ce.c revision 39e4086a7365b933265839090b3468c9ecc52a42
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "hif.h"
19#include "pci.h"
20#include "ce.h"
21#include "debug.h"
22
23/*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28/*
29 * A single CopyEngine (CE) comprises two "rings":
30 *   a source ring
31 *   a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers.  When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
62static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63						       u32 ce_ctrl_addr,
64						       unsigned int n)
65{
66	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67}
68
69static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70						      u32 ce_ctrl_addr)
71{
72	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73}
74
75static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76						      u32 ce_ctrl_addr,
77						      unsigned int n)
78{
79	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80}
81
82static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83						     u32 ce_ctrl_addr)
84{
85	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86}
87
88static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89						    u32 ce_ctrl_addr)
90{
91	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92}
93
94static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95						    u32 ce_ctrl_addr,
96						    unsigned int addr)
97{
98	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99}
100
101static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102					       u32 ce_ctrl_addr,
103					       unsigned int n)
104{
105	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106}
107
108static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109					       u32 ce_ctrl_addr,
110					       unsigned int n)
111{
112	u32 ctrl1_addr = ath10k_pci_read32((ar),
113					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117			   CE_CTRL1_DMAX_LENGTH_SET(n));
118}
119
120static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121						    u32 ce_ctrl_addr,
122						    unsigned int n)
123{
124	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129}
130
131static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132						     u32 ce_ctrl_addr,
133						     unsigned int n)
134{
135	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140}
141
142static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143						     u32 ce_ctrl_addr)
144{
145	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146}
147
148static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149						     u32 ce_ctrl_addr,
150						     u32 addr)
151{
152	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153}
154
155static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156						u32 ce_ctrl_addr,
157						unsigned int n)
158{
159	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160}
161
162static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163						   u32 ce_ctrl_addr,
164						   unsigned int n)
165{
166	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170			   SRC_WATERMARK_HIGH_SET(n));
171}
172
173static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174						  u32 ce_ctrl_addr,
175						  unsigned int n)
176{
177	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181			   SRC_WATERMARK_LOW_SET(n));
182}
183
184static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185						    u32 ce_ctrl_addr,
186						    unsigned int n)
187{
188	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192			   DST_WATERMARK_HIGH_SET(n));
193}
194
195static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196						   u32 ce_ctrl_addr,
197						   unsigned int n)
198{
199	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202			   (addr & ~DST_WATERMARK_LOW_MASK) |
203			   DST_WATERMARK_LOW_SET(n));
204}
205
206static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207							u32 ce_ctrl_addr)
208{
209	u32 host_ie_addr = ath10k_pci_read32(ar,
210					     ce_ctrl_addr + HOST_IE_ADDRESS);
211
212	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214}
215
216static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217							u32 ce_ctrl_addr)
218{
219	u32 host_ie_addr = ath10k_pci_read32(ar,
220					     ce_ctrl_addr + HOST_IE_ADDRESS);
221
222	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224}
225
226static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227						    u32 ce_ctrl_addr)
228{
229	u32 host_ie_addr = ath10k_pci_read32(ar,
230					     ce_ctrl_addr + HOST_IE_ADDRESS);
231
232	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233			   host_ie_addr & ~CE_WATERMARK_MASK);
234}
235
236static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237					       u32 ce_ctrl_addr)
238{
239	u32 misc_ie_addr = ath10k_pci_read32(ar,
240					     ce_ctrl_addr + MISC_IE_ADDRESS);
241
242	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243			   misc_ie_addr | CE_ERROR_MASK);
244}
245
246static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
247						     u32 ce_ctrl_addr,
248						     unsigned int mask)
249{
250	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
251}
252
253
254/*
255 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
256 * ath10k_ce_sendlist_send.
257 * The caller takes responsibility for any needed locking.
