sh_eth.c revision 7db8e0c14c9cb4adb667b4c558d8ffec8d5b40f2
1/*
2 *  SuperH Ethernet device driver
3 *
4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 *  Copyright (C) 2008-2013 Renesas Solutions Corp.
6 *  Copyright (C) 2013 Cogent Embedded, Inc.
7 *
8 *  This program is free software; you can redistribute it and/or modify it
9 *  under the terms and conditions of the GNU General Public License,
10 *  version 2, as published by the Free Software Foundation.
11 *
12 *  This program is distributed in the hope it will be useful, but WITHOUT
13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 *  more details.
16 *  You should have received a copy of the GNU General Public License along with
17 *  this program; if not, write to the Free Software Foundation, Inc.,
18 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 *  The full GNU General Public License is included in this distribution in
21 *  the file called "COPYING".
22 */
23
24#include <linux/init.h>
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/spinlock.h>
28#include <linux/interrupt.h>
29#include <linux/dma-mapping.h>
30#include <linux/etherdevice.h>
31#include <linux/delay.h>
32#include <linux/platform_device.h>
33#include <linux/mdio-bitbang.h>
34#include <linux/netdevice.h>
35#include <linux/phy.h>
36#include <linux/cache.h>
37#include <linux/io.h>
38#include <linux/pm_runtime.h>
39#include <linux/slab.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/clk.h>
43#include <linux/sh_eth.h>
44
45#include "sh_eth.h"
46
47#define SH_ETH_DEF_MSG_ENABLE \
48		(NETIF_MSG_LINK	| \
49		NETIF_MSG_TIMER	| \
50		NETIF_MSG_RX_ERR| \
51		NETIF_MSG_TX_ERR)
52
53static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54	[EDSR]		= 0x0000,
55	[EDMR]		= 0x0400,
56	[EDTRR]		= 0x0408,
57	[EDRRR]		= 0x0410,
58	[EESR]		= 0x0428,
59	[EESIPR]	= 0x0430,
60	[TDLAR]		= 0x0010,
61	[TDFAR]		= 0x0014,
62	[TDFXR]		= 0x0018,
63	[TDFFR]		= 0x001c,
64	[RDLAR]		= 0x0030,
65	[RDFAR]		= 0x0034,
66	[RDFXR]		= 0x0038,
67	[RDFFR]		= 0x003c,
68	[TRSCER]	= 0x0438,
69	[RMFCR]		= 0x0440,
70	[TFTR]		= 0x0448,
71	[FDR]		= 0x0450,
72	[RMCR]		= 0x0458,
73	[RPADIR]	= 0x0460,
74	[FCFTR]		= 0x0468,
75	[CSMR]		= 0x04E4,
76
77	[ECMR]		= 0x0500,
78	[ECSR]		= 0x0510,
79	[ECSIPR]	= 0x0518,
80	[PIR]		= 0x0520,
81	[PSR]		= 0x0528,
82	[PIPR]		= 0x052c,
83	[RFLR]		= 0x0508,
84	[APR]		= 0x0554,
85	[MPR]		= 0x0558,
86	[PFTCR]		= 0x055c,
87	[PFRCR]		= 0x0560,
88	[TPAUSER]	= 0x0564,
89	[GECMR]		= 0x05b0,
90	[BCULR]		= 0x05b4,
91	[MAHR]		= 0x05c0,
92	[MALR]		= 0x05c8,
93	[TROCR]		= 0x0700,
94	[CDCR]		= 0x0708,
95	[LCCR]		= 0x0710,
96	[CEFCR]		= 0x0740,
97	[FRECR]		= 0x0748,
98	[TSFRCR]	= 0x0750,
99	[TLFRCR]	= 0x0758,
100	[RFCR]		= 0x0760,
101	[CERCR]		= 0x0768,
102	[CEECR]		= 0x0770,
103	[MAFCR]		= 0x0778,
104	[RMII_MII]	= 0x0790,
105
106	[ARSTR]		= 0x0000,
107	[TSU_CTRST]	= 0x0004,
108	[TSU_FWEN0]	= 0x0010,
109	[TSU_FWEN1]	= 0x0014,
110	[TSU_FCM]	= 0x0018,
111	[TSU_BSYSL0]	= 0x0020,
112	[TSU_BSYSL1]	= 0x0024,
113	[TSU_PRISL0]	= 0x0028,
114	[TSU_PRISL1]	= 0x002c,
115	[TSU_FWSL0]	= 0x0030,
116	[TSU_FWSL1]	= 0x0034,
117	[TSU_FWSLC]	= 0x0038,
118	[TSU_QTAG0]	= 0x0040,
119	[TSU_QTAG1]	= 0x0044,
120	[TSU_FWSR]	= 0x0050,
121	[TSU_FWINMK]	= 0x0054,
122	[TSU_ADQT0]	= 0x0048,
123	[TSU_ADQT1]	= 0x004c,
124	[TSU_VTAG0]	= 0x0058,
125	[TSU_VTAG1]	= 0x005c,
126	[TSU_ADSBSY]	= 0x0060,
127	[TSU_TEN]	= 0x0064,
128	[TSU_POST1]	= 0x0070,
129	[TSU_POST2]	= 0x0074,
130	[TSU_POST3]	= 0x0078,
131	[TSU_POST4]	= 0x007c,
132	[TSU_ADRH0]	= 0x0100,
133	[TSU_ADRL0]	= 0x0104,
134	[TSU_ADRH31]	= 0x01f8,
135	[TSU_ADRL31]	= 0x01fc,
136
137	[TXNLCR0]	= 0x0080,
138	[TXALCR0]	= 0x0084,
139	[RXNLCR0]	= 0x0088,
140	[RXALCR0]	= 0x008c,
141	[FWNLCR0]	= 0x0090,
142	[FWALCR0]	= 0x0094,
143	[TXNLCR1]	= 0x00a0,
144	[TXALCR1]	= 0x00a0,
145	[RXNLCR1]	= 0x00a8,
146	[RXALCR1]	= 0x00ac,
147	[FWNLCR1]	= 0x00b0,
148	[FWALCR1]	= 0x00b4,
149};
150
151static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152	[ECMR]		= 0x0300,
153	[RFLR]		= 0x0308,
154	[ECSR]		= 0x0310,
155	[ECSIPR]	= 0x0318,
156	[PIR]		= 0x0320,
157	[PSR]		= 0x0328,
158	[RDMLR]		= 0x0340,
159	[IPGR]		= 0x0350,
160	[APR]		= 0x0354,
161	[MPR]		= 0x0358,
162	[RFCF]		= 0x0360,
163	[TPAUSER]	= 0x0364,
164	[TPAUSECR]	= 0x0368,
165	[MAHR]		= 0x03c0,
166	[MALR]		= 0x03c8,
167	[TROCR]		= 0x03d0,
168	[CDCR]		= 0x03d4,
169	[LCCR]		= 0x03d8,
170	[CNDCR]		= 0x03dc,
171	[CEFCR]		= 0x03e4,
172	[FRECR]		= 0x03e8,
173	[TSFRCR]	= 0x03ec,
174	[TLFRCR]	= 0x03f0,
175	[RFCR]		= 0x03f4,
176	[MAFCR]		= 0x03f8,
177
178	[EDMR]		= 0x0200,
179	[EDTRR]		= 0x0208,
180	[EDRRR]		= 0x0210,
181	[TDLAR]		= 0x0218,
182	[RDLAR]		= 0x0220,
183	[EESR]		= 0x0228,
184	[EESIPR]	= 0x0230,
185	[TRSCER]	= 0x0238,
186	[RMFCR]		= 0x0240,
187	[TFTR]		= 0x0248,
188	[FDR]		= 0x0250,
189	[RMCR]		= 0x0258,
190	[TFUCR]		= 0x0264,
191	[RFOCR]		= 0x0268,
192	[RMIIMODE]      = 0x026c,
193	[FCFTR]		= 0x0270,
194	[TRIMD]		= 0x027c,
195};
196
197static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
198	[ECMR]		= 0x0100,
199	[RFLR]		= 0x0108,
200	[ECSR]		= 0x0110,
201	[ECSIPR]	= 0x0118,
202	[PIR]		= 0x0120,
203	[PSR]		= 0x0128,
204	[RDMLR]		= 0x0140,
205	[IPGR]		= 0x0150,
206	[APR]		= 0x0154,
207	[MPR]		= 0x0158,
208	[TPAUSER]	= 0x0164,
209	[RFCF]		= 0x0160,
210	[TPAUSECR]	= 0x0168,
211	[BCFRR]		= 0x016c,
212	[MAHR]		= 0x01c0,
213	[MALR]		= 0x01c8,
214	[TROCR]		= 0x01d0,
215	[CDCR]		= 0x01d4,
216	[LCCR]		= 0x01d8,
217	[CNDCR]		= 0x01dc,
218	[CEFCR]		= 0x01e4,
219	[FRECR]		= 0x01e8,
220	[TSFRCR]	= 0x01ec,
221	[TLFRCR]	= 0x01f0,
222	[RFCR]		= 0x01f4,
223	[MAFCR]		= 0x01f8,
224	[RTRATE]	= 0x01fc,
225
226	[EDMR]		= 0x0000,
227	[EDTRR]		= 0x0008,
228	[EDRRR]		= 0x0010,
229	[TDLAR]		= 0x0018,
230	[RDLAR]		= 0x0020,
231	[EESR]		= 0x0028,
232	[EESIPR]	= 0x0030,
233	[TRSCER]	= 0x0038,
234	[RMFCR]		= 0x0040,
235	[TFTR]		= 0x0048,
236	[FDR]		= 0x0050,
237	[RMCR]		= 0x0058,
238	[TFUCR]		= 0x0064,
239	[RFOCR]		= 0x0068,
240	[FCFTR]		= 0x0070,
241	[RPADIR]	= 0x0078,
242	[TRIMD]		= 0x007c,
243	[RBWAR]		= 0x00c8,
244	[RDFAR]		= 0x00cc,
245	[TBRAR]		= 0x00d4,
246	[TDFAR]		= 0x00d8,
247};
248
249static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
250	[ECMR]		= 0x0160,
251	[ECSR]		= 0x0164,
252	[ECSIPR]	= 0x0168,
253	[PIR]		= 0x016c,
254	[MAHR]		= 0x0170,
255	[MALR]		= 0x0174,
256	[RFLR]		= 0x0178,
257	[PSR]		= 0x017c,
258	[TROCR]		= 0x0180,
259	[CDCR]		= 0x0184,
260	[LCCR]		= 0x0188,
261	[CNDCR]		= 0x018c,
262	[CEFCR]		= 0x0194,
263	[FRECR]		= 0x0198,
264	[TSFRCR]	= 0x019c,
265	[TLFRCR]	= 0x01a0,
266	[RFCR]		= 0x01a4,
267	[MAFCR]		= 0x01a8,
268	[IPGR]		= 0x01b4,
269	[APR]		= 0x01b8,
270	[MPR]		= 0x01bc,
271	[TPAUSER]	= 0x01c4,
272	[BCFR]		= 0x01cc,
273
274	[ARSTR]		= 0x0000,
275	[TSU_CTRST]	= 0x0004,
276	[TSU_FWEN0]	= 0x0010,
277	[TSU_FWEN1]	= 0x0014,
278	[TSU_FCM]	= 0x0018,
279	[TSU_BSYSL0]	= 0x0020,
280	[TSU_BSYSL1]	= 0x0024,
281	[TSU_PRISL0]	= 0x0028,
282	[TSU_PRISL1]	= 0x002c,
283	[TSU_FWSL0]	= 0x0030,
284	[TSU_FWSL1]	= 0x0034,
285	[TSU_FWSLC]	= 0x0038,
286	[TSU_QTAGM0]	= 0x0040,
287	[TSU_QTAGM1]	= 0x0044,
288	[TSU_ADQT0]	= 0x0048,
289	[TSU_ADQT1]	= 0x004c,
290	[TSU_FWSR]	= 0x0050,
291	[TSU_FWINMK]	= 0x0054,
292	[TSU_ADSBSY]	= 0x0060,
293	[TSU_TEN]	= 0x0064,
294	[TSU_POST1]	= 0x0070,
295	[TSU_POST2]	= 0x0074,
296	[TSU_POST3]	= 0x0078,
297	[TSU_POST4]	= 0x007c,
298
299	[TXNLCR0]	= 0x0080,
300	[TXALCR0]	= 0x0084,
301	[RXNLCR0]	= 0x0088,
302	[RXALCR0]	= 0x008c,
303	[FWNLCR0]	= 0x0090,
304	[FWALCR0]	= 0x0094,
305	[TXNLCR1]	= 0x00a0,
306	[TXALCR1]	= 0x00a0,
307	[RXNLCR1]	= 0x00a8,
308	[RXALCR1]	= 0x00ac,
309	[FWNLCR1]	= 0x00b0,
310	[FWALCR1]	= 0x00b4,
311
312	[TSU_ADRH0]	= 0x0100,
313	[TSU_ADRL0]	= 0x0104,
314	[TSU_ADRL31]	= 0x01fc,
315};
316
317static int sh_eth_is_gether(struct sh_eth_private *mdp)
318{
319	if (mdp->reg_offset == sh_eth_offset_gigabit)
320		return 1;
321	else
322		return 0;
323}
324
325static void sh_eth_select_mii(struct net_device *ndev)
326{
327	u32 value = 0x0;
328	struct sh_eth_private *mdp = netdev_priv(ndev);
329
330	switch (mdp->phy_interface) {
331	case PHY_INTERFACE_MODE_GMII:
332		value = 0x2;
333		break;
334	case PHY_INTERFACE_MODE_MII:
335		value = 0x1;
336		break;
337	case PHY_INTERFACE_MODE_RMII:
338		value = 0x0;
339		break;
340	default:
341		pr_warn("PHY interface mode was not setup. Set to MII.\n");
342		value = 0x1;
343		break;
344	}
345
346	sh_eth_write(ndev, value, RMII_MII);
347}
348
349static void sh_eth_set_duplex(struct net_device *ndev)
350{
351	struct sh_eth_private *mdp = netdev_priv(ndev);
352
353	if (mdp->duplex) /* Full */
354		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
355	else		/* Half */
356		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
357}
358
359/* There is CPU dependent code */
360static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
361{
362	struct sh_eth_private *mdp = netdev_priv(ndev);
363
364	switch (mdp->speed) {
365	case 10: /* 10BASE */
366		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
367		break;
368	case 100:/* 100BASE */
369		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
370		break;
371	default:
372		break;
373	}
374}
375
376/* R8A7778/9 */
377static struct sh_eth_cpu_data r8a777x_data = {
378	.set_duplex	= sh_eth_set_duplex,
379	.set_rate	= sh_eth_set_rate_r8a777x,
380
381	.register_type	= SH_ETH_REG_FAST_RCAR,
382
