1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer,
15 *    without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 *    redistribution must be conditioned upon including a substantially
19 *    similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 *    of any contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45#include <linux/module.h>
46#include <linux/delay.h>
47#include <linux/dma-mapping.h>
48#include <linux/hardirq.h>
49#include <linux/if.h>
50#include <linux/io.h>
51#include <linux/netdevice.h>
52#include <linux/cache.h>
53#include <linux/ethtool.h>
54#include <linux/uaccess.h>
55#include <linux/slab.h>
56#include <linux/etherdevice.h>
57#include <linux/nl80211.h>
58
59#include <net/cfg80211.h>
60#include <net/ieee80211_radiotap.h>
61
62#include <asm/unaligned.h>
63
64#include <net/mac80211.h>
65#include "base.h"
66#include "reg.h"
67#include "debug.h"
68#include "ani.h"
69#include "ath5k.h"
70#include "../regd.h"
71
72#define CREATE_TRACE_POINTS
73#include "trace.h"
74
75bool ath5k_modparam_nohwcrypt;
76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79static bool modparam_fastchanswitch;
80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83static bool ath5k_modparam_no_hw_rfkill_switch;
84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85								bool, S_IRUGO);
86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89/* Module info */
90MODULE_AUTHOR("Jiri Slaby");
91MODULE_AUTHOR("Nick Kossifidis");
92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94MODULE_LICENSE("Dual BSD/GPL");
95
96static int ath5k_init(struct ieee80211_hw *hw);
97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98								bool skip_pcu);
99
100/* Known SREVs */
101static const struct ath5k_srev_name srev_names[] = {
102	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
103	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
104	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
105	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
106	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
107	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
108	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
109	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
110	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
111	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
112	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
113	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
114	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
115	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
116	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
117	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
118	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
119	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
120	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
121	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
122	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
123	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
124	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
125	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
126	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
127	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
128	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
129	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
130	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
131	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
132	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
133	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
134	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
135	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
136};
137
138static const struct ieee80211_rate ath5k_rates[] = {
139	{ .bitrate = 10,
140	  .hw_value = ATH5K_RATE_CODE_1M, },
141	{ .bitrate = 20,
142	  .hw_value = ATH5K_RATE_CODE_2M,
143	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
144	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
145	{ .bitrate = 55,
146	  .hw_value = ATH5K_RATE_CODE_5_5M,
147	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
148	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
149	{ .bitrate = 110,
150	  .hw_value = ATH5K_RATE_CODE_11M,
151	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
152	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
153	{ .bitrate = 60,
154	  .hw_value = ATH5K_RATE_CODE_6M,
155	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
156		   IEEE80211_RATE_SUPPORTS_10MHZ },
157	{ .bitrate = 90,
158	  .hw_value = ATH5K_RATE_CODE_9M,
159	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
160		   IEEE80211_RATE_SUPPORTS_10MHZ },
161	{ .bitrate = 120,
162	  .hw_value = ATH5K_RATE_CODE_12M,
163	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
164		   IEEE80211_RATE_SUPPORTS_10MHZ },
165	{ .bitrate = 180,
166	  .hw_value = ATH5K_RATE_CODE_18M,
167	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
168		   IEEE80211_RATE_SUPPORTS_10MHZ },
169	{ .bitrate = 240,
170	  .hw_value = ATH5K_RATE_CODE_24M,
171	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
172		   IEEE80211_RATE_SUPPORTS_10MHZ },
173	{ .bitrate = 360,
174	  .hw_value = ATH5K_RATE_CODE_36M,
175	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
176		   IEEE80211_RATE_SUPPORTS_10MHZ },
177	{ .bitrate = 480,
178	  .hw_value = ATH5K_RATE_CODE_48M,
179	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
180		   IEEE80211_RATE_SUPPORTS_10MHZ },
181	{ .bitrate = 540,
182	  .hw_value = ATH5K_RATE_CODE_54M,
183	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
184		   IEEE80211_RATE_SUPPORTS_10MHZ },
185};
186
187static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
188{
189	u64 tsf = ath5k_hw_get_tsf64(ah);
190
191	if ((tsf & 0x7fff) < rstamp)
192		tsf -= 0x8000;
193
194	return (tsf & ~0x7fff) | rstamp;
195}
196
197const char *
198ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
199{
200	const char *name = "xxxxx";
201	unsigned int i;
202
203	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
204		if (srev_names[i].sr_type != type)
205			continue;
206
207		if ((val & 0xf0) == srev_names[i].sr_val)
208			name = srev_names[i].sr_name;
209
210		if ((val & 0xff) == srev_names[i].sr_val) {
211			name = srev_names[i].sr_name;
212			break;
213		}
214	}
215
216	return name;
217}
218static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
219{
220	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
221	return ath5k_hw_reg_read(ah, reg_offset);
222}
223
224static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
225{
226	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
227	ath5k_hw_reg_write(ah, val, reg_offset);
228}
229
230static const struct ath_ops ath5k_common_ops = {
231	.read = ath5k_ioread32,
232	.write = ath5k_iowrite32,
233};
234
235/***********************\
236* Driver Initialization *
237\***********************/
238
239static void ath5k_reg_notifier(struct wiphy *wiphy,
240			       struct regulatory_request *request)
241{
242	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
243	struct ath5k_hw *ah = hw->priv;
244	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
245
246	ath_reg_notifier_apply(wiphy, request, regulatory);
247}
248
249/********************\
250* Channel/mode setup *
251\********************/
252
253/*
254 * Returns true for the channel numbers used.
