1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2010-2012 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9#include <linux/pci.h>
10#include <linux/module.h>
11#include "net_driver.h"
12#include "efx.h"
13#include "nic.h"
14#include "io.h"
15#include "mcdi.h"
16#include "filter.h"
17#include "mcdi_pcol.h"
18#include "farch_regs.h"
19#include "vfdi.h"
20
21/* Number of longs required to track all the VIs in a VF */
22#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23
24/* Maximum number of RX queues supported */
25#define VF_MAX_RX_QUEUES 63
26
27/**
28 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
29 * @VF_TX_FILTER_OFF: Disabled
30 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
31 *	2 TX queues allowed per VF.
32 * @VF_TX_FILTER_ON: Enabled
33 */
34enum efx_vf_tx_filter_mode {
35	VF_TX_FILTER_OFF,
36	VF_TX_FILTER_AUTO,
37	VF_TX_FILTER_ON,
38};
39
40/**
41 * struct efx_vf - Back-end resource and protocol state for a PCI VF
42 * @efx: The Efx NIC owning this VF
43 * @pci_rid: The PCI requester ID for this VF
44 * @pci_name: The PCI name (formatted address) of this VF
45 * @index: Index of VF within its port and PF.
46 * @req: VFDI incoming request work item. Incoming USR_EV events are received
47 *	by the NAPI handler, but must be handled by executing MCDI requests
48 *	inside a work item.
49 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
50 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
51 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
52 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
53 *	@status_lock
54 * @busy: VFDI request queued to be processed or being processed. Receiving
55 *	a VFDI request when @busy is set is an error condition.
56 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
57 * @buftbl_base: Buffer table entries for this VF start at this index.
58 * @rx_filtering: Receive filtering has been requested by the VF driver.
59 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
60 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
61 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
62 * @tx_filter_mode: Transmit MAC filtering mode.
63 * @tx_filter_id: Transmit MAC filter ID.
64 * @addr: The MAC address and outer vlan tag of the VF.
65 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
66 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
67 *	@peer_page_addrs and @peer_page_count from simultaneous
68 *	updates by the VM and consumption by
69 *	efx_sriov_update_vf_addr()
70 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
71 * @peer_page_count: Number of entries in @peer_page_count.
72 * @evq0_addrs: Array of guest pages backing evq0.
73 * @evq0_count: Number of entries in @evq0_addrs.
74 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
75 *	to wait for flush completions.
76 * @txq_lock: Mutex for TX queue allocation.
77 * @txq_mask: Mask of initialized transmit queues.
78 * @txq_count: Number of initialized transmit queues.
79 * @rxq_mask: Mask of initialized receive queues.
80 * @rxq_count: Number of initialized receive queues.
81 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
82 *	due to flush failure.
83 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
84 * @reset_work: Work item to schedule a VF reset.
85 */
86struct efx_vf {
87	struct efx_nic *efx;
88	unsigned int pci_rid;
89	char pci_name[13]; /* dddd:bb:dd.f */
90	unsigned int index;
91	struct work_struct req;
92	u64 req_addr;
93	int req_type;
94	unsigned req_seqno;
95	unsigned msg_seqno;
96	bool busy;
97	struct efx_buffer buf;
98	unsigned buftbl_base;
99	bool rx_filtering;
100	enum efx_filter_flags rx_filter_flags;
101	unsigned rx_filter_qid;
102	int rx_filter_id;
103	enum efx_vf_tx_filter_mode tx_filter_mode;
104	int tx_filter_id;
105	struct vfdi_endpoint addr;
106	u64 status_addr;
107	struct mutex status_lock;
108	u64 *peer_page_addrs;
109	unsigned peer_page_count;
110	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
111		       EFX_BUF_SIZE];
112	unsigned evq0_count;
113	wait_queue_head_t flush_waitq;
114	struct mutex txq_lock;
115	unsigned long txq_mask[VI_MASK_LENGTH];
116	unsigned txq_count;
117	unsigned long rxq_mask[VI_MASK_LENGTH];
118	unsigned rxq_count;
119	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
120	atomic_t rxq_retry_count;
121	struct work_struct reset_work;
122};
123
124struct efx_memcpy_req {
125	unsigned int from_rid;
126	void *from_buf;
127	u64 from_addr;
128	unsigned int to_rid;
129	u64 to_addr;
130	unsigned length;
131};
132
133/**
134 * struct efx_local_addr - A MAC address on the vswitch without a VF.
135 *
136 * Siena does not have a switch, so VFs can't transmit data to each
137 * other. Instead the VFs must be made aware of the local addresses
138 * on the vswitch, so that they can arrange for an alternative
139 * software datapath to be used.
140 *
141 * @link: List head for insertion into efx->local_addr_list.
142 * @addr: Ethernet address
143 */
144struct efx_local_addr {
145	struct list_head link;
146	u8 addr[ETH_ALEN];
147};
148
149/**
150 * struct efx_endpoint_page - Page of vfdi_endpoint structures
151 *
152 * @link: List head for insertion into efx->local_page_list.
153 * @ptr: Pointer to page.
154 * @addr: DMA address of page.
155 */
156struct efx_endpoint_page {
157	struct list_head link;
158	void *ptr;
159	dma_addr_t addr;
160};
161
162/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
163#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
164	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
165#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
166	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
167	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
168#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
169	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
170	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
171
172#define EFX_FIELD_MASK(_field)			\
173	((1 << _field ## _WIDTH) - 1)
174
175/* VFs can only use this many transmit channels */
176static unsigned int vf_max_tx_channels = 2;
177module_param(vf_max_tx_channels, uint, 0444);
178MODULE_PARM_DESC(vf_max_tx_channels,
179		 "Limit the number of TX channels VFs can use");
180
181static int max_vfs = -1;
182module_param(max_vfs, int, 0444);
183MODULE_PARM_DESC(max_vfs,
184		 "Reduce the number of VFs initialized by the driver");
185
186/* Workqueue used by VFDI communication.  We can't use the global
187 * workqueue because it may be running the VF driver's probe()
188 * routine, which will be blocked there waiting for a VFDI response.