383	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
384	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
385	.eesipr_value	= 0x01ff009f,
386
387	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
388	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
389			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
390			  EESR_ECI,
391
392	.apr		= 1,
393	.mpr		= 1,
394	.tpauser	= 1,
395	.hw_swap	= 1,
396};
397
398/* R8A7790 */
399static struct sh_eth_cpu_data r8a7790_data = {
400	.set_duplex	= sh_eth_set_duplex,
401	.set_rate	= sh_eth_set_rate_r8a777x,
402
403	.register_type	= SH_ETH_REG_FAST_RCAR,
404
405	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
406	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
407	.eesipr_value	= 0x01ff009f,
408
409	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
410	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
411			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
412			  EESR_ECI,
413
414	.apr		= 1,
415	.mpr		= 1,
416	.tpauser	= 1,
417	.hw_swap	= 1,
418	.rmiimode	= 1,
419};
420
421static void sh_eth_set_rate_sh7724(struct net_device *ndev)
422{
423	struct sh_eth_private *mdp = netdev_priv(ndev);
424
425	switch (mdp->speed) {
426	case 10: /* 10BASE */
427		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
428		break;
429	case 100:/* 100BASE */
430		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
431		break;
432	default:
433		break;
434	}
435}
436
437/* SH7724 */
438static struct sh_eth_cpu_data sh7724_data = {
439	.set_duplex	= sh_eth_set_duplex,
440	.set_rate	= sh_eth_set_rate_sh7724,
441
442	.register_type	= SH_ETH_REG_FAST_SH4,
443
444	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
445	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
446	.eesipr_value	= 0x01ff009f,
447
448	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
449	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
450			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
451			  EESR_ECI,
452
453	.apr		= 1,
454	.mpr		= 1,
455	.tpauser	= 1,
456	.hw_swap	= 1,
457	.rpadir		= 1,
458	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
459};
460
461static void sh_eth_set_rate_sh7757(struct net_device *ndev)
462{
463	struct sh_eth_private *mdp = netdev_priv(ndev);
464
465	switch (mdp->speed) {
466	case 10: /* 10BASE */
467		sh_eth_write(ndev, 0, RTRATE);
468		break;
469	case 100:/* 100BASE */
470		sh_eth_write(ndev, 1, RTRATE);
471		break;
472	default:
473		break;
474	}
475}
476
477/* SH7757 */
478static struct sh_eth_cpu_data sh7757_data = {
479	.set_duplex	= sh_eth_set_duplex,
480	.set_rate	= sh_eth_set_rate_sh7757,
481
482	.register_type	= SH_ETH_REG_FAST_SH4,
483
484	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
485	.rmcr_value	= 0x00000001,
486
487	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
488	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
489			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
490			  EESR_ECI,
491
492	.irq_flags	= IRQF_SHARED,
493	.apr		= 1,
494	.mpr		= 1,
495	.tpauser	= 1,
496	.hw_swap	= 1,
497	.no_ade		= 1,
498	.rpadir		= 1,
499	.rpadir_value   = 2 << 16,
500};
501
502#define SH_GIGA_ETH_BASE	0xfee00000UL
503#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
504#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
505static void sh_eth_chip_reset_giga(struct net_device *ndev)
506{
507	int i;
508	unsigned long mahr[2], malr[2];
509
510	/* save MAHR and MALR */
511	for (i = 0; i < 2; i++) {
512		malr[i] = ioread32((void *)GIGA_MALR(i));
513		mahr[i] = ioread32((void *)GIGA_MAHR(i));
514	}
515
516	/* reset device */
517	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
518	mdelay(1);
519
520	/* restore MAHR and MALR */
521	for (i = 0; i < 2; i++) {
522		iowrite32(malr[i], (void *)GIGA_MALR(i));
523		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
524	}
525}
526
527static void sh_eth_set_rate_giga(struct net_device *ndev)
528{
529	struct sh_eth_private *mdp = netdev_priv(ndev);
530
531	switch (mdp->speed) {
532	case 10: /* 10BASE */
533		sh_eth_write(ndev, 0x00000000, GECMR);
534		break;
535	case 100:/* 100BASE */
536		sh_eth_write(ndev, 0x00000010, GECMR);
537		break;
538	case 1000: /* 1000BASE */
539		sh_eth_write(ndev, 0x00000020, GECMR);
540		break;
541	default:
542		break;
543	}
544}
545
546/* SH7757(GETHERC) */
547static struct sh_eth_cpu_data sh7757_data_giga = {
548	.chip_reset	= sh_eth_chip_reset_giga,
549	.set_duplex	= sh_eth_set_duplex,
550	.set_rate	= sh_eth_set_rate_giga,
551
552	.register_type	= SH_ETH_REG_GIGABIT,
553
554	.ecsr_value	= ECSR_ICD | ECSR_MPD,
555	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
556	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
557
558	.tx_check	= EESR_TC1 | EESR_FTC,
559	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
560			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
561			  EESR_TDE | EESR_ECI,
562	.fdr_value	= 0x0000072f,
563	.rmcr_value	= 0x00000001,
564
565	.irq_flags	= IRQF_SHARED,
566	.apr		= 1,
567	.mpr		= 1,
568	.tpauser	= 1,
569	.bculr		= 1,
570	.hw_swap	= 1,
571	.rpadir		= 1,
572	.rpadir_value   = 2 << 16,
573	.no_trimd	= 1,
574	.no_ade		= 1,
575	.tsu		= 1,
576};
577
578static void sh_eth_chip_reset(struct net_device *ndev)
579{
580	struct sh_eth_private *mdp = netdev_priv(ndev);
581
582	/* reset device */
583	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
584	mdelay(1);
585}
586
587static void sh_eth_set_rate_gether(struct net_device *ndev)
588{
589	struct sh_eth_private *mdp = netdev_priv(ndev);
590
591	switch (mdp->speed) {
592	case 10: /* 10BASE */
593		sh_eth_write(ndev, GECMR_10, GECMR);
594		break;
595	case 100:/* 100BASE */
596		sh_eth_write(ndev, GECMR_100, GECMR);
597		break;
598	case 1000: /* 1000BASE */
599		sh_eth_write(ndev, GECMR_1000, GECMR);
600		break;
601	default:
602		break;
603	}
604}
605
606/* SH7734 */
607static struct sh_eth_cpu_data sh7734_data = {
608	.chip_reset	= sh_eth_chip_reset,
609	.set_duplex	= sh_eth_set_duplex,
610	.set_rate	= sh_eth_set_rate_gether,
611
612	.register_type	= SH_ETH_REG_GIGABIT,
613
614	.ecsr_value	= ECSR_ICD | ECSR_MPD,
615	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
616	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
617
618	.tx_check	= EESR_TC1 | EESR_FTC,
619	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
620			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
621			  EESR_TDE | EESR_ECI,
622
623	.apr		= 1,
624	.mpr		= 1,
625	.tpauser	= 1,
626	.bculr		= 1,
627	.hw_swap	= 1,
628	.no_trimd	= 1,
629	.no_ade		= 1,
630	.tsu		= 1,
631	.hw_crc		= 1,
632	.select_mii	= 1,
633};
634
635/* SH7763 */
636static struct sh_eth_cpu_data sh7763_data = {
637	.chip_reset	= sh_eth_chip_reset,
638	.set_duplex	= sh_eth_set_duplex,
639	.set_rate	= sh_eth_set_rate_gether,
640
641	.register_type	= SH_ETH_REG_GIGABIT,
642
643	.ecsr_value	= ECSR_ICD | ECSR_MPD,
644	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
645	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
646
647	.tx_check	= EESR_TC1 | EESR_FTC,
648	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
649			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
650			  EESR_ECI,
651
652	.apr		= 1,
653	.mpr		= 1,
654	.tpauser	= 1,
655	.bculr		= 1,
656	.hw_swap	= 1,
657	.no_trimd	= 1,
658	.no_ade		= 1,
659	.tsu		= 1,
660	.irq_flags	= IRQF_SHARED,
661};
662
663static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
664{
665	struct sh_eth_private *mdp = netdev_priv(ndev);
666
667	/* reset device */
668	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
669	mdelay(1);
670
671	sh_eth_select_mii(ndev);
672}
673
674/* R8A7740 */
675static struct sh_eth_cpu_data r8a7740_data = {
676	.chip_reset	= sh_eth_chip_reset_r8a7740,
677	.set_duplex	= sh_eth_set_duplex,
678	.set_rate	= sh_eth_set_rate_gether,
679
680	.register_type	= SH_ETH_REG_GIGABIT,
681
682	.ecsr_value	= ECSR_ICD | ECSR_MPD,
683	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
684	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
685
686	.tx_check	= EESR_TC1 | EESR_FTC,
687	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
688			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
689			  EESR_TDE | EESR_ECI,
690
691	.apr		= 1,
692	.mpr		= 1,
693	.tpauser	= 1,
694	.bculr		= 1,
695	.hw_swap	= 1,
696	.no_trimd	= 1,
697	.no_ade		= 1,
698	.tsu		= 1,
699	.select_mii	= 1,
700	.shift_rd0	= 1,
701};
702
703static struct sh_eth_cpu_data sh7619_data = {
704	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
705
706	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
707
708	.apr		= 1,
709	.mpr		= 1,
710	.tpauser	= 1,
711	.hw_swap	= 1,
712};
713
714static struct sh_eth_cpu_data sh771x_data = {
715	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
716
717	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
718	.tsu		= 1,
719};
720
721static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
722{
723	if (!cd->ecsr_value)
724		cd->ecsr_value = DEFAULT_ECSR_INIT;
725
726	if (!cd->ecsipr_value)
727		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
728
729	if (!cd->fcftr_value)
730		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
731				  DEFAULT_FIFO_F_D_RFD;
732
733	if (!cd->fdr_value)
734		cd->fdr_value = DEFAULT_FDR_INIT;
735
736	if (!cd->rmcr_value)
737		cd->rmcr_value = DEFAULT_RMCR_VALUE;
738
739	if (!cd->tx_check)
