ce.c revision c0c378f9907c9e52aa95a87ac4622039a84bac99
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "hif.h"
19#include "pci.h"
20#include "ce.h"
21#include "debug.h"
22
23/*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28/*
29 * A single CopyEngine (CE) comprises two "rings":
30 *   a source ring
31 *   a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers.  When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
62static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63						       u32 ce_ctrl_addr,
64						       unsigned int n)
65{
66	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67}
68
69static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70						      u32 ce_ctrl_addr)
71{
72	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73}
74
75static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76						      u32 ce_ctrl_addr,
77						      unsigned int n)
78{
79	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80}
81
82static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83						     u32 ce_ctrl_addr)
84{
85	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86}
87
88static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89						    u32 ce_ctrl_addr)
90{
91	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92}
93
94static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95						    u32 ce_ctrl_addr,
96						    unsigned int addr)
97{
98	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99}
100
101static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102					       u32 ce_ctrl_addr,
103					       unsigned int n)
104{
105	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106}
107
108static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109					       u32 ce_ctrl_addr,
110					       unsigned int n)
111{
112	u32 ctrl1_addr = ath10k_pci_read32((ar),
113					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117			   CE_CTRL1_DMAX_LENGTH_SET(n));
118}
119
120static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121						    u32 ce_ctrl_addr,
122						    unsigned int n)
123{
124	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129}
130
131static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132						     u32 ce_ctrl_addr,
133						     unsigned int n)
134{
135	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140}
141
142static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143						     u32 ce_ctrl_addr)
144{
145	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146}
147
148static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149						     u32 ce_ctrl_addr,
150						     u32 addr)
151{
152	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153}
154
155static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156						u32 ce_ctrl_addr,
157						unsigned int n)
158{
159	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160}
161
162static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163						   u32 ce_ctrl_addr,
164						   unsigned int n)
165{
166	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170			   SRC_WATERMARK_HIGH_SET(n));
171}
172
173static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174						  u32 ce_ctrl_addr,
175						  unsigned int n)
176{
177	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181			   SRC_WATERMARK_LOW_SET(n));
182}
183
184static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185						    u32 ce_ctrl_addr,
186						    unsigned int n)
187{
188	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192			   DST_WATERMARK_HIGH_SET(n));
193}
194
195static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196						   u32 ce_ctrl_addr,
197						   unsigned int n)
198{
199	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202			   (addr & ~DST_WATERMARK_LOW_MASK) |
203			   DST_WATERMARK_LOW_SET(n));
204}
205
206static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207							u32 ce_ctrl_addr)
208{
209	u32 host_ie_addr = ath10k_pci_read32(ar,
210					     ce_ctrl_addr + HOST_IE_ADDRESS);
211
212	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214}
215
216static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217							u32 ce_ctrl_addr)
218{
219	u32 host_ie_addr = ath10k_pci_read32(ar,
220					     ce_ctrl_addr + HOST_IE_ADDRESS);
221
222	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224}
225
226static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227						    u32 ce_ctrl_addr)
228{
229	u32 host_ie_addr = ath10k_pci_read32(ar,
230					     ce_ctrl_addr + HOST_IE_ADDRESS);
231
232	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233			   host_ie_addr & ~CE_WATERMARK_MASK);
234}
235
236static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237					       u32 ce_ctrl_addr)
238{
239	u32 misc_ie_addr = ath10k_pci_read32(ar,
240					     ce_ctrl_addr + MISC_IE_ADDRESS);
241
242	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243			   misc_ie_addr | CE_ERROR_MASK);
244}
245
246static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247						u32 ce_ctrl_addr)
248{
249	u32 misc_ie_addr = ath10k_pci_read32(ar,
250					     ce_ctrl_addr + MISC_IE_ADDRESS);
251
252	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253			   misc_ie_addr & ~CE_ERROR_MASK);
254}
255
256static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257						     u32 ce_ctrl_addr,
258						     unsigned int mask)
259{
260	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261}
262
263
264/*
265 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
266 * ath10k_ce_sendlist_send.
267 * The caller takes responsibility for any needed locking.
