sh_eth.c revision 4d6a949c62f123569fb355b6ec7f314b76f93735
1/*  SuperH Ethernet device driver
2 *
3 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
5 *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
6 *  Copyright (C) 2014 Codethink Limited
7 *
8 *  This program is free software; you can redistribute it and/or modify it
9 *  under the terms and conditions of the GNU General Public License,
10 *  version 2, as published by the Free Software Foundation.
11 *
12 *  This program is distributed in the hope it will be useful, but WITHOUT
13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 *  more details.
16 *
17 *  The full GNU General Public License is included in this distribution in
18 *  the file called "COPYING".
19 */
20
21#include <linux/module.h>
22#include <linux/kernel.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
25#include <linux/dma-mapping.h>
26#include <linux/etherdevice.h>
27#include <linux/delay.h>
28#include <linux/platform_device.h>
29#include <linux/mdio-bitbang.h>
30#include <linux/netdevice.h>
31#include <linux/of.h>
32#include <linux/of_device.h>
33#include <linux/of_irq.h>
34#include <linux/of_net.h>
35#include <linux/phy.h>
36#include <linux/cache.h>
37#include <linux/io.h>
38#include <linux/pm_runtime.h>
39#include <linux/slab.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/clk.h>
43#include <linux/sh_eth.h>
44#include <linux/of_mdio.h>
45
46#include "sh_eth.h"
47
48#define SH_ETH_DEF_MSG_ENABLE \
49		(NETIF_MSG_LINK	| \
50		NETIF_MSG_TIMER	| \
51		NETIF_MSG_RX_ERR| \
52		NETIF_MSG_TX_ERR)
53
54static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
55	[EDSR]		= 0x0000,
56	[EDMR]		= 0x0400,
57	[EDTRR]		= 0x0408,
58	[EDRRR]		= 0x0410,
59	[EESR]		= 0x0428,
60	[EESIPR]	= 0x0430,
61	[TDLAR]		= 0x0010,
62	[TDFAR]		= 0x0014,
63	[TDFXR]		= 0x0018,
64	[TDFFR]		= 0x001c,
65	[RDLAR]		= 0x0030,
66	[RDFAR]		= 0x0034,
67	[RDFXR]		= 0x0038,
68	[RDFFR]		= 0x003c,
69	[TRSCER]	= 0x0438,
70	[RMFCR]		= 0x0440,
71	[TFTR]		= 0x0448,
72	[FDR]		= 0x0450,
73	[RMCR]		= 0x0458,
74	[RPADIR]	= 0x0460,
75	[FCFTR]		= 0x0468,
76	[CSMR]		= 0x04E4,
77
78	[ECMR]		= 0x0500,
79	[ECSR]		= 0x0510,
80	[ECSIPR]	= 0x0518,
81	[PIR]		= 0x0520,
82	[PSR]		= 0x0528,
83	[PIPR]		= 0x052c,
84	[RFLR]		= 0x0508,
85	[APR]		= 0x0554,
86	[MPR]		= 0x0558,
87	[PFTCR]		= 0x055c,
88	[PFRCR]		= 0x0560,
89	[TPAUSER]	= 0x0564,
90	[GECMR]		= 0x05b0,
91	[BCULR]		= 0x05b4,
92	[MAHR]		= 0x05c0,
93	[MALR]		= 0x05c8,
94	[TROCR]		= 0x0700,
95	[CDCR]		= 0x0708,
96	[LCCR]		= 0x0710,
97	[CEFCR]		= 0x0740,
98	[FRECR]		= 0x0748,
99	[TSFRCR]	= 0x0750,
100	[TLFRCR]	= 0x0758,
101	[RFCR]		= 0x0760,
102	[CERCR]		= 0x0768,
103	[CEECR]		= 0x0770,
104	[MAFCR]		= 0x0778,
105	[RMII_MII]	= 0x0790,
106
107	[ARSTR]		= 0x0000,
108	[TSU_CTRST]	= 0x0004,
109	[TSU_FWEN0]	= 0x0010,
110	[TSU_FWEN1]	= 0x0014,
111	[TSU_FCM]	= 0x0018,
112	[TSU_BSYSL0]	= 0x0020,
113	[TSU_BSYSL1]	= 0x0024,
114	[TSU_PRISL0]	= 0x0028,
115	[TSU_PRISL1]	= 0x002c,
116	[TSU_FWSL0]	= 0x0030,
117	[TSU_FWSL1]	= 0x0034,
118	[TSU_FWSLC]	= 0x0038,
119	[TSU_QTAG0]	= 0x0040,
120	[TSU_QTAG1]	= 0x0044,
121	[TSU_FWSR]	= 0x0050,
122	[TSU_FWINMK]	= 0x0054,
123	[TSU_ADQT0]	= 0x0048,
124	[TSU_ADQT1]	= 0x004c,
125	[TSU_VTAG0]	= 0x0058,
126	[TSU_VTAG1]	= 0x005c,
127	[TSU_ADSBSY]	= 0x0060,
128	[TSU_TEN]	= 0x0064,
129	[TSU_POST1]	= 0x0070,
130	[TSU_POST2]	= 0x0074,
131	[TSU_POST3]	= 0x0078,
132	[TSU_POST4]	= 0x007c,
133	[TSU_ADRH0]	= 0x0100,
134	[TSU_ADRL0]	= 0x0104,
135	[TSU_ADRH31]	= 0x01f8,
136	[TSU_ADRL31]	= 0x01fc,
137
138	[TXNLCR0]	= 0x0080,
139	[TXALCR0]	= 0x0084,
140	[RXNLCR0]	= 0x0088,
141	[RXALCR0]	= 0x008c,
142	[FWNLCR0]	= 0x0090,
143	[FWALCR0]	= 0x0094,
144	[TXNLCR1]	= 0x00a0,
145	[TXALCR1]	= 0x00a0,
146	[RXNLCR1]	= 0x00a8,
147	[RXALCR1]	= 0x00ac,
148	[FWNLCR1]	= 0x00b0,
149	[FWALCR1]	= 0x00b4,
150};
151
152static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
153	[EDSR]		= 0x0000,
154	[EDMR]		= 0x0400,
155	[EDTRR]		= 0x0408,
156	[EDRRR]		= 0x0410,
157	[EESR]		= 0x0428,
158	[EESIPR]	= 0x0430,
159	[TDLAR]		= 0x0010,
160	[TDFAR]		= 0x0014,
161	[TDFXR]		= 0x0018,
162	[TDFFR]		= 0x001c,
163	[RDLAR]		= 0x0030,
164	[RDFAR]		= 0x0034,
165	[RDFXR]		= 0x0038,
166	[RDFFR]		= 0x003c,
167	[TRSCER]	= 0x0438,
168	[RMFCR]		= 0x0440,
169	[TFTR]		= 0x0448,
170	[FDR]		= 0x0450,
171	[RMCR]		= 0x0458,
172	[RPADIR]	= 0x0460,
173	[FCFTR]		= 0x0468,
174	[CSMR]		= 0x04E4,
175
176	[ECMR]		= 0x0500,
177	[RFLR]		= 0x0508,
178	[ECSR]		= 0x0510,
179	[ECSIPR]	= 0x0518,
180	[PIR]		= 0x0520,
181	[APR]		= 0x0554,
182	[MPR]		= 0x0558,
183	[PFTCR]		= 0x055c,
184	[PFRCR]		= 0x0560,
185	[TPAUSER]	= 0x0564,
186	[MAHR]		= 0x05c0,
187	[MALR]		= 0x05c8,
188	[CEFCR]		= 0x0740,
189	[FRECR]		= 0x0748,
190	[TSFRCR]	= 0x0750,
191	[TLFRCR]	= 0x0758,
192	[RFCR]		= 0x0760,
193	[MAFCR]		= 0x0778,
194
195	[ARSTR]		= 0x0000,
196	[TSU_CTRST]	= 0x0004,
197	[TSU_VTAG0]	= 0x0058,
198	[TSU_ADSBSY]	= 0x0060,
199	[TSU_TEN]	= 0x0064,
200	[TSU_ADRH0]	= 0x0100,
201	[TSU_ADRL0]	= 0x0104,
202	[TSU_ADRH31]	= 0x01f8,
203	[TSU_ADRL31]	= 0x01fc,
204
205	[TXNLCR0]	= 0x0080,
206	[TXALCR0]	= 0x0084,
207	[RXNLCR0]	= 0x0088,
208	[RXALCR0]	= 0x008C,
209};
210
211static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
212	[ECMR]		= 0x0300,
213	[RFLR]		= 0x0308,
214	[ECSR]		= 0x0310,
215	[ECSIPR]	= 0x0318,
216	[PIR]		= 0x0320,
217	[PSR]		= 0x0328,
218	[RDMLR]		= 0x0340,
219	[IPGR]		= 0x0350,
220	[APR]		= 0x0354,
221	[MPR]		= 0x0358,
222	[RFCF]		= 0x0360,
223	[TPAUSER]	= 0x0364,
224	[TPAUSECR]	= 0x0368,
225	[MAHR]		= 0x03c0,
226	[MALR]		= 0x03c8,
227	[TROCR]		= 0x03d0,
228	[CDCR]		= 0x03d4,
229	[LCCR]		= 0x03d8,
230	[CNDCR]		= 0x03dc,
231	[CEFCR]		= 0x03e4,
232	[FRECR]		= 0x03e8,
233	[TSFRCR]	= 0x03ec,
234	[TLFRCR]	= 0x03f0,
235	[RFCR]		= 0x03f4,
236	[MAFCR]		= 0x03f8,
237
238	[EDMR]		= 0x0200,
239	[EDTRR]		= 0x0208,
240	[EDRRR]		= 0x0210,
241	[TDLAR]		= 0x0218,
242	[RDLAR]		= 0x0220,
243	[EESR]		= 0x0228,
244	[EESIPR]	= 0x0230,
245	[TRSCER]	= 0x0238,
246	[RMFCR]		= 0x0240,
247	[TFTR]		= 0x0248,
248	[FDR]		= 0x0250,
249	[RMCR]		= 0x0258,
250	[TFUCR]		= 0x0264,
251	[RFOCR]		= 0x0268,
252	[RMIIMODE]      = 0x026c,
253	[FCFTR]		= 0x0270,
254	[TRIMD]		= 0x027c,
255};
256
257static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
258	[ECMR]		= 0x0100,
259	[RFLR]		= 0x0108,
260	[ECSR]		= 0x0110,
261	[ECSIPR]	= 0x0118,
262	[PIR]		= 0x0120,
263	[PSR]		= 0x0128,
264	[RDMLR]		= 0x0140,
265	[IPGR]		= 0x0150,
266	[APR]		= 0x0154,
267	[MPR]		= 0x0158,
268	[TPAUSER]	= 0x0164,
269	[RFCF]		= 0x0160,
270	[TPAUSECR]	= 0x0168,
271	[BCFRR]		= 0x016c,
272	[MAHR]		= 0x01c0,
273	[MALR]		= 0x01c8,
274	[TROCR]		= 0x01d0,
275	[CDCR]		= 0x01d4,
276	[LCCR]		= 0x01d8,
277	[CNDCR]		= 0x01dc,
278	[CEFCR]		= 0x01e4,
279	[FRECR]		= 0x01e8,
280	[TSFRCR]	= 0x01ec,
281	[TLFRCR]	= 0x01f0,
282	[RFCR]		= 0x01f4,
283	[MAFCR]		= 0x01f8,
284	[RTRATE]	= 0x01fc,
285
286	[EDMR]		= 0x0000,
287	[EDTRR]		= 0x0008,
288	[EDRRR]		= 0x0010,
289	[TDLAR]		= 0x0018,
290	[RDLAR]		= 0x0020,
291	[EESR]		= 0x0028,
292	[EESIPR]	= 0x0030,
293	[TRSCER]	= 0x0038,
294	[RMFCR]		= 0x0040,
295	[TFTR]		= 0x0048,
296	[FDR]		= 0x0050,
297	[RMCR]		= 0x0058,
298	[TFUCR]		= 0x0064,
299	[RFOCR]		= 0x0068,
300	[FCFTR]		= 0x0070,
301	[RPADIR]	= 0x0078,
302	[TRIMD]		= 0x007c,
303	[RBWAR]		= 0x00c8,
304	[RDFAR]		= 0x00cc,
305	[TBRAR]		= 0x00d4,
306	[TDFAR]		= 0x00d8,
307};
308
309static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
310	[EDMR]		= 0x0000,
311	[EDTRR]		= 0x0004,
312	[EDRRR]		= 0x0008,
313	[TDLAR]		= 0x000c,
314	[RDLAR]		= 0x0010,
315	[EESR]		= 0x0014,
316	[EESIPR]	= 0x0018,
317	[TRSCER]	= 0x001c,
318	[RMFCR]		= 0x0020,
319	[TFTR]		= 0x0024,
320	[FDR]		= 0x0028,
321	[RMCR]		= 0x002c,
322	[EDOCR]		= 0x0030,
323	[FCFTR]		= 0x0034,
324	[RPADIR]	= 0x0038,
325	[TRIMD]		= 0x003c,
326	[RBWAR]		= 0x0040,
327	[RDFAR]		= 0x0044,
328	[TBRAR]		= 0x004c,
329	[TDFAR]		= 0x0050,
330
331	[ECMR]		= 0x0160,
332	[ECSR]		= 0x0164,
333	[ECSIPR]	= 0x0168,
334	[PIR]		= 0x016c,
335	[MAHR]		= 0x0170,
336	[MALR]		= 0x0174,
337	[RFLR]		= 0x0178,
338	[PSR]		= 0x017c,
339	[TROCR]		= 0x0180,