258 */
259static int ath10k_ce_send_nolock(struct ce_state *ce_state,
260				 void *per_transfer_context,
261				 u32 buffer,
262				 unsigned int nbytes,
263				 unsigned int transfer_id,
264				 unsigned int flags)
265{
266	struct ath10k *ar = ce_state->ar;
267	struct ce_ring_state *src_ring = ce_state->src_ring;
268	struct ce_desc *desc, *sdesc;
269	unsigned int nentries_mask = src_ring->nentries_mask;
270	unsigned int sw_index = src_ring->sw_index;
271	unsigned int write_index = src_ring->write_index;
272	u32 ctrl_addr = ce_state->ctrl_addr;
273	u32 desc_flags = 0;
274	int ret = 0;
275
276	if (nbytes > ce_state->src_sz_max)
277		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
278			    __func__, nbytes, ce_state->src_sz_max);
279
280	ath10k_pci_wake(ar);
281
282	if (unlikely(CE_RING_DELTA(nentries_mask,
283				   write_index, sw_index - 1) <= 0)) {
284		ret = -EIO;
285		goto exit;
286	}
287
288	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
289				   write_index);
290	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
291
292	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
293
294	if (flags & CE_SEND_FLAG_GATHER)
295		desc_flags |= CE_DESC_FLAGS_GATHER;
296	if (flags & CE_SEND_FLAG_BYTE_SWAP)
297		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
298
299	sdesc->addr   = __cpu_to_le32(buffer);
300	sdesc->nbytes = __cpu_to_le16(nbytes);
301	sdesc->flags  = __cpu_to_le16(desc_flags);
302
303	*desc = *sdesc;
304
305	src_ring->per_transfer_context[write_index] = per_transfer_context;
306
307	/* Update Source Ring Write Index */
308	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
309
310	/* WORKAROUND */
311	if (!(flags & CE_SEND_FLAG_GATHER))
312		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
313
314	src_ring->write_index = write_index;
315exit:
316	ath10k_pci_sleep(ar);
317	return ret;
318}
319
320int ath10k_ce_send(struct ce_state *ce_state,
321		   void *per_transfer_context,
322		   u32 buffer,
323		   unsigned int nbytes,
324		   unsigned int transfer_id,
325		   unsigned int flags)
326{
327	struct ath10k *ar = ce_state->ar;
328	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329	int ret;
330
331	spin_lock_bh(&ar_pci->ce_lock);
332	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
333				    buffer, nbytes, transfer_id, flags);
334	spin_unlock_bh(&ar_pci->ce_lock);
335
336	return ret;
337}
338
339void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
340				unsigned int nbytes, u32 flags)
341{
342	unsigned int num_items = sendlist->num_items;
343	struct ce_sendlist_item *item;
344
345	item = &sendlist->item[num_items];
346	item->data = buffer;
347	item->u.nbytes = nbytes;
348	item->flags = flags;
349	sendlist->num_items++;
350}
351
352int ath10k_ce_sendlist_send(struct ce_state *ce_state,
353			    void *per_transfer_context,
354			    struct ce_sendlist *sendlist,
355			    unsigned int transfer_id)
356{
357	struct ce_ring_state *src_ring = ce_state->src_ring;
358	struct ce_sendlist_item *item;
359	struct ath10k *ar = ce_state->ar;
360	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361	unsigned int nentries_mask = src_ring->nentries_mask;
362	unsigned int num_items = sendlist->num_items;
363	unsigned int sw_index;
364	unsigned int write_index;
365	int i, delta, ret = -ENOMEM;
366
367	spin_lock_bh(&ar_pci->ce_lock);
368
369	sw_index = src_ring->sw_index;
370	write_index = src_ring->write_index;
371
372	delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
373
374	if (delta >= num_items) {
375		/*
376		 * Handle all but the last item uniformly.
377		 */
378		for (i = 0; i < num_items - 1; i++) {
379			item = &sendlist->item[i];
380			ret = ath10k_ce_send_nolock(ce_state,
381						    CE_SENDLIST_ITEM_CTXT,
382						    (u32) item->data,
383						    item->u.nbytes, transfer_id,
384						    item->flags |
385						    CE_SEND_FLAG_GATHER);
386			if (ret)
387				ath10k_warn("CE send failed for item: %d\n", i);
388		}
389		/*
390		 * Provide valid context pointer for final item.
