sh_eth.c revision 564044b0928d46a87774c246ae80cb3cead9264d
1/*
2 *  SuperH Ethernet device driver
3 *
4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 *  Copyright (C) 2008-2012 Renesas Solutions Corp.
6 *
7 *  This program is free software; you can redistribute it and/or modify it
8 *  under the terms and conditions of the GNU General Public License,
9 *  version 2, as published by the Free Software Foundation.
10 *
11 *  This program is distributed in the hope it will be useful, but WITHOUT
12 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 *  more details.
15 *  You should have received a copy of the GNU General Public License along with
16 *  this program; if not, write to the Free Software Foundation, Inc.,
17 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 *  The full GNU General Public License is included in this distribution in
20 *  the file called "COPYING".
21 */
22
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/spinlock.h>
27#include <linux/interrupt.h>
28#include <linux/dma-mapping.h>
29#include <linux/etherdevice.h>
30#include <linux/delay.h>
31#include <linux/platform_device.h>
32#include <linux/mdio-bitbang.h>
33#include <linux/netdevice.h>
34#include <linux/phy.h>
35#include <linux/cache.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38#include <linux/slab.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/clk.h>
42#include <linux/sh_eth.h>
43
44#include "sh_eth.h"
45
46#define SH_ETH_DEF_MSG_ENABLE \
47		(NETIF_MSG_LINK	| \
48		NETIF_MSG_TIMER	| \
49		NETIF_MSG_RX_ERR| \
50		NETIF_MSG_TX_ERR)
51
52#if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
53	defined(CONFIG_CPU_SUBTYPE_SH7763) || \
54	defined(CONFIG_ARCH_R8A7740)
55static void sh_eth_select_mii(struct net_device *ndev)
56{
57	u32 value = 0x0;
58	struct sh_eth_private *mdp = netdev_priv(ndev);
59
60	switch (mdp->phy_interface) {
61	case PHY_INTERFACE_MODE_GMII:
62		value = 0x2;
63		break;
64	case PHY_INTERFACE_MODE_MII:
65		value = 0x1;
66		break;
67	case PHY_INTERFACE_MODE_RMII:
68		value = 0x0;
69		break;
70	default:
71		pr_warn("PHY interface mode was not setup. Set to MII.\n");
72		value = 0x1;
73		break;
74	}
75
76	sh_eth_write(ndev, value, RMII_MII);
77}
78#endif
79
80/* There is CPU dependent code */
81#if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
82#define SH_ETH_RESET_DEFAULT	1
83static void sh_eth_set_duplex(struct net_device *ndev)
84{
85	struct sh_eth_private *mdp = netdev_priv(ndev);
86
87	if (mdp->duplex) /* Full */
88		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
89	else		/* Half */
90		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
91}
92
93static void sh_eth_set_rate(struct net_device *ndev)
94{
95	struct sh_eth_private *mdp = netdev_priv(ndev);
96	unsigned int bits = ECMR_RTM;
97
98#if defined(CONFIG_ARCH_R8A7779)
99	bits |= ECMR_ELB;
100#endif
101
102	switch (mdp->speed) {
103	case 10: /* 10BASE */
104		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
105		break;
106	case 100:/* 100BASE */
107		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
108		break;
109	default:
110		break;
111	}
112}
113
114/* SH7724 */
115static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
116	.set_duplex	= sh_eth_set_duplex,
117	.set_rate	= sh_eth_set_rate,
118
119	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
120	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
121	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
122
123	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
124	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
125			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
126	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
127
128	.apr		= 1,
129	.mpr		= 1,
130	.tpauser	= 1,
131	.hw_swap	= 1,
132	.rpadir		= 1,
133	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
134};
135#elif defined(CONFIG_CPU_SUBTYPE_SH7757)
136#define SH_ETH_HAS_BOTH_MODULES	1
137#define SH_ETH_HAS_TSU	1
138static int sh_eth_check_reset(struct net_device *ndev);
139
140static void sh_eth_set_duplex(struct net_device *ndev)
141{
142	struct sh_eth_private *mdp = netdev_priv(ndev);
143
144	if (mdp->duplex) /* Full */
145		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
146	else		/* Half */
147		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
148}
149
150static void sh_eth_set_rate(struct net_device *ndev)
151{
152	struct sh_eth_private *mdp = netdev_priv(ndev);
153
154	switch (mdp->speed) {
155	case 10: /* 10BASE */
156		sh_eth_write(ndev, 0, RTRATE);
157		break;
158	case 100:/* 100BASE */
159		sh_eth_write(ndev, 1, RTRATE);
160		break;
161	default:
162		break;
163	}
164}
165
166/* SH7757 */
167static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
168	.set_duplex		= sh_eth_set_duplex,
169	.set_rate		= sh_eth_set_rate,
170
171	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
172	.rmcr_value	= 0x00000001,
173
174	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
175	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
176			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
177	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
178
179	.apr		= 1,
180	.mpr		= 1,
181	.tpauser	= 1,
182	.hw_swap	= 1,
183	.no_ade		= 1,
184	.rpadir		= 1,
185	.rpadir_value   = 2 << 16,
186};
187
188#define SH_GIGA_ETH_BASE	0xfee00000
189#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
190#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
191static void sh_eth_chip_reset_giga(struct net_device *ndev)
192{
193	int i;
194	unsigned long mahr[2], malr[2];
195
196	/* save MAHR and MALR */
197	for (i = 0; i < 2; i++) {
198		malr[i] = ioread32((void *)GIGA_MALR(i));
199		mahr[i] = ioread32((void *)GIGA_MAHR(i));
200	}
201
202	/* reset device */
203	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
204	mdelay(1);
205
206	/* restore MAHR and MALR */
207	for (i = 0; i < 2; i++) {
208		iowrite32(malr[i], (void *)GIGA_MALR(i));
209		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
210	}
211}
212
213static int sh_eth_is_gether(struct sh_eth_private *mdp);
214static int sh_eth_reset(struct net_device *ndev)
215{
216	struct sh_eth_private *mdp = netdev_priv(ndev);
217	int ret = 0;
218
219	if (sh_eth_is_gether(mdp)) {
220		sh_eth_write(ndev, 0x03, EDSR);
221		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
222				EDMR);
223
224		ret = sh_eth_check_reset(ndev);
225		if (ret)
226			goto out;
227
228		/* Table Init */
229		sh_eth_write(ndev, 0x0, TDLAR);
230		sh_eth_write(ndev, 0x0, TDFAR);
231		sh_eth_write(ndev, 0x0, TDFXR);
232		sh_eth_write(ndev, 0x0, TDFFR);
233		sh_eth_write(ndev, 0x0, RDLAR);
234		sh_eth_write(ndev, 0x0, RDFAR);
235		sh_eth_write(ndev, 0x0, RDFXR);
236		sh_eth_write(ndev, 0x0, RDFFR);
237	} else {
238		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
239				EDMR);
240		mdelay(3);
241		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
242				EDMR);
243	}
244
245out:
246	return ret;
247}
248
249static void sh_eth_set_duplex_giga(struct net_device *ndev)
250{
251	struct sh_eth_private *mdp = netdev_priv(ndev);
252
253	if (mdp->duplex) /* Full */
254		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
255	else		/* Half */
256		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
257}
258
259static void sh_eth_set_rate_giga(struct net_device *ndev)
260{
261	struct sh_eth_private *mdp = netdev_priv(ndev);
262
263	switch (mdp->speed) {
264	case 10: /* 10BASE */
265		sh_eth_write(ndev, 0x00000000, GECMR);
266		break;
267	case 100:/* 100BASE */
268		sh_eth_write(ndev, 0x00000010, GECMR);
269		break;
270	case 1000: /* 1000BASE */
271		sh_eth_write(ndev, 0x00000020, GECMR);
272		break;
273	default:
274		break;
275	}
276}
277
278/* SH7757(GETHERC) */
279static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
280	.chip_reset	= sh_eth_chip_reset_giga,
281	.set_duplex	= sh_eth_set_duplex_giga,
282	.set_rate	= sh_eth_set_rate_giga,
283
284	.ecsr_value	= ECSR_ICD | ECSR_MPD,
285	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
286	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
287
288	.tx_check	= EESR_TC1 | EESR_FTC,
289	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
290			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
291			  EESR_ECI,
292	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
293			  EESR_TFE,
294	.fdr_value	= 0x0000072f,
295	.rmcr_value	= 0x00000001,
296
297	.apr		= 1,
298	.mpr		= 1,
299	.tpauser	= 1,
300	.bculr		= 1,
301	.hw_swap	= 1,
302	.rpadir		= 1,
303	.rpadir_value   = 2 << 16,
304	.no_trimd	= 1,
305	.no_ade		= 1,
306	.tsu		= 1,
307};
308
309static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
310{
311	if (sh_eth_is_gether(mdp))
312		return &sh_eth_my_cpu_data_giga;
313	else
314		return &sh_eth_my_cpu_data;
315}
316
317#elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