189 */
190static struct workqueue_struct *vfdi_workqueue;
191
192static unsigned abs_index(struct efx_vf *vf, unsigned index)
193{
194	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
195}
196
197static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
198			 unsigned *vi_scale_out, unsigned *vf_total_out)
199{
200	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
201	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
202	unsigned vi_scale, vf_total;
203	size_t outlen;
204	int rc;
205
206	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
207	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
208	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
209
210	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
211			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
212	if (rc)
213		return rc;
214	if (outlen < MC_CMD_SRIOV_OUT_LEN)
215		return -EIO;
216
217	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
218	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
219	if (vi_scale > EFX_VI_SCALE_MAX)
220		return -EOPNOTSUPP;
221
222	if (vi_scale_out)
223		*vi_scale_out = vi_scale;
224	if (vf_total_out)
225		*vf_total_out = vf_total;
226
227	return 0;
228}
229
230static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
231{
232	efx_oword_t reg;
233
234	EFX_POPULATE_OWORD_2(reg,
235			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
236			     FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
237	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
238}
239
240static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
241			    unsigned int count)
242{
243	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
244	MCDI_DECLARE_STRUCT_PTR(record);
245	unsigned int index, used;
246	u64 from_addr;
247	u32 from_rid;
248	int rc;
249
250	mb();	/* Finish writing source/reading dest before DMA starts */
251
252	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
253		return -ENOBUFS;
254	used = MC_CMD_MEMCPY_IN_LEN(count);
255
256	for (index = 0; index < count; index++) {
257		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
258		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
259			       count);
260		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
261			       req->to_rid);
262		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
263			       req->to_addr);
264		if (req->from_buf == NULL) {
265			from_rid = req->from_rid;
266			from_addr = req->from_addr;
267		} else {
268			if (WARN_ON(used + req->length >
269				    MCDI_CTL_SDU_LEN_MAX_V1)) {
270				rc = -ENOBUFS;
271				goto out;
272			}
273
274			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
275			from_addr = used;
276			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
277			       req->length);
278			used += req->length;
279		}
280
281		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
282		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
283			       from_addr);
284		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
285			       req->length);
286
287		++req;
288	}
289
290	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
291out:
292	mb();	/* Don't write source/read dest before DMA is complete */
293
294	return rc;
295}
296
297/* The TX filter is entirely controlled by this driver, and is modified
298 * underneath the feet of the VF
299 */
300static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
301{
302	struct efx_nic *efx = vf->efx;
303	struct efx_filter_spec filter;
304	u16 vlan;
305	int rc;
306
307	if (vf->tx_filter_id != -1) {
308		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
309					  vf->tx_filter_id);
310		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
311			  vf->pci_name, vf->tx_filter_id);
312		vf->tx_filter_id = -1;
313	}
314
315	if (is_zero_ether_addr(vf->addr.mac_addr))
316		return;
317
318	/* Turn on TX filtering automatically if not explicitly
319	 * enabled or disabled.
320	 */
321	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
322		vf->tx_filter_mode = VF_TX_FILTER_ON;
323
324	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
325	efx_filter_init_tx(&filter, abs_index(vf, 0));
326	rc = efx_filter_set_eth_local(&filter,
327				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
328				      vf->addr.mac_addr);
329	BUG_ON(rc);
330
331	rc = efx_filter_insert_filter(efx, &filter, true);
332	if (rc < 0) {
333		netif_warn(efx, hw, efx->net_dev,
334			   "Unable to migrate tx filter for vf %s\n",
335			   vf->pci_name);
336	} else {
337		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
338			  vf->pci_name, rc);
339		vf->tx_filter_id = rc;
340	}
341}
342
343/* The RX filter is managed here on behalf of the VF driver */
344static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
345{
346	struct efx_nic *efx = vf->efx;
347	struct efx_filter_spec filter;
348	u16 vlan;
349	int rc;
350
351	if (vf->rx_filter_id != -1) {
352		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
353					  vf->rx_filter_id);
354		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
355			  vf->pci_name, vf->rx_filter_id);
356		vf->rx_filter_id = -1;
357	}
358
359	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
360		return;
361
362	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
363	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
364			   vf->rx_filter_flags,
365			   abs_index(vf, vf->rx_filter_qid));
366	rc = efx_filter_set_eth_local(&filter,
367				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
368				      vf->addr.mac_addr);
369	BUG_ON(rc);
370
371	rc = efx_filter_insert_filter(efx, &filter, true);
372	if (rc < 0) {
373		netif_warn(efx, hw, efx->net_dev,
374			   "Unable to insert rx filter for vf %s\n",
375			   vf->pci_name);
376	} else {
377		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
378			  vf->pci_name, rc);
379		vf->rx_filter_id = rc;
380	}
381}
382
383static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
384{
385	efx_sriov_reset_tx_filter(vf);
386	efx_sriov_reset_rx_filter(vf);
387	queue_work(vfdi_workqueue, &vf->efx->peer_work);
388}
389
390/* Push the peer list to this VF. The caller must hold status_lock to interlock
391 * with VFDI requests, and they must be serialised against manipulation of
392 * local_page_list, either by acquiring local_lock or by running from
393 * efx_sriov_peer_work()
394 */
395static void __efx_sriov_push_vf_status(struct efx_vf *vf)
396{
397	struct efx_nic *efx = vf->efx;
398	struct vfdi_status *status = efx->vfdi_status.addr;
399	struct efx_memcpy_req copy[4];
400	struct efx_endpoint_page *epp;
401	unsigned int pos, count;
402	unsigned data_offset;
403	efx_qword_t event;
404
405	WARN_ON(!mutex_is_locked(&vf->status_lock));
406	WARN_ON(!vf->status_addr);
407
408	status->local = vf->addr;
409	status->generation_end = ++status->generation_start;
410
411	memset(copy, '\0', sizeof(copy));
412	/* Write generation_start */
413	copy[0].from_buf = &status->generation_start;
414	copy[0].to_rid = vf->pci_rid;
415	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
416						     generation_start);
417	copy[0].length = sizeof(status->generation_start);
418	/* DMA the rest of the structure (excluding the generations). This
419	 * assumes that the non-generation portion of vfdi_status is in
420	 * one chunk starting at the version member.
