mcdi.c revision bd9a265db26cdbfe74a303111381d90e66f56877
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include <linux/delay.h>
11#include <asm/cmpxchg.h>
12#include "net_driver.h"
13#include "nic.h"
14#include "io.h"
15#include "farch_regs.h"
16#include "mcdi_pcol.h"
17#include "phy.h"
18
19/**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26#define MCDI_RPC_TIMEOUT       (10 * HZ)
27
28/* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32#define MCDI_STATUS_DELAY_US		100
33#define MCDI_STATUS_DELAY_COUNT		2500
34#define MCDI_STATUS_SLEEP_MS						\
35	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37#define SEQ_MASK							\
38	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40struct efx_mcdi_async_param {
41	struct list_head list;
42	unsigned int cmd;
43	size_t inlen;
44	size_t outlen;
45	bool quiet;
46	efx_mcdi_async_completer *complete;
47	unsigned long cookie;
48	/* followed by request/response buffer */
49};
50
51static void efx_mcdi_timeout_async(unsigned long context);
52static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53			       bool *was_attached_out);
54static bool efx_mcdi_poll_once(struct efx_nic *efx);
55
56static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
57{
58	EFX_BUG_ON_PARANOID(!efx->mcdi);
59	return &efx->mcdi->iface;
60}
61
62int efx_mcdi_init(struct efx_nic *efx)
63{
64	struct efx_mcdi_iface *mcdi;
65	bool already_attached;
66	int rc;
67
68	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
69	if (!efx->mcdi)
70		return -ENOMEM;
71
72	mcdi = efx_mcdi(efx);
73	mcdi->efx = efx;
74	init_waitqueue_head(&mcdi->wq);
75	spin_lock_init(&mcdi->iface_lock);
76	mcdi->state = MCDI_STATE_QUIESCENT;
77	mcdi->mode = MCDI_MODE_POLL;
78	spin_lock_init(&mcdi->async_lock);
79	INIT_LIST_HEAD(&mcdi->async_list);
80	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
81		    (unsigned long)mcdi);
82
83	(void) efx_mcdi_poll_reboot(efx);
84	mcdi->new_epoch = true;
85
86	/* Recover from a failed assertion before probing */
87	rc = efx_mcdi_handle_assertion(efx);
88	if (rc)
89		return rc;
90
91	/* Let the MC (and BMC, if this is a LOM) know that the driver
92	 * is loaded. We should do this before we reset the NIC.
93	 */
94	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
95	if (rc) {
96		netif_err(efx, probe, efx->net_dev,
97			  "Unable to register driver with MCPU\n");
98		return rc;
99	}
100	if (already_attached)
101		/* Not a fatal error */
102		netif_err(efx, probe, efx->net_dev,
103			  "Host already registered with MCPU\n");
104
105	return 0;
106}
107
108void efx_mcdi_fini(struct efx_nic *efx)
109{
110	if (!efx->mcdi)
111		return;
112
113	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
114
115	/* Relinquish the device (back to the BMC, if this is a LOM) */
116	efx_mcdi_drv_attach(efx, false, NULL);
117
118	kfree(efx->mcdi);
119}
120
121static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
122				  const efx_dword_t *inbuf, size_t inlen)
123{
124	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
125	efx_dword_t hdr[2];
126	size_t hdr_len;
127	u32 xflags, seqno;
128
129	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
130
131	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
132	spin_lock_bh(&mcdi->iface_lock);
133	++mcdi->seqno;
134	spin_unlock_bh(&mcdi->iface_lock);
135
136	seqno = mcdi->seqno & SEQ_MASK;
137	xflags = 0;
138	if (mcdi->mode == MCDI_MODE_EVENTS)
139		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
140
141	if (efx->type->mcdi_max_ver == 1) {
142		/* MCDI v1 */
143		EFX_POPULATE_DWORD_7(hdr[0],
144				     MCDI_HEADER_RESPONSE, 0,
145				     MCDI_HEADER_RESYNC, 1,
146				     MCDI_HEADER_CODE, cmd,
147				     MCDI_HEADER_DATALEN, inlen,
148				     MCDI_HEADER_SEQ, seqno,
149				     MCDI_HEADER_XFLAGS, xflags,
150				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
151		hdr_len = 4;
152	} else {
153		/* MCDI v2 */
154		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
155		EFX_POPULATE_DWORD_7(hdr[0],
156				     MCDI_HEADER_RESPONSE, 0,
157				     MCDI_HEADER_RESYNC, 1,
158				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
159				     MCDI_HEADER_DATALEN, 0,
160				     MCDI_HEADER_SEQ, seqno,
161				     MCDI_HEADER_XFLAGS, xflags,
162				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
163		EFX_POPULATE_DWORD_2(hdr[1],
164				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
165				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
166		hdr_len = 8;
167	}
168
169	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
170
171	mcdi->new_epoch = false;
172}
173
174static int efx_mcdi_errno(unsigned int mcdi_err)
175{
176	switch (mcdi_err) {
177	case 0:
178		return 0;
179#define TRANSLATE_ERROR(name)					\
180	case MC_CMD_ERR_ ## name:				\
181		return -name;
182	TRANSLATE_ERROR(EPERM);
183	TRANSLATE_ERROR(ENOENT);
184	TRANSLATE_ERROR(EINTR);
185	TRANSLATE_ERROR(EAGAIN);
186	TRANSLATE_ERROR(EACCES);
187	TRANSLATE_ERROR(EBUSY);
188	TRANSLATE_ERROR(EINVAL);
189	TRANSLATE_ERROR(EDEADLK);
190	TRANSLATE_ERROR(ENOSYS);
191	TRANSLATE_ERROR(ETIME);
192	TRANSLATE_ERROR(EALREADY);
193	TRANSLATE_ERROR(ENOSPC);
194#undef TRANSLATE_ERROR
195	case MC_CMD_ERR_ENOTSUP:
196		return -EOPNOTSUPP;
197	case MC_CMD_ERR_ALLOC_FAIL:
198		return -ENOBUFS;
199	case MC_CMD_ERR_MAC_EXIST:
200		return -EADDRINUSE;
201	default:
202		return -EPROTO;
203	}
204}
205
206static void efx_mcdi_read_response_header(struct efx_nic *efx)
207{
208	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
209	unsigned int respseq, respcmd, error;
210	efx_dword_t hdr;
211
212	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
213	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
214	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
215	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
216
217	if (respcmd != MC_CMD_V2_EXTN) {
218		mcdi->resp_hdr_len = 4;
219		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
220	} else {
221		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
222		mcdi->resp_hdr_len = 8;
223		mcdi->resp_data_len =
