ce.c revision e9780367b0f43536b460fd83931f7c111ec99470
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "hif.h"
19#include "pci.h"
20#include "ce.h"
21#include "debug.h"
22
23/*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28/*
29 * A single CopyEngine (CE) comprises two "rings":
30 *   a source ring
31 *   a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers.  When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
62static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63						       u32 ce_ctrl_addr,
64						       unsigned int n)
65{
66	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67}
68
69static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70						      u32 ce_ctrl_addr)
71{
72	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73}
74
75static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76						      u32 ce_ctrl_addr,
77						      unsigned int n)
78{
79	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80}
81
82static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83						     u32 ce_ctrl_addr)
84{
85	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86}
87
88static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89						    u32 ce_ctrl_addr)
90{
91	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92}
93
94static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95						    u32 ce_ctrl_addr,
96						    unsigned int addr)
97{
98	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99}
100
101static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102					       u32 ce_ctrl_addr,
103					       unsigned int n)
104{
105	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106}
107
108static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109					       u32 ce_ctrl_addr,
110					       unsigned int n)
111{
112	u32 ctrl1_addr = ath10k_pci_read32((ar),
113					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117			   CE_CTRL1_DMAX_LENGTH_SET(n));
118}
119
120static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121						    u32 ce_ctrl_addr,
122						    unsigned int n)
123{
124	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129}
130
131static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132						     u32 ce_ctrl_addr,
133						     unsigned int n)
134{
135	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140}
141
142static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143						     u32 ce_ctrl_addr)
144{
145	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146}
147
148static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149						     u32 ce_ctrl_addr,
150						     u32 addr)
151{
152	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153}
154
155static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156						u32 ce_ctrl_addr,
157						unsigned int n)
158{
159	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160}
161
162static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163						   u32 ce_ctrl_addr,
164						   unsigned int n)
165{
166	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170			   SRC_WATERMARK_HIGH_SET(n));
171}
172
173static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174						  u32 ce_ctrl_addr,
175						  unsigned int n)
176{
177	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181			   SRC_WATERMARK_LOW_SET(n));
182}
183
184static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185						    u32 ce_ctrl_addr,
186						    unsigned int n)
187{
188	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192			   DST_WATERMARK_HIGH_SET(n));
193}
194
195static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196						   u32 ce_ctrl_addr,
197						   unsigned int n)
198{
199	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202			   (addr & ~DST_WATERMARK_LOW_MASK) |
203			   DST_WATERMARK_LOW_SET(n));
204}
205
206static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207							u32 ce_ctrl_addr)
208{
209	u32 host_ie_addr = ath10k_pci_read32(ar,
210					     ce_ctrl_addr + HOST_IE_ADDRESS);
211
212	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214}
215
216static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217							u32 ce_ctrl_addr)
218{
219	u32 host_ie_addr = ath10k_pci_read32(ar,
220					     ce_ctrl_addr + HOST_IE_ADDRESS);
221
222	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224}
225
226static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227						    u32 ce_ctrl_addr)
228{
229	u32 host_ie_addr = ath10k_pci_read32(ar,
230					     ce_ctrl_addr + HOST_IE_ADDRESS);
231
232	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233			   host_ie_addr & ~CE_WATERMARK_MASK);
234}
235
236static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237					       u32 ce_ctrl_addr)
238{
239	u32 misc_ie_addr = ath10k_pci_read32(ar,
240					     ce_ctrl_addr + MISC_IE_ADDRESS);
241
242	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243			   misc_ie_addr | CE_ERROR_MASK);
244}
245
246static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
247						     u32 ce_ctrl_addr,
248						     unsigned int mask)
249{
250	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
251}
252
253
254/*
255 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
256 * ath10k_ce_sendlist_send.
257 * The caller takes responsibility for any needed locking.