421	 */
422	data_offset = offsetof(struct vfdi_status, version);
423	copy[1].from_rid = efx->pci_dev->devfn;
424	copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
425	copy[1].to_rid = vf->pci_rid;
426	copy[1].to_addr = vf->status_addr + data_offset;
427	copy[1].length =  status->length - data_offset;
428
429	/* Copy the peer pages */
430	pos = 2;
431	count = 0;
432	list_for_each_entry(epp, &efx->local_page_list, link) {
433		if (count == vf->peer_page_count) {
434			/* The VF driver will know they need to provide more
435			 * pages because peer_addr_count is too large.
436			 */
437			break;
438		}
439		copy[pos].from_buf = NULL;
440		copy[pos].from_rid = efx->pci_dev->devfn;
441		copy[pos].from_addr = epp->addr;
442		copy[pos].to_rid = vf->pci_rid;
443		copy[pos].to_addr = vf->peer_page_addrs[count];
444		copy[pos].length = EFX_PAGE_SIZE;
445
446		if (++pos == ARRAY_SIZE(copy)) {
447			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
448			pos = 0;
449		}
450		++count;
451	}
452
453	/* Write generation_end */
454	copy[pos].from_buf = &status->generation_end;
455	copy[pos].to_rid = vf->pci_rid;
456	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
457						       generation_end);
458	copy[pos].length = sizeof(status->generation_end);
459	efx_sriov_memcpy(efx, copy, pos + 1);
460
461	/* Notify the guest */
462	EFX_POPULATE_QWORD_3(event,
463			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
464			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
465			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
466	++vf->msg_seqno;
467	efx_farch_generate_event(efx,
468				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
469				 &event);
470}
471
472static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
473			   u64 *addr, unsigned count)
474{
475	efx_qword_t buf;
476	unsigned pos;
477
478	for (pos = 0; pos < count; ++pos) {
479		EFX_POPULATE_QWORD_3(buf,
480				     FRF_AZ_BUF_ADR_REGION, 0,
481				     FRF_AZ_BUF_ADR_FBUF,
482				     addr ? addr[pos] >> 12 : 0,
483				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
484		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
485				&buf, offset + pos);
486	}
487}
488
489static bool bad_vf_index(struct efx_nic *efx, unsigned index)
490{
491	return index >= efx_vf_size(efx);
492}
493
494static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
495{
496	unsigned max_buf_count = max_entry_count *
497		sizeof(efx_qword_t) / EFX_BUF_SIZE;
498
499	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
500}
501
502/* Check that VI specified by per-port index belongs to a VF.
503 * Optionally set VF index and VI index within the VF.
504 */
505static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
506			 struct efx_vf **vf_out, unsigned *rel_index_out)
507{
508	unsigned vf_i;
509
510	if (abs_index < EFX_VI_BASE)
511		return true;
512	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
513	if (vf_i >= efx->vf_init_count)
514		return true;
515
516	if (vf_out)
517		*vf_out = efx->vf + vf_i;
518	if (rel_index_out)
519		*rel_index_out = abs_index % efx_vf_size(efx);
520	return false;
521}
522
523static int efx_vfdi_init_evq(struct efx_vf *vf)
524{
525	struct efx_nic *efx = vf->efx;
526	struct vfdi_req *req = vf->buf.addr;
527	unsigned vf_evq = req->u.init_evq.index;
528	unsigned buf_count = req->u.init_evq.buf_count;
529	unsigned abs_evq = abs_index(vf, vf_evq);
530	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
531	efx_oword_t reg;
532
533	if (bad_vf_index(efx, vf_evq) ||
534	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
535		if (net_ratelimit())
536			netif_err(efx, hw, efx->net_dev,
537				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
538				  vf->pci_name, vf_evq, buf_count);
539		return VFDI_RC_EINVAL;
540	}
541
542	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
543
544	EFX_POPULATE_OWORD_3(reg,
545			     FRF_CZ_TIMER_Q_EN, 1,
546			     FRF_CZ_HOST_NOTIFY_MODE, 0,
547			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
548	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
549	EFX_POPULATE_OWORD_3(reg,
550			     FRF_AZ_EVQ_EN, 1,
551			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
552			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
553	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
554
555	if (vf_evq == 0) {
556		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
557		       buf_count * sizeof(u64));
558		vf->evq0_count = buf_count;
559	}
560
561	return VFDI_RC_SUCCESS;
562}
563
564static int efx_vfdi_init_rxq(struct efx_vf *vf)
565{
566	struct efx_nic *efx = vf->efx;
567	struct vfdi_req *req = vf->buf.addr;
568	unsigned vf_rxq = req->u.init_rxq.index;
569	unsigned vf_evq = req->u.init_rxq.evq;
570	unsigned buf_count = req->u.init_rxq.buf_count;
571	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
572	unsigned label;
573	efx_oword_t reg;
574
575	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
576	    vf_rxq >= VF_MAX_RX_QUEUES ||
577	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
578		if (net_ratelimit())
579			netif_err(efx, hw, efx->net_dev,
580				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
581				  "buf_count %d\n", vf->pci_name, vf_rxq,
582				  vf_evq, buf_count);
583		return VFDI_RC_EINVAL;
584	}
585	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
586		++vf->rxq_count;
587	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
588
589	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
590	EFX_POPULATE_OWORD_6(reg,
591			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
592			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
593			     FRF_AZ_RX_DESCQ_LABEL, label,
594			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
595			     FRF_AZ_RX_DESCQ_JUMBO,
596			     !!(req->u.init_rxq.flags &
597				VFDI_RXQ_FLAG_SCATTER_EN),
598			     FRF_AZ_RX_DESCQ_EN, 1);
599	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
600			 abs_index(vf, vf_rxq));
601
602	return VFDI_RC_SUCCESS;
603}
604
605static int efx_vfdi_init_txq(struct efx_vf *vf)
606{
607	struct efx_nic *efx = vf->efx;
608	struct vfdi_req *req = vf->buf.addr;
609	unsigned vf_txq = req->u.init_txq.index;
610	unsigned vf_evq = req->u.init_txq.evq;
611	unsigned buf_count = req->u.init_txq.buf_count;
612	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
613	unsigned label, eth_filt_en;
614	efx_oword_t reg;
615
616	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
617	    vf_txq >= vf_max_tx_channels ||
618	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
619		if (net_ratelimit())
620			netif_err(efx, hw, efx->net_dev,
621				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
622				  "buf_count %d\n", vf->pci_name, vf_txq,
623				  vf_evq, buf_count);
624		return VFDI_RC_EINVAL;
625	}
626
627	mutex_lock(&vf->txq_lock);
628	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
