	}
795	kfree(mdp->rx_skbuff);
796	mdp->rx_skbuff = NULL;
797
798	/* Free Tx skb ringbuffer */
799	if (mdp->tx_skbuff) {
800		for (i = 0; i < mdp->num_tx_ring; i++) {
801			if (mdp->tx_skbuff[i])
802				dev_kfree_skb(mdp->tx_skbuff[i]);
803		}
804	}
805	kfree(mdp->tx_skbuff);
806	mdp->tx_skbuff = NULL;
807}
808
809/* format skb and descriptor buffer */
810static void sh_eth_ring_format(struct net_device *ndev)
811{
812	struct sh_eth_private *mdp = netdev_priv(ndev);
813	int i;
814	struct sk_buff *skb;
815	struct sh_eth_rxdesc *rxdesc = NULL;
816	struct sh_eth_txdesc *txdesc = NULL;
817	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
818	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
819
820	mdp->cur_rx = mdp->cur_tx = 0;
821	mdp->dirty_rx = mdp->dirty_tx = 0;
822
823	memset(mdp->rx_ring, 0, rx_ringsize);
824
825	/* build Rx ring buffer */
826	for (i = 0; i < mdp->num_rx_ring; i++) {
827		/* skb */
828		mdp->rx_skbuff[i] = NULL;
829		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
830		mdp->rx_skbuff[i] = skb;
831		if (skb == NULL)
832			break;
833		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
834				DMA_FROM_DEVICE);
835		sh_eth_set_receive_align(skb);
836
837		/* RX descriptor */
838		rxdesc = &mdp->rx_ring[i];
839		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
840		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
841
842		/* The size of the buffer is 16 byte boundary. */
843		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
844		/* Rx descriptor address set */
845		if (i == 0) {
846			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
847			if (sh_eth_is_gether(mdp))
848				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
849		}
850	}
851
852	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
853
854	/* Mark the last entry as wrapping the ring. */
855	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
856
857	memset(mdp->tx_ring, 0, tx_ringsize);
858
859	/* build Tx ring buffer */
860	for (i = 0; i < mdp->num_tx_ring; i++) {
861		mdp->tx_skbuff[i] = NULL;
862		txdesc = &mdp->tx_ring[i];
863		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
864		txdesc->buffer_length = 0;
865		if (i == 0) {
866			/* Tx descriptor address set */
867			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
868			if (sh_eth_is_gether(mdp))
869				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
870		}
871	}
872
873	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
874}
875
876/* Get skb and descriptor buffer */
877static int sh_eth_ring_init(struct net_device *ndev)
878{
879	struct sh_eth_private *mdp = netdev_priv(ndev);
880	int rx_ringsize, tx_ringsize, ret = 0;
881
882	/*
883	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
884	 * card needs room to do 8 byte alignment, +2 so we can reserve
885	 * the first 2 bytes, and +16 gets room for the status word from the
886	 * card.
887	 */
888	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
889			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
890	if (mdp->cd->rpadir)
891		mdp->rx_buf_sz += NET_IP_ALIGN;
892
893	/* Allocate RX and TX skb rings */
894	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
895				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
896	if (!mdp->rx_skbuff) {
897		ret = -ENOMEM;
898		return ret;
899	}
900
901	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
902				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
903	if (!mdp->tx_skbuff) {
904		ret = -ENOMEM;
905		goto skb_ring_free;
906	}
907
908	/* Allocate all Rx descriptors. */
909	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
910	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
911			GFP_KERNEL);
912
913	if (!mdp->rx_ring) {
914		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
915			rx_ringsize);
916		ret = -ENOMEM;
917		goto desc_ring_free;
918	}
919
920	mdp->dirty_rx = 0;
921
922	/* Allocate all Tx descriptors. */
923	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
924	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
925			GFP_KERNEL);
926	if (!mdp->tx_ring) {
927		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
928			tx_ringsize);
929		ret = -ENOMEM;
930		goto desc_ring_free;
931	}
932	return ret;
933
934desc_ring_free:
935	/* free DMA buffer */
936	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
937
938skb_ring_free:
939	/* Free Rx and Tx skb ring buffer */
940	sh_eth_ring_free(ndev);
941	mdp->tx_ring = NULL;
942	mdp->rx_ring = NULL;
943
944	return ret;
945}
946
947static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
948{
949	int ringsize;
950
951	if (mdp->rx_ring) {
952		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
953		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
954				  mdp->rx_desc_dma);
955		mdp->rx_ring = NULL;
956	}
957
958	if (mdp->tx_ring) {
959		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
960		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
961				  mdp->tx_desc_dma);
962		mdp->tx_ring = NULL;
963	}
964}
965
966static int sh_eth_dev_init(struct net_device *ndev, bool start)
967{
968	int ret = 0;
969	struct sh_eth_private *mdp = netdev_priv(ndev);
970	u32 val;
971
972	/* Soft Reset */
973	ret = sh_eth_reset(ndev);
974	if (ret)
975		goto out;
976
977	/* Descriptor format */
978	sh_eth_ring_format(ndev);
979	if (mdp->cd->rpadir)
980		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
981
982	/* all sh_eth int mask */
983	sh_eth_write(ndev, 0, EESIPR);
984
985#if defined(__LITTLE_ENDIAN)
986	if (mdp->cd->hw_swap)
987		sh_eth_write(ndev, EDMR_EL, EDMR);
988	else
989#endif
990		sh_eth_write(ndev, 0, EDMR);
991
992	/* FIFO size set */
993	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
994	sh_eth_write(ndev, 0, TFTR);
995
996	/* Frame recv control */
997	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
998
999	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1000
1001	if (mdp->cd->bculr)
1002		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1003
1004	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1005
1006	if (!mdp->cd->no_trimd)
1007		sh_eth_write(ndev, 0, TRIMD);
1008
1009	/* Recv frame limit set register */
1010	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1011		     RFLR);
1012