258 */
259static int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
260				 void *per_transfer_context,
261				 u32 buffer,
262				 unsigned int nbytes,
263				 unsigned int transfer_id,
264				 unsigned int flags)
265{
266	struct ath10k *ar = ce_state->ar;
267	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
268	struct ce_desc *desc, *sdesc;
269	unsigned int nentries_mask = src_ring->nentries_mask;
270	unsigned int sw_index = src_ring->sw_index;
271	unsigned int write_index = src_ring->write_index;
272	u32 ctrl_addr = ce_state->ctrl_addr;
273	u32 desc_flags = 0;
274	int ret = 0;
275
276	if (nbytes > ce_state->src_sz_max)
277		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
278			    __func__, nbytes, ce_state->src_sz_max);
279
280	ret = ath10k_pci_wake(ar);
281	if (ret)
282		return ret;
283
284	if (unlikely(CE_RING_DELTA(nentries_mask,
285				   write_index, sw_index - 1) <= 0)) {
286		ret = -EIO;
287		goto exit;
288	}
289
290	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
291				   write_index);
292	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
293
294	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
295
296	if (flags & CE_SEND_FLAG_GATHER)
297		desc_flags |= CE_DESC_FLAGS_GATHER;
298	if (flags & CE_SEND_FLAG_BYTE_SWAP)
299		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
300
301	sdesc->addr   = __cpu_to_le32(buffer);
302	sdesc->nbytes = __cpu_to_le16(nbytes);
303	sdesc->flags  = __cpu_to_le16(desc_flags);
304
305	*desc = *sdesc;
306
307	src_ring->per_transfer_context[write_index] = per_transfer_context;
308
309	/* Update Source Ring Write Index */
310	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
311
312	/* WORKAROUND */
313	if (!(flags & CE_SEND_FLAG_GATHER))
314		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
315
316	src_ring->write_index = write_index;
317exit:
318	ath10k_pci_sleep(ar);
319	return ret;
320}
321
322int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
323		   void *per_transfer_context,
324		   u32 buffer,
325		   unsigned int nbytes,
326		   unsigned int transfer_id,
327		   unsigned int flags)
328{
329	struct ath10k *ar = ce_state->ar;
330	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
331	int ret;
332
333	spin_lock_bh(&ar_pci->ce_lock);
334	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
335				    buffer, nbytes, transfer_id, flags);
336	spin_unlock_bh(&ar_pci->ce_lock);
337
338	return ret;
339}
340
341void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
342				unsigned int nbytes, u32 flags)
343{
344	unsigned int num_items = sendlist->num_items;
345	struct ce_sendlist_item *item;
346
347	item = &sendlist->item[num_items];
348	item->data = buffer;
349	item->u.nbytes = nbytes;
350	item->flags = flags;
351	sendlist->num_items++;
352}
353
354int ath10k_ce_sendlist_send(struct ath10k_ce_pipe *ce_state,
355			    void *per_transfer_context,
356			    struct ce_sendlist *sendlist,
357			    unsigned int transfer_id)
358{
359	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
360	struct ce_sendlist_item *item;
361	struct ath10k *ar = ce_state->ar;
362	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
363	unsigned int nentries_mask = src_ring->nentries_mask;
364	unsigned int num_items = sendlist->num_items;
365	unsigned int sw_index;
366	unsigned int write_index;
367	int i, delta, ret = -ENOMEM;
368
369	spin_lock_bh(&ar_pci->ce_lock);
370
371	sw_index = src_ring->sw_index;
372	write_index = src_ring->write_index;
373
374	delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
375
376	if (delta >= num_items) {
377		/*
378		 * Handle all but the last item uniformly.
379		 */
380		for (i = 0; i < num_items - 1; i++) {
381			item = &sendlist->item[i];
382			ret = ath10k_ce_send_nolock(ce_state,
383						    CE_SENDLIST_ITEM_CTXT,
384						    (u32) item->data,
385						    item->u.nbytes, transfer_id,
386						    item->flags |
387						    CE_SEND_FLAG_GATHER);
388			if (ret)
389				ath10k_warn("CE send failed for item: %d\n", i);
390		}
391		/*
392		 * Provide valid context pointer for final item.