268 */
269int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
270			  void *per_transfer_context,
271			  u32 buffer,
272			  unsigned int nbytes,
273			  unsigned int transfer_id,
274			  unsigned int flags)
275{
276	struct ath10k *ar = ce_state->ar;
277	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
278	struct ce_desc *desc, *sdesc;
279	unsigned int nentries_mask = src_ring->nentries_mask;
280	unsigned int sw_index = src_ring->sw_index;
281	unsigned int write_index = src_ring->write_index;
282	u32 ctrl_addr = ce_state->ctrl_addr;
283	u32 desc_flags = 0;
284	int ret = 0;
285
286	if (nbytes > ce_state->src_sz_max)
287		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
288			    __func__, nbytes, ce_state->src_sz_max);
289
290	if (unlikely(CE_RING_DELTA(nentries_mask,
291				   write_index, sw_index - 1) <= 0)) {
292		ret = -ENOSR;
293		goto exit;
294	}
295
296	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
297				   write_index);
298	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
299
300	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
301
302	if (flags & CE_SEND_FLAG_GATHER)
303		desc_flags |= CE_DESC_FLAGS_GATHER;
304	if (flags & CE_SEND_FLAG_BYTE_SWAP)
305		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
306
307	sdesc->addr   = __cpu_to_le32(buffer);
308	sdesc->nbytes = __cpu_to_le16(nbytes);
309	sdesc->flags  = __cpu_to_le16(desc_flags);
310
311	*desc = *sdesc;
312
313	src_ring->per_transfer_context[write_index] = per_transfer_context;
314
315	/* Update Source Ring Write Index */
316	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
317
318	/* WORKAROUND */
319	if (!(flags & CE_SEND_FLAG_GATHER))
320		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
321
322	src_ring->write_index = write_index;
323exit:
324	return ret;
325}
326
327void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
328{
329	struct ath10k *ar = pipe->ar;
330	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
331	struct ath10k_ce_ring *src_ring = pipe->src_ring;
332	u32 ctrl_addr = pipe->ctrl_addr;
333
334	lockdep_assert_held(&ar_pci->ce_lock);
335
336	/*
337	 * This function must be called only if there is an incomplete
338	 * scatter-gather transfer (before index register is updated)
339	 * that needs to be cleaned up.
340	 */
341	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
342		return;
343
344	if (WARN_ON_ONCE(src_ring->write_index ==
345			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
346		return;
347
348	src_ring->write_index--;
349	src_ring->write_index &= src_ring->nentries_mask;
350
351	src_ring->per_transfer_context[src_ring->write_index] = NULL;
352}
353
354int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
355		   void *per_transfer_context,
356		   u32 buffer,
357		   unsigned int nbytes,
358		   unsigned int transfer_id,
359		   unsigned int flags)
360{
361	struct ath10k *ar = ce_state->ar;
362	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
363	int ret;
364
365	spin_lock_bh(&ar_pci->ce_lock);
366	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
367				    buffer, nbytes, transfer_id, flags);
368	spin_unlock_bh(&ar_pci->ce_lock);
369
370	return ret;
371}
372
373int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
374{
375	struct ath10k *ar = pipe->ar;
376	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
377	int delta;
378
379	spin_lock_bh(&ar_pci->ce_lock);
380	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
381			      pipe->src_ring->write_index,
382			      pipe->src_ring->sw_index - 1);
383	spin_unlock_bh(&ar_pci->ce_lock);
384
385	return delta;
386}
387
388int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
389			       void *per_recv_context,
390			       u32 buffer)
391{
392	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
393	u32 ctrl_addr = ce_state->ctrl_addr;
394	struct ath10k *ar = ce_state->ar;
395	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
396	unsigned int nentries_mask = dest_ring->nentries_mask;
397	unsigned int write_index;
398	unsigned int sw_index;
399	int ret;
400
401	spin_lock_bh(&ar_pci->ce_lock);
402	write_index = dest_ring->write_index;
403	sw_index = dest_ring->sw_index;
404
405	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
406		struct ce_desc *base = dest_ring->base_addr_owner_space;
407		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
408
409		/* Update destination descriptor */
410		desc->addr    = __cpu_to_le32(buffer);
411		desc->nbytes = 0;
412
413		dest_ring->per_transfer_context[write_index] =
414							per_recv_context;
415
416		/* Update Destination Ring Write Index */
417		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
418		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
419		dest_ring->write_index = write_index;
420		ret = 0;
421	} else {
422		ret = -EIO;
423	}
424
425	spin_unlock_bh(&ar_pci->ce_lock);
426	return ret;
427}
428
429/*
430 * Guts of ath10k_ce_completed_recv_next.