1013	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1014	if (start)
1015		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1016
1017	/* PAUSE Prohibition */
1018	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1019		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1020
1021	sh_eth_write(ndev, val, ECMR);
1022
1023	if (mdp->cd->set_rate)
1024		mdp->cd->set_rate(ndev);
1025
1026	/* E-MAC Status Register clear */
1027	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1028
1029	/* E-MAC Interrupt Enable register */
1030	if (start)
1031		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1032
1033	/* Set MAC address */
1034	update_mac_address(ndev);
1035
1036	/* mask reset */
1037	if (mdp->cd->apr)
1038		sh_eth_write(ndev, APR_AP, APR);
1039	if (mdp->cd->mpr)
1040		sh_eth_write(ndev, MPR_MP, MPR);
1041	if (mdp->cd->tpauser)
1042		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1043
1044	if (start) {
1045		/* Setting the Rx mode will start the Rx process. */
1046		sh_eth_write(ndev, EDRRR_R, EDRRR);
1047
1048		netif_start_queue(ndev);
1049	}
1050
1051out:
1052	return ret;
1053}
1054
1055/* free Tx skb function */
1056static int sh_eth_txfree(struct net_device *ndev)
1057{
1058	struct sh_eth_private *mdp = netdev_priv(ndev);
1059	struct sh_eth_txdesc *txdesc;
1060	int freeNum = 0;
1061	int entry = 0;
1062
1063	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1064		entry = mdp->dirty_tx % mdp->num_tx_ring;
1065		txdesc = &mdp->tx_ring[entry];
1066		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1067			break;
1068		/* Free the original skb. */
1069		if (mdp->tx_skbuff[entry]) {
1070			dma_unmap_single(&ndev->dev, txdesc->addr,
1071					 txdesc->buffer_length, DMA_TO_DEVICE);
1072			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1073			mdp->tx_skbuff[entry] = NULL;
1074			freeNum++;
1075		}
1076		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1077		if (entry >= mdp->num_tx_ring - 1)
1078			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1079
1080		ndev->stats.tx_packets++;
1081		ndev->stats.tx_bytes += txdesc->buffer_length;
1082	}
1083	return freeNum;
1084}
1085
1086/* Packet receive function */
1087static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1088{
1089	struct sh_eth_private *mdp = netdev_priv(ndev);
1090	struct sh_eth_rxdesc *rxdesc;
1091
1092	int entry = mdp->cur_rx % mdp->num_rx_ring;
1093	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1094	struct sk_buff *skb;
1095	u16 pkt_len = 0;
1096	u32 desc_status;
1097
1098	rxdesc = &mdp->rx_ring[entry];
1099	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1100		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1101		pkt_len = rxdesc->frame_length;
1102
1103#if defined(CONFIG_ARCH_R8A7740)
1104		desc_status >>= 16;
1105#endif
1106
1107		if (--boguscnt < 0)
1108			break;
1109
1110		if (!(desc_status & RDFEND))
1111			ndev->stats.rx_length_errors++;
1112
1113		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1114				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1115			ndev->stats.rx_errors++;
1116			if (desc_status & RD_RFS1)
1117				ndev->stats.rx_crc_errors++;
1118			if (desc_status & RD_RFS2)
1119				ndev->stats.rx_frame_errors++;
1120			if (desc_status & RD_RFS3)
1121				ndev->stats.rx_length_errors++;
1122			if (desc_status & RD_RFS4)
1123				ndev->stats.rx_length_errors++;
1124			if (desc_status & RD_RFS6)
1125				ndev->stats.rx_missed_errors++;
1126			if (desc_status & RD_RFS10)
1127				ndev->stats.rx_over_errors++;
1128		} else {
1129			if (!mdp->cd->hw_swap)
1130				sh_eth_soft_swap(
1131					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1132					pkt_len + 2);
1133			skb = mdp->rx_skbuff[entry];
1134			mdp->rx_skbuff[entry] = NULL;
1135			if (mdp->cd->rpadir)
1136				skb_reserve(skb, NET_IP_ALIGN);
1137			skb_put(skb, pkt_len);
1138			skb->protocol = eth_type_trans(skb, ndev);
1139			netif_rx(skb);
1140			ndev->stats.rx_packets++;
1141			ndev->stats.rx_bytes += pkt_len;
1142		}
1143		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1144		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1145		rxdesc = &mdp->rx_ring[entry];
1146	}
1147
1148	/* Refill the Rx ring buffers. */
1149	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1150		entry = mdp->dirty_rx % mdp->num_rx_ring;
1151		rxdesc = &mdp->rx_ring[entry];
1152		/* The size of the buffer is 16 byte boundary. */
1153		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1154
1155		if (mdp->rx_skbuff[entry] == NULL) {
1156			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1157			mdp->rx_skbuff[entry] = skb;
1158			if (skb == NULL)
1159				break;	/* Better luck next round. */
1160			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1161					DMA_FROM_DEVICE);
1162			sh_eth_set_receive_align(skb);
1163
1164			skb_checksum_none_assert(skb);
1165			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1166		}
1167		if (entry >= mdp->num_rx_ring - 1)
1168			rxdesc->status |=
1169				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1170		else
1171			rxdesc->status |=
1172				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1173	}
1174
1175	/* Restart Rx engine if stopped. */
1176	/* If we don't need to check status, don't. -KDU */
1177	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1178		/* fix the values for the next receiving if RDE is set */
1179		if (intr_status & EESR_RDE)
1180			mdp->cur_rx = mdp->dirty_rx =
1181				(sh_eth_read(ndev, RDFAR) -
1182				 sh_eth_read(ndev, RDLAR)) >> 4;
1183		sh_eth_write(ndev, EDRRR_R, EDRRR);
1184	}
1185
1186	return 0;
1187}
1188
1189static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1190{
1191	/* disable tx and rx */
1192	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1193		~(ECMR_RE | ECMR_TE), ECMR);
1194}
1195
1196static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1197{
1198	/* enable tx and rx */
1199	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1200		(ECMR_RE | ECMR_TE), ECMR);
1201}
1202
1203/* error control function */
1204static void sh_eth_error(struct net_device *ndev, int intr_status)
1205{
1206	struct sh_eth_private *mdp = netdev_priv(ndev);
1207	u32 felic_stat;
1208	u32 link_stat;
1209	u32 mask;
1210
1211	if (intr_status & EESR_ECI) {
