mcdi.c revision 0bcf4a645fc027d05d15e79ce48b5893cff28082
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include <linux/delay.h>
11#include <asm/cmpxchg.h>
12#include "net_driver.h"
13#include "nic.h"
14#include "io.h"
15#include "farch_regs.h"
16#include "mcdi_pcol.h"
17#include "phy.h"
18
19/**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26#define MCDI_RPC_TIMEOUT       (10 * HZ)
27
28/* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32#define MCDI_STATUS_DELAY_US		100
33#define MCDI_STATUS_DELAY_COUNT		2500
34#define MCDI_STATUS_SLEEP_MS						\
35	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37#define SEQ_MASK							\
38	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40struct efx_mcdi_async_param {
41	struct list_head list;
42	unsigned int cmd;
43	size_t inlen;
44	size_t outlen;
45	bool quiet;
46	efx_mcdi_async_completer *complete;
47	unsigned long cookie;
48	/* followed by request/response buffer */
49};
50
51static void efx_mcdi_timeout_async(unsigned long context);
52static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53			       bool *was_attached_out);
54static bool efx_mcdi_poll_once(struct efx_nic *efx);
55
56static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
57{
58	EFX_BUG_ON_PARANOID(!efx->mcdi);
59	return &efx->mcdi->iface;
60}
61
62int efx_mcdi_init(struct efx_nic *efx)
63{
64	struct efx_mcdi_iface *mcdi;
65	bool already_attached;
66	int rc;
67
68	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
69	if (!efx->mcdi)
70		return -ENOMEM;
71
72	mcdi = efx_mcdi(efx);
73	mcdi->efx = efx;
74	init_waitqueue_head(&mcdi->wq);
75	spin_lock_init(&mcdi->iface_lock);
76	mcdi->state = MCDI_STATE_QUIESCENT;
77	mcdi->mode = MCDI_MODE_POLL;
78	spin_lock_init(&mcdi->async_lock);
79	INIT_LIST_HEAD(&mcdi->async_list);
80	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
81		    (unsigned long)mcdi);
82
83	(void) efx_mcdi_poll_reboot(efx);
84	mcdi->new_epoch = true;
85
86	/* Recover from a failed assertion before probing */
87	rc = efx_mcdi_handle_assertion(efx);
88	if (rc)
89		return rc;
90
91	/* Let the MC (and BMC, if this is a LOM) know that the driver
92	 * is loaded. We should do this before we reset the NIC.
93	 */
94	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
95	if (rc) {
96		netif_err(efx, probe, efx->net_dev,
97			  "Unable to register driver with MCPU\n");
98		return rc;
99	}
100	if (already_attached)
101		/* Not a fatal error */
102		netif_err(efx, probe, efx->net_dev,
103			  "Host already registered with MCPU\n");
104
105	if (efx->mcdi->fn_flags &
106	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
107		efx->primary = efx;
108
109	return 0;
110}
111
112void efx_mcdi_fini(struct efx_nic *efx)
113{
114	if (!efx->mcdi)
115		return;
116
117	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
118
119	/* Relinquish the device (back to the BMC, if this is a LOM) */
120	efx_mcdi_drv_attach(efx, false, NULL);
121
122	kfree(efx->mcdi);
123}
124
125static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
126				  const efx_dword_t *inbuf, size_t inlen)
127{
128	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
129	efx_dword_t hdr[2];
130	size_t hdr_len;
131	u32 xflags, seqno;
132
133	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
134
135	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
136	spin_lock_bh(&mcdi->iface_lock);
137	++mcdi->seqno;
138	spin_unlock_bh(&mcdi->iface_lock);
139
140	seqno = mcdi->seqno & SEQ_MASK;
141	xflags = 0;
142	if (mcdi->mode == MCDI_MODE_EVENTS)
143		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
144
145	if (efx->type->mcdi_max_ver == 1) {
146		/* MCDI v1 */
147		EFX_POPULATE_DWORD_7(hdr[0],
148				     MCDI_HEADER_RESPONSE, 0,
149				     MCDI_HEADER_RESYNC, 1,
150				     MCDI_HEADER_CODE, cmd,
151				     MCDI_HEADER_DATALEN, inlen,
152				     MCDI_HEADER_SEQ, seqno,
153				     MCDI_HEADER_XFLAGS, xflags,
154				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
155		hdr_len = 4;
156	} else {
157		/* MCDI v2 */
158		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
159		EFX_POPULATE_DWORD_7(hdr[0],
160				     MCDI_HEADER_RESPONSE, 0,
161				     MCDI_HEADER_RESYNC, 1,
162				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
163				     MCDI_HEADER_DATALEN, 0,
164				     MCDI_HEADER_SEQ, seqno,
165				     MCDI_HEADER_XFLAGS, xflags,
166				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
167		EFX_POPULATE_DWORD_2(hdr[1],
168				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
169				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
170		hdr_len = 8;
171	}
172
173	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
174
175	mcdi->new_epoch = false;
176}
177
178static int efx_mcdi_errno(unsigned int mcdi_err)
179{
180	switch (mcdi_err) {
181	case 0:
182		return 0;
183#define TRANSLATE_ERROR(name)					\
184	case MC_CMD_ERR_ ## name:				\
185		return -name;
186	TRANSLATE_ERROR(EPERM);
187	TRANSLATE_ERROR(ENOENT);
188	TRANSLATE_ERROR(EINTR);
189	TRANSLATE_ERROR(EAGAIN);
190	TRANSLATE_ERROR(EACCES);
191	TRANSLATE_ERROR(EBUSY);
192	TRANSLATE_ERROR(EINVAL);
193	TRANSLATE_ERROR(EDEADLK);
194	TRANSLATE_ERROR(ENOSYS);
195	TRANSLATE_ERROR(ETIME);
196	TRANSLATE_ERROR(EALREADY);
197	TRANSLATE_ERROR(ENOSPC);
198#undef TRANSLATE_ERROR
199	case MC_CMD_ERR_ENOTSUP:
200		return -EOPNOTSUPP;
201	case MC_CMD_ERR_ALLOC_FAIL:
202		return -ENOBUFS;
203	case MC_CMD_ERR_MAC_EXIST:
204		return -EADDRINUSE;
205	default:
206		return -EPROTO;
207	}
208}
209
210static void efx_mcdi_read_response_header(struct efx_nic *efx)
211{
212	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
213	unsigned int respseq, respcmd, error;
214	efx_dword_t hdr;
215
216	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
217	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
218	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
219	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
220
221	if (respcmd != MC_CMD_V2_EXTN) {
222		mcdi->resp_hdr_len = 4;
223		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
224	} else {
225		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