224			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
225	}
226
227	if (error && mcdi->resp_data_len == 0) {
228		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
229		mcdi->resprc = -EIO;
230	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
231		netif_err(efx, hw, efx->net_dev,
232			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
233			  respseq, mcdi->seqno);
234		mcdi->resprc = -EIO;
235	} else if (error) {
236		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
237		mcdi->resprc =
238			efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
239	} else {
240		mcdi->resprc = 0;
241	}
242}
243
244static bool efx_mcdi_poll_once(struct efx_nic *efx)
245{
246	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
247
248	rmb();
249	if (!efx->type->mcdi_poll_response(efx))
250		return false;
251
252	spin_lock_bh(&mcdi->iface_lock);
253	efx_mcdi_read_response_header(efx);
254	spin_unlock_bh(&mcdi->iface_lock);
255
256	return true;
257}
258
259static int efx_mcdi_poll(struct efx_nic *efx)
260{
261	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
262	unsigned long time, finish;
263	unsigned int spins;
264	int rc;
265
266	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
267	rc = efx_mcdi_poll_reboot(efx);
268	if (rc) {
269		spin_lock_bh(&mcdi->iface_lock);
270		mcdi->resprc = rc;
271		mcdi->resp_hdr_len = 0;
272		mcdi->resp_data_len = 0;
273		spin_unlock_bh(&mcdi->iface_lock);
274		return 0;
275	}
276
277	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
278	 * because generally mcdi responses are fast. After that, back off
279	 * and poll once a jiffy (approximately)
280	 */
281	spins = TICK_USEC;
282	finish = jiffies + MCDI_RPC_TIMEOUT;
283
284	while (1) {
285		if (spins != 0) {
286			--spins;
287			udelay(1);
288		} else {
289			schedule_timeout_uninterruptible(1);
290		}
291
292		time = jiffies;
293
294		if (efx_mcdi_poll_once(efx))
295			break;
296
297		if (time_after(time, finish))
298			return -ETIMEDOUT;
299	}
300
301	/* Return rc=0 like wait_event_timeout() */
302	return 0;
303}
304
305/* Test and clear MC-rebooted flag for this port/function; reset
306 * software state as necessary.
307 */
308int efx_mcdi_poll_reboot(struct efx_nic *efx)
309{
310	if (!efx->mcdi)
311		return 0;
312
313	return efx->type->mcdi_poll_reboot(efx);
314}
315
316static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
317{
318	return cmpxchg(&mcdi->state,
319		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
320		MCDI_STATE_QUIESCENT;
321}
322
323static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
324{
325	/* Wait until the interface becomes QUIESCENT and we win the race
326	 * to mark it RUNNING_SYNC.
327	 */
328	wait_event(mcdi->wq,
329		   cmpxchg(&mcdi->state,
330			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
331		   MCDI_STATE_QUIESCENT);
332}
333
334static int efx_mcdi_await_completion(struct efx_nic *efx)
335{
336	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
337
338	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
339			       MCDI_RPC_TIMEOUT) == 0)
340		return -ETIMEDOUT;
341
342	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
343	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
344	 * completed the request first, then we'll just end up completing the
345	 * request again, which is safe.
346	 *
347	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
348	 * wait_event_timeout() implicitly provides.
349	 */
350	if (mcdi->mode == MCDI_MODE_POLL)
351		return efx_mcdi_poll(efx);
352
353	return 0;
354}
355
356/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
357 * requester.  Return whether this was done.  Does not take any locks.
358 */
359static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
360{
361	if (cmpxchg(&mcdi->state,
362		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
363	    MCDI_STATE_RUNNING_SYNC) {
364		wake_up(&mcdi->wq);
365		return true;
366	}
367
368	return false;
369}
370
371static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
372{
373	if (mcdi->mode == MCDI_MODE_EVENTS) {
374		struct efx_mcdi_async_param *async;
375		struct efx_nic *efx = mcdi->efx;
376
377		/* Process the asynchronous request queue */
378		spin_lock_bh(&mcdi->async_lock);
379		async = list_first_entry_or_null(
380			&mcdi->async_list, struct efx_mcdi_async_param, list);
381		if (async) {
382			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
383			efx_mcdi_send_request(efx, async->cmd,
384					      (const efx_dword_t *)(async + 1),
385					      async->inlen);
386			mod_timer(&mcdi->async_timer,
387				  jiffies + MCDI_RPC_TIMEOUT);
388		}
389		spin_unlock_bh(&mcdi->async_lock);
390
391		if (async)
392			return;
393	}
394
395	mcdi->state = MCDI_STATE_QUIESCENT;
396	wake_up(&mcdi->wq);
397}
398
399/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
400 * asynchronous completion function, and release the interface.
401 * Return whether this was done.  Must be called in bh-disabled
402 * context.  Will take iface_lock and async_lock.
403 */
404static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
405{
406	struct efx_nic *efx = mcdi->efx;
407	struct efx_mcdi_async_param *async;
408	size_t hdr_len, data_len, err_len;
409	efx_dword_t *outbuf;
410	MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
411	int rc;
412
413	if (cmpxchg(&mcdi->state,
414		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
415	    MCDI_STATE_RUNNING_ASYNC)
416		return false;
417
418	spin_lock(&mcdi->iface_lock);
419	if (timeout) {
420		/* Ensure that if the completion event arrives later,
421		 * the seqno check in efx_mcdi_ev_cpl() will fail
422		 */
423		++mcdi->seqno;
424		++mcdi->credits;
425		rc = -ETIMEDOUT;
426		hdr_len = 0;
427		data_len = 0;
428	} else {
429		rc = mcdi->resprc;
430		hdr_len = mcdi->resp_hdr_len;
431		data_len = mcdi->resp_data_len;
432	}
433	spin_unlock(&mcdi->iface_lock);
434
435	/* Stop the timer.  In case the timer function is running, we
436	 * must wait for it to return so that there is no possibility
437	 * of it aborting the next request.
