sh_eth.c revision 86b5d251d5ac4dda51a022b34cb29b4ce65a8cd5
1/*  SuperH Ethernet device driver
2 *
3 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
5 *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
6 *  Copyright (C) 2014 Codethink Limited
7 *
8 *  This program is free software; you can redistribute it and/or modify it
9 *  under the terms and conditions of the GNU General Public License,
10 *  version 2, as published by the Free Software Foundation.
11 *
12 *  This program is distributed in the hope it will be useful, but WITHOUT
13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 *  more details.
16 *
17 *  The full GNU General Public License is included in this distribution in
18 *  the file called "COPYING".
19 */
20
21#include <linux/module.h>
22#include <linux/kernel.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
25#include <linux/dma-mapping.h>
26#include <linux/etherdevice.h>
27#include <linux/delay.h>
28#include <linux/platform_device.h>
29#include <linux/mdio-bitbang.h>
30#include <linux/netdevice.h>
31#include <linux/of.h>
32#include <linux/of_device.h>
33#include <linux/of_irq.h>
34#include <linux/of_net.h>
35#include <linux/phy.h>
36#include <linux/cache.h>
37#include <linux/io.h>
38#include <linux/pm_runtime.h>
39#include <linux/slab.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/clk.h>
43#include <linux/sh_eth.h>
44#include <linux/of_mdio.h>
45
46#include "sh_eth.h"
47
48#define SH_ETH_DEF_MSG_ENABLE \
49		(NETIF_MSG_LINK	| \
50		NETIF_MSG_TIMER	| \
51		NETIF_MSG_RX_ERR| \
52		NETIF_MSG_TX_ERR)
53
54static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
55	[EDSR]		= 0x0000,
56	[EDMR]		= 0x0400,
57	[EDTRR]		= 0x0408,
58	[EDRRR]		= 0x0410,
59	[EESR]		= 0x0428,
60	[EESIPR]	= 0x0430,
61	[TDLAR]		= 0x0010,
62	[TDFAR]		= 0x0014,
63	[TDFXR]		= 0x0018,
64	[TDFFR]		= 0x001c,
65	[RDLAR]		= 0x0030,
66	[RDFAR]		= 0x0034,
67	[RDFXR]		= 0x0038,
68	[RDFFR]		= 0x003c,
69	[TRSCER]	= 0x0438,
70	[RMFCR]		= 0x0440,
71	[TFTR]		= 0x0448,
72	[FDR]		= 0x0450,
73	[RMCR]		= 0x0458,
74	[RPADIR]	= 0x0460,
75	[FCFTR]		= 0x0468,
76	[CSMR]		= 0x04E4,
77
78	[ECMR]		= 0x0500,
79	[ECSR]		= 0x0510,
80	[ECSIPR]	= 0x0518,
81	[PIR]		= 0x0520,
82	[PSR]		= 0x0528,
83	[PIPR]		= 0x052c,
84	[RFLR]		= 0x0508,
85	[APR]		= 0x0554,
86	[MPR]		= 0x0558,
87	[PFTCR]		= 0x055c,
88	[PFRCR]		= 0x0560,
89	[TPAUSER]	= 0x0564,
90	[GECMR]		= 0x05b0,
91	[BCULR]		= 0x05b4,
92	[MAHR]		= 0x05c0,
93	[MALR]		= 0x05c8,
94	[TROCR]		= 0x0700,
95	[CDCR]		= 0x0708,
96	[LCCR]		= 0x0710,
97	[CEFCR]		= 0x0740,
98	[FRECR]		= 0x0748,
99	[TSFRCR]	= 0x0750,
100	[TLFRCR]	= 0x0758,
101	[RFCR]		= 0x0760,
102	[CERCR]		= 0x0768,
103	[CEECR]		= 0x0770,
104	[MAFCR]		= 0x0778,
105	[RMII_MII]	= 0x0790,
106
107	[ARSTR]		= 0x0000,
108	[TSU_CTRST]	= 0x0004,
109	[TSU_FWEN0]	= 0x0010,
110	[TSU_FWEN1]	= 0x0014,
111	[TSU_FCM]	= 0x0018,
112	[TSU_BSYSL0]	= 0x0020,
113	[TSU_BSYSL1]	= 0x0024,
114	[TSU_PRISL0]	= 0x0028,
115	[TSU_PRISL1]	= 0x002c,
116	[TSU_FWSL0]	= 0x0030,
117	[TSU_FWSL1]	= 0x0034,
118	[TSU_FWSLC]	= 0x0038,
119	[TSU_QTAG0]	= 0x0040,
120	[TSU_QTAG1]	= 0x0044,
121	[TSU_FWSR]	= 0x0050,
122	[TSU_FWINMK]	= 0x0054,
123	[TSU_ADQT0]	= 0x0048,
124	[TSU_ADQT1]	= 0x004c,
125	[TSU_VTAG0]	= 0x0058,
126	[TSU_VTAG1]	= 0x005c,
127	[TSU_ADSBSY]	= 0x0060,
128	[TSU_TEN]	= 0x0064,
129	[TSU_POST1]	= 0x0070,
130	[TSU_POST2]	= 0x0074,
131	[TSU_POST3]	= 0x0078,
132	[TSU_POST4]	= 0x007c,
133	[TSU_ADRH0]	= 0x0100,
134	[TSU_ADRL0]	= 0x0104,
135	[TSU_ADRH31]	= 0x01f8,
136	[TSU_ADRL31]	= 0x01fc,
137
138	[TXNLCR0]	= 0x0080,
139	[TXALCR0]	= 0x0084,
140	[RXNLCR0]	= 0x0088,
141	[RXALCR0]	= 0x008c,
142	[FWNLCR0]	= 0x0090,
143	[FWALCR0]	= 0x0094,
144	[TXNLCR1]	= 0x00a0,
145	[TXALCR1]	= 0x00a0,
146	[RXNLCR1]	= 0x00a8,
147	[RXALCR1]	= 0x00ac,
148	[FWNLCR1]	= 0x00b0,
149	[FWALCR1]	= 0x00b4,
150};
151
152static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
153	[EDSR]		= 0x0000,
154	[EDMR]		= 0x0400,
155	[EDTRR]		= 0x0408,
156	[EDRRR]		= 0x0410,
157	[EESR]		= 0x0428,
158	[EESIPR]	= 0x0430,
159	[TDLAR]		= 0x0010,
160	[TDFAR]		= 0x0014,
161	[TDFXR]		= 0x0018,
162	[TDFFR]		= 0x001c,
163	[RDLAR]		= 0x0030,
164	[RDFAR]		= 0x0034,
165	[RDFXR]		= 0x0038,
166	[RDFFR]		= 0x003c,
167	[TRSCER]	= 0x0438,
168	[RMFCR]		= 0x0440,
169	[TFTR]		= 0x0448,
170	[FDR]		= 0x0450,
171	[RMCR]		= 0x0458,
172	[RPADIR]	= 0x0460,
173	[FCFTR]		= 0x0468,
174	[CSMR]		= 0x04E4,
175
176	[ECMR]		= 0x0500,
177	[RFLR]		= 0x0508,
178	[ECSR]		= 0x0510,
179	[ECSIPR]	= 0x0518,
180	[PIR]		= 0x0520,
181	[APR]		= 0x0554,
182	[MPR]		= 0x0558,
183	[PFTCR]		= 0x055c,
184	[PFRCR]		= 0x0560,
185	[TPAUSER]	= 0x0564,
186	[MAHR]		= 0x05c0,
187	[MALR]		= 0x05c8,
188	[CEFCR]		= 0x0740,
189	[FRECR]		= 0x0748,
190	[TSFRCR]	= 0x0750,
191	[TLFRCR]	= 0x0758,
192	[RFCR]		= 0x0760,
193	[MAFCR]		= 0x0778,
194
195	[ARSTR]		= 0x0000,
196	[TSU_CTRST]	= 0x0004,
197	[TSU_VTAG0]	= 0x0058,
198	[TSU_ADSBSY]	= 0x0060,
199	[TSU_TEN]	= 0x0064,
200	[TSU_ADRH0]	= 0x0100,
201	[TSU_ADRL0]	= 0x0104,
202	[TSU_ADRH31]	= 0x01f8,
203	[TSU_ADRL31]	= 0x01fc,
204
205	[TXNLCR0]	= 0x0080,
206	[TXALCR0]	= 0x0084,
207	[RXNLCR0]	= 0x0088,
208	[RXALCR0]	= 0x008C,
209};
210
211static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
212	[ECMR]		= 0x0300,
213	[RFLR]		= 0x0308,
214	[ECSR]		= 0x0310,
215	[ECSIPR]	= 0x0318,
216	[PIR]		= 0x0320,
217	[PSR]		= 0x0328,
218	[RDMLR]		= 0x0340,
219	[IPGR]		= 0x0350,
220	[APR]		= 0x0354,
221	[MPR]		= 0x0358,
222	[RFCF]		= 0x0360,
223	[TPAUSER]	= 0x0364,
224	[TPAUSECR]	= 0x0368,
225	[MAHR]		= 0x03c0,
226	[MALR]		= 0x03c8,
227	[TROCR]		= 0x03d0,
228	[CDCR]		= 0x03d4,
229	[LCCR]		= 0x03d8,
230	[CNDCR]		= 0x03dc,
231	[CEFCR]		= 0x03e4,
232	[FRECR]		= 0x03e8,
233	[TSFRCR]	= 0x03ec,
234	[TLFRCR]	= 0x03f0,
235	[RFCR]		= 0x03f4,
236	[MAFCR]		= 0x03f8,
237
238	[EDMR]		= 0x0200,
239	[EDTRR]		= 0x0208,
240	[EDRRR]		= 0x0210,
241	[TDLAR]		= 0x0218,
242	[RDLAR]		= 0x0220,
243	[EESR]		= 0x0228,
244	[EESIPR]	= 0x0230,
245	[TRSCER]	= 0x0238,
246	[RMFCR]		= 0x0240,
247	[TFTR]		= 0x0248,
248	[FDR]		= 0x0250,
249	[RMCR]		= 0x0258,
250	[TFUCR]		= 0x0264,
251	[RFOCR]		= 0x0268,
252	[RMIIMODE]      = 0x026c,
253	[FCFTR]		= 0x0270,
254	[TRIMD]		= 0x027c,
255};
256
257static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
258	[ECMR]		= 0x0100,
259	[RFLR]		= 0x0108,
260	[ECSR]		= 0x0110,
261	[ECSIPR]	= 0x0118,
262	[PIR]		= 0x0120,
263	[PSR]		= 0x0128,
264	[RDMLR]		= 0x0140,
265	[IPGR]		= 0x0150,
266	[APR]		= 0x0154,
267	[MPR]		= 0x0158,
268	[TPAUSER]	= 0x0164,
269	[RFCF]		= 0x0160,
270	[TPAUSECR]	= 0x0168,
271	[BCFRR]		= 0x016c,
272	[MAHR]		= 0x01c0,
273	[MALR]		= 0x01c8,
274	[TROCR]		= 0x01d0,
275	[CDCR]		= 0x01d4,
276	[LCCR]		= 0x01d8,
277	[CNDCR]		= 0x01dc,
278	[CEFCR]		= 0x01e4,
279	[FRECR]		= 0x01e8,
280	[TSFRCR]	= 0x01ec,
281	[TLFRCR]	= 0x01f0,
282	[RFCR]		= 0x01f4,
283	[MAFCR]		= 0x01f8,
284	[RTRATE]	= 0x01fc,
285
286	[EDMR]		= 0x0000,
287	[EDTRR]		= 0x0008,
288	[EDRRR]		= 0x0010,
289	[TDLAR]		= 0x0018,
290	[RDLAR]		= 0x0020,
291	[EESR]		= 0x0028,
292	[EESIPR]	= 0x0030,
293	[TRSCER]	= 0x0038,
294	[RMFCR]		= 0x0040,
295	[TFTR]		= 0x0048,
296	[FDR]		= 0x0050,
297	[RMCR]		= 0x0058,
298	[TFUCR]		= 0x0064,
299	[RFOCR]		= 0x0068,
300	[FCFTR]		= 0x0070,
301	[RPADIR]	= 0x0078,
302	[TRIMD]		= 0x007c,
303	[RBWAR]		= 0x00c8,
304	[RDFAR]		= 0x00cc,
305	[TBRAR]		= 0x00d4,
306	[TDFAR]		= 0x00d8,
307};
308
309static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
310	[ECMR]		= 0x0160,
311	[ECSR]		= 0x0164,
312	[ECSIPR]	= 0x0168,
313	[PIR]		= 0x016c,
314	[MAHR]		= 0x0170,
315	[MALR]		= 0x0174,
316	[RFLR]		= 0x0178,
317	[PSR]		= 0x017c,
318	[TROCR]		= 0x0180,
319	[CDCR]		= 0x0184,
320	[LCCR]		= 0x0188,
321	[CNDCR]		= 0x018c,
322	[CEFCR]		= 0x0194,
323	[FRECR]		= 0x0198,
324	[TSFRCR]	= 0x019c,
325	[TLFRCR]	= 0x01a0,
326	[RFCR]		= 0x01a4,
327	[MAFCR]		= 0x01a8,
328	[IPGR]		= 0x01b4,
329	[APR]		= 0x01b8,
330	[MPR]		= 0x01bc,
331	[TPAUSER]	= 0x01c4,
332	[BCFR]		= 0x01cc,
333
334	[ARSTR]		= 0x0000,
335	[TSU_CTRST]	= 0x0004,
336	[TSU_FWEN0]	= 0x0010,