226		mcdi->resp_hdr_len = 8;
227		mcdi->resp_data_len =
228			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
229	}
230
231	if (error && mcdi->resp_data_len == 0) {
232		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
233		mcdi->resprc = -EIO;
234	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
235		netif_err(efx, hw, efx->net_dev,
236			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
237			  respseq, mcdi->seqno);
238		mcdi->resprc = -EIO;
239	} else if (error) {
240		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
241		mcdi->resprc =
242			efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
243	} else {
244		mcdi->resprc = 0;
245	}
246}
247
248static bool efx_mcdi_poll_once(struct efx_nic *efx)
249{
250	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
251
252	rmb();
253	if (!efx->type->mcdi_poll_response(efx))
254		return false;
255
256	spin_lock_bh(&mcdi->iface_lock);
257	efx_mcdi_read_response_header(efx);
258	spin_unlock_bh(&mcdi->iface_lock);
259
260	return true;
261}
262
263static int efx_mcdi_poll(struct efx_nic *efx)
264{
265	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
266	unsigned long time, finish;
267	unsigned int spins;
268	int rc;
269
270	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
271	rc = efx_mcdi_poll_reboot(efx);
272	if (rc) {
273		spin_lock_bh(&mcdi->iface_lock);
274		mcdi->resprc = rc;
275		mcdi->resp_hdr_len = 0;
276		mcdi->resp_data_len = 0;
277		spin_unlock_bh(&mcdi->iface_lock);
278		return 0;
279	}
280
281	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
282	 * because generally mcdi responses are fast. After that, back off
283	 * and poll once a jiffy (approximately)
284	 */
285	spins = TICK_USEC;
286	finish = jiffies + MCDI_RPC_TIMEOUT;
287
288	while (1) {
289		if (spins != 0) {
290			--spins;
291			udelay(1);
292		} else {
293			schedule_timeout_uninterruptible(1);
294		}
295
296		time = jiffies;
297
298		if (efx_mcdi_poll_once(efx))
299			break;
300
301		if (time_after(time, finish))
302			return -ETIMEDOUT;
303	}
304
305	/* Return rc=0 like wait_event_timeout() */
306	return 0;
307}
308
309/* Test and clear MC-rebooted flag for this port/function; reset
310 * software state as necessary.
311 */
312int efx_mcdi_poll_reboot(struct efx_nic *efx)
313{
314	if (!efx->mcdi)
315		return 0;
316
317	return efx->type->mcdi_poll_reboot(efx);
318}
319
320static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
321{
322	return cmpxchg(&mcdi->state,
323		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
324		MCDI_STATE_QUIESCENT;
325}
326
327static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
328{
329	/* Wait until the interface becomes QUIESCENT and we win the race
330	 * to mark it RUNNING_SYNC.
331	 */
332	wait_event(mcdi->wq,
333		   cmpxchg(&mcdi->state,
334			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
335		   MCDI_STATE_QUIESCENT);
336}
337
338static int efx_mcdi_await_completion(struct efx_nic *efx)
339{
340	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
341
342	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
343			       MCDI_RPC_TIMEOUT) == 0)
344		return -ETIMEDOUT;
345
346	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
347	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
348	 * completed the request first, then we'll just end up completing the
349	 * request again, which is safe.
350	 *
351	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
352	 * wait_event_timeout() implicitly provides.
353	 */
354	if (mcdi->mode == MCDI_MODE_POLL)
355		return efx_mcdi_poll(efx);
356
357	return 0;
358}
359
360/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
361 * requester.  Return whether this was done.  Does not take any locks.
362 */
363static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
364{
365	if (cmpxchg(&mcdi->state,
366		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
367	    MCDI_STATE_RUNNING_SYNC) {
368		wake_up(&mcdi->wq);
369		return true;
370	}
371
372	return false;
373}
374
375static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
376{
377	if (mcdi->mode == MCDI_MODE_EVENTS) {
378		struct efx_mcdi_async_param *async;
379		struct efx_nic *efx = mcdi->efx;
380
381		/* Process the asynchronous request queue */
382		spin_lock_bh(&mcdi->async_lock);
383		async = list_first_entry_or_null(
384			&mcdi->async_list, struct efx_mcdi_async_param, list);
385		if (async) {
386			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
387			efx_mcdi_send_request(efx, async->cmd,
388					      (const efx_dword_t *)(async + 1),
389					      async->inlen);
390			mod_timer(&mcdi->async_timer,
391				  jiffies + MCDI_RPC_TIMEOUT);
392		}
393		spin_unlock_bh(&mcdi->async_lock);
394
395		if (async)
396			return;
397	}
398
399	mcdi->state = MCDI_STATE_QUIESCENT;
400	wake_up(&mcdi->wq);
401}
402
403/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
404 * asynchronous completion function, and release the interface.
405 * Return whether this was done.  Must be called in bh-disabled
406 * context.  Will take iface_lock and async_lock.
407 */
408static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
409{
410	struct efx_nic *efx = mcdi->efx;
411	struct efx_mcdi_async_param *async;
412	size_t hdr_len, data_len, err_len;
413	efx_dword_t *outbuf;
414	MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
415	int rc;
416
417	if (cmpxchg(&mcdi->state,
418		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
419	    MCDI_STATE_RUNNING_ASYNC)
420		return false;
421
422	spin_lock(&mcdi->iface_lock);
423	if (timeout) {
424		/* Ensure that if the completion event arrives later,
425		 * the seqno check in efx_mcdi_ev_cpl() will fail
426		 */
427		++mcdi->seqno;
428		++mcdi->credits;
429		rc = -ETIMEDOUT;
430		hdr_len = 0;
431		data_len = 0;
432	} else {
433		rc = mcdi->resprc;
434		hdr_len = mcdi->resp_hdr_len;
435		data_len = mcdi->resp_data_len;
436	}
437	spin_unlock(&mcdi->iface_lock);
438
439	/* Stop the timer.  In case the timer function is running, we
440	 * must wait for it to return so that there is no possibility
441	 * of it aborting the next request.