255 */
256#ifdef CONFIG_ATH5K_TEST_CHANNELS
257static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
258{
259	return true;
260}
261
262#else
263static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
264{
265	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
266		return true;
267
268	return	/* UNII 1,2 */
269		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
270		/* midband */
271		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
272		/* UNII-3 */
273		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
274		/* 802.11j 5.030-5.080 GHz (20MHz) */
275		(chan == 8 || chan == 12 || chan == 16) ||
276		/* 802.11j 4.9GHz (20MHz) */
277		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
278}
279#endif
280
281static unsigned int
282ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
283		unsigned int mode, unsigned int max)
284{
285	unsigned int count, size, freq, ch;
286	enum ieee80211_band band;
287
288	switch (mode) {
289	case AR5K_MODE_11A:
290		/* 1..220, but 2GHz frequencies are filtered by check_channel */
291		size = 220;
292		band = IEEE80211_BAND_5GHZ;
293		break;
294	case AR5K_MODE_11B:
295	case AR5K_MODE_11G:
296		size = 26;
297		band = IEEE80211_BAND_2GHZ;
298		break;
299	default:
300		ATH5K_WARN(ah, "bad mode, not copying channels\n");
301		return 0;
302	}
303
304	count = 0;
305	for (ch = 1; ch <= size && count < max; ch++) {
306		freq = ieee80211_channel_to_frequency(ch, band);
307
308		if (freq == 0) /* mapping failed - not a standard channel */
309			continue;
310
311		/* Write channel info, needed for ath5k_channel_ok() */
312		channels[count].center_freq = freq;
313		channels[count].band = band;
314		channels[count].hw_value = mode;
315
316		/* Check if channel is supported by the chipset */
317		if (!ath5k_channel_ok(ah, &channels[count]))
318			continue;
319
320		if (!ath5k_is_standard_channel(ch, band))
321			continue;
322
323		count++;
324	}
325
326	return count;
327}
328
329static void
330ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
331{
332	u8 i;
333
334	for (i = 0; i < AR5K_MAX_RATES; i++)
335		ah->rate_idx[b->band][i] = -1;
336
337	for (i = 0; i < b->n_bitrates; i++) {
338		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
339		if (b->bitrates[i].hw_value_short)
340			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
341	}
342}
343
344static int
345ath5k_setup_bands(struct ieee80211_hw *hw)
346{
347	struct ath5k_hw *ah = hw->priv;
348	struct ieee80211_supported_band *sband;
349	int max_c, count_c = 0;
350	int i;
351
352	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
353	max_c = ARRAY_SIZE(ah->channels);
354
355	/* 2GHz band */
356	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
357	sband->band = IEEE80211_BAND_2GHZ;
358	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
359
360	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
361		/* G mode */
362		memcpy(sband->bitrates, &ath5k_rates[0],
363		       sizeof(struct ieee80211_rate) * 12);
364		sband->n_bitrates = 12;
365
366		sband->channels = ah->channels;
367		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
368					AR5K_MODE_11G, max_c);
369
370		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
371		count_c = sband->n_channels;
372		max_c -= count_c;
373	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
374		/* B mode */
375		memcpy(sband->bitrates, &ath5k_rates[0],
376		       sizeof(struct ieee80211_rate) * 4);
377		sband->n_bitrates = 4;
378
379		/* 5211 only supports B rates and uses 4bit rate codes
380		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381		 * fix them up here:
382		 */
383		if (ah->ah_version == AR5K_AR5211) {
384			for (i = 0; i < 4; i++) {
385				sband->bitrates[i].hw_value =
386					sband->bitrates[i].hw_value & 0xF;
387				sband->bitrates[i].hw_value_short =
388					sband->bitrates[i].hw_value_short & 0xF;
389			}
390		}
391
392		sband->channels = ah->channels;
393		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
394					AR5K_MODE_11B, max_c);
395
396		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
397		count_c = sband->n_channels;
398		max_c -= count_c;
399	}
400	ath5k_setup_rate_idx(ah, sband);
401
402	/* 5GHz band, A mode */
403	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
404		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
405		sband->band = IEEE80211_BAND_5GHZ;
406		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
407
408		memcpy(sband->bitrates, &ath5k_rates[4],
409		       sizeof(struct ieee80211_rate) * 8);
410		sband->n_bitrates = 8;
411
412		sband->channels = &ah->channels[count_c];
413		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
414					AR5K_MODE_11A, max_c);
415
416		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
417	}
418	ath5k_setup_rate_idx(ah, sband);
419
420	ath5k_debug_dump_bands(ah);
421
422	return 0;
423}
424
425/*
426 * Set/change channels. We always reset the chip.
427 * To accomplish this we must first cleanup any pending DMA,
428 * then restart stuff after a la  ath5k_init.
429 *
430 * Called with ah->lock.
431 */
432int
433ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
434{
435	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
436		  "channel set, resetting (%u -> %u MHz)\n",
437		  ah->curchan->center_freq, chandef->chan->center_freq);
438
439	switch (chandef->width) {
440	case NL80211_CHAN_WIDTH_20:
441	case NL80211_CHAN_WIDTH_20_NOHT:
442		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
443		break;
444	case NL80211_CHAN_WIDTH_5:
445		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
446		break;
447	case NL80211_CHAN_WIDTH_10:
448		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
449		break;
450	default:
451		WARN_ON(1);
452		return -EINVAL;
453	}
454
455	/*
456	 * To switch channels clear any pending DMA operations;
457	 * wait long enough for the RX fifo to drain, reset the
458	 * hardware at the new frequency, and then re-enable
459	 * the relevant bits of the h/w.
460	 */
461	return ath5k_reset(ah, chandef->chan, true);
462}
463
464void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
465{
466	struct ath5k_vif_iter_data *iter_data = data;
467	int i;
468	struct ath5k_vif *avf = (void *)vif->drv_priv;
469
470	if (iter_data->hw_macaddr)
471		for (i = 0; i < ETH_ALEN; i++)
472			iter_data->mask[i] &=
473				~(iter_data->hw_macaddr[i] ^ mac[i]);
474
475	if (!iter_data->found_active) {
476		iter_data->found_active = true;
477		memcpy(iter_data->active_mac, mac, ETH_ALEN);
478	}
479
480	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
481		if (ether_addr_equal(iter_data->hw_macaddr, mac))
482			iter_data->need_set_hw_addr = false;
483
484	if (!iter_data->any_assoc) {
485		if (avf->assoc)
486			iter_data->any_assoc = true;
487	}
488
489	/* Calculate combined mode - when APs are active, operate in AP mode.
490	 * Otherwise use the mode of the new interface. This can currently
491	 * only deal with combinations of APs and STAs. Only one ad-hoc
492	 * interfaces is allowed.