318#define SH_ETH_HAS_TSU	1
319static int sh_eth_check_reset(struct net_device *ndev);
320static void sh_eth_reset_hw_crc(struct net_device *ndev);
321
322static void sh_eth_chip_reset(struct net_device *ndev)
323{
324	struct sh_eth_private *mdp = netdev_priv(ndev);
325
326	/* reset device */
327	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
328	mdelay(1);
329}
330
331static void sh_eth_set_duplex(struct net_device *ndev)
332{
333	struct sh_eth_private *mdp = netdev_priv(ndev);
334
335	if (mdp->duplex) /* Full */
336		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
337	else		/* Half */
338		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
339}
340
341static void sh_eth_set_rate(struct net_device *ndev)
342{
343	struct sh_eth_private *mdp = netdev_priv(ndev);
344
345	switch (mdp->speed) {
346	case 10: /* 10BASE */
347		sh_eth_write(ndev, GECMR_10, GECMR);
348		break;
349	case 100:/* 100BASE */
350		sh_eth_write(ndev, GECMR_100, GECMR);
351		break;
352	case 1000: /* 1000BASE */
353		sh_eth_write(ndev, GECMR_1000, GECMR);
354		break;
355	default:
356		break;
357	}
358}
359
360/* sh7763 */
361static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
362	.chip_reset	= sh_eth_chip_reset,
363	.set_duplex	= sh_eth_set_duplex,
364	.set_rate	= sh_eth_set_rate,
365
366	.ecsr_value	= ECSR_ICD | ECSR_MPD,
367	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
368	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
369
370	.tx_check	= EESR_TC1 | EESR_FTC,
371	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
372			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
373			  EESR_ECI,
374	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
375			  EESR_TFE,
376
377	.apr		= 1,
378	.mpr		= 1,
379	.tpauser	= 1,
380	.bculr		= 1,
381	.hw_swap	= 1,
382	.no_trimd	= 1,
383	.no_ade		= 1,
384	.tsu		= 1,
385#if defined(CONFIG_CPU_SUBTYPE_SH7734)
386	.hw_crc     = 1,
387	.select_mii = 1,
388#endif
389};
390
391static int sh_eth_reset(struct net_device *ndev)
392{
393	int ret = 0;
394
395	sh_eth_write(ndev, EDSR_ENALL, EDSR);
396	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
397
398	ret = sh_eth_check_reset(ndev);
399	if (ret)
400		goto out;
401
402	/* Table Init */
403	sh_eth_write(ndev, 0x0, TDLAR);
404	sh_eth_write(ndev, 0x0, TDFAR);
405	sh_eth_write(ndev, 0x0, TDFXR);
406	sh_eth_write(ndev, 0x0, TDFFR);
407	sh_eth_write(ndev, 0x0, RDLAR);
408	sh_eth_write(ndev, 0x0, RDFAR);
409	sh_eth_write(ndev, 0x0, RDFXR);
410	sh_eth_write(ndev, 0x0, RDFFR);
411
412	/* Reset HW CRC register */
413	sh_eth_reset_hw_crc(ndev);
414
415	/* Select MII mode */
416	if (sh_eth_my_cpu_data.select_mii)
417		sh_eth_select_mii(ndev);
418out:
419	return ret;
420}
421
422static void sh_eth_reset_hw_crc(struct net_device *ndev)
423{
424	if (sh_eth_my_cpu_data.hw_crc)
425		sh_eth_write(ndev, 0x0, CSMR);
426}
427
428#elif defined(CONFIG_ARCH_R8A7740)
429#define SH_ETH_HAS_TSU	1
430static int sh_eth_check_reset(struct net_device *ndev);
431
432static void sh_eth_chip_reset(struct net_device *ndev)
433{
434	struct sh_eth_private *mdp = netdev_priv(ndev);
435
436	/* reset device */
437	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
438	mdelay(1);
439
440	sh_eth_select_mii(ndev);
441}
442
443static int sh_eth_reset(struct net_device *ndev)
444{
445	int ret = 0;
446
447	sh_eth_write(ndev, EDSR_ENALL, EDSR);
448	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
449
450	ret = sh_eth_check_reset(ndev);
451	if (ret)
452		goto out;
453
454	/* Table Init */
455	sh_eth_write(ndev, 0x0, TDLAR);
456	sh_eth_write(ndev, 0x0, TDFAR);
457	sh_eth_write(ndev, 0x0, TDFXR);
458	sh_eth_write(ndev, 0x0, TDFFR);
459	sh_eth_write(ndev, 0x0, RDLAR);
460	sh_eth_write(ndev, 0x0, RDFAR);
461	sh_eth_write(ndev, 0x0, RDFXR);
462	sh_eth_write(ndev, 0x0, RDFFR);
463
464out:
465	return ret;
466}
467
468static void sh_eth_set_duplex(struct net_device *ndev)
469{
470	struct sh_eth_private *mdp = netdev_priv(ndev);
471
472	if (mdp->duplex) /* Full */
473		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
474	else		/* Half */
475		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
476}
477
478static void sh_eth_set_rate(struct net_device *ndev)
479{
480	struct sh_eth_private *mdp = netdev_priv(ndev);
481
482	switch (mdp->speed) {
483	case 10: /* 10BASE */
484		sh_eth_write(ndev, GECMR_10, GECMR);
485		break;
486	case 100:/* 100BASE */
487		sh_eth_write(ndev, GECMR_100, GECMR);
488		break;
489	case 1000: /* 1000BASE */
490		sh_eth_write(ndev, GECMR_1000, GECMR);
491		break;
492	default:
493		break;
494	}
495}
496
497/* R8A7740 */
498static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
499	.chip_reset	= sh_eth_chip_reset,
500	.set_duplex	= sh_eth_set_duplex,
501	.set_rate	= sh_eth_set_rate,
502
503	.ecsr_value	= ECSR_ICD | ECSR_MPD,
504	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
505	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
506
507	.tx_check	= EESR_TC1 | EESR_FTC,
508	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
509			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
510			  EESR_ECI,
511	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
512			  EESR_TFE,
513
514	.apr		= 1,
515	.mpr		= 1,
516	.tpauser	= 1,
517	.bculr		= 1,
518	.hw_swap	= 1,
519	.no_trimd	= 1,
520	.no_ade		= 1,
521	.tsu		= 1,
522	.select_mii	= 1,
523};
524
525#elif defined(CONFIG_CPU_SUBTYPE_SH7619)
526#define SH_ETH_RESET_DEFAULT	1
527static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
528	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
529
530	.apr		= 1,
531	.mpr		= 1,
532	.tpauser	= 1,
533	.hw_swap	= 1,
534};
535#elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
536#define SH_ETH_RESET_DEFAULT	1
537#define SH_ETH_HAS_TSU	1
538static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
539	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
540	.tsu		= 1,
541};
542#endif
543
544static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
545{
546	if (!cd->ecsr_value)
547		cd->ecsr_value = DEFAULT_ECSR_INIT;
548
549	if (!cd->ecsipr_value)
550		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
551
552	if (!cd->fcftr_value)
553		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
554				  DEFAULT_FIFO_F_D_RFD;
555
556	if (!cd->fdr_value)
557		cd->fdr_value = DEFAULT_FDR_INIT;
558
559	if (!cd->rmcr_value)
560		cd->rmcr_value = DEFAULT_RMCR_VALUE;
561
562	if (!cd->tx_check)
563		cd->tx_check = DEFAULT_TX_CHECK;
564
565	if (!cd->eesr_err_check)
566		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
567
568	if (!cd->tx_error_check)
569		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
570}
571
572#if defined(SH_ETH_RESET_DEFAULT)
573/* Chip Reset */
574static int  sh_eth_reset(struct net_device *ndev)
575{
576	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
577	mdelay(3);
578	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
579
580	return 0;
581}
582#else
583static int sh_eth_check_reset(struct net_device *ndev)
584{
585	int ret = 0;
586	int cnt = 100;
587
588	while (cnt > 0) {
589		if (!(sh_eth_read(ndev, EDMR) & 0x3))
590			break;
591		mdelay(1);
592		cnt--;
593	}
594	if (cnt < 0) {
595		pr_err("Device reset fail\n");
596		ret = -ETIMEDOUT;
597	}
598	return ret;
599}
600#endif
601
602#if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
603static void sh_eth_set_receive_align(struct sk_buff *skb)
604{
605	int reserve;
606
607	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
608	if (reserve)
609		skb_reserve(skb, reserve);
610}
611#else
612static void sh_eth_set_receive_align(struct sk_buff *skb)
613{
614	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
615}
616#endif
617
618
619/* CPU <-> EDMAC endian convert */
620static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
621{
622	switch (mdp->edmac_endian) {
623	case EDMAC_LITTLE_ENDIAN:
624		return cpu_to_le32(x);
625	case EDMAC_BIG_ENDIAN:
626		return cpu_to_be32(x);
627	}
628	return x;
629}
630
631static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
632{
633	switch (mdp->edmac_endian) {
634	case EDMAC_LITTLE_ENDIAN:
635		return le32_to_cpu(x);
636	case EDMAC_BIG_ENDIAN:
637		return be32_to_cpu(x);
638	}
639	return x;
640}
641
642/*
643 * Program the hardware MAC address from dev->dev_addr.
644 */
645static void update_mac_address(struct net_device *ndev)
646{
647	sh_eth_write(ndev,
648		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
649		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
650	sh_eth_write(ndev,
651		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
652}
653
654/*
655 * Get MAC address from SuperH MAC address register
656 *
657 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
658 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
659 * When you want use this device, you must set MAC address in bootloader.
