1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11/* Common definitions for all Efx net driver code */
12
13#ifndef EFX_NET_DRIVER_H
14#define EFX_NET_DRIVER_H
15
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/if_vlan.h>
20#include <linux/timer.h>
21#include <linux/mdio.h>
22#include <linux/list.h>
23#include <linux/pci.h>
24#include <linux/device.h>
25#include <linux/highmem.h>
26#include <linux/workqueue.h>
27#include <linux/mutex.h>
28#include <linux/vmalloc.h>
29#include <linux/i2c.h>
30#include <linux/mtd/mtd.h>
31#include <net/busy_poll.h>
32
33#include "enum.h"
34#include "bitfield.h"
35#include "filter.h"
36
37/**************************************************************************
38 *
39 * Build definitions
40 *
41 **************************************************************************/
42
43#define EFX_DRIVER_VERSION	"4.0"
44
45#ifdef DEBUG
46#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
47#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
48#else
49#define EFX_BUG_ON_PARANOID(x) do {} while (0)
50#define EFX_WARN_ON_PARANOID(x) do {} while (0)
51#endif
52
53/**************************************************************************
54 *
55 * Efx data structures
56 *
57 **************************************************************************/
58
59#define EFX_MAX_CHANNELS 32U
60#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
61#define EFX_EXTRA_CHANNEL_IOV	0
62#define EFX_EXTRA_CHANNEL_PTP	1
63#define EFX_MAX_EXTRA_CHANNELS	2U
64
65/* Checksum generation is a per-queue option in hardware, so each
66 * queue visible to the networking core is backed by two hardware TX
67 * queues. */
68#define EFX_MAX_TX_TC		2
69#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
70#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
71#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
72#define EFX_TXQ_TYPES		4
73#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
74
75/* Maximum possible MTU the driver supports */
76#define EFX_MAX_MTU (9 * 1024)
77
78/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
79 * and should be a multiple of the cache line size.
80 */
81#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
82
83/* If possible, we should ensure cache line alignment at start and end
84 * of every buffer.  Otherwise, we just need to ensure 4-byte
85 * alignment of the network header.
86 */
87#if NET_IP_ALIGN == 0
88#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
89#else
90#define EFX_RX_BUF_ALIGNMENT	4
91#endif
92
93/* Forward declare Precision Time Protocol (PTP) support structure. */
94struct efx_ptp_data;
95struct hwtstamp_config;
96
97struct efx_self_tests;
98
99/**
100 * struct efx_buffer - A general-purpose DMA buffer
101 * @addr: host base address of the buffer
102 * @dma_addr: DMA base address of the buffer
103 * @len: Buffer length, in bytes
104 *
105 * The NIC uses these buffers for its interrupt status registers and
106 * MAC stats dumps.
107 */
108struct efx_buffer {
109	void *addr;
110	dma_addr_t dma_addr;
111	unsigned int len;
112};
113
114/**
115 * struct efx_special_buffer - DMA buffer entered into buffer table
116 * @buf: Standard &struct efx_buffer
117 * @index: Buffer index within controller;s buffer table
118 * @entries: Number of buffer table entries
119 *
120 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
121 * Event and descriptor rings are addressed via one or more buffer
122 * table entries (and so can be physically non-contiguous, although we
123 * currently do not take advantage of that).  On Falcon and Siena we
124 * have to take care of allocating and initialising the entries
125 * ourselves.  On later hardware this is managed by the firmware and
126 * @index and @entries are left as 0.
127 */
128struct efx_special_buffer {
129	struct efx_buffer buf;
130	unsigned int index;
131	unsigned int entries;
132};
133
134/**
135 * struct efx_tx_buffer - buffer state for a TX descriptor
136 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
137 *	freed when descriptor completes
138 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
139 *	freed when descriptor completes.
140 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
141 * @dma_addr: DMA address of the fragment.
142 * @flags: Flags for allocation and DMA mapping type
143 * @len: Length of this fragment.
144 *	This field is zero when the queue slot is empty.
145 * @unmap_len: Length of this fragment to unmap
146 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
147 * Only valid if @unmap_len != 0.
148 */
149struct efx_tx_buffer {
150	union {
151		const struct sk_buff *skb;
152		void *heap_buf;
153	};
154	union {
155		efx_qword_t option;
156		dma_addr_t dma_addr;
157	};
158	unsigned short flags;
159	unsigned short len;
160	unsigned short unmap_len;
161	unsigned short dma_offset;
162};
163#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
164#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
165#define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
166#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
167#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
168
169/**
170 * struct efx_tx_queue - An Efx TX queue
171 *
172 * This is a ring buffer of TX fragments.
173 * Since the TX completion path always executes on the same
174 * CPU and the xmit path can operate on different CPUs,
175 * performance is increased by ensuring that the completion
176 * path and the xmit path operate on different cache lines.
177 * This is particularly important if the xmit path is always
178 * executing on one CPU which is different from the completion
179 * path.  There is also a cache line for members which are
180 * read but not written on the fast path.
181 *
182 * @efx: The associated Efx NIC
183 * @queue: DMA queue number
184 * @channel: The associated channel
185 * @core_txq: The networking core TX queue structure
186 * @buffer: The software buffer ring
187 * @tsoh_page: Array of pages of TSO header buffers
188 * @txd: The hardware descriptor ring
189 * @ptr_mask: The size of the ring minus 1.
190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191 *	Size of the region is efx_piobuf_size.
192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193 * @initialised: Has hardware queue been initialised?
194 * @read_count: Current read pointer.
195 *	This is the number of buffers that have been removed from both rings.
196 * @old_write_count: The value of @write_count when last checked.
197 *	This is here for performance reasons.  The xmit path will
198 *	only get the up-to-date value of @write_count if this
199 *	variable indicates that the queue is empty.  This is to
200 *	avoid cache-line ping-pong between the xmit path and the
201 *	completion path.
202 * @merge_events: Number of TX merged completion events
203 * @insert_count: Current insert pointer
204 *	This is the number of buffers that have been added to the
205 *	software ring.
206 * @write_count: Current write pointer
207 *	This is the number of buffers that have been added to the
208 *	hardware ring.
209 * @old_read_count: The value of read_count when last checked.
210 *	This is here for performance reasons.  The xmit path will
211 *	only get the up-to-date value of read_count if this
212 *	variable indicates that the queue is full.  This is to
213 *	avoid cache-line ping-pong between the xmit path and the
214 *	completion path.