629		++vf->txq_count;
630	mutex_unlock(&vf->txq_lock);
631	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
632
633	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
634
635	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
636	EFX_POPULATE_OWORD_8(reg,
637			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
638			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
639			     FRF_AZ_TX_DESCQ_EN, 1,
640			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
641			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
642			     FRF_AZ_TX_DESCQ_LABEL, label,
643			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
644			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
645	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
646			 abs_index(vf, vf_txq));
647
648	return VFDI_RC_SUCCESS;
649}
650
651/* Returns true when efx_vfdi_fini_all_queues should wake */
652static bool efx_vfdi_flush_wake(struct efx_vf *vf)
653{
654	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
655	smp_mb();
656
657	return (!vf->txq_count && !vf->rxq_count) ||
658		atomic_read(&vf->rxq_retry_count);
659}
660
661static void efx_vfdi_flush_clear(struct efx_vf *vf)
662{
663	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
664	vf->txq_count = 0;
665	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
666	vf->rxq_count = 0;
667	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
668	atomic_set(&vf->rxq_retry_count, 0);
669}
670
671static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
672{
673	struct efx_nic *efx = vf->efx;
674	efx_oword_t reg;
675	unsigned count = efx_vf_size(efx);
676	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
677	unsigned timeout = HZ;
678	unsigned index, rxqs_count;
679	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
680	int rc;
681
682	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
683		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
684
685	rtnl_lock();
686	siena_prepare_flush(efx);
687	rtnl_unlock();
688
689	/* Flush all the initialized queues */
690	rxqs_count = 0;
691	for (index = 0; index < count; ++index) {
692		if (test_bit(index, vf->txq_mask)) {
693			EFX_POPULATE_OWORD_2(reg,
694					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
695					     FRF_AZ_TX_FLUSH_DESCQ,
696					     vf_offset + index);
697			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
698		}
699		if (test_bit(index, vf->rxq_mask)) {
700			MCDI_SET_ARRAY_DWORD(
701				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
702				rxqs_count, vf_offset + index);
703			rxqs_count++;
704		}
705	}
706
707	atomic_set(&vf->rxq_retry_count, 0);
708	while (timeout && (vf->rxq_count || vf->txq_count)) {
709		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
710				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
711				  NULL, 0, NULL);
712		WARN_ON(rc < 0);
713
714		timeout = wait_event_timeout(vf->flush_waitq,
715					     efx_vfdi_flush_wake(vf),
716					     timeout);
717		rxqs_count = 0;
718		for (index = 0; index < count; ++index) {
719			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
720				atomic_dec(&vf->rxq_retry_count);
721				MCDI_SET_ARRAY_DWORD(
722					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
723					rxqs_count, vf_offset + index);
724				rxqs_count++;
725			}
726		}
727	}
728
729	rtnl_lock();
730	siena_finish_flush(efx);
731	rtnl_unlock();
732
733	/* Irrespective of success/failure, fini the queues */
734	EFX_ZERO_OWORD(reg);
735	for (index = 0; index < count; ++index) {
736		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
737				 vf_offset + index);
738		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
739				 vf_offset + index);
740		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
741				 vf_offset + index);
742		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
743				 vf_offset + index);
744	}
745	efx_sriov_bufs(efx, vf->buftbl_base, NULL,
746		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
747	efx_vfdi_flush_clear(vf);
748
749	vf->evq0_count = 0;
750
751	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
752}
753
754static int efx_vfdi_insert_filter(struct efx_vf *vf)
755{
756	struct efx_nic *efx = vf->efx;
757	struct vfdi_req *req = vf->buf.addr;
758	unsigned vf_rxq = req->u.mac_filter.rxq;
759	unsigned flags;
760
761	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
762		if (net_ratelimit())
763			netif_err(efx, hw, efx->net_dev,
764				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
765				  "flags 0x%x\n", vf->pci_name, vf_rxq,
766				  req->u.mac_filter.flags);
767		return VFDI_RC_EINVAL;
768	}
769
770	flags = 0;
771	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
772		flags |= EFX_FILTER_FLAG_RX_RSS;
773	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
774		flags |= EFX_FILTER_FLAG_RX_SCATTER;
775	vf->rx_filter_flags = flags;
776	vf->rx_filter_qid = vf_rxq;
777	vf->rx_filtering = true;
778
779	efx_sriov_reset_rx_filter(vf);
780	queue_work(vfdi_workqueue, &efx->peer_work);
781
782	return VFDI_RC_SUCCESS;
783}
784
785static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
786{
787	vf->rx_filtering = false;
788	efx_sriov_reset_rx_filter(vf);
789	queue_work(vfdi_workqueue, &vf->efx->peer_work);
790
791	return VFDI_RC_SUCCESS;
792}
793
794static int efx_vfdi_set_status_page(struct efx_vf *vf)
795{
796	struct efx_nic *efx = vf->efx;
797	struct vfdi_req *req = vf->buf.addr;
798	u64 page_count = req->u.set_status_page.peer_page_count;
799	u64 max_page_count =
800		(EFX_PAGE_SIZE -
801		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
802		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
803
804	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
805		if (net_ratelimit())
806			netif_err(efx, hw, efx->net_dev,
807				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
808				  vf->pci_name);
809		return VFDI_RC_EINVAL;
810	}
811
812	mutex_lock(&efx->local_lock);
813	mutex_lock(&vf->status_lock);
814	vf->status_addr = req->u.set_status_page.dma_addr;
815
816	kfree(vf->peer_page_addrs);
817	vf->peer_page_addrs = NULL;
818	vf->peer_page_count = 0;
819
820	if (page_count) {
821		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
822					      GFP_KERNEL);
823		if (vf->peer_page_addrs) {
824			memcpy(vf->peer_page_addrs,
825			       req->u.set_status_page.peer_page_addr,
826			       page_count * sizeof(u64));
827			vf->peer_page_count = page_count;
828		}
829	}
830
831	__efx_sriov_push_vf_status(vf);
832	mutex_unlock(&vf->status_lock);
833	mutex_unlock(&efx->local_lock);
834
835	return VFDI_RC_SUCCESS;
836}
837
838static int efx_vfdi_clear_status_page(struct efx_vf *vf)
839{
840	mutex_lock(&vf->status_lock);
841	vf->status_addr = 0;
842	mutex_unlock(&vf->status_lock);
843
844	return VFDI_RC_SUCCESS;
845}
846
847typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
848