1212		felic_stat = sh_eth_read(ndev, ECSR);
1213		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1214		if (felic_stat & ECSR_ICD)
1215			ndev->stats.tx_carrier_errors++;
1216		if (felic_stat & ECSR_LCHNG) {
1217			/* Link Changed */
1218			if (mdp->cd->no_psr || mdp->no_ether_link) {
1219				goto ignore_link;
1220			} else {
1221				link_stat = (sh_eth_read(ndev, PSR));
1222				if (mdp->ether_link_active_low)
1223					link_stat = ~link_stat;
1224			}
1225			if (!(link_stat & PHY_ST_LINK))
1226				sh_eth_rcv_snd_disable(ndev);
1227			else {
1228				/* Link Up */
1229				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1230					  ~DMAC_M_ECI, EESIPR);
1231				/*clear int */
1232				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1233					  ECSR);
1234				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1235					  DMAC_M_ECI, EESIPR);
1236				/* enable tx and rx */
1237				sh_eth_rcv_snd_enable(ndev);
1238			}
1239		}
1240	}
1241
1242ignore_link:
1243	if (intr_status & EESR_TWB) {
1244		/* Write buck end. unused write back interrupt */
1245		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1246			ndev->stats.tx_aborted_errors++;
1247			if (netif_msg_tx_err(mdp))
1248				dev_err(&ndev->dev, "Transmit Abort\n");
1249	}
1250
1251	if (intr_status & EESR_RABT) {
1252		/* Receive Abort int */
1253		if (intr_status & EESR_RFRMER) {
1254			/* Receive Frame Overflow int */
1255			ndev->stats.rx_frame_errors++;
1256			if (netif_msg_rx_err(mdp))
1257				dev_err(&ndev->dev, "Receive Abort\n");
1258		}
1259	}
1260
1261	if (intr_status & EESR_TDE) {
1262		/* Transmit Descriptor Empty int */
1263		ndev->stats.tx_fifo_errors++;
1264		if (netif_msg_tx_err(mdp))
1265			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1266	}
1267
1268	if (intr_status & EESR_TFE) {
1269		/* FIFO under flow */
1270		ndev->stats.tx_fifo_errors++;
1271		if (netif_msg_tx_err(mdp))
1272			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1273	}
1274
1275	if (intr_status & EESR_RDE) {
1276		/* Receive Descriptor Empty int */
1277		ndev->stats.rx_over_errors++;
1278
1279		if (netif_msg_rx_err(mdp))
1280			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1281	}
1282
1283	if (intr_status & EESR_RFE) {
1284		/* Receive FIFO Overflow int */
1285		ndev->stats.rx_fifo_errors++;
1286		if (netif_msg_rx_err(mdp))
1287			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1288	}
1289
1290	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1291		/* Address Error */
1292		ndev->stats.tx_fifo_errors++;
1293		if (netif_msg_tx_err(mdp))
1294			dev_err(&ndev->dev, "Address Error\n");
1295	}
1296
1297	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1298	if (mdp->cd->no_ade)
1299		mask &= ~EESR_ADE;
1300	if (intr_status & mask) {
1301		/* Tx error */
1302		u32 edtrr = sh_eth_read(ndev, EDTRR);
1303		/* dmesg */
1304		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1305				intr_status, mdp->cur_tx);
1306		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1307				mdp->dirty_tx, (u32) ndev->state, edtrr);
1308		/* dirty buffer free */
1309		sh_eth_txfree(ndev);
1310
1311		/* SH7712 BUG */
1312		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1313			/* tx dma start */
1314			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1315		}
1316		/* wakeup */
1317		netif_wake_queue(ndev);
1318	}
1319}
1320
1321static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1322{
1323	struct net_device *ndev = netdev;
1324	struct sh_eth_private *mdp = netdev_priv(ndev);
1325	struct sh_eth_cpu_data *cd = mdp->cd;
1326	irqreturn_t ret = IRQ_NONE;
1327	unsigned long intr_status;
1328
1329	spin_lock(&mdp->lock);
1330
1331	/* Get interrupt status */
1332	intr_status = sh_eth_read(ndev, EESR);
1333	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1334	 * enabled since it's the one that  comes thru regardless of the mask,
1335	 * and we need to fully handle it in sh_eth_error() in order to quench
1336	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1337	 */
1338	intr_status &= sh_eth_read(ndev, EESIPR) | DMAC_M_ECI;
1339	/* Clear interrupt */
1340	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1341			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1342			cd->tx_check | cd->eesr_err_check)) {
1343		sh_eth_write(ndev, intr_status, EESR);
1344		ret = IRQ_HANDLED;
1345	} else
1346		goto other_irq;
1347
1348	if (intr_status & (EESR_FRC | /* Frame recv*/
1349			EESR_RMAF | /* Multi cast address recv*/
1350			EESR_RRF  | /* Bit frame recv */
1351			EESR_RTLF | /* Long frame recv*/
1352			EESR_RTSF | /* short frame recv */
1353			EESR_PRE  | /* PHY-LSI recv error */
1354			EESR_CERF)){ /* recv frame CRC error */
1355		sh_eth_rx(ndev, intr_status);
1356	}
1357
1358	/* Tx Check */
1359	if (intr_status & cd->tx_check) {
1360		sh_eth_txfree(ndev);
1361		netif_wake_queue(ndev);
1362	}
1363
1364	if (intr_status & cd->eesr_err_check)
1365		sh_eth_error(ndev, intr_status);
1366
1367other_irq:
1368	spin_unlock(&mdp->lock);
1369
1370	return ret;
1371}
1372
1373/* PHY state control function */
1374static void sh_eth_adjust_link(struct net_device *ndev)
1375{
1376	struct sh_eth_private *mdp = netdev_priv(ndev);
1377	struct phy_device *phydev = mdp->phydev;
1378	int new_state = 0;
1379
1380	if (phydev->link) {
1381		if (phydev->duplex != mdp->duplex) {
1382			new_state = 1;
1383			mdp->duplex = phydev->duplex;
1384			if (mdp->cd->set_duplex)
1385				mdp->cd->set_duplex(ndev);
1386		}
1387
1388		if (phydev->speed != mdp->speed) {
1389			new_state = 1;
1390			mdp->speed = phydev->speed;
1391			if (mdp->cd->set_rate)
1392				mdp->cd->set_rate(ndev);
1393		}
1394		if (!mdp->link) {
1395			sh_eth_write(ndev,
1396				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1397			new_state = 1;
1398			mdp->link = phydev->link;
1399			if (mdp->cd->no_psr || mdp->no_ether_link)
1400				sh_eth_rcv_snd_enable(ndev);
1401		}
1402	} else if (mdp->link) {
1403		new_state = 1;
1404		mdp->link = 0;
1405		mdp->speed = 0;
1406		mdp->duplex = -1;
1407		if (mdp->cd->no_psr || mdp->no_ether_link)
1408			sh_eth_rcv_snd_disable(ndev);
1409	}
1410
1411	if (new_state && netif_msg_link(mdp))
1412		phy_print_status(phydev);
1413}
1414
1415/* PHY init function */