393		 */
394		item = &sendlist->item[i];
395		ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
396					    (u32) item->data, item->u.nbytes,
397					    transfer_id, item->flags);
398		if (ret)
399			ath10k_warn("CE send failed for last item: %d\n", i);
400	}
401
402	spin_unlock_bh(&ar_pci->ce_lock);
403
404	return ret;
405}
406
407int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
408			       void *per_recv_context,
409			       u32 buffer)
410{
411	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
412	u32 ctrl_addr = ce_state->ctrl_addr;
413	struct ath10k *ar = ce_state->ar;
414	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
415	unsigned int nentries_mask = dest_ring->nentries_mask;
416	unsigned int write_index;
417	unsigned int sw_index;
418	int ret;
419
420	spin_lock_bh(&ar_pci->ce_lock);
421	write_index = dest_ring->write_index;
422	sw_index = dest_ring->sw_index;
423
424	ret = ath10k_pci_wake(ar);
425	if (ret)
426		goto out;
427
428	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
429		struct ce_desc *base = dest_ring->base_addr_owner_space;
430		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
431
432		/* Update destination descriptor */
433		desc->addr    = __cpu_to_le32(buffer);
434		desc->nbytes = 0;
435
436		dest_ring->per_transfer_context[write_index] =
437							per_recv_context;
438
439		/* Update Destination Ring Write Index */
440		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
441		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
442		dest_ring->write_index = write_index;
443		ret = 0;
444	} else {
445		ret = -EIO;
446	}
447	ath10k_pci_sleep(ar);
448
449out:
450	spin_unlock_bh(&ar_pci->ce_lock);
451
452	return ret;
453}
454
455/*
456 * Guts of ath10k_ce_completed_recv_next.
457 * The caller takes responsibility for any necessary locking.
458 */
459static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
460						void **per_transfer_contextp,
461						u32 *bufferp,
462						unsigned int *nbytesp,
463						unsigned int *transfer_idp,
464						unsigned int *flagsp)
465{
466	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
467	unsigned int nentries_mask = dest_ring->nentries_mask;
468	unsigned int sw_index = dest_ring->sw_index;
469
470	struct ce_desc *base = dest_ring->base_addr_owner_space;
471	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
472	struct ce_desc sdesc;
473	u16 nbytes;
474
475	/* Copy in one go for performance reasons */
476	sdesc = *desc;
477
478	nbytes = __le16_to_cpu(sdesc.nbytes);
479	if (nbytes == 0) {
480		/*
481		 * This closes a relatively unusual race where the Host
482		 * sees the updated DRRI before the update to the
483		 * corresponding descriptor has completed. We treat this
484		 * as a descriptor that is not yet done.
485		 */
486		return -EIO;
487	}
488
489	desc->nbytes = 0;
490
491	/* Return data from completed destination descriptor */
492	*bufferp = __le32_to_cpu(sdesc.addr);
493	*nbytesp = nbytes;
494	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
495
496	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
497		*flagsp = CE_RECV_FLAG_SWAPPED;
498	else
499		*flagsp = 0;
500
501	if (per_transfer_contextp)
502		*per_transfer_contextp =
503			dest_ring->per_transfer_context[sw_index];
504
505	/* sanity */
506	dest_ring->per_transfer_context[sw_index] = NULL;
507
508	/* Update sw_index */
509	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
510	dest_ring->sw_index = sw_index;
511
512	return 0;
513}
514
515int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
516				  void **per_transfer_contextp,
517				  u32 *bufferp,
518				  unsigned int *nbytesp,
519				  unsigned int *transfer_idp,
520				  unsigned int *flagsp)
521{
522	struct ath10k *ar = ce_state->ar;
523	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
524	int ret;
525
526	spin_lock_bh(&ar_pci->ce_lock);
527	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
528						   per_transfer_contextp,
529						   bufferp, nbytesp,
530						   transfer_idp, flagsp);
531	spin_unlock_bh(&ar_pci->ce_lock);
532
533	return ret;
534}
535
536int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
537			       void **per_transfer_contextp,
538			       u32 *bufferp)
539{
540	struct ath10k_ce_ring *dest_ring;
541	unsigned int nentries_mask;
542	unsigned int sw_index;
543	unsigned int write_index;
544	int ret;
545	struct ath10k *ar;
546	struct ath10k_pci *ar_pci;
547
548	dest_ring = ce_state->dest_ring;
549
550	if (!dest_ring)
551		return -EIO;
552
553	ar = ce_state->ar;
554	ar_pci = ath10k_pci_priv(ar);
555
556	spin_lock_bh(&ar_pci->ce_lock);
557
558	nentries_mask = dest_ring->nentries_mask;
559	sw_index = dest_ring->sw_index;
560	write_index = dest_ring->write_index;
561	if (write_index != sw_index) {
562		struct ce_desc *base = dest_ring->base_addr_owner_space;
563		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
564
565		/* Return data from completed destination descriptor */
566		*bufferp = __le32_to_cpu(desc->addr);
567
568		if (per_transfer_contextp)
569			*per_transfer_contextp =
570				dest_ring->per_transfer_context[sw_index];
571
572		/* sanity */
573		dest_ring->per_transfer_context[sw_index] = NULL;
574
575		/* Update sw_index */
576		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
577		dest_ring->sw_index = sw_index;
578		ret = 0;
579	} else {
580		ret = -EIO;
581	}
582
583	spin_unlock_bh(&ar_pci->ce_lock);
584
585	return ret;
586}
587
588/*
589 * Guts of ath10k_ce_completed_send_next.