740		cd->tx_check = DEFAULT_TX_CHECK;
741
742	if (!cd->eesr_err_check)
743		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
744}
745
746static int sh_eth_check_reset(struct net_device *ndev)
747{
748	int ret = 0;
749	int cnt = 100;
750
751	while (cnt > 0) {
752		if (!(sh_eth_read(ndev, EDMR) & 0x3))
753			break;
754		mdelay(1);
755		cnt--;
756	}
757	if (cnt <= 0) {
758		pr_err("Device reset failed\n");
759		ret = -ETIMEDOUT;
760	}
761	return ret;
762}
763
764static int sh_eth_reset(struct net_device *ndev)
765{
766	struct sh_eth_private *mdp = netdev_priv(ndev);
767	int ret = 0;
768
769	if (sh_eth_is_gether(mdp)) {
770		sh_eth_write(ndev, EDSR_ENALL, EDSR);
771		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
772			     EDMR);
773
774		ret = sh_eth_check_reset(ndev);
775		if (ret)
776			goto out;
777
778		/* Table Init */
779		sh_eth_write(ndev, 0x0, TDLAR);
780		sh_eth_write(ndev, 0x0, TDFAR);
781		sh_eth_write(ndev, 0x0, TDFXR);
782		sh_eth_write(ndev, 0x0, TDFFR);
783		sh_eth_write(ndev, 0x0, RDLAR);
784		sh_eth_write(ndev, 0x0, RDFAR);
785		sh_eth_write(ndev, 0x0, RDFXR);
786		sh_eth_write(ndev, 0x0, RDFFR);
787
788		/* Reset HW CRC register */
789		if (mdp->cd->hw_crc)
790			sh_eth_write(ndev, 0x0, CSMR);
791
792		/* Select MII mode */
793		if (mdp->cd->select_mii)
794			sh_eth_select_mii(ndev);
795	} else {
796		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
797			     EDMR);
798		mdelay(3);
799		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
800			     EDMR);
801	}
802
803out:
804	return ret;
805}
806
807#if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
808static void sh_eth_set_receive_align(struct sk_buff *skb)
809{
810	int reserve;
811
812	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
813	if (reserve)
814		skb_reserve(skb, reserve);
815}
816#else
817static void sh_eth_set_receive_align(struct sk_buff *skb)
818{
819	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
820}
821#endif
822
823
824/* CPU <-> EDMAC endian convert */
825static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
826{
827	switch (mdp->edmac_endian) {
828	case EDMAC_LITTLE_ENDIAN:
829		return cpu_to_le32(x);
830	case EDMAC_BIG_ENDIAN:
831		return cpu_to_be32(x);
832	}
833	return x;
834}
835
836static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
837{
838	switch (mdp->edmac_endian) {
839	case EDMAC_LITTLE_ENDIAN:
840		return le32_to_cpu(x);
841	case EDMAC_BIG_ENDIAN:
842		return be32_to_cpu(x);
843	}
844	return x;
845}
846
847/*
848 * Program the hardware MAC address from dev->dev_addr.
849 */
850static void update_mac_address(struct net_device *ndev)
851{
852	sh_eth_write(ndev,
853		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
854		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
855	sh_eth_write(ndev,
856		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
857}
858
859/*
860 * Get MAC address from SuperH MAC address register
861 *
862 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
863 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
864 * When you want use this device, you must set MAC address in bootloader.
865 *
866 */
867static void read_mac_address(struct net_device *ndev, unsigned char *mac)
868{
869	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
870		memcpy(ndev->dev_addr, mac, 6);
871	} else {
872		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
873		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
874		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
875		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
876		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
877		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
878	}
879}
880
881static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
882{
883	if (sh_eth_is_gether(mdp))
884		return EDTRR_TRNS_GETHER;
885	else
886		return EDTRR_TRNS_ETHER;
887}
888
889struct bb_info {
890	void (*set_gate)(void *addr);
891	struct mdiobb_ctrl ctrl;
892	void *addr;
893	u32 mmd_msk;/* MMD */
894	u32 mdo_msk;
895	u32 mdi_msk;
896	u32 mdc_msk;
897};
898
899/* PHY bit set */
900static void bb_set(void *addr, u32 msk)
901{
902	iowrite32(ioread32(addr) | msk, addr);
903}
904
905/* PHY bit clear */
906static void bb_clr(void *addr, u32 msk)
907{
908	iowrite32((ioread32(addr) & ~msk), addr);
909}
910
911/* PHY bit read */
912static int bb_read(void *addr, u32 msk)
913{
914	return (ioread32(addr) & msk) != 0;
915}
916
917/* Data I/O pin control */
918static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
919{
920	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
921
922	if (bitbang->set_gate)
923		bitbang->set_gate(bitbang->addr);
924
925	if (bit)
926		bb_set(bitbang->addr, bitbang->mmd_msk);
927	else
928		bb_clr(bitbang->addr, bitbang->mmd_msk);
929}
930
931/* Set bit data*/
932static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
933{
934	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
935
936	if (bitbang->set_gate)
937		bitbang->set_gate(bitbang->addr);
938
939	if (bit)
940		bb_set(bitbang->addr, bitbang->mdo_msk);
941	else
942		bb_clr(bitbang->addr, bitbang->mdo_msk);
943}
944
945/* Get bit data*/
946static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
947{
948	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
949
950	if (bitbang->set_gate)
951		bitbang->set_gate(bitbang->addr);
952
953	return bb_read(bitbang->addr, bitbang->mdi_msk);
954}
955
956/* MDC pin control */
957static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
958{
959	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
960
961	if (bitbang->set_gate)
962		bitbang->set_gate(bitbang->addr);
963
964	if (bit)
965		bb_set(bitbang->addr, bitbang->mdc_msk);
966	else
967		bb_clr(bitbang->addr, bitbang->mdc_msk);
968}
969
970/* mdio bus control struct */
971static struct mdiobb_ops bb_ops = {
972	.owner = THIS_MODULE,
973	.set_mdc = sh_mdc_ctrl,
974	.set_mdio_dir = sh_mmd_ctrl,
975	.set_mdio_data = sh_set_mdio,
976	.get_mdio_data = sh_get_mdio,
977};
978
979/* free skb and descriptor buffer */
980static void sh_eth_ring_free(struct net_device *ndev)
981{
982	struct sh_eth_private *mdp = netdev_priv(ndev);
983	int i;
984
985	/* Free Rx skb ringbuffer */
986	if (mdp->rx_skbuff) {
987		for (i = 0; i < mdp->num_rx_ring; i++) {
988			if (mdp->rx_skbuff[i])
989				dev_kfree_skb(mdp->rx_skbuff[i]);
990		}
991	}
992	kfree(mdp->rx_skbuff);
993	mdp->rx_skbuff = NULL;
994
995	/* Free Tx skb ringbuffer */
996	if (mdp->tx_skbuff) {
997		for (i = 0; i < mdp->num_tx_ring; i++) {
998			if (mdp->tx_skbuff[i])
999				dev_kfree_skb(mdp->tx_skbuff[i]);
1000		}
1001	}
1002	kfree(mdp->tx_skbuff);
1003	mdp->tx_skbuff = NULL;
1004}
1005
1006/* format skb and descriptor buffer */
1007static void sh_eth_ring_format(struct net_device *ndev)
1008{
1009	struct sh_eth_private *mdp = netdev_priv(ndev);
1010	int i;
1011	struct sk_buff *skb;
1012	struct sh_eth_rxdesc *rxdesc = NULL;
1013	struct sh_eth_txdesc *txdesc = NULL;
1014	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1015	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1016
1017	mdp->cur_rx = mdp->cur_tx = 0;
1018	mdp->dirty_rx = mdp->dirty_tx = 0;
1019
1020	memset(mdp->rx_ring, 0, rx_ringsize);
1021
1022	/* build Rx ring buffer */
1023	for (i = 0; i < mdp->num_rx_ring; i++) {
1024		/* skb */
1025		mdp->rx_skbuff[i] = NULL;
1026		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1027		mdp->rx_skbuff[i] = skb;
1028		if (skb == NULL)
1029			break;
1030		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1031				DMA_FROM_DEVICE);
1032		sh_eth_set_receive_align(skb);
1033
1034		/* RX descriptor */
1035		rxdesc = &mdp->rx_ring[i];
1036		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1037		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1038
1039		/* The size of the buffer is 16 byte boundary. */
1040		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1041		/* Rx descriptor address set */
1042		if (i == 0) {
1043			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1044			if (sh_eth_is_gether(mdp))
1045				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1046		}
1047	}
1048
1049	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1050
1051	/* Mark the last entry as wrapping the ring. */
1052	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1053
1054	memset(mdp->tx_ring, 0, tx_ringsize);
1055
1056	/* build Tx ring buffer */
1057	for (i = 0; i < mdp->num_tx_ring; i++) {
1058		mdp->tx_skbuff[i] = NULL;
1059		txdesc = &mdp->tx_ring[i];
1060		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1061		txdesc->buffer_length = 0;
1062		if (i == 0) {
1063			/* Tx descriptor address set */
1064			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1065			if (sh_eth_is_gether(mdp))
1066				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1067		}
1068	}
1069
1070	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1071}
1072
1073/* Get skb and descriptor buffer */
1074static int sh_eth_ring_init(struct net_device *ndev)
1075{
1076	struct sh_eth_private *mdp = netdev_priv(ndev);
1077	int rx_ringsize, tx_ringsize, ret = 0;
1078
1079	/*
1080	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1081	 * card needs room to do 8 byte alignment, +2 so we can reserve
1082	 * the first 2 bytes, and +16 gets room for the status word from the
1083	 * card.