431 * The caller takes responsibility for any necessary locking.
432 */
433static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
434						void **per_transfer_contextp,
435						u32 *bufferp,
436						unsigned int *nbytesp,
437						unsigned int *transfer_idp,
438						unsigned int *flagsp)
439{
440	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
441	unsigned int nentries_mask = dest_ring->nentries_mask;
442	unsigned int sw_index = dest_ring->sw_index;
443
444	struct ce_desc *base = dest_ring->base_addr_owner_space;
445	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
446	struct ce_desc sdesc;
447	u16 nbytes;
448
449	/* Copy in one go for performance reasons */
450	sdesc = *desc;
451
452	nbytes = __le16_to_cpu(sdesc.nbytes);
453	if (nbytes == 0) {
454		/*
455		 * This closes a relatively unusual race where the Host
456		 * sees the updated DRRI before the update to the
457		 * corresponding descriptor has completed. We treat this
458		 * as a descriptor that is not yet done.
459		 */
460		return -EIO;
461	}
462
463	desc->nbytes = 0;
464
465	/* Return data from completed destination descriptor */
466	*bufferp = __le32_to_cpu(sdesc.addr);
467	*nbytesp = nbytes;
468	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
469
470	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
471		*flagsp = CE_RECV_FLAG_SWAPPED;
472	else
473		*flagsp = 0;
474
475	if (per_transfer_contextp)
476		*per_transfer_contextp =
477			dest_ring->per_transfer_context[sw_index];
478
479	/* sanity */
480	dest_ring->per_transfer_context[sw_index] = NULL;
481
482	/* Update sw_index */
483	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
484	dest_ring->sw_index = sw_index;
485
486	return 0;
487}
488
489int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
490				  void **per_transfer_contextp,
491				  u32 *bufferp,
492				  unsigned int *nbytesp,
493				  unsigned int *transfer_idp,
494				  unsigned int *flagsp)
495{
496	struct ath10k *ar = ce_state->ar;
497	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
498	int ret;
499
500	spin_lock_bh(&ar_pci->ce_lock);
501	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
502						   per_transfer_contextp,
503						   bufferp, nbytesp,
504						   transfer_idp, flagsp);
505	spin_unlock_bh(&ar_pci->ce_lock);
506
507	return ret;
508}
509
510int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
511			       void **per_transfer_contextp,
512			       u32 *bufferp)
513{
514	struct ath10k_ce_ring *dest_ring;
515	unsigned int nentries_mask;
516	unsigned int sw_index;
517	unsigned int write_index;
518	int ret;
519	struct ath10k *ar;
520	struct ath10k_pci *ar_pci;
521
522	dest_ring = ce_state->dest_ring;
523
524	if (!dest_ring)
525		return -EIO;
526
527	ar = ce_state->ar;
528	ar_pci = ath10k_pci_priv(ar);
529
530	spin_lock_bh(&ar_pci->ce_lock);
531
532	nentries_mask = dest_ring->nentries_mask;
533	sw_index = dest_ring->sw_index;
534	write_index = dest_ring->write_index;
535	if (write_index != sw_index) {
536		struct ce_desc *base = dest_ring->base_addr_owner_space;
537		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
538
539		/* Return data from completed destination descriptor */
540		*bufferp = __le32_to_cpu(desc->addr);
541
542		if (per_transfer_contextp)
543			*per_transfer_contextp =
544				dest_ring->per_transfer_context[sw_index];
545
546		/* sanity */
547		dest_ring->per_transfer_context[sw_index] = NULL;
548
549		/* Update sw_index */
550		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
551		dest_ring->sw_index = sw_index;
552		ret = 0;
553	} else {
554		ret = -EIO;
555	}
556
557	spin_unlock_bh(&ar_pci->ce_lock);
558
559	return ret;
560}
561
562/*
563 * Guts of ath10k_ce_completed_send_next.
564 * The caller takes responsibility for any necessary locking.
565 */
566static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
567						void **per_transfer_contextp,
568						u32 *bufferp,
569						unsigned int *nbytesp,
570						unsigned int *transfer_idp)
571{
572	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
573	u32 ctrl_addr = ce_state->ctrl_addr;
574	struct ath10k *ar = ce_state->ar;
575	unsigned int nentries_mask = src_ring->nentries_mask;
576	unsigned int sw_index = src_ring->sw_index;
577	struct ce_desc *sdesc, *sbase;
578	unsigned int read_index;
579
580	if (src_ring->hw_index == sw_index) {
581		/*
582		 * The SW completion index has caught up with the cached
583		 * version of the HW completion index.