660 *
661 */
662static void read_mac_address(struct net_device *ndev, unsigned char *mac)
663{
664	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
665		memcpy(ndev->dev_addr, mac, 6);
666	} else {
667		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
668		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
669		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
670		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
671		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
672		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
673	}
674}
675
676static int sh_eth_is_gether(struct sh_eth_private *mdp)
677{
678	if (mdp->reg_offset == sh_eth_offset_gigabit)
679		return 1;
680	else
681		return 0;
682}
683
684static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
685{
686	if (sh_eth_is_gether(mdp))
687		return EDTRR_TRNS_GETHER;
688	else
689		return EDTRR_TRNS_ETHER;
690}
691
692struct bb_info {
693	void (*set_gate)(void *addr);
694	struct mdiobb_ctrl ctrl;
695	void *addr;
696	u32 mmd_msk;/* MMD */
697	u32 mdo_msk;
698	u32 mdi_msk;
699	u32 mdc_msk;
700};
701
702/* PHY bit set */
703static void bb_set(void *addr, u32 msk)
704{
705	iowrite32(ioread32(addr) | msk, addr);
706}
707
708/* PHY bit clear */
709static void bb_clr(void *addr, u32 msk)
710{
711	iowrite32((ioread32(addr) & ~msk), addr);
712}
713
714/* PHY bit read */
715static int bb_read(void *addr, u32 msk)
716{
717	return (ioread32(addr) & msk) != 0;
718}
719
720/* Data I/O pin control */
721static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
722{
723	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
724
725	if (bitbang->set_gate)
726		bitbang->set_gate(bitbang->addr);
727
728	if (bit)
729		bb_set(bitbang->addr, bitbang->mmd_msk);
730	else
731		bb_clr(bitbang->addr, bitbang->mmd_msk);
732}
733
734/* Set bit data*/
735static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
736{
737	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
738
739	if (bitbang->set_gate)
740		bitbang->set_gate(bitbang->addr);
741
742	if (bit)
743		bb_set(bitbang->addr, bitbang->mdo_msk);
744	else
745		bb_clr(bitbang->addr, bitbang->mdo_msk);
746}
747
748/* Get bit data*/
749static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
750{
751	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
752
753	if (bitbang->set_gate)
754		bitbang->set_gate(bitbang->addr);
755
756	return bb_read(bitbang->addr, bitbang->mdi_msk);
757}
758
759/* MDC pin control */
760static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
761{
762	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
763
764	if (bitbang->set_gate)
765		bitbang->set_gate(bitbang->addr);
766
767	if (bit)
768		bb_set(bitbang->addr, bitbang->mdc_msk);
769	else
770		bb_clr(bitbang->addr, bitbang->mdc_msk);
771}
772
773/* mdio bus control struct */
774static struct mdiobb_ops bb_ops = {
775	.owner = THIS_MODULE,
776	.set_mdc = sh_mdc_ctrl,
777	.set_mdio_dir = sh_mmd_ctrl,
778	.set_mdio_data = sh_set_mdio,
779	.get_mdio_data = sh_get_mdio,
780};
781
782/* free skb and descriptor buffer */
783static void sh_eth_ring_free(struct net_device *ndev)
784{
785	struct sh_eth_private *mdp = netdev_priv(ndev);
786	int i;
787
788	/* Free Rx skb ringbuffer */
789	if (mdp->rx_skbuff) {
790		for (i = 0; i < mdp->num_rx_ring; i++) {
791			if (mdp->rx_skbuff[i])
792				dev_kfree_skb(mdp->rx_skbuff[i]);
793		}
794	}
795	kfree(mdp->rx_skbuff);
796	mdp->rx_skbuff = NULL;
797
798	/* Free Tx skb ringbuffer */
799	if (mdp->tx_skbuff) {
800		for (i = 0; i < mdp->num_tx_ring; i++) {
801			if (mdp->tx_skbuff[i])
802				dev_kfree_skb(mdp->tx_skbuff[i]);
803		}
804	}
805	kfree(mdp->tx_skbuff);
806	mdp->tx_skbuff = NULL;
807}
808
809/* format skb and descriptor buffer */
810static void sh_eth_ring_format(struct net_device *ndev)
811{
812	struct sh_eth_private *mdp = netdev_priv(ndev);
813	int i;
814	struct sk_buff *skb;
815	struct sh_eth_rxdesc *rxdesc = NULL;
816	struct sh_eth_txdesc *txdesc = NULL;
817	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
818	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
819
820	mdp->cur_rx = mdp->cur_tx = 0;
821	mdp->dirty_rx = mdp->dirty_tx = 0;
822
823	memset(mdp->rx_ring, 0, rx_ringsize);
824
825	/* build Rx ring buffer */
826	for (i = 0; i < mdp->num_rx_ring; i++) {
827		/* skb */
828		mdp->rx_skbuff[i] = NULL;
829		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
830		mdp->rx_skbuff[i] = skb;
831		if (skb == NULL)
832			break;
833		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
834				DMA_FROM_DEVICE);
835		sh_eth_set_receive_align(skb);
836
837		/* RX descriptor */
838		rxdesc = &mdp->rx_ring[i];
839		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
840		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
841
842		/* The size of the buffer is 16 byte boundary. */
843		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
844		/* Rx descriptor address set */
845		if (i == 0) {
846			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
847			if (sh_eth_is_gether(mdp))
848				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
849		}
850	}
851
852	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
853
854	/* Mark the last entry as wrapping the ring. */
855	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
856
857	memset(mdp->tx_ring, 0, tx_ringsize);
858
859	/* build Tx ring buffer */
860	for (i = 0; i < mdp->num_tx_ring; i++) {
861		mdp->tx_skbuff[i] = NULL;
862		txdesc = &mdp->tx_ring[i];
863		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
864		txdesc->buffer_length = 0;
865		if (i == 0) {
866			/* Tx descriptor address set */
867			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
868			if (sh_eth_is_gether(mdp))
869				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
870		}
871	}
872
873	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
874}
875
876/* Get skb and descriptor buffer */
877static int sh_eth_ring_init(struct net_device *ndev)
878{
879	struct sh_eth_private *mdp = netdev_priv(ndev);
880	int rx_ringsize, tx_ringsize, ret = 0;
881
882	/*
883	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
884	 * card needs room to do 8 byte alignment, +2 so we can reserve
885	 * the first 2 bytes, and +16 gets room for the status word from the
886	 * card.
887	 */
888	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
889			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
890	if (mdp->cd->rpadir)
891		mdp->rx_buf_sz += NET_IP_ALIGN;
892
893	/* Allocate RX and TX skb rings */
894	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
895				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
896	if (!mdp->rx_skbuff) {
897		ret = -ENOMEM;
898		return ret;
899	}
900
901	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
902				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
903	if (!mdp->tx_skbuff) {
904		ret = -ENOMEM;
905		goto skb_ring_free;
906	}
907
908	/* Allocate all Rx descriptors. */
909	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
910	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
911					  GFP_KERNEL);
912	if (!mdp->rx_ring) {
913		ret = -ENOMEM;
914		goto desc_ring_free;
915	}
916
917	mdp->dirty_rx = 0;
918
919	/* Allocate all Tx descriptors. */
920	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
921	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
922					  GFP_KERNEL);
923	if (!mdp->tx_ring) {
924		ret = -ENOMEM;
925		goto desc_ring_free;
926	}
927	return ret;
928
929desc_ring_free:
930	/* free DMA buffer */
931	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
932
933skb_ring_free:
934	/* Free Rx and Tx skb ring buffer */
935	sh_eth_ring_free(ndev);
936	mdp->tx_ring = NULL;
937	mdp->rx_ring = NULL;
938
939	return ret;
940}
941
942static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
943{
944	int ringsize;
945
946	if (mdp->rx_ring) {
947		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
948		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
949				  mdp->rx_desc_dma);
950		mdp->rx_ring = NULL;
951	}
952
953	if (mdp->tx_ring) {
954		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
955		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
956				  mdp->tx_desc_dma);
957		mdp->tx_ring = NULL;
958	}
959}
960
961static int sh_eth_dev_init(struct net_device *ndev, bool start)
962{
963	int ret = 0;
964	struct sh_eth_private *mdp = netdev_priv(ndev);
965	u32 val;
966
967	/* Soft Reset */
968	ret = sh_eth_reset(ndev);
969	if (ret)
970		goto out;
971
972	/* Descriptor format */
973	sh_eth_ring_format(ndev);
974	if (mdp->cd->rpadir)
975		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
976
977	/* all sh_eth int mask */
978	sh_eth_write(ndev, 0, EESIPR);
979
980#if defined(__LITTLE_ENDIAN)
981	if (mdp->cd->hw_swap)
982		sh_eth_write(ndev, EDMR_EL, EDMR);
983	else
984#endif
985		sh_eth_write(ndev, 0, EDMR);
986