849static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
850	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
851	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
852	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
853	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
854	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
855	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
856	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
857	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
858};
859
860static void efx_sriov_vfdi(struct work_struct *work)
861{
862	struct efx_vf *vf = container_of(work, struct efx_vf, req);
863	struct efx_nic *efx = vf->efx;
864	struct vfdi_req *req = vf->buf.addr;
865	struct efx_memcpy_req copy[2];
866	int rc;
867
868	/* Copy this page into the local address space */
869	memset(copy, '\0', sizeof(copy));
870	copy[0].from_rid = vf->pci_rid;
871	copy[0].from_addr = vf->req_addr;
872	copy[0].to_rid = efx->pci_dev->devfn;
873	copy[0].to_addr = vf->buf.dma_addr;
874	copy[0].length = EFX_PAGE_SIZE;
875	rc = efx_sriov_memcpy(efx, copy, 1);
876	if (rc) {
877		/* If we can't get the request, we can't reply to the caller */
878		if (net_ratelimit())
879			netif_err(efx, hw, efx->net_dev,
880				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
881				  vf->pci_name, -rc);
882		vf->busy = false;
883		return;
884	}
885
886	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
887		rc = vfdi_ops[req->op](vf);
888		if (rc == 0) {
889			netif_dbg(efx, hw, efx->net_dev,
890				  "vfdi request %d from %s ok\n",
891				  req->op, vf->pci_name);
892		}
893	} else {
894		netif_dbg(efx, hw, efx->net_dev,
895			  "ERROR: Unrecognised request %d from VF %s addr "
896			  "%llx\n", req->op, vf->pci_name,
897			  (unsigned long long)vf->req_addr);
898		rc = VFDI_RC_EOPNOTSUPP;
899	}
900
901	/* Allow subsequent VF requests */
902	vf->busy = false;
903	smp_wmb();
904
905	/* Respond to the request */
906	req->rc = rc;
907	req->op = VFDI_OP_RESPONSE;
908
909	memset(copy, '\0', sizeof(copy));
910	copy[0].from_buf = &req->rc;
911	copy[0].to_rid = vf->pci_rid;
912	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
913	copy[0].length = sizeof(req->rc);
914	copy[1].from_buf = &req->op;
915	copy[1].to_rid = vf->pci_rid;
916	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
917	copy[1].length = sizeof(req->op);
918
919	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
920}
921
922
923
924/* After a reset the event queues inside the guests no longer exist. Fill the
925 * event ring in guest memory with VFDI reset events, then (re-initialise) the
926 * event queue to raise an interrupt. The guest driver will then recover.
927 */
928static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
929{
930	struct efx_nic *efx = vf->efx;
931	struct efx_memcpy_req copy_req[4];
932	efx_qword_t event;
933	unsigned int pos, count, k, buftbl, abs_evq;
934	efx_oword_t reg;
935	efx_dword_t ptr;
936	int rc;
937
938	BUG_ON(buffer->len != EFX_PAGE_SIZE);
939
940	if (!vf->evq0_count)
941		return;
942	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
943
944	mutex_lock(&vf->status_lock);
945	EFX_POPULATE_QWORD_3(event,
946			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
947			     VFDI_EV_SEQ, vf->msg_seqno,
948			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
949	vf->msg_seqno++;
950	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
951		memcpy(buffer->addr + pos, &event, sizeof(event));
952
953	for (pos = 0; pos < vf->evq0_count; pos += count) {
954		count = min_t(unsigned, vf->evq0_count - pos,
955			      ARRAY_SIZE(copy_req));
956		for (k = 0; k < count; k++) {
957			copy_req[k].from_buf = NULL;
958			copy_req[k].from_rid = efx->pci_dev->devfn;
959			copy_req[k].from_addr = buffer->dma_addr;
960			copy_req[k].to_rid = vf->pci_rid;
961			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
962			copy_req[k].length = EFX_PAGE_SIZE;
963		}
964		rc = efx_sriov_memcpy(efx, copy_req, count);
965		if (rc) {
966			if (net_ratelimit())
967				netif_err(efx, hw, efx->net_dev,
968					  "ERROR: Unable to notify %s of reset"
969					  ": %d\n", vf->pci_name, -rc);
970			break;
971		}
972	}
973
974	/* Reinitialise, arm and trigger evq0 */
975	abs_evq = abs_index(vf, 0);
976	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
977	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
978
979	EFX_POPULATE_OWORD_3(reg,
980			     FRF_CZ_TIMER_Q_EN, 1,
981			     FRF_CZ_HOST_NOTIFY_MODE, 0,
982			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
983	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
984	EFX_POPULATE_OWORD_3(reg,
985			     FRF_AZ_EVQ_EN, 1,
986			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
987			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
988	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
989	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
990	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
991
992	mutex_unlock(&vf->status_lock);
993}
994
995static void efx_sriov_reset_vf_work(struct work_struct *work)
996{
997	struct efx_vf *vf = container_of(work, struct efx_vf, req);
998	struct efx_nic *efx = vf->efx;
999	struct efx_buffer buf;
1000
1001	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1002		efx_sriov_reset_vf(vf, &buf);
1003		efx_nic_free_buffer(efx, &buf);
1004	}
1005}
1006
1007static void efx_sriov_handle_no_channel(struct efx_nic *efx)
1008{
1009	netif_err(efx, drv, efx->net_dev,
1010		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1011		  "vector. IOV disabled\n");
1012	efx->vf_count = 0;
1013}
1014
1015static int efx_sriov_probe_channel(struct efx_channel *channel)
1016{
1017	channel->efx->vfdi_channel = channel;
1018	return 0;
1019}
1020
1021static void
1022efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
1023{
1024	snprintf(buf, len, "%s-iov", channel->efx->name);
1025}
1026
1027static const struct efx_channel_type efx_sriov_channel_type = {
1028	.handle_no_channel	= efx_sriov_handle_no_channel,
1029	.pre_probe		= efx_sriov_probe_channel,
1030	.post_remove		= efx_channel_dummy_op_void,
1031	.get_name		= efx_sriov_get_channel_name,
1032	/* no copy operation; channel must not be reallocated */
1033	.keep_eventq		= true,
1034};
1035
1036void efx_sriov_probe(struct efx_nic *efx)
1037{
1038	unsigned count;
1039
1040	if (!max_vfs)
1041		return;
1042
1043	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
1044		return;
1045	if (count > 0 && count > max_vfs)
1046		count = max_vfs;
1047
1048	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1049	efx->vf_count = count;
1050
1051	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
1052}
1053
1054/* Copy the list of individual addresses into the vfdi_status.peers
1055 * array and auxillary pages, protected by %local_lock. Drop that lock
1056 * and then broadcast the address list to every VF.