1416static int sh_eth_phy_init(struct net_device *ndev)
1417{
1418	struct sh_eth_private *mdp = netdev_priv(ndev);
1419	char phy_id[MII_BUS_ID_SIZE + 3];
1420	struct phy_device *phydev = NULL;
1421
1422	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1423		mdp->mii_bus->id , mdp->phy_id);
1424
1425	mdp->link = 0;
1426	mdp->speed = 0;
1427	mdp->duplex = -1;
1428
1429	/* Try connect to PHY */
1430	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1431			     mdp->phy_interface);
1432	if (IS_ERR(phydev)) {
1433		dev_err(&ndev->dev, "phy_connect failed\n");
1434		return PTR_ERR(phydev);
1435	}
1436
1437	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1438		phydev->addr, phydev->drv->name);
1439
1440	mdp->phydev = phydev;
1441
1442	return 0;
1443}
1444
1445/* PHY control start function */
1446static int sh_eth_phy_start(struct net_device *ndev)
1447{
1448	struct sh_eth_private *mdp = netdev_priv(ndev);
1449	int ret;
1450
1451	ret = sh_eth_phy_init(ndev);
1452	if (ret)
1453		return ret;
1454
1455	/* reset phy - this also wakes it from PDOWN */
1456	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1457	phy_start(mdp->phydev);
1458
1459	return 0;
1460}
1461
1462static int sh_eth_get_settings(struct net_device *ndev,
1463			struct ethtool_cmd *ecmd)
1464{
1465	struct sh_eth_private *mdp = netdev_priv(ndev);
1466	unsigned long flags;
1467	int ret;
1468
1469	spin_lock_irqsave(&mdp->lock, flags);
1470	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1471	spin_unlock_irqrestore(&mdp->lock, flags);
1472
1473	return ret;
1474}
1475
1476static int sh_eth_set_settings(struct net_device *ndev,
1477		struct ethtool_cmd *ecmd)
1478{
1479	struct sh_eth_private *mdp = netdev_priv(ndev);
1480	unsigned long flags;
1481	int ret;
1482
1483	spin_lock_irqsave(&mdp->lock, flags);
1484
1485	/* disable tx and rx */
1486	sh_eth_rcv_snd_disable(ndev);
1487
1488	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1489	if (ret)
1490		goto error_exit;
1491
1492	if (ecmd->duplex == DUPLEX_FULL)
1493		mdp->duplex = 1;
1494	else
1495		mdp->duplex = 0;
1496
1497	if (mdp->cd->set_duplex)
1498		mdp->cd->set_duplex(ndev);
1499
1500error_exit:
1501	mdelay(1);
1502
1503	/* enable tx and rx */
1504	sh_eth_rcv_snd_enable(ndev);
1505
1506	spin_unlock_irqrestore(&mdp->lock, flags);
1507
1508	return ret;
1509}
1510
1511static int sh_eth_nway_reset(struct net_device *ndev)
1512{
1513	struct sh_eth_private *mdp = netdev_priv(ndev);
1514	unsigned long flags;
1515	int ret;
1516
1517	spin_lock_irqsave(&mdp->lock, flags);
1518	ret = phy_start_aneg(mdp->phydev);
1519	spin_unlock_irqrestore(&mdp->lock, flags);
1520
1521	return ret;
1522}
1523
1524static u32 sh_eth_get_msglevel(struct net_device *ndev)
1525{
1526	struct sh_eth_private *mdp = netdev_priv(ndev);
1527	return mdp->msg_enable;
1528}
1529
1530static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1531{
1532	struct sh_eth_private *mdp = netdev_priv(ndev);
1533	mdp->msg_enable = value;
1534}
1535
1536static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1537	"rx_current", "tx_current",
1538	"rx_dirty", "tx_dirty",
1539};
1540#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1541
1542static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1543{
1544	switch (sset) {
1545	case ETH_SS_STATS:
1546		return SH_ETH_STATS_LEN;
1547	default:
1548		return -EOPNOTSUPP;
1549	}
1550}
1551
1552static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1553			struct ethtool_stats *stats, u64 *data)
1554{
1555	struct sh_eth_private *mdp = netdev_priv(ndev);
1556	int i = 0;
1557
1558	/* device-specific stats */
1559	data[i++] = mdp->cur_rx;
1560	data[i++] = mdp->cur_tx;
1561	data[i++] = mdp->dirty_rx;
1562	data[i++] = mdp->dirty_tx;
1563}
1564
1565static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1566{
1567	switch (stringset) {
1568	case ETH_SS_STATS:
1569		memcpy(data, *sh_eth_gstrings_stats,
1570					sizeof(sh_eth_gstrings_stats));
1571		break;
1572	}
1573}
1574
1575static void sh_eth_get_ringparam(struct net_device *ndev,
1576				 struct ethtool_ringparam *ring)
1577{
1578	struct sh_eth_private *mdp = netdev_priv(ndev);
1579
1580	ring->rx_max_pending = RX_RING_MAX;
1581	ring->tx_max_pending = TX_RING_MAX;
1582	ring->rx_pending = mdp->num_rx_ring;
1583	ring->tx_pending = mdp->num_tx_ring;
1584}
1585
1586static int sh_eth_set_ringparam(struct net_device *ndev,
1587				struct ethtool_ringparam *ring)
1588{
1589	struct sh_eth_private *mdp = netdev_priv(ndev);
1590	int ret;
1591
1592	if (ring->tx_pending > TX_RING_MAX ||
1593	    ring->rx_pending > RX_RING_MAX ||
1594	    ring->tx_pending < TX_RING_MIN ||
1595	    ring->rx_pending < RX_RING_MIN)
1596		return -EINVAL;
1597	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1598		return -EINVAL;
1599
1600	if (netif_running(ndev)) {
1601		netif_tx_disable(ndev);
1602		/* Disable interrupts by clearing the interrupt mask. */
1603		sh_eth_write(ndev, 0x0000, EESIPR);
1604		/* Stop the chip's Tx and Rx processes. */
1605		sh_eth_write(ndev, 0, EDTRR);
1606		sh_eth_write(ndev, 0, EDRRR);
1607		synchronize_irq(ndev->irq);
1608	}
1609
1610	/* Free all the skbuffs in the Rx queue. */
1611	sh_eth_ring_free(ndev);
1612	/* Free DMA buffer */
1613	sh_eth_free_dma_buffer(mdp);
1614
1615	/* Set new parameters */
1616	mdp->num_rx_ring = ring->rx_pending;
1617	mdp->num_tx_ring = ring->tx_pending;
1618
1619	ret = sh_eth_ring_init(ndev);
1620	if (ret < 0) {
1621		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1622		return ret;
1623	}
1624	ret = sh_eth_dev_init(ndev, false);
1625	if (ret < 0) {
1626		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1627		return ret;
1628	}
1629
1630	if (netif_running(ndev)) {
1631		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1632		/* Setting the Rx mode will start the Rx process. */
1633		sh_eth_write(ndev, EDRRR_R, EDRRR);
1634		netif_wake_queue(ndev);
1635	}
1636
1637	return 0;
1638}
1639
1640static const struct ethtool_ops sh_eth_ethtool_ops = {
1641	.get_settings	= sh_eth_get_settings,
1642	.set_settings	= sh_eth_set_settings,
1643	.nway_reset	= sh_eth_nway_reset,
1644	.get_msglevel	= sh_eth_get_msglevel,
1645	.set_msglevel	= sh_eth_set_msglevel,
1646	.get_link	= ethtool_op_get_link,
1647	.get_strings	= sh_eth_get_strings,