337	[TSU_FWEN1]	= 0x0014,
338	[TSU_FCM]	= 0x0018,
339	[TSU_BSYSL0]	= 0x0020,
340	[TSU_BSYSL1]	= 0x0024,
341	[TSU_PRISL0]	= 0x0028,
342	[TSU_PRISL1]	= 0x002c,
343	[TSU_FWSL0]	= 0x0030,
344	[TSU_FWSL1]	= 0x0034,
345	[TSU_FWSLC]	= 0x0038,
346	[TSU_QTAGM0]	= 0x0040,
347	[TSU_QTAGM1]	= 0x0044,
348	[TSU_ADQT0]	= 0x0048,
349	[TSU_ADQT1]	= 0x004c,
350	[TSU_FWSR]	= 0x0050,
351	[TSU_FWINMK]	= 0x0054,
352	[TSU_ADSBSY]	= 0x0060,
353	[TSU_TEN]	= 0x0064,
354	[TSU_POST1]	= 0x0070,
355	[TSU_POST2]	= 0x0074,
356	[TSU_POST3]	= 0x0078,
357	[TSU_POST4]	= 0x007c,
358
359	[TXNLCR0]	= 0x0080,
360	[TXALCR0]	= 0x0084,
361	[RXNLCR0]	= 0x0088,
362	[RXALCR0]	= 0x008c,
363	[FWNLCR0]	= 0x0090,
364	[FWALCR0]	= 0x0094,
365	[TXNLCR1]	= 0x00a0,
366	[TXALCR1]	= 0x00a0,
367	[RXNLCR1]	= 0x00a8,
368	[RXALCR1]	= 0x00ac,
369	[FWNLCR1]	= 0x00b0,
370	[FWALCR1]	= 0x00b4,
371
372	[TSU_ADRH0]	= 0x0100,
373	[TSU_ADRL0]	= 0x0104,
374	[TSU_ADRL31]	= 0x01fc,
375};
376
377static bool sh_eth_is_gether(struct sh_eth_private *mdp)
378{
379	return mdp->reg_offset == sh_eth_offset_gigabit;
380}
381
382static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
383{
384	return mdp->reg_offset == sh_eth_offset_fast_rz;
385}
386
387static void sh_eth_select_mii(struct net_device *ndev)
388{
389	u32 value = 0x0;
390	struct sh_eth_private *mdp = netdev_priv(ndev);
391
392	switch (mdp->phy_interface) {
393	case PHY_INTERFACE_MODE_GMII:
394		value = 0x2;
395		break;
396	case PHY_INTERFACE_MODE_MII:
397		value = 0x1;
398		break;
399	case PHY_INTERFACE_MODE_RMII:
400		value = 0x0;
401		break;
402	default:
403		netdev_warn(ndev,
404			    "PHY interface mode was not setup. Set to MII.\n");
405		value = 0x1;
406		break;
407	}
408
409	sh_eth_write(ndev, value, RMII_MII);
410}
411
412static void sh_eth_set_duplex(struct net_device *ndev)
413{
414	struct sh_eth_private *mdp = netdev_priv(ndev);
415
416	if (mdp->duplex) /* Full */
417		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
418	else		/* Half */
419		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
420}
421
422/* There is CPU dependent code */
423static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
424{
425	struct sh_eth_private *mdp = netdev_priv(ndev);
426
427	switch (mdp->speed) {
428	case 10: /* 10BASE */
429		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
430		break;
431	case 100:/* 100BASE */
432		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
433		break;
434	default:
435		break;
436	}
437}
438
439/* R8A7778/9 */
440static struct sh_eth_cpu_data r8a777x_data = {
441	.set_duplex	= sh_eth_set_duplex,
442	.set_rate	= sh_eth_set_rate_r8a777x,
443
444	.register_type	= SH_ETH_REG_FAST_RCAR,
445
446	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
447	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
448	.eesipr_value	= 0x01ff009f,
449
450	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
451	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
452			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
453			  EESR_ECI,
454
455	.apr		= 1,
456	.mpr		= 1,
457	.tpauser	= 1,
458	.hw_swap	= 1,
459};
460
461/* R8A7790/1 */
462static struct sh_eth_cpu_data r8a779x_data = {
463	.set_duplex	= sh_eth_set_duplex,
464	.set_rate	= sh_eth_set_rate_r8a777x,
465
466	.register_type	= SH_ETH_REG_FAST_RCAR,
467
468	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
469	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
470	.eesipr_value	= 0x01ff009f,
471
472	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
473	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
474			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
475			  EESR_ECI,
476
477	.apr		= 1,
478	.mpr		= 1,
479	.tpauser	= 1,
480	.hw_swap	= 1,
481	.rmiimode	= 1,
482	.shift_rd0	= 1,
483};
484
485static void sh_eth_set_rate_sh7724(struct net_device *ndev)
486{
487	struct sh_eth_private *mdp = netdev_priv(ndev);
488
489	switch (mdp->speed) {
490	case 10: /* 10BASE */
491		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
492		break;
493	case 100:/* 100BASE */
494		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
495		break;
496	default:
497		break;
498	}
499}
500
501/* SH7724 */
502static struct sh_eth_cpu_data sh7724_data = {
503	.set_duplex	= sh_eth_set_duplex,
504	.set_rate	= sh_eth_set_rate_sh7724,
505
506	.register_type	= SH_ETH_REG_FAST_SH4,
507
508	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
509	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
510	.eesipr_value	= 0x01ff009f,
511
512	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
513	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
514			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
515			  EESR_ECI,
516
517	.apr		= 1,
518	.mpr		= 1,
519	.tpauser	= 1,
520	.hw_swap	= 1,
521	.rpadir		= 1,
522	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
523};
524
525static void sh_eth_set_rate_sh7757(struct net_device *ndev)
526{
527	struct sh_eth_private *mdp = netdev_priv(ndev);
528
529	switch (mdp->speed) {
530	case 10: /* 10BASE */
531		sh_eth_write(ndev, 0, RTRATE);
532		break;
533	case 100:/* 100BASE */
534		sh_eth_write(ndev, 1, RTRATE);
535		break;
536	default:
537		break;
538	}
539}
540
541/* SH7757 */
542static struct sh_eth_cpu_data sh7757_data = {
543	.set_duplex	= sh_eth_set_duplex,
544	.set_rate	= sh_eth_set_rate_sh7757,
545
546	.register_type	= SH_ETH_REG_FAST_SH4,
547
548	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
549	.rmcr_value	= RMCR_RNC,
550
551	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
552	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
553			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
554			  EESR_ECI,
555
556	.irq_flags	= IRQF_SHARED,
557	.apr		= 1,
558	.mpr		= 1,
559	.tpauser	= 1,
560	.hw_swap	= 1,
561	.no_ade		= 1,
562	.rpadir		= 1,
563	.rpadir_value   = 2 << 16,
564};
565
566#define SH_GIGA_ETH_BASE	0xfee00000UL
567#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
568#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
569static void sh_eth_chip_reset_giga(struct net_device *ndev)
570{
571	int i;
572	unsigned long mahr[2], malr[2];
573
574	/* save MAHR and MALR */
575	for (i = 0; i < 2; i++) {
576		malr[i] = ioread32((void *)GIGA_MALR(i));
577		mahr[i] = ioread32((void *)GIGA_MAHR(i));
578	}
579
580	/* reset device */
581	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
582	mdelay(1);
583
584	/* restore MAHR and MALR */
585	for (i = 0; i < 2; i++) {
586		iowrite32(malr[i], (void *)GIGA_MALR(i));
587		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
588	}
589}
590
591static void sh_eth_set_rate_giga(struct net_device *ndev)
592{
593	struct sh_eth_private *mdp = netdev_priv(ndev);
594
595	switch (mdp->speed) {
596	case 10: /* 10BASE */
597		sh_eth_write(ndev, 0x00000000, GECMR);
598		break;
599	case 100:/* 100BASE */
600		sh_eth_write(ndev, 0x00000010, GECMR);
601		break;
602	case 1000: /* 1000BASE */
603		sh_eth_write(ndev, 0x00000020, GECMR);
604		break;
605	default:
606		break;
607	}
608}
609
610/* SH7757(GETHERC) */
611static struct sh_eth_cpu_data sh7757_data_giga = {
612	.chip_reset	= sh_eth_chip_reset_giga,
613	.set_duplex	= sh_eth_set_duplex,
614	.set_rate	= sh_eth_set_rate_giga,
615
616	.register_type	= SH_ETH_REG_GIGABIT,
617
618	.ecsr_value	= ECSR_ICD | ECSR_MPD,
619	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
620	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
621
622	.tx_check	= EESR_TC1 | EESR_FTC,
623	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
624			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
625			  EESR_TDE | EESR_ECI,
626	.fdr_value	= 0x0000072f,
627	.rmcr_value	= RMCR_RNC,
628
629	.irq_flags	= IRQF_SHARED,
630	.apr		= 1,
631	.mpr		= 1,
632	.tpauser	= 1,
633	.bculr		= 1,
634	.hw_swap	= 1,
635	.rpadir		= 1,
636	.rpadir_value   = 2 << 16,
637	.no_trimd	= 1,
638	.no_ade		= 1,
639	.tsu		= 1,
640};
641
642static void sh_eth_chip_reset(struct net_device *ndev)
643{
644	struct sh_eth_private *mdp = netdev_priv(ndev);
645