1057 */
1058static void efx_sriov_peer_work(struct work_struct *data)
1059{
1060	struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
1061	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1062	struct efx_vf *vf;
1063	struct efx_local_addr *local_addr;
1064	struct vfdi_endpoint *peer;
1065	struct efx_endpoint_page *epp;
1066	struct list_head pages;
1067	unsigned int peer_space;
1068	unsigned int peer_count;
1069	unsigned int pos;
1070
1071	mutex_lock(&efx->local_lock);
1072
1073	/* Move the existing peer pages off %local_page_list */
1074	INIT_LIST_HEAD(&pages);
1075	list_splice_tail_init(&efx->local_page_list, &pages);
1076
1077	/* Populate the VF addresses starting from entry 1 (entry 0 is
1078	 * the PF address)
1079	 */
1080	peer = vfdi_status->peers + 1;
1081	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1082	peer_count = 1;
1083	for (pos = 0; pos < efx->vf_count; ++pos) {
1084		vf = efx->vf + pos;
1085
1086		mutex_lock(&vf->status_lock);
1087		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1088			*peer++ = vf->addr;
1089			++peer_count;
1090			--peer_space;
1091			BUG_ON(peer_space == 0);
1092		}
1093		mutex_unlock(&vf->status_lock);
1094	}
1095
1096	/* Fill the remaining addresses */
1097	list_for_each_entry(local_addr, &efx->local_addr_list, link) {
1098		ether_addr_copy(peer->mac_addr, local_addr->addr);
1099		peer->tci = 0;
1100		++peer;
1101		++peer_count;
1102		if (--peer_space == 0) {
1103			if (list_empty(&pages)) {
1104				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1105				if (!epp)
1106					break;
1107				epp->ptr = dma_alloc_coherent(
1108					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1109					&epp->addr, GFP_KERNEL);
1110				if (!epp->ptr) {
1111					kfree(epp);
1112					break;
1113				}
1114			} else {
1115				epp = list_first_entry(
1116					&pages, struct efx_endpoint_page, link);
1117				list_del(&epp->link);
1118			}
1119
1120			list_add_tail(&epp->link, &efx->local_page_list);
1121			peer = (struct vfdi_endpoint *)epp->ptr;
1122			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1123		}
1124	}
1125	vfdi_status->peer_count = peer_count;
1126	mutex_unlock(&efx->local_lock);
1127
1128	/* Free any now unused endpoint pages */
1129	while (!list_empty(&pages)) {
1130		epp = list_first_entry(
1131			&pages, struct efx_endpoint_page, link);
1132		list_del(&epp->link);
1133		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1134				  epp->ptr, epp->addr);
1135		kfree(epp);
1136	}
1137
1138	/* Finally, push the pages */
1139	for (pos = 0; pos < efx->vf_count; ++pos) {
1140		vf = efx->vf + pos;
1141
1142		mutex_lock(&vf->status_lock);
1143		if (vf->status_addr)
1144			__efx_sriov_push_vf_status(vf);
1145		mutex_unlock(&vf->status_lock);
1146	}
1147}
1148
1149static void efx_sriov_free_local(struct efx_nic *efx)
1150{
1151	struct efx_local_addr *local_addr;
1152	struct efx_endpoint_page *epp;
1153
1154	while (!list_empty(&efx->local_addr_list)) {
1155		local_addr = list_first_entry(&efx->local_addr_list,
1156					      struct efx_local_addr, link);
1157		list_del(&local_addr->link);
1158		kfree(local_addr);
1159	}
1160
1161	while (!list_empty(&efx->local_page_list)) {
1162		epp = list_first_entry(&efx->local_page_list,
1163				       struct efx_endpoint_page, link);
1164		list_del(&epp->link);
1165		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1166				  epp->ptr, epp->addr);
1167		kfree(epp);
1168	}
1169}
1170
1171static int efx_sriov_vf_alloc(struct efx_nic *efx)
1172{
1173	unsigned index;
1174	struct efx_vf *vf;
1175
1176	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
1177	if (!efx->vf)
1178		return -ENOMEM;
1179
1180	for (index = 0; index < efx->vf_count; ++index) {
1181		vf = efx->vf + index;
1182
1183		vf->efx = efx;
1184		vf->index = index;
1185		vf->rx_filter_id = -1;
1186		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1187		vf->tx_filter_id = -1;
1188		INIT_WORK(&vf->req, efx_sriov_vfdi);
1189		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
1190		init_waitqueue_head(&vf->flush_waitq);
1191		mutex_init(&vf->status_lock);
1192		mutex_init(&vf->txq_lock);
1193	}
1194
1195	return 0;
1196}
1197
1198static void efx_sriov_vfs_fini(struct efx_nic *efx)
1199{
1200	struct efx_vf *vf;
1201	unsigned int pos;
1202
1203	for (pos = 0; pos < efx->vf_count; ++pos) {
1204		vf = efx->vf + pos;
1205
1206		efx_nic_free_buffer(efx, &vf->buf);
1207		kfree(vf->peer_page_addrs);
1208		vf->peer_page_addrs = NULL;
1209		vf->peer_page_count = 0;
1210
1211		vf->evq0_count = 0;
1212	}
1213}
1214
1215static int efx_sriov_vfs_init(struct efx_nic *efx)
1216{
1217	struct pci_dev *pci_dev = efx->pci_dev;
1218	unsigned index, devfn, sriov, buftbl_base;
1219	u16 offset, stride;
1220	struct efx_vf *vf;
1221	int rc;
1222
1223	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1224	if (!sriov)
1225		return -ENOENT;
1226
1227	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1228	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1229
1230	buftbl_base = efx->vf_buftbl_base;
1231	devfn = pci_dev->devfn + offset;
1232	for (index = 0; index < efx->vf_count; ++index) {
1233		vf = efx->vf + index;
1234
1235		/* Reserve buffer entries */
1236		vf->buftbl_base = buftbl_base;
1237		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1238
1239		vf->pci_rid = devfn;
1240		snprintf(vf->pci_name, sizeof(vf->pci_name),
1241			 "%04x:%02x:%02x.%d",