391		 */
392		item = &sendlist->item[i];
393		ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
394					    (u32) item->data, item->u.nbytes,
395					    transfer_id, item->flags);
396		if (ret)
397			ath10k_warn("CE send failed for last item: %d\n", i);
398	}
399
400	spin_unlock_bh(&ar_pci->ce_lock);
401
402	return ret;
403}
404
405int ath10k_ce_recv_buf_enqueue(struct ce_state *ce_state,
406			       void *per_recv_context,
407			       u32 buffer)
408{
409	struct ce_ring_state *dest_ring = ce_state->dest_ring;
410	u32 ctrl_addr = ce_state->ctrl_addr;
411	struct ath10k *ar = ce_state->ar;
412	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
413	unsigned int nentries_mask = dest_ring->nentries_mask;
414	unsigned int write_index;
415	unsigned int sw_index;
416	int ret;
417
418	spin_lock_bh(&ar_pci->ce_lock);
419	write_index = dest_ring->write_index;
420	sw_index = dest_ring->sw_index;
421
422	ath10k_pci_wake(ar);
423
424	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
425		struct ce_desc *base = dest_ring->base_addr_owner_space;
426		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
427
428		/* Update destination descriptor */
429		desc->addr    = __cpu_to_le32(buffer);
430		desc->nbytes = 0;
431
432		dest_ring->per_transfer_context[write_index] =
433							per_recv_context;
434
435		/* Update Destination Ring Write Index */
436		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
437		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
438		dest_ring->write_index = write_index;
439		ret = 0;
440	} else {
441		ret = -EIO;
442	}
443	ath10k_pci_sleep(ar);
444	spin_unlock_bh(&ar_pci->ce_lock);
445
446	return ret;
447}
448
449/*
450 * Guts of ath10k_ce_completed_recv_next.
451 * The caller takes responsibility for any necessary locking.
452 */
453static int ath10k_ce_completed_recv_next_nolock(struct ce_state *ce_state,
454						void **per_transfer_contextp,
455						u32 *bufferp,
456						unsigned int *nbytesp,
457						unsigned int *transfer_idp,
458						unsigned int *flagsp)
459{
460	struct ce_ring_state *dest_ring = ce_state->dest_ring;
461	unsigned int nentries_mask = dest_ring->nentries_mask;
462	unsigned int sw_index = dest_ring->sw_index;
463
464	struct ce_desc *base = dest_ring->base_addr_owner_space;
465	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
466	struct ce_desc sdesc;
467	u16 nbytes;
468
469	/* Copy in one go for performance reasons */
470	sdesc = *desc;
471
472	nbytes = __le16_to_cpu(sdesc.nbytes);
473	if (nbytes == 0) {
474		/*
475		 * This closes a relatively unusual race where the Host
476		 * sees the updated DRRI before the update to the
477		 * corresponding descriptor has completed. We treat this
478		 * as a descriptor that is not yet done.
479		 */
480		return -EIO;
481	}
482
483	desc->nbytes = 0;
484
485	/* Return data from completed destination descriptor */
486	*bufferp = __le32_to_cpu(sdesc.addr);
487	*nbytesp = nbytes;
488	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
489
490	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
491		*flagsp = CE_RECV_FLAG_SWAPPED;
492	else
493		*flagsp = 0;
494
495	if (per_transfer_contextp)
496		*per_transfer_contextp =
497			dest_ring->per_transfer_context[sw_index];
498
499	/* sanity */
500	dest_ring->per_transfer_context[sw_index] = NULL;
501
502	/* Update sw_index */
503	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
504	dest_ring->sw_index = sw_index;
505
506	return 0;
507}
508
509int ath10k_ce_completed_recv_next(struct ce_state *ce_state,
510				  void **per_transfer_contextp,
511				  u32 *bufferp,
512				  unsigned int *nbytesp,
513				  unsigned int *transfer_idp,
514				  unsigned int *flagsp)
515{
516	struct ath10k *ar = ce_state->ar;
517	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
518	int ret;
519
520	spin_lock_bh(&ar_pci->ce_lock);