646	/* reset device */
647	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
648	mdelay(1);
649}
650
651static void sh_eth_set_rate_gether(struct net_device *ndev)
652{
653	struct sh_eth_private *mdp = netdev_priv(ndev);
654
655	switch (mdp->speed) {
656	case 10: /* 10BASE */
657		sh_eth_write(ndev, GECMR_10, GECMR);
658		break;
659	case 100:/* 100BASE */
660		sh_eth_write(ndev, GECMR_100, GECMR);
661		break;
662	case 1000: /* 1000BASE */
663		sh_eth_write(ndev, GECMR_1000, GECMR);
664		break;
665	default:
666		break;
667	}
668}
669
670/* SH7734 */
671static struct sh_eth_cpu_data sh7734_data = {
672	.chip_reset	= sh_eth_chip_reset,
673	.set_duplex	= sh_eth_set_duplex,
674	.set_rate	= sh_eth_set_rate_gether,
675
676	.register_type	= SH_ETH_REG_GIGABIT,
677
678	.ecsr_value	= ECSR_ICD | ECSR_MPD,
679	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
680	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
681
682	.tx_check	= EESR_TC1 | EESR_FTC,
683	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
684			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
685			  EESR_TDE | EESR_ECI,
686
687	.apr		= 1,
688	.mpr		= 1,
689	.tpauser	= 1,
690	.bculr		= 1,
691	.hw_swap	= 1,
692	.no_trimd	= 1,
693	.no_ade		= 1,
694	.tsu		= 1,
695	.hw_crc		= 1,
696	.select_mii	= 1,
697};
698
699/* SH7763 */
700static struct sh_eth_cpu_data sh7763_data = {
701	.chip_reset	= sh_eth_chip_reset,
702	.set_duplex	= sh_eth_set_duplex,
703	.set_rate	= sh_eth_set_rate_gether,
704
705	.register_type	= SH_ETH_REG_GIGABIT,
706
707	.ecsr_value	= ECSR_ICD | ECSR_MPD,
708	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
709	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
710
711	.tx_check	= EESR_TC1 | EESR_FTC,
712	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
713			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
714			  EESR_ECI,
715
716	.apr		= 1,
717	.mpr		= 1,
718	.tpauser	= 1,
719	.bculr		= 1,
720	.hw_swap	= 1,
721	.no_trimd	= 1,
722	.no_ade		= 1,
723	.tsu		= 1,
724	.irq_flags	= IRQF_SHARED,
725};
726
727static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
728{
729	struct sh_eth_private *mdp = netdev_priv(ndev);
730
731	/* reset device */
732	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
733	mdelay(1);
734
735	sh_eth_select_mii(ndev);
736}
737
738/* R8A7740 */
739static struct sh_eth_cpu_data r8a7740_data = {
740	.chip_reset	= sh_eth_chip_reset_r8a7740,
741	.set_duplex	= sh_eth_set_duplex,
742	.set_rate	= sh_eth_set_rate_gether,
743
744	.register_type	= SH_ETH_REG_GIGABIT,
745
746	.ecsr_value	= ECSR_ICD | ECSR_MPD,
747	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
748	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
749
750	.tx_check	= EESR_TC1 | EESR_FTC,
751	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
752			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
753			  EESR_TDE | EESR_ECI,
754	.fdr_value	= 0x0000070f,
755	.rmcr_value	= RMCR_RNC,
756
757	.apr		= 1,
758	.mpr		= 1,
759	.tpauser	= 1,
760	.bculr		= 1,
761	.hw_swap	= 1,
762	.rpadir		= 1,
763	.rpadir_value   = 2 << 16,
764	.no_trimd	= 1,
765	.no_ade		= 1,
766	.tsu		= 1,
767	.select_mii	= 1,
768	.shift_rd0	= 1,
769};
770
771/* R7S72100 */
772static struct sh_eth_cpu_data r7s72100_data = {
773	.chip_reset	= sh_eth_chip_reset,
774	.set_duplex	= sh_eth_set_duplex,
775
776	.register_type	= SH_ETH_REG_FAST_RZ,
777
778	.ecsr_value	= ECSR_ICD,
779	.ecsipr_value	= ECSIPR_ICDIP,
780	.eesipr_value	= 0xff7f009f,
781
782	.tx_check	= EESR_TC1 | EESR_FTC,
783	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
785			  EESR_TDE | EESR_ECI,
786	.fdr_value	= 0x0000070f,
787	.rmcr_value	= RMCR_RNC,
788
789	.no_psr		= 1,
790	.apr		= 1,
791	.mpr		= 1,
792	.tpauser	= 1,
793	.hw_swap	= 1,
794	.rpadir		= 1,
795	.rpadir_value   = 2 << 16,
796	.no_trimd	= 1,
797	.no_ade		= 1,
798	.hw_crc		= 1,
799	.tsu		= 1,
800	.shift_rd0	= 1,
801};
802
803static struct sh_eth_cpu_data sh7619_data = {
804	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
805
806	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
807
808	.apr		= 1,
809	.mpr		= 1,
810	.tpauser	= 1,
811	.hw_swap	= 1,
812};
813
814static struct sh_eth_cpu_data sh771x_data = {
815	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
816
817	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
818	.tsu		= 1,
819};
820
821static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
822{
823	if (!cd->ecsr_value)
824		cd->ecsr_value = DEFAULT_ECSR_INIT;
825
826	if (!cd->ecsipr_value)
827		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
828
829	if (!cd->fcftr_value)
830		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
831				  DEFAULT_FIFO_F_D_RFD;
832
833	if (!cd->fdr_value)
834		cd->fdr_value = DEFAULT_FDR_INIT;
835
836	if (!cd->rmcr_value)
837		cd->rmcr_value = DEFAULT_RMCR_VALUE;
838
839	if (!cd->tx_check)
840		cd->tx_check = DEFAULT_TX_CHECK;
841
842	if (!cd->eesr_err_check)
843		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
844}
845
846static int sh_eth_check_reset(struct net_device *ndev)
847{
848	int ret = 0;
849	int cnt = 100;
850
851	while (cnt > 0) {
852		if (!(sh_eth_read(ndev, EDMR) & 0x3))
853			break;
854		mdelay(1);
855		cnt--;
856	}
857	if (cnt <= 0) {
858		netdev_err(ndev, "Device reset failed\n");
859		ret = -ETIMEDOUT;
860	}
861	return ret;
862}
863
864static int sh_eth_reset(struct net_device *ndev)
865{
866	struct sh_eth_private *mdp = netdev_priv(ndev);
867	int ret = 0;
868
869	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
870		sh_eth_write(ndev, EDSR_ENALL, EDSR);
871		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
872			     EDMR);
873
874		ret = sh_eth_check_reset(ndev);
875		if (ret)
876			return ret;
877
878		/* Table Init */
879		sh_eth_write(ndev, 0x0, TDLAR);
880		sh_eth_write(ndev, 0x0, TDFAR);
881		sh_eth_write(ndev, 0x0, TDFXR);
882		sh_eth_write(ndev, 0x0, TDFFR);
883		sh_eth_write(ndev, 0x0, RDLAR);
884		sh_eth_write(ndev, 0x0, RDFAR);
885		sh_eth_write(ndev, 0x0, RDFXR);
886		sh_eth_write(ndev, 0x0, RDFFR);
887
888		/* Reset HW CRC register */
889		if (mdp->cd->hw_crc)
890			sh_eth_write(ndev, 0x0, CSMR);
891
892		/* Select MII mode */
893		if (mdp->cd->select_mii)
894			sh_eth_select_mii(ndev);
895	} else {
896		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
897			     EDMR);
898		mdelay(3);
899		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
900			     EDMR);
901	}
902
903	return ret;
904}
905
906#if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
907static void sh_eth_set_receive_align(struct sk_buff *skb)
908{
909	int reserve;
910
911	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
912	if (reserve)
913		skb_reserve(skb, reserve);
914}
915#else
916static void sh_eth_set_receive_align(struct sk_buff *skb)
917{
918	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
919}
920#endif
921
922
923/* CPU <-> EDMAC endian convert */
924static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
925{
926	switch (mdp->edmac_endian) {
927	case EDMAC_LITTLE_ENDIAN:
928		return cpu_to_le32(x);
929	case EDMAC_BIG_ENDIAN:
930		return cpu_to_be32(x);
931	}
932	return x;
933}
934
935static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
936{
937	switch (mdp->edmac_endian) {
938	case EDMAC_LITTLE_ENDIAN:
939		return le32_to_cpu(x);
940	case EDMAC_BIG_ENDIAN:
941		return be32_to_cpu(x);
942	}
943	return x;
944}
945
946/* Program the hardware MAC address from dev->dev_addr. */
947static void update_mac_address(struct net_device *ndev)
948{
949	sh_eth_write(ndev,
950		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
951		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
952	sh_eth_write(ndev,
953		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
954}
955
956/* Get MAC address from SuperH MAC address register
957 *
958 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
959 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
960 * When you want use this device, you must set MAC address in bootloader.