1242			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1243			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1244
1245		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1246					  GFP_KERNEL);
1247		if (rc)
1248			goto fail;
1249
1250		devfn += stride;
1251	}
1252
1253	return 0;
1254
1255fail:
1256	efx_sriov_vfs_fini(efx);
1257	return rc;
1258}
1259
1260int efx_sriov_init(struct efx_nic *efx)
1261{
1262	struct net_device *net_dev = efx->net_dev;
1263	struct vfdi_status *vfdi_status;
1264	int rc;
1265
1266	/* Ensure there's room for vf_channel */
1267	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1268	/* Ensure that VI_BASE is aligned on VI_SCALE */
1269	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1270
1271	if (efx->vf_count == 0)
1272		return 0;
1273
1274	rc = efx_sriov_cmd(efx, true, NULL, NULL);
1275	if (rc)
1276		goto fail_cmd;
1277
1278	rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status),
1279				  GFP_KERNEL);
1280	if (rc)
1281		goto fail_status;
1282	vfdi_status = efx->vfdi_status.addr;
1283	memset(vfdi_status, 0, sizeof(*vfdi_status));
1284	vfdi_status->version = 1;
1285	vfdi_status->length = sizeof(*vfdi_status);
1286	vfdi_status->max_tx_channels = vf_max_tx_channels;
1287	vfdi_status->vi_scale = efx->vi_scale;
1288	vfdi_status->rss_rxq_count = efx->rss_spread;
1289	vfdi_status->peer_count = 1 + efx->vf_count;
1290	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1291
1292	rc = efx_sriov_vf_alloc(efx);
1293	if (rc)
1294		goto fail_alloc;
1295
1296	mutex_init(&efx->local_lock);
1297	INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
1298	INIT_LIST_HEAD(&efx->local_addr_list);
1299	INIT_LIST_HEAD(&efx->local_page_list);
1300
1301	rc = efx_sriov_vfs_init(efx);
1302	if (rc)
1303		goto fail_vfs;
1304
1305	rtnl_lock();
1306	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1307	efx->vf_init_count = efx->vf_count;
1308	rtnl_unlock();
1309
1310	efx_sriov_usrev(efx, true);
1311
1312	/* At this point we must be ready to accept VFDI requests */
1313
1314	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1315	if (rc)
1316		goto fail_pci;
1317
1318	netif_info(efx, probe, net_dev,
1319		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1320		   efx->vf_count, efx_vf_size(efx));
1321	return 0;
1322
1323fail_pci:
1324	efx_sriov_usrev(efx, false);
1325	rtnl_lock();
1326	efx->vf_init_count = 0;
1327	rtnl_unlock();
1328	efx_sriov_vfs_fini(efx);
1329fail_vfs:
1330	cancel_work_sync(&efx->peer_work);
1331	efx_sriov_free_local(efx);
1332	kfree(efx->vf);
1333fail_alloc:
1334	efx_nic_free_buffer(efx, &efx->vfdi_status);
1335fail_status:
1336	efx_sriov_cmd(efx, false, NULL, NULL);
1337fail_cmd:
1338	return rc;
1339}
1340
1341void efx_sriov_fini(struct efx_nic *efx)
1342{
1343	struct efx_vf *vf;
1344	unsigned int pos;
1345
1346	if (efx->vf_init_count == 0)
1347		return;
1348
1349	/* Disable all interfaces to reconfiguration */
1350	BUG_ON(efx->vfdi_channel->enabled);
1351	efx_sriov_usrev(efx, false);
1352	rtnl_lock();
1353	efx->vf_init_count = 0;
1354	rtnl_unlock();
1355
1356	/* Flush all reconfiguration work */
1357	for (pos = 0; pos < efx->vf_count; ++pos) {
1358		vf = efx->vf + pos;
1359		cancel_work_sync(&vf->req);
1360		cancel_work_sync(&vf->reset_work);
1361	}
1362	cancel_work_sync(&efx->peer_work);
1363
1364	pci_disable_sriov(efx->pci_dev);
1365
1366	/* Tear down back-end state */
1367	efx_sriov_vfs_fini(efx);
1368	efx_sriov_free_local(efx);
1369	kfree(efx->vf);
1370	efx_nic_free_buffer(efx, &efx->vfdi_status);
1371	efx_sriov_cmd(efx, false, NULL, NULL);
1372}
1373
1374void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1375{
1376	struct efx_nic *efx = channel->efx;
1377	struct efx_vf *vf;
1378	unsigned qid, seq, type, data;
1379
1380	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1381
1382	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1383	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1384	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1385	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1386	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1387
1388	netif_vdbg(efx, hw, efx->net_dev,
1389		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1390		   qid, seq, type, data);
1391
1392	if (map_vi_index(efx, qid, &vf, NULL))
1393		return;
1394	if (vf->busy)
1395		goto error;
1396
1397	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1398		/* Resynchronise */
1399		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1400		vf->req_seqno = seq + 1;
1401		vf->req_addr = 0;
1402	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1403		goto error;
1404
1405	switch (vf->req_type) {
1406	case VFDI_EV_TYPE_REQ_WORD0:
1407	case VFDI_EV_TYPE_REQ_WORD1:
1408	case VFDI_EV_TYPE_REQ_WORD2:
1409		vf->req_addr |= (u64)data << (vf->req_type << 4);
1410		++vf->req_type;
1411		return;
1412
1413	case VFDI_EV_TYPE_REQ_WORD3:
1414		vf->req_addr |= (u64)data << 48;
1415		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1416		vf->busy = true;
1417		queue_work(vfdi_workqueue, &vf->req);
1418		return;
1419	}
1420
1421error:
1422	if (net_ratelimit())
1423		netif_err(efx, hw, efx->net_dev,
1424			  "ERROR: Screaming VFDI request from %s\n",
1425			  vf->pci_name);
1426	/* Reset the request and sequence number */
1427	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1428	vf->req_seqno = seq + 1;
1429}
1430
1431void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1432{
1433	struct efx_vf *vf;