493	 */
494	if (avf->opmode == NL80211_IFTYPE_AP)
495		iter_data->opmode = NL80211_IFTYPE_AP;
496	else {
497		if (avf->opmode == NL80211_IFTYPE_STATION)
498			iter_data->n_stas++;
499		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
500			iter_data->opmode = avf->opmode;
501	}
502}
503
504void
505ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
506				   struct ieee80211_vif *vif)
507{
508	struct ath_common *common = ath5k_hw_common(ah);
509	struct ath5k_vif_iter_data iter_data;
510	u32 rfilt;
511
512	/*
513	 * Use the hardware MAC address as reference, the hardware uses it
514	 * together with the BSSID mask when matching addresses.
515	 */
516	iter_data.hw_macaddr = common->macaddr;
517	memset(&iter_data.mask, 0xff, ETH_ALEN);
518	iter_data.found_active = false;
519	iter_data.need_set_hw_addr = true;
520	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
521	iter_data.n_stas = 0;
522
523	if (vif)
524		ath5k_vif_iter(&iter_data, vif->addr, vif);
525
526	/* Get list of all active MAC addresses */
527	ieee80211_iterate_active_interfaces_atomic(
528		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
529		ath5k_vif_iter, &iter_data);
530	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
531
532	ah->opmode = iter_data.opmode;
533	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
534		/* Nothing active, default to station mode */
535		ah->opmode = NL80211_IFTYPE_STATION;
536
537	ath5k_hw_set_opmode(ah, ah->opmode);
538	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
539		  ah->opmode, ath_opmode_to_string(ah->opmode));
540
541	if (iter_data.need_set_hw_addr && iter_data.found_active)
542		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
543
544	if (ath5k_hw_hasbssidmask(ah))
545		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
546
547	/* Set up RX Filter */
548	if (iter_data.n_stas > 1) {
549		/* If you have multiple STA interfaces connected to
550		 * different APs, ARPs are not received (most of the time?)
551		 * Enabling PROMISC appears to fix that problem.
552		 */
553		ah->filter_flags |= AR5K_RX_FILTER_PROM;
554	}
555
556	rfilt = ah->filter_flags;
557	ath5k_hw_set_rx_filter(ah, rfilt);
558	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
559}
560
561static inline int
562ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
563{
564	int rix;
565
566	/* return base rate on errors */
567	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
568			"hw_rix out of bounds: %x\n", hw_rix))
569		return 0;
570
571	rix = ah->rate_idx[ah->curchan->band][hw_rix];
572	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
573		rix = 0;
574
575	return rix;
576}
577
578/***************\
579* Buffers setup *
580\***************/
581
582static
583struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
584{
585	struct ath_common *common = ath5k_hw_common(ah);
586	struct sk_buff *skb;
587
588	/*
589	 * Allocate buffer with headroom_needed space for the
590	 * fake physical layer header at the start.
591	 */
592	skb = ath_rxbuf_alloc(common,
593			      common->rx_bufsize,
594			      GFP_ATOMIC);
595
596	if (!skb) {
597		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
598				common->rx_bufsize);
599		return NULL;
600	}
601
602	*skb_addr = dma_map_single(ah->dev,
603				   skb->data, common->rx_bufsize,
604				   DMA_FROM_DEVICE);
605
606	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
607		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
608		dev_kfree_skb(skb);
609		return NULL;
610	}
611	return skb;
612}
613
614static int
615ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
616{
617	struct sk_buff *skb = bf->skb;
618	struct ath5k_desc *ds;
619	int ret;
620
621	if (!skb) {
622		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
623		if (!skb)
624			return -ENOMEM;
625		bf->skb = skb;
626	}
627
628	/*
629	 * Setup descriptors.  For receive we always terminate
630	 * the descriptor list with a self-linked entry so we'll
631	 * not get overrun under high load (as can happen with a
632	 * 5212 when ANI processing enables PHY error frames).
633	 *
634	 * To ensure the last descriptor is self-linked we create
635	 * each descriptor as self-linked and add it to the end.  As
636	 * each additional descriptor is added the previous self-linked
637	 * entry is "fixed" naturally.  This should be safe even
638	 * if DMA is happening.  When processing RX interrupts we
639	 * never remove/process the last, self-linked, entry on the
640	 * descriptor list.  This ensures the hardware always has
641	 * someplace to write a new frame.
642	 */
643	ds = bf->desc;
644	ds->ds_link = bf->daddr;	/* link to self */
645	ds->ds_data = bf->skbaddr;
646	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
647	if (ret) {
648		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
649		return ret;
650	}
651
652	if (ah->rxlink != NULL)
653		*ah->rxlink = bf->daddr;
654	ah->rxlink = &ds->ds_link;
655	return 0;
656}
657
658static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
659{
660	struct ieee80211_hdr *hdr;
661	enum ath5k_pkt_type htype;
662	__le16 fc;
663
664	hdr = (struct ieee80211_hdr *)skb->data;
665	fc = hdr->frame_control;
666
667	if (ieee80211_is_beacon(fc))
668		htype = AR5K_PKT_TYPE_BEACON;
669	else if (ieee80211_is_probe_resp(fc))
670		htype = AR5K_PKT_TYPE_PROBE_RESP;
671	else if (ieee80211_is_atim(fc))
672		htype = AR5K_PKT_TYPE_ATIM;
673	else if (ieee80211_is_pspoll(fc))
674		htype = AR5K_PKT_TYPE_PSPOLL;
675	else
676		htype = AR5K_PKT_TYPE_NORMAL;
677
678	return htype;
679}
680
681static struct ieee80211_rate *
682ath5k_get_rate(const struct ieee80211_hw *hw,
683	       const struct ieee80211_tx_info *info,
684	       struct ath5k_buf *bf, int idx)
685{
686	/*
687	* convert a ieee80211_tx_rate RC-table entry to
688	* the respective ieee80211_rate struct
689	*/
690	if (bf->rates[idx].idx < 0) {
691		return NULL;
692	}
693
694	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
695}
696
697static u16
698ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
699			const struct ieee80211_tx_info *info,
700			struct ath5k_buf *bf, int idx)
701{
702	struct ieee80211_rate *rate;
703	u16 hw_rate;
704	u8 rc_flags;
705
706	rate = ath5k_get_rate(hw, info, bf, idx);
707	if (!rate)
708		return 0;
709
710	rc_flags = bf->rates[idx].flags;
711	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
712		   rate->hw_value_short : rate->hw_value;
713
714	return hw_rate;
715}
716
717static int
718ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
719		  struct ath5k_txq *txq, int padsize,
720		  struct ieee80211_tx_control *control)
721{
722	struct ath5k_desc *ds = bf->desc;
723	struct sk_buff *skb = bf->skb;
724	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