215 * @tso_bursts: Number of times TSO xmit invoked by kernel
216 * @tso_long_headers: Number of packets with headers too long for standard
217 *	blocks
218 * @tso_packets: Number of packets via the TSO xmit path
219 * @pushes: Number of times the TX push feature has been used
220 * @pio_packets: Number of times the TX PIO feature has been used
221 * @empty_read_count: If the completion path has seen the queue as empty
222 *	and the transmission path has not yet checked this, the value of
223 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
224 */
225struct efx_tx_queue {
226	/* Members which don't change on the fast path */
227	struct efx_nic *efx ____cacheline_aligned_in_smp;
228	unsigned queue;
229	struct efx_channel *channel;
230	struct netdev_queue *core_txq;
231	struct efx_tx_buffer *buffer;
232	struct efx_buffer *tsoh_page;
233	struct efx_special_buffer txd;
234	unsigned int ptr_mask;
235	void __iomem *piobuf;
236	unsigned int piobuf_offset;
237	bool initialised;
238
239	/* Members used mainly on the completion path */
240	unsigned int read_count ____cacheline_aligned_in_smp;
241	unsigned int old_write_count;
242	unsigned int merge_events;
243
244	/* Members used only on the xmit path */
245	unsigned int insert_count ____cacheline_aligned_in_smp;
246	unsigned int write_count;
247	unsigned int old_read_count;
248	unsigned int tso_bursts;
249	unsigned int tso_long_headers;
250	unsigned int tso_packets;
251	unsigned int pushes;
252	unsigned int pio_packets;
253	/* Statistics to supplement MAC stats */
254	unsigned long tx_packets;
255
256	/* Members shared between paths and sometimes updated */
257	unsigned int empty_read_count ____cacheline_aligned_in_smp;
258#define EFX_EMPTY_COUNT_VALID 0x80000000
259	atomic_t flush_outstanding;
260};
261
262/**
263 * struct efx_rx_buffer - An Efx RX data buffer
264 * @dma_addr: DMA base address of the buffer
265 * @page: The associated page buffer.
266 *	Will be %NULL if the buffer slot is currently free.
267 * @page_offset: If pending: offset in @page of DMA base address.
268 *	If completed: offset in @page of Ethernet header.
269 * @len: If pending: length for DMA descriptor.
270 *	If completed: received length, excluding hash prefix.
271 * @flags: Flags for buffer and packet state.  These are only set on the
272 *	first buffer of a scattered packet.
273 */
274struct efx_rx_buffer {
275	dma_addr_t dma_addr;
276	struct page *page;
277	u16 page_offset;
278	u16 len;
279	u16 flags;
280};
281#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
282#define EFX_RX_PKT_CSUMMED	0x0002
283#define EFX_RX_PKT_DISCARD	0x0004
284#define EFX_RX_PKT_TCP		0x0040
285#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
286
287/**
288 * struct efx_rx_page_state - Page-based rx buffer state
289 *
290 * Inserted at the start of every page allocated for receive buffers.
291 * Used to facilitate sharing dma mappings between recycled rx buffers
292 * and those passed up to the kernel.
293 *
294 * @dma_addr: The dma address of this page.
295 */
296struct efx_rx_page_state {
297	dma_addr_t dma_addr;
298
299	unsigned int __pad[0] ____cacheline_aligned;
300};
301
302/**
303 * struct efx_rx_queue - An Efx RX queue
304 * @efx: The associated Efx NIC
305 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
306 *	is associated with a real RX queue.
307 * @buffer: The software buffer ring
308 * @rxd: The hardware descriptor ring
309 * @ptr_mask: The size of the ring minus 1.
310 * @refill_enabled: Enable refill whenever fill level is low
311 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
312 *	@rxq_flush_pending.
313 * @added_count: Number of buffers added to the receive queue.
314 * @notified_count: Number of buffers given to NIC (<= @added_count).
315 * @removed_count: Number of buffers removed from the receive queue.
316 * @scatter_n: Used by NIC specific receive code.
317 * @scatter_len: Used by NIC specific receive code.
318 * @page_ring: The ring to store DMA mapped pages for reuse.
319 * @page_add: Counter to calculate the write pointer for the recycle ring.
320 * @page_remove: Counter to calculate the read pointer for the recycle ring.
321 * @page_recycle_count: The number of pages that have been recycled.
322 * @page_recycle_failed: The number of pages that couldn't be recycled because
323 *      the kernel still held a reference to them.
324 * @page_recycle_full: The number of pages that were released because the
325 *      recycle ring was full.
326 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
327 * @max_fill: RX descriptor maximum fill level (<= ring size)
328 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
329 *	(<= @max_fill)
330 * @min_fill: RX descriptor minimum non-zero fill level.
331 *	This records the minimum fill level observed when a ring
332 *	refill was triggered.
333 * @recycle_count: RX buffer recycle counter.
334 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
335 */
336struct efx_rx_queue {
337	struct efx_nic *efx;
338	int core_index;
339	struct efx_rx_buffer *buffer;
340	struct efx_special_buffer rxd;
341	unsigned int ptr_mask;
342	bool refill_enabled;
343	bool flush_pending;
344
345	unsigned int added_count;
346	unsigned int notified_count;
347	unsigned int removed_count;
348	unsigned int scatter_n;
349	unsigned int scatter_len;
350	struct page **page_ring;
351	unsigned int page_add;
352	unsigned int page_remove;
353	unsigned int page_recycle_count;
354	unsigned int page_recycle_failed;
355	unsigned int page_recycle_full;
356	unsigned int page_ptr_mask;
357	unsigned int max_fill;
358	unsigned int fast_fill_trigger;
359	unsigned int min_fill;
360	unsigned int min_overfill;
361	unsigned int recycle_count;
362	struct timer_list slow_fill;
363	unsigned int slow_fill_count;
364	/* Statistics to supplement MAC stats */
365	unsigned long rx_packets;
366};
367
368enum efx_sync_events_state {
369	SYNC_EVENTS_DISABLED = 0,
370	SYNC_EVENTS_QUIESCENT,
371	SYNC_EVENTS_REQUESTED,
372	SYNC_EVENTS_VALID,
373};
374
375/**
376 * struct efx_channel - An Efx channel
377 *
378 * A channel comprises an event queue, at least one TX queue, at least
379 * one RX queue, and an associated tasklet for processing the event
380 * queue.