438	 */
439	if (!timeout)
440		del_timer_sync(&mcdi->async_timer);
441
442	spin_lock(&mcdi->async_lock);
443	async = list_first_entry(&mcdi->async_list,
444				 struct efx_mcdi_async_param, list);
445	list_del(&async->list);
446	spin_unlock(&mcdi->async_lock);
447
448	outbuf = (efx_dword_t *)(async + 1);
449	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
450				      min(async->outlen, data_len));
451	if (!timeout && rc && !async->quiet) {
452		err_len = min(sizeof(errbuf), data_len);
453		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
454					      sizeof(errbuf));
455		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
456				       err_len, rc);
457	}
458	async->complete(efx, async->cookie, rc, outbuf, data_len);
459	kfree(async);
460
461	efx_mcdi_release(mcdi);
462
463	return true;
464}
465
466static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
467			    unsigned int datalen, unsigned int mcdi_err)
468{
469	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
470	bool wake = false;
471
472	spin_lock(&mcdi->iface_lock);
473
474	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
475		if (mcdi->credits)
476			/* The request has been cancelled */
477			--mcdi->credits;
478		else
479			netif_err(efx, hw, efx->net_dev,
480				  "MC response mismatch tx seq 0x%x rx "
481				  "seq 0x%x\n", seqno, mcdi->seqno);
482	} else {
483		if (efx->type->mcdi_max_ver >= 2) {
484			/* MCDI v2 responses don't fit in an event */
485			efx_mcdi_read_response_header(efx);
486		} else {
487			mcdi->resprc = efx_mcdi_errno(mcdi_err);
488			mcdi->resp_hdr_len = 4;
489			mcdi->resp_data_len = datalen;
490		}
491
492		wake = true;
493	}
494
495	spin_unlock(&mcdi->iface_lock);
496
497	if (wake) {
498		if (!efx_mcdi_complete_async(mcdi, false))
499			(void) efx_mcdi_complete_sync(mcdi);
500
501		/* If the interface isn't RUNNING_ASYNC or
502		 * RUNNING_SYNC then we've received a duplicate
503		 * completion after we've already transitioned back to
504		 * QUIESCENT. [A subsequent invocation would increment
505		 * seqno, so would have failed the seqno check].
506		 */
507	}
508}
509
510static void efx_mcdi_timeout_async(unsigned long context)
511{
512	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
513
514	efx_mcdi_complete_async(mcdi, true);
515}
516
517static int
518efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
519{
520	if (efx->type->mcdi_max_ver < 0 ||
521	     (efx->type->mcdi_max_ver < 2 &&
522	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
523		return -EINVAL;
524
525	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
526	    (efx->type->mcdi_max_ver < 2 &&
527	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
528		return -EMSGSIZE;
529
530	return 0;
531}
532
533static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
534				efx_dword_t *outbuf, size_t outlen,
535				size_t *outlen_actual, bool quiet)
536{
537	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
538	MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
539	int rc;
540
541	if (mcdi->mode == MCDI_MODE_POLL)
542		rc = efx_mcdi_poll(efx);
543	else
544		rc = efx_mcdi_await_completion(efx);
545
546	if (rc != 0) {
547		netif_err(efx, hw, efx->net_dev,
548			  "MC command 0x%x inlen %d mode %d timed out\n",
549			  cmd, (int)inlen, mcdi->mode);
550
551		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
552			netif_err(efx, hw, efx->net_dev,
553				  "MCDI request was completed without an event\n");
554			rc = 0;
555		}
556
557		/* Close the race with efx_mcdi_ev_cpl() executing just too late
558		 * and completing a request we've just cancelled, by ensuring
559		 * that the seqno check therein fails.
560		 */
561		spin_lock_bh(&mcdi->iface_lock);
562		++mcdi->seqno;
563		++mcdi->credits;
564		spin_unlock_bh(&mcdi->iface_lock);
565	}
566
567	if (rc != 0) {
568		if (outlen_actual)
569			*outlen_actual = 0;
570	} else {
571		size_t hdr_len, data_len, err_len;
572
573		/* At the very least we need a memory barrier here to ensure
574		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
575		 * a spurious efx_mcdi_ev_cpl() running concurrently by
576		 * acquiring the iface_lock. */
577		spin_lock_bh(&mcdi->iface_lock);
578		rc = mcdi->resprc;
579		hdr_len = mcdi->resp_hdr_len;
580		data_len = mcdi->resp_data_len;
581		err_len = min(sizeof(errbuf), data_len);
582		spin_unlock_bh(&mcdi->iface_lock);
583
584		BUG_ON(rc > 0);
585
586		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
587					      min(outlen, data_len));
588		if (outlen_actual)
589			*outlen_actual = data_len;
590
591		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
592
593		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
594			/* Don't reset if MC_CMD_REBOOT returns EIO */
595		} else if (rc == -EIO || rc == -EINTR) {
596			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
597				  -rc);
598			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
599		} else if (rc && !quiet) {
600			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
601					       rc);
602		}
603
604		if (rc == -EIO || rc == -EINTR) {
605			msleep(MCDI_STATUS_SLEEP_MS);
606			efx_mcdi_poll_reboot(efx);
607			mcdi->new_epoch = true;
608		}
609	}
610
611	efx_mcdi_release(mcdi);
612	return rc;
613}
614
615static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
616			 const efx_dword_t *inbuf, size_t inlen,
617			 efx_dword_t *outbuf, size_t outlen,
618			 size_t *outlen_actual, bool quiet)
619{
620	int rc;
621
622	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
623	if (rc) {
624		if (outlen_actual)
625			*outlen_actual = 0;
626		return rc;
627	}
628	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
629				    outlen_actual, quiet);
630}
631
632int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
633		 const efx_dword_t *inbuf, size_t inlen,
634		 efx_dword_t *outbuf, size_t outlen,
635		 size_t *outlen_actual)
636{
637	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
638			     outlen_actual, false);
639}
640
641/* Normally, on receiving an error code in the MCDI response,
642 * efx_mcdi_rpc will log an error message containing (among other
643 * things) the raw error code, by means of efx_mcdi_display_error.