590 * The caller takes responsibility for any necessary locking.
591 */
592static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
593						void **per_transfer_contextp,
594						u32 *bufferp,
595						unsigned int *nbytesp,
596						unsigned int *transfer_idp)
597{
598	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
599	u32 ctrl_addr = ce_state->ctrl_addr;
600	struct ath10k *ar = ce_state->ar;
601	unsigned int nentries_mask = src_ring->nentries_mask;
602	unsigned int sw_index = src_ring->sw_index;
603	struct ce_desc *sdesc, *sbase;
604	unsigned int read_index;
605	int ret;
606
607	if (src_ring->hw_index == sw_index) {
608		/*
609		 * The SW completion index has caught up with the cached
610		 * version of the HW completion index.
611		 * Update the cached HW completion index to see whether
612		 * the SW has really caught up to the HW, or if the cached
613		 * value of the HW index has become stale.
614		 */
615
616		ret = ath10k_pci_wake(ar);
617		if (ret)
618			return ret;
619
620		src_ring->hw_index =
621			ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
622		src_ring->hw_index &= nentries_mask;
623
624		ath10k_pci_sleep(ar);
625	}
626
627	read_index = src_ring->hw_index;
628
629	if ((read_index == sw_index) || (read_index == 0xffffffff))
630		return -EIO;
631
632	sbase = src_ring->shadow_base;
633	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
634
635	/* Return data from completed source descriptor */
636	*bufferp = __le32_to_cpu(sdesc->addr);
637	*nbytesp = __le16_to_cpu(sdesc->nbytes);
638	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
639			   CE_DESC_FLAGS_META_DATA);
640
641	if (per_transfer_contextp)
642		*per_transfer_contextp =
643			src_ring->per_transfer_context[sw_index];
644
645	/* sanity */
646	src_ring->per_transfer_context[sw_index] = NULL;
647
648	/* Update sw_index */
649	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
650	src_ring->sw_index = sw_index;
651
652	return 0;
653}
654
655/* NB: Modeled after ath10k_ce_completed_send_next */
656int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
657			       void **per_transfer_contextp,
658			       u32 *bufferp,
659			       unsigned int *nbytesp,
660			       unsigned int *transfer_idp)
661{
662	struct ath10k_ce_ring *src_ring;
663	unsigned int nentries_mask;
664	unsigned int sw_index;
665	unsigned int write_index;
666	int ret;
667	struct ath10k *ar;
668	struct ath10k_pci *ar_pci;
669
670	src_ring = ce_state->src_ring;
671
672	if (!src_ring)
673		return -EIO;
674
675	ar = ce_state->ar;
676	ar_pci = ath10k_pci_priv(ar);
677
678	spin_lock_bh(&ar_pci->ce_lock);
679
680	nentries_mask = src_ring->nentries_mask;
681	sw_index = src_ring->sw_index;
682	write_index = src_ring->write_index;
683
684	if (write_index != sw_index) {
685		struct ce_desc *base = src_ring->base_addr_owner_space;
686		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
687
688		/* Return data from completed source descriptor */
689		*bufferp = __le32_to_cpu(desc->addr);
690		*nbytesp = __le16_to_cpu(desc->nbytes);
691		*transfer_idp = MS(__le16_to_cpu(desc->flags),