1648	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1649	.get_sset_count     = sh_eth_get_sset_count,
1650	.get_ringparam	= sh_eth_get_ringparam,
1651	.set_ringparam	= sh_eth_set_ringparam,
1652};
1653
1654/* network device open function */
1655static int sh_eth_open(struct net_device *ndev)
1656{
1657	int ret = 0;
1658	struct sh_eth_private *mdp = netdev_priv(ndev);
1659
1660	pm_runtime_get_sync(&mdp->pdev->dev);
1661
1662	ret = request_irq(ndev->irq, sh_eth_interrupt,
1663#if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1664	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1665	defined(CONFIG_CPU_SUBTYPE_SH7757)
1666				IRQF_SHARED,
1667#else
1668				0,
1669#endif
1670				ndev->name, ndev);
1671	if (ret) {
1672		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1673		return ret;
1674	}
1675
1676	/* Descriptor set */
1677	ret = sh_eth_ring_init(ndev);
1678	if (ret)
1679		goto out_free_irq;
1680
1681	/* device init */
1682	ret = sh_eth_dev_init(ndev, true);
1683	if (ret)
1684		goto out_free_irq;
1685
1686	/* PHY control start*/
1687	ret = sh_eth_phy_start(ndev);
1688	if (ret)
1689		goto out_free_irq;
1690
1691	return ret;
1692
1693out_free_irq:
1694	free_irq(ndev->irq, ndev);
1695	pm_runtime_put_sync(&mdp->pdev->dev);
1696	return ret;
1697}
1698
1699/* Timeout function */
1700static void sh_eth_tx_timeout(struct net_device *ndev)
1701{
1702	struct sh_eth_private *mdp = netdev_priv(ndev);
1703	struct sh_eth_rxdesc *rxdesc;
1704	int i;
1705
1706	netif_stop_queue(ndev);
1707
1708	if (netif_msg_timer(mdp))
1709		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1710	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1711
1712	/* tx_errors count up */
1713	ndev->stats.tx_errors++;
1714
1715	/* Free all the skbuffs in the Rx queue. */
1716	for (i = 0; i < mdp->num_rx_ring; i++) {
1717		rxdesc = &mdp->rx_ring[i];
1718		rxdesc->status = 0;
1719		rxdesc->addr = 0xBADF00D0;
1720		if (mdp->rx_skbuff[i])
1721			dev_kfree_skb(mdp->rx_skbuff[i]);
1722		mdp->rx_skbuff[i] = NULL;
1723	}
1724	for (i = 0; i < mdp->num_tx_ring; i++) {
1725		if (mdp->tx_skbuff[i])
1726			dev_kfree_skb(mdp->tx_skbuff[i]);
1727		mdp->tx_skbuff[i] = NULL;
1728	}
1729
1730	/* device init */
1731	sh_eth_dev_init(ndev, true);
1732}
1733
1734/* Packet transmit function */
1735static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1736{
1737	struct sh_eth_private *mdp = netdev_priv(ndev);
1738	struct sh_eth_txdesc *txdesc;
1739	u32 entry;
1740	unsigned long flags;
1741
1742	spin_lock_irqsave(&mdp->lock, flags);
1743	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1744		if (!sh_eth_txfree(ndev)) {
1745			if (netif_msg_tx_queued(mdp))
1746				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1747			netif_stop_queue(ndev);
1748			spin_unlock_irqrestore(&mdp->lock, flags);
1749			return NETDEV_TX_BUSY;
1750		}
1751	}
1752	spin_unlock_irqrestore(&mdp->lock, flags);
1753
1754	entry = mdp->cur_tx % mdp->num_tx_ring;
1755	mdp->tx_skbuff[entry] = skb;
1756	txdesc = &mdp->tx_ring[entry];
1757	/* soft swap. */
1758	if (!mdp->cd->hw_swap)
1759		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1760				 skb->len + 2);
1761	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1762				      DMA_TO_DEVICE);
1763	if (skb->len < ETHERSMALL)
1764		txdesc->buffer_length = ETHERSMALL;
1765	else
1766		txdesc->buffer_length = skb->len;
1767
1768	if (entry >= mdp->num_tx_ring - 1)
1769		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1770	else
1771		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1772
1773	mdp->cur_tx++;
1774
1775	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1776		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1777
1778	return NETDEV_TX_OK;
1779}
1780
1781/* device close function */
1782static int sh_eth_close(struct net_device *ndev)
1783{
1784	struct sh_eth_private *mdp = netdev_priv(ndev);
1785
1786	netif_stop_queue(ndev);
1787
1788	/* Disable interrupts by clearing the interrupt mask. */
1789	sh_eth_write(ndev, 0x0000, EESIPR);
1790
1791	/* Stop the chip's Tx and Rx processes. */
1792	sh_eth_write(ndev, 0, EDTRR);
1793	sh_eth_write(ndev, 0, EDRRR);
1794
1795	/* PHY Disconnect */
1796	if (mdp->phydev) {
1797		phy_stop(mdp->phydev);
1798		phy_disconnect(mdp->phydev);
1799	}
1800
1801	free_irq(ndev->irq, ndev);
1802
1803	/* Free all the skbuffs in the Rx queue. */
1804	sh_eth_ring_free(ndev);
1805
1806	/* free DMA buffer */
1807	sh_eth_free_dma_buffer(mdp);
1808
1809	pm_runtime_put_sync(&mdp->pdev->dev);
1810
1811	return 0;
1812}
1813
1814static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1815{
1816	struct sh_eth_private *mdp = netdev_priv(ndev);
1817
1818	pm_runtime_get_sync(&mdp->pdev->dev);
1819
1820	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1821	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1822	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1823	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1824	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1825	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1826	if (sh_eth_is_gether(mdp)) {
1827		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1828		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1829		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1830		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1831	} else {
1832		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1833		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1834	}
1835	pm_runtime_put_sync(&mdp->pdev->dev);
1836
1837	return &ndev->stats;
1838}
1839
1840/* ioctl to device function */
1841static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1842				int cmd)
1843{
1844	struct sh_eth_private *mdp = netdev_priv(ndev);
1845	struct phy_device *phydev = mdp->phydev;
1846
1847	if (!netif_running(ndev))
1848		return -EINVAL;
1849
1850	if (!phydev)
1851		return -ENODEV;
1852
1853	return phy_mii_ioctl(phydev, rq, cmd);
1854}
1855
1856#if defined(SH_ETH_HAS_TSU)
1857/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1858static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1859					    int entry)
1860{
1861	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1862}
1863
1864static u32 sh_eth_tsu_get_post_mask(int entry)