521	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
522						   per_transfer_contextp,
523						   bufferp, nbytesp,
524						   transfer_idp, flagsp);
525	spin_unlock_bh(&ar_pci->ce_lock);
526
527	return ret;
528}
529
530int ath10k_ce_revoke_recv_next(struct ce_state *ce_state,
531			       void **per_transfer_contextp,
532			       u32 *bufferp)
533{
534	struct ce_ring_state *dest_ring;
535	unsigned int nentries_mask;
536	unsigned int sw_index;
537	unsigned int write_index;
538	int ret;
539	struct ath10k *ar;
540	struct ath10k_pci *ar_pci;
541
542	dest_ring = ce_state->dest_ring;
543
544	if (!dest_ring)
545		return -EIO;
546
547	ar = ce_state->ar;
548	ar_pci = ath10k_pci_priv(ar);
549
550	spin_lock_bh(&ar_pci->ce_lock);
551
552	nentries_mask = dest_ring->nentries_mask;
553	sw_index = dest_ring->sw_index;
554	write_index = dest_ring->write_index;
555	if (write_index != sw_index) {
556		struct ce_desc *base = dest_ring->base_addr_owner_space;
557		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
558
559		/* Return data from completed destination descriptor */
560		*bufferp = __le32_to_cpu(desc->addr);
561
562		if (per_transfer_contextp)
563			*per_transfer_contextp =
564				dest_ring->per_transfer_context[sw_index];
565
566		/* sanity */
567		dest_ring->per_transfer_context[sw_index] = NULL;
568
569		/* Update sw_index */
570		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
571		dest_ring->sw_index = sw_index;
572		ret = 0;
573	} else {
574		ret = -EIO;
575	}
576
577	spin_unlock_bh(&ar_pci->ce_lock);
578
579	return ret;
580}
581
582/*
583 * Guts of ath10k_ce_completed_send_next.
584 * The caller takes responsibility for any necessary locking.
585 */
586static int ath10k_ce_completed_send_next_nolock(struct ce_state *ce_state,
587						void **per_transfer_contextp,
588						u32 *bufferp,
589						unsigned int *nbytesp,
590						unsigned int *transfer_idp)
591{
592	struct ce_ring_state *src_ring = ce_state->src_ring;
593	u32 ctrl_addr = ce_state->ctrl_addr;
594	struct ath10k *ar = ce_state->ar;
595	unsigned int nentries_mask = src_ring->nentries_mask;
596	unsigned int sw_index = src_ring->sw_index;
597	unsigned int read_index;
598	int ret = -EIO;
599
600	if (src_ring->hw_index == sw_index) {
601		/*
602		 * The SW completion index has caught up with the cached
603		 * version of the HW completion index.
604		 * Update the cached HW completion index to see whether
605		 * the SW has really caught up to the HW, or if the cached
606		 * value of the HW index has become stale.
607		 */
608		ath10k_pci_wake(ar);
609		src_ring->hw_index =
610			ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
611		src_ring->hw_index &= nentries_mask;
612		ath10k_pci_sleep(ar);
613	}
614	read_index = src_ring->hw_index;
615
616	if ((read_index != sw_index) && (read_index != 0xffffffff)) {
617		struct ce_desc *sbase = src_ring->shadow_base;
618		struct ce_desc *sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
619
620		/* Return data from completed source descriptor */
621		*bufferp = __le32_to_cpu(sdesc->addr);
622		*nbytesp = __le16_to_cpu(sdesc->nbytes);
623		*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
624						CE_DESC_FLAGS_META_DATA);
625
626		if (per_transfer_contextp)
627			*per_transfer_contextp =
628				src_ring->per_transfer_context[sw_index];
629
630		/* sanity */
631		src_ring->per_transfer_context[sw_index] = NULL;
632
633		/* Update sw_index */
634		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
635		src_ring->sw_index = sw_index;
636		ret = 0;
637	}
638
639	return ret;
640}
641
642/* NB: Modeled after ath10k_ce_completed_send_next */
643int ath10k_ce_cancel_send_next(struct ce_state *ce_state,
644			       void **per_transfer_contextp,
645			       u32 *bufferp,
646			       unsigned int *nbytesp,
647			       unsigned int *transfer_idp)
648{
649	struct ce_ring_state *src_ring;