725	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
726	struct ieee80211_rate *rate;
727	unsigned int mrr_rate[3], mrr_tries[3];
728	int i, ret;
729	u16 hw_rate;
730	u16 cts_rate = 0;
731	u16 duration = 0;
732	u8 rc_flags;
733
734	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
735
736	/* XXX endianness */
737	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
738			DMA_TO_DEVICE);
739
740	if (dma_mapping_error(ah->dev, bf->skbaddr))
741		return -ENOSPC;
742
743	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
744			       ARRAY_SIZE(bf->rates));
745
746	rate = ath5k_get_rate(ah->hw, info, bf, 0);
747
748	if (!rate) {
749		ret = -EINVAL;
750		goto err_unmap;
751	}
752
753	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
754		flags |= AR5K_TXDESC_NOACK;
755
756	rc_flags = info->control.rates[0].flags;
757
758	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
759
760	pktlen = skb->len;
761
762	/* FIXME: If we are in g mode and rate is a CCK rate
763	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
764	 * from tx power (value is in dB units already) */
765	if (info->control.hw_key) {
766		keyidx = info->control.hw_key->hw_key_idx;
767		pktlen += info->control.hw_key->icv_len;
768	}
769	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
770		flags |= AR5K_TXDESC_RTSENA;
771		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
772		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
773			info->control.vif, pktlen, info));
774	}
775	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
776		flags |= AR5K_TXDESC_CTSENA;
777		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
778		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
779			info->control.vif, pktlen, info));
780	}
781
782	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
783		ieee80211_get_hdrlen_from_skb(skb), padsize,
784		get_hw_packet_type(skb),
785		(ah->ah_txpower.txp_requested * 2),
786		hw_rate,
787		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
788		cts_rate, duration);
789	if (ret)
790		goto err_unmap;
791
792	/* Set up MRR descriptor */
793	if (ah->ah_capabilities.cap_has_mrr_support) {
794		memset(mrr_rate, 0, sizeof(mrr_rate));
795		memset(mrr_tries, 0, sizeof(mrr_tries));
796
797		for (i = 0; i < 3; i++) {
798
799			rate = ath5k_get_rate(ah->hw, info, bf, i);
800			if (!rate)
801				break;
802
803			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
804			mrr_tries[i] = bf->rates[i].count;
805		}
806
807		ath5k_hw_setup_mrr_tx_desc(ah, ds,
808			mrr_rate[0], mrr_tries[0],
809			mrr_rate[1], mrr_tries[1],
810			mrr_rate[2], mrr_tries[2]);
811	}
812
813	ds->ds_link = 0;
814	ds->ds_data = bf->skbaddr;
815
816	spin_lock_bh(&txq->lock);
817	list_add_tail(&bf->list, &txq->q);
818	txq->txq_len++;
819	if (txq->link == NULL) /* is this first packet? */
820		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
821	else /* no, so only link it */
822		*txq->link = bf->daddr;
823
824	txq->link = &ds->ds_link;
825	ath5k_hw_start_tx_dma(ah, txq->qnum);
826	mmiowb();
827	spin_unlock_bh(&txq->lock);
828
829	return 0;
830err_unmap:
831	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
832	return ret;
833}
834
835/*******************\
836* Descriptors setup *
837\*******************/
838
839static int
840ath5k_desc_alloc(struct ath5k_hw *ah)
841{
842	struct ath5k_desc *ds;
843	struct ath5k_buf *bf;
844	dma_addr_t da;
845	unsigned int i;
846	int ret;
847
848	/* allocate descriptors */
849	ah->desc_len = sizeof(struct ath5k_desc) *
850			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
851
852	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
853				&ah->desc_daddr, GFP_KERNEL);
854	if (ah->desc == NULL) {
855		ATH5K_ERR(ah, "can't allocate descriptors\n");
856		ret = -ENOMEM;
857		goto err;
858	}
859	ds = ah->desc;
860	da = ah->desc_daddr;
861	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
862		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
863
864	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
865			sizeof(struct ath5k_buf), GFP_KERNEL);
866	if (bf == NULL) {
867		ATH5K_ERR(ah, "can't allocate bufptr\n");
868		ret = -ENOMEM;
869		goto err_free;
870	}
871	ah->bufptr = bf;
872
873	INIT_LIST_HEAD(&ah->rxbuf);
874	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
875		bf->desc = ds;
876		bf->daddr = da;
877		list_add_tail(&bf->list, &ah->rxbuf);
878	}
879
880	INIT_LIST_HEAD(&ah->txbuf);
881	ah->txbuf_len = ATH_TXBUF;
882	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
883		bf->desc = ds;
884		bf->daddr = da;
885		list_add_tail(&bf->list, &ah->txbuf);
886	}
887
888	/* beacon buffers */
889	INIT_LIST_HEAD(&ah->bcbuf);
890	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
891		bf->desc = ds;
892		bf->daddr = da;
893		list_add_tail(&bf->list, &ah->bcbuf);
894	}
895
896	return 0;
897err_free:
898	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
899err:
900	ah->desc = NULL;
901	return ret;
902}
903
904void
905ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
906{
907	BUG_ON(!bf);
908	if (!bf->skb)
909		return;
910	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
911			DMA_TO_DEVICE);
912	ieee80211_free_txskb(ah->hw, bf->skb);
913	bf->skb = NULL;
914	bf->skbaddr = 0;
915	bf->desc->ds_data = 0;
916}
917
918void
919ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
920{
921	struct ath_common *common = ath5k_hw_common(ah);
922
923	BUG_ON(!bf);
924	if (!bf->skb)
925		return;
926	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
927			DMA_FROM_DEVICE);
928	dev_kfree_skb_any(bf->skb);
929	bf->skb = NULL;
930	bf->skbaddr = 0;
931	bf->desc->ds_data = 0;
932}
933
934static void
935ath5k_desc_free(struct ath5k_hw *ah)
936{
937	struct ath5k_buf *bf;
938
939	list_for_each_entry(bf, &ah->txbuf, list)
940		ath5k_txbuf_free_skb(ah, bf);
941	list_for_each_entry(bf, &ah->rxbuf, list)
942		ath5k_rxbuf_free_skb(ah, bf);
943	list_for_each_entry(bf, &ah->bcbuf, list)
944		ath5k_txbuf_free_skb(ah, bf);
945
946	/* Free memory associated with all descriptors */
947	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
948	ah->desc = NULL;
949	ah->desc_daddr = 0;
950
951	kfree(ah->bufptr);
952	ah->bufptr = NULL;
953}
954
955
956/**************\
957* Queues setup *
958\**************/
959
960static struct ath5k_txq *
961ath5k_txq_setup(struct ath5k_hw *ah,
962		int qtype, int subtype)
963{
964	struct ath5k_txq *txq;
965	struct ath5k_txq_info qi = {
966		.tqi_subtype = subtype,
967		/* XXX: default values not correct for B and XR channels,
968		 * but who cares? */
969		.tqi_aifs = AR5K_TUNE_AIFS,
970		.tqi_cw_min = AR5K_TUNE_CWMIN,
971		.tqi_cw_max = AR5K_TUNE_CWMAX
972	};
973	int qnum;
974
975	/*
976	 * Enable interrupts only for EOL and DESC conditions.