987	/* FIFO size set */
988	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
989	sh_eth_write(ndev, 0, TFTR);
990
991	/* Frame recv control */
992	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
993
994	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
995
996	if (mdp->cd->bculr)
997		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
998
999	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1000
1001	if (!mdp->cd->no_trimd)
1002		sh_eth_write(ndev, 0, TRIMD);
1003
1004	/* Recv frame limit set register */
1005	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1006		     RFLR);
1007
1008	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1009	if (start)
1010		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1011
1012	/* PAUSE Prohibition */
1013	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1014		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1015
1016	sh_eth_write(ndev, val, ECMR);
1017
1018	if (mdp->cd->set_rate)
1019		mdp->cd->set_rate(ndev);
1020
1021	/* E-MAC Status Register clear */
1022	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1023
1024	/* E-MAC Interrupt Enable register */
1025	if (start)
1026		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1027
1028	/* Set MAC address */
1029	update_mac_address(ndev);
1030
1031	/* mask reset */
1032	if (mdp->cd->apr)
1033		sh_eth_write(ndev, APR_AP, APR);
1034	if (mdp->cd->mpr)
1035		sh_eth_write(ndev, MPR_MP, MPR);
1036	if (mdp->cd->tpauser)
1037		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1038
1039	if (start) {
1040		/* Setting the Rx mode will start the Rx process. */
1041		sh_eth_write(ndev, EDRRR_R, EDRRR);
1042
1043		netif_start_queue(ndev);
1044	}
1045
1046out:
1047	return ret;
1048}
1049
1050/* free Tx skb function */
1051static int sh_eth_txfree(struct net_device *ndev)
1052{
1053	struct sh_eth_private *mdp = netdev_priv(ndev);
1054	struct sh_eth_txdesc *txdesc;
1055	int freeNum = 0;
1056	int entry = 0;
1057
1058	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1059		entry = mdp->dirty_tx % mdp->num_tx_ring;
1060		txdesc = &mdp->tx_ring[entry];
1061		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1062			break;
1063		/* Free the original skb. */
1064		if (mdp->tx_skbuff[entry]) {
1065			dma_unmap_single(&ndev->dev, txdesc->addr,
1066					 txdesc->buffer_length, DMA_TO_DEVICE);
1067			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1068			mdp->tx_skbuff[entry] = NULL;
1069			freeNum++;
1070		}
1071		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1072		if (entry >= mdp->num_tx_ring - 1)
1073			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1074
1075		ndev->stats.tx_packets++;
1076		ndev->stats.tx_bytes += txdesc->buffer_length;
1077	}
1078	return freeNum;
1079}
1080
1081/* Packet receive function */
1082static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1083{
1084	struct sh_eth_private *mdp = netdev_priv(ndev);
1085	struct sh_eth_rxdesc *rxdesc;
1086
1087	int entry = mdp->cur_rx % mdp->num_rx_ring;
1088	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1089	struct sk_buff *skb;
1090	u16 pkt_len = 0;
1091	u32 desc_status;
1092
1093	rxdesc = &mdp->rx_ring[entry];
1094	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1095		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1096		pkt_len = rxdesc->frame_length;
1097
1098#if defined(CONFIG_ARCH_R8A7740)
1099		desc_status >>= 16;
1100#endif
1101
1102		if (--boguscnt < 0)
1103			break;
1104
1105		if (!(desc_status & RDFEND))
1106			ndev->stats.rx_length_errors++;
1107
1108		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1109				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1110			ndev->stats.rx_errors++;
1111			if (desc_status & RD_RFS1)
1112				ndev->stats.rx_crc_errors++;
1113			if (desc_status & RD_RFS2)
1114				ndev->stats.rx_frame_errors++;
1115			if (desc_status & RD_RFS3)
1116				ndev->stats.rx_length_errors++;
1117			if (desc_status & RD_RFS4)
1118				ndev->stats.rx_length_errors++;
1119			if (desc_status & RD_RFS6)
1120				ndev->stats.rx_missed_errors++;
1121			if (desc_status & RD_RFS10)
1122				ndev->stats.rx_over_errors++;
1123		} else {
1124			if (!mdp->cd->hw_swap)
1125				sh_eth_soft_swap(
1126					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1127					pkt_len + 2);
1128			skb = mdp->rx_skbuff[entry];
1129			mdp->rx_skbuff[entry] = NULL;
1130			if (mdp->cd->rpadir)
1131				skb_reserve(skb, NET_IP_ALIGN);
1132			skb_put(skb, pkt_len);
1133			skb->protocol = eth_type_trans(skb, ndev);
1134			netif_rx(skb);
1135			ndev->stats.rx_packets++;
1136			ndev->stats.rx_bytes += pkt_len;
1137		}
1138		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1139		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1140		rxdesc = &mdp->rx_ring[entry];
1141	}
1142
1143	/* Refill the Rx ring buffers. */
1144	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1145		entry = mdp->dirty_rx % mdp->num_rx_ring;
1146		rxdesc = &mdp->rx_ring[entry];
1147		/* The size of the buffer is 16 byte boundary. */
1148		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1149
1150		if (mdp->rx_skbuff[entry] == NULL) {
1151			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1152			mdp->rx_skbuff[entry] = skb;
1153			if (skb == NULL)
1154				break;	/* Better luck next round. */
1155			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1156					DMA_FROM_DEVICE);
1157			sh_eth_set_receive_align(skb);
1158
1159			skb_checksum_none_assert(skb);
1160			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1161		}
1162		if (entry >= mdp->num_rx_ring - 1)
1163			rxdesc->status |=
1164				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1165		else
1166			rxdesc->status |=
1167				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1168	}
1169
1170	/* Restart Rx engine if stopped. */
1171	/* If we don't need to check status, don't. -KDU */
1172	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1173		/* fix the values for the next receiving if RDE is set */
1174		if (intr_status & EESR_RDE)
1175			mdp->cur_rx = mdp->dirty_rx =
1176				(sh_eth_read(ndev, RDFAR) -
1177				 sh_eth_read(ndev, RDLAR)) >> 4;
1178		sh_eth_write(ndev, EDRRR_R, EDRRR);
1179	}
1180
1181	return 0;
1182}
1183
1184static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1185{
1186	/* disable tx and rx */
1187	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1188		~(ECMR_RE | ECMR_TE), ECMR);
1189}
1190
1191static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1192{
1193	/* enable tx and rx */
1194	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1195		(ECMR_RE | ECMR_TE), ECMR);
1196}
1197
1198/* error control function */
1199static void sh_eth_error(struct net_device *ndev, int intr_status)
1200{
1201	struct sh_eth_private *mdp = netdev_priv(ndev);
1202	u32 felic_stat;
1203	u32 link_stat;
1204	u32 mask;
1205
1206	if (intr_status & EESR_ECI) {
1207		felic_stat = sh_eth_read(ndev, ECSR);
1208		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1209		if (felic_stat & ECSR_ICD)
1210			ndev->stats.tx_carrier_errors++;
1211		if (felic_stat & ECSR_LCHNG) {
1212			/* Link Changed */
1213			if (mdp->cd->no_psr || mdp->no_ether_link) {
1214				if (mdp->link == PHY_DOWN)
1215					link_stat = 0;
1216				else
1217					link_stat = PHY_ST_LINK;
1218			} else {
1219				link_stat = (sh_eth_read(ndev, PSR));
1220				if (mdp->ether_link_active_low)
1221					link_stat = ~link_stat;
1222			}
1223			if (!(link_stat & PHY_ST_LINK))
1224				sh_eth_rcv_snd_disable(ndev);
1225			else {
1226				/* Link Up */
1227				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1228					  ~DMAC_M_ECI, EESIPR);
1229				/*clear int */
1230				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1231					  ECSR);
1232				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1233					  DMAC_M_ECI, EESIPR);
1234				/* enable tx and rx */
1235				sh_eth_rcv_snd_enable(ndev);
1236			}
1237		}
1238	}
1239
1240	if (intr_status & EESR_TWB) {
1241		/* Write buck end. unused write back interrupt */
1242		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1243			ndev->stats.tx_aborted_errors++;
1244			if (netif_msg_tx_err(mdp))
1245				dev_err(&ndev->dev, "Transmit Abort\n");
1246	}
1247
1248	if (intr_status & EESR_RABT) {
1249		/* Receive Abort int */
1250		if (intr_status & EESR_RFRMER) {
1251			/* Receive Frame Overflow int */
1252			ndev->stats.rx_frame_errors++;
1253			if (netif_msg_rx_err(mdp))
1254				dev_err(&ndev->dev, "Receive Abort\n");
1255		}
1256	}
1257
1258	if (intr_status & EESR_TDE) {
1259		/* Transmit Descriptor Empty int */
1260		ndev->stats.tx_fifo_errors++;
1261		if (netif_msg_tx_err(mdp))
1262			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1263	}
1264
1265	if (intr_status & EESR_TFE) {
1266		/* FIFO under flow */
1267		ndev->stats.tx_fifo_errors++;
1268		if (netif_msg_tx_err(mdp))
1269			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1270	}