650	unsigned int nentries_mask;
651	unsigned int sw_index;
652	unsigned int write_index;
653	int ret;
654	struct ath10k *ar;
655	struct ath10k_pci *ar_pci;
656
657	src_ring = ce_state->src_ring;
658
659	if (!src_ring)
660		return -EIO;
661
662	ar = ce_state->ar;
663	ar_pci = ath10k_pci_priv(ar);
664
665	spin_lock_bh(&ar_pci->ce_lock);
666
667	nentries_mask = src_ring->nentries_mask;
668	sw_index = src_ring->sw_index;
669	write_index = src_ring->write_index;
670
671	if (write_index != sw_index) {
672		struct ce_desc *base = src_ring->base_addr_owner_space;
673		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
674
675		/* Return data from completed source descriptor */
676		*bufferp = __le32_to_cpu(desc->addr);
677		*nbytesp = __le16_to_cpu(desc->nbytes);
678		*transfer_idp = MS(__le16_to_cpu(desc->flags),
679						CE_DESC_FLAGS_META_DATA);
680
681		if (per_transfer_contextp)
682			*per_transfer_contextp =
683				src_ring->per_transfer_context[sw_index];
684
685		/* sanity */
686		src_ring->per_transfer_context[sw_index] = NULL;
687
688		/* Update sw_index */
689		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
690		src_ring->sw_index = sw_index;
691		ret = 0;
692	} else {
693		ret = -EIO;
694	}
695
696	spin_unlock_bh(&ar_pci->ce_lock);
697
698	return ret;
699}
700
701int ath10k_ce_completed_send_next(struct ce_state *ce_state,
702				  void **per_transfer_contextp,
703				  u32 *bufferp,
704				  unsigned int *nbytesp,
705				  unsigned int *transfer_idp)
706{
707	struct ath10k *ar = ce_state->ar;
708	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
709	int ret;
710
711	spin_lock_bh(&ar_pci->ce_lock);
712	ret = ath10k_ce_completed_send_next_nolock(ce_state,
713						   per_transfer_contextp,
714						   bufferp, nbytesp,
715						   transfer_idp);
716	spin_unlock_bh(&ar_pci->ce_lock);
717
718	return ret;
719}
720
721/*
722 * Guts of interrupt handler for per-engine interrupts on a particular CE.
723 *
724 * Invokes registered callbacks for recv_complete,
725 * send_complete, and watermarks.
726 */
727void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
728{
729	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
730	struct ce_state *ce_state = &ar_pci->ce_states[ce_id];
731	u32 ctrl_addr = ce_state->ctrl_addr;
732	void *transfer_context;
733	u32 buf;
734	unsigned int nbytes;
735	unsigned int id;
736	unsigned int flags;
737
738	ath10k_pci_wake(ar);
739	spin_lock_bh(&ar_pci->ce_lock);
740
741	/* Clear the copy-complete interrupts that will be handled here. */
742	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
743					  HOST_IS_COPY_COMPLETE_MASK);
744
745	if (ce_state->recv_cb) {
746		/*
747		 * Pop completed recv buffers and call the registered
748		 * recv callback for each
749		 */
750		while (ath10k_ce_completed_recv_next_nolock(ce_state,
751							    &transfer_context,
752							    &buf, &nbytes,
753							    &id, &flags) == 0) {
754			spin_unlock_bh(&ar_pci->ce_lock);
755			ce_state->recv_cb(ce_state, transfer_context, buf,
756					  nbytes, id, flags);
757			spin_lock_bh(&ar_pci->ce_lock);
758		}
759	}
760
761	if (ce_state->send_cb) {
762		/*
763		 * Pop completed send buffers and call the registered
764		 * send callback for each
765		 */
766		while (ath10k_ce_completed_send_next_nolock(ce_state,
767							    &transfer_context,
768							    &buf,
769							    &nbytes,
770							    &id) == 0) {
771			spin_unlock_bh(&ar_pci->ce_lock);
772			ce_state->send_cb(ce_state, transfer_context,
773					  buf, nbytes, id);
774			spin_lock_bh(&ar_pci->ce_lock);
775		}
776	}
777
778	/*
779	 * Misc CE interrupts are not being handled, but still need
780	 * to be cleared.
781	 */
782	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
783
784	spin_unlock_bh(&ar_pci->ce_lock);
785	ath10k_pci_sleep(ar);
786}
787
788/*
789 * Handler for per-engine interrupts on ALL active CEs.