340	[CDCR]		= 0x0184,
341	[LCCR]		= 0x0188,
342	[CNDCR]		= 0x018c,
343	[CEFCR]		= 0x0194,
344	[FRECR]		= 0x0198,
345	[TSFRCR]	= 0x019c,
346	[TLFRCR]	= 0x01a0,
347	[RFCR]		= 0x01a4,
348	[MAFCR]		= 0x01a8,
349	[IPGR]		= 0x01b4,
350	[APR]		= 0x01b8,
351	[MPR]		= 0x01bc,
352	[TPAUSER]	= 0x01c4,
353	[BCFR]		= 0x01cc,
354
355	[ARSTR]		= 0x0000,
356	[TSU_CTRST]	= 0x0004,
357	[TSU_FWEN0]	= 0x0010,
358	[TSU_FWEN1]	= 0x0014,
359	[TSU_FCM]	= 0x0018,
360	[TSU_BSYSL0]	= 0x0020,
361	[TSU_BSYSL1]	= 0x0024,
362	[TSU_PRISL0]	= 0x0028,
363	[TSU_PRISL1]	= 0x002c,
364	[TSU_FWSL0]	= 0x0030,
365	[TSU_FWSL1]	= 0x0034,
366	[TSU_FWSLC]	= 0x0038,
367	[TSU_QTAGM0]	= 0x0040,
368	[TSU_QTAGM1]	= 0x0044,
369	[TSU_ADQT0]	= 0x0048,
370	[TSU_ADQT1]	= 0x004c,
371	[TSU_FWSR]	= 0x0050,
372	[TSU_FWINMK]	= 0x0054,
373	[TSU_ADSBSY]	= 0x0060,
374	[TSU_TEN]	= 0x0064,
375	[TSU_POST1]	= 0x0070,
376	[TSU_POST2]	= 0x0074,
377	[TSU_POST3]	= 0x0078,
378	[TSU_POST4]	= 0x007c,
379
380	[TXNLCR0]	= 0x0080,
381	[TXALCR0]	= 0x0084,
382	[RXNLCR0]	= 0x0088,
383	[RXALCR0]	= 0x008c,
384	[FWNLCR0]	= 0x0090,
385	[FWALCR0]	= 0x0094,
386	[TXNLCR1]	= 0x00a0,
387	[TXALCR1]	= 0x00a0,
388	[RXNLCR1]	= 0x00a8,
389	[RXALCR1]	= 0x00ac,
390	[FWNLCR1]	= 0x00b0,
391	[FWALCR1]	= 0x00b4,
392
393	[TSU_ADRH0]	= 0x0100,
394	[TSU_ADRL0]	= 0x0104,
395	[TSU_ADRL31]	= 0x01fc,
396};
397
398static bool sh_eth_is_gether(struct sh_eth_private *mdp)
399{
400	return mdp->reg_offset == sh_eth_offset_gigabit;
401}
402
403static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
404{
405	return mdp->reg_offset == sh_eth_offset_fast_rz;
406}
407
408static void sh_eth_select_mii(struct net_device *ndev)
409{
410	u32 value = 0x0;
411	struct sh_eth_private *mdp = netdev_priv(ndev);
412
413	switch (mdp->phy_interface) {
414	case PHY_INTERFACE_MODE_GMII:
415		value = 0x2;
416		break;
417	case PHY_INTERFACE_MODE_MII:
418		value = 0x1;
419		break;
420	case PHY_INTERFACE_MODE_RMII:
421		value = 0x0;
422		break;
423	default:
424		netdev_warn(ndev,
425			    "PHY interface mode was not setup. Set to MII.\n");
426		value = 0x1;
427		break;
428	}
429
430	sh_eth_write(ndev, value, RMII_MII);
431}
432
433static void sh_eth_set_duplex(struct net_device *ndev)
434{
435	struct sh_eth_private *mdp = netdev_priv(ndev);
436
437	if (mdp->duplex) /* Full */
438		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
439	else		/* Half */
440		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
441}
442
443/* There is CPU dependent code */
444static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
445{
446	struct sh_eth_private *mdp = netdev_priv(ndev);
447
448	switch (mdp->speed) {
449	case 10: /* 10BASE */
450		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
451		break;
452	case 100:/* 100BASE */
453		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
454		break;
455	default:
456		break;
457	}
458}
459
460/* R8A7778/9 */
461static struct sh_eth_cpu_data r8a777x_data = {
462	.set_duplex	= sh_eth_set_duplex,
463	.set_rate	= sh_eth_set_rate_r8a777x,
464
465	.register_type	= SH_ETH_REG_FAST_RCAR,
466
467	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
468	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
469	.eesipr_value	= 0x01ff009f,
470
471	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
472	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
473			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
474			  EESR_ECI,
475
476	.apr		= 1,
477	.mpr		= 1,
478	.tpauser	= 1,
479	.hw_swap	= 1,
480};
481
482/* R8A7790/1 */
483static struct sh_eth_cpu_data r8a779x_data = {
484	.set_duplex	= sh_eth_set_duplex,
485	.set_rate	= sh_eth_set_rate_r8a777x,
486
487	.register_type	= SH_ETH_REG_FAST_RCAR,
488
489	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
490	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
491	.eesipr_value	= 0x01ff009f,
492
493	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
494	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
495			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
496			  EESR_ECI,
497
498	.apr		= 1,
499	.mpr		= 1,
500	.tpauser	= 1,
501	.hw_swap	= 1,
502	.rmiimode	= 1,
503	.shift_rd0	= 1,
504};
505
506static void sh_eth_set_rate_sh7724(struct net_device *ndev)
507{
508	struct sh_eth_private *mdp = netdev_priv(ndev);
509
510	switch (mdp->speed) {
511	case 10: /* 10BASE */
512		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
513		break;
514	case 100:/* 100BASE */
515		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
516		break;
517	default:
518		break;
519	}
520}
521
522/* SH7724 */
523static struct sh_eth_cpu_data sh7724_data = {
524	.set_duplex	= sh_eth_set_duplex,
525	.set_rate	= sh_eth_set_rate_sh7724,
526
527	.register_type	= SH_ETH_REG_FAST_SH4,
528
529	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
530	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
531	.eesipr_value	= 0x01ff009f,
532
533	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
534	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
535			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
536			  EESR_ECI,
537
538	.apr		= 1,
539	.mpr		= 1,
540	.tpauser	= 1,
541	.hw_swap	= 1,
542	.rpadir		= 1,
543	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
544};
545
546static void sh_eth_set_rate_sh7757(struct net_device *ndev)
547{
548	struct sh_eth_private *mdp = netdev_priv(ndev);
549
550	switch (mdp->speed) {
551	case 10: /* 10BASE */
552		sh_eth_write(ndev, 0, RTRATE);
553		break;
554	case 100:/* 100BASE */
555		sh_eth_write(ndev, 1, RTRATE);
556		break;
557	default:
558		break;
559	}
560}
561
562/* SH7757 */
563static struct sh_eth_cpu_data sh7757_data = {
564	.set_duplex	= sh_eth_set_duplex,
565	.set_rate	= sh_eth_set_rate_sh7757,
566
567	.register_type	= SH_ETH_REG_FAST_SH4,
568
569	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
570
571	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
572	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
573			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
574			  EESR_ECI,
575
576	.irq_flags	= IRQF_SHARED,
577	.apr		= 1,
578	.mpr		= 1,
579	.tpauser	= 1,
580	.hw_swap	= 1,
581	.no_ade		= 1,
582	.rpadir		= 1,
583	.rpadir_value   = 2 << 16,
584};
585
586#define SH_GIGA_ETH_BASE	0xfee00000UL
587#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
588#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
589static void sh_eth_chip_reset_giga(struct net_device *ndev)
590{
591	int i;
592	unsigned long mahr[2], malr[2];
593
594	/* save MAHR and MALR */
595	for (i = 0; i < 2; i++) {
596		malr[i] = ioread32((void *)GIGA_MALR(i));
597		mahr[i] = ioread32((void *)GIGA_MAHR(i));
598	}
599
600	/* reset device */
601	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
602	mdelay(1);
603
604	/* restore MAHR and MALR */
605	for (i = 0; i < 2; i++) {
606		iowrite32(malr[i], (void *)GIGA_MALR(i));
607		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
608	}
609}
610
611static void sh_eth_set_rate_giga(struct net_device *ndev)
612{
613	struct sh_eth_private *mdp = netdev_priv(ndev);
614
615	switch (mdp->speed) {
616	case 10: /* 10BASE */
617		sh_eth_write(ndev, 0x00000000, GECMR);
618		break;
619	case 100:/* 100BASE */
620		sh_eth_write(ndev, 0x00000010, GECMR);
621		break;
622	case 1000: /* 1000BASE */
623		sh_eth_write(ndev, 0x00000020, GECMR);
624		break;
625	default:
626		break;
627	}
628}
629
630/* SH7757(GETHERC) */
631static struct sh_eth_cpu_data sh7757_data_giga = {
632	.chip_reset	= sh_eth_chip_reset_giga,
633	.set_duplex	= sh_eth_set_duplex,
634	.set_rate	= sh_eth_set_rate_giga,
635
636	.register_type	= SH_ETH_REG_GIGABIT,
637
638	.ecsr_value	= ECSR_ICD | ECSR_MPD,
639	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
640	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
641
642	.tx_check	= EESR_TC1 | EESR_FTC,
643	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
644			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
645			  EESR_TDE | EESR_ECI,
646	.fdr_value	= 0x0000072f,
647
648	.irq_flags	= IRQF_SHARED,
649	.apr		= 1,