1271
1272	if (intr_status & EESR_RDE) {
1273		/* Receive Descriptor Empty int */
1274		ndev->stats.rx_over_errors++;
1275
1276		if (netif_msg_rx_err(mdp))
1277			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1278	}
1279
1280	if (intr_status & EESR_RFE) {
1281		/* Receive FIFO Overflow int */
1282		ndev->stats.rx_fifo_errors++;
1283		if (netif_msg_rx_err(mdp))
1284			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1285	}
1286
1287	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1288		/* Address Error */
1289		ndev->stats.tx_fifo_errors++;
1290		if (netif_msg_tx_err(mdp))
1291			dev_err(&ndev->dev, "Address Error\n");
1292	}
1293
1294	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1295	if (mdp->cd->no_ade)
1296		mask &= ~EESR_ADE;
1297	if (intr_status & mask) {
1298		/* Tx error */
1299		u32 edtrr = sh_eth_read(ndev, EDTRR);
1300		/* dmesg */
1301		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1302				intr_status, mdp->cur_tx);
1303		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1304				mdp->dirty_tx, (u32) ndev->state, edtrr);
1305		/* dirty buffer free */
1306		sh_eth_txfree(ndev);
1307
1308		/* SH7712 BUG */
1309		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1310			/* tx dma start */
1311			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1312		}
1313		/* wakeup */
1314		netif_wake_queue(ndev);
1315	}
1316}
1317
1318static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1319{
1320	struct net_device *ndev = netdev;
1321	struct sh_eth_private *mdp = netdev_priv(ndev);
1322	struct sh_eth_cpu_data *cd = mdp->cd;
1323	irqreturn_t ret = IRQ_NONE;
1324	u32 intr_status = 0;
1325
1326	spin_lock(&mdp->lock);
1327
1328	/* Get interrpt stat */
1329	intr_status = sh_eth_read(ndev, EESR);
1330	/* Clear interrupt */
1331	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1332			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1333			cd->tx_check | cd->eesr_err_check)) {
1334		sh_eth_write(ndev, intr_status, EESR);
1335		ret = IRQ_HANDLED;
1336	} else
1337		goto other_irq;
1338
1339	if (intr_status & (EESR_FRC | /* Frame recv*/
1340			EESR_RMAF | /* Multi cast address recv*/
1341			EESR_RRF  | /* Bit frame recv */
1342			EESR_RTLF | /* Long frame recv*/
1343			EESR_RTSF | /* short frame recv */
1344			EESR_PRE  | /* PHY-LSI recv error */
1345			EESR_CERF)){ /* recv frame CRC error */
1346		sh_eth_rx(ndev, intr_status);
1347	}
1348
1349	/* Tx Check */
1350	if (intr_status & cd->tx_check) {
1351		sh_eth_txfree(ndev);
1352		netif_wake_queue(ndev);
1353	}
1354
1355	if (intr_status & cd->eesr_err_check)
1356		sh_eth_error(ndev, intr_status);
1357
1358other_irq:
1359	spin_unlock(&mdp->lock);
1360
1361	return ret;
1362}
1363
1364/* PHY state control function */
1365static void sh_eth_adjust_link(struct net_device *ndev)
1366{
1367	struct sh_eth_private *mdp = netdev_priv(ndev);
1368	struct phy_device *phydev = mdp->phydev;
1369	int new_state = 0;
1370
1371	if (phydev->link != PHY_DOWN) {
1372		if (phydev->duplex != mdp->duplex) {
1373			new_state = 1;
1374			mdp->duplex = phydev->duplex;
1375			if (mdp->cd->set_duplex)
1376				mdp->cd->set_duplex(ndev);
1377		}
1378
1379		if (phydev->speed != mdp->speed) {
1380			new_state = 1;
1381			mdp->speed = phydev->speed;
1382			if (mdp->cd->set_rate)
1383				mdp->cd->set_rate(ndev);
1384		}
1385		if (mdp->link == PHY_DOWN) {
1386			sh_eth_write(ndev,
1387				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1388			new_state = 1;
1389			mdp->link = phydev->link;
1390		}
1391	} else if (mdp->link) {
1392		new_state = 1;
1393		mdp->link = PHY_DOWN;
1394		mdp->speed = 0;
1395		mdp->duplex = -1;
1396	}
1397
1398	if (new_state && netif_msg_link(mdp))
1399		phy_print_status(phydev);
1400}
1401
1402/* PHY init function */
1403static int sh_eth_phy_init(struct net_device *ndev)
1404{
1405	struct sh_eth_private *mdp = netdev_priv(ndev);
1406	char phy_id[MII_BUS_ID_SIZE + 3];
1407	struct phy_device *phydev = NULL;
1408
1409	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1410		mdp->mii_bus->id , mdp->phy_id);
1411
1412	mdp->link = PHY_DOWN;
1413	mdp->speed = 0;
1414	mdp->duplex = -1;
1415
1416	/* Try connect to PHY */
1417	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1418			     mdp->phy_interface);
1419	if (IS_ERR(phydev)) {
1420		dev_err(&ndev->dev, "phy_connect failed\n");
1421		return PTR_ERR(phydev);
1422	}
1423
1424	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1425		phydev->addr, phydev->drv->name);
1426
1427	mdp->phydev = phydev;
1428
1429	return 0;
1430}
1431
1432/* PHY control start function */
1433static int sh_eth_phy_start(struct net_device *ndev)
1434{
1435	struct sh_eth_private *mdp = netdev_priv(ndev);
1436	int ret;
1437
1438	ret = sh_eth_phy_init(ndev);
1439	if (ret)
1440		return ret;
1441
1442	/* reset phy - this also wakes it from PDOWN */
1443	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1444	phy_start(mdp->phydev);
1445
1446	return 0;
1447}
1448
1449static int sh_eth_get_settings(struct net_device *ndev,
1450			struct ethtool_cmd *ecmd)
1451{
1452	struct sh_eth_private *mdp = netdev_priv(ndev);
1453	unsigned long flags;
1454	int ret;
1455
1456	spin_lock_irqsave(&mdp->lock, flags);
1457	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1458	spin_unlock_irqrestore(&mdp->lock, flags);
1459
1460	return ret;
1461}
1462
1463static int sh_eth_set_settings(struct net_device *ndev,
1464		struct ethtool_cmd *ecmd)
1465{
1466	struct sh_eth_private *mdp = netdev_priv(ndev);
1467	unsigned long flags;
1468	int ret;
1469
1470	spin_lock_irqsave(&mdp->lock, flags);
1471
1472	/* disable tx and rx */
1473	sh_eth_rcv_snd_disable(ndev);
1474
1475	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1476	if (ret)
1477		goto error_exit;
1478
1479	if (ecmd->duplex == DUPLEX_FULL)
1480		mdp->duplex = 1;
1481	else
1482		mdp->duplex = 0;
1483
1484	if (mdp->cd->set_duplex)
1485		mdp->cd->set_duplex(ndev);
1486
1487error_exit:
1488	mdelay(1);
1489
1490	/* enable tx and rx */
1491	sh_eth_rcv_snd_enable(ndev);
1492
1493	spin_unlock_irqrestore(&mdp->lock, flags);
1494
1495	return ret;
1496}
1497
1498static int sh_eth_nway_reset(struct net_device *ndev)
1499{
1500	struct sh_eth_private *mdp = netdev_priv(ndev);
1501	unsigned long flags;
1502	int ret;
1503
1504	spin_lock_irqsave(&mdp->lock, flags);
1505	ret = phy_start_aneg(mdp->phydev);
1506	spin_unlock_irqrestore(&mdp->lock, flags);
1507
1508	return ret;
1509}
1510
1511static u32 sh_eth_get_msglevel(struct net_device *ndev)
1512{
1513	struct sh_eth_private *mdp = netdev_priv(ndev);
1514	return mdp->msg_enable;
1515}
1516
1517static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1518{
1519	struct sh_eth_private *mdp = netdev_priv(ndev);
1520	mdp->msg_enable = value;
1521}
1522
1523static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1524	"rx_current", "tx_current",
1525	"rx_dirty", "tx_dirty",
1526};
1527#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1528
1529static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1530{
1531	switch (sset) {
1532	case ETH_SS_STATS:
1533		return SH_ETH_STATS_LEN;
1534	default:
1535		return -EOPNOTSUPP;
1536	}
1537}
1538
1539static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1540			struct ethtool_stats *stats, u64 *data)
1541{
1542	struct sh_eth_private *mdp = netdev_priv(ndev);
1543	int i = 0;
1544
1545	/* device-specific stats */
1546	data[i++] = mdp->cur_rx;
1547	data[i++] = mdp->cur_tx;
1548	data[i++] = mdp->dirty_rx;
1549	data[i++] = mdp->dirty_tx;
1550}
1551
1552static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1553{
1554	switch (stringset) {
1555	case ETH_SS_STATS:
1556		memcpy(data, *sh_eth_gstrings_stats,
1557					sizeof(sh_eth_gstrings_stats));
1558		break;
1559	}
1560}
1561
1562static void sh_eth_get_ringparam(struct net_device *ndev,
1563				 struct ethtool_ringparam *ring)
1564{
1565	struct sh_eth_private *mdp = netdev_priv(ndev);
1566
1567	ring->rx_max_pending = RX_RING_MAX;
1568	ring->tx_max_pending = TX_RING_MAX;
1569	ring->rx_pending = mdp->num_rx_ring;
1570	ring->tx_pending = mdp->num_tx_ring;
1571}
1572
1573static int sh_eth_set_ringparam(struct net_device *ndev,
1574				struct ethtool_ringparam *ring)
1575{
1576	struct sh_eth_private *mdp = netdev_priv(ndev);
1577	int ret;
1578
1579	if (ring->tx_pending > TX_RING_MAX ||
1580	    ring->rx_pending > RX_RING_MAX ||
1581	    ring->tx_pending < TX_RING_MIN ||
1582	    ring->rx_pending < RX_RING_MIN)
1583		return -EINVAL;
1584	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1585		return -EINVAL;
1586
1587	if (netif_running(ndev)) {
1588		netif_tx_disable(ndev);
1589		/* Disable interrupts by clearing the interrupt mask. */
1590		sh_eth_write(ndev, 0x0000, EESIPR);
1591		/* Stop the chip's Tx and Rx processes. */
1592		sh_eth_write(ndev, 0, EDTRR);
1593		sh_eth_write(ndev, 0, EDRRR);