790 * This is used in cases where the system is sharing a
791 * single interrput for all CEs
792 */
793
794void ath10k_ce_per_engine_service_any(struct ath10k *ar)
795{
796	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
797	int ce_id;
798	u32 intr_summary;
799
800	ath10k_pci_wake(ar);
801	intr_summary = CE_INTERRUPT_SUMMARY(ar);
802
803	for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
804		if (intr_summary & (1 << ce_id))
805			intr_summary &= ~(1 << ce_id);
806		else
807			/* no intr pending on this CE */
808			continue;
809
810		ath10k_ce_per_engine_service(ar, ce_id);
811	}
812
813	ath10k_pci_sleep(ar);
814}
815
816/*
817 * Adjust interrupts for the copy complete handler.
818 * If it's needed for either send or recv, then unmask
819 * this interrupt; otherwise, mask it.
820 *
821 * Called with ce_lock held.
822 */
823static void ath10k_ce_per_engine_handler_adjust(struct ce_state *ce_state,
824						int disable_copy_compl_intr)
825{
826	u32 ctrl_addr = ce_state->ctrl_addr;
827	struct ath10k *ar = ce_state->ar;
828
829	ath10k_pci_wake(ar);
830
831	if ((!disable_copy_compl_intr) &&
832	    (ce_state->send_cb || ce_state->recv_cb))
833		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
834	else
835		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
836
837	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
838
839	ath10k_pci_sleep(ar);
840}
841
842void ath10k_ce_disable_interrupts(struct ath10k *ar)
843{
844	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
845	int ce_id;
846
847	ath10k_pci_wake(ar);
848	for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
849		struct ce_state *ce_state = &ar_pci->ce_states[ce_id];
850		u32 ctrl_addr = ce_state->ctrl_addr;
851
852		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
853	}
854	ath10k_pci_sleep(ar);
855}
856
857void ath10k_ce_send_cb_register(struct ce_state *ce_state,
858				void (*send_cb) (struct ce_state *ce_state,
859						 void *transfer_context,
860						 u32 buffer,
861						 unsigned int nbytes,
862						 unsigned int transfer_id),
863				int disable_interrupts)
864{
865	struct ath10k *ar = ce_state->ar;
866	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
867
868	spin_lock_bh(&ar_pci->ce_lock);
869	ce_state->send_cb = send_cb;
870	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
871	spin_unlock_bh(&ar_pci->ce_lock);
872}
873
874void ath10k_ce_recv_cb_register(struct ce_state *ce_state,
875				void (*recv_cb) (struct ce_state *ce_state,
876						 void *transfer_context,
877						 u32 buffer,
878						 unsigned int nbytes,
879						 unsigned int transfer_id,
880						 unsigned int flags))
881{
882	struct ath10k *ar = ce_state->ar;
883	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
884
885	spin_lock_bh(&ar_pci->ce_lock);
886	ce_state->recv_cb = recv_cb;
887	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
888	spin_unlock_bh(&ar_pci->ce_lock);
889}
890
891static int ath10k_ce_init_src_ring(struct ath10k *ar,
892				   unsigned int ce_id,
893				   struct ce_state *ce_state,
894				   const struct ce_attr *attr)
895{
896	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
897	struct ce_ring_state *src_ring;
898	unsigned int nentries = attr->src_nentries;
899	unsigned int ce_nbytes;
900	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
901	dma_addr_t base_addr;
902	char *ptr;
903
904	nentries = roundup_pow_of_two(nentries);
905
906	if (ce_state->src_ring) {
907		WARN_ON(ce_state->src_ring->nentries != nentries);
908		return 0;
909	}
910
911	ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
912	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
913	if (ptr == NULL)
914		return -ENOMEM;
915
916	ce_state->src_ring = (struct ce_ring_state *)ptr;
917	src_ring = ce_state->src_ring;
918
919	ptr += sizeof(struct ce_ring_state);
920	src_ring->nentries = nentries;
921	src_ring->nentries_mask = nentries - 1;
922
923	ath10k_pci_wake(ar);
924	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
925	src_ring->sw_index &= src_ring->nentries_mask;
926	src_ring->hw_index = src_ring->sw_index;
927
928	src_ring->write_index =
929		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
930	src_ring->write_index &= src_ring->nentries_mask;
931	ath10k_pci_sleep(ar);
932
933	src_ring->per_transfer_context = (void **)ptr;
934
935	/*
936	 * Legacy platforms that do not support cache
937	 * coherent DMA are unsupported
938	 */
939	src_ring->base_addr_owner_space_unaligned =
940		pci_alloc_consistent(ar_pci->pdev,
941				     (nentries * sizeof(struct ce_desc) +
942				      CE_DESC_RING_ALIGN),
943				     &base_addr);
944	if (!src_ring->base_addr_owner_space_unaligned) {
945		kfree(ce_state->src_ring);
946		ce_state->src_ring = NULL;
947		return -ENOMEM;
948	}
949
950	src_ring->base_addr_ce_space_unaligned = base_addr;
951
952	src_ring->base_addr_owner_space = PTR_ALIGN(
953			src_ring->base_addr_owner_space_unaligned,
954			CE_DESC_RING_ALIGN);
955	src_ring->base_addr_ce_space = ALIGN(
956			src_ring->base_addr_ce_space_unaligned,
957			CE_DESC_RING_ALIGN);
958
959	/*
960	 * Also allocate a shadow src ring in regular
961	 * mem to use for faster access.