650	.mpr		= 1,
651	.tpauser	= 1,
652	.bculr		= 1,
653	.hw_swap	= 1,
654	.rpadir		= 1,
655	.rpadir_value   = 2 << 16,
656	.no_trimd	= 1,
657	.no_ade		= 1,
658	.tsu		= 1,
659};
660
661static void sh_eth_chip_reset(struct net_device *ndev)
662{
663	struct sh_eth_private *mdp = netdev_priv(ndev);
664
665	/* reset device */
666	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
667	mdelay(1);
668}
669
670static void sh_eth_set_rate_gether(struct net_device *ndev)
671{
672	struct sh_eth_private *mdp = netdev_priv(ndev);
673
674	switch (mdp->speed) {
675	case 10: /* 10BASE */
676		sh_eth_write(ndev, GECMR_10, GECMR);
677		break;
678	case 100:/* 100BASE */
679		sh_eth_write(ndev, GECMR_100, GECMR);
680		break;
681	case 1000: /* 1000BASE */
682		sh_eth_write(ndev, GECMR_1000, GECMR);
683		break;
684	default:
685		break;
686	}
687}
688
689/* SH7734 */
690static struct sh_eth_cpu_data sh7734_data = {
691	.chip_reset	= sh_eth_chip_reset,
692	.set_duplex	= sh_eth_set_duplex,
693	.set_rate	= sh_eth_set_rate_gether,
694
695	.register_type	= SH_ETH_REG_GIGABIT,
696
697	.ecsr_value	= ECSR_ICD | ECSR_MPD,
698	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
699	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
700
701	.tx_check	= EESR_TC1 | EESR_FTC,
702	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
703			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
704			  EESR_TDE | EESR_ECI,
705
706	.apr		= 1,
707	.mpr		= 1,
708	.tpauser	= 1,
709	.bculr		= 1,
710	.hw_swap	= 1,
711	.no_trimd	= 1,
712	.no_ade		= 1,
713	.tsu		= 1,
714	.hw_crc		= 1,
715	.select_mii	= 1,
716};
717
718/* SH7763 */
719static struct sh_eth_cpu_data sh7763_data = {
720	.chip_reset	= sh_eth_chip_reset,
721	.set_duplex	= sh_eth_set_duplex,
722	.set_rate	= sh_eth_set_rate_gether,
723
724	.register_type	= SH_ETH_REG_GIGABIT,
725
726	.ecsr_value	= ECSR_ICD | ECSR_MPD,
727	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
728	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
729
730	.tx_check	= EESR_TC1 | EESR_FTC,
731	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
732			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
733			  EESR_ECI,
734
735	.apr		= 1,
736	.mpr		= 1,
737	.tpauser	= 1,
738	.bculr		= 1,
739	.hw_swap	= 1,
740	.no_trimd	= 1,
741	.no_ade		= 1,
742	.tsu		= 1,
743	.irq_flags	= IRQF_SHARED,
744};
745
746static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
747{
748	struct sh_eth_private *mdp = netdev_priv(ndev);
749
750	/* reset device */
751	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
752	mdelay(1);
753
754	sh_eth_select_mii(ndev);
755}
756
757/* R8A7740 */
758static struct sh_eth_cpu_data r8a7740_data = {
759	.chip_reset	= sh_eth_chip_reset_r8a7740,
760	.set_duplex	= sh_eth_set_duplex,
761	.set_rate	= sh_eth_set_rate_gether,
762
763	.register_type	= SH_ETH_REG_GIGABIT,
764
765	.ecsr_value	= ECSR_ICD | ECSR_MPD,
766	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
767	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
768
769	.tx_check	= EESR_TC1 | EESR_FTC,
770	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
771			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
772			  EESR_TDE | EESR_ECI,
773	.fdr_value	= 0x0000070f,
774
775	.apr		= 1,
776	.mpr		= 1,
777	.tpauser	= 1,
778	.bculr		= 1,
779	.hw_swap	= 1,
780	.rpadir		= 1,
781	.rpadir_value   = 2 << 16,
782	.no_trimd	= 1,
783	.no_ade		= 1,
784	.tsu		= 1,
785	.select_mii	= 1,
786	.shift_rd0	= 1,
787};
788
789/* R7S72100 */
790static struct sh_eth_cpu_data r7s72100_data = {
791	.chip_reset	= sh_eth_chip_reset,
792	.set_duplex	= sh_eth_set_duplex,
793
794	.register_type	= SH_ETH_REG_FAST_RZ,
795
796	.ecsr_value	= ECSR_ICD,
797	.ecsipr_value	= ECSIPR_ICDIP,
798	.eesipr_value	= 0xff7f009f,
799
800	.tx_check	= EESR_TC1 | EESR_FTC,
801	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
802			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
803			  EESR_TDE | EESR_ECI,
804	.fdr_value	= 0x0000070f,
805
806	.no_psr		= 1,
807	.apr		= 1,
808	.mpr		= 1,
809	.tpauser	= 1,
810	.hw_swap	= 1,
811	.rpadir		= 1,
812	.rpadir_value   = 2 << 16,
813	.no_trimd	= 1,
814	.no_ade		= 1,
815	.hw_crc		= 1,
816	.tsu		= 1,
817	.shift_rd0	= 1,
818};
819
820static struct sh_eth_cpu_data sh7619_data = {
821	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
822
823	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
824
825	.apr		= 1,
826	.mpr		= 1,
827	.tpauser	= 1,
828	.hw_swap	= 1,
829};
830
831static struct sh_eth_cpu_data sh771x_data = {
832	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
833
834	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835	.tsu		= 1,
836};
837
838static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
839{
840	if (!cd->ecsr_value)
841		cd->ecsr_value = DEFAULT_ECSR_INIT;
842
843	if (!cd->ecsipr_value)
844		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
845
846	if (!cd->fcftr_value)
847		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
848				  DEFAULT_FIFO_F_D_RFD;
849
850	if (!cd->fdr_value)
851		cd->fdr_value = DEFAULT_FDR_INIT;
852
853	if (!cd->tx_check)
854		cd->tx_check = DEFAULT_TX_CHECK;
855
856	if (!cd->eesr_err_check)
857		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
858}
859
860static int sh_eth_check_reset(struct net_device *ndev)
861{
862	int ret = 0;
863	int cnt = 100;
864
865	while (cnt > 0) {
866		if (!(sh_eth_read(ndev, EDMR) & 0x3))
867			break;
868		mdelay(1);
869		cnt--;
870	}
871	if (cnt <= 0) {
872		netdev_err(ndev, "Device reset failed\n");
873		ret = -ETIMEDOUT;
874	}
875	return ret;
876}
877
878static int sh_eth_reset(struct net_device *ndev)
879{
880	struct sh_eth_private *mdp = netdev_priv(ndev);
881	int ret = 0;
882
883	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
884		sh_eth_write(ndev, EDSR_ENALL, EDSR);
885		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
886			     EDMR);
887
888		ret = sh_eth_check_reset(ndev);
889		if (ret)
890			return ret;
891
892		/* Table Init */
893		sh_eth_write(ndev, 0x0, TDLAR);
894		sh_eth_write(ndev, 0x0, TDFAR);
895		sh_eth_write(ndev, 0x0, TDFXR);
896		sh_eth_write(ndev, 0x0, TDFFR);
897		sh_eth_write(ndev, 0x0, RDLAR);
898		sh_eth_write(ndev, 0x0, RDFAR);
899		sh_eth_write(ndev, 0x0, RDFXR);
900		sh_eth_write(ndev, 0x0, RDFFR);
901
902		/* Reset HW CRC register */
903		if (mdp->cd->hw_crc)
904			sh_eth_write(ndev, 0x0, CSMR);
905
906		/* Select MII mode */
907		if (mdp->cd->select_mii)
908			sh_eth_select_mii(ndev);
909	} else {
910		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
911			     EDMR);
912		mdelay(3);
913		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
914			     EDMR);
915	}
916
917	return ret;
918}
919
920static void sh_eth_set_receive_align(struct sk_buff *skb)
921{
922	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
923
924	if (reserve)
925		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
926}
927
928
929/* CPU <-> EDMAC endian convert */
930static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
931{
932	switch (mdp->edmac_endian) {
933	case EDMAC_LITTLE_ENDIAN:
934		return cpu_to_le32(x);
935	case EDMAC_BIG_ENDIAN:
936		return cpu_to_be32(x);
937	}
938	return x;
939}
940
941static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
942{
943	switch (mdp->edmac_endian) {
944	case EDMAC_LITTLE_ENDIAN:
945		return le32_to_cpu(x);
946	case EDMAC_BIG_ENDIAN:
947		return be32_to_cpu(x);
948	}
949	return x;
950}
951
952/* Program the hardware MAC address from dev->dev_addr. */
953static void update_mac_address(struct net_device *ndev)
954{
955	sh_eth_write(ndev,
956		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
957		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
958	sh_eth_write(ndev,
959		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
960}
961
962/* Get MAC address from SuperH MAC address register
963 *
964 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
965 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
966 * When you want use this device, you must set MAC address in bootloader.