644 * This _quiet version suppresses that; if the caller wishes to log
645 * the error conditionally on the return code, it should call this
646 * function and is then responsible for calling efx_mcdi_display_error
647 * as needed.
648 */
649int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
650		       const efx_dword_t *inbuf, size_t inlen,
651		       efx_dword_t *outbuf, size_t outlen,
652		       size_t *outlen_actual)
653{
654	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
655			     outlen_actual, true);
656}
657
658int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
659		       const efx_dword_t *inbuf, size_t inlen)
660{
661	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
662	int rc;
663
664	rc = efx_mcdi_check_supported(efx, cmd, inlen);
665	if (rc)
666		return rc;
667
668	if (efx->mc_bist_for_other_fn)
669		return -ENETDOWN;
670
671	efx_mcdi_acquire_sync(mcdi);
672	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
673	return 0;
674}
675
676static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
677			       const efx_dword_t *inbuf, size_t inlen,
678			       size_t outlen,
679			       efx_mcdi_async_completer *complete,
680			       unsigned long cookie, bool quiet)
681{
682	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
683	struct efx_mcdi_async_param *async;
684	int rc;
685
686	rc = efx_mcdi_check_supported(efx, cmd, inlen);
687	if (rc)
688		return rc;
689
690	if (efx->mc_bist_for_other_fn)
691		return -ENETDOWN;
692
693	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
694			GFP_ATOMIC);
695	if (!async)
696		return -ENOMEM;
697
698	async->cmd = cmd;
699	async->inlen = inlen;
700	async->outlen = outlen;
701	async->quiet = quiet;
702	async->complete = complete;
703	async->cookie = cookie;
704	memcpy(async + 1, inbuf, inlen);
705
706	spin_lock_bh(&mcdi->async_lock);
707
708	if (mcdi->mode == MCDI_MODE_EVENTS) {
709		list_add_tail(&async->list, &mcdi->async_list);
710
711		/* If this is at the front of the queue, try to start it
712		 * immediately
713		 */
714		if (mcdi->async_list.next == &async->list &&
715		    efx_mcdi_acquire_async(mcdi)) {
716			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
717			mod_timer(&mcdi->async_timer,
718				  jiffies + MCDI_RPC_TIMEOUT);
719		}
720	} else {
721		kfree(async);
722		rc = -ENETDOWN;
723	}
724
725	spin_unlock_bh(&mcdi->async_lock);
726
727	return rc;
728}
729
730/**
731 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
732 * @efx: NIC through which to issue the command
733 * @cmd: Command type number
734 * @inbuf: Command parameters
735 * @inlen: Length of command parameters, in bytes
736 * @outlen: Length to allocate for response buffer, in bytes
737 * @complete: Function to be called on completion or cancellation.
738 * @cookie: Arbitrary value to be passed to @complete.
739 *
740 * This function does not sleep and therefore may be called in atomic
741 * context.  It will fail if event queues are disabled or if MCDI
742 * event completions have been disabled due to an error.
743 *
744 * If it succeeds, the @complete function will be called exactly once
745 * in atomic context, when one of the following occurs:
746 * (a) the completion event is received (in NAPI context)
747 * (b) event queues are disabled (in the process that disables them)
748 * (c) the request times-out (in timer context)
749 */
750int
751efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
752		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
753		   efx_mcdi_async_completer *complete, unsigned long cookie)
754{
755	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
756				   cookie, false);
757}
758
759int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
760			     const efx_dword_t *inbuf, size_t inlen,
761			     size_t outlen, efx_mcdi_async_completer *complete,
762			     unsigned long cookie)
763{
764	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
765				   cookie, true);
766}
767
768int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
769			efx_dword_t *outbuf, size_t outlen,
770			size_t *outlen_actual)
771{
772	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
773				    outlen_actual, false);
774}
775
776int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
777			      efx_dword_t *outbuf, size_t outlen,
778			      size_t *outlen_actual)
779{
780	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
781				    outlen_actual, true);
782}
783
784void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
785			    size_t inlen, efx_dword_t *outbuf,
786			    size_t outlen, int rc)
787{
788	int code = 0, err_arg = 0;
789
790	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
791		code = MCDI_DWORD(outbuf, ERR_CODE);
792	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
793		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
794	netif_err(efx, hw, efx->net_dev,
795		  "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
796		  cmd, (int)inlen, rc, code, err_arg);
797}
798
799/* Switch to polled MCDI completions.  This can be called in various
800 * error conditions with various locks held, so it must be lockless.
801 * Caller is responsible for flushing asynchronous requests later.
802 */
803void efx_mcdi_mode_poll(struct efx_nic *efx)
804{
805	struct efx_mcdi_iface *mcdi;
806
807	if (!efx->mcdi)
808		return;
809
810	mcdi = efx_mcdi(efx);
811	if (mcdi->mode == MCDI_MODE_POLL)
812		return;
813
814	/* We can switch from event completion to polled completion, because
815	 * mcdi requests are always completed in shared memory. We do this by
816	 * switching the mode to POLL'd then completing the request.
817	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
818	 *
819	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
820	 * which efx_mcdi_complete_sync() provides for us.