977	 * We mark tx descriptors to receive a DESC interrupt
978	 * when a tx queue gets deep; otherwise we wait for the
979	 * EOL to reap descriptors.  Note that this is done to
980	 * reduce interrupt load and this only defers reaping
981	 * descriptors, never transmitting frames.  Aside from
982	 * reducing interrupts this also permits more concurrency.
983	 * The only potential downside is if the tx queue backs
984	 * up in which case the top half of the kernel may backup
985	 * due to a lack of tx descriptors.
986	 */
987	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
988				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
989	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
990	if (qnum < 0) {
991		/*
992		 * NB: don't print a message, this happens
993		 * normally on parts with too few tx queues
994		 */
995		return ERR_PTR(qnum);
996	}
997	txq = &ah->txqs[qnum];
998	if (!txq->setup) {
999		txq->qnum = qnum;
1000		txq->link = NULL;
1001		INIT_LIST_HEAD(&txq->q);
1002		spin_lock_init(&txq->lock);
1003		txq->setup = true;
1004		txq->txq_len = 0;
1005		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1006		txq->txq_poll_mark = false;
1007		txq->txq_stuck = 0;
1008	}
1009	return &ah->txqs[qnum];
1010}
1011
1012static int
1013ath5k_beaconq_setup(struct ath5k_hw *ah)
1014{
1015	struct ath5k_txq_info qi = {
1016		/* XXX: default values not correct for B and XR channels,
1017		 * but who cares? */
1018		.tqi_aifs = AR5K_TUNE_AIFS,
1019		.tqi_cw_min = AR5K_TUNE_CWMIN,
1020		.tqi_cw_max = AR5K_TUNE_CWMAX,
1021		/* NB: for dynamic turbo, don't enable any other interrupts */
1022		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1023	};
1024
1025	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1026}
1027
1028static int
1029ath5k_beaconq_config(struct ath5k_hw *ah)
1030{
1031	struct ath5k_txq_info qi;
1032	int ret;
1033
1034	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1035	if (ret)
1036		goto err;
1037
1038	if (ah->opmode == NL80211_IFTYPE_AP ||
1039	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1040		/*
1041		 * Always burst out beacon and CAB traffic
1042		 * (aifs = cwmin = cwmax = 0)
1043		 */
1044		qi.tqi_aifs = 0;
1045		qi.tqi_cw_min = 0;
1046		qi.tqi_cw_max = 0;
1047	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1048		/*
1049		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1050		 */
1051		qi.tqi_aifs = 0;
1052		qi.tqi_cw_min = 0;
1053		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1054	}
1055
1056	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1057		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1058		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1059
1060	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1061	if (ret) {
1062		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1063			"hardware queue!\n", __func__);
1064		goto err;
1065	}
1066	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1067	if (ret)
1068		goto err;
1069
1070	/* reconfigure cabq with ready time to 80% of beacon_interval */
1071	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1072	if (ret)
1073		goto err;
1074
1075	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1076	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1077	if (ret)
1078		goto err;
1079
1080	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1081err:
1082	return ret;
1083}
1084
1085/**
1086 * ath5k_drain_tx_buffs - Empty tx buffers
1087 *
1088 * @ah The &struct ath5k_hw
1089 *
1090 * Empty tx buffers from all queues in preparation
1091 * of a reset or during shutdown.
1092 *
1093 * NB:	this assumes output has been stopped and
1094 *	we do not need to block ath5k_tx_tasklet
1095 */
1096static void
1097ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1098{
1099	struct ath5k_txq *txq;
1100	struct ath5k_buf *bf, *bf0;
1101	int i;
1102
1103	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1104		if (ah->txqs[i].setup) {
1105			txq = &ah->txqs[i];
1106			spin_lock_bh(&txq->lock);
1107			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1108				ath5k_debug_printtxbuf(ah, bf);
1109
1110				ath5k_txbuf_free_skb(ah, bf);
1111
1112				spin_lock(&ah->txbuflock);
1113				list_move_tail(&bf->list, &ah->txbuf);
1114				ah->txbuf_len++;
1115				txq->txq_len--;
1116				spin_unlock(&ah->txbuflock);
1117			}
1118			txq->link = NULL;
1119			txq->txq_poll_mark = false;
1120			spin_unlock_bh(&txq->lock);
1121		}
1122	}
1123}
1124
1125static void
1126ath5k_txq_release(struct ath5k_hw *ah)
1127{
1128	struct ath5k_txq *txq = ah->txqs;
1129	unsigned int i;
1130
1131	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1132		if (txq->setup) {
1133			ath5k_hw_release_tx_queue(ah, txq->qnum);
1134			txq->setup = false;
1135		}
1136}
1137
1138
1139/*************\
1140* RX Handling *
1141\*************/
1142
1143/*
1144 * Enable the receive h/w following a reset.