967 *
968 */
969static void read_mac_address(struct net_device *ndev, unsigned char *mac)
970{
971	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
972		memcpy(ndev->dev_addr, mac, ETH_ALEN);
973	} else {
974		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
975		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
976		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
977		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
978		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
979		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
980	}
981}
982
983static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
984{
985	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
986		return EDTRR_TRNS_GETHER;
987	else
988		return EDTRR_TRNS_ETHER;
989}
990
991struct bb_info {
992	void (*set_gate)(void *addr);
993	struct mdiobb_ctrl ctrl;
994	void *addr;
995	u32 mmd_msk;/* MMD */
996	u32 mdo_msk;
997	u32 mdi_msk;
998	u32 mdc_msk;
999};
1000
1001/* PHY bit set */
1002static void bb_set(void *addr, u32 msk)
1003{
1004	iowrite32(ioread32(addr) | msk, addr);
1005}
1006
1007/* PHY bit clear */
1008static void bb_clr(void *addr, u32 msk)
1009{
1010	iowrite32((ioread32(addr) & ~msk), addr);
1011}
1012
1013/* PHY bit read */
1014static int bb_read(void *addr, u32 msk)
1015{
1016	return (ioread32(addr) & msk) != 0;
1017}
1018
1019/* Data I/O pin control */
1020static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1021{
1022	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1023
1024	if (bitbang->set_gate)
1025		bitbang->set_gate(bitbang->addr);
1026
1027	if (bit)
1028		bb_set(bitbang->addr, bitbang->mmd_msk);
1029	else
1030		bb_clr(bitbang->addr, bitbang->mmd_msk);
1031}
1032
1033/* Set bit data*/
1034static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1035{
1036	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1037
1038	if (bitbang->set_gate)
1039		bitbang->set_gate(bitbang->addr);
1040
1041	if (bit)
1042		bb_set(bitbang->addr, bitbang->mdo_msk);
1043	else
1044		bb_clr(bitbang->addr, bitbang->mdo_msk);
1045}
1046
1047/* Get bit data*/
1048static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1049{
1050	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1051
1052	if (bitbang->set_gate)
1053		bitbang->set_gate(bitbang->addr);
1054
1055	return bb_read(bitbang->addr, bitbang->mdi_msk);
1056}
1057
1058/* MDC pin control */
1059static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1060{
1061	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1062
1063	if (bitbang->set_gate)
1064		bitbang->set_gate(bitbang->addr);
1065
1066	if (bit)
1067		bb_set(bitbang->addr, bitbang->mdc_msk);
1068	else
1069		bb_clr(bitbang->addr, bitbang->mdc_msk);
1070}
1071
1072/* mdio bus control struct */
1073static struct mdiobb_ops bb_ops = {
1074	.owner = THIS_MODULE,
1075	.set_mdc = sh_mdc_ctrl,
1076	.set_mdio_dir = sh_mmd_ctrl,
1077	.set_mdio_data = sh_set_mdio,
1078	.get_mdio_data = sh_get_mdio,
1079};
1080
1081/* free skb and descriptor buffer */
1082static void sh_eth_ring_free(struct net_device *ndev)
1083{
1084	struct sh_eth_private *mdp = netdev_priv(ndev);
1085	int i;
1086
1087	/* Free Rx skb ringbuffer */
1088	if (mdp->rx_skbuff) {
1089		for (i = 0; i < mdp->num_rx_ring; i++)
1090			dev_kfree_skb(mdp->rx_skbuff[i]);
1091	}
1092	kfree(mdp->rx_skbuff);
1093	mdp->rx_skbuff = NULL;
1094
1095	/* Free Tx skb ringbuffer */
1096	if (mdp->tx_skbuff) {
1097		for (i = 0; i < mdp->num_tx_ring; i++)
1098			dev_kfree_skb(mdp->tx_skbuff[i]);
1099	}
1100	kfree(mdp->tx_skbuff);
1101	mdp->tx_skbuff = NULL;
1102}
1103
1104/* format skb and descriptor buffer */
1105static void sh_eth_ring_format(struct net_device *ndev)
1106{
1107	struct sh_eth_private *mdp = netdev_priv(ndev);
1108	int i;
1109	struct sk_buff *skb;
1110	struct sh_eth_rxdesc *rxdesc = NULL;
1111	struct sh_eth_txdesc *txdesc = NULL;
1112	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1113	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1114	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1115
1116	mdp->cur_rx = 0;
1117	mdp->cur_tx = 0;
1118	mdp->dirty_rx = 0;
1119	mdp->dirty_tx = 0;
1120
1121	memset(mdp->rx_ring, 0, rx_ringsize);
1122
1123	/* build Rx ring buffer */
1124	for (i = 0; i < mdp->num_rx_ring; i++) {
1125		/* skb */
1126		mdp->rx_skbuff[i] = NULL;
1127		skb = netdev_alloc_skb(ndev, skbuff_size);
1128		mdp->rx_skbuff[i] = skb;
1129		if (skb == NULL)
1130			break;
1131		sh_eth_set_receive_align(skb);
1132
1133		/* RX descriptor */
1134		rxdesc = &mdp->rx_ring[i];
1135		/* The size of the buffer is a multiple of 16 bytes. */
1136		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1137		dma_map_single(&ndev->dev, skb->data, rxdesc->buffer_length,
1138			       DMA_FROM_DEVICE);
1139		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1140		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1141
1142		/* Rx descriptor address set */
1143		if (i == 0) {
1144			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1145			if (sh_eth_is_gether(mdp) ||
1146			    sh_eth_is_rz_fast_ether(mdp))
1147				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1148		}
1149	}
1150
1151	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1152
1153	/* Mark the last entry as wrapping the ring. */
1154	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1155
1156	memset(mdp->tx_ring, 0, tx_ringsize);
1157
1158	/* build Tx ring buffer */
1159	for (i = 0; i < mdp->num_tx_ring; i++) {
1160		mdp->tx_skbuff[i] = NULL;
1161		txdesc = &mdp->tx_ring[i];
1162		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1163		txdesc->buffer_length = 0;
1164		if (i == 0) {
1165			/* Tx descriptor address set */
1166			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1167			if (sh_eth_is_gether(mdp) ||
1168			    sh_eth_is_rz_fast_ether(mdp))
1169				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1170		}
1171	}
1172
1173	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1174}
1175
1176/* Get skb and descriptor buffer */
1177static int sh_eth_ring_init(struct net_device *ndev)
1178{
1179	struct sh_eth_private *mdp = netdev_priv(ndev);
1180	int rx_ringsize, tx_ringsize, ret = 0;
1181
1182	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1183	 * card needs room to do 8 byte alignment, +2 so we can reserve
1184	 * the first 2 bytes, and +16 gets room for the status word from the
1185	 * card.
1186	 */
1187	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1188			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1189	if (mdp->cd->rpadir)
1190		mdp->rx_buf_sz += NET_IP_ALIGN;
1191
1192	/* Allocate RX and TX skb rings */
1193	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1194				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1195	if (!mdp->rx_skbuff) {
1196		ret = -ENOMEM;
1197		return ret;
1198	}
1199
1200	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1201				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1202	if (!mdp->tx_skbuff) {
1203		ret = -ENOMEM;
1204		goto skb_ring_free;
1205	}
1206
1207	/* Allocate all Rx descriptors. */
1208	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1209	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1210					  GFP_KERNEL);
1211	if (!mdp->rx_ring) {
1212		ret = -ENOMEM;
1213		goto desc_ring_free;
1214	}
1215
1216	mdp->dirty_rx = 0;
1217
1218	/* Allocate all Tx descriptors. */
1219	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1220	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1221					  GFP_KERNEL);
1222	if (!mdp->tx_ring) {
1223		ret = -ENOMEM;
1224		goto desc_ring_free;
1225	}
1226	return ret;
1227
1228desc_ring_free:
1229	/* free DMA buffer */
1230	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1231
1232skb_ring_free:
1233	/* Free Rx and Tx skb ring buffer */
1234	sh_eth_ring_free(ndev);
1235	mdp->tx_ring = NULL;
1236	mdp->rx_ring = NULL;
1237
1238	return ret;
1239}
1240
1241static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1242{
1243	int ringsize;
1244
1245	if (mdp->rx_ring) {
1246		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1247		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1248				  mdp->rx_desc_dma);
1249		mdp->rx_ring = NULL;
1250	}
1251
1252	if (mdp->tx_ring) {
1253		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1254		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1255				  mdp->tx_desc_dma);
1256		mdp->tx_ring = NULL;
1257	}
1258}
1259
1260static int sh_eth_dev_init(struct net_device *ndev, bool start)
1261{
1262	int ret = 0;
1263	struct sh_eth_private *mdp = netdev_priv(ndev);
1264	u32 val;
1265
1266	/* Soft Reset */
1267	ret = sh_eth_reset(ndev);
1268	if (ret)
1269		return ret;
1270
1271	if (mdp->cd->rmiimode)
1272		sh_eth_write(ndev, 0x1, RMIIMODE);
1273
1274	/* Descriptor format */
1275	sh_eth_ring_format(ndev);
1276	if (mdp->cd->rpadir)
1277		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1278
1279	/* all sh_eth int mask */
1280	sh_eth_write(ndev, 0, EESIPR);
1281
1282#if defined(__LITTLE_ENDIAN)
1283	if (mdp->cd->hw_swap)
1284		sh_eth_write(ndev, EDMR_EL, EDMR);
1285	else
1286#endif
1287		sh_eth_write(ndev, 0, EDMR);
1288
1289	/* FIFO size set */
1290	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1291	sh_eth_write(ndev, 0, TFTR);
1292
1293	/* Frame recv control (enable multiple-packets per rx irq) */
1294	sh_eth_write(ndev, RMCR_RNC, RMCR);
1295
1296	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1297
1298	if (mdp->cd->bculr)
1299		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1300
1301	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1302
1303	if (!mdp->cd->no_trimd)
1304		sh_eth_write(ndev, 0, TRIMD);
1305
1306	/* Recv frame limit set register */
1307	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1308		     RFLR);
1309
1310	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1311	if (start)
1312		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1313
1314	/* PAUSE Prohibition */
1315	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1316		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1317
1318	sh_eth_write(ndev, val, ECMR);
1319
1320	if (mdp->cd->set_rate)
1321		mdp->cd->set_rate(ndev);
1322
1323	/* E-MAC Status Register clear */
1324	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1325
1326	/* E-MAC Interrupt Enable register */
1327	if (start)
1328		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1329
1330	/* Set MAC address */
1331	update_mac_address(ndev);
1332
1333	/* mask reset */
1334	if (mdp->cd->apr)
1335		sh_eth_write(ndev, APR_AP, APR);
1336	if (mdp->cd->mpr)
1337		sh_eth_write(ndev, MPR_MP, MPR);
1338	if (mdp->cd->tpauser)
1339		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1340
1341	if (start) {
1342		/* Setting the Rx mode will start the Rx process. */
1343		sh_eth_write(ndev, EDRRR_R, EDRRR);
1344
1345		netif_start_queue(ndev);
1346	}
1347
1348	return ret;
1349}
1350
1351/* free Tx skb function */
1352static int sh_eth_txfree(struct net_device *ndev)
1353{
1354	struct sh_eth_private *mdp = netdev_priv(ndev);
1355	struct sh_eth_txdesc *txdesc;
1356	int free_num = 0;
1357	int entry = 0;
1358
1359	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1360		entry = mdp->dirty_tx % mdp->num_tx_ring;
1361		txdesc = &mdp->tx_ring[entry];
1362		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1363			break;
1364		/* Free the original skb. */
1365		if (mdp->tx_skbuff[entry]) {
1366			dma_unmap_single(&ndev->dev, txdesc->addr,
1367					 txdesc->buffer_length, DMA_TO_DEVICE);
1368			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1369			mdp->tx_skbuff[entry] = NULL;
1370			free_num++;
1371		}
1372		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1373		if (entry >= mdp->num_tx_ring - 1)
1374			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1375
1376		ndev->stats.tx_packets++;
1377		ndev->stats.tx_bytes += txdesc->buffer_length;
1378	}
1379	return free_num;
1380}
1381
1382/* Packet receive function */
1383static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1384{
1385	struct sh_eth_private *mdp = netdev_priv(ndev);
1386	struct sh_eth_rxdesc *rxdesc;
1387
1388	int entry = mdp->cur_rx % mdp->num_rx_ring;
1389	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1390	struct sk_buff *skb;
1391	u16 pkt_len = 0;
1392	u32 desc_status;
1393	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1394
1395	rxdesc = &mdp->rx_ring[entry];
1396	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1397		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1398		pkt_len = rxdesc->frame_length;
1399
1400		if (--boguscnt < 0)
1401			break;
1402
1403		if (*quota <= 0)
1404			break;
1405
1406		(*quota)--;
1407
1408		if (!(desc_status & RDFEND))
1409			ndev->stats.rx_length_errors++;
1410
1411		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1412		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1413		 * bit 0. However, in case of the R8A7740, R8A779x, and
1414		 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1415		 * driver needs right shifting by 16.