692						CE_DESC_FLAGS_META_DATA);
693
694		if (per_transfer_contextp)
695			*per_transfer_contextp =
696				src_ring->per_transfer_context[sw_index];
697
698		/* sanity */
699		src_ring->per_transfer_context[sw_index] = NULL;
700
701		/* Update sw_index */
702		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
703		src_ring->sw_index = sw_index;
704		ret = 0;
705	} else {
706		ret = -EIO;
707	}
708
709	spin_unlock_bh(&ar_pci->ce_lock);
710
711	return ret;
712}
713
714int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
715				  void **per_transfer_contextp,
716				  u32 *bufferp,
717				  unsigned int *nbytesp,
718				  unsigned int *transfer_idp)
719{
720	struct ath10k *ar = ce_state->ar;
721	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
722	int ret;
723
724	spin_lock_bh(&ar_pci->ce_lock);
725	ret = ath10k_ce_completed_send_next_nolock(ce_state,
726						   per_transfer_contextp,
727						   bufferp, nbytesp,
728						   transfer_idp);
729	spin_unlock_bh(&ar_pci->ce_lock);
730
731	return ret;
732}
733
734/*
735 * Guts of interrupt handler for per-engine interrupts on a particular CE.
736 *
737 * Invokes registered callbacks for recv_complete,
738 * send_complete, and watermarks.
739 */
740void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
741{
742	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
743	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
744	u32 ctrl_addr = ce_state->ctrl_addr;
745	void *transfer_context;
746	u32 buf;
747	unsigned int nbytes;
748	unsigned int id;
749	unsigned int flags;
750	int ret;
751
752	ret = ath10k_pci_wake(ar);
753	if (ret)
754		return;
755
756	spin_lock_bh(&ar_pci->ce_lock);
757
758	/* Clear the copy-complete interrupts that will be handled here. */
759	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
760					  HOST_IS_COPY_COMPLETE_MASK);
761
762	if (ce_state->recv_cb) {
763		/*
764		 * Pop completed recv buffers and call the registered
765		 * recv callback for each
766		 */
767		while (ath10k_ce_completed_recv_next_nolock(ce_state,
768							    &transfer_context,
769							    &buf, &nbytes,
770							    &id, &flags) == 0) {
771			spin_unlock_bh(&ar_pci->ce_lock);
772			ce_state->recv_cb(ce_state, transfer_context, buf,
773					  nbytes, id, flags);
774			spin_lock_bh(&ar_pci->ce_lock);
775		}
776	}
777
778	if (ce_state->send_cb) {
779		/*
780		 * Pop completed send buffers and call the registered
781		 * send callback for each
782		 */
783		while (ath10k_ce_completed_send_next_nolock(ce_state,
784							    &transfer_context,
785							    &buf,
786							    &nbytes,
787							    &id) == 0) {
788			spin_unlock_bh(&ar_pci->ce_lock);
789			ce_state->send_cb(ce_state, transfer_context,
790					  buf, nbytes, id);
791			spin_lock_bh(&ar_pci->ce_lock);
792		}
793	}
794
795	/*
796	 * Misc CE interrupts are not being handled, but still need
797	 * to be cleared.
798	 */
799	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
800
801	spin_unlock_bh(&ar_pci->ce_lock);
802	ath10k_pci_sleep(ar);
803}
804
805/*
806 * Handler for per-engine interrupts on ALL active CEs.