962	 */
963	src_ring->shadow_base_unaligned =
964		kmalloc((nentries * sizeof(struct ce_desc) +
965			 CE_DESC_RING_ALIGN), GFP_KERNEL);
966	if (!src_ring->shadow_base_unaligned) {
967		pci_free_consistent(ar_pci->pdev,
968				    (nentries * sizeof(struct ce_desc) +
969				     CE_DESC_RING_ALIGN),
970				    src_ring->base_addr_owner_space,
971				    src_ring->base_addr_ce_space);
972		kfree(ce_state->src_ring);
973		ce_state->src_ring = NULL;
974		return -ENOMEM;
975	}
976
977	src_ring->shadow_base = PTR_ALIGN(
978			src_ring->shadow_base_unaligned,
979			CE_DESC_RING_ALIGN);
980
981	ath10k_pci_wake(ar);
982	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
983					 src_ring->base_addr_ce_space);
984	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
985	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
986	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
987	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
988	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
989	ath10k_pci_sleep(ar);
990
991	return 0;
992}
993
994static int ath10k_ce_init_dest_ring(struct ath10k *ar,
995				    unsigned int ce_id,
996				    struct ce_state *ce_state,
997				    const struct ce_attr *attr)
998{
999	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1000	struct ce_ring_state *dest_ring;
1001	unsigned int nentries = attr->dest_nentries;
1002	unsigned int ce_nbytes;
1003	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1004	dma_addr_t base_addr;
1005	char *ptr;
1006
1007	nentries = roundup_pow_of_two(nentries);
1008
1009	if (ce_state->dest_ring) {
1010		WARN_ON(ce_state->dest_ring->nentries != nentries);
1011		return 0;
1012	}
1013
1014	ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
1015	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
1016	if (ptr == NULL)
1017		return -ENOMEM;
1018
1019	ce_state->dest_ring = (struct ce_ring_state *)ptr;
1020	dest_ring = ce_state->dest_ring;
1021
1022	ptr += sizeof(struct ce_ring_state);
1023	dest_ring->nentries = nentries;
1024	dest_ring->nentries_mask = nentries - 1;
1025
1026	ath10k_pci_wake(ar);
1027	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1028	dest_ring->sw_index &= dest_ring->nentries_mask;
1029	dest_ring->write_index =
1030		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1031	dest_ring->write_index &= dest_ring->nentries_mask;
1032	ath10k_pci_sleep(ar);
1033
1034	dest_ring->per_transfer_context = (void **)ptr;
1035
1036	/*
1037	 * Legacy platforms that do not support cache
1038	 * coherent DMA are unsupported
1039	 */
1040	dest_ring->base_addr_owner_space_unaligned =
1041		pci_alloc_consistent(ar_pci->pdev,
1042				     (nentries * sizeof(struct ce_desc) +
1043				      CE_DESC_RING_ALIGN),
1044				     &base_addr);
1045	if (!dest_ring->base_addr_owner_space_unaligned) {
1046		kfree(ce_state->dest_ring);
1047		ce_state->dest_ring = NULL;
1048		return -ENOMEM;
1049	}
1050
1051	dest_ring->base_addr_ce_space_unaligned = base_addr;
1052
1053	/*
1054	 * Correctly initialize memory to 0 to prevent garbage
1055	 * data crashing system when download firmware
1056	 */
1057	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1058	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1059
1060	dest_ring->base_addr_owner_space = PTR_ALIGN(
1061			dest_ring->base_addr_owner_space_unaligned,
1062			CE_DESC_RING_ALIGN);
1063	dest_ring->base_addr_ce_space = ALIGN(
1064			dest_ring->base_addr_ce_space_unaligned,
1065			CE_DESC_RING_ALIGN);
1066
1067	ath10k_pci_wake(ar);