1416		 */
1417		if (mdp->cd->shift_rd0)
1418			desc_status >>= 16;
1419
1420		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1421				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1422			ndev->stats.rx_errors++;
1423			if (desc_status & RD_RFS1)
1424				ndev->stats.rx_crc_errors++;
1425			if (desc_status & RD_RFS2)
1426				ndev->stats.rx_frame_errors++;
1427			if (desc_status & RD_RFS3)
1428				ndev->stats.rx_length_errors++;
1429			if (desc_status & RD_RFS4)
1430				ndev->stats.rx_length_errors++;
1431			if (desc_status & RD_RFS6)
1432				ndev->stats.rx_missed_errors++;
1433			if (desc_status & RD_RFS10)
1434				ndev->stats.rx_over_errors++;
1435		} else {
1436			if (!mdp->cd->hw_swap)
1437				sh_eth_soft_swap(
1438					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1439					pkt_len + 2);
1440			skb = mdp->rx_skbuff[entry];
1441			mdp->rx_skbuff[entry] = NULL;
1442			if (mdp->cd->rpadir)
1443				skb_reserve(skb, NET_IP_ALIGN);
1444			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1445						ALIGN(mdp->rx_buf_sz, 16),
1446						DMA_FROM_DEVICE);
1447			skb_put(skb, pkt_len);
1448			skb->protocol = eth_type_trans(skb, ndev);
1449			netif_receive_skb(skb);
1450			ndev->stats.rx_packets++;
1451			ndev->stats.rx_bytes += pkt_len;
1452		}
1453		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1454		rxdesc = &mdp->rx_ring[entry];
1455	}
1456
1457	/* Refill the Rx ring buffers. */
1458	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1459		entry = mdp->dirty_rx % mdp->num_rx_ring;
1460		rxdesc = &mdp->rx_ring[entry];
1461		/* The size of the buffer is 16 byte boundary. */
1462		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1463
1464		if (mdp->rx_skbuff[entry] == NULL) {
1465			skb = netdev_alloc_skb(ndev, skbuff_size);
1466			mdp->rx_skbuff[entry] = skb;
1467			if (skb == NULL)
1468				break;	/* Better luck next round. */
1469			sh_eth_set_receive_align(skb);
1470			dma_map_single(&ndev->dev, skb->data,
1471				       rxdesc->buffer_length, DMA_FROM_DEVICE);
1472
1473			skb_checksum_none_assert(skb);
1474			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1475		}
1476		if (entry >= mdp->num_rx_ring - 1)
1477			rxdesc->status |=
1478				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1479		else
1480			rxdesc->status |=
1481				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1482	}
1483
1484	/* Restart Rx engine if stopped. */
1485	/* If we don't need to check status, don't. -KDU */
1486	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1487		/* fix the values for the next receiving if RDE is set */
1488		if (intr_status & EESR_RDE) {
1489			u32 count = (sh_eth_read(ndev, RDFAR) -
1490				     sh_eth_read(ndev, RDLAR)) >> 4;
1491
1492			mdp->cur_rx = count;
1493			mdp->dirty_rx = count;
1494		}
1495		sh_eth_write(ndev, EDRRR_R, EDRRR);
1496	}
1497
1498	return *quota <= 0;
1499}
1500
1501static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1502{
1503	/* disable tx and rx */
1504	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1505		~(ECMR_RE | ECMR_TE), ECMR);
1506}
1507
1508static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1509{
1510	/* enable tx and rx */
1511	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1512		(ECMR_RE | ECMR_TE), ECMR);
1513}
1514
1515/* error control function */
1516static void sh_eth_error(struct net_device *ndev, int intr_status)
1517{
1518	struct sh_eth_private *mdp = netdev_priv(ndev);
1519	u32 felic_stat;
1520	u32 link_stat;
1521	u32 mask;
1522
1523	if (intr_status & EESR_ECI) {
1524		felic_stat = sh_eth_read(ndev, ECSR);
1525		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1526		if (felic_stat & ECSR_ICD)
1527			ndev->stats.tx_carrier_errors++;
1528		if (felic_stat & ECSR_LCHNG) {
1529			/* Link Changed */
1530			if (mdp->cd->no_psr || mdp->no_ether_link) {
1531				goto ignore_link;
1532			} else {
1533				link_stat = (sh_eth_read(ndev, PSR));
1534				if (mdp->ether_link_active_low)
1535					link_stat = ~link_stat;
1536			}
1537			if (!(link_stat & PHY_ST_LINK)) {
1538				sh_eth_rcv_snd_disable(ndev);
1539			} else {
1540				/* Link Up */
1541				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1542						   ~DMAC_M_ECI, EESIPR);
1543				/* clear int */
1544				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1545					     ECSR);
1546				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1547						   DMAC_M_ECI, EESIPR);
1548				/* enable tx and rx */
1549				sh_eth_rcv_snd_enable(ndev);
1550			}
1551		}
1552	}
1553
1554ignore_link:
1555	if (intr_status & EESR_TWB) {
1556		/* Unused write back interrupt */
1557		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1558			ndev->stats.tx_aborted_errors++;
1559			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1560		}
1561	}
1562
1563	if (intr_status & EESR_RABT) {
1564		/* Receive Abort int */
1565		if (intr_status & EESR_RFRMER) {
1566			/* Receive Frame Overflow int */
1567			ndev->stats.rx_frame_errors++;
1568			netif_err(mdp, rx_err, ndev, "Receive Abort\n");
1569		}
1570	}
1571
1572	if (intr_status & EESR_TDE) {
1573		/* Transmit Descriptor Empty int */
1574		ndev->stats.tx_fifo_errors++;
1575		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1576	}
1577
1578	if (intr_status & EESR_TFE) {
1579		/* FIFO under flow */
1580		ndev->stats.tx_fifo_errors++;
1581		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1582	}
1583
1584	if (intr_status & EESR_RDE) {
1585		/* Receive Descriptor Empty int */
1586		ndev->stats.rx_over_errors++;
1587		netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n");
1588	}
1589
1590	if (intr_status & EESR_RFE) {
1591		/* Receive FIFO Overflow int */
1592		ndev->stats.rx_fifo_errors++;
1593		netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n");
1594	}
1595
1596	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1597		/* Address Error */
1598		ndev->stats.tx_fifo_errors++;
1599		netif_err(mdp, tx_err, ndev, "Address Error\n");
1600	}
1601
1602	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1603	if (mdp->cd->no_ade)
1604		mask &= ~EESR_ADE;
1605	if (intr_status & mask) {
1606		/* Tx error */
1607		u32 edtrr = sh_eth_read(ndev, EDTRR);
1608
1609		/* dmesg */
1610		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1611			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1612			   (u32)ndev->state, edtrr);
1613		/* dirty buffer free */
1614		sh_eth_txfree(ndev);
1615
1616		/* SH7712 BUG */
1617		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1618			/* tx dma start */
1619			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1620		}
1621		/* wakeup */
1622		netif_wake_queue(ndev);
1623	}
1624}
1625
1626static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1627{
1628	struct net_device *ndev = netdev;
1629	struct sh_eth_private *mdp = netdev_priv(ndev);
1630	struct sh_eth_cpu_data *cd = mdp->cd;
1631	irqreturn_t ret = IRQ_NONE;
1632	unsigned long intr_status, intr_enable;
1633
1634	spin_lock(&mdp->lock);
1635
1636	/* Get interrupt status */
1637	intr_status = sh_eth_read(ndev, EESR);
1638	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1639	 * enabled since it's the one that  comes thru regardless of the mask,
1640	 * and we need to fully handle it in sh_eth_error() in order to quench
1641	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1642	 */
1643	intr_enable = sh_eth_read(ndev, EESIPR);
1644	intr_status &= intr_enable | DMAC_M_ECI;
1645	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1646		ret = IRQ_HANDLED;
1647	else
1648		goto other_irq;
1649
1650	if (intr_status & EESR_RX_CHECK) {
1651		if (napi_schedule_prep(&mdp->napi)) {
1652			/* Mask Rx interrupts */
1653			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1654				     EESIPR);
1655			__napi_schedule(&mdp->napi);
1656		} else {
1657			netdev_warn(ndev,
1658				    "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1659				    intr_status, intr_enable);
1660		}
1661	}
1662
1663	/* Tx Check */
1664	if (intr_status & cd->tx_check) {
1665		/* Clear Tx interrupts */
1666		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1667
1668		sh_eth_txfree(ndev);
1669		netif_wake_queue(ndev);
1670	}
1671
1672	if (intr_status & cd->eesr_err_check) {
1673		/* Clear error interrupts */
1674		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1675
1676		sh_eth_error(ndev, intr_status);
1677	}
1678
1679other_irq:
1680	spin_unlock(&mdp->lock);
1681
1682	return ret;
1683}
1684
1685static int sh_eth_poll(struct napi_struct *napi, int budget)
1686{
1687	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1688						  napi);
1689	struct net_device *ndev = napi->dev;
1690	int quota = budget;
1691	unsigned long intr_status;
1692
1693	for (;;) {
1694		intr_status = sh_eth_read(ndev, EESR);
1695		if (!(intr_status & EESR_RX_CHECK))
1696			break;
1697		/* Clear Rx interrupts */
1698		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1699
1700		if (sh_eth_rx(ndev, intr_status, &quota))
1701			goto out;
1702	}
1703
1704	napi_complete(napi);
1705
1706	/* Reenable Rx interrupts */
1707	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1708out:
1709	return budget - quota;
1710}
1711
1712/* PHY state control function */
1713static void sh_eth_adjust_link(struct net_device *ndev)
1714{
1715	struct sh_eth_private *mdp = netdev_priv(ndev);
1716	struct phy_device *phydev = mdp->phydev;
1717	int new_state = 0;
1718
1719	if (phydev->link) {
1720		if (phydev->duplex != mdp->duplex) {
1721			new_state = 1;
1722			mdp->duplex = phydev->duplex;
1723			if (mdp->cd->set_duplex)
1724				mdp->cd->set_duplex(ndev);
1725		}
1726
1727		if (phydev->speed != mdp->speed) {
1728			new_state = 1;
1729			mdp->speed = phydev->speed;
1730			if (mdp->cd->set_rate)
1731				mdp->cd->set_rate(ndev);
1732		}
1733		if (!mdp->link) {
1734			sh_eth_write(ndev,
1735				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1736				     ECMR);
1737			new_state = 1;
1738			mdp->link = phydev->link;
1739			if (mdp->cd->no_psr || mdp->no_ether_link)
1740				sh_eth_rcv_snd_enable(ndev);
1741		}
1742	} else if (mdp->link) {
1743		new_state = 1;
1744		mdp->link = 0;
1745		mdp->speed = 0;
1746		mdp->duplex = -1;
1747		if (mdp->cd->no_psr || mdp->no_ether_link)
1748			sh_eth_rcv_snd_disable(ndev);
1749	}
1750
1751	if (new_state && netif_msg_link(mdp))
1752		phy_print_status(phydev);
1753}
1754
1755/* PHY init function */
1756static int sh_eth_phy_init(struct net_device *ndev)
1757{
1758	struct device_node *np = ndev->dev.parent->of_node;
1759	struct sh_eth_private *mdp = netdev_priv(ndev);
1760	struct phy_device *phydev = NULL;
1761
1762	mdp->link = 0;
1763	mdp->speed = 0;
1764	mdp->duplex = -1;
1765
1766	/* Try connect to PHY */
1767	if (np) {
1768		struct device_node *pn;
1769
1770		pn = of_parse_phandle(np, "phy-handle", 0);
1771		phydev = of_phy_connect(ndev, pn,
1772					sh_eth_adjust_link, 0,
1773					mdp->phy_interface);
1774
1775		if (!phydev)
1776			phydev = ERR_PTR(-ENOENT);
1777	} else {
1778		char phy_id[MII_BUS_ID_SIZE + 3];
1779
1780		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1781			 mdp->mii_bus->id, mdp->phy_id);
1782
1783		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1784				     mdp->phy_interface);
1785	}
1786
1787	if (IS_ERR(phydev)) {
1788		netdev_err(ndev, "failed to connect PHY\n");
1789		return PTR_ERR(phydev);
1790	}
1791