584		 * Update the cached HW completion index to see whether
585		 * the SW has really caught up to the HW, or if the cached
586		 * value of the HW index has become stale.
587		 */
588
589		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
590		if (read_index == 0xffffffff)
591			return -ENODEV;
592
593		read_index &= nentries_mask;
594		src_ring->hw_index = read_index;
595	}
596
597	read_index = src_ring->hw_index;
598
599	if (read_index == sw_index)
600		return -EIO;
601
602	sbase = src_ring->shadow_base;
603	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
604
605	/* Return data from completed source descriptor */
606	*bufferp = __le32_to_cpu(sdesc->addr);
607	*nbytesp = __le16_to_cpu(sdesc->nbytes);
608	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
609			   CE_DESC_FLAGS_META_DATA);
610
611	if (per_transfer_contextp)
612		*per_transfer_contextp =
613			src_ring->per_transfer_context[sw_index];
614
615	/* sanity */
616	src_ring->per_transfer_context[sw_index] = NULL;
617
618	/* Update sw_index */
619	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
620	src_ring->sw_index = sw_index;
621
622	return 0;
623}
624
625/* NB: Modeled after ath10k_ce_completed_send_next */
626int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
627			       void **per_transfer_contextp,
628			       u32 *bufferp,
629			       unsigned int *nbytesp,
630			       unsigned int *transfer_idp)
631{
632	struct ath10k_ce_ring *src_ring;
633	unsigned int nentries_mask;
634	unsigned int sw_index;
635	unsigned int write_index;
636	int ret;
637	struct ath10k *ar;
638	struct ath10k_pci *ar_pci;
639
640	src_ring = ce_state->src_ring;
641
642	if (!src_ring)
643		return -EIO;
644
645	ar = ce_state->ar;
646	ar_pci = ath10k_pci_priv(ar);
647
648	spin_lock_bh(&ar_pci->ce_lock);
649
650	nentries_mask = src_ring->nentries_mask;
651	sw_index = src_ring->sw_index;
652	write_index = src_ring->write_index;
653
654	if (write_index != sw_index) {
655		struct ce_desc *base = src_ring->base_addr_owner_space;
656		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
657
658		/* Return data from completed source descriptor */
659		*bufferp = __le32_to_cpu(desc->addr);
660		*nbytesp = __le16_to_cpu(desc->nbytes);
661		*transfer_idp = MS(__le16_to_cpu(desc->flags),
662						CE_DESC_FLAGS_META_DATA);
663
664		if (per_transfer_contextp)
665			*per_transfer_contextp =
666				src_ring->per_transfer_context[sw_index];
667
668		/* sanity */
669		src_ring->per_transfer_context[sw_index] = NULL;
670
671		/* Update sw_index */
672		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
673		src_ring->sw_index = sw_index;
674		ret = 0;
675	} else {
676		ret = -EIO;
677	}
678
679	spin_unlock_bh(&ar_pci->ce_lock);
680
681	return ret;
682}
683
684int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
685				  void **per_transfer_contextp,
686				  u32 *bufferp,
687				  unsigned int *nbytesp,
688				  unsigned int *transfer_idp)
689{
690	struct ath10k *ar = ce_state->ar;
691	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
692	int ret;
693
694	spin_lock_bh(&ar_pci->ce_lock);
695	ret = ath10k_ce_completed_send_next_nolock(ce_state,
696						   per_transfer_contextp,
697						   bufferp, nbytesp,
698						   transfer_idp);
699	spin_unlock_bh(&ar_pci->ce_lock);
700
701	return ret;
702}
703
704/*
705 * Guts of interrupt handler for per-engine interrupts on a particular CE.
706 *
707 * Invokes registered callbacks for recv_complete,
708 * send_complete, and watermarks.