381 *
382 * @efx: Associated Efx NIC
383 * @channel: Channel instance number
384 * @type: Channel type definition
385 * @eventq_init: Event queue initialised flag
386 * @enabled: Channel enabled indicator
387 * @irq: IRQ number (MSI and MSI-X only)
388 * @irq_moderation: IRQ moderation value (in hardware ticks)
389 * @napi_dev: Net device used with NAPI
390 * @napi_str: NAPI control structure
391 * @state: state for NAPI vs busy polling
392 * @state_lock: lock protecting @state
393 * @eventq: Event queue buffer
394 * @eventq_mask: Event queue pointer mask
395 * @eventq_read_ptr: Event queue read pointer
396 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
397 * @irq_count: Number of IRQs since last adaptive moderation decision
398 * @irq_mod_score: IRQ moderation score
399 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
400 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
401 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
402 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
403 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
404 * @n_rx_overlength: Count of RX_OVERLENGTH errors
405 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
406 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
407 *	lack of descriptors
408 * @n_rx_merge_events: Number of RX merged completion events
409 * @n_rx_merge_packets: Number of RX packets completed by merged events
410 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
411 *	__efx_rx_packet(), or zero if there is none
412 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
413 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
414 * @rx_queue: RX queue for this channel
415 * @tx_queue: TX queues for this channel
416 * @sync_events_state: Current state of sync events on this channel
417 * @sync_timestamp_major: Major part of the last ptp sync event
418 * @sync_timestamp_minor: Minor part of the last ptp sync event
419 */
420struct efx_channel {
421	struct efx_nic *efx;
422	int channel;
423	const struct efx_channel_type *type;
424	bool eventq_init;
425	bool enabled;
426	int irq;
427	unsigned int irq_moderation;
428	struct net_device *napi_dev;
429	struct napi_struct napi_str;
430#ifdef CONFIG_NET_RX_BUSY_POLL
431	unsigned int state;
432	spinlock_t state_lock;
433#define EFX_CHANNEL_STATE_IDLE		0
434#define EFX_CHANNEL_STATE_NAPI		(1 << 0)  /* NAPI owns this channel */
435#define EFX_CHANNEL_STATE_POLL		(1 << 1)  /* poll owns this channel */
436#define EFX_CHANNEL_STATE_DISABLED	(1 << 2)  /* channel is disabled */
437#define EFX_CHANNEL_STATE_NAPI_YIELD	(1 << 3)  /* NAPI yielded this channel */
438#define EFX_CHANNEL_STATE_POLL_YIELD	(1 << 4)  /* poll yielded this channel */
439#define EFX_CHANNEL_OWNED \
440	(EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL)
441#define EFX_CHANNEL_LOCKED \
442	(EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED)
443#define EFX_CHANNEL_USER_PEND \
444	(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD)
445#endif /* CONFIG_NET_RX_BUSY_POLL */
446	struct efx_special_buffer eventq;
447	unsigned int eventq_mask;
448	unsigned int eventq_read_ptr;
449	int event_test_cpu;
450
451	unsigned int irq_count;
452	unsigned int irq_mod_score;
453#ifdef CONFIG_RFS_ACCEL
454	unsigned int rfs_filters_added;
455#endif
456
457	unsigned n_rx_tobe_disc;
458	unsigned n_rx_ip_hdr_chksum_err;
459	unsigned n_rx_tcp_udp_chksum_err;
460	unsigned n_rx_mcast_mismatch;
461	unsigned n_rx_frm_trunc;
462	unsigned n_rx_overlength;
463	unsigned n_skbuff_leaks;
464	unsigned int n_rx_nodesc_trunc;
465	unsigned int n_rx_merge_events;
466	unsigned int n_rx_merge_packets;
467
468	unsigned int rx_pkt_n_frags;
469	unsigned int rx_pkt_index;
470
471	struct efx_rx_queue rx_queue;
472	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
473
474	enum efx_sync_events_state sync_events_state;
475	u32 sync_timestamp_major;
476	u32 sync_timestamp_minor;
477};
478
479#ifdef CONFIG_NET_RX_BUSY_POLL
480static inline void efx_channel_init_lock(struct efx_channel *channel)
481{
482	spin_lock_init(&channel->state_lock);
483}
484
485/* Called from the device poll routine to get ownership of a channel. */
486static inline bool efx_channel_lock_napi(struct efx_channel *channel)
487{
488	bool rc = true;
489
490	spin_lock_bh(&channel->state_lock);
491	if (channel->state & EFX_CHANNEL_LOCKED) {
492		WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
493		channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD;
494		rc = false;
495	} else {
496		/* we don't care if someone yielded */
497		channel->state = EFX_CHANNEL_STATE_NAPI;
498	}
499	spin_unlock_bh(&channel->state_lock);
500	return rc;
501}
502
503static inline void efx_channel_unlock_napi(struct efx_channel *channel)
504{
505	spin_lock_bh(&channel->state_lock);
506	WARN_ON(channel->state &
507		(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD));
508
509	channel->state &= EFX_CHANNEL_STATE_DISABLED;
510	spin_unlock_bh(&channel->state_lock);
511}
512
513/* Called from efx_busy_poll(). */
514static inline bool efx_channel_lock_poll(struct efx_channel *channel)
515{
516	bool rc = true;
517
518	spin_lock_bh(&channel->state_lock);
519	if ((channel->state & EFX_CHANNEL_LOCKED)) {
520		channel->state |= EFX_CHANNEL_STATE_POLL_YIELD;
521		rc = false;
522	} else {
523		/* preserve yield marks */
524		channel->state |= EFX_CHANNEL_STATE_POLL;
525	}
526	spin_unlock_bh(&channel->state_lock);
527	return rc;
528}
529
530/* Returns true if NAPI tried to get the channel while it was locked. */
531static inline void efx_channel_unlock_poll(struct efx_channel *channel)
532{
533	spin_lock_bh(&channel->state_lock);
534	WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
535
536	/* will reset state to idle, unless channel is disabled */
537	channel->state &= EFX_CHANNEL_STATE_DISABLED;
538	spin_unlock_bh(&channel->state_lock);
539}
540
541/* True if a socket is polling, even if it did not get the lock. */
542static inline bool efx_channel_busy_polling(struct efx_channel *channel)
543{
544	WARN_ON(!(channel->state & EFX_CHANNEL_OWNED));
545	return channel->state & EFX_CHANNEL_USER_PEND;
546}
547
548static inline void efx_channel_enable(struct efx_channel *channel)
549{
550	spin_lock_bh(&channel->state_lock);
551	channel->state = EFX_CHANNEL_STATE_IDLE;
552	spin_unlock_bh(&channel->state_lock);
553}
554
555/* False if the channel is currently owned. */
556static inline bool efx_channel_disable(struct efx_channel *channel)
557{
558	bool rc = true;
559
560	spin_lock_bh(&channel->state_lock);
561	if (channel->state & EFX_CHANNEL_OWNED)
562		rc = false;
563	channel->state |= EFX_CHANNEL_STATE_DISABLED;
564	spin_unlock_bh(&channel->state_lock);
565
566	return rc;
567}
568
569#else /* CONFIG_NET_RX_BUSY_POLL */
570
571static inline void efx_channel_init_lock(struct efx_channel *channel)
572{
573}
574
575static inline bool efx_channel_lock_napi(struct efx_channel *channel)
576{
577	return true;
578}
579
580static inline void efx_channel_unlock_napi(struct efx_channel *channel)
581{
582}
583
584static inline bool efx_channel_lock_poll(struct efx_channel *channel)
585{
586	return false;
587}
588
589static inline void efx_channel_unlock_poll(struct efx_channel *channel)
590{
591}
592
593static inline bool efx_channel_busy_polling(struct efx_channel *channel)
594{
595	return false;
596}
597
598static inline void efx_channel_enable(struct efx_channel *channel)
599{
600}
601
602static inline bool efx_channel_disable(struct efx_channel *channel)
603{
604	return true;
605}
606#endif /* CONFIG_NET_RX_BUSY_POLL */
607
608/**
609 * struct efx_msi_context - Context for each MSI
610 * @efx: The associated NIC
611 * @index: Index of the channel/IRQ
612 * @name: Name of the channel/IRQ
613 *
614 * Unlike &struct efx_channel, this is never reallocated and is always
615 * safe for the IRQ handler to access.