1594		synchronize_irq(ndev->irq);
1595	}
1596
1597	/* Free all the skbuffs in the Rx queue. */
1598	sh_eth_ring_free(ndev);
1599	/* Free DMA buffer */
1600	sh_eth_free_dma_buffer(mdp);
1601
1602	/* Set new parameters */
1603	mdp->num_rx_ring = ring->rx_pending;
1604	mdp->num_tx_ring = ring->tx_pending;
1605
1606	ret = sh_eth_ring_init(ndev);
1607	if (ret < 0) {
1608		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1609		return ret;
1610	}
1611	ret = sh_eth_dev_init(ndev, false);
1612	if (ret < 0) {
1613		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1614		return ret;
1615	}
1616
1617	if (netif_running(ndev)) {
1618		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1619		/* Setting the Rx mode will start the Rx process. */
1620		sh_eth_write(ndev, EDRRR_R, EDRRR);
1621		netif_wake_queue(ndev);
1622	}
1623
1624	return 0;
1625}
1626
1627static const struct ethtool_ops sh_eth_ethtool_ops = {
1628	.get_settings	= sh_eth_get_settings,
1629	.set_settings	= sh_eth_set_settings,
1630	.nway_reset	= sh_eth_nway_reset,
1631	.get_msglevel	= sh_eth_get_msglevel,
1632	.set_msglevel	= sh_eth_set_msglevel,
1633	.get_link	= ethtool_op_get_link,
1634	.get_strings	= sh_eth_get_strings,
1635	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1636	.get_sset_count     = sh_eth_get_sset_count,
1637	.get_ringparam	= sh_eth_get_ringparam,
1638	.set_ringparam	= sh_eth_set_ringparam,
1639};
1640
1641/* network device open function */
1642static int sh_eth_open(struct net_device *ndev)
1643{
1644	int ret = 0;
1645	struct sh_eth_private *mdp = netdev_priv(ndev);
1646
1647	pm_runtime_get_sync(&mdp->pdev->dev);
1648
1649	ret = request_irq(ndev->irq, sh_eth_interrupt,
1650#if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1651	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1652	defined(CONFIG_CPU_SUBTYPE_SH7757)
1653				IRQF_SHARED,
1654#else
1655				0,
1656#endif
1657				ndev->name, ndev);
1658	if (ret) {
1659		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1660		return ret;
1661	}
1662
1663	/* Descriptor set */
1664	ret = sh_eth_ring_init(ndev);
1665	if (ret)
1666		goto out_free_irq;
1667
1668	/* device init */
1669	ret = sh_eth_dev_init(ndev, true);
1670	if (ret)
1671		goto out_free_irq;
1672
1673	/* PHY control start*/
1674	ret = sh_eth_phy_start(ndev);
1675	if (ret)
1676		goto out_free_irq;
1677
1678	return ret;
1679
1680out_free_irq:
1681	free_irq(ndev->irq, ndev);
1682	pm_runtime_put_sync(&mdp->pdev->dev);
1683	return ret;
1684}
1685
1686/* Timeout function */
1687static void sh_eth_tx_timeout(struct net_device *ndev)
1688{
1689	struct sh_eth_private *mdp = netdev_priv(ndev);
1690	struct sh_eth_rxdesc *rxdesc;
1691	int i;
1692
1693	netif_stop_queue(ndev);
1694
1695	if (netif_msg_timer(mdp))
1696		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1697	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1698
1699	/* tx_errors count up */
1700	ndev->stats.tx_errors++;
1701
1702	/* Free all the skbuffs in the Rx queue. */
1703	for (i = 0; i < mdp->num_rx_ring; i++) {
1704		rxdesc = &mdp->rx_ring[i];
1705		rxdesc->status = 0;
1706		rxdesc->addr = 0xBADF00D0;
1707		if (mdp->rx_skbuff[i])
1708			dev_kfree_skb(mdp->rx_skbuff[i]);
1709		mdp->rx_skbuff[i] = NULL;
1710	}
1711	for (i = 0; i < mdp->num_tx_ring; i++) {
1712		if (mdp->tx_skbuff[i])
1713			dev_kfree_skb(mdp->tx_skbuff[i]);
1714		mdp->tx_skbuff[i] = NULL;
1715	}
1716
1717	/* device init */
1718	sh_eth_dev_init(ndev, true);
1719}
1720
1721/* Packet transmit function */
1722static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1723{
1724	struct sh_eth_private *mdp = netdev_priv(ndev);
1725	struct sh_eth_txdesc *txdesc;
1726	u32 entry;
1727	unsigned long flags;
1728
1729	spin_lock_irqsave(&mdp->lock, flags);
1730	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1731		if (!sh_eth_txfree(ndev)) {
1732			if (netif_msg_tx_queued(mdp))
1733				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1734			netif_stop_queue(ndev);
1735			spin_unlock_irqrestore(&mdp->lock, flags);
1736			return NETDEV_TX_BUSY;
1737		}
1738	}
1739	spin_unlock_irqrestore(&mdp->lock, flags);
1740
1741	entry = mdp->cur_tx % mdp->num_tx_ring;
1742	mdp->tx_skbuff[entry] = skb;
1743	txdesc = &mdp->tx_ring[entry];
1744	/* soft swap. */
1745	if (!mdp->cd->hw_swap)
1746		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1747				 skb->len + 2);
1748	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1749				      DMA_TO_DEVICE);
1750	if (skb->len < ETHERSMALL)
1751		txdesc->buffer_length = ETHERSMALL;
1752	else
1753		txdesc->buffer_length = skb->len;
1754
1755	if (entry >= mdp->num_tx_ring - 1)
1756		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1757	else
1758		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1759
1760	mdp->cur_tx++;
1761
1762	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1763		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1764
1765	return NETDEV_TX_OK;
1766}
1767
1768/* device close function */
1769static int sh_eth_close(struct net_device *ndev)
1770{
1771	struct sh_eth_private *mdp = netdev_priv(ndev);
1772
1773	netif_stop_queue(ndev);
1774
1775	/* Disable interrupts by clearing the interrupt mask. */
1776	sh_eth_write(ndev, 0x0000, EESIPR);
1777
1778	/* Stop the chip's Tx and Rx processes. */
1779	sh_eth_write(ndev, 0, EDTRR);
1780	sh_eth_write(ndev, 0, EDRRR);
1781
1782	/* PHY Disconnect */
1783	if (mdp->phydev) {
1784		phy_stop(mdp->phydev);
1785		phy_disconnect(mdp->phydev);
1786	}
1787
1788	free_irq(ndev->irq, ndev);
1789
1790	/* Free all the skbuffs in the Rx queue. */
1791	sh_eth_ring_free(ndev);
1792
1793	/* free DMA buffer */
1794	sh_eth_free_dma_buffer(mdp);
1795
1796	pm_runtime_put_sync(&mdp->pdev->dev);
1797
1798	return 0;
1799}
1800
1801static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1802{
1803	struct sh_eth_private *mdp = netdev_priv(ndev);
1804
1805	pm_runtime_get_sync(&mdp->pdev->dev);
1806
1807	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1808	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1809	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1810	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1811	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1812	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1813	if (sh_eth_is_gether(mdp)) {
1814		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1815		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1816		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1817		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1818	} else {
1819		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1820		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1821	}
1822	pm_runtime_put_sync(&mdp->pdev->dev);
1823
1824	return &ndev->stats;
1825}
1826
1827/* ioctl to device function */
1828static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1829				int cmd)
1830{
1831	struct sh_eth_private *mdp = netdev_priv(ndev);
1832	struct phy_device *phydev = mdp->phydev;
1833
1834	if (!netif_running(ndev))
1835		return -EINVAL;
1836
1837	if (!phydev)
1838		return -ENODEV;
1839
1840	return phy_mii_ioctl(phydev, rq, cmd);
1841}
1842
1843#if defined(SH_ETH_HAS_TSU)
1844/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1845static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1846					    int entry)
1847{
1848	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1849}
1850
1851static u32 sh_eth_tsu_get_post_mask(int entry)
1852{
1853	return 0x0f << (28 - ((entry % 8) * 4));
1854}
1855
1856static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1857{
1858	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1859}
1860
1861static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1862					     int entry)
1863{
1864	struct sh_eth_private *mdp = netdev_priv(ndev);
1865	u32 tmp;
1866	void *reg_offset;
1867
1868	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1869	tmp = ioread32(reg_offset);
1870	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1871}
1872
1873static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1874					      int entry)
1875{
1876	struct sh_eth_private *mdp = netdev_priv(ndev);
1877	u32 post_mask, ref_mask, tmp;
1878	void *reg_offset;
1879
1880	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1881	post_mask = sh_eth_tsu_get_post_mask(entry);
1882	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1883
1884	tmp = ioread32(reg_offset);
1885	iowrite32(tmp & ~post_mask, reg_offset);
1886
1887	/* If other port enables, the function returns "true" */
1888	return tmp & ref_mask;
1889}
1890
1891static int sh_eth_tsu_busy(struct net_device *ndev)
1892{
1893	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1894	struct sh_eth_private *mdp = netdev_priv(ndev);
1895
1896	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1897		udelay(10);
1898		timeout--;
1899		if (timeout <= 0) {