807 * This is used in cases where the system is sharing a
808 * single interrput for all CEs
809 */
810
811void ath10k_ce_per_engine_service_any(struct ath10k *ar)
812{
813	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
814	int ce_id, ret;
815	u32 intr_summary;
816
817	ret = ath10k_pci_wake(ar);
818	if (ret)
819		return;
820
821	intr_summary = CE_INTERRUPT_SUMMARY(ar);
822
823	for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
824		if (intr_summary & (1 << ce_id))
825			intr_summary &= ~(1 << ce_id);
826		else
827			/* no intr pending on this CE */
828			continue;
829
830		ath10k_ce_per_engine_service(ar, ce_id);
831	}
832
833	ath10k_pci_sleep(ar);
834}
835
836/*
837 * Adjust interrupts for the copy complete handler.
838 * If it's needed for either send or recv, then unmask
839 * this interrupt; otherwise, mask it.
840 *
841 * Called with ce_lock held.
842 */
843static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
844						int disable_copy_compl_intr)
845{
846	u32 ctrl_addr = ce_state->ctrl_addr;
847	struct ath10k *ar = ce_state->ar;
848	int ret;
849
850	ret = ath10k_pci_wake(ar);
851	if (ret)
852		return;
853
854	if ((!disable_copy_compl_intr) &&
855	    (ce_state->send_cb || ce_state->recv_cb))
856		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
857	else
858		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
859
860	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
861
862	ath10k_pci_sleep(ar);
863}
864
865void ath10k_ce_disable_interrupts(struct ath10k *ar)
866{
867	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
868	int ce_id, ret;
869
870	ret = ath10k_pci_wake(ar);
871	if (ret)
872		return;
873
874	for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
875		struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
876		u32 ctrl_addr = ce_state->ctrl_addr;
877
878		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
879	}
880	ath10k_pci_sleep(ar);
881}
882
883void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
884				void (*send_cb)(struct ath10k_ce_pipe *ce_state,
885						void *transfer_context,
886						u32 buffer,
887						unsigned int nbytes,
888						unsigned int transfer_id),
889				int disable_interrupts)
890{
891	struct ath10k *ar = ce_state->ar;
892	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
893
894	spin_lock_bh(&ar_pci->ce_lock);
895	ce_state->send_cb = send_cb;
896	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
897	spin_unlock_bh(&ar_pci->ce_lock);
898}
899
900void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
901				void (*recv_cb)(struct ath10k_ce_pipe *ce_state,
902						void *transfer_context,
903						u32 buffer,
904						unsigned int nbytes,
905						unsigned int transfer_id,
906						unsigned int flags))
907{
908	struct ath10k *ar = ce_state->ar;
909	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
910
911	spin_lock_bh(&ar_pci->ce_lock);
912	ce_state->recv_cb = recv_cb;
913	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
914	spin_unlock_bh(&ar_pci->ce_lock);
915}
916
917static int ath10k_ce_init_src_ring(struct ath10k *ar,
918				   unsigned int ce_id,
919				   struct ath10k_ce_pipe *ce_state,
920				   const struct ce_attr *attr)
921{
922	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
923	struct ath10k_ce_ring *src_ring;
924	unsigned int nentries = attr->src_nentries;
925	unsigned int ce_nbytes;
926	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
927	dma_addr_t base_addr;
928	char *ptr;
929
930	nentries = roundup_pow_of_two(nentries);
931
932	if (ce_state->src_ring) {
933		WARN_ON(ce_state->src_ring->nentries != nentries);
934		return 0;
935	}
936
937	ce_nbytes = sizeof(struct ath10k_ce_ring) + (nentries * sizeof(void *));
938	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
939	if (ptr == NULL)
940		return -ENOMEM;
941
942	ce_state->src_ring = (struct ath10k_ce_ring *)ptr;
943	src_ring = ce_state->src_ring;
944
945	ptr += sizeof(struct ath10k_ce_ring);
946	src_ring->nentries = nentries;
947	src_ring->nentries_mask = nentries - 1;
948
949	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
950	src_ring->sw_index &= src_ring->nentries_mask;
951	src_ring->hw_index = src_ring->sw_index;
952
953	src_ring->write_index =
954		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
955	src_ring->write_index &= src_ring->nentries_mask;
956
957	src_ring->per_transfer_context = (void **)ptr;
958
959	/*
960	 * Legacy platforms that do not support cache
961	 * coherent DMA are unsupported
962	 */
963	src_ring->base_addr_owner_space_unaligned =
964		pci_alloc_consistent(ar_pci->pdev,
965				     (nentries * sizeof(struct ce_desc) +
966				      CE_DESC_RING_ALIGN),
967				     &base_addr);
968	if (!src_ring->base_addr_owner_space_unaligned) {
969		kfree(ce_state->src_ring);
970		ce_state->src_ring = NULL;
971		return -ENOMEM;
972	}
973
974	src_ring->base_addr_ce_space_unaligned = base_addr;
975
976	src_ring->base_addr_owner_space = PTR_ALIGN(
977			src_ring->base_addr_owner_space_unaligned,
978			CE_DESC_RING_ALIGN);
979	src_ring->base_addr_ce_space = ALIGN(
980			src_ring->base_addr_ce_space_unaligned,
981			CE_DESC_RING_ALIGN);
982
983	/*
984	 * Also allocate a shadow src ring in regular
985	 * mem to use for faster access.