1145 */
1146static int
1147ath5k_rx_start(struct ath5k_hw *ah)
1148{
1149	struct ath_common *common = ath5k_hw_common(ah);
1150	struct ath5k_buf *bf;
1151	int ret;
1152
1153	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1154
1155	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1156		  common->cachelsz, common->rx_bufsize);
1157
1158	spin_lock_bh(&ah->rxbuflock);
1159	ah->rxlink = NULL;
1160	list_for_each_entry(bf, &ah->rxbuf, list) {
1161		ret = ath5k_rxbuf_setup(ah, bf);
1162		if (ret != 0) {
1163			spin_unlock_bh(&ah->rxbuflock);
1164			goto err;
1165		}
1166	}
1167	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1168	ath5k_hw_set_rxdp(ah, bf->daddr);
1169	spin_unlock_bh(&ah->rxbuflock);
1170
1171	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1172	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1173	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1174
1175	return 0;
1176err:
1177	return ret;
1178}
1179
1180/*
1181 * Disable the receive logic on PCU (DRU)
1182 * In preparation for a shutdown.
1183 *
1184 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1185 * does.
1186 */
1187static void
1188ath5k_rx_stop(struct ath5k_hw *ah)
1189{
1190
1191	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1192	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1193
1194	ath5k_debug_printrxbuffs(ah);
1195}
1196
1197static unsigned int
1198ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1199		   struct ath5k_rx_status *rs)
1200{
1201	struct ath_common *common = ath5k_hw_common(ah);
1202	struct ieee80211_hdr *hdr = (void *)skb->data;
1203	unsigned int keyix, hlen;
1204
1205	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1206			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1207		return RX_FLAG_DECRYPTED;
1208
1209	/* Apparently when a default key is used to decrypt the packet
1210	   the hw does not set the index used to decrypt.  In such cases
1211	   get the index from the packet. */
1212	hlen = ieee80211_hdrlen(hdr->frame_control);
1213	if (ieee80211_has_protected(hdr->frame_control) &&
1214	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1215	    skb->len >= hlen + 4) {
1216		keyix = skb->data[hlen + 3] >> 6;
1217
1218		if (test_bit(keyix, common->keymap))
1219			return RX_FLAG_DECRYPTED;
1220	}
1221
1222	return 0;
1223}
1224
1225
1226static void
1227ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1228		     struct ieee80211_rx_status *rxs)
1229{
1230	u64 tsf, bc_tstamp;
1231	u32 hw_tu;
1232	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1233
1234	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1235		/*
1236		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1237		 * have updated the local TSF. We have to work around various
1238		 * hardware bugs, though...
1239		 */
1240		tsf = ath5k_hw_get_tsf64(ah);
1241		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1242		hw_tu = TSF_TO_TU(tsf);
1243
1244		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1245			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1246			(unsigned long long)bc_tstamp,
1247			(unsigned long long)rxs->mactime,
1248			(unsigned long long)(rxs->mactime - bc_tstamp),
1249			(unsigned long long)tsf);
1250
1251		/*
1252		 * Sometimes the HW will give us a wrong tstamp in the rx
1253		 * status, causing the timestamp extension to go wrong.
1254		 * (This seems to happen especially with beacon frames bigger
1255		 * than 78 byte (incl. FCS))
1256		 * But we know that the receive timestamp must be later than the
1257		 * timestamp of the beacon since HW must have synced to that.
1258		 *
1259		 * NOTE: here we assume mactime to be after the frame was
1260		 * received, not like mac80211 which defines it at the start.
1261		 */
1262		if (bc_tstamp > rxs->mactime) {
1263			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1264				"fixing mactime from %llx to %llx\n",
1265				(unsigned long long)rxs->mactime,
1266				(unsigned long long)tsf);
1267			rxs->mactime = tsf;
1268		}
1269
1270		/*
1271		 * Local TSF might have moved higher than our beacon timers,
1272		 * in that case we have to update them to continue sending
1273		 * beacons. This also takes care of synchronizing beacon sending
1274		 * times with other stations.
1275		 */
1276		if (hw_tu >= ah->nexttbtt)
1277			ath5k_beacon_update_timers(ah, bc_tstamp);
1278
1279		/* Check if the beacon timers are still correct, because a TSF
1280		 * update might have created a window between them - for a
1281		 * longer description see the comment of this function: */
1282		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1283			ath5k_beacon_update_timers(ah, bc_tstamp);
1284			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1285				"fixed beacon timers after beacon receive\n");
1286		}
1287	}
1288}
1289
1290/*
1291 * Compute padding position. skb must contain an IEEE 802.11 frame
1292 */
1293static int ath5k_common_padpos(struct sk_buff *skb)
1294{
1295	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1296	__le16 frame_control = hdr->frame_control;
1297	int padpos = 24;
1298
1299	if (ieee80211_has_a4(frame_control))
1300		padpos += ETH_ALEN;
1301
1302	if (ieee80211_is_data_qos(frame_control))
1303		padpos += IEEE80211_QOS_CTL_LEN;
1304
1305	return padpos;
1306}
1307
1308/*
1309 * This function expects an 802.11 frame and returns the number of
1310 * bytes added, or -1 if we don't have enough header room.
1311 */
1312static int ath5k_add_padding(struct sk_buff *skb)
1313{
1314	int padpos = ath5k_common_padpos(skb);
1315	int padsize = padpos & 3;
1316
1317	if (padsize && skb->len > padpos) {
1318
1319		if (skb_headroom(skb) < padsize)
1320			return -1;
1321
1322		skb_push(skb, padsize);
1323		memmove(skb->data, skb->data + padsize, padpos);
1324		return padsize;
1325	}
1326
1327	return 0;
1328}
1329
1330/*
1331 * The MAC header is padded to have 32-bit boundary if the
1332 * packet payload is non-zero. The general calculation for
1333 * padsize would take into account odd header lengths:
1334 * padsize = 4 - (hdrlen & 3); however, since only
1335 * even-length headers are used, padding can only be 0 or 2
1336 * bytes and we can optimize this a bit.  We must not try to
1337 * remove padding from short control frames that do not have a
1338 * payload.
1339 *
1340 * This function expects an 802.11 frame and returns the number of
1341 * bytes removed.