821	 */
822	mcdi->mode = MCDI_MODE_POLL;
823
824	efx_mcdi_complete_sync(mcdi);
825}
826
827/* Flush any running or queued asynchronous requests, after event processing
828 * is stopped
829 */
830void efx_mcdi_flush_async(struct efx_nic *efx)
831{
832	struct efx_mcdi_async_param *async, *next;
833	struct efx_mcdi_iface *mcdi;
834
835	if (!efx->mcdi)
836		return;
837
838	mcdi = efx_mcdi(efx);
839
840	/* We must be in polling mode so no more requests can be queued */
841	BUG_ON(mcdi->mode != MCDI_MODE_POLL);
842
843	del_timer_sync(&mcdi->async_timer);
844
845	/* If a request is still running, make sure we give the MC
846	 * time to complete it so that the response won't overwrite our
847	 * next request.
848	 */
849	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
850		efx_mcdi_poll(efx);
851		mcdi->state = MCDI_STATE_QUIESCENT;
852	}
853
854	/* Nothing else will access the async list now, so it is safe
855	 * to walk it without holding async_lock.  If we hold it while
856	 * calling a completer then lockdep may warn that we have
857	 * acquired locks in the wrong order.
858	 */
859	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
860		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
861		list_del(&async->list);
862		kfree(async);
863	}
864}
865
866void efx_mcdi_mode_event(struct efx_nic *efx)
867{
868	struct efx_mcdi_iface *mcdi;
869
870	if (!efx->mcdi)
871		return;
872
873	mcdi = efx_mcdi(efx);
874
875	if (mcdi->mode == MCDI_MODE_EVENTS)
876		return;
877
878	/* We can't switch from polled to event completion in the middle of a
879	 * request, because the completion method is specified in the request.
880	 * So acquire the interface to serialise the requestors. We don't need
881	 * to acquire the iface_lock to change the mode here, but we do need a
882	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
883	 * efx_mcdi_acquire() provides.
884	 */
885	efx_mcdi_acquire_sync(mcdi);
886	mcdi->mode = MCDI_MODE_EVENTS;
887	efx_mcdi_release(mcdi);
888}
889
890static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
891{
892	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
893
894	/* If there is an outstanding MCDI request, it has been terminated
895	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
896	 * in polled mode, then do nothing because the MC reboot handler will
897	 * set the header correctly. However, if the mcdi interface is waiting
898	 * for a CMDDONE event it won't receive it [and since all MCDI events
899	 * are sent to the same queue, we can't be racing with
900	 * efx_mcdi_ev_cpl()]
901	 *
902	 * If there is an outstanding asynchronous request, we can't
903	 * complete it now (efx_mcdi_complete() would deadlock).  The
904	 * reset process will take care of this.
905	 *
906	 * There's a race here with efx_mcdi_send_request(), because
907	 * we might receive a REBOOT event *before* the request has
908	 * been copied out. In polled mode (during startup) this is
909	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
910	 * event mode, this condition is just an edge-case of
911	 * receiving a REBOOT event after posting the MCDI
912	 * request. Did the mc reboot before or after the copyout? The
913	 * best we can do always is just return failure.
914	 */
915	spin_lock(&mcdi->iface_lock);
916	if (efx_mcdi_complete_sync(mcdi)) {
917		if (mcdi->mode == MCDI_MODE_EVENTS) {
918			mcdi->resprc = rc;
919			mcdi->resp_hdr_len = 0;
920			mcdi->resp_data_len = 0;
921			++mcdi->credits;
922		}
923	} else {
924		int count;
925
926		/* Consume the status word since efx_mcdi_rpc_finish() won't */
927		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
928			if (efx_mcdi_poll_reboot(efx))
929				break;
930			udelay(MCDI_STATUS_DELAY_US);
931		}
932		mcdi->new_epoch = true;
933
934		/* Nobody was waiting for an MCDI request, so trigger a reset */
935		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
936	}
937
938	spin_unlock(&mcdi->iface_lock);
939}
940
941/* The MC is going down in to BIST mode. set the BIST flag to block
942 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
943 * (which doesn't actually execute a reset, it waits for the controlling
944 * function to reset it).
945 */
946static void efx_mcdi_ev_bist(struct efx_nic *efx)
947{
948	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
949
950	spin_lock(&mcdi->iface_lock);
951	efx->mc_bist_for_other_fn = true;
952	if (efx_mcdi_complete_sync(mcdi)) {
953		if (mcdi->mode == MCDI_MODE_EVENTS) {
954			mcdi->resprc = -EIO;
955			mcdi->resp_hdr_len = 0;
956			mcdi->resp_data_len = 0;
957			++mcdi->credits;
958		}
959	}
960	mcdi->new_epoch = true;
961	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
962	spin_unlock(&mcdi->iface_lock);
963}
964
965/* Called from  falcon_process_eventq for MCDI events */
966void efx_mcdi_process_event(struct efx_channel *channel,
967			    efx_qword_t *event)
968{
969	struct efx_nic *efx = channel->efx;
970	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
971	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
972
973	switch (code) {
974	case MCDI_EVENT_CODE_BADSSERT:
975		netif_err(efx, hw, efx->net_dev,
976			  "MC watchdog or assertion failure at 0x%x\n", data);
977		efx_mcdi_ev_death(efx, -EINTR);
978		break;
979
980	case MCDI_EVENT_CODE_PMNOTICE:
981		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
982		break;
983
984	case MCDI_EVENT_CODE_CMDDONE:
985		efx_mcdi_ev_cpl(efx,
986				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
987				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
988				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
989		break;
990
991	case MCDI_EVENT_CODE_LINKCHANGE:
992		efx_mcdi_process_link_change(efx, event);
993		break;
994	case MCDI_EVENT_CODE_SENSOREVT:
995		efx_mcdi_sensor_event(efx, event);
996		break;
997	case MCDI_EVENT_CODE_SCHEDERR:
998		netif_dbg(efx, hw, efx->net_dev,
999			  "MC Scheduler alert (0x%x)\n", data);
1000		break;
1001	case MCDI_EVENT_CODE_REBOOT:
1002	case MCDI_EVENT_CODE_MC_REBOOT:
1003		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1004		efx_mcdi_ev_death(efx, -EIO);
1005		break;
1006	case MCDI_EVENT_CODE_MC_BIST:
1007		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1008		efx_mcdi_ev_bist(efx);
1009		break;
1010	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1011		/* MAC stats are gather lazily.  We can ignore this. */
1012		break;
1013	case MCDI_EVENT_CODE_FLR:
1014		efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
1015		break;
1016	case MCDI_EVENT_CODE_PTP_RX:
1017	case MCDI_EVENT_CODE_PTP_FAULT:
1018	case MCDI_EVENT_CODE_PTP_PPS:
1019		efx_ptp_event(efx, event);
1020		break;
1021	case MCDI_EVENT_CODE_PTP_TIME:
1022		efx_time_sync_event(channel, event);
1023		break;
1024	case MCDI_EVENT_CODE_TX_FLUSH:
1025	case MCDI_EVENT_CODE_RX_FLUSH:
1026		/* Two flush events will be sent: one to the same event
1027		 * queue as completions, and one to event queue 0.