1434
1435	if (vf_i > efx->vf_init_count)
1436		return;
1437	vf = efx->vf + vf_i;
1438	netif_info(efx, hw, efx->net_dev,
1439		   "FLR on VF %s\n", vf->pci_name);
1440
1441	vf->status_addr = 0;
1442	efx_vfdi_remove_all_filters(vf);
1443	efx_vfdi_flush_clear(vf);
1444
1445	vf->evq0_count = 0;
1446}
1447
1448void efx_sriov_mac_address_changed(struct efx_nic *efx)
1449{
1450	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1451
1452	if (!efx->vf_init_count)
1453		return;
1454	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1455			efx->net_dev->dev_addr);
1456	queue_work(vfdi_workqueue, &efx->peer_work);
1457}
1458
1459void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1460{
1461	struct efx_vf *vf;
1462	unsigned queue, qid;
1463
1464	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1465	if (map_vi_index(efx, queue, &vf, &qid))
1466		return;
1467	/* Ignore flush completions triggered by an FLR */
1468	if (!test_bit(qid, vf->txq_mask))
1469		return;
1470
1471	__clear_bit(qid, vf->txq_mask);
1472	--vf->txq_count;
1473
1474	if (efx_vfdi_flush_wake(vf))
1475		wake_up(&vf->flush_waitq);
1476}
1477
1478void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1479{
1480	struct efx_vf *vf;
1481	unsigned ev_failed, queue, qid;
1482
1483	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1484	ev_failed = EFX_QWORD_FIELD(*event,
1485				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1486	if (map_vi_index(efx, queue, &vf, &qid))
1487		return;
1488	if (!test_bit(qid, vf->rxq_mask))
1489		return;
1490
1491	if (ev_failed) {
1492		set_bit(qid, vf->rxq_retry_mask);
1493		atomic_inc(&vf->rxq_retry_count);
1494	} else {
1495		__clear_bit(qid, vf->rxq_mask);
1496		--vf->rxq_count;
1497	}
1498	if (efx_vfdi_flush_wake(vf))
1499		wake_up(&vf->flush_waitq);
1500}
1501
1502/* Called from napi. Schedule the reset work item */
1503void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1504{
1505	struct efx_vf *vf;
1506	unsigned int rel;
1507
1508	if (map_vi_index(efx, dmaq, &vf, &rel))
1509		return;
1510
1511	if (net_ratelimit())
1512		netif_err(efx, hw, efx->net_dev,
1513			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1514			  vf->index, rel);
1515	queue_work(vfdi_workqueue, &vf->reset_work);
1516}
1517
1518/* Reset all VFs */
1519void efx_sriov_reset(struct efx_nic *efx)
1520{
1521	unsigned int vf_i;
1522	struct efx_buffer buf;
1523	struct efx_vf *vf;
1524
1525	ASSERT_RTNL();
1526
1527	if (efx->vf_init_count == 0)
1528		return;
1529
1530	efx_sriov_usrev(efx, true);
1531	(void)efx_sriov_cmd(efx, true, NULL, NULL);
1532
1533	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1534		return;
1535
1536	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1537		vf = efx->vf + vf_i;
1538		efx_sriov_reset_vf(vf, &buf);
1539	}
1540
1541	efx_nic_free_buffer(efx, &buf);
1542}
1543
1544int efx_init_sriov(void)
1545{
1546	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1547	 * efx_sriov_peer_work() spend almost all their time sleeping for
1548	 * MCDI to complete anyway
1549	 */
1550	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1551	if (!vfdi_workqueue)
1552		return -ENOMEM;
1553
1554	return 0;
1555}
1556
1557void efx_fini_sriov(void)
1558{
1559	destroy_workqueue(vfdi_workqueue);
1560}
1561
1562int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
1563{
1564	struct efx_nic *efx = netdev_priv(net_dev);
1565	struct efx_vf *vf;
1566
1567	if (vf_i >= efx->vf_init_count)
1568		return -EINVAL;
1569	vf = efx->vf + vf_i;
1570
1571	mutex_lock(&vf->status_lock);
1572	ether_addr_copy(vf->addr.mac_addr, mac);
1573	__efx_sriov_update_vf_addr(vf);
1574	mutex_unlock(&vf->status_lock);
1575
1576	return 0;
1577}
1578
1579int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
1580			  u16 vlan, u8 qos)
1581{
1582	struct efx_nic *efx = netdev_priv(net_dev);
1583	struct efx_vf *vf;
1584	u16 tci;
1585
1586	if (vf_i >= efx->vf_init_count)
1587		return -EINVAL;
1588	vf = efx->vf + vf_i;
1589
1590	mutex_lock(&vf->status_lock);
1591	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1592	vf->addr.tci = htons(tci);
1593	__efx_sriov_update_vf_addr(vf);
1594	mutex_unlock(&vf->status_lock);
1595
1596	return 0;
1597}
1598
1599int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
1600			      bool spoofchk)
1601{
1602	struct efx_nic *efx = netdev_priv(net_dev);
1603	struct efx_vf *vf;
1604	int rc;
1605
1606	if (vf_i >= efx->vf_init_count)
1607		return -EINVAL;
1608	vf = efx->vf + vf_i;
1609
1610	mutex_lock(&vf->txq_lock);
1611	if (vf->txq_count == 0) {
1612		vf->tx_filter_mode =
1613			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1614		rc = 0;
1615	} else {
1616		/* This cannot be changed while TX queues are running */
1617		rc = -EBUSY;
1618	}
1619	mutex_unlock(&vf->txq_lock);
1620	return rc;
1621}
1622
1623int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
1624			    struct ifla_vf_info *ivi)
1625{
1626	struct efx_nic *efx = netdev_priv(net_dev);
1627	struct efx_vf *vf;
1628	u16 tci;
1629
1630	if (vf_i >= efx->vf_init_count)
1631		return -EINVAL;
1632	vf = efx->vf + vf_i;
1633
1634	ivi->vf = vf_i;
1635	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1636	ivi->max_tx_rate = 0;
1637	ivi->min_tx_rate = 0;
1638	tci = ntohs(vf->addr.tci);
1639	ivi->vlan = tci & VLAN_VID_MASK;
1640	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1641	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1642
1643	return 0;
1644}
1645
1646