1342 */
1343static int ath5k_remove_padding(struct sk_buff *skb)
1344{
1345	int padpos = ath5k_common_padpos(skb);
1346	int padsize = padpos & 3;
1347
1348	if (padsize && skb->len >= padpos + padsize) {
1349		memmove(skb->data + padsize, skb->data, padpos);
1350		skb_pull(skb, padsize);
1351		return padsize;
1352	}
1353
1354	return 0;
1355}
1356
1357static void
1358ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1359		    struct ath5k_rx_status *rs)
1360{
1361	struct ieee80211_rx_status *rxs;
1362	struct ath_common *common = ath5k_hw_common(ah);
1363
1364	ath5k_remove_padding(skb);
1365
1366	rxs = IEEE80211_SKB_RXCB(skb);
1367
1368	rxs->flag = 0;
1369	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1370		rxs->flag |= RX_FLAG_MMIC_ERROR;
1371	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1372		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1373
1374
1375	/*
1376	 * always extend the mac timestamp, since this information is
1377	 * also needed for proper IBSS merging.
1378	 *
1379	 * XXX: it might be too late to do it here, since rs_tstamp is
1380	 * 15bit only. that means TSF extension has to be done within
1381	 * 32768usec (about 32ms). it might be necessary to move this to
1382	 * the interrupt handler, like it is done in madwifi.
1383	 */
1384	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1385	rxs->flag |= RX_FLAG_MACTIME_END;
1386
1387	rxs->freq = ah->curchan->center_freq;
1388	rxs->band = ah->curchan->band;
1389
1390	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1391
1392	rxs->antenna = rs->rs_antenna;
1393
1394	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1395		ah->stats.antenna_rx[rs->rs_antenna]++;
1396	else
1397		ah->stats.antenna_rx[0]++; /* invalid */
1398
1399	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1400	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1401	switch (ah->ah_bwmode) {
1402	case AR5K_BWMODE_5MHZ:
1403		rxs->flag |= RX_FLAG_5MHZ;
1404		break;
1405	case AR5K_BWMODE_10MHZ:
1406		rxs->flag |= RX_FLAG_10MHZ;
1407		break;
1408	default:
1409		break;
1410	}
1411
1412	if (rs->rs_rate ==
1413	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1414		rxs->flag |= RX_FLAG_SHORTPRE;
1415
1416	trace_ath5k_rx(ah, skb);
1417
1418	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1419		ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1420
1421		/* check beacons in IBSS mode */
1422		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1423			ath5k_check_ibss_tsf(ah, skb, rxs);
1424	}
1425
1426	ieee80211_rx(ah->hw, skb);
1427}
1428
1429/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1430 *
1431 * Check if we want to further process this frame or not. Also update
1432 * statistics. Return true if we want this frame, false if not.
1433 */
1434static bool
1435ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1436{
1437	ah->stats.rx_all_count++;
1438	ah->stats.rx_bytes_count += rs->rs_datalen;
1439
1440	if (unlikely(rs->rs_status)) {
1441		unsigned int filters;
1442
1443		if (rs->rs_status & AR5K_RXERR_CRC)
1444			ah->stats.rxerr_crc++;
1445		if (rs->rs_status & AR5K_RXERR_FIFO)
1446			ah->stats.rxerr_fifo++;
1447		if (rs->rs_status & AR5K_RXERR_PHY) {
1448			ah->stats.rxerr_phy++;
1449			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1450				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1451
1452			/*
1453			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1454			 * These restarts happen when the radio resynchronizes to a stronger frame
1455			 * while receiving a weaker frame. Here we receive the prefix of the weak
1456			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1457			 */
1458			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1459			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1460				rs->rs_status |= AR5K_RXERR_CRC;
1461				rs->rs_status &= ~AR5K_RXERR_PHY;
1462			} else {
1463				return false;
1464			}
1465		}
1466		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1467			/*
1468			 * Decrypt error.  If the error occurred
1469			 * because there was no hardware key, then
1470			 * let the frame through so the upper layers
1471			 * can process it.  This is necessary for 5210
1472			 * parts which have no way to setup a ``clear''
1473			 * key cache entry.
1474			 *
1475			 * XXX do key cache faulting
1476			 */
1477			ah->stats.rxerr_decrypt++;
1478			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1479			    !(rs->rs_status & AR5K_RXERR_CRC))
1480				return true;
1481		}
1482		if (rs->rs_status & AR5K_RXERR_MIC) {
1483			ah->stats.rxerr_mic++;
1484			return true;
1485		}
1486
1487		/*
1488		 * Reject any frames with non-crypto errors, and take into account the
1489		 * current FIF_* filters.