1865{
1866	return 0x0f << (28 - ((entry % 8) * 4));
1867}
1868
1869static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1870{
1871	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1872}
1873
1874static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1875					     int entry)
1876{
1877	struct sh_eth_private *mdp = netdev_priv(ndev);
1878	u32 tmp;
1879	void *reg_offset;
1880
1881	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1882	tmp = ioread32(reg_offset);
1883	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1884}
1885
1886static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1887					      int entry)
1888{
1889	struct sh_eth_private *mdp = netdev_priv(ndev);
1890	u32 post_mask, ref_mask, tmp;
1891	void *reg_offset;
1892
1893	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1894	post_mask = sh_eth_tsu_get_post_mask(entry);
1895	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1896
1897	tmp = ioread32(reg_offset);
1898	iowrite32(tmp & ~post_mask, reg_offset);
1899
1900	/* If other port enables, the function returns "true" */
1901	return tmp & ref_mask;
1902}
1903
1904static int sh_eth_tsu_busy(struct net_device *ndev)
1905{
1906	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1907	struct sh_eth_private *mdp = netdev_priv(ndev);
1908
1909	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1910		udelay(10);
1911		timeout--;
1912		if (timeout <= 0) {
1913			dev_err(&ndev->dev, "%s: timeout\n", __func__);
1914			return -ETIMEDOUT;
1915		}
1916	}
1917
1918	return 0;
1919}
1920
1921static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1922				  const u8 *addr)
1923{
1924	u32 val;
1925
1926	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1927	iowrite32(val, reg);
1928	if (sh_eth_tsu_busy(ndev) < 0)
1929		return -EBUSY;
1930
1931	val = addr[4] << 8 | addr[5];
1932	iowrite32(val, reg + 4);
1933	if (sh_eth_tsu_busy(ndev) < 0)
1934		return -EBUSY;
1935
1936	return 0;
1937}
1938
1939static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1940{
1941	u32 val;
1942
1943	val = ioread32(reg);
1944	addr[0] = (val >> 24) & 0xff;
1945	addr[1] = (val >> 16) & 0xff;
1946	addr[2] = (val >> 8) & 0xff;
1947	addr[3] = val & 0xff;
1948	val = ioread32(reg + 4);
1949	addr[4] = (val >> 8) & 0xff;
1950	addr[5] = val & 0xff;
1951}
1952
1953
1954static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1955{
1956	struct sh_eth_private *mdp = netdev_priv(ndev);
1957	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1958	int i;
1959	u8 c_addr[ETH_ALEN];
1960
1961	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1962		sh_eth_tsu_read_entry(reg_offset, c_addr);
1963		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1964			return i;
1965	}
1966
1967	return -ENOENT;
1968}
1969
1970static int sh_eth_tsu_find_empty(struct net_device *ndev)
1971{
1972	u8 blank[ETH_ALEN];
1973	int entry;
1974
1975	memset(blank, 0, sizeof(blank));
1976	entry = sh_eth_tsu_find_entry(ndev, blank);
1977	return (entry < 0) ? -ENOMEM : entry;
1978}
1979
1980static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1981					      int entry)
1982{
1983	struct sh_eth_private *mdp = netdev_priv(ndev);
1984	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1985	int ret;
1986	u8 blank[ETH_ALEN];
1987
1988	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1989			 ~(1 << (31 - entry)), TSU_TEN);
1990
1991	memset(blank, 0, sizeof(blank));
1992	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1993	if (ret < 0)
1994		return ret;
1995	return 0;
1996}
1997
1998static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1999{
2000	struct sh_eth_private *mdp = netdev_priv(ndev);
2001	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2002	int i, ret;
2003
2004	if (!mdp->cd->tsu)
2005		return 0;
2006
2007	i = sh_eth_tsu_find_entry(ndev, addr);
2008	if (i < 0) {
2009		/* No entry found, create one */
2010		i = sh_eth_tsu_find_empty(ndev);
2011		if (i < 0)
2012			return -ENOMEM;
2013		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2014		if (ret < 0)
2015			return ret;
2016
2017		/* Enable the entry */
2018		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2019				 (1 << (31 - i)), TSU_TEN);
2020	}
2021
2022	/* Entry found or created, enable POST */
2023	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2024
2025	return 0;
2026}
2027
2028static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2029{
2030	struct sh_eth_private *mdp = netdev_priv(ndev);
2031	int i, ret;
2032
2033	if (!mdp->cd->tsu)
2034		return 0;
2035
2036	i = sh_eth_tsu_find_entry(ndev, addr);
2037	if (i) {
2038		/* Entry found */
2039		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2040			goto done;
2041
2042		/* Disable the entry if both ports was disabled */
2043		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2044		if (ret < 0)
2045			return ret;
2046	}
2047done:
2048	return 0;
2049}
2050
2051static int sh_eth_tsu_purge_all(struct net_device *ndev)
2052{
2053	struct sh_eth_private *mdp = netdev_priv(ndev);
2054	int i, ret;
2055
2056	if (unlikely(!mdp->cd->tsu))
2057		return 0;
2058
2059	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2060		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2061			continue;
2062
2063		/* Disable the entry if both ports was disabled */
2064		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2065		if (ret < 0)
2066			return ret;
2067	}
2068
2069	return 0;
2070}
2071
2072static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2073{
2074	struct sh_eth_private *mdp = netdev_priv(ndev);
2075	u8 addr[ETH_ALEN];
2076	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2077	int i;
2078
2079	if (unlikely(!mdp->cd->tsu))
2080		return;
2081
2082	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2083		sh_eth_tsu_read_entry(reg_offset, addr);
2084		if (is_multicast_ether_addr(addr))
2085			sh_eth_tsu_del_entry(ndev, addr);
2086	}
2087}
2088
2089/* Multicast reception directions set */
2090static void sh_eth_set_multicast_list(struct net_device *ndev)
2091{
2092	struct sh_eth_private *mdp = netdev_priv(ndev);
2093	u32 ecmr_bits;
2094	int mcast_all = 0;
2095	unsigned long flags;
2096
2097	spin_lock_irqsave(&mdp->lock, flags);
2098	/*
2099	 * Initial condition is MCT = 1, PRM = 0.