1792	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1793		    phydev->addr, phydev->irq, phydev->drv->name);
1794
1795	mdp->phydev = phydev;
1796
1797	return 0;
1798}
1799
1800/* PHY control start function */
1801static int sh_eth_phy_start(struct net_device *ndev)
1802{
1803	struct sh_eth_private *mdp = netdev_priv(ndev);
1804	int ret;
1805
1806	ret = sh_eth_phy_init(ndev);
1807	if (ret)
1808		return ret;
1809
1810	phy_start(mdp->phydev);
1811
1812	return 0;
1813}
1814
1815static int sh_eth_get_settings(struct net_device *ndev,
1816			       struct ethtool_cmd *ecmd)
1817{
1818	struct sh_eth_private *mdp = netdev_priv(ndev);
1819	unsigned long flags;
1820	int ret;
1821
1822	spin_lock_irqsave(&mdp->lock, flags);
1823	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1824	spin_unlock_irqrestore(&mdp->lock, flags);
1825
1826	return ret;
1827}
1828
1829static int sh_eth_set_settings(struct net_device *ndev,
1830			       struct ethtool_cmd *ecmd)
1831{
1832	struct sh_eth_private *mdp = netdev_priv(ndev);
1833	unsigned long flags;
1834	int ret;
1835
1836	spin_lock_irqsave(&mdp->lock, flags);
1837
1838	/* disable tx and rx */
1839	sh_eth_rcv_snd_disable(ndev);
1840
1841	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1842	if (ret)
1843		goto error_exit;
1844
1845	if (ecmd->duplex == DUPLEX_FULL)
1846		mdp->duplex = 1;
1847	else
1848		mdp->duplex = 0;
1849
1850	if (mdp->cd->set_duplex)
1851		mdp->cd->set_duplex(ndev);
1852
1853error_exit:
1854	mdelay(1);
1855
1856	/* enable tx and rx */
1857	sh_eth_rcv_snd_enable(ndev);
1858
1859	spin_unlock_irqrestore(&mdp->lock, flags);
1860
1861	return ret;
1862}
1863
1864static int sh_eth_nway_reset(struct net_device *ndev)
1865{
1866	struct sh_eth_private *mdp = netdev_priv(ndev);
1867	unsigned long flags;
1868	int ret;
1869
1870	spin_lock_irqsave(&mdp->lock, flags);
1871	ret = phy_start_aneg(mdp->phydev);
1872	spin_unlock_irqrestore(&mdp->lock, flags);
1873
1874	return ret;
1875}
1876
1877static u32 sh_eth_get_msglevel(struct net_device *ndev)
1878{
1879	struct sh_eth_private *mdp = netdev_priv(ndev);
1880	return mdp->msg_enable;
1881}
1882
1883static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1884{
1885	struct sh_eth_private *mdp = netdev_priv(ndev);
1886	mdp->msg_enable = value;
1887}
1888
1889static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1890	"rx_current", "tx_current",
1891	"rx_dirty", "tx_dirty",
1892};
1893#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1894
1895static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1896{
1897	switch (sset) {
1898	case ETH_SS_STATS:
1899		return SH_ETH_STATS_LEN;
1900	default:
1901		return -EOPNOTSUPP;
1902	}
1903}
1904
1905static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1906				     struct ethtool_stats *stats, u64 *data)
1907{
1908	struct sh_eth_private *mdp = netdev_priv(ndev);
1909	int i = 0;
1910
1911	/* device-specific stats */
1912	data[i++] = mdp->cur_rx;
1913	data[i++] = mdp->cur_tx;
1914	data[i++] = mdp->dirty_rx;
1915	data[i++] = mdp->dirty_tx;
1916}
1917
1918static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1919{
1920	switch (stringset) {
1921	case ETH_SS_STATS:
1922		memcpy(data, *sh_eth_gstrings_stats,
1923		       sizeof(sh_eth_gstrings_stats));
1924		break;
1925	}
1926}
1927
1928static void sh_eth_get_ringparam(struct net_device *ndev,
1929				 struct ethtool_ringparam *ring)
1930{
1931	struct sh_eth_private *mdp = netdev_priv(ndev);
1932
1933	ring->rx_max_pending = RX_RING_MAX;
1934	ring->tx_max_pending = TX_RING_MAX;
1935	ring->rx_pending = mdp->num_rx_ring;
1936	ring->tx_pending = mdp->num_tx_ring;
1937}
1938
1939static int sh_eth_set_ringparam(struct net_device *ndev,
1940				struct ethtool_ringparam *ring)
1941{
1942	struct sh_eth_private *mdp = netdev_priv(ndev);
1943	int ret;
1944
1945	if (ring->tx_pending > TX_RING_MAX ||
1946	    ring->rx_pending > RX_RING_MAX ||
1947	    ring->tx_pending < TX_RING_MIN ||
1948	    ring->rx_pending < RX_RING_MIN)
1949		return -EINVAL;
1950	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1951		return -EINVAL;
1952
1953	if (netif_running(ndev)) {
1954		netif_tx_disable(ndev);
1955		/* Disable interrupts by clearing the interrupt mask. */
1956		sh_eth_write(ndev, 0x0000, EESIPR);
1957		/* Stop the chip's Tx and Rx processes. */
1958		sh_eth_write(ndev, 0, EDTRR);
1959		sh_eth_write(ndev, 0, EDRRR);
1960		synchronize_irq(ndev->irq);
1961	}
1962
1963	/* Free all the skbuffs in the Rx queue. */
1964	sh_eth_ring_free(ndev);
1965	/* Free DMA buffer */
1966	sh_eth_free_dma_buffer(mdp);
1967
1968	/* Set new parameters */
1969	mdp->num_rx_ring = ring->rx_pending;
1970	mdp->num_tx_ring = ring->tx_pending;
1971
1972	ret = sh_eth_ring_init(ndev);
1973	if (ret < 0) {
1974		netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__);
1975		return ret;
1976	}
1977	ret = sh_eth_dev_init(ndev, false);
1978	if (ret < 0) {
1979		netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__);
1980		return ret;
1981	}
1982
1983	if (netif_running(ndev)) {
1984		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1985		/* Setting the Rx mode will start the Rx process. */
1986		sh_eth_write(ndev, EDRRR_R, EDRRR);
1987		netif_wake_queue(ndev);
1988	}
1989
1990	return 0;
1991}
1992
1993static const struct ethtool_ops sh_eth_ethtool_ops = {
1994	.get_settings	= sh_eth_get_settings,
1995	.set_settings	= sh_eth_set_settings,
1996	.nway_reset	= sh_eth_nway_reset,
1997	.get_msglevel	= sh_eth_get_msglevel,
1998	.set_msglevel	= sh_eth_set_msglevel,
1999	.get_link	= ethtool_op_get_link,
2000	.get_strings	= sh_eth_get_strings,
2001	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2002	.get_sset_count     = sh_eth_get_sset_count,
2003	.get_ringparam	= sh_eth_get_ringparam,
2004	.set_ringparam	= sh_eth_set_ringparam,
2005};
2006
2007/* network device open function */
2008static int sh_eth_open(struct net_device *ndev)
2009{
2010	int ret = 0;
2011	struct sh_eth_private *mdp = netdev_priv(ndev);
2012
2013	pm_runtime_get_sync(&mdp->pdev->dev);
2014
2015	napi_enable(&mdp->napi);
2016
2017	ret = request_irq(ndev->irq, sh_eth_interrupt,
2018			  mdp->cd->irq_flags, ndev->name, ndev);
2019	if (ret) {
2020		netdev_err(ndev, "Can not assign IRQ number\n");
2021		goto out_napi_off;
2022	}
2023
2024	/* Descriptor set */
2025	ret = sh_eth_ring_init(ndev);
2026	if (ret)
2027		goto out_free_irq;
2028
2029	/* device init */
2030	ret = sh_eth_dev_init(ndev, true);
2031	if (ret)
2032		goto out_free_irq;
2033
2034	/* PHY control start*/
2035	ret = sh_eth_phy_start(ndev);
2036	if (ret)
2037		goto out_free_irq;
2038
2039	return ret;
2040
2041out_free_irq:
2042	free_irq(ndev->irq, ndev);
2043out_napi_off:
2044	napi_disable(&mdp->napi);
2045	pm_runtime_put_sync(&mdp->pdev->dev);
2046	return ret;
2047}
2048
2049/* Timeout function */
2050static void sh_eth_tx_timeout(struct net_device *ndev)
2051{
2052	struct sh_eth_private *mdp = netdev_priv(ndev);
2053	struct sh_eth_rxdesc *rxdesc;
2054	int i;
2055
2056	netif_stop_queue(ndev);
2057
2058	netif_err(mdp, timer, ndev,
2059		  "transmit timed out, status %8.8x, resetting...\n",
2060		  (int)sh_eth_read(ndev, EESR));
2061
2062	/* tx_errors count up */
2063	ndev->stats.tx_errors++;
2064
2065	/* Free all the skbuffs in the Rx queue. */
2066	for (i = 0; i < mdp->num_rx_ring; i++) {
2067		rxdesc = &mdp->rx_ring[i];
2068		rxdesc->status = 0;
2069		rxdesc->addr = 0xBADF00D0;
2070		dev_kfree_skb(mdp->rx_skbuff[i]);
2071		mdp->rx_skbuff[i] = NULL;
2072	}
2073	for (i = 0; i < mdp->num_tx_ring; i++) {
2074		dev_kfree_skb(mdp->tx_skbuff[i]);
2075		mdp->tx_skbuff[i] = NULL;
2076	}
2077
2078	/* device init */
2079	sh_eth_dev_init(ndev, true);
2080}
2081
2082/* Packet transmit function */
2083static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2084{
2085	struct sh_eth_private *mdp = netdev_priv(ndev);
2086	struct sh_eth_txdesc *txdesc;
2087	u32 entry;
2088	unsigned long flags;
2089
2090	spin_lock_irqsave(&mdp->lock, flags);
2091	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2092		if (!sh_eth_txfree(ndev)) {
2093			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2094			netif_stop_queue(ndev);
2095			spin_unlock_irqrestore(&mdp->lock, flags);
2096			return NETDEV_TX_BUSY;
2097		}
2098	}
2099	spin_unlock_irqrestore(&mdp->lock, flags);
2100
2101	entry = mdp->cur_tx % mdp->num_tx_ring;
2102	mdp->tx_skbuff[entry] = skb;
2103	txdesc = &mdp->tx_ring[entry];
2104	/* soft swap. */
2105	if (!mdp->cd->hw_swap)
2106		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2107				 skb->len + 2);
2108	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2109				      DMA_TO_DEVICE);
2110	if (skb->len < ETH_ZLEN)
2111		txdesc->buffer_length = ETH_ZLEN;
2112	else
2113		txdesc->buffer_length = skb->len;
2114
2115	if (entry >= mdp->num_tx_ring - 1)
2116		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2117	else
2118		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2119
2120	mdp->cur_tx++;
2121
2122	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2123		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2124
2125	return NETDEV_TX_OK;
2126}
2127
2128/* device close function */
2129static int sh_eth_close(struct net_device *ndev)
2130{
2131	struct sh_eth_private *mdp = netdev_priv(ndev);
2132
2133	netif_stop_queue(ndev);
2134
2135	/* Disable interrupts by clearing the interrupt mask. */
2136	sh_eth_write(ndev, 0x0000, EESIPR);
2137
2138	/* Stop the chip's Tx and Rx processes. */
2139	sh_eth_write(ndev, 0, EDTRR);
2140	sh_eth_write(ndev, 0, EDRRR);
2141
2142	/* PHY Disconnect */
2143	if (mdp->phydev) {
2144		phy_stop(mdp->phydev);
2145		phy_disconnect(mdp->phydev);
2146	}
2147
2148	free_irq(ndev->irq, ndev);
2149
2150	napi_disable(&mdp->napi);
2151
2152	/* Free all the skbuffs in the Rx queue. */
2153	sh_eth_ring_free(ndev);
2154
2155	/* free DMA buffer */
2156	sh_eth_free_dma_buffer(mdp);
2157
2158	pm_runtime_put_sync(&mdp->pdev->dev);
2159
2160	return 0;
2161}
2162
2163static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2164{
2165	struct sh_eth_private *mdp = netdev_priv(ndev);
2166
2167	if (sh_eth_is_rz_fast_ether(mdp))
2168		return &ndev->stats;
2169
2170	pm_runtime_get_sync(&mdp->pdev->dev);
2171
2172	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2173	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2174	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2175	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2176	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2177	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2178	if (sh_eth_is_gether(mdp)) {
2179		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2180		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2181		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2182		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2183	} else {
2184		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2185		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2186	}
2187	pm_runtime_put_sync(&mdp->pdev->dev);
2188
2189	return &ndev->stats;
2190}
2191
2192/* ioctl to device function */
2193static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2194{
2195	struct sh_eth_private *mdp = netdev_priv(ndev);
2196	struct phy_device *phydev = mdp->phydev;
2197
2198	if (!netif_running(ndev))
2199		return -EINVAL;
2200
2201	if (!phydev)
2202		return -ENODEV;
2203
2204	return phy_mii_ioctl(phydev, rq, cmd);
2205}
2206