961 *
962 */
963static void read_mac_address(struct net_device *ndev, unsigned char *mac)
964{
965	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
966		memcpy(ndev->dev_addr, mac, ETH_ALEN);
967	} else {
968		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
969		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
970		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
971		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
972		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
973		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
974	}
975}
976
977static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
978{
979	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
980		return EDTRR_TRNS_GETHER;
981	else
982		return EDTRR_TRNS_ETHER;
983}
984
985struct bb_info {
986	void (*set_gate)(void *addr);
987	struct mdiobb_ctrl ctrl;
988	void *addr;
989	u32 mmd_msk;/* MMD */
990	u32 mdo_msk;
991	u32 mdi_msk;
992	u32 mdc_msk;
993};
994
995/* PHY bit set */
996static void bb_set(void *addr, u32 msk)
997{
998	iowrite32(ioread32(addr) | msk, addr);
999}
1000
1001/* PHY bit clear */
1002static void bb_clr(void *addr, u32 msk)
1003{
1004	iowrite32((ioread32(addr) & ~msk), addr);
1005}
1006
1007/* PHY bit read */
1008static int bb_read(void *addr, u32 msk)
1009{
1010	return (ioread32(addr) & msk) != 0;
1011}
1012
1013/* Data I/O pin control */
1014static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1015{
1016	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1017
1018	if (bitbang->set_gate)
1019		bitbang->set_gate(bitbang->addr);
1020
1021	if (bit)
1022		bb_set(bitbang->addr, bitbang->mmd_msk);
1023	else
1024		bb_clr(bitbang->addr, bitbang->mmd_msk);
1025}
1026
1027/* Set bit data*/
1028static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1029{
1030	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1031
1032	if (bitbang->set_gate)
1033		bitbang->set_gate(bitbang->addr);
1034
1035	if (bit)
1036		bb_set(bitbang->addr, bitbang->mdo_msk);
1037	else
1038		bb_clr(bitbang->addr, bitbang->mdo_msk);
1039}
1040
1041/* Get bit data*/
1042static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1043{
1044	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1045
1046	if (bitbang->set_gate)
1047		bitbang->set_gate(bitbang->addr);
1048
1049	return bb_read(bitbang->addr, bitbang->mdi_msk);
1050}
1051
1052/* MDC pin control */
1053static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1054{
1055	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1056
1057	if (bitbang->set_gate)
1058		bitbang->set_gate(bitbang->addr);
1059
1060	if (bit)
1061		bb_set(bitbang->addr, bitbang->mdc_msk);
1062	else
1063		bb_clr(bitbang->addr, bitbang->mdc_msk);
1064}
1065
1066/* mdio bus control struct */
1067static struct mdiobb_ops bb_ops = {
1068	.owner = THIS_MODULE,
1069	.set_mdc = sh_mdc_ctrl,
1070	.set_mdio_dir = sh_mmd_ctrl,
1071	.set_mdio_data = sh_set_mdio,
1072	.get_mdio_data = sh_get_mdio,
1073};
1074
1075/* free skb and descriptor buffer */
1076static void sh_eth_ring_free(struct net_device *ndev)
1077{
1078	struct sh_eth_private *mdp = netdev_priv(ndev);
1079	int i;
1080
1081	/* Free Rx skb ringbuffer */
1082	if (mdp->rx_skbuff) {
1083		for (i = 0; i < mdp->num_rx_ring; i++) {
1084			if (mdp->rx_skbuff[i])
1085				dev_kfree_skb(mdp->rx_skbuff[i]);
1086		}
1087	}
1088	kfree(mdp->rx_skbuff);
1089	mdp->rx_skbuff = NULL;
1090
1091	/* Free Tx skb ringbuffer */
1092	if (mdp->tx_skbuff) {
1093		for (i = 0; i < mdp->num_tx_ring; i++) {
1094			if (mdp->tx_skbuff[i])
1095				dev_kfree_skb(mdp->tx_skbuff[i]);
1096		}
1097	}
1098	kfree(mdp->tx_skbuff);
1099	mdp->tx_skbuff = NULL;
1100}
1101
1102/* format skb and descriptor buffer */
1103static void sh_eth_ring_format(struct net_device *ndev)
1104{
1105	struct sh_eth_private *mdp = netdev_priv(ndev);
1106	int i;
1107	struct sk_buff *skb;
1108	struct sh_eth_rxdesc *rxdesc = NULL;
1109	struct sh_eth_txdesc *txdesc = NULL;
1110	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1111	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1112
1113	mdp->cur_rx = 0;
1114	mdp->cur_tx = 0;
1115	mdp->dirty_rx = 0;
1116	mdp->dirty_tx = 0;
1117
1118	memset(mdp->rx_ring, 0, rx_ringsize);
1119
1120	/* build Rx ring buffer */
1121	for (i = 0; i < mdp->num_rx_ring; i++) {
1122		/* skb */
1123		mdp->rx_skbuff[i] = NULL;
1124		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1125		mdp->rx_skbuff[i] = skb;
1126		if (skb == NULL)
1127			break;
1128		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1129			       DMA_FROM_DEVICE);
1130		sh_eth_set_receive_align(skb);
1131
1132		/* RX descriptor */
1133		rxdesc = &mdp->rx_ring[i];
1134		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1135		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1136
1137		/* The size of the buffer is 16 byte boundary. */
1138		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1139		/* Rx descriptor address set */
1140		if (i == 0) {
1141			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1142			if (sh_eth_is_gether(mdp) ||
1143			    sh_eth_is_rz_fast_ether(mdp))
1144				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1145		}
1146	}
1147
1148	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1149
1150	/* Mark the last entry as wrapping the ring. */
1151	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1152
1153	memset(mdp->tx_ring, 0, tx_ringsize);
1154
1155	/* build Tx ring buffer */
1156	for (i = 0; i < mdp->num_tx_ring; i++) {
1157		mdp->tx_skbuff[i] = NULL;
1158		txdesc = &mdp->tx_ring[i];
1159		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1160		txdesc->buffer_length = 0;
1161		if (i == 0) {
1162			/* Tx descriptor address set */
1163			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1164			if (sh_eth_is_gether(mdp) ||
1165			    sh_eth_is_rz_fast_ether(mdp))
1166				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1167		}
1168	}
1169
1170	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1171}
1172
1173/* Get skb and descriptor buffer */
1174static int sh_eth_ring_init(struct net_device *ndev)
1175{
1176	struct sh_eth_private *mdp = netdev_priv(ndev);
1177	int rx_ringsize, tx_ringsize, ret = 0;
1178
1179	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1180	 * card needs room to do 8 byte alignment, +2 so we can reserve
1181	 * the first 2 bytes, and +16 gets room for the status word from the
1182	 * card.
1183	 */
1184	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1185			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1186	if (mdp->cd->rpadir)
1187		mdp->rx_buf_sz += NET_IP_ALIGN;
1188
1189	/* Allocate RX and TX skb rings */
1190	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1191				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1192	if (!mdp->rx_skbuff) {
1193		ret = -ENOMEM;
1194		return ret;
1195	}
1196
1197	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1198				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1199	if (!mdp->tx_skbuff) {
1200		ret = -ENOMEM;
1201		goto skb_ring_free;
1202	}
1203
1204	/* Allocate all Rx descriptors. */
1205	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1206	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1207					  GFP_KERNEL);
1208	if (!mdp->rx_ring) {
1209		ret = -ENOMEM;
1210		goto desc_ring_free;
1211	}
1212
1213	mdp->dirty_rx = 0;
1214
1215	/* Allocate all Tx descriptors. */
1216	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1217	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1218					  GFP_KERNEL);
1219	if (!mdp->tx_ring) {
1220		ret = -ENOMEM;
1221		goto desc_ring_free;
1222	}
1223	return ret;
1224
1225desc_ring_free:
1226	/* free DMA buffer */
1227	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1228
1229skb_ring_free:
1230	/* Free Rx and Tx skb ring buffer */
1231	sh_eth_ring_free(ndev);
1232	mdp->tx_ring = NULL;
1233	mdp->rx_ring = NULL;
1234
1235	return ret;
1236}
1237
1238static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1239{
1240	int ringsize;
1241
1242	if (mdp->rx_ring) {
1243		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1244		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1245				  mdp->rx_desc_dma);
1246		mdp->rx_ring = NULL;
1247	}
1248
1249	if (mdp->tx_ring) {
1250		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1251		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1252				  mdp->tx_desc_dma);
1253		mdp->tx_ring = NULL;
1254	}
1255}
1256
1257static int sh_eth_dev_init(struct net_device *ndev, bool start)
1258{
1259	int ret = 0;
1260	struct sh_eth_private *mdp = netdev_priv(ndev);
1261	u32 val;
1262
1263	/* Soft Reset */
1264	ret = sh_eth_reset(ndev);
1265	if (ret)
1266		return ret;
1267
1268	if (mdp->cd->rmiimode)
1269		sh_eth_write(ndev, 0x1, RMIIMODE);
1270
1271	/* Descriptor format */
1272	sh_eth_ring_format(ndev);
1273	if (mdp->cd->rpadir)
1274		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1275
1276	/* all sh_eth int mask */
1277	sh_eth_write(ndev, 0, EESIPR);
1278
1279#if defined(__LITTLE_ENDIAN)
1280	if (mdp->cd->hw_swap)
1281		sh_eth_write(ndev, EDMR_EL, EDMR);
1282	else
1283#endif
1284		sh_eth_write(ndev, 0, EDMR);
1285
1286	/* FIFO size set */
1287	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1288	sh_eth_write(ndev, 0, TFTR);
1289
1290	/* Frame recv control */
1291	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1292
1293	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1294
1295	if (mdp->cd->bculr)
1296		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1297
1298	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1299
1300	if (!mdp->cd->no_trimd)
1301		sh_eth_write(ndev, 0, TRIMD);
1302
1303	/* Recv frame limit set register */
1304	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1305		     RFLR);
1306
1307	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1308	if (start)
1309		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1310
1311	/* PAUSE Prohibition */
1312	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1313		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1314
1315	sh_eth_write(ndev, val, ECMR);
1316
1317	if (mdp->cd->set_rate)
1318		mdp->cd->set_rate(ndev);
1319
1320	/* E-MAC Status Register clear */
1321	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1322
1323	/* E-MAC Interrupt Enable register */
1324	if (start)
1325		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1326
1327	/* Set MAC address */
1328	update_mac_address(ndev);
1329
1330	/* mask reset */
1331	if (mdp->cd->apr)
1332		sh_eth_write(ndev, APR_AP, APR);
1333	if (mdp->cd->mpr)
1334		sh_eth_write(ndev, MPR_MP, MPR);
1335	if (mdp->cd->tpauser)
1336		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1337
1338	if (start) {
1339		/* Setting the Rx mode will start the Rx process. */
1340		sh_eth_write(ndev, EDRRR_R, EDRRR);
1341
1342		netif_start_queue(ndev);
1343	}
1344
1345	return ret;
1346}
1347
1348/* free Tx skb function */
1349static int sh_eth_txfree(struct net_device *ndev)
1350{
1351	struct sh_eth_private *mdp = netdev_priv(ndev);
1352	struct sh_eth_txdesc *txdesc;
1353	int free_num = 0;
1354	int entry = 0;
1355
1356	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1357		entry = mdp->dirty_tx % mdp->num_tx_ring;
1358		txdesc = &mdp->tx_ring[entry];
1359		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1360			break;
1361		/* Free the original skb. */
1362		if (mdp->tx_skbuff[entry]) {
1363			dma_unmap_single(&ndev->dev, txdesc->addr,
1364					 txdesc->buffer_length, DMA_TO_DEVICE);
1365			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1366			mdp->tx_skbuff[entry] = NULL;
1367			free_num++;
1368		}
1369		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1370		if (entry >= mdp->num_tx_ring - 1)
1371			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1372
1373		ndev->stats.tx_packets++;
1374		ndev->stats.tx_bytes += txdesc->buffer_length;
1375	}
1376	return free_num;
1377}
1378
1379/* Packet receive function */
1380static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1381{
1382	struct sh_eth_private *mdp = netdev_priv(ndev);
1383	struct sh_eth_rxdesc *rxdesc;
1384
1385	int entry = mdp->cur_rx % mdp->num_rx_ring;
1386	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1387	struct sk_buff *skb;
1388	int exceeded = 0;
1389	u16 pkt_len = 0;
1390	u32 desc_status;
1391
1392	rxdesc = &mdp->rx_ring[entry];
1393	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1394		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1395		pkt_len = rxdesc->frame_length;
1396
1397		if (--boguscnt < 0)
1398			break;
1399
1400		if (*quota <= 0) {
1401			exceeded = 1;
1402			break;
1403		}
1404		(*quota)--;
1405
1406		if (!(desc_status & RDFEND))
1407			ndev->stats.rx_length_errors++;
1408
1409		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1410		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1411		 * bit 0. However, in case of the R8A7740, R8A779x, and
1412		 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1413		 * driver needs right shifting by 16.