1084	 */
1085	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1086			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1087	if (mdp->cd->rpadir)
1088		mdp->rx_buf_sz += NET_IP_ALIGN;
1089
1090	/* Allocate RX and TX skb rings */
1091	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1092				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1093	if (!mdp->rx_skbuff) {
1094		ret = -ENOMEM;
1095		return ret;
1096	}
1097
1098	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1099				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1100	if (!mdp->tx_skbuff) {
1101		ret = -ENOMEM;
1102		goto skb_ring_free;
1103	}
1104
1105	/* Allocate all Rx descriptors. */
1106	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1107	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1108					  GFP_KERNEL);
1109	if (!mdp->rx_ring) {
1110		ret = -ENOMEM;
1111		goto desc_ring_free;
1112	}
1113
1114	mdp->dirty_rx = 0;
1115
1116	/* Allocate all Tx descriptors. */
1117	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1118	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1119					  GFP_KERNEL);
1120	if (!mdp->tx_ring) {
1121		ret = -ENOMEM;
1122		goto desc_ring_free;
1123	}
1124	return ret;
1125
1126desc_ring_free:
1127	/* free DMA buffer */
1128	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1129
1130skb_ring_free:
1131	/* Free Rx and Tx skb ring buffer */
1132	sh_eth_ring_free(ndev);
1133	mdp->tx_ring = NULL;
1134	mdp->rx_ring = NULL;
1135
1136	return ret;
1137}
1138
1139static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1140{
1141	int ringsize;
1142
1143	if (mdp->rx_ring) {
1144		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1145		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1146				  mdp->rx_desc_dma);
1147		mdp->rx_ring = NULL;
1148	}
1149
1150	if (mdp->tx_ring) {
1151		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1152		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1153				  mdp->tx_desc_dma);
1154		mdp->tx_ring = NULL;
1155	}
1156}
1157
1158static int sh_eth_dev_init(struct net_device *ndev, bool start)
1159{
1160	int ret = 0;
1161	struct sh_eth_private *mdp = netdev_priv(ndev);
1162	u32 val;
1163
1164	/* Soft Reset */
1165	ret = sh_eth_reset(ndev);
1166	if (ret)
1167		goto out;
1168
1169	if (mdp->cd->rmiimode)
1170		sh_eth_write(ndev, 0x1, RMIIMODE);
1171
1172	/* Descriptor format */
1173	sh_eth_ring_format(ndev);
1174	if (mdp->cd->rpadir)
1175		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1176
1177	/* all sh_eth int mask */
1178	sh_eth_write(ndev, 0, EESIPR);
1179
1180#if defined(__LITTLE_ENDIAN)
1181	if (mdp->cd->hw_swap)
1182		sh_eth_write(ndev, EDMR_EL, EDMR);
1183	else
1184#endif
1185		sh_eth_write(ndev, 0, EDMR);
1186
1187	/* FIFO size set */
1188	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1189	sh_eth_write(ndev, 0, TFTR);
1190
1191	/* Frame recv control */
1192	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1193
1194	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1195
1196	if (mdp->cd->bculr)
1197		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1198
1199	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1200
1201	if (!mdp->cd->no_trimd)
1202		sh_eth_write(ndev, 0, TRIMD);
1203
1204	/* Recv frame limit set register */
1205	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1206		     RFLR);
1207
1208	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1209	if (start)
1210		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1211
1212	/* PAUSE Prohibition */
1213	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1214		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1215
1216	sh_eth_write(ndev, val, ECMR);
1217
1218	if (mdp->cd->set_rate)
1219		mdp->cd->set_rate(ndev);
1220
1221	/* E-MAC Status Register clear */
1222	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1223
1224	/* E-MAC Interrupt Enable register */
1225	if (start)
1226		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1227
1228	/* Set MAC address */
1229	update_mac_address(ndev);
1230
1231	/* mask reset */
1232	if (mdp->cd->apr)
1233		sh_eth_write(ndev, APR_AP, APR);
1234	if (mdp->cd->mpr)
1235		sh_eth_write(ndev, MPR_MP, MPR);
1236	if (mdp->cd->tpauser)
1237		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1238
1239	if (start) {
1240		/* Setting the Rx mode will start the Rx process. */
1241		sh_eth_write(ndev, EDRRR_R, EDRRR);
1242
1243		netif_start_queue(ndev);
1244	}
1245
1246out:
1247	return ret;
1248}
1249
1250/* free Tx skb function */
1251static int sh_eth_txfree(struct net_device *ndev)
1252{
1253	struct sh_eth_private *mdp = netdev_priv(ndev);
1254	struct sh_eth_txdesc *txdesc;
1255	int freeNum = 0;
1256	int entry = 0;
1257
1258	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1259		entry = mdp->dirty_tx % mdp->num_tx_ring;
1260		txdesc = &mdp->tx_ring[entry];
1261		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1262			break;
1263		/* Free the original skb. */
1264		if (mdp->tx_skbuff[entry]) {
1265			dma_unmap_single(&ndev->dev, txdesc->addr,
1266					 txdesc->buffer_length, DMA_TO_DEVICE);
1267			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1268			mdp->tx_skbuff[entry] = NULL;
1269			freeNum++;
1270		}
1271		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1272		if (entry >= mdp->num_tx_ring - 1)
1273			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1274
1275		ndev->stats.tx_packets++;
1276		ndev->stats.tx_bytes += txdesc->buffer_length;
1277	}
1278	return freeNum;
1279}
1280
1281/* Packet receive function */
1282static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1283{
1284	struct sh_eth_private *mdp = netdev_priv(ndev);
1285	struct sh_eth_rxdesc *rxdesc;
1286
1287	int entry = mdp->cur_rx % mdp->num_rx_ring;
1288	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1289	struct sk_buff *skb;
1290	int exceeded = 0;
1291	u16 pkt_len = 0;
1292	u32 desc_status;
1293
1294	rxdesc = &mdp->rx_ring[entry];
1295	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1296		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1297		pkt_len = rxdesc->frame_length;
1298
1299		if (--boguscnt < 0)
1300			break;
1301
1302		if (*quota <= 0) {
1303			exceeded = 1;
1304			break;
1305		}
1306		(*quota)--;
1307
1308		if (!(desc_status & RDFEND))
1309			ndev->stats.rx_length_errors++;
1310
1311		/*
1312		 * In case of almost all GETHER/ETHERs, the Receive Frame State
1313		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1314		 * bit 0. However, in case of the R8A7740's GETHER, the RFS
1315		 * bits are from bit 25 to bit 16. So, the driver needs right
1316		 * shifting by 16.