442	 */
443	if (!timeout)
444		del_timer_sync(&mcdi->async_timer);
445
446	spin_lock(&mcdi->async_lock);
447	async = list_first_entry(&mcdi->async_list,
448				 struct efx_mcdi_async_param, list);
449	list_del(&async->list);
450	spin_unlock(&mcdi->async_lock);
451
452	outbuf = (efx_dword_t *)(async + 1);
453	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
454				      min(async->outlen, data_len));
455	if (!timeout && rc && !async->quiet) {
456		err_len = min(sizeof(errbuf), data_len);
457		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
458					      sizeof(errbuf));
459		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
460				       err_len, rc);
461	}
462	async->complete(efx, async->cookie, rc, outbuf, data_len);
463	kfree(async);
464
465	efx_mcdi_release(mcdi);
466
467	return true;
468}
469
470static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
471			    unsigned int datalen, unsigned int mcdi_err)
472{
473	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
474	bool wake = false;
475
476	spin_lock(&mcdi->iface_lock);
477
478	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
479		if (mcdi->credits)
480			/* The request has been cancelled */
481			--mcdi->credits;
482		else
483			netif_err(efx, hw, efx->net_dev,
484				  "MC response mismatch tx seq 0x%x rx "
485				  "seq 0x%x\n", seqno, mcdi->seqno);
486	} else {
487		if (efx->type->mcdi_max_ver >= 2) {
488			/* MCDI v2 responses don't fit in an event */
489			efx_mcdi_read_response_header(efx);
490		} else {
491			mcdi->resprc = efx_mcdi_errno(mcdi_err);
492			mcdi->resp_hdr_len = 4;
493			mcdi->resp_data_len = datalen;
494		}
495
496		wake = true;
497	}
498
499	spin_unlock(&mcdi->iface_lock);
500
501	if (wake) {
502		if (!efx_mcdi_complete_async(mcdi, false))
503			(void) efx_mcdi_complete_sync(mcdi);
504
505		/* If the interface isn't RUNNING_ASYNC or
506		 * RUNNING_SYNC then we've received a duplicate
507		 * completion after we've already transitioned back to
508		 * QUIESCENT. [A subsequent invocation would increment
509		 * seqno, so would have failed the seqno check].
510		 */
511	}
512}
513
514static void efx_mcdi_timeout_async(unsigned long context)
515{
516	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
517
518	efx_mcdi_complete_async(mcdi, true);
519}
520
521static int
522efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
523{
524	if (efx->type->mcdi_max_ver < 0 ||
525	     (efx->type->mcdi_max_ver < 2 &&
526	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
527		return -EINVAL;
528
529	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
530	    (efx->type->mcdi_max_ver < 2 &&
531	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
532		return -EMSGSIZE;
533
534	return 0;
535}
536
537static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
538				efx_dword_t *outbuf, size_t outlen,
539				size_t *outlen_actual, bool quiet)
540{
541	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
542	MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
543	int rc;
544
545	if (mcdi->mode == MCDI_MODE_POLL)
546		rc = efx_mcdi_poll(efx);
547	else
548		rc = efx_mcdi_await_completion(efx);
549
550	if (rc != 0) {
551		netif_err(efx, hw, efx->net_dev,
552			  "MC command 0x%x inlen %d mode %d timed out\n",
553			  cmd, (int)inlen, mcdi->mode);
554
555		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
556			netif_err(efx, hw, efx->net_dev,
557				  "MCDI request was completed without an event\n");
558			rc = 0;
559		}
560
561		/* Close the race with efx_mcdi_ev_cpl() executing just too late
562		 * and completing a request we've just cancelled, by ensuring
563		 * that the seqno check therein fails.
564		 */
565		spin_lock_bh(&mcdi->iface_lock);
566		++mcdi->seqno;
567		++mcdi->credits;
568		spin_unlock_bh(&mcdi->iface_lock);
569	}
570
571	if (rc != 0) {
572		if (outlen_actual)
573			*outlen_actual = 0;
574	} else {
575		size_t hdr_len, data_len, err_len;
576
577		/* At the very least we need a memory barrier here to ensure
578		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
579		 * a spurious efx_mcdi_ev_cpl() running concurrently by
580		 * acquiring the iface_lock. */
581		spin_lock_bh(&mcdi->iface_lock);
582		rc = mcdi->resprc;
583		hdr_len = mcdi->resp_hdr_len;
584		data_len = mcdi->resp_data_len;
585		err_len = min(sizeof(errbuf), data_len);
586		spin_unlock_bh(&mcdi->iface_lock);
587
588		BUG_ON(rc > 0);
589
590		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
591					      min(outlen, data_len));
592		if (outlen_actual)
593			*outlen_actual = data_len;
594
595		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
596
597		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
598			/* Don't reset if MC_CMD_REBOOT returns EIO */
599		} else if (rc == -EIO || rc == -EINTR) {
600			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
601				  -rc);
602			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
603		} else if (rc && !quiet) {
604			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
605					       rc);
606		}
607
608		if (rc == -EIO || rc == -EINTR) {
609			msleep(MCDI_STATUS_SLEEP_MS);
610			efx_mcdi_poll_reboot(efx);
611			mcdi->new_epoch = true;
612		}
613	}
614
615	efx_mcdi_release(mcdi);
616	return rc;
617}
618
619static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
620			 const efx_dword_t *inbuf, size_t inlen,
621			 efx_dword_t *outbuf, size_t outlen,
622			 size_t *outlen_actual, bool quiet)
623{
624	int rc;
625
626	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
627	if (rc) {
628		if (outlen_actual)
629			*outlen_actual = 0;
630		return rc;
631	}
632	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
633				    outlen_actual, quiet);
634}
635
636int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
637		 const efx_dword_t *inbuf, size_t inlen,
638		 efx_dword_t *outbuf, size_t outlen,
639		 size_t *outlen_actual)
640{
641	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
642			     outlen_actual, false);
643}
644
645/* Normally, on receiving an error code in the MCDI response,
646 * efx_mcdi_rpc will log an error message containing (among other
647 * things) the raw error code, by means of efx_mcdi_display_error.