1414		 */
1415		if (mdp->cd->shift_rd0)
1416			desc_status >>= 16;
1417
1418		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1419				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1420			ndev->stats.rx_errors++;
1421			if (desc_status & RD_RFS1)
1422				ndev->stats.rx_crc_errors++;
1423			if (desc_status & RD_RFS2)
1424				ndev->stats.rx_frame_errors++;
1425			if (desc_status & RD_RFS3)
1426				ndev->stats.rx_length_errors++;
1427			if (desc_status & RD_RFS4)
1428				ndev->stats.rx_length_errors++;
1429			if (desc_status & RD_RFS6)
1430				ndev->stats.rx_missed_errors++;
1431			if (desc_status & RD_RFS10)
1432				ndev->stats.rx_over_errors++;
1433		} else {
1434			if (!mdp->cd->hw_swap)
1435				sh_eth_soft_swap(
1436					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1437					pkt_len + 2);
1438			skb = mdp->rx_skbuff[entry];
1439			mdp->rx_skbuff[entry] = NULL;
1440			if (mdp->cd->rpadir)
1441				skb_reserve(skb, NET_IP_ALIGN);
1442			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1443						mdp->rx_buf_sz,
1444						DMA_FROM_DEVICE);
1445			skb_put(skb, pkt_len);
1446			skb->protocol = eth_type_trans(skb, ndev);
1447			netif_receive_skb(skb);
1448			ndev->stats.rx_packets++;
1449			ndev->stats.rx_bytes += pkt_len;
1450		}
1451		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1452		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1453		rxdesc = &mdp->rx_ring[entry];
1454	}
1455
1456	/* Refill the Rx ring buffers. */
1457	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1458		entry = mdp->dirty_rx % mdp->num_rx_ring;
1459		rxdesc = &mdp->rx_ring[entry];
1460		/* The size of the buffer is 16 byte boundary. */
1461		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1462
1463		if (mdp->rx_skbuff[entry] == NULL) {
1464			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1465			mdp->rx_skbuff[entry] = skb;
1466			if (skb == NULL)
1467				break;	/* Better luck next round. */
1468			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1469				       DMA_FROM_DEVICE);
1470			sh_eth_set_receive_align(skb);
1471
1472			skb_checksum_none_assert(skb);
1473			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1474		}
1475		if (entry >= mdp->num_rx_ring - 1)
1476			rxdesc->status |=
1477				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1478		else
1479			rxdesc->status |=
1480				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1481	}
1482
1483	/* Restart Rx engine if stopped. */
1484	/* If we don't need to check status, don't. -KDU */
1485	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1486		/* fix the values for the next receiving if RDE is set */
1487		if (intr_status & EESR_RDE) {
1488			u32 count = (sh_eth_read(ndev, RDFAR) -
1489				     sh_eth_read(ndev, RDLAR)) >> 4;
1490
1491			mdp->cur_rx = count;
1492			mdp->dirty_rx = count;
1493		}
1494		sh_eth_write(ndev, EDRRR_R, EDRRR);
1495	}
1496
1497	return exceeded;
1498}
1499
1500static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1501{
1502	/* disable tx and rx */
1503	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1504		~(ECMR_RE | ECMR_TE), ECMR);
1505}
1506
1507static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1508{
1509	/* enable tx and rx */
1510	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1511		(ECMR_RE | ECMR_TE), ECMR);
1512}
1513
1514/* error control function */
1515static void sh_eth_error(struct net_device *ndev, int intr_status)
1516{
1517	struct sh_eth_private *mdp = netdev_priv(ndev);
1518	u32 felic_stat;
1519	u32 link_stat;
1520	u32 mask;
1521
1522	if (intr_status & EESR_ECI) {
1523		felic_stat = sh_eth_read(ndev, ECSR);
1524		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1525		if (felic_stat & ECSR_ICD)
1526			ndev->stats.tx_carrier_errors++;
1527		if (felic_stat & ECSR_LCHNG) {
1528			/* Link Changed */
1529			if (mdp->cd->no_psr || mdp->no_ether_link) {
1530				goto ignore_link;
1531			} else {
1532				link_stat = (sh_eth_read(ndev, PSR));
1533				if (mdp->ether_link_active_low)
1534					link_stat = ~link_stat;
1535			}
1536			if (!(link_stat & PHY_ST_LINK)) {
1537				sh_eth_rcv_snd_disable(ndev);
1538			} else {
1539				/* Link Up */
1540				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1541						   ~DMAC_M_ECI, EESIPR);
1542				/* clear int */
1543				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1544					     ECSR);
1545				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1546						   DMAC_M_ECI, EESIPR);
1547				/* enable tx and rx */
1548				sh_eth_rcv_snd_enable(ndev);
1549			}
1550		}
1551	}
1552
1553ignore_link:
1554	if (intr_status & EESR_TWB) {
1555		/* Unused write back interrupt */
1556		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1557			ndev->stats.tx_aborted_errors++;
1558			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1559		}
1560	}
1561
1562	if (intr_status & EESR_RABT) {
1563		/* Receive Abort int */
1564		if (intr_status & EESR_RFRMER) {
1565			/* Receive Frame Overflow int */
1566			ndev->stats.rx_frame_errors++;
1567			netif_err(mdp, rx_err, ndev, "Receive Abort\n");
1568		}
1569	}
1570
1571	if (intr_status & EESR_TDE) {
1572		/* Transmit Descriptor Empty int */
1573		ndev->stats.tx_fifo_errors++;
1574		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1575	}
1576
1577	if (intr_status & EESR_TFE) {
1578		/* FIFO under flow */
1579		ndev->stats.tx_fifo_errors++;
1580		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1581	}
1582
1583	if (intr_status & EESR_RDE) {
1584		/* Receive Descriptor Empty int */
1585		ndev->stats.rx_over_errors++;
1586		netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n");
1587	}
1588
1589	if (intr_status & EESR_RFE) {
1590		/* Receive FIFO Overflow int */
1591		ndev->stats.rx_fifo_errors++;
1592		netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n");
1593	}
1594
1595	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1596		/* Address Error */
1597		ndev->stats.tx_fifo_errors++;
1598		netif_err(mdp, tx_err, ndev, "Address Error\n");
1599	}
1600
1601	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1602	if (mdp->cd->no_ade)
1603		mask &= ~EESR_ADE;
1604	if (intr_status & mask) {
1605		/* Tx error */
1606		u32 edtrr = sh_eth_read(ndev, EDTRR);
1607
1608		/* dmesg */
1609		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1610			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1611			   (u32)ndev->state, edtrr);
1612		/* dirty buffer free */
1613		sh_eth_txfree(ndev);
1614
1615		/* SH7712 BUG */
1616		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1617			/* tx dma start */
1618			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1619		}
1620		/* wakeup */
1621		netif_wake_queue(ndev);
1622	}
1623}
1624
1625static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1626{
1627	struct net_device *ndev = netdev;
1628	struct sh_eth_private *mdp = netdev_priv(ndev);
1629	struct sh_eth_cpu_data *cd = mdp->cd;
1630	irqreturn_t ret = IRQ_NONE;
1631	unsigned long intr_status, intr_enable;
1632
1633	spin_lock(&mdp->lock);
1634
1635	/* Get interrupt status */
1636	intr_status = sh_eth_read(ndev, EESR);
1637	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1638	 * enabled since it's the one that  comes thru regardless of the mask,
1639	 * and we need to fully handle it in sh_eth_error() in order to quench
1640	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1641	 */
1642	intr_enable = sh_eth_read(ndev, EESIPR);
1643	intr_status &= intr_enable | DMAC_M_ECI;
1644	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1645		ret = IRQ_HANDLED;
1646	else
1647		goto other_irq;
1648
1649	if (intr_status & EESR_RX_CHECK) {
1650		if (napi_schedule_prep(&mdp->napi)) {
1651			/* Mask Rx interrupts */
1652			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1653				     EESIPR);
1654			__napi_schedule(&mdp->napi);
1655		} else {
1656			netdev_warn(ndev,
1657				    "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1658				    intr_status, intr_enable);
1659		}
1660	}
1661
1662	/* Tx Check */
1663	if (intr_status & cd->tx_check) {
1664		/* Clear Tx interrupts */
1665		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1666
1667		sh_eth_txfree(ndev);
1668		netif_wake_queue(ndev);
1669	}
1670
1671	if (intr_status & cd->eesr_err_check) {
1672		/* Clear error interrupts */
1673		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1674
1675		sh_eth_error(ndev, intr_status);
1676	}
1677
1678other_irq:
1679	spin_unlock(&mdp->lock);
1680
1681	return ret;
1682}
1683
1684static int sh_eth_poll(struct napi_struct *napi, int budget)
1685{
1686	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1687						  napi);
1688	struct net_device *ndev = napi->dev;
1689	int quota = budget;
1690	unsigned long intr_status;
1691
1692	for (;;) {
1693		intr_status = sh_eth_read(ndev, EESR);
1694		if (!(intr_status & EESR_RX_CHECK))
1695			break;
1696		/* Clear Rx interrupts */
1697		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1698
1699		if (sh_eth_rx(ndev, intr_status, &quota))
1700			goto out;
1701	}
1702
1703	napi_complete(napi);
1704
1705	/* Reenable Rx interrupts */
1706	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1707out:
1708	return budget - quota;
1709}
1710
1711/* PHY state control function */
1712static void sh_eth_adjust_link(struct net_device *ndev)
1713{
1714	struct sh_eth_private *mdp = netdev_priv(ndev);
1715	struct phy_device *phydev = mdp->phydev;
1716	int new_state = 0;
1717
1718	if (phydev->link) {
1719		if (phydev->duplex != mdp->duplex) {
1720			new_state = 1;
1721			mdp->duplex = phydev->duplex;
1722			if (mdp->cd->set_duplex)
1723				mdp->cd->set_duplex(ndev);
1724		}
1725
1726		if (phydev->speed != mdp->speed) {
1727			new_state = 1;
1728			mdp->speed = phydev->speed;
1729			if (mdp->cd->set_rate)
1730				mdp->cd->set_rate(ndev);
1731		}
1732		if (!mdp->link) {
1733			sh_eth_write(ndev,
1734				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1735				     ECMR);
1736			new_state = 1;
1737			mdp->link = phydev->link;
1738			if (mdp->cd->no_psr || mdp->no_ether_link)
1739				sh_eth_rcv_snd_enable(ndev);
1740		}
1741	} else if (mdp->link) {
1742		new_state = 1;
1743		mdp->link = 0;
1744		mdp->speed = 0;
1745		mdp->duplex = -1;
1746		if (mdp->cd->no_psr || mdp->no_ether_link)
1747			sh_eth_rcv_snd_disable(ndev);
1748	}
1749
1750	if (new_state && netif_msg_link(mdp))
1751		phy_print_status(phydev);
1752}
1753
1754/* PHY init function */
1755static int sh_eth_phy_init(struct net_device *ndev)
1756{
1757	struct device_node *np = ndev->dev.parent->of_node;
1758	struct sh_eth_private *mdp = netdev_priv(ndev);
1759	struct phy_device *phydev = NULL;
1760
1761	mdp->link = 0;
1762	mdp->speed = 0;
1763	mdp->duplex = -1;
1764
1765	/* Try connect to PHY */
1766	if (np) {
1767		struct device_node *pn;
1768
1769		pn = of_parse_phandle(np, "phy-handle", 0);
1770		phydev = of_phy_connect(ndev, pn,
1771					sh_eth_adjust_link, 0,
1772					mdp->phy_interface);
1773
1774		if (!phydev)
1775			phydev = ERR_PTR(-ENOENT);
1776	} else {
1777		char phy_id[MII_BUS_ID_SIZE + 3];
1778
1779		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1780			 mdp->mii_bus->id, mdp->phy_id);
1781
1782		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1783				     mdp->phy_interface);
1784	}
1785
1786	if (IS_ERR(phydev)) {
1787		netdev_err(ndev, "failed to connect PHY\n");
1788		return PTR_ERR(phydev);