1317		 */
1318		if (mdp->cd->shift_rd0)
1319			desc_status >>= 16;
1320
1321		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1322				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1323			ndev->stats.rx_errors++;
1324			if (desc_status & RD_RFS1)
1325				ndev->stats.rx_crc_errors++;
1326			if (desc_status & RD_RFS2)
1327				ndev->stats.rx_frame_errors++;
1328			if (desc_status & RD_RFS3)
1329				ndev->stats.rx_length_errors++;
1330			if (desc_status & RD_RFS4)
1331				ndev->stats.rx_length_errors++;
1332			if (desc_status & RD_RFS6)
1333				ndev->stats.rx_missed_errors++;
1334			if (desc_status & RD_RFS10)
1335				ndev->stats.rx_over_errors++;
1336		} else {
1337			if (!mdp->cd->hw_swap)
1338				sh_eth_soft_swap(
1339					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1340					pkt_len + 2);
1341			skb = mdp->rx_skbuff[entry];
1342			mdp->rx_skbuff[entry] = NULL;
1343			if (mdp->cd->rpadir)
1344				skb_reserve(skb, NET_IP_ALIGN);
1345			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1346						mdp->rx_buf_sz,
1347						DMA_FROM_DEVICE);
1348			skb_put(skb, pkt_len);
1349			skb->protocol = eth_type_trans(skb, ndev);
1350			netif_rx(skb);
1351			ndev->stats.rx_packets++;
1352			ndev->stats.rx_bytes += pkt_len;
1353		}
1354		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1355		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1356		rxdesc = &mdp->rx_ring[entry];
1357	}
1358
1359	/* Refill the Rx ring buffers. */
1360	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1361		entry = mdp->dirty_rx % mdp->num_rx_ring;
1362		rxdesc = &mdp->rx_ring[entry];
1363		/* The size of the buffer is 16 byte boundary. */
1364		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1365
1366		if (mdp->rx_skbuff[entry] == NULL) {
1367			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1368			mdp->rx_skbuff[entry] = skb;
1369			if (skb == NULL)
1370				break;	/* Better luck next round. */
1371			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1372					DMA_FROM_DEVICE);
1373			sh_eth_set_receive_align(skb);
1374
1375			skb_checksum_none_assert(skb);
1376			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1377		}
1378		if (entry >= mdp->num_rx_ring - 1)
1379			rxdesc->status |=
1380				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1381		else
1382			rxdesc->status |=
1383				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1384	}
1385
1386	/* Restart Rx engine if stopped. */
1387	/* If we don't need to check status, don't. -KDU */
1388	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1389		/* fix the values for the next receiving if RDE is set */
1390		if (intr_status & EESR_RDE)
1391			mdp->cur_rx = mdp->dirty_rx =
1392				(sh_eth_read(ndev, RDFAR) -
1393				 sh_eth_read(ndev, RDLAR)) >> 4;
1394		sh_eth_write(ndev, EDRRR_R, EDRRR);
1395	}
1396
1397	return exceeded;
1398}
1399
1400static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1401{
1402	/* disable tx and rx */
1403	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1404		~(ECMR_RE | ECMR_TE), ECMR);
1405}
1406
1407static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1408{
1409	/* enable tx and rx */
1410	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1411		(ECMR_RE | ECMR_TE), ECMR);
1412}
1413
1414/* error control function */
1415static void sh_eth_error(struct net_device *ndev, int intr_status)
1416{
1417	struct sh_eth_private *mdp = netdev_priv(ndev);
1418	u32 felic_stat;
1419	u32 link_stat;
1420	u32 mask;
1421
1422	if (intr_status & EESR_ECI) {
1423		felic_stat = sh_eth_read(ndev, ECSR);
1424		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1425		if (felic_stat & ECSR_ICD)
1426			ndev->stats.tx_carrier_errors++;
1427		if (felic_stat & ECSR_LCHNG) {
1428			/* Link Changed */
1429			if (mdp->cd->no_psr || mdp->no_ether_link) {
1430				goto ignore_link;
1431			} else {
1432				link_stat = (sh_eth_read(ndev, PSR));
1433				if (mdp->ether_link_active_low)
1434					link_stat = ~link_stat;
1435			}
1436			if (!(link_stat & PHY_ST_LINK))
1437				sh_eth_rcv_snd_disable(ndev);
1438			else {
1439				/* Link Up */
1440				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1441					  ~DMAC_M_ECI, EESIPR);
1442				/*clear int */
1443				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1444					  ECSR);
1445				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1446					  DMAC_M_ECI, EESIPR);
1447				/* enable tx and rx */
1448				sh_eth_rcv_snd_enable(ndev);
1449			}
1450		}
1451	}
1452
1453ignore_link:
1454	if (intr_status & EESR_TWB) {
1455		/* Unused write back interrupt */
1456		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1457			ndev->stats.tx_aborted_errors++;
1458			if (netif_msg_tx_err(mdp))
1459				dev_err(&ndev->dev, "Transmit Abort\n");
1460		}
1461	}
1462
1463	if (intr_status & EESR_RABT) {
1464		/* Receive Abort int */
1465		if (intr_status & EESR_RFRMER) {
1466			/* Receive Frame Overflow int */
1467			ndev->stats.rx_frame_errors++;
1468			if (netif_msg_rx_err(mdp))
1469				dev_err(&ndev->dev, "Receive Abort\n");
1470		}
1471	}
1472
1473	if (intr_status & EESR_TDE) {
1474		/* Transmit Descriptor Empty int */
1475		ndev->stats.tx_fifo_errors++;
1476		if (netif_msg_tx_err(mdp))
1477			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1478	}
1479
1480	if (intr_status & EESR_TFE) {
1481		/* FIFO under flow */
1482		ndev->stats.tx_fifo_errors++;
1483		if (netif_msg_tx_err(mdp))
1484			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1485	}
1486
1487	if (intr_status & EESR_RDE) {
1488		/* Receive Descriptor Empty int */
1489		ndev->stats.rx_over_errors++;
1490
1491		if (netif_msg_rx_err(mdp))
1492			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1493	}
1494
1495	if (intr_status & EESR_RFE) {
1496		/* Receive FIFO Overflow int */
1497		ndev->stats.rx_fifo_errors++;
1498		if (netif_msg_rx_err(mdp))
1499			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1500	}
1501
1502	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1503		/* Address Error */
1504		ndev->stats.tx_fifo_errors++;
1505		if (netif_msg_tx_err(mdp))
1506			dev_err(&ndev->dev, "Address Error\n");
1507	}
1508
1509	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1510	if (mdp->cd->no_ade)
1511		mask &= ~EESR_ADE;
1512	if (intr_status & mask) {
1513		/* Tx error */
1514		u32 edtrr = sh_eth_read(ndev, EDTRR);
1515		/* dmesg */
1516		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1517				intr_status, mdp->cur_tx);
1518		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1519				mdp->dirty_tx, (u32) ndev->state, edtrr);
1520		/* dirty buffer free */
1521		sh_eth_txfree(ndev);
1522
1523		/* SH7712 BUG */
1524		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1525			/* tx dma start */
1526			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1527		}
1528		/* wakeup */
1529		netif_wake_queue(ndev);
1530	}
1531}
1532
1533static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1534{
1535	struct net_device *ndev = netdev;
1536	struct sh_eth_private *mdp = netdev_priv(ndev);
1537	struct sh_eth_cpu_data *cd = mdp->cd;
1538	irqreturn_t ret = IRQ_NONE;
1539	unsigned long intr_status, intr_enable;
1540
1541	spin_lock(&mdp->lock);
1542
1543	/* Get interrupt status */
1544	intr_status = sh_eth_read(ndev, EESR);
1545	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1546	 * enabled since it's the one that  comes thru regardless of the mask,
1547	 * and we need to fully handle it in sh_eth_error() in order to quench
1548	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1549	 */
1550	intr_enable = sh_eth_read(ndev, EESIPR);
1551	intr_status &= intr_enable | DMAC_M_ECI;
1552	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1553		ret = IRQ_HANDLED;
1554	else
1555		goto other_irq;
1556
1557	if (intr_status & EESR_RX_CHECK) {
1558		if (napi_schedule_prep(&mdp->napi)) {
1559			/* Mask Rx interrupts */
1560			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1561				     EESIPR);
1562			__napi_schedule(&mdp->napi);
1563		} else {
1564			dev_warn(&ndev->dev,
1565				 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1566				 intr_status, intr_enable);
1567		}
1568	}
1569
1570	/* Tx Check */
1571	if (intr_status & cd->tx_check) {
1572		/* Clear Tx interrupts */
1573		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1574
1575		sh_eth_txfree(ndev);
1576		netif_wake_queue(ndev);
1577	}
1578
1579	if (intr_status & cd->eesr_err_check) {
1580		/* Clear error interrupts */
1581		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1582
1583		sh_eth_error(ndev, intr_status);
1584	}
1585
1586other_irq:
1587	spin_unlock(&mdp->lock);
1588
1589	return ret;
1590}
1591
1592static int sh_eth_poll(struct napi_struct *napi, int budget)
1593{
1594	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1595						  napi);
1596	struct net_device *ndev = napi->dev;
1597	int quota = budget;
1598	unsigned long intr_status;
1599
1600	for (;;) {
1601		intr_status = sh_eth_read(ndev, EESR);
1602		if (!(intr_status & EESR_RX_CHECK))
1603			break;
1604		/* Clear Rx interrupts */
1605		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1606
1607		if (sh_eth_rx(ndev, intr_status, &quota))
1608			goto out;
1609	}
1610
1611	napi_complete(napi);
1612
1613	/* Reenable Rx interrupts */
1614	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1615out:
1616	return budget - quota;
1617}
1618
1619/* PHY state control function */
1620static void sh_eth_adjust_link(struct net_device *ndev)
1621{
1622	struct sh_eth_private *mdp = netdev_priv(ndev);
1623	struct phy_device *phydev = mdp->phydev;
1624	int new_state = 0;
1625
1626	if (phydev->link) {
1627		if (phydev->duplex != mdp->duplex) {
1628			new_state = 1;
1629			mdp->duplex = phydev->duplex;
1630			if (mdp->cd->set_duplex)
1631				mdp->cd->set_duplex(ndev);
1632		}
1633
1634		if (phydev->speed != mdp->speed) {
1635			new_state = 1;
1636			mdp->speed = phydev->speed;
1637			if (mdp->cd->set_rate)
1638				mdp->cd->set_rate(ndev);
1639		}
1640		if (!mdp->link) {
1641			sh_eth_write(ndev,
1642				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1643			new_state = 1;
1644			mdp->link = phydev->link;
1645			if (mdp->cd->no_psr || mdp->no_ether_link)
1646				sh_eth_rcv_snd_enable(ndev);
1647		}
1648	} else if (mdp->link) {
1649		new_state = 1;
1650		mdp->link = 0;
1651		mdp->speed = 0;
1652		mdp->duplex = -1;
1653		if (mdp->cd->no_psr || mdp->no_ether_link)
1654			sh_eth_rcv_snd_disable(ndev);
1655	}
1656
1657	if (new_state && netif_msg_link(mdp))
1658		phy_print_status(phydev);
1659}
1660
1661/* PHY init function */
1662static int sh_eth_phy_init(struct net_device *ndev)
1663{
1664	struct sh_eth_private *mdp = netdev_priv(ndev);
1665	char phy_id[MII_BUS_ID_SIZE + 3];
1666	struct phy_device *phydev = NULL;
1667