648 * This _quiet version suppresses that; if the caller wishes to log
649 * the error conditionally on the return code, it should call this
650 * function and is then responsible for calling efx_mcdi_display_error
651 * as needed.
652 */
653int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
654		       const efx_dword_t *inbuf, size_t inlen,
655		       efx_dword_t *outbuf, size_t outlen,
656		       size_t *outlen_actual)
657{
658	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
659			     outlen_actual, true);
660}
661
662int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
663		       const efx_dword_t *inbuf, size_t inlen)
664{
665	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
666	int rc;
667
668	rc = efx_mcdi_check_supported(efx, cmd, inlen);
669	if (rc)
670		return rc;
671
672	if (efx->mc_bist_for_other_fn)
673		return -ENETDOWN;
674
675	efx_mcdi_acquire_sync(mcdi);
676	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
677	return 0;
678}
679
680static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
681			       const efx_dword_t *inbuf, size_t inlen,
682			       size_t outlen,
683			       efx_mcdi_async_completer *complete,
684			       unsigned long cookie, bool quiet)
685{
686	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
687	struct efx_mcdi_async_param *async;
688	int rc;
689
690	rc = efx_mcdi_check_supported(efx, cmd, inlen);
691	if (rc)
692		return rc;
693
694	if (efx->mc_bist_for_other_fn)
695		return -ENETDOWN;
696
697	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
698			GFP_ATOMIC);
699	if (!async)
700		return -ENOMEM;
701
702	async->cmd = cmd;
703	async->inlen = inlen;
704	async->outlen = outlen;
705	async->quiet = quiet;
706	async->complete = complete;
707	async->cookie = cookie;
708	memcpy(async + 1, inbuf, inlen);
709
710	spin_lock_bh(&mcdi->async_lock);
711
712	if (mcdi->mode == MCDI_MODE_EVENTS) {
713		list_add_tail(&async->list, &mcdi->async_list);
714
715		/* If this is at the front of the queue, try to start it
716		 * immediately
717		 */
718		if (mcdi->async_list.next == &async->list &&
719		    efx_mcdi_acquire_async(mcdi)) {
720			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
721			mod_timer(&mcdi->async_timer,
722				  jiffies + MCDI_RPC_TIMEOUT);
723		}
724	} else {
725		kfree(async);
726		rc = -ENETDOWN;
727	}
728
729	spin_unlock_bh(&mcdi->async_lock);
730
731	return rc;
732}
733
734/**
735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
736 * @efx: NIC through which to issue the command
737 * @cmd: Command type number
738 * @inbuf: Command parameters
739 * @inlen: Length of command parameters, in bytes
740 * @outlen: Length to allocate for response buffer, in bytes
741 * @complete: Function to be called on completion or cancellation.
742 * @cookie: Arbitrary value to be passed to @complete.
743 *
744 * This function does not sleep and therefore may be called in atomic
745 * context.  It will fail if event queues are disabled or if MCDI
746 * event completions have been disabled due to an error.
747 *
748 * If it succeeds, the @complete function will be called exactly once
749 * in atomic context, when one of the following occurs:
750 * (a) the completion event is received (in NAPI context)
751 * (b) event queues are disabled (in the process that disables them)
752 * (c) the request times-out (in timer context)
753 */
754int
755efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
756		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
757		   efx_mcdi_async_completer *complete, unsigned long cookie)
758{
759	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
760				   cookie, false);
761}
762
763int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
764			     const efx_dword_t *inbuf, size_t inlen,
765			     size_t outlen, efx_mcdi_async_completer *complete,
766			     unsigned long cookie)
767{
768	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
769				   cookie, true);
770}
771
772int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
773			efx_dword_t *outbuf, size_t outlen,
774			size_t *outlen_actual)
775{
776	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
777				    outlen_actual, false);
778}
779
780int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
781			      efx_dword_t *outbuf, size_t outlen,
782			      size_t *outlen_actual)
783{
784	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
785				    outlen_actual, true);
786}
787
788void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
789			    size_t inlen, efx_dword_t *outbuf,
790			    size_t outlen, int rc)
791{
792	int code = 0, err_arg = 0;
793
794	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
795		code = MCDI_DWORD(outbuf, ERR_CODE);
796	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
797		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
798	netif_err(efx, hw, efx->net_dev,
799		  "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
800		  cmd, (int)inlen, rc, code, err_arg);
801}
802
803/* Switch to polled MCDI completions.  This can be called in various
804 * error conditions with various locks held, so it must be lockless.
805 * Caller is responsible for flushing asynchronous requests later.
806 */
807void efx_mcdi_mode_poll(struct efx_nic *efx)
808{
809	struct efx_mcdi_iface *mcdi;
810
811	if (!efx->mcdi)
812		return;
813
814	mcdi = efx_mcdi(efx);
815	if (mcdi->mode == MCDI_MODE_POLL)
816		return;
817
818	/* We can switch from event completion to polled completion, because
819	 * mcdi requests are always completed in shared memory. We do this by
820	 * switching the mode to POLL'd then completing the request.
821	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
822	 *
823	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
824	 * which efx_mcdi_complete_sync() provides for us.