1789	}
1790
1791	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1792		    phydev->addr, phydev->irq, phydev->drv->name);
1793
1794	mdp->phydev = phydev;
1795
1796	return 0;
1797}
1798
1799/* PHY control start function */
1800static int sh_eth_phy_start(struct net_device *ndev)
1801{
1802	struct sh_eth_private *mdp = netdev_priv(ndev);
1803	int ret;
1804
1805	ret = sh_eth_phy_init(ndev);
1806	if (ret)
1807		return ret;
1808
1809	phy_start(mdp->phydev);
1810
1811	return 0;
1812}
1813
1814static int sh_eth_get_settings(struct net_device *ndev,
1815			       struct ethtool_cmd *ecmd)
1816{
1817	struct sh_eth_private *mdp = netdev_priv(ndev);
1818	unsigned long flags;
1819	int ret;
1820
1821	spin_lock_irqsave(&mdp->lock, flags);
1822	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1823	spin_unlock_irqrestore(&mdp->lock, flags);
1824
1825	return ret;
1826}
1827
1828static int sh_eth_set_settings(struct net_device *ndev,
1829			       struct ethtool_cmd *ecmd)
1830{
1831	struct sh_eth_private *mdp = netdev_priv(ndev);
1832	unsigned long flags;
1833	int ret;
1834
1835	spin_lock_irqsave(&mdp->lock, flags);
1836
1837	/* disable tx and rx */
1838	sh_eth_rcv_snd_disable(ndev);
1839
1840	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1841	if (ret)
1842		goto error_exit;
1843
1844	if (ecmd->duplex == DUPLEX_FULL)
1845		mdp->duplex = 1;
1846	else
1847		mdp->duplex = 0;
1848
1849	if (mdp->cd->set_duplex)
1850		mdp->cd->set_duplex(ndev);
1851
1852error_exit:
1853	mdelay(1);
1854
1855	/* enable tx and rx */
1856	sh_eth_rcv_snd_enable(ndev);
1857
1858	spin_unlock_irqrestore(&mdp->lock, flags);
1859
1860	return ret;
1861}
1862
1863static int sh_eth_nway_reset(struct net_device *ndev)
1864{
1865	struct sh_eth_private *mdp = netdev_priv(ndev);
1866	unsigned long flags;
1867	int ret;
1868
1869	spin_lock_irqsave(&mdp->lock, flags);
1870	ret = phy_start_aneg(mdp->phydev);
1871	spin_unlock_irqrestore(&mdp->lock, flags);
1872
1873	return ret;
1874}
1875
1876static u32 sh_eth_get_msglevel(struct net_device *ndev)
1877{
1878	struct sh_eth_private *mdp = netdev_priv(ndev);
1879	return mdp->msg_enable;
1880}
1881
1882static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1883{
1884	struct sh_eth_private *mdp = netdev_priv(ndev);
1885	mdp->msg_enable = value;
1886}
1887
1888static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1889	"rx_current", "tx_current",
1890	"rx_dirty", "tx_dirty",
1891};
1892#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1893
1894static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1895{
1896	switch (sset) {
1897	case ETH_SS_STATS:
1898		return SH_ETH_STATS_LEN;
1899	default:
1900		return -EOPNOTSUPP;
1901	}
1902}
1903
1904static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1905				     struct ethtool_stats *stats, u64 *data)
1906{
1907	struct sh_eth_private *mdp = netdev_priv(ndev);
1908	int i = 0;
1909
1910	/* device-specific stats */
1911	data[i++] = mdp->cur_rx;
1912	data[i++] = mdp->cur_tx;
1913	data[i++] = mdp->dirty_rx;
1914	data[i++] = mdp->dirty_tx;
1915}
1916
1917static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1918{
1919	switch (stringset) {
1920	case ETH_SS_STATS:
1921		memcpy(data, *sh_eth_gstrings_stats,
1922		       sizeof(sh_eth_gstrings_stats));
1923		break;
1924	}
1925}
1926
1927static void sh_eth_get_ringparam(struct net_device *ndev,
1928				 struct ethtool_ringparam *ring)
1929{
1930	struct sh_eth_private *mdp = netdev_priv(ndev);
1931
1932	ring->rx_max_pending = RX_RING_MAX;
1933	ring->tx_max_pending = TX_RING_MAX;
1934	ring->rx_pending = mdp->num_rx_ring;
1935	ring->tx_pending = mdp->num_tx_ring;
1936}
1937
1938static int sh_eth_set_ringparam(struct net_device *ndev,
1939				struct ethtool_ringparam *ring)
1940{
1941	struct sh_eth_private *mdp = netdev_priv(ndev);
1942	int ret;
1943
1944	if (ring->tx_pending > TX_RING_MAX ||
1945	    ring->rx_pending > RX_RING_MAX ||
1946	    ring->tx_pending < TX_RING_MIN ||
1947	    ring->rx_pending < RX_RING_MIN)
1948		return -EINVAL;
1949	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1950		return -EINVAL;
1951
1952	if (netif_running(ndev)) {
1953		netif_tx_disable(ndev);
1954		/* Disable interrupts by clearing the interrupt mask. */
1955		sh_eth_write(ndev, 0x0000, EESIPR);
1956		/* Stop the chip's Tx and Rx processes. */
1957		sh_eth_write(ndev, 0, EDTRR);
1958		sh_eth_write(ndev, 0, EDRRR);
1959		synchronize_irq(ndev->irq);
1960	}
1961
1962	/* Free all the skbuffs in the Rx queue. */
1963	sh_eth_ring_free(ndev);
1964	/* Free DMA buffer */
1965	sh_eth_free_dma_buffer(mdp);
1966
1967	/* Set new parameters */
1968	mdp->num_rx_ring = ring->rx_pending;
1969	mdp->num_tx_ring = ring->tx_pending;
1970
1971	ret = sh_eth_ring_init(ndev);
1972	if (ret < 0) {
1973		netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__);
1974		return ret;
1975	}
1976	ret = sh_eth_dev_init(ndev, false);
1977	if (ret < 0) {
1978		netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__);
1979		return ret;
1980	}
1981
1982	if (netif_running(ndev)) {
1983		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1984		/* Setting the Rx mode will start the Rx process. */
1985		sh_eth_write(ndev, EDRRR_R, EDRRR);
1986		netif_wake_queue(ndev);
1987	}
1988
1989	return 0;
1990}
1991
1992static const struct ethtool_ops sh_eth_ethtool_ops = {
1993	.get_settings	= sh_eth_get_settings,
1994	.set_settings	= sh_eth_set_settings,
1995	.nway_reset	= sh_eth_nway_reset,
1996	.get_msglevel	= sh_eth_get_msglevel,
1997	.set_msglevel	= sh_eth_set_msglevel,
1998	.get_link	= ethtool_op_get_link,
1999	.get_strings	= sh_eth_get_strings,
2000	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2001	.get_sset_count     = sh_eth_get_sset_count,
2002	.get_ringparam	= sh_eth_get_ringparam,
2003	.set_ringparam	= sh_eth_set_ringparam,
2004};
2005
2006/* network device open function */
2007static int sh_eth_open(struct net_device *ndev)
2008{
2009	int ret = 0;
2010	struct sh_eth_private *mdp = netdev_priv(ndev);
2011
2012	pm_runtime_get_sync(&mdp->pdev->dev);
2013
2014	napi_enable(&mdp->napi);
2015
2016	ret = request_irq(ndev->irq, sh_eth_interrupt,
2017			  mdp->cd->irq_flags, ndev->name, ndev);
2018	if (ret) {
2019		netdev_err(ndev, "Can not assign IRQ number\n");
2020		goto out_napi_off;
2021	}
2022
2023	/* Descriptor set */
2024	ret = sh_eth_ring_init(ndev);
2025	if (ret)
2026		goto out_free_irq;
2027
2028	/* device init */
2029	ret = sh_eth_dev_init(ndev, true);
2030	if (ret)
2031		goto out_free_irq;
2032
2033	/* PHY control start*/
2034	ret = sh_eth_phy_start(ndev);
2035	if (ret)
2036		goto out_free_irq;
2037
2038	return ret;
2039
2040out_free_irq:
2041	free_irq(ndev->irq, ndev);
2042out_napi_off:
2043	napi_disable(&mdp->napi);
2044	pm_runtime_put_sync(&mdp->pdev->dev);
2045	return ret;
2046}
2047
2048/* Timeout function */
2049static void sh_eth_tx_timeout(struct net_device *ndev)
2050{
2051	struct sh_eth_private *mdp = netdev_priv(ndev);
2052	struct sh_eth_rxdesc *rxdesc;
2053	int i;
2054
2055	netif_stop_queue(ndev);
2056
2057	netif_err(mdp, timer, ndev,
2058		  "transmit timed out, status %8.8x, resetting...\n",
2059		  (int)sh_eth_read(ndev, EESR));
2060
2061	/* tx_errors count up */
2062	ndev->stats.tx_errors++;
2063
2064	/* Free all the skbuffs in the Rx queue. */
2065	for (i = 0; i < mdp->num_rx_ring; i++) {
2066		rxdesc = &mdp->rx_ring[i];
2067		rxdesc->status = 0;
2068		rxdesc->addr = 0xBADF00D0;
2069		if (mdp->rx_skbuff[i])
2070			dev_kfree_skb(mdp->rx_skbuff[i]);
2071		mdp->rx_skbuff[i] = NULL;
2072	}
2073	for (i = 0; i < mdp->num_tx_ring; i++) {
2074		if (mdp->tx_skbuff[i])
2075			dev_kfree_skb(mdp->tx_skbuff[i]);
2076		mdp->tx_skbuff[i] = NULL;
2077	}
2078
2079	/* device init */
2080	sh_eth_dev_init(ndev, true);
2081}
2082
2083/* Packet transmit function */
2084static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2085{
2086	struct sh_eth_private *mdp = netdev_priv(ndev);
2087	struct sh_eth_txdesc *txdesc;
2088	u32 entry;
2089	unsigned long flags;
2090
2091	spin_lock_irqsave(&mdp->lock, flags);
2092	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2093		if (!sh_eth_txfree(ndev)) {
2094			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2095			netif_stop_queue(ndev);
2096			spin_unlock_irqrestore(&mdp->lock, flags);
2097			return NETDEV_TX_BUSY;
2098		}
2099	}
2100	spin_unlock_irqrestore(&mdp->lock, flags);
2101
2102	entry = mdp->cur_tx % mdp->num_tx_ring;
2103	mdp->tx_skbuff[entry] = skb;
2104	txdesc = &mdp->tx_ring[entry];
2105	/* soft swap. */
2106	if (!mdp->cd->hw_swap)
2107		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2108				 skb->len + 2);
2109	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2110				      DMA_TO_DEVICE);
2111	if (skb->len < ETH_ZLEN)
2112		txdesc->buffer_length = ETH_ZLEN;
2113	else
2114		txdesc->buffer_length = skb->len;
2115
2116	if (entry >= mdp->num_tx_ring - 1)
2117		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2118	else
2119		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2120
2121	mdp->cur_tx++;
2122
2123	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2124		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2125
2126	return NETDEV_TX_OK;
2127}
2128
2129/* device close function */
2130static int sh_eth_close(struct net_device *ndev)
2131{
2132	struct sh_eth_private *mdp = netdev_priv(ndev);
2133
2134	netif_stop_queue(ndev);
2135
2136	/* Disable interrupts by clearing the interrupt mask. */
2137	sh_eth_write(ndev, 0x0000, EESIPR);
2138
2139	/* Stop the chip's Tx and Rx processes. */
2140	sh_eth_write(ndev, 0, EDTRR);
2141	sh_eth_write(ndev, 0, EDRRR);
2142
2143	/* PHY Disconnect */
2144	if (mdp->phydev) {
2145		phy_stop(mdp->phydev);
2146		phy_disconnect(mdp->phydev);
2147	}
2148
2149	free_irq(ndev->irq, ndev);
2150
2151	napi_disable(&mdp->napi);
2152
2153	/* Free all the skbuffs in the Rx queue. */
2154	sh_eth_ring_free(ndev);
2155
2156	/* free DMA buffer */
2157	sh_eth_free_dma_buffer(mdp);
2158
2159	pm_runtime_put_sync(&mdp->pdev->dev);
2160
2161	return 0;
2162}
2163
2164static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2165{
2166	struct sh_eth_private *mdp = netdev_priv(ndev);
2167
2168	if (sh_eth_is_rz_fast_ether(mdp))
2169		return &ndev->stats;
2170
2171	pm_runtime_get_sync(&mdp->pdev->dev);
2172
2173	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2174	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2175	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2176	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2177	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2178	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2179	if (sh_eth_is_gether(mdp)) {
2180		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2181		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2182		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2183		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2184	} else {
2185		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2186		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2187	}
2188	pm_runtime_put_sync(&mdp->pdev->dev);
2189
2190	return &ndev->stats;
2191}
2192
2193/* ioctl to device function */
2194static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2195{
2196	struct sh_eth_private *mdp = netdev_priv(ndev);
2197	struct phy_device *phydev = mdp->phydev;
2198
2199	if (!netif_running(ndev))
2200		return -EINVAL;