1668	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1669		mdp->mii_bus->id , mdp->phy_id);
1670
1671	mdp->link = 0;
1672	mdp->speed = 0;
1673	mdp->duplex = -1;
1674
1675	/* Try connect to PHY */
1676	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1677			     mdp->phy_interface);
1678	if (IS_ERR(phydev)) {
1679		dev_err(&ndev->dev, "phy_connect failed\n");
1680		return PTR_ERR(phydev);
1681	}
1682
1683	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1684		phydev->addr, phydev->drv->name);
1685
1686	mdp->phydev = phydev;
1687
1688	return 0;
1689}
1690
1691/* PHY control start function */
1692static int sh_eth_phy_start(struct net_device *ndev)
1693{
1694	struct sh_eth_private *mdp = netdev_priv(ndev);
1695	int ret;
1696
1697	ret = sh_eth_phy_init(ndev);
1698	if (ret)
1699		return ret;
1700
1701	/* reset phy - this also wakes it from PDOWN */
1702	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1703	phy_start(mdp->phydev);
1704
1705	return 0;
1706}
1707
1708static int sh_eth_get_settings(struct net_device *ndev,
1709			struct ethtool_cmd *ecmd)
1710{
1711	struct sh_eth_private *mdp = netdev_priv(ndev);
1712	unsigned long flags;
1713	int ret;
1714
1715	spin_lock_irqsave(&mdp->lock, flags);
1716	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1717	spin_unlock_irqrestore(&mdp->lock, flags);
1718
1719	return ret;
1720}
1721
1722static int sh_eth_set_settings(struct net_device *ndev,
1723		struct ethtool_cmd *ecmd)
1724{
1725	struct sh_eth_private *mdp = netdev_priv(ndev);
1726	unsigned long flags;
1727	int ret;
1728
1729	spin_lock_irqsave(&mdp->lock, flags);
1730
1731	/* disable tx and rx */
1732	sh_eth_rcv_snd_disable(ndev);
1733
1734	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1735	if (ret)
1736		goto error_exit;
1737
1738	if (ecmd->duplex == DUPLEX_FULL)
1739		mdp->duplex = 1;
1740	else
1741		mdp->duplex = 0;
1742
1743	if (mdp->cd->set_duplex)
1744		mdp->cd->set_duplex(ndev);
1745
1746error_exit:
1747	mdelay(1);
1748
1749	/* enable tx and rx */
1750	sh_eth_rcv_snd_enable(ndev);
1751
1752	spin_unlock_irqrestore(&mdp->lock, flags);
1753
1754	return ret;
1755}
1756
1757static int sh_eth_nway_reset(struct net_device *ndev)
1758{
1759	struct sh_eth_private *mdp = netdev_priv(ndev);
1760	unsigned long flags;
1761	int ret;
1762
1763	spin_lock_irqsave(&mdp->lock, flags);
1764	ret = phy_start_aneg(mdp->phydev);
1765	spin_unlock_irqrestore(&mdp->lock, flags);
1766
1767	return ret;
1768}
1769
1770static u32 sh_eth_get_msglevel(struct net_device *ndev)
1771{
1772	struct sh_eth_private *mdp = netdev_priv(ndev);
1773	return mdp->msg_enable;
1774}
1775
1776static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1777{
1778	struct sh_eth_private *mdp = netdev_priv(ndev);
1779	mdp->msg_enable = value;
1780}
1781
1782static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1783	"rx_current", "tx_current",
1784	"rx_dirty", "tx_dirty",
1785};
1786#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1787
1788static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1789{
1790	switch (sset) {
1791	case ETH_SS_STATS:
1792		return SH_ETH_STATS_LEN;
1793	default:
1794		return -EOPNOTSUPP;
1795	}
1796}
1797
1798static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1799			struct ethtool_stats *stats, u64 *data)
1800{
1801	struct sh_eth_private *mdp = netdev_priv(ndev);
1802	int i = 0;
1803
1804	/* device-specific stats */
1805	data[i++] = mdp->cur_rx;
1806	data[i++] = mdp->cur_tx;
1807	data[i++] = mdp->dirty_rx;
1808	data[i++] = mdp->dirty_tx;
1809}
1810
1811static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1812{
1813	switch (stringset) {
1814	case ETH_SS_STATS:
1815		memcpy(data, *sh_eth_gstrings_stats,
1816					sizeof(sh_eth_gstrings_stats));
1817		break;
1818	}
1819}
1820
1821static void sh_eth_get_ringparam(struct net_device *ndev,
1822				 struct ethtool_ringparam *ring)
1823{
1824	struct sh_eth_private *mdp = netdev_priv(ndev);
1825
1826	ring->rx_max_pending = RX_RING_MAX;
1827	ring->tx_max_pending = TX_RING_MAX;
1828	ring->rx_pending = mdp->num_rx_ring;
1829	ring->tx_pending = mdp->num_tx_ring;
1830}
1831
1832static int sh_eth_set_ringparam(struct net_device *ndev,
1833				struct ethtool_ringparam *ring)
1834{
1835	struct sh_eth_private *mdp = netdev_priv(ndev);
1836	int ret;
1837
1838	if (ring->tx_pending > TX_RING_MAX ||
1839	    ring->rx_pending > RX_RING_MAX ||
1840	    ring->tx_pending < TX_RING_MIN ||
1841	    ring->rx_pending < RX_RING_MIN)
1842		return -EINVAL;
1843	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1844		return -EINVAL;
1845
1846	if (netif_running(ndev)) {
1847		netif_tx_disable(ndev);
1848		/* Disable interrupts by clearing the interrupt mask. */
1849		sh_eth_write(ndev, 0x0000, EESIPR);
1850		/* Stop the chip's Tx and Rx processes. */
1851		sh_eth_write(ndev, 0, EDTRR);
1852		sh_eth_write(ndev, 0, EDRRR);
1853		synchronize_irq(ndev->irq);
1854	}
1855
1856	/* Free all the skbuffs in the Rx queue. */
1857	sh_eth_ring_free(ndev);
1858	/* Free DMA buffer */
1859	sh_eth_free_dma_buffer(mdp);
1860
1861	/* Set new parameters */
1862	mdp->num_rx_ring = ring->rx_pending;
1863	mdp->num_tx_ring = ring->tx_pending;
1864
1865	ret = sh_eth_ring_init(ndev);
1866	if (ret < 0) {
1867		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1868		return ret;
1869	}
1870	ret = sh_eth_dev_init(ndev, false);
1871	if (ret < 0) {
1872		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1873		return ret;
1874	}
1875
1876	if (netif_running(ndev)) {
1877		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1878		/* Setting the Rx mode will start the Rx process. */
1879		sh_eth_write(ndev, EDRRR_R, EDRRR);
1880		netif_wake_queue(ndev);
1881	}
1882
1883	return 0;
1884}
1885
1886static const struct ethtool_ops sh_eth_ethtool_ops = {
1887	.get_settings	= sh_eth_get_settings,
1888	.set_settings	= sh_eth_set_settings,
1889	.nway_reset	= sh_eth_nway_reset,
1890	.get_msglevel	= sh_eth_get_msglevel,
1891	.set_msglevel	= sh_eth_set_msglevel,
1892	.get_link	= ethtool_op_get_link,
1893	.get_strings	= sh_eth_get_strings,
1894	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1895	.get_sset_count     = sh_eth_get_sset_count,
1896	.get_ringparam	= sh_eth_get_ringparam,
1897	.set_ringparam	= sh_eth_set_ringparam,
1898};
1899
1900/* network device open function */
1901static int sh_eth_open(struct net_device *ndev)
1902{
1903	int ret = 0;
1904	struct sh_eth_private *mdp = netdev_priv(ndev);
1905
1906	pm_runtime_get_sync(&mdp->pdev->dev);
1907
1908	ret = request_irq(ndev->irq, sh_eth_interrupt,
1909			  mdp->cd->irq_flags, ndev->name, ndev);
1910	if (ret) {
1911		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1912		return ret;
1913	}
1914
1915	/* Descriptor set */
1916	ret = sh_eth_ring_init(ndev);
1917	if (ret)
1918		goto out_free_irq;
1919
1920	/* device init */
1921	ret = sh_eth_dev_init(ndev, true);
1922	if (ret)
1923		goto out_free_irq;
1924
1925	/* PHY control start*/
1926	ret = sh_eth_phy_start(ndev);
1927	if (ret)
1928		goto out_free_irq;
1929
1930	napi_enable(&mdp->napi);
1931
1932	return ret;
1933
1934out_free_irq:
1935	free_irq(ndev->irq, ndev);
1936	pm_runtime_put_sync(&mdp->pdev->dev);
1937	return ret;
1938}
1939
1940/* Timeout function */
1941static void sh_eth_tx_timeout(struct net_device *ndev)
1942{
1943	struct sh_eth_private *mdp = netdev_priv(ndev);
1944	struct sh_eth_rxdesc *rxdesc;
1945	int i;
1946
1947	netif_stop_queue(ndev);
1948
1949	if (netif_msg_timer(mdp))
1950		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1951	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1952
1953	/* tx_errors count up */
1954	ndev->stats.tx_errors++;
1955
1956	/* Free all the skbuffs in the Rx queue. */
1957	for (i = 0; i < mdp->num_rx_ring; i++) {
1958		rxdesc = &mdp->rx_ring[i];
1959		rxdesc->status = 0;
1960		rxdesc->addr = 0xBADF00D0;
1961		if (mdp->rx_skbuff[i])
1962			dev_kfree_skb(mdp->rx_skbuff[i]);
1963		mdp->rx_skbuff[i] = NULL;
1964	}
1965	for (i = 0; i < mdp->num_tx_ring; i++) {
1966		if (mdp->tx_skbuff[i])
1967			dev_kfree_skb(mdp->tx_skbuff[i]);
1968		mdp->tx_skbuff[i] = NULL;
1969	}
1970
1971	/* device init */
1972	sh_eth_dev_init(ndev, true);
1973}
1974
1975/* Packet transmit function */
1976static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1977{
1978	struct sh_eth_private *mdp = netdev_priv(ndev);
1979	struct sh_eth_txdesc *txdesc;
1980	u32 entry;
1981	unsigned long flags;
1982
1983	spin_lock_irqsave(&mdp->lock, flags);
1984	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1985		if (!sh_eth_txfree(ndev)) {
1986			if (netif_msg_tx_queued(mdp))
1987				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1988			netif_stop_queue(ndev);
1989			spin_unlock_irqrestore(&mdp->lock, flags);
1990			return NETDEV_TX_BUSY;
1991		}
1992	}
1993	spin_unlock_irqrestore(&mdp->lock, flags);
1994
1995	entry = mdp->cur_tx % mdp->num_tx_ring;
1996	mdp->tx_skbuff[entry] = skb;
1997	txdesc = &mdp->tx_ring[entry];
1998	/* soft swap. */
1999	if (!mdp->cd->hw_swap)
2000		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2001				 skb->len + 2);
2002	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2003				      DMA_TO_DEVICE);
2004	if (skb->len < ETHERSMALL)
2005		txdesc->buffer_length = ETHERSMALL;
2006	else
2007		txdesc->buffer_length = skb->len;
2008
2009	if (entry >= mdp->num_tx_ring - 1)
2010		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2011	else
2012		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2013
2014	mdp->cur_tx++;
2015
2016	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2017		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2018
2019	return NETDEV_TX_OK;
2020}
2021
2022/* device close function */
2023static int sh_eth_close(struct net_device *ndev)
2024{
2025	struct sh_eth_private *mdp = netdev_priv(ndev);
2026
2027	napi_disable(&mdp->napi);
2028
2029	netif_stop_queue(ndev);
2030
2031	/* Disable interrupts by clearing the interrupt mask. */
2032	sh_eth_write(ndev, 0x0000, EESIPR);
2033
2034	/* Stop the chip's Tx and Rx processes. */
2035	sh_eth_write(ndev, 0, EDTRR);
2036	sh_eth_write(ndev, 0, EDRRR);
2037
2038	/* PHY Disconnect */
2039	if (mdp->phydev) {
2040		phy_stop(mdp->phydev);
2041		phy_disconnect(mdp->phydev);
2042	}
2043
2044	free_irq(ndev->irq, ndev);
2045
2046	/* Free all the skbuffs in the Rx queue. */
2047	sh_eth_ring_free(ndev);
2048
2049	/* free DMA buffer */
2050	sh_eth_free_dma_buffer(mdp);
2051
2052	pm_runtime_put_sync(&mdp->pdev->dev);
2053
2054	return 0;
2055}
2056
2057static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2058{
2059	struct sh_eth_private *mdp = netdev_priv(ndev);
2060
2061	pm_runtime_get_sync(&mdp->pdev->dev);
2062