1028		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1029		 * flag will be set, and we should ignore the event
1030		 * because we want to wait for all completions.
1031		 */
1032		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1033			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1034		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1035			efx_ef10_handle_drain_event(efx);
1036		break;
1037	case MCDI_EVENT_CODE_TX_ERR:
1038	case MCDI_EVENT_CODE_RX_ERR:
1039		netif_err(efx, hw, efx->net_dev,
1040			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1041			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1042			  EFX_QWORD_VAL(*event));
1043		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1044		break;
1045	default:
1046		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1047			  code);
1048	}
1049}
1050
1051/**************************************************************************
1052 *
1053 * Specific request functions
1054 *
1055 **************************************************************************
1056 */
1057
1058void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1059{
1060	MCDI_DECLARE_BUF(outbuf,
1061			 max(MC_CMD_GET_VERSION_OUT_LEN,
1062			     MC_CMD_GET_CAPABILITIES_OUT_LEN));
1063	size_t outlength;
1064	const __le16 *ver_words;
1065	size_t offset;
1066	int rc;
1067
1068	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1069	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1070			  outbuf, sizeof(outbuf), &outlength);
1071	if (rc)
1072		goto fail;
1073	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1074		rc = -EIO;
1075		goto fail;
1076	}
1077
1078	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1079	offset = snprintf(buf, len, "%u.%u.%u.%u",
1080			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1081			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1082
1083	/* EF10 may have multiple datapath firmware variants within a
1084	 * single version.  Report which variants are running.
1085	 */
1086	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1087		BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
1088		rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
1089				  outbuf, sizeof(outbuf), &outlength);
1090		if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN)
1091			offset += snprintf(
1092				buf + offset, len - offset, " rx? tx?");
1093		else
1094			offset += snprintf(
1095				buf + offset, len - offset, " rx%x tx%x",
1096				MCDI_WORD(outbuf,
1097					  GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID),
1098				MCDI_WORD(outbuf,
1099					  GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID));
1100
1101		/* It's theoretically possible for the string to exceed 31
1102		 * characters, though in practice the first three version
1103		 * components are short enough that this doesn't happen.
1104		 */
1105		if (WARN_ON(offset >= len))
1106			buf[0] = 0;
1107	}
1108
1109	return;
1110
1111fail:
1112	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1113	buf[0] = 0;
1114}
1115
1116static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1117			       bool *was_attached)
1118{
1119	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1120	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1121	size_t outlen;
1122	int rc;
1123
1124	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1125		       driver_operating ? 1 : 0);
1126	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1127	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1128
1129	rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1130			  outbuf, sizeof(outbuf), &outlen);
1131	if (rc)
1132		goto fail;
1133	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1134		rc = -EIO;
1135		goto fail;
1136	}
1137
1138	if (driver_operating) {
1139		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1140			efx->mcdi->fn_flags =
1141				MCDI_DWORD(outbuf,
1142					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1143		} else {
1144			/* Synthesise flags for Siena */
1145			efx->mcdi->fn_flags =
1146				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1147				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1148				(efx_port_num(efx) == 0) <<
1149				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1150		}
1151	}
1152
1153	/* We currently assume we have control of the external link
1154	 * and are completely trusted by firmware.  Abort probing
1155	 * if that's not true for this function.
1156	 */
1157	if (driver_operating &&
1158	    (efx->mcdi->fn_flags &
1159	     (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1160	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) !=
1161	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1162	     1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) {
1163		netif_err(efx, probe, efx->net_dev,
1164			  "This driver version only supports one function per port\n");
1165		return -ENODEV;
1166	}
1167
1168	if (was_attached != NULL)
1169		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1170	return 0;
1171
1172fail:
1173	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1174	return rc;
1175}
1176
1177int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1178			   u16 *fw_subtype_list, u32 *capabilities)
1179{
1180	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1181	size_t outlen, i;
1182	int port_num = efx_port_num(efx);
1183	int rc;
1184
1185	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1186
1187	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1188			  outbuf, sizeof(outbuf), &outlen);
1189	if (rc)
1190		goto fail;
1191
1192	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1193		rc = -EIO;
1194		goto fail;
1195	}
1196
1197	if (mac_address)
1198		memcpy(mac_address,
1199		       port_num ?