825	 */
826	mcdi->mode = MCDI_MODE_POLL;
827
828	efx_mcdi_complete_sync(mcdi);
829}
830
831/* Flush any running or queued asynchronous requests, after event processing
832 * is stopped
833 */
834void efx_mcdi_flush_async(struct efx_nic *efx)
835{
836	struct efx_mcdi_async_param *async, *next;
837	struct efx_mcdi_iface *mcdi;
838
839	if (!efx->mcdi)
840		return;
841
842	mcdi = efx_mcdi(efx);
843
844	/* We must be in polling mode so no more requests can be queued */
845	BUG_ON(mcdi->mode != MCDI_MODE_POLL);
846
847	del_timer_sync(&mcdi->async_timer);
848
849	/* If a request is still running, make sure we give the MC
850	 * time to complete it so that the response won't overwrite our
851	 * next request.
852	 */
853	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
854		efx_mcdi_poll(efx);
855		mcdi->state = MCDI_STATE_QUIESCENT;
856	}
857
858	/* Nothing else will access the async list now, so it is safe
859	 * to walk it without holding async_lock.  If we hold it while
860	 * calling a completer then lockdep may warn that we have
861	 * acquired locks in the wrong order.
862	 */
863	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
864		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
865		list_del(&async->list);
866		kfree(async);
867	}
868}
869
870void efx_mcdi_mode_event(struct efx_nic *efx)
871{
872	struct efx_mcdi_iface *mcdi;
873
874	if (!efx->mcdi)
875		return;
876
877	mcdi = efx_mcdi(efx);
878
879	if (mcdi->mode == MCDI_MODE_EVENTS)
880		return;
881
882	/* We can't switch from polled to event completion in the middle of a
883	 * request, because the completion method is specified in the request.
884	 * So acquire the interface to serialise the requestors. We don't need
885	 * to acquire the iface_lock to change the mode here, but we do need a
886	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
887	 * efx_mcdi_acquire() provides.
888	 */
889	efx_mcdi_acquire_sync(mcdi);
890	mcdi->mode = MCDI_MODE_EVENTS;
891	efx_mcdi_release(mcdi);
892}
893
894static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
895{
896	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
897
898	/* If there is an outstanding MCDI request, it has been terminated
899	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
900	 * in polled mode, then do nothing because the MC reboot handler will
901	 * set the header correctly. However, if the mcdi interface is waiting
902	 * for a CMDDONE event it won't receive it [and since all MCDI events
903	 * are sent to the same queue, we can't be racing with
904	 * efx_mcdi_ev_cpl()]
905	 *
906	 * If there is an outstanding asynchronous request, we can't
907	 * complete it now (efx_mcdi_complete() would deadlock).  The
908	 * reset process will take care of this.
909	 *
910	 * There's a race here with efx_mcdi_send_request(), because
911	 * we might receive a REBOOT event *before* the request has
912	 * been copied out. In polled mode (during startup) this is
913	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
914	 * event mode, this condition is just an edge-case of
915	 * receiving a REBOOT event after posting the MCDI
916	 * request. Did the mc reboot before or after the copyout? The
917	 * best we can do always is just return failure.
918	 */
919	spin_lock(&mcdi->iface_lock);
920	if (efx_mcdi_complete_sync(mcdi)) {
921		if (mcdi->mode == MCDI_MODE_EVENTS) {
922			mcdi->resprc = rc;
923			mcdi->resp_hdr_len = 0;
924			mcdi->resp_data_len = 0;
925			++mcdi->credits;
926		}
927	} else {
928		int count;
929
930		/* Consume the status word since efx_mcdi_rpc_finish() won't */
931		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
932			if (efx_mcdi_poll_reboot(efx))
933				break;
934			udelay(MCDI_STATUS_DELAY_US);
935		}
936		mcdi->new_epoch = true;
937
938		/* Nobody was waiting for an MCDI request, so trigger a reset */
939		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
940	}
941
942	spin_unlock(&mcdi->iface_lock);
943}
944
945/* The MC is going down in to BIST mode. set the BIST flag to block
946 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
947 * (which doesn't actually execute a reset, it waits for the controlling
948 * function to reset it).
949 */
950static void efx_mcdi_ev_bist(struct efx_nic *efx)
951{
952	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
953
954	spin_lock(&mcdi->iface_lock);
955	efx->mc_bist_for_other_fn = true;
956	if (efx_mcdi_complete_sync(mcdi)) {
957		if (mcdi->mode == MCDI_MODE_EVENTS) {
958			mcdi->resprc = -EIO;
959			mcdi->resp_hdr_len = 0;
960			mcdi->resp_data_len = 0;
961			++mcdi->credits;
962		}
963	}
964	mcdi->new_epoch = true;
965	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
966	spin_unlock(&mcdi->iface_lock);
967}
968
969/* Called from  falcon_process_eventq for MCDI events */
970void efx_mcdi_process_event(struct efx_channel *channel,
971			    efx_qword_t *event)
972{
973	struct efx_nic *efx = channel->efx;
974	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
975	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
976
977	switch (code) {
978	case MCDI_EVENT_CODE_BADSSERT:
979		netif_err(efx, hw, efx->net_dev,
980			  "MC watchdog or assertion failure at 0x%x\n", data);
981		efx_mcdi_ev_death(efx, -EINTR);
982		break;
983
984	case MCDI_EVENT_CODE_PMNOTICE:
985		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
986		break;
987
988	case MCDI_EVENT_CODE_CMDDONE:
989		efx_mcdi_ev_cpl(efx,
990				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
991				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
992				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
993		break;
994
995	case MCDI_EVENT_CODE_LINKCHANGE:
996		efx_mcdi_process_link_change(efx, event);
997		break;
998	case MCDI_EVENT_CODE_SENSOREVT:
999		efx_mcdi_sensor_event(efx, event);
1000		break;
1001	case MCDI_EVENT_CODE_SCHEDERR:
1002		netif_dbg(efx, hw, efx->net_dev,
1003			  "MC Scheduler alert (0x%x)\n", data);
1004		break;
1005	case MCDI_EVENT_CODE_REBOOT:
1006	case MCDI_EVENT_CODE_MC_REBOOT:
1007		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1008		efx_mcdi_ev_death(efx, -EIO);
1009		break;
1010	case MCDI_EVENT_CODE_MC_BIST:
1011		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1012		efx_mcdi_ev_bist(efx);
1013		break;
1014	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1015		/* MAC stats are gather lazily.  We can ignore this. */
1016		break;
1017	case MCDI_EVENT_CODE_FLR:
1018		efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
1019		break;
1020	case MCDI_EVENT_CODE_PTP_RX:
1021	case MCDI_EVENT_CODE_PTP_FAULT:
1022	case MCDI_EVENT_CODE_PTP_PPS:
1023		efx_ptp_event(efx, event);
1024		break;
1025	case MCDI_EVENT_CODE_PTP_TIME:
1026		efx_time_sync_event(channel, event);
1027		break;
1028	case MCDI_EVENT_CODE_TX_FLUSH:
1029	case MCDI_EVENT_CODE_RX_FLUSH:
1030		/* Two flush events will be sent: one to the same event
1031		 * queue as completions, and one to event queue 0.