616 */
617struct efx_msi_context {
618	struct efx_nic *efx;
619	unsigned int index;
620	char name[IFNAMSIZ + 6];
621};
622
623/**
624 * struct efx_channel_type - distinguishes traffic and extra channels
625 * @handle_no_channel: Handle failure to allocate an extra channel
626 * @pre_probe: Set up extra state prior to initialisation
627 * @post_remove: Tear down extra state after finalisation, if allocated.
628 *	May be called on channels that have not been probed.
629 * @get_name: Generate the channel's name (used for its IRQ handler)
630 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
631 *	reallocation is not supported.
632 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
633 * @keep_eventq: Flag for whether event queue should be kept initialised
634 *	while the device is stopped
635 */
636struct efx_channel_type {
637	void (*handle_no_channel)(struct efx_nic *);
638	int (*pre_probe)(struct efx_channel *);
639	void (*post_remove)(struct efx_channel *);
640	void (*get_name)(struct efx_channel *, char *buf, size_t len);
641	struct efx_channel *(*copy)(const struct efx_channel *);
642	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
643	bool keep_eventq;
644};
645
646enum efx_led_mode {
647	EFX_LED_OFF	= 0,
648	EFX_LED_ON	= 1,
649	EFX_LED_DEFAULT	= 2
650};
651
652#define STRING_TABLE_LOOKUP(val, member) \
653	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
654
655extern const char *const efx_loopback_mode_names[];
656extern const unsigned int efx_loopback_mode_max;
657#define LOOPBACK_MODE(efx) \
658	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
659
660extern const char *const efx_reset_type_names[];
661extern const unsigned int efx_reset_type_max;
662#define RESET_TYPE(type) \
663	STRING_TABLE_LOOKUP(type, efx_reset_type)
664
665enum efx_int_mode {
666	/* Be careful if altering to correct macro below */
667	EFX_INT_MODE_MSIX = 0,
668	EFX_INT_MODE_MSI = 1,
669	EFX_INT_MODE_LEGACY = 2,
670	EFX_INT_MODE_MAX	/* Insert any new items before this */
671};
672#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
673
674enum nic_state {
675	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
676	STATE_READY = 1,	/* hardware ready and netdev registered */
677	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
678	STATE_RECOVERY = 3,	/* device recovering from PCI error */
679};
680
681/* Forward declaration */
682struct efx_nic;
683
684/* Pseudo bit-mask flow control field */
685#define EFX_FC_RX	FLOW_CTRL_RX
686#define EFX_FC_TX	FLOW_CTRL_TX
687#define EFX_FC_AUTO	4
688
689/**
690 * struct efx_link_state - Current state of the link
691 * @up: Link is up
692 * @fd: Link is full-duplex
693 * @fc: Actual flow control flags
694 * @speed: Link speed (Mbps)
695 */
696struct efx_link_state {
697	bool up;
698	bool fd;
699	u8 fc;
700	unsigned int speed;
701};
702
703static inline bool efx_link_state_equal(const struct efx_link_state *left,
704					const struct efx_link_state *right)
705{
706	return left->up == right->up && left->fd == right->fd &&
707		left->fc == right->fc && left->speed == right->speed;
708}
709
710/**
711 * struct efx_phy_operations - Efx PHY operations table
712 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
713 *	efx->loopback_modes.
714 * @init: Initialise PHY
715 * @fini: Shut down PHY
716 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
717 * @poll: Update @link_state and report whether it changed.
718 *	Serialised by the mac_lock.
719 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
720 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
721 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
722 *	(only needed where AN bit is set in mmds)
723 * @test_alive: Test that PHY is 'alive' (online)
724 * @test_name: Get the name of a PHY-specific test/result
725 * @run_tests: Run tests and record results as appropriate (offline).
726 *	Flags are the ethtool tests flags.
727 */
728struct efx_phy_operations {
729	int (*probe) (struct efx_nic *efx);
730	int (*init) (struct efx_nic *efx);
731	void (*fini) (struct efx_nic *efx);
732	void (*remove) (struct efx_nic *efx);
733	int (*reconfigure) (struct efx_nic *efx);
734	bool (*poll) (struct efx_nic *efx);
735	void (*get_settings) (struct efx_nic *efx,
736			      struct ethtool_cmd *ecmd);
737	int (*set_settings) (struct efx_nic *efx,
738			     struct ethtool_cmd *ecmd);
739	void (*set_npage_adv) (struct efx_nic *efx, u32);
740	int (*test_alive) (struct efx_nic *efx);
741	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
742	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
743	int (*get_module_eeprom) (struct efx_nic *efx,
744			       struct ethtool_eeprom *ee,
745			       u8 *data);
746	int (*get_module_info) (struct efx_nic *efx,
747				struct ethtool_modinfo *modinfo);
748};
749
750/**
751 * enum efx_phy_mode - PHY operating mode flags
752 * @PHY_MODE_NORMAL: on and should pass traffic
753 * @PHY_MODE_TX_DISABLED: on with TX disabled
754 * @PHY_MODE_LOW_POWER: set to low power through MDIO
755 * @PHY_MODE_OFF: switched off through external control
756 * @PHY_MODE_SPECIAL: on but will not pass traffic
757 */
758enum efx_phy_mode {
759	PHY_MODE_NORMAL		= 0,
760	PHY_MODE_TX_DISABLED	= 1,
761	PHY_MODE_LOW_POWER	= 2,
762	PHY_MODE_OFF		= 4,
763	PHY_MODE_SPECIAL	= 8,
764};
765
766static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
767{
768	return !!(mode & ~PHY_MODE_TX_DISABLED);
769}
770
771/**
772 * struct efx_hw_stat_desc - Description of a hardware statistic
773 * @name: Name of the statistic as visible through ethtool, or %NULL if
774 *	it should not be exposed
775 * @dma_width: Width in bits (0 for non-DMA statistics)
776 * @offset: Offset within stats (ignored for non-DMA statistics)
777 */
778struct efx_hw_stat_desc {
779	const char *name;
780	u16 dma_width;
781	u16 offset;
782};
783
784/* Number of bits used in a multicast filter hash address */
785#define EFX_MCAST_HASH_BITS 8
786
787/* Number of (single-bit) entries in a multicast filter hash */
788#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
789
790/* An Efx multicast filter hash */
791union efx_multicast_hash {
792	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
793	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
794};
795
796struct efx_vf;
797struct vfdi_status;
798
799/**
800 * struct efx_nic - an Efx NIC
801 * @name: Device name (net device name or bus id before net device registered)
802 * @pci_dev: The PCI device
803 * @node: List node for maintaning primary/secondary function lists
804 * @primary: &struct efx_nic instance for the primary function of this
805 *	controller.  May be the same structure, and may be %NULL if no
806 *	primary function is bound.  Serialised by rtnl_lock.