2207/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2208static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2209					    int entry)
2210{
2211	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2212}
2213
2214static u32 sh_eth_tsu_get_post_mask(int entry)
2215{
2216	return 0x0f << (28 - ((entry % 8) * 4));
2217}
2218
2219static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2220{
2221	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2222}
2223
2224static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2225					     int entry)
2226{
2227	struct sh_eth_private *mdp = netdev_priv(ndev);
2228	u32 tmp;
2229	void *reg_offset;
2230
2231	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2232	tmp = ioread32(reg_offset);
2233	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2234}
2235
2236static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2237					      int entry)
2238{
2239	struct sh_eth_private *mdp = netdev_priv(ndev);
2240	u32 post_mask, ref_mask, tmp;
2241	void *reg_offset;
2242
2243	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2244	post_mask = sh_eth_tsu_get_post_mask(entry);
2245	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2246
2247	tmp = ioread32(reg_offset);
2248	iowrite32(tmp & ~post_mask, reg_offset);
2249
2250	/* If other port enables, the function returns "true" */
2251	return tmp & ref_mask;
2252}
2253
2254static int sh_eth_tsu_busy(struct net_device *ndev)
2255{
2256	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2257	struct sh_eth_private *mdp = netdev_priv(ndev);
2258
2259	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2260		udelay(10);
2261		timeout--;
2262		if (timeout <= 0) {
2263			netdev_err(ndev, "%s: timeout\n", __func__);
2264			return -ETIMEDOUT;
2265		}
2266	}
2267
2268	return 0;
2269}
2270
2271static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2272				  const u8 *addr)
2273{
2274	u32 val;
2275
2276	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2277	iowrite32(val, reg);
2278	if (sh_eth_tsu_busy(ndev) < 0)
2279		return -EBUSY;
2280
2281	val = addr[4] << 8 | addr[5];
2282	iowrite32(val, reg + 4);
2283	if (sh_eth_tsu_busy(ndev) < 0)
2284		return -EBUSY;
2285
2286	return 0;
2287}
2288
2289static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2290{
2291	u32 val;
2292
2293	val = ioread32(reg);
2294	addr[0] = (val >> 24) & 0xff;
2295	addr[1] = (val >> 16) & 0xff;
2296	addr[2] = (val >> 8) & 0xff;
2297	addr[3] = val & 0xff;
2298	val = ioread32(reg + 4);
2299	addr[4] = (val >> 8) & 0xff;
2300	addr[5] = val & 0xff;
2301}
2302
2303
2304static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2305{
2306	struct sh_eth_private *mdp = netdev_priv(ndev);
2307	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2308	int i;
2309	u8 c_addr[ETH_ALEN];
2310
2311	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2312		sh_eth_tsu_read_entry(reg_offset, c_addr);
2313		if (ether_addr_equal(addr, c_addr))
2314			return i;
2315	}
2316
2317	return -ENOENT;
2318}
2319
2320static int sh_eth_tsu_find_empty(struct net_device *ndev)
2321{
2322	u8 blank[ETH_ALEN];
2323	int entry;
2324
2325	memset(blank, 0, sizeof(blank));
2326	entry = sh_eth_tsu_find_entry(ndev, blank);
2327	return (entry < 0) ? -ENOMEM : entry;
2328}
2329
2330static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2331					      int entry)
2332{
2333	struct sh_eth_private *mdp = netdev_priv(ndev);
2334	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2335	int ret;
2336	u8 blank[ETH_ALEN];
2337
2338	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2339			 ~(1 << (31 - entry)), TSU_TEN);
2340
2341	memset(blank, 0, sizeof(blank));
2342	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2343	if (ret < 0)
2344		return ret;
2345	return 0;
2346}
2347
2348static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2349{
2350	struct sh_eth_private *mdp = netdev_priv(ndev);
2351	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2352	int i, ret;
2353
2354	if (!mdp->cd->tsu)
2355		return 0;
2356
2357	i = sh_eth_tsu_find_entry(ndev, addr);
2358	if (i < 0) {
2359		/* No entry found, create one */
2360		i = sh_eth_tsu_find_empty(ndev);
2361		if (i < 0)
2362			return -ENOMEM;
2363		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2364		if (ret < 0)
2365			return ret;
2366
2367		/* Enable the entry */
2368		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2369				 (1 << (31 - i)), TSU_TEN);
2370	}
2371
2372	/* Entry found or created, enable POST */
2373	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2374
2375	return 0;
2376}
2377
2378static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2379{
2380	struct sh_eth_private *mdp = netdev_priv(ndev);
2381	int i, ret;
2382
2383	if (!mdp->cd->tsu)
2384		return 0;
2385
2386	i = sh_eth_tsu_find_entry(ndev, addr);
2387	if (i) {
2388		/* Entry found */
2389		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2390			goto done;
2391
2392		/* Disable the entry if both ports was disabled */
2393		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2394		if (ret < 0)
2395			return ret;
2396	}
2397done:
2398	return 0;
2399}
2400
2401static int sh_eth_tsu_purge_all(struct net_device *ndev)
2402{
2403	struct sh_eth_private *mdp = netdev_priv(ndev);
2404	int i, ret;
2405
2406	if (unlikely(!mdp->cd->tsu))
2407		return 0;
2408
2409	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2410		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2411			continue;
2412
2413		/* Disable the entry if both ports was disabled */
2414		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2415		if (ret < 0)
2416			return ret;
2417	}
2418
2419	return 0;
2420}
2421
2422static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2423{
2424	struct sh_eth_private *mdp = netdev_priv(ndev);
2425	u8 addr[ETH_ALEN];
2426	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2427	int i;
2428
2429	if (unlikely(!mdp->cd->tsu))
2430		return;
2431
2432	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2433		sh_eth_tsu_read_entry(reg_offset, addr);
2434		if (is_multicast_ether_addr(addr))
2435			sh_eth_tsu_del_entry(ndev, addr);
2436	}
2437}
2438
2439/* Multicast reception directions set */
2440static void sh_eth_set_multicast_list(struct net_device *ndev)
2441{
2442	struct sh_eth_private *mdp = netdev_priv(ndev);
2443	u32 ecmr_bits;
2444	int mcast_all = 0;
2445	unsigned long flags;
2446
2447	spin_lock_irqsave(&mdp->lock, flags);
2448	/* Initial condition is MCT = 1, PRM = 0.
2449	 * Depending on ndev->flags, set PRM or clear MCT
2450	 */
2451	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2452
2453	if (!(ndev->flags & IFF_MULTICAST)) {
2454		sh_eth_tsu_purge_mcast(ndev);
2455		mcast_all = 1;
2456	}
2457	if (ndev->flags & IFF_ALLMULTI) {
2458		sh_eth_tsu_purge_mcast(ndev);
2459		ecmr_bits &= ~ECMR_MCT;
2460		mcast_all = 1;
2461	}
2462
2463	if (ndev->flags & IFF_PROMISC) {
2464		sh_eth_tsu_purge_all(ndev);
2465		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2466	} else if (mdp->cd->tsu) {
2467		struct netdev_hw_addr *ha;
2468		netdev_for_each_mc_addr(ha, ndev) {
2469			if (mcast_all && is_multicast_ether_addr(ha->addr))
2470				continue;
2471
2472			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2473				if (!mcast_all) {
2474					sh_eth_tsu_purge_mcast(ndev);
2475					ecmr_bits &= ~ECMR_MCT;
2476					mcast_all = 1;
2477				}
2478			}
2479		}
2480	} else {
2481		/* Normal, unicast/broadcast-only mode. */
2482		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2483	}
2484
2485	/* update the ethernet mode */
2486	sh_eth_write(ndev, ecmr_bits, ECMR);
2487
2488	spin_unlock_irqrestore(&mdp->lock, flags);
2489}
2490
2491static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2492{
2493	if (!mdp->port)
2494		return TSU_VTAG0;
2495	else
2496		return TSU_VTAG1;
2497}
2498
2499static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2500				  __be16 proto, u16 vid)
2501{
2502	struct sh_eth_private *mdp = netdev_priv(ndev);
2503	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2504
2505	if (unlikely(!mdp->cd->tsu))
2506		return -EPERM;
2507
2508	/* No filtering if vid = 0 */
2509	if (!vid)
2510		return 0;
2511
2512	mdp->vlan_num_ids++;
2513
2514	/* The controller has one VLAN tag HW filter. So, if the filter is
2515	 * already enabled, the driver disables it and the filte
2516	 */
2517	if (mdp->vlan_num_ids > 1) {
2518		/* disable VLAN filter */
2519		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2520		return 0;
2521	}
2522
2523	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2524			 vtag_reg_index);
2525
2526	return 0;
2527}
2528
2529static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2530				   __be16 proto, u16 vid)
2531{
2532	struct sh_eth_private *mdp = netdev_priv(ndev);
2533	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2534
2535	if (unlikely(!mdp->cd->tsu))
2536		return -EPERM;
2537
2538	/* No filtering if vid = 0 */
2539	if (!vid)
2540		return 0;
2541
2542	mdp->vlan_num_ids--;
2543	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2544
2545	return 0;
2546}
2547
2548/* SuperH's TSU register init function */
2549static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2550{
2551	if (sh_eth_is_rz_fast_ether(mdp)) {
2552		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2553		return;
2554	}
2555
2556	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2557	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2558	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2559	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2560	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2561	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2562	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2563	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2564	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2565	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2566	if (sh_eth_is_gether(mdp)) {
2567		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2568		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2569	} else {
2570		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2571		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2572	}
2573	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2574	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2575	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2576	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2577	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2578	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2579	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2580}
2581
2582/* MDIO bus release function */
2583static int sh_mdio_release(struct sh_eth_private *mdp)
2584{
2585	/* unregister mdio bus */
2586	mdiobus_unregister(mdp->mii_bus);
2587
2588	/* free bitbang info */
2589	free_mdio_bitbang(mdp->mii_bus);
2590
2591	return 0;
2592}
2593
2594/* MDIO bus init function */
2595static int sh_mdio_init(struct sh_eth_private *mdp,
2596			struct sh_eth_plat_data *pd)
2597{
2598	int ret, i;
2599	struct bb_info *bitbang;
2600	struct platform_device *pdev = mdp->pdev;
2601	struct device *dev = &mdp->pdev->dev;
2602
2603	/* create bit control struct for PHY */
2604	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2605	if (!bitbang)
2606		return -ENOMEM;
2607
2608	/* bitbang init */
2609	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2610	bitbang->set_gate = pd->set_mdio_gate;