709 */
710void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
711{
712	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
713	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
714	u32 ctrl_addr = ce_state->ctrl_addr;
715
716	spin_lock_bh(&ar_pci->ce_lock);
717
718	/* Clear the copy-complete interrupts that will be handled here. */
719	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
720					  HOST_IS_COPY_COMPLETE_MASK);
721
722	spin_unlock_bh(&ar_pci->ce_lock);
723
724	if (ce_state->recv_cb)
725		ce_state->recv_cb(ce_state);
726
727	if (ce_state->send_cb)
728		ce_state->send_cb(ce_state);
729
730	spin_lock_bh(&ar_pci->ce_lock);
731
732	/*
733	 * Misc CE interrupts are not being handled, but still need
734	 * to be cleared.
735	 */
736	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
737
738	spin_unlock_bh(&ar_pci->ce_lock);
739}
740
741/*
742 * Handler for per-engine interrupts on ALL active CEs.
743 * This is used in cases where the system is sharing a
744 * single interrput for all CEs
745 */
746
747void ath10k_ce_per_engine_service_any(struct ath10k *ar)
748{
749	int ce_id;
750	u32 intr_summary;
751
752	intr_summary = CE_INTERRUPT_SUMMARY(ar);
753
754	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
755		if (intr_summary & (1 << ce_id))
756			intr_summary &= ~(1 << ce_id);
757		else
758			/* no intr pending on this CE */
759			continue;
760
761		ath10k_ce_per_engine_service(ar, ce_id);
762	}
763}
764
765/*
766 * Adjust interrupts for the copy complete handler.
767 * If it's needed for either send or recv, then unmask
768 * this interrupt; otherwise, mask it.
769 *
770 * Called with ce_lock held.
771 */
772static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
773						int disable_copy_compl_intr)
774{
775	u32 ctrl_addr = ce_state->ctrl_addr;
776	struct ath10k *ar = ce_state->ar;
777
778	if ((!disable_copy_compl_intr) &&
779	    (ce_state->send_cb || ce_state->recv_cb))
780		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
781	else
782		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
783
784	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
785}
786
787int ath10k_ce_disable_interrupts(struct ath10k *ar)
788{
789	int ce_id;
790
791	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
792		u32 ctrl_addr = ath10k_ce_base_address(ce_id);
793
794		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
795		ath10k_ce_error_intr_disable(ar, ctrl_addr);
796		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
797	}
798
799	return 0;
800}
801
802void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
803				void (*send_cb)(struct ath10k_ce_pipe *),
804				int disable_interrupts)
805{
806	struct ath10k *ar = ce_state->ar;
807	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
808
809	spin_lock_bh(&ar_pci->ce_lock);
810	ce_state->send_cb = send_cb;
811	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
812	spin_unlock_bh(&ar_pci->ce_lock);
813}
814
815void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
816				void (*recv_cb)(struct ath10k_ce_pipe *))
817{
818	struct ath10k *ar = ce_state->ar;
819	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
820
821	spin_lock_bh(&ar_pci->ce_lock);
822	ce_state->recv_cb = recv_cb;
823	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
824	spin_unlock_bh(&ar_pci->ce_lock);
825}
826
827static int ath10k_ce_init_src_ring(struct ath10k *ar,
828				   unsigned int ce_id,
829				   const struct ce_attr *attr)
830{
831	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
832	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
833	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
834	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
835
836	nentries = roundup_pow_of_two(attr->src_nentries);
837
838	memset(src_ring->per_transfer_context, 0,
839	       nentries * sizeof(*src_ring->per_transfer_context));
840
841	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
842	src_ring->sw_index &= src_ring->nentries_mask;
843	src_ring->hw_index = src_ring->sw_index;
844
845	src_ring->write_index =
846		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
847	src_ring->write_index &= src_ring->nentries_mask;
848
849	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
850					 src_ring->base_addr_ce_space);
851	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
852	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
853	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
854	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
855	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
856
857	ath10k_dbg(ATH10K_DBG_BOOT,
858		   "boot init ce src ring id %d entries %d base_addr %p\n",
859		   ce_id, nentries, src_ring->base_addr_owner_space);
860
861	return 0;
862}
863
864static int ath10k_ce_init_dest_ring(struct ath10k *ar,
865				    unsigned int ce_id,