807 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
808 *	functions of the controller, if this is for the primary function.
809 *	Serialised by rtnl_lock.
810 * @type: Controller type attributes
811 * @legacy_irq: IRQ number
812 * @workqueue: Workqueue for port reconfigures and the HW monitor.
813 *	Work items do not hold and must not acquire RTNL.
814 * @workqueue_name: Name of workqueue
815 * @reset_work: Scheduled reset workitem
816 * @membase_phys: Memory BAR value as physical address
817 * @membase: Memory BAR value
818 * @interrupt_mode: Interrupt mode
819 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
820 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
821 * @irq_rx_moderation: IRQ moderation time for RX event queues
822 * @msg_enable: Log message enable flags
823 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
824 * @reset_pending: Bitmask for pending resets
825 * @tx_queue: TX DMA queues
826 * @rx_queue: RX DMA queues
827 * @channel: Channels
828 * @msi_context: Context for each MSI
829 * @extra_channel_types: Types of extra (non-traffic) channels that
830 *	should be allocated for this NIC
831 * @rxq_entries: Size of receive queues requested by user.
832 * @txq_entries: Size of transmit queues requested by user.
833 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
834 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
835 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
836 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
837 * @sram_lim_qw: Qword address limit of SRAM
838 * @next_buffer_table: First available buffer table id
839 * @n_channels: Number of channels in use
840 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
841 * @n_tx_channels: Number of channels used for TX
842 * @rx_ip_align: RX DMA address offset to have IP header aligned in
843 *	in accordance with NET_IP_ALIGN
844 * @rx_dma_len: Current maximum RX DMA length
845 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
846 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
847 *	for use in sk_buff::truesize
848 * @rx_prefix_size: Size of RX prefix before packet data
849 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
850 *	(valid only if @rx_prefix_size != 0; always negative)
851 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
852 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
853 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
854 *	(valid only if channel->sync_timestamps_enabled; always negative)
855 * @rx_hash_key: Toeplitz hash key for RSS
856 * @rx_indir_table: Indirection table for RSS
857 * @rx_scatter: Scatter mode enabled for receives
858 * @int_error_count: Number of internal errors seen recently
859 * @int_error_expire: Time at which error count will be expired
860 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
861 *	acknowledge but do nothing else.
862 * @irq_status: Interrupt status buffer
863 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
864 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
865 * @selftest_work: Work item for asynchronous self-test
866 * @mtd_list: List of MTDs attached to the NIC
867 * @nic_data: Hardware dependent state
868 * @mcdi: Management-Controller-to-Driver Interface state
869 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
870 *	efx_monitor() and efx_reconfigure_port()
871 * @port_enabled: Port enabled indicator.
872 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
873 *	efx_mac_work() with kernel interfaces. Safe to read under any
874 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
875 *	be held to modify it.
876 * @port_initialized: Port initialized?
877 * @net_dev: Operating system network device. Consider holding the rtnl lock
878 * @stats_buffer: DMA buffer for statistics
879 * @phy_type: PHY type
880 * @phy_op: PHY interface
881 * @phy_data: PHY private data (including PHY-specific stats)
882 * @mdio: PHY MDIO interface
883 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
884 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
885 * @link_advertising: Autonegotiation advertising flags
886 * @link_state: Current state of the link
887 * @n_link_state_changes: Number of times the link has changed state
888 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
889 *	Protected by @mac_lock.
890 * @multicast_hash: Multicast hash table for Falcon-arch.
891 *	Protected by @mac_lock.
892 * @wanted_fc: Wanted flow control flags
893 * @fc_disable: When non-zero flow control is disabled. Typically used to
894 *	ensure that network back pressure doesn't delay dma queue flushes.
895 *	Serialised by the rtnl lock.
896 * @mac_work: Work item for changing MAC promiscuity and multicast hash
897 * @loopback_mode: Loopback status
898 * @loopback_modes: Supported loopback mode bitmask
899 * @loopback_selftest: Offline self-test private state
900 * @filter_lock: Filter table lock
901 * @filter_state: Architecture-dependent filter table state
902 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
903 *	indexed by filter ID
904 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
905 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
906 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
907 *	Decremented when the efx_flush_rx_queue() is called.
908 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
909 *	completed (either success or failure). Not used when MCDI is used to
910 *	flush receive queues.
911 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
912 * @vf: Array of &struct efx_vf objects.
913 * @vf_count: Number of VFs intended to be enabled.
914 * @vf_init_count: Number of VFs that have been fully initialised.
915 * @vi_scale: log2 number of vnics per VF.
916 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
917 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
918 * @local_addr_list: List of local addresses. Protected by %local_lock.
919 * @local_page_list: List of DMA addressable pages used to broadcast
920 *	%local_addr_list. Protected by %local_lock.
921 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
922 * @peer_work: Work item to broadcast peer addresses to VMs.
923 * @ptp_data: PTP state data
924 * @vpd_sn: Serial number read from VPD
925 * @monitor_work: Hardware monitor workitem
926 * @biu_lock: BIU (bus interface unit) lock
927 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
928 *	field is used by efx_test_interrupts() to verify that an
929 *	interrupt has occurred.
930 * @stats_lock: Statistics update lock. Must be held when calling
931 *	efx_nic_type::{update,start,stop}_stats.
932 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
933 *
934 * This is stored in the private area of the &struct net_device.