986	 */
987	src_ring->shadow_base_unaligned =
988		kmalloc((nentries * sizeof(struct ce_desc) +
989			 CE_DESC_RING_ALIGN), GFP_KERNEL);
990	if (!src_ring->shadow_base_unaligned) {
991		pci_free_consistent(ar_pci->pdev,
992				    (nentries * sizeof(struct ce_desc) +
993				     CE_DESC_RING_ALIGN),
994				    src_ring->base_addr_owner_space,
995				    src_ring->base_addr_ce_space);
996		kfree(ce_state->src_ring);
997		ce_state->src_ring = NULL;
998		return -ENOMEM;
999	}
1000
1001	src_ring->shadow_base = PTR_ALIGN(
1002			src_ring->shadow_base_unaligned,
1003			CE_DESC_RING_ALIGN);
1004
1005	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
1006					 src_ring->base_addr_ce_space);
1007	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1008	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1009	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1010	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1011	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1012
1013	return 0;
1014}
1015
1016static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1017				    unsigned int ce_id,
1018				    struct ath10k_ce_pipe *ce_state,
1019				    const struct ce_attr *attr)
1020{
1021	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1022	struct ath10k_ce_ring *dest_ring;
1023	unsigned int nentries = attr->dest_nentries;
1024	unsigned int ce_nbytes;
1025	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1026	dma_addr_t base_addr;
1027	char *ptr;
1028
1029	nentries = roundup_pow_of_two(nentries);
1030
1031	if (ce_state->dest_ring) {
1032		WARN_ON(ce_state->dest_ring->nentries != nentries);
1033		return 0;
1034	}
1035
1036	ce_nbytes = sizeof(struct ath10k_ce_ring) + (nentries * sizeof(void *));
1037	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
1038	if (ptr == NULL)
1039		return -ENOMEM;
1040
1041	ce_state->dest_ring = (struct ath10k_ce_ring *)ptr;
1042	dest_ring = ce_state->dest_ring;
1043
1044	ptr += sizeof(struct ath10k_ce_ring);
1045	dest_ring->nentries = nentries;
1046	dest_ring->nentries_mask = nentries - 1;
1047
1048	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1049	dest_ring->sw_index &= dest_ring->nentries_mask;
1050	dest_ring->write_index =
1051		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1052	dest_ring->write_index &= dest_ring->nentries_mask;
1053
1054	dest_ring->per_transfer_context = (void **)ptr;
1055
1056	/*
1057	 * Legacy platforms that do not support cache
1058	 * coherent DMA are unsupported
1059	 */
1060	dest_ring->base_addr_owner_space_unaligned =
1061		pci_alloc_consistent(ar_pci->pdev,
1062				     (nentries * sizeof(struct ce_desc) +
1063				      CE_DESC_RING_ALIGN),
1064				     &base_addr);
1065	if (!dest_ring->base_addr_owner_space_unaligned) {
1066		kfree(ce_state->dest_ring);
1067		ce_state->dest_ring = NULL;
1068		return -ENOMEM;
1069	}
1070
1071	dest_ring->base_addr_ce_space_unaligned = base_addr;
1072
1073	/*
1074	 * Correctly initialize memory to 0 to prevent garbage
1075	 * data crashing system when download firmware
1076	 */
1077	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1078	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1079
1080	dest_ring->base_addr_owner_space = PTR_ALIGN(
1081			dest_ring->base_addr_owner_space_unaligned,
1082			CE_DESC_RING_ALIGN);
1083	dest_ring->base_addr_ce_space = ALIGN(
1084			dest_ring->base_addr_ce_space_unaligned,
1085			CE_DESC_RING_ALIGN);
1086