1032		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1033		 * flag will be set, and we should ignore the event
1034		 * because we want to wait for all completions.
1035		 */
1036		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1037			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1038		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1039			efx_ef10_handle_drain_event(efx);
1040		break;
1041	case MCDI_EVENT_CODE_TX_ERR:
1042	case MCDI_EVENT_CODE_RX_ERR:
1043		netif_err(efx, hw, efx->net_dev,
1044			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1045			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1046			  EFX_QWORD_VAL(*event));
1047		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1048		break;
1049	default:
1050		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1051			  code);
1052	}
1053}
1054
1055/**************************************************************************
1056 *
1057 * Specific request functions
1058 *
1059 **************************************************************************
1060 */
1061
1062void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1063{
1064	MCDI_DECLARE_BUF(outbuf,
1065			 max(MC_CMD_GET_VERSION_OUT_LEN,
1066			     MC_CMD_GET_CAPABILITIES_OUT_LEN));
1067	size_t outlength;
1068	const __le16 *ver_words;
1069	size_t offset;
1070	int rc;
1071
1072	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1073	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1074			  outbuf, sizeof(outbuf), &outlength);
1075	if (rc)
1076		goto fail;
1077	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1078		rc = -EIO;
1079		goto fail;
1080	}
1081
1082	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1083	offset = snprintf(buf, len, "%u.%u.%u.%u",
1084			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1085			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1086
1087	/* EF10 may have multiple datapath firmware variants within a
1088	 * single version.  Report which variants are running.
1089	 */
1090	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1091		BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
1092		rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
1093				  outbuf, sizeof(outbuf), &outlength);
1094		if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN)
1095			offset += snprintf(
1096				buf + offset, len - offset, " rx? tx?");
1097		else
1098			offset += snprintf(
1099				buf + offset, len - offset, " rx%x tx%x",
1100				MCDI_WORD(outbuf,
1101					  GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID),
1102				MCDI_WORD(outbuf,
1103					  GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID));
1104
1105		/* It's theoretically possible for the string to exceed 31
1106		 * characters, though in practice the first three version
1107		 * components are short enough that this doesn't happen.
1108		 */
1109		if (WARN_ON(offset >= len))
1110			buf[0] = 0;
1111	}
1112
1113	return;
1114
1115fail:
1116	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1117	buf[0] = 0;
1118}
1119
1120static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1121			       bool *was_attached)
1122{
1123	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1124	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1125	size_t outlen;
1126	int rc;
1127
1128	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1129		       driver_operating ? 1 : 0);
1130	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1131	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1132
1133	rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1134			  outbuf, sizeof(outbuf), &outlen);
1135	if (rc)
1136		goto fail;
1137	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1138		rc = -EIO;
1139		goto fail;
1140	}
1141
1142	if (driver_operating) {
1143		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1144			efx->mcdi->fn_flags =
1145				MCDI_DWORD(outbuf,
1146					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1147		} else {
1148			/* Synthesise flags for Siena */
1149			efx->mcdi->fn_flags =
1150				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1151				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1152				(efx_port_num(efx) == 0) <<
1153				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1154		}
1155	}
1156
1157	/* We currently assume we have control of the external link
1158	 * and are completely trusted by firmware.  Abort probing
1159	 * if that's not true for this function.
1160	 */
1161	if (driver_operating &&
1162	    (efx->mcdi->fn_flags &
1163	     (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1164	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) !=
1165	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1166	     1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) {
1167		netif_err(efx, probe, efx->net_dev,
1168			  "This driver version only supports one function per port\n");
1169		return -ENODEV;
1170	}
1171
1172	if (was_attached != NULL)
1173		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1174	return 0;
1175
1176fail:
1177	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1178	return rc;
1179}
1180
1181int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1182			   u16 *fw_subtype_list, u32 *capabilities)
1183{
1184	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1185	size_t outlen, i;
1186	int port_num = efx_port_num(efx);
1187	int rc;
1188
1189	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1190
1191	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1192			  outbuf, sizeof(outbuf), &outlen);
1193	if (rc)
1194		goto fail;
1195
1196	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1197		rc = -EIO;
1198		goto fail;
1199	}
1200
1201	if (mac_address)
1202		memcpy(mac_address,
1203		       port_num ?