1900			dev_err(&ndev->dev, "%s: timeout\n", __func__);
1901			return -ETIMEDOUT;
1902		}
1903	}
1904
1905	return 0;
1906}
1907
1908static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1909				  const u8 *addr)
1910{
1911	u32 val;
1912
1913	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1914	iowrite32(val, reg);
1915	if (sh_eth_tsu_busy(ndev) < 0)
1916		return -EBUSY;
1917
1918	val = addr[4] << 8 | addr[5];
1919	iowrite32(val, reg + 4);
1920	if (sh_eth_tsu_busy(ndev) < 0)
1921		return -EBUSY;
1922
1923	return 0;
1924}
1925
1926static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1927{
1928	u32 val;
1929
1930	val = ioread32(reg);
1931	addr[0] = (val >> 24) & 0xff;
1932	addr[1] = (val >> 16) & 0xff;
1933	addr[2] = (val >> 8) & 0xff;
1934	addr[3] = val & 0xff;
1935	val = ioread32(reg + 4);
1936	addr[4] = (val >> 8) & 0xff;
1937	addr[5] = val & 0xff;
1938}
1939
1940
1941static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1942{
1943	struct sh_eth_private *mdp = netdev_priv(ndev);
1944	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1945	int i;
1946	u8 c_addr[ETH_ALEN];
1947
1948	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1949		sh_eth_tsu_read_entry(reg_offset, c_addr);
1950		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1951			return i;
1952	}
1953
1954	return -ENOENT;
1955}
1956
1957static int sh_eth_tsu_find_empty(struct net_device *ndev)
1958{
1959	u8 blank[ETH_ALEN];
1960	int entry;
1961
1962	memset(blank, 0, sizeof(blank));
1963	entry = sh_eth_tsu_find_entry(ndev, blank);
1964	return (entry < 0) ? -ENOMEM : entry;
1965}
1966
1967static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1968					      int entry)
1969{
1970	struct sh_eth_private *mdp = netdev_priv(ndev);
1971	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1972	int ret;
1973	u8 blank[ETH_ALEN];
1974
1975	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1976			 ~(1 << (31 - entry)), TSU_TEN);
1977
1978	memset(blank, 0, sizeof(blank));
1979	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1980	if (ret < 0)
1981		return ret;
1982	return 0;
1983}
1984
1985static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1986{
1987	struct sh_eth_private *mdp = netdev_priv(ndev);
1988	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1989	int i, ret;
1990
1991	if (!mdp->cd->tsu)
1992		return 0;
1993
1994	i = sh_eth_tsu_find_entry(ndev, addr);
1995	if (i < 0) {
1996		/* No entry found, create one */
1997		i = sh_eth_tsu_find_empty(ndev);
1998		if (i < 0)
1999			return -ENOMEM;
2000		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2001		if (ret < 0)
2002			return ret;
2003
2004		/* Enable the entry */
2005		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2006				 (1 << (31 - i)), TSU_TEN);
2007	}
2008
2009	/* Entry found or created, enable POST */
2010	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2011
2012	return 0;
2013}
2014
2015static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2016{
2017	struct sh_eth_private *mdp = netdev_priv(ndev);
2018	int i, ret;
2019
2020	if (!mdp->cd->tsu)
2021		return 0;
2022
2023	i = sh_eth_tsu_find_entry(ndev, addr);
2024	if (i) {
2025		/* Entry found */
2026		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2027			goto done;
2028
2029		/* Disable the entry if both ports was disabled */
2030		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2031		if (ret < 0)
2032			return ret;
2033	}
2034done:
2035	return 0;
2036}
2037
2038static int sh_eth_tsu_purge_all(struct net_device *ndev)
2039{
2040	struct sh_eth_private *mdp = netdev_priv(ndev);
2041	int i, ret;
2042
2043	if (unlikely(!mdp->cd->tsu))
2044		return 0;
2045
2046	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2047		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2048			continue;
2049
2050		/* Disable the entry if both ports was disabled */
2051		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2052		if (ret < 0)
2053			return ret;
2054	}
2055
2056	return 0;
2057}
2058
2059static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2060{
2061	struct sh_eth_private *mdp = netdev_priv(ndev);
2062	u8 addr[ETH_ALEN];
2063	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2064	int i;
2065
2066	if (unlikely(!mdp->cd->tsu))
2067		return;
2068
2069	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2070		sh_eth_tsu_read_entry(reg_offset, addr);
2071		if (is_multicast_ether_addr(addr))
2072			sh_eth_tsu_del_entry(ndev, addr);
2073	}
2074}
2075
2076/* Multicast reception directions set */
2077static void sh_eth_set_multicast_list(struct net_device *ndev)
2078{
2079	struct sh_eth_private *mdp = netdev_priv(ndev);
2080	u32 ecmr_bits;
2081	int mcast_all = 0;
2082	unsigned long flags;
2083
2084	spin_lock_irqsave(&mdp->lock, flags);
2085	/*
2086	 * Initial condition is MCT = 1, PRM = 0.
2087	 * Depending on ndev->flags, set PRM or clear MCT
2088	 */
2089	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2090
2091	if (!(ndev->flags & IFF_MULTICAST)) {
2092		sh_eth_tsu_purge_mcast(ndev);
2093		mcast_all = 1;
2094	}
2095	if (ndev->flags & IFF_ALLMULTI) {
2096		sh_eth_tsu_purge_mcast(ndev);
2097		ecmr_bits &= ~ECMR_MCT;
2098		mcast_all = 1;
2099	}
2100
2101	if (ndev->flags & IFF_PROMISC) {
2102		sh_eth_tsu_purge_all(ndev);
2103		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2104	} else if (mdp->cd->tsu) {
2105		struct netdev_hw_addr *ha;
2106		netdev_for_each_mc_addr(ha, ndev) {
2107			if (mcast_all && is_multicast_ether_addr(ha->addr))
2108				continue;
2109
2110			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2111				if (!mcast_all) {
2112					sh_eth_tsu_purge_mcast(ndev);
2113					ecmr_bits &= ~ECMR_MCT;
2114					mcast_all = 1;
2115				}
2116			}
2117		}
2118	} else {
2119		/* Normal, unicast/broadcast-only mode. */
2120		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2121	}
2122
2123	/* update the ethernet mode */
2124	sh_eth_write(ndev, ecmr_bits, ECMR);
2125
2126	spin_unlock_irqrestore(&mdp->lock, flags);
2127}
2128
2129static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2130{
2131	if (!mdp->port)
2132		return TSU_VTAG0;
2133	else
2134		return TSU_VTAG1;
2135}
2136
2137static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2138{
2139	struct sh_eth_private *mdp = netdev_priv(ndev);
2140	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2141
2142	if (unlikely(!mdp->cd->tsu))
2143		return -EPERM;
2144
2145	/* No filtering if vid = 0 */
2146	if (!vid)
2147		return 0;
2148
2149	mdp->vlan_num_ids++;
2150
2151	/*
2152	 * The controller has one VLAN tag HW filter. So, if the filter is
2153	 * already enabled, the driver disables it and the filte
2154	 */
2155	if (mdp->vlan_num_ids > 1) {
2156		/* disable VLAN filter */
2157		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2158		return 0;
2159	}
2160
2161	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2162			 vtag_reg_index);
2163
2164	return 0;
2165}
2166
2167static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2168{
2169	struct sh_eth_private *mdp = netdev_priv(ndev);
2170	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2171
2172	if (unlikely(!mdp->cd->tsu))
2173		return -EPERM;
2174
2175	/* No filtering if vid = 0 */
2176	if (!vid)
2177		return 0;
2178
2179	mdp->vlan_num_ids--;
2180	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2181
2182	return 0;
2183}
2184#endif /* SH_ETH_HAS_TSU */
2185
2186/* SuperH's TSU register init function */
2187static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2188{
2189	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2190	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2191	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2192	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2193	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2194	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2195	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2196	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2197	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2198	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2199	if (sh_eth_is_gether(mdp)) {
2200		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2201		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2202	} else {
2203		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2204		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2205	}
2206	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2207	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2208	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2209	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2210	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2211	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2212	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2213}
2214
2215/* MDIO bus release function */
2216static int sh_mdio_release(struct net_device *ndev)