866				    const struct ce_attr *attr)
867{
868	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
869	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
870	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
871	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
872
873	nentries = roundup_pow_of_two(attr->dest_nentries);
874
875	memset(dest_ring->per_transfer_context, 0,
876	       nentries * sizeof(*dest_ring->per_transfer_context));
877
878	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
879	dest_ring->sw_index &= dest_ring->nentries_mask;
880	dest_ring->write_index =
881		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
882	dest_ring->write_index &= dest_ring->nentries_mask;
883
884	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
885					  dest_ring->base_addr_ce_space);
886	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
887	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
888	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
889	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
890
891	ath10k_dbg(ATH10K_DBG_BOOT,
892		   "boot ce dest ring id %d entries %d base_addr %p\n",
893		   ce_id, nentries, dest_ring->base_addr_owner_space);
894
895	return 0;
896}
897
898static struct ath10k_ce_ring *
899ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
900			 const struct ce_attr *attr)
901{
902	struct ath10k_ce_ring *src_ring;
903	u32 nentries = attr->src_nentries;
904	dma_addr_t base_addr;
905
906	nentries = roundup_pow_of_two(nentries);
907
908	src_ring = kzalloc(sizeof(*src_ring) +
909			   (nentries *
910			    sizeof(*src_ring->per_transfer_context)),
911			   GFP_KERNEL);
912	if (src_ring == NULL)
913		return ERR_PTR(-ENOMEM);
914
915	src_ring->nentries = nentries;
916	src_ring->nentries_mask = nentries - 1;
917
918	/*
919	 * Legacy platforms that do not support cache
920	 * coherent DMA are unsupported
921	 */
922	src_ring->base_addr_owner_space_unaligned =
923		dma_alloc_coherent(ar->dev,
924				   (nentries * sizeof(struct ce_desc) +
925				    CE_DESC_RING_ALIGN),
926				   &base_addr, GFP_KERNEL);
927	if (!src_ring->base_addr_owner_space_unaligned) {
928		kfree(src_ring);
929		return ERR_PTR(-ENOMEM);
930	}
931
932	src_ring->base_addr_ce_space_unaligned = base_addr;
933
934	src_ring->base_addr_owner_space = PTR_ALIGN(
935			src_ring->base_addr_owner_space_unaligned,
936			CE_DESC_RING_ALIGN);
937	src_ring->base_addr_ce_space = ALIGN(
938			src_ring->base_addr_ce_space_unaligned,
939			CE_DESC_RING_ALIGN);
940
941	/*
942	 * Also allocate a shadow src ring in regular
943	 * mem to use for faster access.
944	 */
945	src_ring->shadow_base_unaligned =
946		kmalloc((nentries * sizeof(struct ce_desc) +
947			 CE_DESC_RING_ALIGN), GFP_KERNEL);
948	if (!src_ring->shadow_base_unaligned) {
949		dma_free_coherent(ar->dev,
950				  (nentries * sizeof(struct ce_desc) +
951				   CE_DESC_RING_ALIGN),
952				  src_ring->base_addr_owner_space,
953				  src_ring->base_addr_ce_space);
954		kfree(src_ring);
955		return ERR_PTR(-ENOMEM);
956	}
957
958	src_ring->shadow_base = PTR_ALIGN(
959			src_ring->shadow_base_unaligned,
960			CE_DESC_RING_ALIGN);
961
962	return src_ring;
963}
964
965static struct ath10k_ce_ring *
966ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
967			  const struct ce_attr *attr)
968{
969	struct ath10k_ce_ring *dest_ring;
970	u32 nentries;
971	dma_addr_t base_addr;
972
973	nentries = roundup_pow_of_two(attr->dest_nentries);
974
975	dest_ring = kzalloc(sizeof(*dest_ring) +
976			    (nentries *
977			     sizeof(*dest_ring->per_transfer_context)),
978			    GFP_KERNEL);
979	if (dest_ring == NULL)
980		return ERR_PTR(-ENOMEM);
981
982	dest_ring->nentries = nentries;
983	dest_ring->nentries_mask = nentries - 1;
984
985	/*
986	 * Legacy platforms that do not support cache
987	 * coherent DMA are unsupported
988	 */
989	dest_ring->base_addr_owner_space_unaligned =
990		dma_alloc_coherent(ar->dev,
991				   (nentries * sizeof(struct ce_desc) +
992				    CE_DESC_RING_ALIGN),
993				   &base_addr, GFP_KERNEL);
994	if (!dest_ring->base_addr_owner_space_unaligned) {
995		kfree(dest_ring);
996		return ERR_PTR(-ENOMEM);
997	}
998
999	dest_ring->base_addr_ce_space_unaligned = base_addr;
1000
1001	/*
1002	 * Correctly initialize memory to 0 to prevent garbage
1003	 * data crashing system when download firmware
1004	 */
1005	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1006	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1007
1008	dest_ring->base_addr_owner_space = PTR_ALIGN(
1009			dest_ring->base_addr_owner_space_unaligned,
1010			CE_DESC_RING_ALIGN);
1011	dest_ring->base_addr_ce_space = ALIGN(
1012			dest_ring->base_addr_ce_space_unaligned,
1013			CE_DESC_RING_ALIGN);
1014
1015	return dest_ring;
1016}
1017
1018/*
1019 * Initialize a Copy Engine based on caller-supplied attributes.