1200		       MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1201		       MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0),
1202		       ETH_ALEN);
1203	if (fw_subtype_list) {
1204		for (i = 0;
1205		     i < MCDI_VAR_ARRAY_LEN(outlen,
1206					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1207		     i++)
1208			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1209				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1210		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1211			fw_subtype_list[i] = 0;
1212	}
1213	if (capabilities) {
1214		if (port_num)
1215			*capabilities = MCDI_DWORD(outbuf,
1216					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1217		else
1218			*capabilities = MCDI_DWORD(outbuf,
1219					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1220	}
1221
1222	return 0;
1223
1224fail:
1225	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1226		  __func__, rc, (int)outlen);
1227
1228	return rc;
1229}
1230
1231int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1232{
1233	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1234	u32 dest = 0;
1235	int rc;
1236
1237	if (uart)
1238		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1239	if (evq)
1240		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1241
1242	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1243	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1244
1245	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1246
1247	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1248			  NULL, 0, NULL);
1249	return rc;
1250}
1251
1252int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1253{
1254	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1255	size_t outlen;
1256	int rc;
1257
1258	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1259
1260	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1261			  outbuf, sizeof(outbuf), &outlen);
1262	if (rc)
1263		goto fail;
1264	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1265		rc = -EIO;
1266		goto fail;
1267	}
1268
1269	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1270	return 0;
1271
1272fail:
1273	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1274		  __func__, rc);
1275	return rc;
1276}
1277
1278int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1279			size_t *size_out, size_t *erase_size_out,
1280			bool *protected_out)
1281{
1282	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1283	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1284	size_t outlen;
1285	int rc;
1286
1287	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1288
1289	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1290			  outbuf, sizeof(outbuf), &outlen);
1291	if (rc)
1292		goto fail;
1293	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1294		rc = -EIO;
1295		goto fail;
1296	}
1297
1298	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1299	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1300	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1301				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1302	return 0;
1303
1304fail:
1305	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1306	return rc;
1307}
1308
1309static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1310{
1311	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1312	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1313	int rc;
1314
1315	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1316
1317	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1318			  outbuf, sizeof(outbuf), NULL);
1319	if (rc)
1320		return rc;
1321
1322	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1323	case MC_CMD_NVRAM_TEST_PASS:
1324	case MC_CMD_NVRAM_TEST_NOTSUPP:
1325		return 0;
1326	default:
1327		return -EIO;
1328	}
1329}
1330
1331int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1332{
1333	u32 nvram_types;
1334	unsigned int type;
1335	int rc;
1336
1337	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1338	if (rc)
1339		goto fail1;
1340
1341	type = 0;
1342	while (nvram_types != 0) {
1343		if (nvram_types & 1) {
1344			rc = efx_mcdi_nvram_test(efx, type);
1345			if (rc)
1346				goto fail2;
1347		}
1348		type++;
1349		nvram_types >>= 1;
1350	}
1351
1352	return 0;
1353
1354fail2:
1355	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1356		  __func__, type);
1357fail1:
1358	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1359	return rc;
1360}
1361
1362static int efx_mcdi_read_assertion(struct efx_nic *efx)
1363{
1364	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1365	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1366	unsigned int flags, index;
1367	const char *reason;
1368	size_t outlen;
1369	int retry;
1370	int rc;
1371
1372	/* Attempt to read any stored assertion state before we reboot
1373	 * the mcfw out of the assertion handler. Retry twice, once
1374	 * because a boot-time assertion might cause this command to fail
1375	 * with EINTR. And once again because GET_ASSERTS can race with
1376	 * MC_CMD_REBOOT running on the other port. */
1377	retry = 2;
1378	do {
1379		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1380		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1381					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1382					outbuf, sizeof(outbuf), &outlen);
1383	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1384
1385	if (rc) {
1386		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1387				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1388				       outlen, rc);
1389		return rc;
1390	}
1391	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1392		return -EIO;
1393
1394	/* Print out any recorded assertion state */
1395	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1396	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1397		return 0;
1398
1399	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1400		? "system-level assertion"
1401		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1402		? "thread-level assertion"
1403		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1404		? "watchdog reset"
1405		: "unknown assertion";
1406	netif_err(efx, hw, efx->net_dev,
1407		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1408		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1409		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1410
1411	/* Print out the registers */
1412	for (index = 0;
1413	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1414	     index++)
1415		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1416			  1 + index,
1417			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1418					   index));
1419
1420	return 0;
1421}
1422
1423static void efx_mcdi_exit_assertion(struct efx_nic *efx)
1424{
1425	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1426
1427	/* If the MC is running debug firmware, it might now be
1428	 * waiting for a debugger to attach, but we just want it to
1429	 * reboot.  We set a flag that makes the command a no-op if it
1430	 * has already done so.  We don't know what return code to
1431	 * expect (0 or -EIO), so ignore it.
1432	 */
1433	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1434	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1435		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1436	(void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1437			    NULL, 0, NULL);
1438}
1439
1440int efx_mcdi_handle_assertion(struct efx_nic *efx)
1441{
1442	int rc;
1443
1444	rc = efx_mcdi_read_assertion(efx);
1445	if (rc)
1446		return rc;
1447
1448	efx_mcdi_exit_assertion(efx);
1449
1450	return 0;
1451}
1452
1453void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1454{
1455	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1456	int rc;
1457
1458	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1459	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1460	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1461
1462	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1463
1464	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1465
1466	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1467			  NULL, 0, NULL);
1468}
1469
1470static int efx_mcdi_reset_port(struct efx_nic *efx)
1471{
1472	return efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
1473}
1474
1475static int efx_mcdi_reset_mc(struct efx_nic *efx)
1476{
1477	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1478	int rc;
1479
1480	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1481	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1482	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1483			  NULL, 0, NULL);
1484	/* White is black, and up is down */
1485	if (rc == -EIO)
1486		return 0;
1487	if (rc == 0)
1488		rc = -EIO;
1489	return rc;
1490}
1491
1492enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1493{
1494	return RESET_TYPE_RECOVER_OR_ALL;
1495}
1496
1497int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1498{
1499	int rc;
1500
1501	/* Recover from a failed assertion pre-reset */
1502	rc = efx_mcdi_handle_assertion(efx);
1503	if (rc)
1504		return rc;
1505
1506	if (method == RESET_TYPE_WORLD)
1507		return efx_mcdi_reset_mc(efx);
1508	else
1509		return efx_mcdi_reset_port(efx);
1510}
1511
1512static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1513				   const u8 *mac, int *id_out)
1514{