1204		       MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1205		       MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0),
1206		       ETH_ALEN);
1207	if (fw_subtype_list) {
1208		for (i = 0;
1209		     i < MCDI_VAR_ARRAY_LEN(outlen,
1210					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1211		     i++)
1212			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1213				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1214		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1215			fw_subtype_list[i] = 0;
1216	}
1217	if (capabilities) {
1218		if (port_num)
1219			*capabilities = MCDI_DWORD(outbuf,
1220					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1221		else
1222			*capabilities = MCDI_DWORD(outbuf,
1223					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1224	}
1225
1226	return 0;
1227
1228fail:
1229	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1230		  __func__, rc, (int)outlen);
1231
1232	return rc;
1233}
1234
1235int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1236{
1237	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1238	u32 dest = 0;
1239	int rc;
1240
1241	if (uart)
1242		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1243	if (evq)
1244		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1245
1246	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1247	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1248
1249	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1250
1251	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1252			  NULL, 0, NULL);
1253	return rc;
1254}
1255
1256int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1257{
1258	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1259	size_t outlen;
1260	int rc;
1261
1262	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1263
1264	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1265			  outbuf, sizeof(outbuf), &outlen);
1266	if (rc)
1267		goto fail;
1268	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1269		rc = -EIO;
1270		goto fail;
1271	}
1272
1273	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1274	return 0;
1275
1276fail:
1277	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1278		  __func__, rc);
1279	return rc;
1280}
1281
1282int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1283			size_t *size_out, size_t *erase_size_out,
1284			bool *protected_out)
1285{
1286	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1287	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1288	size_t outlen;
1289	int rc;
1290
1291	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1292
1293	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1294			  outbuf, sizeof(outbuf), &outlen);
1295	if (rc)
1296		goto fail;
1297	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1298		rc = -EIO;
1299		goto fail;
1300	}
1301
1302	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1303	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1304	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1305				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1306	return 0;
1307
1308fail:
1309	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1310	return rc;
1311}
1312
1313static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1314{
1315	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1316	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1317	int rc;
1318
1319	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1320
1321	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1322			  outbuf, sizeof(outbuf), NULL);
1323	if (rc)
1324		return rc;
1325
1326	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1327	case MC_CMD_NVRAM_TEST_PASS:
1328	case MC_CMD_NVRAM_TEST_NOTSUPP:
1329		return 0;
1330	default:
1331		return -EIO;
1332	}
1333}
1334
1335int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1336{
1337	u32 nvram_types;
1338	unsigned int type;
1339	int rc;
1340
1341	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1342	if (rc)
1343		goto fail1;
1344
1345	type = 0;
1346	while (nvram_types != 0) {
1347		if (nvram_types & 1) {
1348			rc = efx_mcdi_nvram_test(efx, type);
1349			if (rc)
1350				goto fail2;
1351		}
1352		type++;
1353		nvram_types >>= 1;
1354	}
1355
1356	return 0;
1357
1358fail2:
1359	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1360		  __func__, type);
1361fail1:
1362	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1363	return rc;
1364}
1365
1366static int efx_mcdi_read_assertion(struct efx_nic *efx)
1367{
1368	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1369	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1370	unsigned int flags, index;
1371	const char *reason;
1372	size_t outlen;
1373	int retry;
1374	int rc;
1375
1376	/* Attempt to read any stored assertion state before we reboot
1377	 * the mcfw out of the assertion handler. Retry twice, once
1378	 * because a boot-time assertion might cause this command to fail
1379	 * with EINTR. And once again because GET_ASSERTS can race with
1380	 * MC_CMD_REBOOT running on the other port. */
1381	retry = 2;
1382	do {
1383		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1384		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1385					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1386					outbuf, sizeof(outbuf), &outlen);
1387	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1388
1389	if (rc) {
1390		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1391				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1392				       outlen, rc);
1393		return rc;
1394	}
1395	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1396		return -EIO;
1397
1398	/* Print out any recorded assertion state */
1399	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1400	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1401		return 0;
1402
1403	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1404		? "system-level assertion"
1405		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1406		? "thread-level assertion"
1407		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1408		? "watchdog reset"
1409		: "unknown assertion";
1410	netif_err(efx, hw, efx->net_dev,
1411		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1412		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1413		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1414
1415	/* Print out the registers */
1416	for (index = 0;
1417	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1418	     index++)
1419		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1420			  1 + index,
1421			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1422					   index));
1423
1424	return 0;
1425}
1426
1427static void efx_mcdi_exit_assertion(struct efx_nic *efx)
1428{
1429	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1430
1431	/* If the MC is running debug firmware, it might now be
1432	 * waiting for a debugger to attach, but we just want it to
1433	 * reboot.  We set a flag that makes the command a no-op if it
1434	 * has already done so.  We don't know what return code to
1435	 * expect (0 or -EIO), so ignore it.
1436	 */
1437	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1438	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1439		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1440	(void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1441			    NULL, 0, NULL);
1442}
1443
1444int efx_mcdi_handle_assertion(struct efx_nic *efx)
1445{
1446	int rc;
1447
1448	rc = efx_mcdi_read_assertion(efx);
1449	if (rc)
1450		return rc;
1451
1452	efx_mcdi_exit_assertion(efx);
1453
1454	return 0;
1455}
1456
1457void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1458{
1459	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1460	int rc;
1461
1462	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1463	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1464	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1465
1466	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1467
1468	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1469
1470	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1471			  NULL, 0, NULL);
1472}
1473
1474static int efx_mcdi_reset_port(struct efx_nic *efx)
1475{
1476	return efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
1477}
1478
1479static int efx_mcdi_reset_mc(struct efx_nic *efx)
1480{
1481	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1482	int rc;
1483
1484	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1485	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1486	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1487			  NULL, 0, NULL);
1488	/* White is black, and up is down */
1489	if (rc == -EIO)
1490		return 0;
1491	if (rc == 0)
1492		rc = -EIO;
1493	return rc;
1494}
1495
1496enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1497{
1498	return RESET_TYPE_RECOVER_OR_ALL;
1499}
1500
1501int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1502{
1503	int rc;
1504
1505	/* Recover from a failed assertion pre-reset */
1506	rc = efx_mcdi_handle_assertion(efx);
1507	if (rc)
1508		return rc;
1509
1510	if (method == RESET_TYPE_WORLD)
1511		return efx_mcdi_reset_mc(efx);
1512	else
1513		return efx_mcdi_reset_port(efx);
1514}
1515
1516static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1517				   const u8 *mac, int *id_out)
1518{