1020 * This may be called once to initialize both source and destination
1021 * rings or it may be called twice for separate source and destination
1022 * initialization. It may be that only one side or the other is
1023 * initialized by software/firmware.
1024 */
1025int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1026			const struct ce_attr *attr)
1027{
1028	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1029	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1030	int ret;
1031
1032	/*
1033	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1034	 * additional TX locking checks.
1035	 *
1036	 * For the lack of a better place do the check here.
1037	 */
1038	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1039		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1040	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1041		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1042
1043	spin_lock_bh(&ar_pci->ce_lock);
1044	ce_state->ar = ar;
1045	ce_state->id = ce_id;
1046	ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1047	ce_state->attr_flags = attr->flags;
1048	ce_state->src_sz_max = attr->src_sz_max;
1049	spin_unlock_bh(&ar_pci->ce_lock);
1050
1051	if (attr->src_nentries) {
1052		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1053		if (ret) {
1054			ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1055				   ce_id, ret);
1056			return ret;
1057		}
1058	}
1059
1060	if (attr->dest_nentries) {
1061		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1062		if (ret) {
1063			ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1064				   ce_id, ret);
1065			return ret;
1066		}
1067	}
1068
1069	return 0;
1070}
1071
1072static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1073{
1074	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1075
1076	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1077	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1078	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1079	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1080}
1081
1082static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1083{
1084	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1085
1086	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1087	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1088	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1089}
1090
1091void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1092{
1093	ath10k_ce_deinit_src_ring(ar, ce_id);
1094	ath10k_ce_deinit_dest_ring(ar, ce_id);
1095}
1096
1097int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1098			 const struct ce_attr *attr)
1099{
1100	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1101	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1102	int ret;
1103
1104	if (attr->src_nentries) {
1105		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1106		if (IS_ERR(ce_state->src_ring)) {
1107			ret = PTR_ERR(ce_state->src_ring);
1108			ath10k_err("failed to allocate copy engine source ring %d: %d\n",
1109				   ce_id, ret);
1110			ce_state->src_ring = NULL;
1111			return ret;
1112		}
1113	}
1114
1115	if (attr->dest_nentries) {
1116		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1117								attr);
1118		if (IS_ERR(ce_state->dest_ring)) {
1119			ret = PTR_ERR(ce_state->dest_ring);
1120			ath10k_err("failed to allocate copy engine destination ring %d: %d\n",
1121				   ce_id, ret);
1122			ce_state->dest_ring = NULL;
1123			return ret;
1124		}
1125	}
1126
1127	return 0;
1128}
1129
1130void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1131{
1132	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1133	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1134
1135	if (ce_state->src_ring) {
1136		kfree(ce_state->src_ring->shadow_base_unaligned);
1137		dma_free_coherent(ar->dev,
1138				  (ce_state->src_ring->nentries *
1139				   sizeof(struct ce_desc) +
1140				   CE_DESC_RING_ALIGN),
1141				  ce_state->src_ring->base_addr_owner_space,
1142				  ce_state->src_ring->base_addr_ce_space);
1143		kfree(ce_state->src_ring);
1144	}
1145
1146	if (ce_state->dest_ring) {
1147		dma_free_coherent(ar->dev,
1148				  (ce_state->dest_ring->nentries *
1149				   sizeof(struct ce_desc) +
1150				   CE_DESC_RING_ALIGN),
1151				  ce_state->dest_ring->base_addr_owner_space,
1152				  ce_state->dest_ring->base_addr_ce_space);
1153		kfree(ce_state->dest_ring);
1154	}
1155
1156	ce_state->src_ring = NULL;
1157	ce_state->dest_ring = NULL;
1158}
1159