1515	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1516	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1517	size_t outlen;
1518	int rc;
1519
1520	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1521	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1522		       MC_CMD_FILTER_MODE_SIMPLE);
1523	memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
1524
1525	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1526			  outbuf, sizeof(outbuf), &outlen);
1527	if (rc)
1528		goto fail;
1529
1530	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1531		rc = -EIO;
1532		goto fail;
1533	}
1534
1535	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1536
1537	return 0;
1538
1539fail:
1540	*id_out = -1;
1541	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1542	return rc;
1543
1544}
1545
1546
1547int
1548efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1549{
1550	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1551}
1552
1553
1554int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1555{
1556	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1557	size_t outlen;
1558	int rc;
1559
1560	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1561			  outbuf, sizeof(outbuf), &outlen);
1562	if (rc)
1563		goto fail;
1564
1565	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1566		rc = -EIO;
1567		goto fail;
1568	}
1569
1570	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1571
1572	return 0;
1573
1574fail:
1575	*id_out = -1;
1576	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1577	return rc;
1578}
1579
1580
1581int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1582{
1583	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1584	int rc;
1585
1586	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1587
1588	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1589			  NULL, 0, NULL);
1590	return rc;
1591}
1592
1593int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1594{
1595	struct efx_channel *channel;
1596	struct efx_rx_queue *rx_queue;
1597	MCDI_DECLARE_BUF(inbuf,
1598			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1599	int rc, count;
1600
1601	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1602		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1603
1604	count = 0;
1605	efx_for_each_channel(channel, efx) {
1606		efx_for_each_channel_rx_queue(rx_queue, channel) {
1607			if (rx_queue->flush_pending) {
1608				rx_queue->flush_pending = false;
1609				atomic_dec(&efx->rxq_flush_pending);
1610				MCDI_SET_ARRAY_DWORD(
1611					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1612					count, efx_rx_queue_index(rx_queue));
1613				count++;
1614			}
1615		}
1616	}
1617
1618	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1619			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1620	WARN_ON(rc < 0);
1621
1622	return rc;
1623}
1624
1625int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1626{
1627	int rc;
1628
1629	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1630	return rc;
1631}
1632
1633int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
1634{
1635	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1636
1637	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1638	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1639	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1640	return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1641			    NULL, 0, NULL);
1642}
1643
1644#ifdef CONFIG_SFC_MTD
1645
1646#define EFX_MCDI_NVRAM_LEN_MAX 128
1647
1648static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1649{
1650	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1651	int rc;
1652
1653	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1654
1655	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1656
1657	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1658			  NULL, 0, NULL);
1659	return rc;
1660}
1661
1662static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1663			       loff_t offset, u8 *buffer, size_t length)
1664{
1665	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1666	MCDI_DECLARE_BUF(outbuf,
1667			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1668	size_t outlen;
1669	int rc;
1670
1671	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1672	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1673	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1674
1675	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1676			  outbuf, sizeof(outbuf), &outlen);
1677	if (rc)
1678		return rc;
1679
1680	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1681	return 0;
1682}
1683
1684static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1685				loff_t offset, const u8 *buffer, size_t length)
1686{
1687	MCDI_DECLARE_BUF(inbuf,
1688			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1689	int rc;
1690
1691	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1692	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1693	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1694	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1695
1696	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1697
1698	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1699			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1700			  NULL, 0, NULL);
1701	return rc;
1702}
1703
1704static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1705				loff_t offset, size_t length)
1706{
1707	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1708	int rc;
1709
1710	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1711	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1712	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1713
1714	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1715
1716	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1717			  NULL, 0, NULL);
1718	return rc;
1719}
1720
1721static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1722{
1723	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1724	int rc;
1725
1726	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1727
1728	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1729
1730	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1731			  NULL, 0, NULL);
1732	return rc;
1733}
1734
1735int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1736		      size_t len, size_t *retlen, u8 *buffer)
1737{
1738	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1739	struct efx_nic *efx = mtd->priv;
1740	loff_t offset = start;
1741	loff_t end = min_t(loff_t, start + len, mtd->size);
1742	size_t chunk;
1743	int rc = 0;
1744
1745	while (offset < end) {
1746		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1747		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1748					 buffer, chunk);
1749		if (rc)
1750			goto out;
1751		offset += chunk;
1752		buffer += chunk;
1753	}
1754out:
1755	*retlen = offset - start;
1756	return rc;
1757}
1758
1759int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1760{
1761	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1762	struct efx_nic *efx = mtd->priv;
1763	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1764	loff_t end = min_t(loff_t, start + len, mtd->size);
1765	size_t chunk = part->common.mtd.erasesize;
1766	int rc = 0;
1767
1768	if (!part->updating) {
1769		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1770		if (rc)
1771			goto out;
1772		part->updating = true;
1773	}
1774
1775	/* The MCDI interface can in fact do multiple erase blocks at once;
1776	 * but erasing may be slow, so we make multiple calls here to avoid
1777	 * tripping the MCDI RPC timeout. */
1778	while (offset < end) {
1779		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1780					  chunk);
1781		if (rc)
1782			goto out;
1783		offset += chunk;
1784	}
1785out:
1786	return rc;
1787}
1788
1789int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1790		       size_t len, size_t *retlen, const u8 *buffer)
1791{
1792	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1793	struct efx_nic *efx = mtd->priv;
1794	loff_t offset = start;
1795	loff_t end = min_t(loff_t, start + len, mtd->size);
1796	size_t chunk;
1797	int rc = 0;
1798
1799	if (!part->updating) {
1800		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1801		if (rc)
1802			goto out;
1803		part->updating = true;
1804	}
1805
1806	while (offset < end) {
1807		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1808		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
1809					  buffer, chunk);
1810		if (rc)
1811			goto out;
1812		offset += chunk;
1813		buffer += chunk;
1814	}
1815out:
1816	*retlen = offset - start;
1817	return rc;
1818}
1819
1820int efx_mcdi_mtd_sync(struct mtd_info *mtd)
1821{
1822	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1823	struct efx_nic *efx = mtd->priv;
1824	int rc = 0;
1825
1826	if (part->updating) {
1827		part->updating = false;
1828		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
1829	}
1830
1831	return rc;
1832}
1833
1834void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
1835{
1836	struct efx_mcdi_mtd_partition *mcdi_part =
1837		container_of(part, struct efx_mcdi_mtd_partition, common);
1838	struct efx_nic *efx = part->mtd.priv;
1839
1840	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
1841		 efx->name, part->type_name, mcdi_part->fw_subtype);
1842}
1843
1844#endif /* CONFIG_SFC_MTD */
1845