2063	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2064	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2065	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2066	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2067	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2068	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2069	if (sh_eth_is_gether(mdp)) {
2070		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2071		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2072		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2073		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2074	} else {
2075		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2076		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2077	}
2078	pm_runtime_put_sync(&mdp->pdev->dev);
2079
2080	return &ndev->stats;
2081}
2082
2083/* ioctl to device function */
2084static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2085				int cmd)
2086{
2087	struct sh_eth_private *mdp = netdev_priv(ndev);
2088	struct phy_device *phydev = mdp->phydev;
2089
2090	if (!netif_running(ndev))
2091		return -EINVAL;
2092
2093	if (!phydev)
2094		return -ENODEV;
2095
2096	return phy_mii_ioctl(phydev, rq, cmd);
2097}
2098
2099/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2100static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2101					    int entry)
2102{
2103	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2104}
2105
2106static u32 sh_eth_tsu_get_post_mask(int entry)
2107{
2108	return 0x0f << (28 - ((entry % 8) * 4));
2109}
2110
2111static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2112{
2113	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2114}
2115
2116static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2117					     int entry)
2118{
2119	struct sh_eth_private *mdp = netdev_priv(ndev);
2120	u32 tmp;
2121	void *reg_offset;
2122
2123	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2124	tmp = ioread32(reg_offset);
2125	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2126}
2127
2128static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2129					      int entry)
2130{
2131	struct sh_eth_private *mdp = netdev_priv(ndev);
2132	u32 post_mask, ref_mask, tmp;
2133	void *reg_offset;
2134
2135	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2136	post_mask = sh_eth_tsu_get_post_mask(entry);
2137	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2138
2139	tmp = ioread32(reg_offset);
2140	iowrite32(tmp & ~post_mask, reg_offset);
2141
2142	/* If other port enables, the function returns "true" */
2143	return tmp & ref_mask;
2144}
2145
2146static int sh_eth_tsu_busy(struct net_device *ndev)
2147{
2148	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2149	struct sh_eth_private *mdp = netdev_priv(ndev);
2150
2151	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2152		udelay(10);
2153		timeout--;
2154		if (timeout <= 0) {
2155			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2156			return -ETIMEDOUT;
2157		}
2158	}
2159
2160	return 0;
2161}
2162
2163static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2164				  const u8 *addr)
2165{
2166	u32 val;
2167
2168	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2169	iowrite32(val, reg);
2170	if (sh_eth_tsu_busy(ndev) < 0)
2171		return -EBUSY;
2172
2173	val = addr[4] << 8 | addr[5];
2174	iowrite32(val, reg + 4);
2175	if (sh_eth_tsu_busy(ndev) < 0)
2176		return -EBUSY;
2177
2178	return 0;
2179}
2180
2181static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2182{
2183	u32 val;
2184
2185	val = ioread32(reg);
2186	addr[0] = (val >> 24) & 0xff;
2187	addr[1] = (val >> 16) & 0xff;
2188	addr[2] = (val >> 8) & 0xff;
2189	addr[3] = val & 0xff;
2190	val = ioread32(reg + 4);
2191	addr[4] = (val >> 8) & 0xff;
2192	addr[5] = val & 0xff;
2193}
2194
2195
2196static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2197{
2198	struct sh_eth_private *mdp = netdev_priv(ndev);
2199	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2200	int i;
2201	u8 c_addr[ETH_ALEN];
2202
2203	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2204		sh_eth_tsu_read_entry(reg_offset, c_addr);
2205		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2206			return i;
2207	}
2208
2209	return -ENOENT;
2210}
2211
2212static int sh_eth_tsu_find_empty(struct net_device *ndev)
2213{
2214	u8 blank[ETH_ALEN];
2215	int entry;
2216
2217	memset(blank, 0, sizeof(blank));
2218	entry = sh_eth_tsu_find_entry(ndev, blank);
2219	return (entry < 0) ? -ENOMEM : entry;
2220}
2221
2222static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2223					      int entry)
2224{
2225	struct sh_eth_private *mdp = netdev_priv(ndev);
2226	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2227	int ret;
2228	u8 blank[ETH_ALEN];
2229
2230	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2231			 ~(1 << (31 - entry)), TSU_TEN);
2232
2233	memset(blank, 0, sizeof(blank));
2234	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2235	if (ret < 0)
2236		return ret;
2237	return 0;
2238}
2239
2240static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2241{
2242	struct sh_eth_private *mdp = netdev_priv(ndev);
2243	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2244	int i, ret;
2245
2246	if (!mdp->cd->tsu)
2247		return 0;
2248
2249	i = sh_eth_tsu_find_entry(ndev, addr);
2250	if (i < 0) {
2251		/* No entry found, create one */
2252		i = sh_eth_tsu_find_empty(ndev);
2253		if (i < 0)
2254			return -ENOMEM;
2255		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2256		if (ret < 0)
2257			return ret;
2258
2259		/* Enable the entry */
2260		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2261				 (1 << (31 - i)), TSU_TEN);
2262	}
2263
2264	/* Entry found or created, enable POST */
2265	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2266
2267	return 0;
2268}
2269
2270static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2271{
2272	struct sh_eth_private *mdp = netdev_priv(ndev);
2273	int i, ret;
2274
2275	if (!mdp->cd->tsu)
2276		return 0;
2277
2278	i = sh_eth_tsu_find_entry(ndev, addr);
2279	if (i) {
2280		/* Entry found */
2281		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2282			goto done;
2283
2284		/* Disable the entry if both ports was disabled */
2285		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2286		if (ret < 0)
2287			return ret;
2288	}
2289done:
2290	return 0;
2291}
2292
2293static int sh_eth_tsu_purge_all(struct net_device *ndev)
2294{
2295	struct sh_eth_private *mdp = netdev_priv(ndev);
2296	int i, ret;
2297
2298	if (unlikely(!mdp->cd->tsu))
2299		return 0;
2300
2301	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2302		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2303			continue;
2304
2305		/* Disable the entry if both ports was disabled */
2306		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2307		if (ret < 0)
2308			return ret;
2309	}
2310
2311	return 0;
2312}
2313
2314static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2315{
2316	struct sh_eth_private *mdp = netdev_priv(ndev);
2317	u8 addr[ETH_ALEN];
2318	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2319	int i;
2320
2321	if (unlikely(!mdp->cd->tsu))
2322		return;
2323
2324	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2325		sh_eth_tsu_read_entry(reg_offset, addr);
2326		if (is_multicast_ether_addr(addr))
2327			sh_eth_tsu_del_entry(ndev, addr);
2328	}
2329}
2330
2331/* Multicast reception directions set */
2332static void sh_eth_set_multicast_list(struct net_device *ndev)
2333{
2334	struct sh_eth_private *mdp = netdev_priv(ndev);
2335	u32 ecmr_bits;
2336	int mcast_all = 0;
2337	unsigned long flags;
2338
2339	spin_lock_irqsave(&mdp->lock, flags);
2340	/*
2341	 * Initial condition is MCT = 1, PRM = 0.
2342	 * Depending on ndev->flags, set PRM or clear MCT
2343	 */
2344	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2345
2346	if (!(ndev->flags & IFF_MULTICAST)) {
2347		sh_eth_tsu_purge_mcast(ndev);
2348		mcast_all = 1;
2349	}
2350	if (ndev->flags & IFF_ALLMULTI) {
2351		sh_eth_tsu_purge_mcast(ndev);
2352		ecmr_bits &= ~ECMR_MCT;
2353		mcast_all = 1;
2354	}
2355
2356	if (ndev->flags & IFF_PROMISC) {
2357		sh_eth_tsu_purge_all(ndev);
2358		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2359	} else if (mdp->cd->tsu) {
2360		struct netdev_hw_addr *ha;
2361		netdev_for_each_mc_addr(ha, ndev) {
2362			if (mcast_all && is_multicast_ether_addr(ha->addr))
2363				continue;
2364
2365			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2366				if (!mcast_all) {
2367					sh_eth_tsu_purge_mcast(ndev);
2368					ecmr_bits &= ~ECMR_MCT;
2369					mcast_all = 1;
2370				}
2371			}
2372		}
2373	} else {
2374		/* Normal, unicast/broadcast-only mode. */
2375		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2376	}
2377
2378	/* update the ethernet mode */
2379	sh_eth_write(ndev, ecmr_bits, ECMR);
2380
2381	spin_unlock_irqrestore(&mdp->lock, flags);
2382}
2383
2384static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2385{
2386	if (!mdp->port)
2387		return TSU_VTAG0;
2388	else
2389		return TSU_VTAG1;
2390}
2391
2392static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2393				  __be16 proto, u16 vid)
2394{
2395	struct sh_eth_private *mdp = netdev_priv(ndev);
2396	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2397
2398	if (unlikely(!mdp->cd->tsu))
2399		return -EPERM;
2400
2401	/* No filtering if vid = 0 */
2402	if (!vid)
2403		return 0;
2404
2405	mdp->vlan_num_ids++;
2406
2407	/*
2408	 * The controller has one VLAN tag HW filter. So, if the filter is
2409	 * already enabled, the driver disables it and the filte
2410	 */
2411	if (mdp->vlan_num_ids > 1) {
2412		/* disable VLAN filter */
2413		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2414		return 0;
2415	}
2416
2417	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2418			 vtag_reg_index);
2419
2420	return 0;
2421}
2422
2423static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2424				   __be16 proto, u16 vid)
2425{
2426	struct sh_eth_private *mdp = netdev_priv(ndev);
2427	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2428
2429	if (unlikely(!mdp->cd->tsu))
2430		return -EPERM;
2431
2432	/* No filtering if vid = 0 */
2433	if (!vid)
2434		return 0;
2435
2436	mdp->vlan_num_ids--;
2437	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2438
2439	return 0;
2440}
2441
2442/* SuperH's TSU register init function */
2443static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2444{
2445	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2446	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2447	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2448	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2449	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2450	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2451	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2452	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2453	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2454	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2455	if (sh_eth_is_gether(mdp)) {