1519	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1520	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1521	size_t outlen;
1522	int rc;
1523
1524	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1525	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1526		       MC_CMD_FILTER_MODE_SIMPLE);
1527	memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
1528
1529	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1530			  outbuf, sizeof(outbuf), &outlen);
1531	if (rc)
1532		goto fail;
1533
1534	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1535		rc = -EIO;
1536		goto fail;
1537	}
1538
1539	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1540
1541	return 0;
1542
1543fail:
1544	*id_out = -1;
1545	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1546	return rc;
1547
1548}
1549
1550
1551int
1552efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1553{
1554	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1555}
1556
1557
1558int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1559{
1560	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1561	size_t outlen;
1562	int rc;
1563
1564	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1565			  outbuf, sizeof(outbuf), &outlen);
1566	if (rc)
1567		goto fail;
1568
1569	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1570		rc = -EIO;
1571		goto fail;
1572	}
1573
1574	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1575
1576	return 0;
1577
1578fail:
1579	*id_out = -1;
1580	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1581	return rc;
1582}
1583
1584
1585int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1586{
1587	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1588	int rc;
1589
1590	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1591
1592	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1593			  NULL, 0, NULL);
1594	return rc;
1595}
1596
1597int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1598{
1599	struct efx_channel *channel;
1600	struct efx_rx_queue *rx_queue;
1601	MCDI_DECLARE_BUF(inbuf,
1602			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1603	int rc, count;
1604
1605	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1606		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1607
1608	count = 0;
1609	efx_for_each_channel(channel, efx) {
1610		efx_for_each_channel_rx_queue(rx_queue, channel) {
1611			if (rx_queue->flush_pending) {
1612				rx_queue->flush_pending = false;
1613				atomic_dec(&efx->rxq_flush_pending);
1614				MCDI_SET_ARRAY_DWORD(
1615					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1616					count, efx_rx_queue_index(rx_queue));
1617				count++;
1618			}
1619		}
1620	}
1621
1622	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1623			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1624	WARN_ON(rc < 0);
1625
1626	return rc;
1627}
1628
1629int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1630{
1631	int rc;
1632
1633	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1634	return rc;
1635}
1636
1637int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
1638{
1639	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1640
1641	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1642	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1643	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1644	return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1645			    NULL, 0, NULL);
1646}
1647
1648#ifdef CONFIG_SFC_MTD
1649
1650#define EFX_MCDI_NVRAM_LEN_MAX 128
1651
1652static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1653{
1654	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1655	int rc;
1656
1657	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1658
1659	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1660
1661	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1662			  NULL, 0, NULL);
1663	return rc;
1664}
1665
1666static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1667			       loff_t offset, u8 *buffer, size_t length)
1668{
1669	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1670	MCDI_DECLARE_BUF(outbuf,
1671			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1672	size_t outlen;
1673	int rc;
1674
1675	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1676	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1677	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1678
1679	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1680			  outbuf, sizeof(outbuf), &outlen);
1681	if (rc)
1682		return rc;
1683
1684	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1685	return 0;
1686}
1687
1688static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1689				loff_t offset, const u8 *buffer, size_t length)
1690{
1691	MCDI_DECLARE_BUF(inbuf,
1692			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1693	int rc;
1694
1695	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1696	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1697	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1698	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1699
1700	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1701
1702	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1703			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1704			  NULL, 0, NULL);
1705	return rc;
1706}
1707
1708static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1709				loff_t offset, size_t length)
1710{
1711	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1712	int rc;
1713
1714	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1715	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1716	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1717
1718	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1719
1720	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1721			  NULL, 0, NULL);
1722	return rc;
1723}
1724
1725static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1726{
1727	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1728	int rc;
1729
1730	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1731
1732	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1733
1734	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1735			  NULL, 0, NULL);
1736	return rc;
1737}
1738
1739int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1740		      size_t len, size_t *retlen, u8 *buffer)
1741{
1742	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1743	struct efx_nic *efx = mtd->priv;
1744	loff_t offset = start;
1745	loff_t end = min_t(loff_t, start + len, mtd->size);
1746	size_t chunk;
1747	int rc = 0;
1748
1749	while (offset < end) {
1750		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1751		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1752					 buffer, chunk);
1753		if (rc)
1754			goto out;
1755		offset += chunk;
1756		buffer += chunk;
1757	}
1758out:
1759	*retlen = offset - start;
1760	return rc;
1761}
1762
1763int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1764{
1765	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1766	struct efx_nic *efx = mtd->priv;
1767	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1768	loff_t end = min_t(loff_t, start + len, mtd->size);
1769	size_t chunk = part->common.mtd.erasesize;
1770	int rc = 0;
1771
1772	if (!part->updating) {
1773		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1774		if (rc)
1775			goto out;
1776		part->updating = true;
1777	}
1778
1779	/* The MCDI interface can in fact do multiple erase blocks at once;
1780	 * but erasing may be slow, so we make multiple calls here to avoid
1781	 * tripping the MCDI RPC timeout. */
1782	while (offset < end) {
1783		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1784					  chunk);
1785		if (rc)
1786			goto out;
1787		offset += chunk;
1788	}
1789out:
1790	return rc;
1791}
1792
1793int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1794		       size_t len, size_t *retlen, const u8 *buffer)
1795{
1796	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1797	struct efx_nic *efx = mtd->priv;
1798	loff_t offset = start;
1799	loff_t end = min_t(loff_t, start + len, mtd->size);
1800	size_t chunk;
1801	int rc = 0;
1802
1803	if (!part->updating) {
1804		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1805		if (rc)
1806			goto out;
1807		part->updating = true;
1808	}
1809
1810	while (offset < end) {
1811		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1812		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
1813					  buffer, chunk);
1814		if (rc)
1815			goto out;
1816		offset += chunk;
1817		buffer += chunk;
1818	}
1819out:
1820	*retlen = offset - start;
1821	return rc;
1822}
1823
1824int efx_mcdi_mtd_sync(struct mtd_info *mtd)
1825{
1826	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1827	struct efx_nic *efx = mtd->priv;
1828	int rc = 0;
1829
1830	if (part->updating) {
1831		part->updating = false;
1832		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
1833	}
1834
1835	return rc;
1836}
1837
1838void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
1839{
1840	struct efx_mcdi_mtd_partition *mcdi_part =
1841		container_of(part, struct efx_mcdi_mtd_partition, common);
1842	struct efx_nic *efx = part->mtd.priv;
1843
1844	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
1845		 efx->name, part->type_name, mcdi_part->fw_subtype);
1846}
1847
1848#endif /* CONFIG_SFC_MTD */
1849