935 */
936struct efx_nic {
937	/* The following fields should be written very rarely */
938
939	char name[IFNAMSIZ];
940	struct list_head node;
941	struct efx_nic *primary;
942	struct list_head secondary_list;
943	struct pci_dev *pci_dev;
944	unsigned int port_num;
945	const struct efx_nic_type *type;
946	int legacy_irq;
947	bool eeh_disabled_legacy_irq;
948	struct workqueue_struct *workqueue;
949	char workqueue_name[16];
950	struct work_struct reset_work;
951	resource_size_t membase_phys;
952	void __iomem *membase;
953
954	enum efx_int_mode interrupt_mode;
955	unsigned int timer_quantum_ns;
956	bool irq_rx_adaptive;
957	unsigned int irq_rx_moderation;
958	u32 msg_enable;
959
960	enum nic_state state;
961	unsigned long reset_pending;
962
963	struct efx_channel *channel[EFX_MAX_CHANNELS];
964	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
965	const struct efx_channel_type *
966	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
967
968	unsigned rxq_entries;
969	unsigned txq_entries;
970	unsigned int txq_stop_thresh;
971	unsigned int txq_wake_thresh;
972
973	unsigned tx_dc_base;
974	unsigned rx_dc_base;
975	unsigned sram_lim_qw;
976	unsigned next_buffer_table;
977
978	unsigned int max_channels;
979	unsigned n_channels;
980	unsigned n_rx_channels;
981	unsigned rss_spread;
982	unsigned tx_channel_offset;
983	unsigned n_tx_channels;
984	unsigned int rx_ip_align;
985	unsigned int rx_dma_len;
986	unsigned int rx_buffer_order;
987	unsigned int rx_buffer_truesize;
988	unsigned int rx_page_buf_step;
989	unsigned int rx_bufs_per_page;
990	unsigned int rx_pages_per_batch;
991	unsigned int rx_prefix_size;
992	int rx_packet_hash_offset;
993	int rx_packet_len_offset;
994	int rx_packet_ts_offset;
995	u8 rx_hash_key[40];
996	u32 rx_indir_table[128];
997	bool rx_scatter;
998
999	unsigned int_error_count;
1000	unsigned long int_error_expire;
1001
1002	bool irq_soft_enabled;
1003	struct efx_buffer irq_status;
1004	unsigned irq_zero_count;
1005	unsigned irq_level;
1006	struct delayed_work selftest_work;
1007
1008#ifdef CONFIG_SFC_MTD
1009	struct list_head mtd_list;
1010#endif
1011
1012	void *nic_data;
1013	struct efx_mcdi_data *mcdi;
1014
1015	struct mutex mac_lock;
1016	struct work_struct mac_work;
1017	bool port_enabled;
1018
1019	bool mc_bist_for_other_fn;
1020	bool port_initialized;
1021	struct net_device *net_dev;
1022
1023	struct efx_buffer stats_buffer;
1024	u64 rx_nodesc_drops_total;
1025	u64 rx_nodesc_drops_while_down;
1026	bool rx_nodesc_drops_prev_state;
1027
1028	unsigned int phy_type;
1029	const struct efx_phy_operations *phy_op;
1030	void *phy_data;
1031	struct mdio_if_info mdio;
1032	unsigned int mdio_bus;
1033	enum efx_phy_mode phy_mode;
1034
1035	u32 link_advertising;
1036	struct efx_link_state link_state;
1037	unsigned int n_link_state_changes;
1038
1039	bool unicast_filter;
1040	union efx_multicast_hash multicast_hash;
1041	u8 wanted_fc;
1042	unsigned fc_disable;
1043
1044	atomic_t rx_reset;
1045	enum efx_loopback_mode loopback_mode;
1046	u64 loopback_modes;
1047
1048	void *loopback_selftest;
1049
1050	spinlock_t filter_lock;
1051	void *filter_state;
1052#ifdef CONFIG_RFS_ACCEL
1053	u32 *rps_flow_id;
1054	unsigned int rps_expire_index;
1055#endif
1056
1057	atomic_t active_queues;
1058	atomic_t rxq_flush_pending;
1059	atomic_t rxq_flush_outstanding;
1060	wait_queue_head_t flush_wq;
1061
1062#ifdef CONFIG_SFC_SRIOV
1063	struct efx_channel *vfdi_channel;
1064	struct efx_vf *vf;
1065	unsigned vf_count;
1066	unsigned vf_init_count;
1067	unsigned vi_scale;
1068	unsigned vf_buftbl_base;
1069	struct efx_buffer vfdi_status;
1070	struct list_head local_addr_list;
1071	struct list_head local_page_list;
1072	struct mutex local_lock;
1073	struct work_struct peer_work;
1074#endif
1075
1076	struct efx_ptp_data *ptp_data;
1077
1078	char *vpd_sn;
1079
1080	/* The following fields may be written more often */
1081
1082	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1083	spinlock_t biu_lock;
1084	int last_irq_cpu;
1085	spinlock_t stats_lock;
1086	atomic_t n_rx_noskb_drops;
1087};
1088
1089static inline int efx_dev_registered(struct efx_nic *efx)
1090{
1091	return efx->net_dev->reg_state == NETREG_REGISTERED;
1092}
1093
1094static inline unsigned int efx_port_num(struct efx_nic *efx)
1095{
1096	return efx->port_num;
1097}
1098
1099struct efx_mtd_partition {
1100	struct list_head node;
1101	struct mtd_info mtd;
1102	const char *dev_type_name;
1103	const char *type_name;
1104	char name[IFNAMSIZ + 20];
1105};
1106
1107/**
1108 * struct efx_nic_type - Efx device type definition
1109 * @mem_map_size: Get memory BAR mapped size
1110 * @probe: Probe the controller
1111 * @remove: Free resources allocated by probe()
1112 * @init: Initialise the controller
1113 * @dimension_resources: Dimension controller resources (buffer table,
1114 *	and VIs once the available interrupt resources are clear)
1115 * @fini: Shut down the controller
1116 * @monitor: Periodic function for polling link state and hardware monitor
1117 * @map_reset_reason: Map ethtool reset reason to a reset method
1118 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1119 * @reset: Reset the controller hardware and possibly the PHY.  This will
1120 *	be called while the controller is uninitialised.
1121 * @probe_port: Probe the MAC and PHY
1122 * @remove_port: Free resources allocated by probe_port()
1123 * @handle_global_event: Handle a "global" event (may be %NULL)
1124 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1125 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1126 *	(for Falcon architecture)
1127 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1128 *	architecture)
1129 * @prepare_flr: Prepare for an FLR
1130 * @finish_flr: Clean up after an FLR
1131 * @describe_stats: Describe statistics for ethtool
1132 * @update_stats: Update statistics not provided by event handling.
1133 *	Either argument may be %NULL.
1134 * @start_stats: Start the regular fetching of statistics
1135 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1136 * @stop_stats: Stop the regular fetching of statistics
1137 * @set_id_led: Set state of identifying LED or revert to automatic function
1138 * @push_irq_moderation: Apply interrupt moderation value
1139 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1140 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1141 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1142 *	to the hardware.  Serialised by the mac_lock.
1143 * @check_mac_fault: Check MAC fault state. True if fault present.
1144 * @get_wol: Get WoL configuration from driver state
1145 * @set_wol: Push WoL configuration to the NIC
1146 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1147 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1148 *	expected to reset the NIC.
1149 * @test_nvram: Test validity of NVRAM contents
1150 * @mcdi_request: Send an MCDI request with the given header and SDU.
1151 *	The SDU length may be any value from 0 up to the protocol-
1152 *	defined maximum, but its buffer will be padded to a multiple
1153 *	of 4 bytes.
1154 * @mcdi_poll_response: Test whether an MCDI response is available.