2100	 * Depending on ndev->flags, set PRM or clear MCT
2101	 */
2102	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2103
2104	if (!(ndev->flags & IFF_MULTICAST)) {
2105		sh_eth_tsu_purge_mcast(ndev);
2106		mcast_all = 1;
2107	}
2108	if (ndev->flags & IFF_ALLMULTI) {
2109		sh_eth_tsu_purge_mcast(ndev);
2110		ecmr_bits &= ~ECMR_MCT;
2111		mcast_all = 1;
2112	}
2113
2114	if (ndev->flags & IFF_PROMISC) {
2115		sh_eth_tsu_purge_all(ndev);
2116		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2117	} else if (mdp->cd->tsu) {
2118		struct netdev_hw_addr *ha;
2119		netdev_for_each_mc_addr(ha, ndev) {
2120			if (mcast_all && is_multicast_ether_addr(ha->addr))
2121				continue;
2122
2123			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2124				if (!mcast_all) {
2125					sh_eth_tsu_purge_mcast(ndev);
2126					ecmr_bits &= ~ECMR_MCT;
2127					mcast_all = 1;
2128				}
2129			}
2130		}
2131	} else {
2132		/* Normal, unicast/broadcast-only mode. */
2133		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2134	}
2135
2136	/* update the ethernet mode */
2137	sh_eth_write(ndev, ecmr_bits, ECMR);
2138
2139	spin_unlock_irqrestore(&mdp->lock, flags);
2140}
2141
2142static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2143{
2144	if (!mdp->port)
2145		return TSU_VTAG0;
2146	else
2147		return TSU_VTAG1;
2148}
2149
2150static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2151{
2152	struct sh_eth_private *mdp = netdev_priv(ndev);
2153	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2154
2155	if (unlikely(!mdp->cd->tsu))
2156		return -EPERM;
2157
2158	/* No filtering if vid = 0 */
2159	if (!vid)
2160		return 0;
2161
2162	mdp->vlan_num_ids++;
2163
2164	/*
2165	 * The controller has one VLAN tag HW filter. So, if the filter is
2166	 * already enabled, the driver disables it and the filte
2167	 */
2168	if (mdp->vlan_num_ids > 1) {
2169		/* disable VLAN filter */
2170		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2171		return 0;
2172	}
2173
2174	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2175			 vtag_reg_index);
2176
2177	return 0;
2178}
2179
2180static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2181{
2182	struct sh_eth_private *mdp = netdev_priv(ndev);
2183	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2184
2185	if (unlikely(!mdp->cd->tsu))
2186		return -EPERM;
2187
2188	/* No filtering if vid = 0 */
2189	if (!vid)
2190		return 0;
2191
2192	mdp->vlan_num_ids--;
2193	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2194
2195	return 0;
2196}
2197#endif /* SH_ETH_HAS_TSU */
2198
2199/* SuperH's TSU register init function */
2200static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2201{
2202	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2203	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2204	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2205	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2206	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2207	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2208	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2209	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2210	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2211	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2212	if (sh_eth_is_gether(mdp)) {
2213		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2214		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2215	} else {
2216		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2217		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2218	}
2219	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2220	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2221	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2222	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2223	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2224	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2225	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2226}
2227
2228/* MDIO bus release function */
2229static int sh_mdio_release(struct net_device *ndev)
2230{
2231	struct sh_eth_private *mdp = netdev_priv(ndev);
2232	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2233
2234	/* unregister mdio bus */
2235	mdiobus_unregister(bus);
2236
2237	/* remove mdio bus info from net_device */
2238	dev_set_drvdata(&ndev->dev, NULL);
2239
2240	/* free interrupts memory */
2241	kfree(bus->irq);
2242
2243	/* free bitbang info */
2244	free_mdio_bitbang(bus);
2245
2246	/* free bitbang memory */
2247	kfree(mdp->bitbang);
2248
2249	return 0;
2250}
2251
2252/* MDIO bus init function */
2253static int sh_mdio_init(struct net_device *ndev, int id,
2254			struct sh_eth_plat_data *pd)
2255{
2256	int ret, i;
2257	struct bb_info *bitbang;
2258	struct sh_eth_private *mdp = netdev_priv(ndev);
2259
2260	/* create bit control struct for PHY */
2261	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2262	if (!bitbang) {
2263		ret = -ENOMEM;
2264		goto out;
2265	}
2266
2267	/* bitbang init */
2268	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2269	bitbang->set_gate = pd->set_mdio_gate;
2270	bitbang->mdi_msk = 0x08;
2271	bitbang->mdo_msk = 0x04;
2272	bitbang->mmd_msk = 0x02;/* MMD */
2273	bitbang->mdc_msk = 0x01;
2274	bitbang->ctrl.ops = &bb_ops;
2275
2276	/* MII controller setting */
2277	mdp->bitbang = bitbang;
2278	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2279	if (!mdp->mii_bus) {
2280		ret = -ENOMEM;
2281		goto out_free_bitbang;
2282	}
2283
2284	/* Hook up MII support for ethtool */
2285	mdp->mii_bus->name = "sh_mii";
2286	mdp->mii_bus->parent = &ndev->dev;
2287	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2288		mdp->pdev->name, id);
2289
2290	/* PHY IRQ */
2291	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2292	if (!mdp->mii_bus->irq) {
2293		ret = -ENOMEM;
2294		goto out_free_bus;
2295	}
2296
2297	for (i = 0; i < PHY_MAX_ADDR; i++)
2298		mdp->mii_bus->irq[i] = PHY_POLL;
2299
2300	/* register mdio bus */
2301	ret = mdiobus_register(mdp->mii_bus);
2302	if (ret)
2303		goto out_free_irq;
2304
2305	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2306
2307	return 0;
2308
2309out_free_irq:
2310	kfree(mdp->mii_bus->irq);
2311
2312out_free_bus:
2313	free_mdio_bitbang(mdp->mii_bus);
2314
2315out_free_bitbang:
2316	kfree(bitbang);
2317
2318out:
2319	return ret;
2320}
2321
2322static const u16 *sh_eth_get_register_offset(int register_type)
2323{
2324	const u16 *reg_offset = NULL;
2325
2326	switch (register_type) {