2217{
2218	struct sh_eth_private *mdp = netdev_priv(ndev);
2219	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2220
2221	/* unregister mdio bus */
2222	mdiobus_unregister(bus);
2223
2224	/* remove mdio bus info from net_device */
2225	dev_set_drvdata(&ndev->dev, NULL);
2226
2227	/* free interrupts memory */
2228	kfree(bus->irq);
2229
2230	/* free bitbang info */
2231	free_mdio_bitbang(bus);
2232
2233	/* free bitbang memory */
2234	kfree(mdp->bitbang);
2235
2236	return 0;
2237}
2238
2239/* MDIO bus init function */
2240static int sh_mdio_init(struct net_device *ndev, int id,
2241			struct sh_eth_plat_data *pd)
2242{
2243	int ret, i;
2244	struct bb_info *bitbang;
2245	struct sh_eth_private *mdp = netdev_priv(ndev);
2246
2247	/* create bit control struct for PHY */
2248	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2249	if (!bitbang) {
2250		ret = -ENOMEM;
2251		goto out;
2252	}
2253
2254	/* bitbang init */
2255	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2256	bitbang->set_gate = pd->set_mdio_gate;
2257	bitbang->mdi_msk = PIR_MDI;
2258	bitbang->mdo_msk = PIR_MDO;
2259	bitbang->mmd_msk = PIR_MMD;
2260	bitbang->mdc_msk = PIR_MDC;
2261	bitbang->ctrl.ops = &bb_ops;
2262
2263	/* MII controller setting */
2264	mdp->bitbang = bitbang;
2265	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2266	if (!mdp->mii_bus) {
2267		ret = -ENOMEM;
2268		goto out_free_bitbang;
2269	}
2270
2271	/* Hook up MII support for ethtool */
2272	mdp->mii_bus->name = "sh_mii";
2273	mdp->mii_bus->parent = &ndev->dev;
2274	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2275		mdp->pdev->name, id);
2276
2277	/* PHY IRQ */
2278	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2279	if (!mdp->mii_bus->irq) {
2280		ret = -ENOMEM;
2281		goto out_free_bus;
2282	}
2283
2284	for (i = 0; i < PHY_MAX_ADDR; i++)
2285		mdp->mii_bus->irq[i] = PHY_POLL;
2286
2287	/* register mdio bus */
2288	ret = mdiobus_register(mdp->mii_bus);
2289	if (ret)
2290		goto out_free_irq;
2291
2292	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2293
2294	return 0;
2295
2296out_free_irq:
2297	kfree(mdp->mii_bus->irq);
2298
2299out_free_bus:
2300	free_mdio_bitbang(mdp->mii_bus);
2301
2302out_free_bitbang:
2303	kfree(bitbang);
2304
2305out:
2306	return ret;
2307}
2308
2309static const u16 *sh_eth_get_register_offset(int register_type)
2310{
2311	const u16 *reg_offset = NULL;
2312
2313	switch (register_type) {
2314	case SH_ETH_REG_GIGABIT:
2315		reg_offset = sh_eth_offset_gigabit;
2316		break;
2317	case SH_ETH_REG_FAST_SH4:
2318		reg_offset = sh_eth_offset_fast_sh4;
2319		break;
2320	case SH_ETH_REG_FAST_SH3_SH2:
2321		reg_offset = sh_eth_offset_fast_sh3_sh2;
2322		break;
2323	default:
2324		pr_err("Unknown register type (%d)\n", register_type);
2325		break;
2326	}
2327
2328	return reg_offset;
2329}
2330
2331static const struct net_device_ops sh_eth_netdev_ops = {
2332	.ndo_open		= sh_eth_open,
2333	.ndo_stop		= sh_eth_close,
2334	.ndo_start_xmit		= sh_eth_start_xmit,
2335	.ndo_get_stats		= sh_eth_get_stats,
2336#if defined(SH_ETH_HAS_TSU)
2337	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2338	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2339	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2340#endif
2341	.ndo_tx_timeout		= sh_eth_tx_timeout,
2342	.ndo_do_ioctl		= sh_eth_do_ioctl,
2343	.ndo_validate_addr	= eth_validate_addr,
2344	.ndo_set_mac_address	= eth_mac_addr,
2345	.ndo_change_mtu		= eth_change_mtu,
2346};
2347
2348static int sh_eth_drv_probe(struct platform_device *pdev)
2349{
2350	int ret, devno = 0;
2351	struct resource *res;
2352	struct net_device *ndev = NULL;
2353	struct sh_eth_private *mdp = NULL;
2354	struct sh_eth_plat_data *pd = pdev->dev.platform_data;
2355
2356	/* get base addr */
2357	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2358	if (unlikely(res == NULL)) {
2359		dev_err(&pdev->dev, "invalid resource\n");
2360		ret = -EINVAL;
2361		goto out;
2362	}
2363
2364	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2365	if (!ndev) {
2366		ret = -ENOMEM;
2367		goto out;
2368	}
2369
2370	/* The sh Ether-specific entries in the device structure. */
2371	ndev->base_addr = res->start;
2372	devno = pdev->id;
2373	if (devno < 0)
2374		devno = 0;
2375
2376	ndev->dma = -1;
2377	ret = platform_get_irq(pdev, 0);
2378	if (ret < 0) {
2379		ret = -ENODEV;
2380		goto out_release;
2381	}
2382	ndev->irq = ret;
2383
2384	SET_NETDEV_DEV(ndev, &pdev->dev);
2385
2386	/* Fill in the fields of the device structure with ethernet values. */
2387	ether_setup(ndev);
2388
2389	mdp = netdev_priv(ndev);
2390	mdp->num_tx_ring = TX_RING_SIZE;
2391	mdp->num_rx_ring = RX_RING_SIZE;
2392	mdp->addr = ioremap(res->start, resource_size(res));
2393	if (mdp->addr == NULL) {
2394		ret = -ENOMEM;
2395		dev_err(&pdev->dev, "ioremap failed.\n");
2396		goto out_release;
2397	}
2398
2399	spin_lock_init(&mdp->lock);
2400	mdp->pdev = pdev;
2401	pm_runtime_enable(&pdev->dev);
2402	pm_runtime_resume(&pdev->dev);
2403
2404	/* get PHY ID */
2405	mdp->phy_id = pd->phy;
2406	mdp->phy_interface = pd->phy_interface;
2407	/* EDMAC endian */
2408	mdp->edmac_endian = pd->edmac_endian;
2409	mdp->no_ether_link = pd->no_ether_link;
2410	mdp->ether_link_active_low = pd->ether_link_active_low;
2411	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2412
2413	/* set cpu data */
2414#if defined(SH_ETH_HAS_BOTH_MODULES)
2415	mdp->cd = sh_eth_get_cpu_data(mdp);
2416#else
2417	mdp->cd = &sh_eth_my_cpu_data;
2418#endif
2419	sh_eth_set_default_cpu_data(mdp->cd);
2420
2421	/* set function */
2422	ndev->netdev_ops = &sh_eth_netdev_ops;
2423	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2424	ndev->watchdog_timeo = TX_TIMEOUT;
2425
2426	/* debug message level */
2427	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2428
2429	/* read and set MAC address */
2430	read_mac_address(ndev, pd->mac_addr);
2431
2432	/* ioremap the TSU registers */
2433	if (mdp->cd->tsu) {
2434		struct resource *rtsu;
2435		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2436		if (!rtsu) {
2437			dev_err(&pdev->dev, "Not found TSU resource\n");
2438			ret = -ENODEV;
2439			goto out_release;
2440		}
2441		mdp->tsu_addr = ioremap(rtsu->start,
2442					resource_size(rtsu));
2443		if (mdp->tsu_addr == NULL) {
2444			ret = -ENOMEM;
2445			dev_err(&pdev->dev, "TSU ioremap failed.\n");
2446			goto out_release;
2447		}
2448		mdp->port = devno % 2;
2449		ndev->features = NETIF_F_HW_VLAN_FILTER;
2450	}
2451
2452	/* initialize first or needed device */
2453	if (!devno || pd->needs_init) {
2454		if (mdp->cd->chip_reset)
2455			mdp->cd->chip_reset(ndev);
2456
2457		if (mdp->cd->tsu) {
2458			/* TSU init (Init only)*/
2459			sh_eth_tsu_init(mdp);
2460		}
2461	}
2462
2463	/* network device register */
2464	ret = register_netdev(ndev);
2465	if (ret)
2466		goto out_release;
2467
2468	/* mdio bus init */
2469	ret = sh_mdio_init(ndev, pdev->id, pd);
2470	if (ret)
2471		goto out_unregister;
2472
2473	/* print device information */
2474	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2475	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2476
2477	platform_set_drvdata(pdev, ndev);
2478
2479	return ret;
2480
2481out_unregister:
2482	unregister_netdev(ndev);
2483
2484out_release:
2485	/* net_dev free */
2486	if (mdp && mdp->addr)
2487		iounmap(mdp->addr);
2488	if (mdp && mdp->tsu_addr)
2489		iounmap(mdp->tsu_addr);
2490	if (ndev)
2491		free_netdev(ndev);
2492
2493out:
2494	return ret;
2495}
2496
2497static int sh_eth_drv_remove(struct platform_device *pdev)
2498{
2499	struct net_device *ndev = platform_get_drvdata(pdev);
2500	struct sh_eth_private *mdp = netdev_priv(ndev);
2501
2502	if (mdp->cd->tsu)
2503		iounmap(mdp->tsu_addr);
2504	sh_mdio_release(ndev);
2505	unregister_netdev(ndev);
2506	pm_runtime_disable(&pdev->dev);
2507	iounmap(mdp->addr);
2508	free_netdev(ndev);
2509	platform_set_drvdata(pdev, NULL);
2510
2511	return 0;
2512}
2513
2514static int sh_eth_runtime_nop(struct device *dev)
2515{
2516	/*
2517	 * Runtime PM callback shared between ->runtime_suspend()
2518	 * and ->runtime_resume(). Simply returns success.
2519	 *
2520	 * This driver re-initializes all registers after
2521	 * pm_runtime_get_sync() anyway so there is no need
2522	 * to save and restore registers here.
2523	 */
2524	return 0;
2525}
2526
2527static struct dev_pm_ops sh_eth_dev_pm_ops = {
2528	.runtime_suspend = sh_eth_runtime_nop,
2529	.runtime_resume = sh_eth_runtime_nop,
2530};
2531
2532static struct platform_driver sh_eth_driver = {
2533	.probe = sh_eth_drv_probe,
2534	.remove = sh_eth_drv_remove,
2535	.driver = {
2536		   .name = CARDNAME,
2537		   .pm = &sh_eth_dev_pm_ops,
2538	},
2539};
2540
2541module_platform_driver(sh_eth_driver);
2542
2543MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2544MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2545MODULE_LICENSE("GPL v2");
2546