1155 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1156 *	be a multiple of 4.  The length may not be, but the buffer
1157 *	will be padded so it is safe to round up.
1158 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1159 *	return an appropriate error code for aborting any current
1160 *	request; otherwise return 0.
1161 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1162 *	be separately enabled after this.
1163 * @irq_test_generate: Generate a test IRQ
1164 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1165 *	queue must be separately disabled before this.
1166 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1167 *	a pointer to the &struct efx_msi_context for the channel.
1168 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1169 *	is a pointer to the &struct efx_nic.
1170 * @tx_probe: Allocate resources for TX queue
1171 * @tx_init: Initialise TX queue on the NIC
1172 * @tx_remove: Free resources for TX queue
1173 * @tx_write: Write TX descriptors and doorbell
1174 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1175 * @rx_probe: Allocate resources for RX queue
1176 * @rx_init: Initialise RX queue on the NIC
1177 * @rx_remove: Free resources for RX queue
1178 * @rx_write: Write RX descriptors and doorbell
1179 * @rx_defer_refill: Generate a refill reminder event
1180 * @ev_probe: Allocate resources for event queue
1181 * @ev_init: Initialise event queue on the NIC
1182 * @ev_fini: Deinitialise event queue on the NIC
1183 * @ev_remove: Free resources for event queue
1184 * @ev_process: Process events for a queue, up to the given NAPI quota
1185 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1186 * @ev_test_generate: Generate a test event
1187 * @filter_table_probe: Probe filter capabilities and set up filter software state
1188 * @filter_table_restore: Restore filters removed from hardware
1189 * @filter_table_remove: Remove filters from hardware and tear down software state
1190 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1191 * @filter_insert: add or replace a filter
1192 * @filter_remove_safe: remove a filter by ID, carefully
1193 * @filter_get_safe: retrieve a filter by ID, carefully
1194 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1195 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1196 * @filter_count_rx_used: Get the number of filters in use at a given priority
1197 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1198 * @filter_get_rx_ids: Get list of RX filters at a given priority
1199 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1200 *	atomic.  The hardware change may be asynchronous but should
1201 *	not be delayed for long.  It may fail if this can't be done
1202 *	atomically.
1203 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1204 *	This must check whether the specified table entry is used by RFS
1205 *	and that rps_may_expire_flow() returns true for it.
1206 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1207 *	 using efx_mtd_add()
1208 * @mtd_rename: Set an MTD partition name using the net device name
1209 * @mtd_read: Read from an MTD partition
1210 * @mtd_erase: Erase part of an MTD partition
1211 * @mtd_write: Write to an MTD partition
1212 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1213 *	also notifies the driver that a writer has finished using this
1214 *	partition.
1215 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1216 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1217 *	timestamping, possibly only temporarily for the purposes of a reset.
1218 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1219 *	and tx_type will already have been validated but this operation
1220 *	must validate and update rx_filter.
1221 * @revision: Hardware architecture revision
1222 * @txd_ptr_tbl_base: TX descriptor ring base address
1223 * @rxd_ptr_tbl_base: RX descriptor ring base address
1224 * @buf_tbl_base: Buffer table base address
1225 * @evq_ptr_tbl_base: Event queue pointer table base address
1226 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1227 * @max_dma_mask: Maximum possible DMA mask
1228 * @rx_prefix_size: Size of RX prefix before packet data
1229 * @rx_hash_offset: Offset of RX flow hash within prefix
1230 * @rx_ts_offset: Offset of timestamp within prefix
1231 * @rx_buffer_padding: Size of padding at end of RX packet
1232 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1233 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1234 * @max_interrupt_mode: Highest capability interrupt mode supported
1235 *	from &enum efx_init_mode.
1236 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1237 * @offload_features: net_device feature flags for protocol offload
1238 *	features implemented in hardware
1239 * @mcdi_max_ver: Maximum MCDI version supported
1240 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1241 */
1242struct efx_nic_type {
1243	unsigned int (*mem_map_size)(struct efx_nic *efx);
1244	int (*probe)(struct efx_nic *efx);
1245	void (*remove)(struct efx_nic *efx);
1246	int (*init)(struct efx_nic *efx);
1247	int (*dimension_resources)(struct efx_nic *efx);
1248	void (*fini)(struct efx_nic *efx);
1249	void (*monitor)(struct efx_nic *efx);
1250	enum reset_type (*map_reset_reason)(enum reset_type reason);
1251	int (*map_reset_flags)(u32 *flags);
1252	int (*reset)(struct efx_nic *efx, enum reset_type method);
1253	int (*probe_port)(struct efx_nic *efx);
1254	void (*remove_port)(struct efx_nic *efx);
1255	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1256	int (*fini_dmaq)(struct efx_nic *efx);
1257	void (*prepare_flush)(struct efx_nic *efx);
1258	void (*finish_flush)(struct efx_nic *efx);
1259	void (*prepare_flr)(struct efx_nic *efx);
1260	void (*finish_flr)(struct efx_nic *efx);
1261	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1262	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1263			       struct rtnl_link_stats64 *core_stats);
1264	void (*start_stats)(struct efx_nic *efx);
1265	void (*pull_stats)(struct efx_nic *efx);
1266	void (*stop_stats)(struct efx_nic *efx);
1267	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1268	void (*push_irq_moderation)(struct efx_channel *channel);
1269	int (*reconfigure_port)(struct efx_nic *efx);
1270	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1271	int (*reconfigure_mac)(struct efx_nic *efx);
1272	bool (*check_mac_fault)(struct efx_nic *efx);
1273	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1274	int (*set_wol)(struct efx_nic *efx, u32 type);
1275	void (*resume_wol)(struct efx_nic *efx);
1276	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1277	int (*test_nvram)(struct efx_nic *efx);
1278	void (*mcdi_request)(struct efx_nic *efx,
1279			     const efx_dword_t *hdr, size_t hdr_len,
1280			     const efx_dword_t *sdu, size_t sdu_len);
1281	bool (*mcdi_poll_response)(struct efx_nic *efx);
1282	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1283				   size_t pdu_offset, size_t pdu_len);
1284	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1285	void (*irq_enable_master)(struct efx_nic *efx);
1286	void (*irq_test_generate)(struct efx_nic *efx);
1287	void (*irq_disable_non_ev)(struct efx_nic *efx);
1288	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1289	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1290	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1291	void (*tx_init)(struct efx_tx_queue *tx_queue);
1292	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1293	void (*tx_write)(struct efx_tx_queue *tx_queue);
1294	void (*rx_push_rss_config)(struct efx_nic *efx);
1295	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1296	void (*rx_init)(struct efx_rx_queue *rx_queue);
1297	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1298	void (*rx_write)(struct efx_rx_queue *rx_queue);
1299	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1300	int (*ev_probe)(struct efx_channel *channel);