2327	case SH_ETH_REG_GIGABIT:
2328		reg_offset = sh_eth_offset_gigabit;
2329		break;
2330	case SH_ETH_REG_FAST_SH4:
2331		reg_offset = sh_eth_offset_fast_sh4;
2332		break;
2333	case SH_ETH_REG_FAST_SH3_SH2:
2334		reg_offset = sh_eth_offset_fast_sh3_sh2;
2335		break;
2336	default:
2337		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
2338		break;
2339	}
2340
2341	return reg_offset;
2342}
2343
2344static const struct net_device_ops sh_eth_netdev_ops = {
2345	.ndo_open		= sh_eth_open,
2346	.ndo_stop		= sh_eth_close,
2347	.ndo_start_xmit		= sh_eth_start_xmit,
2348	.ndo_get_stats		= sh_eth_get_stats,
2349#if defined(SH_ETH_HAS_TSU)
2350	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2351	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2352	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2353#endif
2354	.ndo_tx_timeout		= sh_eth_tx_timeout,
2355	.ndo_do_ioctl		= sh_eth_do_ioctl,
2356	.ndo_validate_addr	= eth_validate_addr,
2357	.ndo_set_mac_address	= eth_mac_addr,
2358	.ndo_change_mtu		= eth_change_mtu,
2359};
2360
2361static int sh_eth_drv_probe(struct platform_device *pdev)
2362{
2363	int ret, devno = 0;
2364	struct resource *res;
2365	struct net_device *ndev = NULL;
2366	struct sh_eth_private *mdp = NULL;
2367	struct sh_eth_plat_data *pd;
2368
2369	/* get base addr */
2370	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2371	if (unlikely(res == NULL)) {
2372		dev_err(&pdev->dev, "invalid resource\n");
2373		ret = -EINVAL;
2374		goto out;
2375	}
2376
2377	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2378	if (!ndev) {
2379		ret = -ENOMEM;
2380		goto out;
2381	}
2382
2383	/* The sh Ether-specific entries in the device structure. */
2384	ndev->base_addr = res->start;
2385	devno = pdev->id;
2386	if (devno < 0)
2387		devno = 0;
2388
2389	ndev->dma = -1;
2390	ret = platform_get_irq(pdev, 0);
2391	if (ret < 0) {
2392		ret = -ENODEV;
2393		goto out_release;
2394	}
2395	ndev->irq = ret;
2396
2397	SET_NETDEV_DEV(ndev, &pdev->dev);
2398
2399	/* Fill in the fields of the device structure with ethernet values. */
2400	ether_setup(ndev);
2401
2402	mdp = netdev_priv(ndev);
2403	mdp->num_tx_ring = TX_RING_SIZE;
2404	mdp->num_rx_ring = RX_RING_SIZE;
2405	mdp->addr = ioremap(res->start, resource_size(res));
2406	if (mdp->addr == NULL) {
2407		ret = -ENOMEM;
2408		dev_err(&pdev->dev, "ioremap failed.\n");
2409		goto out_release;
2410	}
2411
2412	spin_lock_init(&mdp->lock);
2413	mdp->pdev = pdev;
2414	pm_runtime_enable(&pdev->dev);
2415	pm_runtime_resume(&pdev->dev);
2416
2417	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
2418	/* get PHY ID */
2419	mdp->phy_id = pd->phy;
2420	mdp->phy_interface = pd->phy_interface;
2421	/* EDMAC endian */
2422	mdp->edmac_endian = pd->edmac_endian;
2423	mdp->no_ether_link = pd->no_ether_link;
2424	mdp->ether_link_active_low = pd->ether_link_active_low;
2425	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2426
2427	/* set cpu data */
2428#if defined(SH_ETH_HAS_BOTH_MODULES)
2429	mdp->cd = sh_eth_get_cpu_data(mdp);
2430#else
2431	mdp->cd = &sh_eth_my_cpu_data;
2432#endif
2433	sh_eth_set_default_cpu_data(mdp->cd);
2434
2435	/* set function */
2436	ndev->netdev_ops = &sh_eth_netdev_ops;
2437	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2438	ndev->watchdog_timeo = TX_TIMEOUT;
2439
2440	/* debug message level */
2441	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2442
2443	/* read and set MAC address */
2444	read_mac_address(ndev, pd->mac_addr);
2445
2446	/* ioremap the TSU registers */
2447	if (mdp->cd->tsu) {
2448		struct resource *rtsu;
2449		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2450		if (!rtsu) {
2451			dev_err(&pdev->dev, "Not found TSU resource\n");
2452			ret = -ENODEV;
2453			goto out_release;
2454		}
2455		mdp->tsu_addr = ioremap(rtsu->start,
2456					resource_size(rtsu));
2457		if (mdp->tsu_addr == NULL) {
2458			ret = -ENOMEM;
2459			dev_err(&pdev->dev, "TSU ioremap failed.\n");
2460			goto out_release;
2461		}
2462		mdp->port = devno % 2;
2463		ndev->features = NETIF_F_HW_VLAN_FILTER;
2464	}
2465
2466	/* initialize first or needed device */
2467	if (!devno || pd->needs_init) {
2468		if (mdp->cd->chip_reset)
2469			mdp->cd->chip_reset(ndev);
2470
2471		if (mdp->cd->tsu) {
2472			/* TSU init (Init only)*/
2473			sh_eth_tsu_init(mdp);
2474		}
2475	}
2476
2477	/* network device register */
2478	ret = register_netdev(ndev);
2479	if (ret)
2480		goto out_release;
2481
2482	/* mdio bus init */
2483	ret = sh_mdio_init(ndev, pdev->id, pd);
2484	if (ret)
2485		goto out_unregister;
2486
2487	/* print device information */
2488	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2489	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2490
2491	platform_set_drvdata(pdev, ndev);
2492
2493	return ret;
2494
2495out_unregister:
2496	unregister_netdev(ndev);
2497
2498out_release:
2499	/* net_dev free */
2500	if (mdp && mdp->addr)
2501		iounmap(mdp->addr);
2502	if (mdp && mdp->tsu_addr)
2503		iounmap(mdp->tsu_addr);
2504	if (ndev)
2505		free_netdev(ndev);
2506
2507out:
2508	return ret;
2509}
2510
2511static int sh_eth_drv_remove(struct platform_device *pdev)
2512{
2513	struct net_device *ndev = platform_get_drvdata(pdev);
2514	struct sh_eth_private *mdp = netdev_priv(ndev);
2515
2516	if (mdp->cd->tsu)
2517		iounmap(mdp->tsu_addr);
2518	sh_mdio_release(ndev);
2519	unregister_netdev(ndev);
2520	pm_runtime_disable(&pdev->dev);
2521	iounmap(mdp->addr);
2522	free_netdev(ndev);
2523	platform_set_drvdata(pdev, NULL);
2524
2525	return 0;
2526}
2527
2528static int sh_eth_runtime_nop(struct device *dev)
2529{
2530	/*
2531	 * Runtime PM callback shared between ->runtime_suspend()
2532	 * and ->runtime_resume(). Simply returns success.
2533	 *
2534	 * This driver re-initializes all registers after
2535	 * pm_runtime_get_sync() anyway so there is no need
2536	 * to save and restore registers here.
2537	 */
2538	return 0;
2539}
2540
2541static struct dev_pm_ops sh_eth_dev_pm_ops = {
2542	.runtime_suspend = sh_eth_runtime_nop,
2543	.runtime_resume = sh_eth_runtime_nop,
2544};
2545
2546static struct platform_driver sh_eth_driver = {
2547	.probe = sh_eth_drv_probe,
2548	.remove = sh_eth_drv_remove,
2549	.driver = {
2550		   .name = CARDNAME,
2551		   .pm = &sh_eth_dev_pm_ops,
2552	},
2553};
2554
2555module_platform_driver(sh_eth_driver);
2556
2557MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2558MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2559MODULE_LICENSE("GPL v2");
2560