1068	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1069					  dest_ring->base_addr_ce_space);
1070	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1071	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1072	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1073	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1074	ath10k_pci_sleep(ar);
1075
1076	return 0;
1077}
1078
1079static struct ce_state *ath10k_ce_init_state(struct ath10k *ar,
1080					     unsigned int ce_id,
1081					     const struct ce_attr *attr)
1082{
1083	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1084	struct ce_state *ce_state = &ar_pci->ce_states[ce_id];
1085	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1086
1087	spin_lock_bh(&ar_pci->ce_lock);
1088
1089	ce_state->ar = ar;
1090	ce_state->id = ce_id;
1091	ce_state->ctrl_addr = ctrl_addr;
1092	ce_state->state = CE_RUNNING;
1093	ce_state->attr_flags = attr->flags;
1094	ce_state->src_sz_max = attr->src_sz_max;
1095
1096	spin_unlock_bh(&ar_pci->ce_lock);
1097
1098	return ce_state;
1099}
1100
1101/*
1102 * Initialize a Copy Engine based on caller-supplied attributes.
1103 * This may be called once to initialize both source and destination
1104 * rings or it may be called twice for separate source and destination
1105 * initialization. It may be that only one side or the other is
1106 * initialized by software/firmware.
1107 */
1108struct ce_state *ath10k_ce_init(struct ath10k *ar,
1109				unsigned int ce_id,
1110				const struct ce_attr *attr)
1111{
1112	struct ce_state *ce_state;
1113	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1114	int ret;
1115
1116	ce_state = ath10k_ce_init_state(ar, ce_id, attr);
1117	if (!ce_state) {
1118		ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
1119		return NULL;
1120	}
1121
1122	if (attr->src_nentries) {
1123		ret = ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr);
1124		if (ret) {
1125			ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1126				   ce_id, ret);
1127			ath10k_ce_deinit(ce_state);
1128			return NULL;
1129		}
1130	}
1131
1132	if (attr->dest_nentries) {
1133		ret = ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr);
1134		if (ret) {
1135			ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1136				   ce_id, ret);
1137			ath10k_ce_deinit(ce_state);
1138			return NULL;
1139		}
1140	}
1141
1142	/* Enable CE error interrupts */
1143	ath10k_pci_wake(ar);
1144	ath10k_ce_error_intr_enable(ar, ctrl_addr);
1145	ath10k_pci_sleep(ar);
1146
1147	return ce_state;
1148}
1149
1150void ath10k_ce_deinit(struct ce_state *ce_state)
1151{
1152	struct ath10k *ar = ce_state->ar;
1153	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1154
1155	if (ce_state->src_ring) {
1156		kfree(ce_state->src_ring->shadow_base_unaligned);
1157		pci_free_consistent(ar_pci->pdev,
1158				    (ce_state->src_ring->nentries *
1159				     sizeof(struct ce_desc) +
1160				     CE_DESC_RING_ALIGN),
1161				    ce_state->src_ring->base_addr_owner_space,
1162				    ce_state->src_ring->base_addr_ce_space);
1163		kfree(ce_state->src_ring);
1164	}
1165
1166	if (ce_state->dest_ring) {
1167		pci_free_consistent(ar_pci->pdev,
1168				    (ce_state->dest_ring->nentries *
1169				     sizeof(struct ce_desc) +
1170				     CE_DESC_RING_ALIGN),
1171				    ce_state->dest_ring->base_addr_owner_space,
1172				    ce_state->dest_ring->base_addr_ce_space);
1173		kfree(ce_state->dest_ring);
1174	}
1175
1176	ce_state->state = CE_UNUSED;
1177	ce_state->src_ring = NULL;
1178	ce_state->dest_ring = NULL;
1179}
1180