1301	int (*ev_init)(struct efx_channel *channel);
1302	void (*ev_fini)(struct efx_channel *channel);
1303	void (*ev_remove)(struct efx_channel *channel);
1304	int (*ev_process)(struct efx_channel *channel, int quota);
1305	void (*ev_read_ack)(struct efx_channel *channel);
1306	void (*ev_test_generate)(struct efx_channel *channel);
1307	int (*filter_table_probe)(struct efx_nic *efx);
1308	void (*filter_table_restore)(struct efx_nic *efx);
1309	void (*filter_table_remove)(struct efx_nic *efx);
1310	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1311	s32 (*filter_insert)(struct efx_nic *efx,
1312			     struct efx_filter_spec *spec, bool replace);
1313	int (*filter_remove_safe)(struct efx_nic *efx,
1314				  enum efx_filter_priority priority,
1315				  u32 filter_id);
1316	int (*filter_get_safe)(struct efx_nic *efx,
1317			       enum efx_filter_priority priority,
1318			       u32 filter_id, struct efx_filter_spec *);
1319	int (*filter_clear_rx)(struct efx_nic *efx,
1320			       enum efx_filter_priority priority);
1321	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1322				    enum efx_filter_priority priority);
1323	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1324	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1325				 enum efx_filter_priority priority,
1326				 u32 *buf, u32 size);
1327#ifdef CONFIG_RFS_ACCEL
1328	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1329				 struct efx_filter_spec *spec);
1330	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1331				      unsigned int index);
1332#endif
1333#ifdef CONFIG_SFC_MTD
1334	int (*mtd_probe)(struct efx_nic *efx);
1335	void (*mtd_rename)(struct efx_mtd_partition *part);
1336	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1337			size_t *retlen, u8 *buffer);
1338	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1339	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1340			 size_t *retlen, const u8 *buffer);
1341	int (*mtd_sync)(struct mtd_info *mtd);
1342#endif
1343	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1344	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1345	int (*ptp_set_ts_config)(struct efx_nic *efx,
1346				 struct hwtstamp_config *init);
1347
1348	int revision;
1349	unsigned int txd_ptr_tbl_base;
1350	unsigned int rxd_ptr_tbl_base;
1351	unsigned int buf_tbl_base;
1352	unsigned int evq_ptr_tbl_base;
1353	unsigned int evq_rptr_tbl_base;
1354	u64 max_dma_mask;
1355	unsigned int rx_prefix_size;
1356	unsigned int rx_hash_offset;
1357	unsigned int rx_ts_offset;
1358	unsigned int rx_buffer_padding;
1359	bool can_rx_scatter;
1360	bool always_rx_scatter;
1361	unsigned int max_interrupt_mode;
1362	unsigned int timer_period_max;
1363	netdev_features_t offload_features;
1364	int mcdi_max_ver;
1365	unsigned int max_rx_ip_filters;
1366	u32 hwtstamp_filters;
1367};
1368
1369/**************************************************************************
1370 *
1371 * Prototypes and inline functions
1372 *
1373 *************************************************************************/
1374
1375static inline struct efx_channel *
1376efx_get_channel(struct efx_nic *efx, unsigned index)
1377{
1378	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1379	return efx->channel[index];
1380}
1381
1382/* Iterate over all used channels */
1383#define efx_for_each_channel(_channel, _efx)				\
1384	for (_channel = (_efx)->channel[0];				\
1385	     _channel;							\
1386	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1387		     (_efx)->channel[_channel->channel + 1] : NULL)
1388
1389/* Iterate over all used channels in reverse */
1390#define efx_for_each_channel_rev(_channel, _efx)			\
1391	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1392	     _channel;							\
1393	     _channel = _channel->channel ?				\
1394		     (_efx)->channel[_channel->channel - 1] : NULL)
1395
1396static inline struct efx_tx_queue *
1397efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1398{
1399	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1400			    type >= EFX_TXQ_TYPES);
1401	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1402}
1403
1404static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1405{
1406	return channel->channel - channel->efx->tx_channel_offset <
1407		channel->efx->n_tx_channels;
1408}
1409
1410static inline struct efx_tx_queue *
1411efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1412{
1413	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1414			    type >= EFX_TXQ_TYPES);
1415	return &channel->tx_queue[type];
1416}
1417
1418static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1419{
1420	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1421		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1422}
1423
1424/* Iterate over all TX queues belonging to a channel */
1425#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1426	if (!efx_channel_has_tx_queues(_channel))			\
1427		;							\
1428	else								\
1429		for (_tx_queue = (_channel)->tx_queue;			\
1430		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1431			     efx_tx_queue_used(_tx_queue);		\
1432		     _tx_queue++)
1433
1434/* Iterate over all possible TX queues belonging to a channel */
1435#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1436	if (!efx_channel_has_tx_queues(_channel))			\
1437		;							\
1438	else								\
1439		for (_tx_queue = (_channel)->tx_queue;			\
1440		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1441		     _tx_queue++)
1442
1443static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1444{
1445	return channel->rx_queue.core_index >= 0;
1446}
1447
1448static inline struct efx_rx_queue *
1449efx_channel_get_rx_queue(struct efx_channel *channel)
1450{
1451	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1452	return &channel->rx_queue;
1453}
1454
1455/* Iterate over all RX queues belonging to a channel */
1456#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1457	if (!efx_channel_has_rx_queue(_channel))			\
1458		;							\
1459	else								\
1460		for (_rx_queue = &(_channel)->rx_queue;			\
1461		     _rx_queue;						\
1462		     _rx_queue = NULL)
1463
1464static inline struct efx_channel *
1465efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1466{
1467	return container_of(rx_queue, struct efx_channel, rx_queue);
1468}
1469
1470static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1471{
1472	return efx_rx_queue_channel(rx_queue)->channel;
1473}
1474
1475/* Returns a pointer to the specified receive buffer in the RX
1476 * descriptor queue.
1477 */
1478static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1479						  unsigned int index)
1480{
1481	return &rx_queue->buffer[index];
1482}
1483
1484/**
1485 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1486 *
1487 * This calculates the maximum frame length that will be used for a
1488 * given MTU.  The frame length will be equal to the MTU plus a
1489 * constant amount of header space and padding.  This is the quantity
1490 * that the net driver will program into the MAC as the maximum frame
1491 * length.
1492 *
1493 * The 10G MAC requires 8-byte alignment on the frame
1494 * length, so we round up to the nearest 8.
1495 *
1496 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1497 * XGMII cycle).  If the frame length reaches the maximum value in the
1498 * same cycle, the XMAC can miss the IPG altogether.  We work around
1499 * this by adding a further 16 bytes.
1500 */
1501#define EFX_MAX_FRAME_LEN(mtu) \
1502	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1503
1504static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1505{
1506	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1507}
1508static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1509{
1510	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1511}
1512
1513#endif /* EFX_NET_DRIVER_H */
1514