2201
2202	if (!phydev)
2203		return -ENODEV;
2204
2205	return phy_mii_ioctl(phydev, rq, cmd);
2206}
2207
2208/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2209static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2210					    int entry)
2211{
2212	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2213}
2214
2215static u32 sh_eth_tsu_get_post_mask(int entry)
2216{
2217	return 0x0f << (28 - ((entry % 8) * 4));
2218}
2219
2220static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2221{
2222	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2223}
2224
2225static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2226					     int entry)
2227{
2228	struct sh_eth_private *mdp = netdev_priv(ndev);
2229	u32 tmp;
2230	void *reg_offset;
2231
2232	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2233	tmp = ioread32(reg_offset);
2234	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2235}
2236
2237static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2238					      int entry)
2239{
2240	struct sh_eth_private *mdp = netdev_priv(ndev);
2241	u32 post_mask, ref_mask, tmp;
2242	void *reg_offset;
2243
2244	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2245	post_mask = sh_eth_tsu_get_post_mask(entry);
2246	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2247
2248	tmp = ioread32(reg_offset);
2249	iowrite32(tmp & ~post_mask, reg_offset);
2250
2251	/* If other port enables, the function returns "true" */
2252	return tmp & ref_mask;
2253}
2254
2255static int sh_eth_tsu_busy(struct net_device *ndev)
2256{
2257	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2258	struct sh_eth_private *mdp = netdev_priv(ndev);
2259
2260	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2261		udelay(10);
2262		timeout--;
2263		if (timeout <= 0) {
2264			netdev_err(ndev, "%s: timeout\n", __func__);
2265			return -ETIMEDOUT;
2266		}
2267	}
2268
2269	return 0;
2270}
2271
2272static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2273				  const u8 *addr)
2274{
2275	u32 val;
2276
2277	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2278	iowrite32(val, reg);
2279	if (sh_eth_tsu_busy(ndev) < 0)
2280		return -EBUSY;
2281
2282	val = addr[4] << 8 | addr[5];
2283	iowrite32(val, reg + 4);
2284	if (sh_eth_tsu_busy(ndev) < 0)
2285		return -EBUSY;
2286
2287	return 0;
2288}
2289
2290static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2291{
2292	u32 val;
2293
2294	val = ioread32(reg);
2295	addr[0] = (val >> 24) & 0xff;
2296	addr[1] = (val >> 16) & 0xff;
2297	addr[2] = (val >> 8) & 0xff;
2298	addr[3] = val & 0xff;
2299	val = ioread32(reg + 4);
2300	addr[4] = (val >> 8) & 0xff;
2301	addr[5] = val & 0xff;
2302}
2303
2304
2305static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2306{
2307	struct sh_eth_private *mdp = netdev_priv(ndev);
2308	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2309	int i;
2310	u8 c_addr[ETH_ALEN];
2311
2312	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2313		sh_eth_tsu_read_entry(reg_offset, c_addr);
2314		if (ether_addr_equal(addr, c_addr))
2315			return i;
2316	}
2317
2318	return -ENOENT;
2319}
2320
2321static int sh_eth_tsu_find_empty(struct net_device *ndev)
2322{
2323	u8 blank[ETH_ALEN];
2324	int entry;
2325
2326	memset(blank, 0, sizeof(blank));
2327	entry = sh_eth_tsu_find_entry(ndev, blank);
2328	return (entry < 0) ? -ENOMEM : entry;
2329}
2330
2331static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2332					      int entry)
2333{
2334	struct sh_eth_private *mdp = netdev_priv(ndev);
2335	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2336	int ret;
2337	u8 blank[ETH_ALEN];
2338
2339	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2340			 ~(1 << (31 - entry)), TSU_TEN);
2341
2342	memset(blank, 0, sizeof(blank));
2343	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2344	if (ret < 0)
2345		return ret;
2346	return 0;
2347}
2348
2349static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2350{
2351	struct sh_eth_private *mdp = netdev_priv(ndev);
2352	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2353	int i, ret;
2354
2355	if (!mdp->cd->tsu)
2356		return 0;
2357
2358	i = sh_eth_tsu_find_entry(ndev, addr);
2359	if (i < 0) {
2360		/* No entry found, create one */
2361		i = sh_eth_tsu_find_empty(ndev);
2362		if (i < 0)
2363			return -ENOMEM;
2364		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2365		if (ret < 0)
2366			return ret;
2367
2368		/* Enable the entry */
2369		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2370				 (1 << (31 - i)), TSU_TEN);
2371	}
2372
2373	/* Entry found or created, enable POST */
2374	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2375
2376	return 0;
2377}
2378
2379static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2380{
2381	struct sh_eth_private *mdp = netdev_priv(ndev);
2382	int i, ret;
2383
2384	if (!mdp->cd->tsu)
2385		return 0;
2386
2387	i = sh_eth_tsu_find_entry(ndev, addr);
2388	if (i) {
2389		/* Entry found */
2390		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2391			goto done;
2392
2393		/* Disable the entry if both ports was disabled */
2394		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2395		if (ret < 0)
2396			return ret;
2397	}
2398done:
2399	return 0;
2400}
2401
2402static int sh_eth_tsu_purge_all(struct net_device *ndev)
2403{
2404	struct sh_eth_private *mdp = netdev_priv(ndev);
2405	int i, ret;
2406
2407	if (unlikely(!mdp->cd->tsu))
2408		return 0;
2409
2410	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2411		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2412			continue;
2413
2414		/* Disable the entry if both ports was disabled */
2415		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2416		if (ret < 0)
2417			return ret;
2418	}
2419
2420	return 0;
2421}
2422
2423static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2424{
2425	struct sh_eth_private *mdp = netdev_priv(ndev);
2426	u8 addr[ETH_ALEN];
2427	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2428	int i;
2429
2430	if (unlikely(!mdp->cd->tsu))
2431		return;
2432
2433	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2434		sh_eth_tsu_read_entry(reg_offset, addr);
2435		if (is_multicast_ether_addr(addr))
2436			sh_eth_tsu_del_entry(ndev, addr);
2437	}
2438}
2439
2440/* Multicast reception directions set */
2441static void sh_eth_set_multicast_list(struct net_device *ndev)
2442{
2443	struct sh_eth_private *mdp = netdev_priv(ndev);
2444	u32 ecmr_bits;
2445	int mcast_all = 0;
2446	unsigned long flags;
2447
2448	spin_lock_irqsave(&mdp->lock, flags);
2449	/* Initial condition is MCT = 1, PRM = 0.
2450	 * Depending on ndev->flags, set PRM or clear MCT
2451	 */
2452	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2453
2454	if (!(ndev->flags & IFF_MULTICAST)) {
2455		sh_eth_tsu_purge_mcast(ndev);
2456		mcast_all = 1;
2457	}
2458	if (ndev->flags & IFF_ALLMULTI) {
2459		sh_eth_tsu_purge_mcast(ndev);
2460		ecmr_bits &= ~ECMR_MCT;
2461		mcast_all = 1;
2462	}
2463
2464	if (ndev->flags & IFF_PROMISC) {
2465		sh_eth_tsu_purge_all(ndev);
2466		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2467	} else if (mdp->cd->tsu) {
2468		struct netdev_hw_addr *ha;
2469		netdev_for_each_mc_addr(ha, ndev) {
2470			if (mcast_all && is_multicast_ether_addr(ha->addr))
2471				continue;
2472
2473			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2474				if (!mcast_all) {
2475					sh_eth_tsu_purge_mcast(ndev);
2476					ecmr_bits &= ~ECMR_MCT;
2477					mcast_all = 1;
2478				}
2479			}
2480		}
2481	} else {
2482		/* Normal, unicast/broadcast-only mode. */
2483		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2484	}
2485
2486	/* update the ethernet mode */
2487	sh_eth_write(ndev, ecmr_bits, ECMR);
2488
2489	spin_unlock_irqrestore(&mdp->lock, flags);
2490}
2491
2492static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2493{
2494	if (!mdp->port)
2495		return TSU_VTAG0;
2496	else
2497		return TSU_VTAG1;
2498}
2499
2500static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2501				  __be16 proto, u16 vid)
2502{
2503	struct sh_eth_private *mdp = netdev_priv(ndev);
2504	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2505
2506	if (unlikely(!mdp->cd->tsu))
2507		return -EPERM;
2508
2509	/* No filtering if vid = 0 */
2510	if (!vid)
2511		return 0;
2512
2513	mdp->vlan_num_ids++;
2514
2515	/* The controller has one VLAN tag HW filter. So, if the filter is
2516	 * already enabled, the driver disables it and the filte
2517	 */
2518	if (mdp->vlan_num_ids > 1) {
2519		/* disable VLAN filter */
2520		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2521		return 0;
2522	}
2523
2524	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2525			 vtag_reg_index);
2526
2527	return 0;
2528}
2529
2530static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2531				   __be16 proto, u16 vid)
2532{
2533	struct sh_eth_private *mdp = netdev_priv(ndev);
2534	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2535
2536	if (unlikely(!mdp->cd->tsu))
2537		return -EPERM;
2538
2539	/* No filtering if vid = 0 */
2540	if (!vid)
2541		return 0;
2542
2543	mdp->vlan_num_ids--;
2544	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2545
2546	return 0;
2547}
2548
2549/* SuperH's TSU register init function */
2550static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2551{
2552	if (sh_eth_is_rz_fast_ether(mdp)) {
2553		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2554		return;
2555	}
2556
2557	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2558	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2559	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2560	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2561	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2562	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2563	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2564	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2565	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2566	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2567	if (sh_eth_is_gether(mdp)) {
2568		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2569		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2570	} else {
2571		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2572		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2573	}
2574	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2575	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2576	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2577	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2578	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2579	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2580	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2581}
2582
2583/* MDIO bus release function */
2584static int sh_mdio_release(struct sh_eth_private *mdp)
2585{
2586	/* unregister mdio bus */
2587	mdiobus_unregister(mdp->mii_bus);
2588
2589	/* free bitbang info */
2590	free_mdio_bitbang(mdp->mii_bus);
2591
2592	return 0;
2593}
2594
2595/* MDIO bus init function */
2596static int sh_mdio_init(struct sh_eth_private *mdp,
2597			struct sh_eth_plat_data *pd)
2598{
2599	int ret, i;
2600	struct bb_info *bitbang;
2601	struct platform_device *pdev = mdp->pdev;
2602	struct device *dev = &mdp->pdev->dev;
2603
2604	/* create bit control struct for PHY */
2605	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2606	if (!bitbang)