2611	bitbang->mdi_msk = PIR_MDI;
2612	bitbang->mdo_msk = PIR_MDO;
2613	bitbang->mmd_msk = PIR_MMD;
2614	bitbang->mdc_msk = PIR_MDC;
2615	bitbang->ctrl.ops = &bb_ops;
2616
2617	/* MII controller setting */
2618	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2619	if (!mdp->mii_bus)
2620		return -ENOMEM;
2621
2622	/* Hook up MII support for ethtool */
2623	mdp->mii_bus->name = "sh_mii";
2624	mdp->mii_bus->parent = dev;
2625	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2626		 pdev->name, pdev->id);
2627
2628	/* PHY IRQ */
2629	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2630					       GFP_KERNEL);
2631	if (!mdp->mii_bus->irq) {
2632		ret = -ENOMEM;
2633		goto out_free_bus;
2634	}
2635
2636	/* register MDIO bus */
2637	if (dev->of_node) {
2638		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2639	} else {
2640		for (i = 0; i < PHY_MAX_ADDR; i++)
2641			mdp->mii_bus->irq[i] = PHY_POLL;
2642		if (pd->phy_irq > 0)
2643			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2644
2645		ret = mdiobus_register(mdp->mii_bus);
2646	}
2647
2648	if (ret)
2649		goto out_free_bus;
2650
2651	return 0;
2652
2653out_free_bus:
2654	free_mdio_bitbang(mdp->mii_bus);
2655	return ret;
2656}
2657
2658static const u16 *sh_eth_get_register_offset(int register_type)
2659{
2660	const u16 *reg_offset = NULL;
2661
2662	switch (register_type) {
2663	case SH_ETH_REG_GIGABIT:
2664		reg_offset = sh_eth_offset_gigabit;
2665		break;
2666	case SH_ETH_REG_FAST_RZ:
2667		reg_offset = sh_eth_offset_fast_rz;
2668		break;
2669	case SH_ETH_REG_FAST_RCAR:
2670		reg_offset = sh_eth_offset_fast_rcar;
2671		break;
2672	case SH_ETH_REG_FAST_SH4:
2673		reg_offset = sh_eth_offset_fast_sh4;
2674		break;
2675	case SH_ETH_REG_FAST_SH3_SH2:
2676		reg_offset = sh_eth_offset_fast_sh3_sh2;
2677		break;
2678	default:
2679		break;
2680	}
2681
2682	return reg_offset;
2683}
2684
2685static const struct net_device_ops sh_eth_netdev_ops = {
2686	.ndo_open		= sh_eth_open,
2687	.ndo_stop		= sh_eth_close,
2688	.ndo_start_xmit		= sh_eth_start_xmit,
2689	.ndo_get_stats		= sh_eth_get_stats,
2690	.ndo_tx_timeout		= sh_eth_tx_timeout,
2691	.ndo_do_ioctl		= sh_eth_do_ioctl,
2692	.ndo_validate_addr	= eth_validate_addr,
2693	.ndo_set_mac_address	= eth_mac_addr,
2694	.ndo_change_mtu		= eth_change_mtu,
2695};
2696
2697static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2698	.ndo_open		= sh_eth_open,
2699	.ndo_stop		= sh_eth_close,
2700	.ndo_start_xmit		= sh_eth_start_xmit,
2701	.ndo_get_stats		= sh_eth_get_stats,
2702	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2703	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2704	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2705	.ndo_tx_timeout		= sh_eth_tx_timeout,
2706	.ndo_do_ioctl		= sh_eth_do_ioctl,
2707	.ndo_validate_addr	= eth_validate_addr,
2708	.ndo_set_mac_address	= eth_mac_addr,
2709	.ndo_change_mtu		= eth_change_mtu,
2710};
2711
2712#ifdef CONFIG_OF
2713static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2714{
2715	struct device_node *np = dev->of_node;
2716	struct sh_eth_plat_data *pdata;
2717	const char *mac_addr;
2718
2719	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2720	if (!pdata)
2721		return NULL;
2722
2723	pdata->phy_interface = of_get_phy_mode(np);
2724
2725	mac_addr = of_get_mac_address(np);
2726	if (mac_addr)
2727		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2728
2729	pdata->no_ether_link =
2730		of_property_read_bool(np, "renesas,no-ether-link");
2731	pdata->ether_link_active_low =
2732		of_property_read_bool(np, "renesas,ether-link-active-low");
2733
2734	return pdata;
2735}
2736
2737static const struct of_device_id sh_eth_match_table[] = {
2738	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2739	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2740	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2741	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2742	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2743	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2744	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2745	{ }
2746};
2747MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2748#else
2749static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2750{
2751	return NULL;
2752}
2753#endif
2754
2755static int sh_eth_drv_probe(struct platform_device *pdev)
2756{
2757	int ret, devno = 0;
2758	struct resource *res;
2759	struct net_device *ndev = NULL;
2760	struct sh_eth_private *mdp = NULL;
2761	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2762	const struct platform_device_id *id = platform_get_device_id(pdev);
2763
2764	/* get base addr */
2765	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2766	if (unlikely(res == NULL)) {
2767		dev_err(&pdev->dev, "invalid resource\n");
2768		return -EINVAL;
2769	}
2770
2771	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2772	if (!ndev)
2773		return -ENOMEM;
2774
2775	pm_runtime_enable(&pdev->dev);
2776	pm_runtime_get_sync(&pdev->dev);
2777
2778	/* The sh Ether-specific entries in the device structure. */
2779	ndev->base_addr = res->start;
2780	devno = pdev->id;
2781	if (devno < 0)
2782		devno = 0;
2783
2784	ndev->dma = -1;
2785	ret = platform_get_irq(pdev, 0);
2786	if (ret < 0) {
2787		ret = -ENODEV;
2788		goto out_release;
2789	}
2790	ndev->irq = ret;
2791
2792	SET_NETDEV_DEV(ndev, &pdev->dev);
2793
2794	mdp = netdev_priv(ndev);
2795	mdp->num_tx_ring = TX_RING_SIZE;
2796	mdp->num_rx_ring = RX_RING_SIZE;
2797	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2798	if (IS_ERR(mdp->addr)) {
2799		ret = PTR_ERR(mdp->addr);
2800		goto out_release;
2801	}
2802
2803	spin_lock_init(&mdp->lock);
2804	mdp->pdev = pdev;
2805
2806	if (pdev->dev.of_node)
2807		pd = sh_eth_parse_dt(&pdev->dev);
2808	if (!pd) {
2809		dev_err(&pdev->dev, "no platform data\n");
2810		ret = -EINVAL;
2811		goto out_release;
2812	}
2813
2814	/* get PHY ID */
2815	mdp->phy_id = pd->phy;
2816	mdp->phy_interface = pd->phy_interface;
2817	/* EDMAC endian */
2818	mdp->edmac_endian = pd->edmac_endian;
2819	mdp->no_ether_link = pd->no_ether_link;
2820	mdp->ether_link_active_low = pd->ether_link_active_low;
2821
2822	/* set cpu data */
2823	if (id) {
2824		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2825	} else	{
2826		const struct of_device_id *match;
2827
2828		match = of_match_device(of_match_ptr(sh_eth_match_table),
2829					&pdev->dev);
2830		mdp->cd = (struct sh_eth_cpu_data *)match->data;
2831	}
2832	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2833	if (!mdp->reg_offset) {
2834		dev_err(&pdev->dev, "Unknown register type (%d)\n",
2835			mdp->cd->register_type);
2836		ret = -EINVAL;
2837		goto out_release;
2838	}
2839	sh_eth_set_default_cpu_data(mdp->cd);
2840
2841	/* set function */
2842	if (mdp->cd->tsu)
2843		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2844	else
2845		ndev->netdev_ops = &sh_eth_netdev_ops;
2846	ndev->ethtool_ops = &sh_eth_ethtool_ops;
2847	ndev->watchdog_timeo = TX_TIMEOUT;
2848
2849	/* debug message level */
2850	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2851
2852	/* read and set MAC address */
2853	read_mac_address(ndev, pd->mac_addr);
2854	if (!is_valid_ether_addr(ndev->dev_addr)) {
2855		dev_warn(&pdev->dev,
2856			 "no valid MAC address supplied, using a random one.\n");
2857		eth_hw_addr_random(ndev);
2858	}
2859
2860	/* ioremap the TSU registers */
2861	if (mdp->cd->tsu) {
2862		struct resource *rtsu;
2863		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2864		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2865		if (IS_ERR(mdp->tsu_addr)) {
2866			ret = PTR_ERR(mdp->tsu_addr);
2867			goto out_release;
2868		}
2869		mdp->port = devno % 2;
2870		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2871	}
2872
2873	/* initialize first or needed device */
2874	if (!devno || pd->needs_init) {
2875		if (mdp->cd->chip_reset)
2876			mdp->cd->chip_reset(ndev);
2877
2878		if (mdp->cd->tsu) {
2879			/* TSU init (Init only)*/
2880			sh_eth_tsu_init(mdp);
2881		}
2882	}
2883
2884	/* MDIO bus init */
2885	ret = sh_mdio_init(mdp, pd);
2886	if (ret) {
2887		dev_err(&ndev->dev, "failed to initialise MDIO\n");
2888		goto out_release;
2889	}
2890
2891	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2892
2893	/* network device register */
2894	ret = register_netdev(ndev);
2895	if (ret)
2896		goto out_napi_del;
2897
2898	/* print device information */
2899	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2900		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2901
2902	pm_runtime_put(&pdev->dev);
2903	platform_set_drvdata(pdev, ndev);
2904
2905	return ret;
2906
2907out_napi_del:
2908	netif_napi_del(&mdp->napi);
2909	sh_mdio_release(mdp);
2910
2911out_release:
2912	/* net_dev free */
2913	if (ndev)
2914		free_netdev(ndev);
2915
2916	pm_runtime_put(&pdev->dev);
2917	pm_runtime_disable(&pdev->dev);
2918	return ret;
2919}
2920
2921static int sh_eth_drv_remove(struct platform_device *pdev)
2922{
2923	struct net_device *ndev = platform_get_drvdata(pdev);
2924	struct sh_eth_private *mdp = netdev_priv(ndev);
2925
2926	unregister_netdev(ndev);
2927	netif_napi_del(&mdp->napi);
2928	sh_mdio_release(mdp);
2929	pm_runtime_disable(&pdev->dev);
2930	free_netdev(ndev);
2931
2932	return 0;
2933}
2934
2935#ifdef CONFIG_PM
2936static int sh_eth_runtime_nop(struct device *dev)
2937{
2938	/* Runtime PM callback shared between ->runtime_suspend()
2939	 * and ->runtime_resume(). Simply returns success.
2940	 *
2941	 * This driver re-initializes all registers after
2942	 * pm_runtime_get_sync() anyway so there is no need
2943	 * to save and restore registers here.
2944	 */
2945	return 0;
2946}
2947
2948static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2949	.runtime_suspend = sh_eth_runtime_nop,
2950	.runtime_resume = sh_eth_runtime_nop,
2951};
2952#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2953#else
2954#define SH_ETH_PM_OPS NULL
2955#endif
2956
2957static struct platform_device_id sh_eth_id_table[] = {
2958	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2959	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2960	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2961	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2962	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2963	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2964	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2965	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2966	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2967	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2968	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2969	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2970	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
2971	{ }
2972};
2973MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2974
2975static struct platform_driver sh_eth_driver = {
2976	.probe = sh_eth_drv_probe,
2977	.remove = sh_eth_drv_remove,
2978	.id_table = sh_eth_id_table,
2979	.driver = {
2980		   .name = CARDNAME,
2981		   .pm = SH_ETH_PM_OPS,
2982		   .of_match_table = of_match_ptr(sh_eth_match_table),
2983	},
2984};
2985
2986module_platform_driver(sh_eth_driver);
2987
2988MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2989MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2990MODULE_LICENSE("GPL v2");
2991