1087	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1088					  dest_ring->base_addr_ce_space);
1089	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1090	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1091	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1092	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1093
1094	return 0;
1095}
1096
1097static struct ath10k_ce_pipe *ath10k_ce_init_state(struct ath10k *ar,
1098					     unsigned int ce_id,
1099					     const struct ce_attr *attr)
1100{
1101	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1102	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1103	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1104
1105	spin_lock_bh(&ar_pci->ce_lock);
1106
1107	ce_state->ar = ar;
1108	ce_state->id = ce_id;
1109	ce_state->ctrl_addr = ctrl_addr;
1110	ce_state->attr_flags = attr->flags;
1111	ce_state->src_sz_max = attr->src_sz_max;
1112
1113	spin_unlock_bh(&ar_pci->ce_lock);
1114
1115	return ce_state;
1116}
1117
1118/*
1119 * Initialize a Copy Engine based on caller-supplied attributes.
1120 * This may be called once to initialize both source and destination
1121 * rings or it may be called twice for separate source and destination
1122 * initialization. It may be that only one side or the other is
1123 * initialized by software/firmware.
1124 */
1125struct ath10k_ce_pipe *ath10k_ce_init(struct ath10k *ar,
1126				unsigned int ce_id,
1127				const struct ce_attr *attr)
1128{
1129	struct ath10k_ce_pipe *ce_state;
1130	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1131	int ret;
1132
1133	ret = ath10k_pci_wake(ar);
1134	if (ret)
1135		return NULL;
1136
1137	ce_state = ath10k_ce_init_state(ar, ce_id, attr);
1138	if (!ce_state) {
1139		ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
1140		return NULL;
1141	}
1142
1143	if (attr->src_nentries) {
1144		ret = ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr);
1145		if (ret) {
1146			ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1147				   ce_id, ret);
1148			ath10k_ce_deinit(ce_state);
1149			return NULL;
1150		}
1151	}
1152
1153	if (attr->dest_nentries) {
1154		ret = ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr);
1155		if (ret) {
1156			ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1157				   ce_id, ret);
1158			ath10k_ce_deinit(ce_state);
1159			return NULL;
1160		}
1161	}
1162
1163	/* Enable CE error interrupts */
1164	ath10k_ce_error_intr_enable(ar, ctrl_addr);
1165
1166	ath10k_pci_sleep(ar);
1167
1168	return ce_state;
1169}
1170
1171void ath10k_ce_deinit(struct ath10k_ce_pipe *ce_state)
1172{
1173	struct ath10k *ar = ce_state->ar;
1174	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1175
1176	if (ce_state->src_ring) {
1177		kfree(ce_state->src_ring->shadow_base_unaligned);
1178		pci_free_consistent(ar_pci->pdev,
1179				    (ce_state->src_ring->nentries *
1180				     sizeof(struct ce_desc) +
1181				     CE_DESC_RING_ALIGN),
1182				    ce_state->src_ring->base_addr_owner_space,
1183				    ce_state->src_ring->base_addr_ce_space);
1184		kfree(ce_state->src_ring);
1185	}
1186
1187	if (ce_state->dest_ring) {
1188		pci_free_consistent(ar_pci->pdev,
1189				    (ce_state->dest_ring->nentries *
1190				     sizeof(struct ce_desc) +
1191				     CE_DESC_RING_ALIGN),
1192				    ce_state->dest_ring->base_addr_owner_space,
1193				    ce_state->dest_ring->base_addr_ce_space);
1194		kfree(ce_state->dest_ring);
1195	}
1196
1197	ce_state->src_ring = NULL;
1198	ce_state->dest_ring = NULL;
1199}
1200