2607		return -ENOMEM;
2608
2609	/* bitbang init */
2610	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2611	bitbang->set_gate = pd->set_mdio_gate;
2612	bitbang->mdi_msk = PIR_MDI;
2613	bitbang->mdo_msk = PIR_MDO;
2614	bitbang->mmd_msk = PIR_MMD;
2615	bitbang->mdc_msk = PIR_MDC;
2616	bitbang->ctrl.ops = &bb_ops;
2617
2618	/* MII controller setting */
2619	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2620	if (!mdp->mii_bus)
2621		return -ENOMEM;
2622
2623	/* Hook up MII support for ethtool */
2624	mdp->mii_bus->name = "sh_mii";
2625	mdp->mii_bus->parent = dev;
2626	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2627		 pdev->name, pdev->id);
2628
2629	/* PHY IRQ */
2630	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2631					       GFP_KERNEL);
2632	if (!mdp->mii_bus->irq) {
2633		ret = -ENOMEM;
2634		goto out_free_bus;
2635	}
2636
2637	/* register MDIO bus */
2638	if (dev->of_node) {
2639		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2640	} else {
2641		for (i = 0; i < PHY_MAX_ADDR; i++)
2642			mdp->mii_bus->irq[i] = PHY_POLL;
2643		if (pd->phy_irq > 0)
2644			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2645
2646		ret = mdiobus_register(mdp->mii_bus);
2647	}
2648
2649	if (ret)
2650		goto out_free_bus;
2651
2652	return 0;
2653
2654out_free_bus:
2655	free_mdio_bitbang(mdp->mii_bus);
2656	return ret;
2657}
2658
2659static const u16 *sh_eth_get_register_offset(int register_type)
2660{
2661	const u16 *reg_offset = NULL;
2662
2663	switch (register_type) {
2664	case SH_ETH_REG_GIGABIT:
2665		reg_offset = sh_eth_offset_gigabit;
2666		break;
2667	case SH_ETH_REG_FAST_RZ:
2668		reg_offset = sh_eth_offset_fast_rz;
2669		break;
2670	case SH_ETH_REG_FAST_RCAR:
2671		reg_offset = sh_eth_offset_fast_rcar;
2672		break;
2673	case SH_ETH_REG_FAST_SH4:
2674		reg_offset = sh_eth_offset_fast_sh4;
2675		break;
2676	case SH_ETH_REG_FAST_SH3_SH2:
2677		reg_offset = sh_eth_offset_fast_sh3_sh2;
2678		break;
2679	default:
2680		break;
2681	}
2682
2683	return reg_offset;
2684}
2685
2686static const struct net_device_ops sh_eth_netdev_ops = {
2687	.ndo_open		= sh_eth_open,
2688	.ndo_stop		= sh_eth_close,
2689	.ndo_start_xmit		= sh_eth_start_xmit,
2690	.ndo_get_stats		= sh_eth_get_stats,
2691	.ndo_tx_timeout		= sh_eth_tx_timeout,
2692	.ndo_do_ioctl		= sh_eth_do_ioctl,
2693	.ndo_validate_addr	= eth_validate_addr,
2694	.ndo_set_mac_address	= eth_mac_addr,
2695	.ndo_change_mtu		= eth_change_mtu,
2696};
2697
2698static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2699	.ndo_open		= sh_eth_open,
2700	.ndo_stop		= sh_eth_close,
2701	.ndo_start_xmit		= sh_eth_start_xmit,
2702	.ndo_get_stats		= sh_eth_get_stats,
2703	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2704	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2705	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2706	.ndo_tx_timeout		= sh_eth_tx_timeout,
2707	.ndo_do_ioctl		= sh_eth_do_ioctl,
2708	.ndo_validate_addr	= eth_validate_addr,
2709	.ndo_set_mac_address	= eth_mac_addr,
2710	.ndo_change_mtu		= eth_change_mtu,
2711};
2712
2713#ifdef CONFIG_OF
2714static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2715{
2716	struct device_node *np = dev->of_node;
2717	struct sh_eth_plat_data *pdata;
2718	const char *mac_addr;
2719
2720	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2721	if (!pdata)
2722		return NULL;
2723
2724	pdata->phy_interface = of_get_phy_mode(np);
2725
2726	mac_addr = of_get_mac_address(np);
2727	if (mac_addr)
2728		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2729
2730	pdata->no_ether_link =
2731		of_property_read_bool(np, "renesas,no-ether-link");
2732	pdata->ether_link_active_low =
2733		of_property_read_bool(np, "renesas,ether-link-active-low");
2734
2735	return pdata;
2736}
2737
2738static const struct of_device_id sh_eth_match_table[] = {
2739	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2740	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2741	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2742	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2743	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2744	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2745	{ }
2746};
2747MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2748#else
2749static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2750{
2751	return NULL;
2752}
2753#endif
2754
2755static int sh_eth_drv_probe(struct platform_device *pdev)
2756{
2757	int ret, devno = 0;
2758	struct resource *res;
2759	struct net_device *ndev = NULL;
2760	struct sh_eth_private *mdp = NULL;
2761	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2762	const struct platform_device_id *id = platform_get_device_id(pdev);
2763
2764	/* get base addr */
2765	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2766	if (unlikely(res == NULL)) {
2767		dev_err(&pdev->dev, "invalid resource\n");
2768		return -EINVAL;
2769	}
2770
2771	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2772	if (!ndev)
2773		return -ENOMEM;
2774
2775	pm_runtime_enable(&pdev->dev);
2776	pm_runtime_get_sync(&pdev->dev);
2777
2778	/* The sh Ether-specific entries in the device structure. */
2779	ndev->base_addr = res->start;
2780	devno = pdev->id;
2781	if (devno < 0)
2782		devno = 0;
2783
2784	ndev->dma = -1;
2785	ret = platform_get_irq(pdev, 0);
2786	if (ret < 0) {
2787		ret = -ENODEV;
2788		goto out_release;
2789	}
2790	ndev->irq = ret;
2791
2792	SET_NETDEV_DEV(ndev, &pdev->dev);
2793
2794	mdp = netdev_priv(ndev);
2795	mdp->num_tx_ring = TX_RING_SIZE;
2796	mdp->num_rx_ring = RX_RING_SIZE;
2797	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2798	if (IS_ERR(mdp->addr)) {
2799		ret = PTR_ERR(mdp->addr);
2800		goto out_release;
2801	}
2802
2803	spin_lock_init(&mdp->lock);
2804	mdp->pdev = pdev;
2805
2806	if (pdev->dev.of_node)
2807		pd = sh_eth_parse_dt(&pdev->dev);
2808	if (!pd) {
2809		dev_err(&pdev->dev, "no platform data\n");
2810		ret = -EINVAL;
2811		goto out_release;
2812	}
2813
2814	/* get PHY ID */
2815	mdp->phy_id = pd->phy;
2816	mdp->phy_interface = pd->phy_interface;
2817	/* EDMAC endian */
2818	mdp->edmac_endian = pd->edmac_endian;
2819	mdp->no_ether_link = pd->no_ether_link;
2820	mdp->ether_link_active_low = pd->ether_link_active_low;
2821
2822	/* set cpu data */
2823	if (id) {
2824		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2825	} else	{
2826		const struct of_device_id *match;
2827
2828		match = of_match_device(of_match_ptr(sh_eth_match_table),
2829					&pdev->dev);
2830		mdp->cd = (struct sh_eth_cpu_data *)match->data;
2831	}
2832	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2833	if (!mdp->reg_offset) {
2834		dev_err(&pdev->dev, "Unknown register type (%d)\n",
2835			mdp->cd->register_type);
2836		ret = -EINVAL;
2837		goto out_release;
2838	}
2839	sh_eth_set_default_cpu_data(mdp->cd);
2840
2841	/* set function */
2842	if (mdp->cd->tsu)
2843		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2844	else
2845		ndev->netdev_ops = &sh_eth_netdev_ops;
2846	ndev->ethtool_ops = &sh_eth_ethtool_ops;
2847	ndev->watchdog_timeo = TX_TIMEOUT;
2848
2849	/* debug message level */
2850	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2851
2852	/* read and set MAC address */
2853	read_mac_address(ndev, pd->mac_addr);
2854	if (!is_valid_ether_addr(ndev->dev_addr)) {
2855		dev_warn(&pdev->dev,
2856			 "no valid MAC address supplied, using a random one.\n");
2857		eth_hw_addr_random(ndev);
2858	}
2859
2860	/* ioremap the TSU registers */
2861	if (mdp->cd->tsu) {
2862		struct resource *rtsu;
2863		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2864		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2865		if (IS_ERR(mdp->tsu_addr)) {
2866			ret = PTR_ERR(mdp->tsu_addr);
2867			goto out_release;
2868		}
2869		mdp->port = devno % 2;
2870		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2871	}
2872
2873	/* initialize first or needed device */
2874	if (!devno || pd->needs_init) {
2875		if (mdp->cd->chip_reset)
2876			mdp->cd->chip_reset(ndev);
2877
2878		if (mdp->cd->tsu) {
2879			/* TSU init (Init only)*/
2880			sh_eth_tsu_init(mdp);
2881		}
2882	}
2883
2884	/* MDIO bus init */
2885	ret = sh_mdio_init(mdp, pd);
2886	if (ret) {
2887		dev_err(&ndev->dev, "failed to initialise MDIO\n");
2888		goto out_release;
2889	}
2890
2891	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2892
2893	/* network device register */
2894	ret = register_netdev(ndev);
2895	if (ret)
2896		goto out_napi_del;
2897
2898	/* print device information */
2899	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2900		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2901
2902	pm_runtime_put(&pdev->dev);
2903	platform_set_drvdata(pdev, ndev);
2904
2905	return ret;
2906
2907out_napi_del:
2908	netif_napi_del(&mdp->napi);
2909	sh_mdio_release(mdp);
2910
2911out_release:
2912	/* net_dev free */
2913	if (ndev)
2914		free_netdev(ndev);
2915
2916	pm_runtime_put(&pdev->dev);
2917	pm_runtime_disable(&pdev->dev);
2918	return ret;
2919}
2920
2921static int sh_eth_drv_remove(struct platform_device *pdev)
2922{
2923	struct net_device *ndev = platform_get_drvdata(pdev);
2924	struct sh_eth_private *mdp = netdev_priv(ndev);
2925
2926	unregister_netdev(ndev);
2927	netif_napi_del(&mdp->napi);
2928	sh_mdio_release(mdp);
2929	pm_runtime_disable(&pdev->dev);
2930	free_netdev(ndev);
2931
2932	return 0;
2933}
2934
2935#ifdef CONFIG_PM
2936static int sh_eth_runtime_nop(struct device *dev)
2937{
2938	/* Runtime PM callback shared between ->runtime_suspend()
2939	 * and ->runtime_resume(). Simply returns success.
2940	 *
2941	 * This driver re-initializes all registers after
2942	 * pm_runtime_get_sync() anyway so there is no need
2943	 * to save and restore registers here.
2944	 */
2945	return 0;
2946}
2947
2948static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2949	.runtime_suspend = sh_eth_runtime_nop,
2950	.runtime_resume = sh_eth_runtime_nop,
2951};
2952#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2953#else
2954#define SH_ETH_PM_OPS NULL
2955#endif
2956
2957static struct platform_device_id sh_eth_id_table[] = {
2958	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2959	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2960	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2961	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2962	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2963	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2964	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2965	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2966	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2967	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2968	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2969	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2970	{ }
2971};
2972MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2973
2974static struct platform_driver sh_eth_driver = {
2975	.probe = sh_eth_drv_probe,
2976	.remove = sh_eth_drv_remove,
2977	.id_table = sh_eth_id_table,
2978	.driver = {
2979		   .name = CARDNAME,
2980		   .pm = SH_ETH_PM_OPS,
2981		   .of_match_table = of_match_ptr(sh_eth_match_table),
2982	},
2983};
2984
2985module_platform_driver(sh_eth_driver);
2986
2987MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2988MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2989MODULE_LICENSE("GPL v2");
2990