2456		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2457		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2458	} else {
2459		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2460		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2461	}
2462	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2463	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2464	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2465	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2466	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2467	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2468	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2469}
2470
2471/* MDIO bus release function */
2472static int sh_mdio_release(struct net_device *ndev)
2473{
2474	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2475
2476	/* unregister mdio bus */
2477	mdiobus_unregister(bus);
2478
2479	/* remove mdio bus info from net_device */
2480	dev_set_drvdata(&ndev->dev, NULL);
2481
2482	/* free bitbang info */
2483	free_mdio_bitbang(bus);
2484
2485	return 0;
2486}
2487
2488/* MDIO bus init function */
2489static int sh_mdio_init(struct net_device *ndev, int id,
2490			struct sh_eth_plat_data *pd)
2491{
2492	int ret, i;
2493	struct bb_info *bitbang;
2494	struct sh_eth_private *mdp = netdev_priv(ndev);
2495
2496	/* create bit control struct for PHY */
2497	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2498			       GFP_KERNEL);
2499	if (!bitbang) {
2500		ret = -ENOMEM;
2501		goto out;
2502	}
2503
2504	/* bitbang init */
2505	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2506	bitbang->set_gate = pd->set_mdio_gate;
2507	bitbang->mdi_msk = PIR_MDI;
2508	bitbang->mdo_msk = PIR_MDO;
2509	bitbang->mmd_msk = PIR_MMD;
2510	bitbang->mdc_msk = PIR_MDC;
2511	bitbang->ctrl.ops = &bb_ops;
2512
2513	/* MII controller setting */
2514	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2515	if (!mdp->mii_bus) {
2516		ret = -ENOMEM;
2517		goto out;
2518	}
2519
2520	/* Hook up MII support for ethtool */
2521	mdp->mii_bus->name = "sh_mii";
2522	mdp->mii_bus->parent = &ndev->dev;
2523	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2524		mdp->pdev->name, id);
2525
2526	/* PHY IRQ */
2527	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2528					 sizeof(int) * PHY_MAX_ADDR,
2529					 GFP_KERNEL);
2530	if (!mdp->mii_bus->irq) {
2531		ret = -ENOMEM;
2532		goto out_free_bus;
2533	}
2534
2535	for (i = 0; i < PHY_MAX_ADDR; i++)
2536		mdp->mii_bus->irq[i] = PHY_POLL;
2537
2538	/* register mdio bus */
2539	ret = mdiobus_register(mdp->mii_bus);
2540	if (ret)
2541		goto out_free_bus;
2542
2543	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2544
2545	return 0;
2546
2547out_free_bus:
2548	free_mdio_bitbang(mdp->mii_bus);
2549
2550out:
2551	return ret;
2552}
2553
2554static const u16 *sh_eth_get_register_offset(int register_type)
2555{
2556	const u16 *reg_offset = NULL;
2557
2558	switch (register_type) {
2559	case SH_ETH_REG_GIGABIT:
2560		reg_offset = sh_eth_offset_gigabit;
2561		break;
2562	case SH_ETH_REG_FAST_RCAR:
2563		reg_offset = sh_eth_offset_fast_rcar;
2564		break;
2565	case SH_ETH_REG_FAST_SH4:
2566		reg_offset = sh_eth_offset_fast_sh4;
2567		break;
2568	case SH_ETH_REG_FAST_SH3_SH2:
2569		reg_offset = sh_eth_offset_fast_sh3_sh2;
2570		break;
2571	default:
2572		pr_err("Unknown register type (%d)\n", register_type);
2573		break;
2574	}
2575
2576	return reg_offset;
2577}
2578
2579static const struct net_device_ops sh_eth_netdev_ops = {
2580	.ndo_open		= sh_eth_open,
2581	.ndo_stop		= sh_eth_close,
2582	.ndo_start_xmit		= sh_eth_start_xmit,
2583	.ndo_get_stats		= sh_eth_get_stats,
2584	.ndo_tx_timeout		= sh_eth_tx_timeout,
2585	.ndo_do_ioctl		= sh_eth_do_ioctl,
2586	.ndo_validate_addr	= eth_validate_addr,
2587	.ndo_set_mac_address	= eth_mac_addr,
2588	.ndo_change_mtu		= eth_change_mtu,
2589};
2590
2591static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2592	.ndo_open		= sh_eth_open,
2593	.ndo_stop		= sh_eth_close,
2594	.ndo_start_xmit		= sh_eth_start_xmit,
2595	.ndo_get_stats		= sh_eth_get_stats,
2596	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2597	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2598	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2599	.ndo_tx_timeout		= sh_eth_tx_timeout,
2600	.ndo_do_ioctl		= sh_eth_do_ioctl,
2601	.ndo_validate_addr	= eth_validate_addr,
2602	.ndo_set_mac_address	= eth_mac_addr,
2603	.ndo_change_mtu		= eth_change_mtu,
2604};
2605
2606static int sh_eth_drv_probe(struct platform_device *pdev)
2607{
2608	int ret, devno = 0;
2609	struct resource *res;
2610	struct net_device *ndev = NULL;
2611	struct sh_eth_private *mdp = NULL;
2612	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2613	const struct platform_device_id *id = platform_get_device_id(pdev);
2614
2615	/* get base addr */
2616	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2617	if (unlikely(res == NULL)) {
2618		dev_err(&pdev->dev, "invalid resource\n");
2619		ret = -EINVAL;
2620		goto out;
2621	}
2622
2623	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2624	if (!ndev) {
2625		ret = -ENOMEM;
2626		goto out;
2627	}
2628
2629	/* The sh Ether-specific entries in the device structure. */
2630	ndev->base_addr = res->start;
2631	devno = pdev->id;
2632	if (devno < 0)
2633		devno = 0;
2634
2635	ndev->dma = -1;
2636	ret = platform_get_irq(pdev, 0);
2637	if (ret < 0) {
2638		ret = -ENODEV;
2639		goto out_release;
2640	}
2641	ndev->irq = ret;
2642
2643	SET_NETDEV_DEV(ndev, &pdev->dev);
2644
2645	mdp = netdev_priv(ndev);
2646	mdp->num_tx_ring = TX_RING_SIZE;
2647	mdp->num_rx_ring = RX_RING_SIZE;
2648	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2649	if (IS_ERR(mdp->addr)) {
2650		ret = PTR_ERR(mdp->addr);
2651		goto out_release;
2652	}
2653
2654	spin_lock_init(&mdp->lock);
2655	mdp->pdev = pdev;
2656	pm_runtime_enable(&pdev->dev);
2657	pm_runtime_resume(&pdev->dev);
2658
2659	/* get PHY ID */
2660	mdp->phy_id = pd->phy;
2661	mdp->phy_interface = pd->phy_interface;
2662	/* EDMAC endian */
2663	mdp->edmac_endian = pd->edmac_endian;
2664	mdp->no_ether_link = pd->no_ether_link;
2665	mdp->ether_link_active_low = pd->ether_link_active_low;
2666
2667	/* set cpu data */
2668	mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2669	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2670	sh_eth_set_default_cpu_data(mdp->cd);
2671
2672	/* set function */
2673	if (mdp->cd->tsu)
2674		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2675	else
2676		ndev->netdev_ops = &sh_eth_netdev_ops;
2677	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2678	ndev->watchdog_timeo = TX_TIMEOUT;
2679
2680	/* debug message level */
2681	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2682
2683	/* read and set MAC address */
2684	read_mac_address(ndev, pd->mac_addr);
2685	if (!is_valid_ether_addr(ndev->dev_addr)) {
2686		dev_warn(&pdev->dev,
2687			 "no valid MAC address supplied, using a random one.\n");
2688		eth_hw_addr_random(ndev);
2689	}
2690
2691	/* ioremap the TSU registers */
2692	if (mdp->cd->tsu) {
2693		struct resource *rtsu;
2694		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2695		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2696		if (IS_ERR(mdp->tsu_addr)) {
2697			ret = PTR_ERR(mdp->tsu_addr);
2698			goto out_release;
2699		}
2700		mdp->port = devno % 2;
2701		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2702	}
2703
2704	/* initialize first or needed device */
2705	if (!devno || pd->needs_init) {
2706		if (mdp->cd->chip_reset)
2707			mdp->cd->chip_reset(ndev);
2708
2709		if (mdp->cd->tsu) {
2710			/* TSU init (Init only)*/
2711			sh_eth_tsu_init(mdp);
2712		}
2713	}
2714
2715	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2716
2717	/* network device register */
2718	ret = register_netdev(ndev);
2719	if (ret)
2720		goto out_napi_del;
2721
2722	/* mdio bus init */
2723	ret = sh_mdio_init(ndev, pdev->id, pd);
2724	if (ret)
2725		goto out_unregister;
2726
2727	/* print device information */
2728	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2729	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2730
2731	platform_set_drvdata(pdev, ndev);
2732
2733	return ret;
2734
2735out_unregister:
2736	unregister_netdev(ndev);
2737
2738out_napi_del:
2739	netif_napi_del(&mdp->napi);
2740
2741out_release:
2742	/* net_dev free */
2743	if (ndev)
2744		free_netdev(ndev);
2745
2746out:
2747	return ret;
2748}
2749
2750static int sh_eth_drv_remove(struct platform_device *pdev)
2751{
2752	struct net_device *ndev = platform_get_drvdata(pdev);
2753	struct sh_eth_private *mdp = netdev_priv(ndev);
2754
2755	sh_mdio_release(ndev);
2756	unregister_netdev(ndev);
2757	netif_napi_del(&mdp->napi);
2758	pm_runtime_disable(&pdev->dev);
2759	free_netdev(ndev);
2760
2761	return 0;
2762}
2763
2764#ifdef CONFIG_PM
2765static int sh_eth_runtime_nop(struct device *dev)
2766{
2767	/*
2768	 * Runtime PM callback shared between ->runtime_suspend()
2769	 * and ->runtime_resume(). Simply returns success.
2770	 *
2771	 * This driver re-initializes all registers after
2772	 * pm_runtime_get_sync() anyway so there is no need
2773	 * to save and restore registers here.
2774	 */
2775	return 0;
2776}
2777
2778static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2779	.runtime_suspend = sh_eth_runtime_nop,
2780	.runtime_resume = sh_eth_runtime_nop,
2781};
2782#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2783#else
2784#define SH_ETH_PM_OPS NULL
2785#endif
2786
2787static struct platform_device_id sh_eth_id_table[] = {
2788	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2789	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2790	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2791	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2792	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2793	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2794	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2795	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2796	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2797	{ "r8a7790-ether", (kernel_ulong_t)&r8a7790_data },
2798	{ }
2799};
2800MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2801
2802static struct platform_driver sh_eth_driver = {
2803	.probe = sh_eth_drv_probe,
2804	.remove = sh_eth_drv_remove,
2805	.id_table = sh_eth_id_table,
2806	.driver = {
2807		   .name = CARDNAME,
2808		   .pm = SH_ETH_PM_OPS,
2809	},
2810};
2811
2812module_platform_driver(sh_eth_driver);
2813
2814MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2815MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2816MODULE_LICENSE("GPL v2");
2817