1490		 */
1491		filters = AR5K_RXERR_DECRYPT;
1492		if (ah->fif_filter_flags & FIF_FCSFAIL)
1493			filters |= AR5K_RXERR_CRC;
1494
1495		if (rs->rs_status & ~filters)
1496			return false;
1497	}
1498
1499	if (unlikely(rs->rs_more)) {
1500		ah->stats.rxerr_jumbo++;
1501		return false;
1502	}
1503	return true;
1504}
1505
1506static void
1507ath5k_set_current_imask(struct ath5k_hw *ah)
1508{
1509	enum ath5k_int imask;
1510	unsigned long flags;
1511
1512	spin_lock_irqsave(&ah->irqlock, flags);
1513	imask = ah->imask;
1514	if (ah->rx_pending)
1515		imask &= ~AR5K_INT_RX_ALL;
1516	if (ah->tx_pending)
1517		imask &= ~AR5K_INT_TX_ALL;
1518	ath5k_hw_set_imr(ah, imask);
1519	spin_unlock_irqrestore(&ah->irqlock, flags);
1520}
1521
1522static void
1523ath5k_tasklet_rx(unsigned long data)
1524{
1525	struct ath5k_rx_status rs = {};
1526	struct sk_buff *skb, *next_skb;
1527	dma_addr_t next_skb_addr;
1528	struct ath5k_hw *ah = (void *)data;
1529	struct ath_common *common = ath5k_hw_common(ah);
1530	struct ath5k_buf *bf;
1531	struct ath5k_desc *ds;
1532	int ret;
1533
1534	spin_lock(&ah->rxbuflock);
1535	if (list_empty(&ah->rxbuf)) {
1536		ATH5K_WARN(ah, "empty rx buf pool\n");
1537		goto unlock;
1538	}
1539	do {
1540		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1541		BUG_ON(bf->skb == NULL);
1542		skb = bf->skb;
1543		ds = bf->desc;
1544
1545		/* bail if HW is still using self-linked descriptor */
1546		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1547			break;
1548
1549		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1550		if (unlikely(ret == -EINPROGRESS))
1551			break;
1552		else if (unlikely(ret)) {
1553			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1554			ah->stats.rxerr_proc++;
1555			break;
1556		}
1557
1558		if (ath5k_receive_frame_ok(ah, &rs)) {
1559			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1560
1561			/*
1562			 * If we can't replace bf->skb with a new skb under
1563			 * memory pressure, just skip this packet
1564			 */
1565			if (!next_skb)
1566				goto next;
1567
1568			dma_unmap_single(ah->dev, bf->skbaddr,
1569					 common->rx_bufsize,
1570					 DMA_FROM_DEVICE);
1571
1572			skb_put(skb, rs.rs_datalen);
1573
1574			ath5k_receive_frame(ah, skb, &rs);
1575
1576			bf->skb = next_skb;
1577			bf->skbaddr = next_skb_addr;
1578		}
1579next:
1580		list_move_tail(&bf->list, &ah->rxbuf);
1581	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1582unlock:
1583	spin_unlock(&ah->rxbuflock);
1584	ah->rx_pending = false;
1585	ath5k_set_current_imask(ah);
1586}
1587
1588
1589/*************\
1590* TX Handling *
1591\*************/
1592
1593void
1594ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1595	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1596{
1597	struct ath5k_hw *ah = hw->priv;
1598	struct ath5k_buf *bf;
1599	unsigned long flags;
1600	int padsize;
1601
1602	trace_ath5k_tx(ah, skb, txq);
1603
1604	/*
1605	 * The hardware expects the header padded to 4 byte boundaries.
1606	 * If this is not the case, we add the padding after the header.
1607	 */
1608	padsize = ath5k_add_padding(skb);
1609	if (padsize < 0) {
1610		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1611			  " headroom to pad");
1612		goto drop_packet;
1613	}
1614
1615	if (txq->txq_len >= txq->txq_max &&
1616	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1617		ieee80211_stop_queue(hw, txq->qnum);
1618
1619	spin_lock_irqsave(&ah->txbuflock, flags);
1620	if (list_empty(&ah->txbuf)) {
1621		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1622		spin_unlock_irqrestore(&ah->txbuflock, flags);
1623		ieee80211_stop_queues(hw);
1624		goto drop_packet;
1625	}
1626	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1627	list_del(&bf->list);
1628	ah->txbuf_len--;
1629	if (list_empty(&ah->txbuf))
1630		ieee80211_stop_queues(hw);
1631	spin_unlock_irqrestore(&ah->txbuflock, flags);
1632
1633	bf->skb = skb;
1634
1635	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1636		bf->skb = NULL;
1637		spin_lock_irqsave(&ah->txbuflock, flags);
1638		list_add_tail(&bf->list, &ah->txbuf);
1639		ah->txbuf_len++;
1640		spin_unlock_irqrestore(&ah->txbuflock, flags);
1641		goto drop_packet;
1642	}
1643	return;
1644
1645drop_packet:
1646	ieee80211_free_txskb(hw, skb);
1647}
1648
1649static void
1650ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1651			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1652			 struct ath5k_buf *bf)
1653{
1654	struct ieee80211_tx_info *info;
1655	u8 tries[3];
1656	int i;
1657	int size = 0;
1658
1659	ah->stats.tx_all_count++;
1660	ah->stats.tx_bytes_count += skb->len;
1661	info = IEEE80211_SKB_CB(skb);
1662
1663	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1664	memcpy(info->status.rates, bf->rates, size);
1665
1666	tries[0] = info->status.rates[0].count;
1667	tries[1] = info->status.rates[1].count;
1668	tries[2] = info->status.rates[2].count;
1669
1670	ieee80211_tx_info_clear_status(info);
1671
1672	for (i = 0; i < ts->ts_final_idx; i++) {
1673		struct ieee80211_tx_rate *r =
1674			&info->status.rates[i];
1675
1676		r->count = tries[i];
1677	}
1678
1679	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1680	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1681
1682	if (unlikely(ts->ts_status)) {
1683		ah->stats.ack_fail++;
1684		if (ts->ts_status & AR5K_TXERR_FILT) {
1685			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1686			ah->stats.txerr_filt++;
1687		}
1688		if (ts->ts_status & AR5K_TXERR_XRETRY)
1689			ah->stats.txerr_retry++;
1690		if (ts->ts_status & AR5K_TXERR_FIFO)
1691			ah->stats.txerr_fifo++;
1692	} else {
1693		info->flags |= IEEE80211_TX_STAT_ACK;
1694		info->status.ack_signal = ts->ts_rssi;
1695
1696		/* count the successful attempt as well */
1697		info->status.rates[ts->ts_final_idx].count++;
1698	}
1699
1700	/*
1701	* Remove MAC header padding before giving the frame
1702	* back to mac80211.
1703	*/
1704	ath5k_remove_padding(skb);
1705
1706	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1707		ah->stats.antenna_tx[ts->ts_antenna]++;
1708	else
1709		ah->stats.antenna_tx[0]++; /* invalid */
1710
1711	trace_ath5k_tx_complete(ah, skb, txq, ts);
1712	ieee80211_tx_status(ah->hw, skb);
1713}
1714
1715static void
1716ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1717{
1718	struct ath5k_tx_status ts = {};
1719	struct ath5k_buf *bf, *bf0;
1720	struct ath5k_desc *ds;
1721	struct sk_buff *skb;
1722	int ret;
1723
1724	spin_lock(&txq->lock);
1725	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1726
1727		txq->txq_poll_mark = false;
1728
1729		/* skb might already have been processed last time. */
1730		if (bf->skb != NULL) {
1731			ds = bf->desc;
1732
1733			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1734			if (unlikely(ret == -EINPROGRESS))
1735				break;
1736			else if (unlikely(ret)) {
1737				ATH5K_ERR(ah,
1738					"error %d while processing "
1739					"queue %u\n", ret, txq->qnum);
1740				break;
1741			}
1742
1743			skb = bf->skb;
1744			bf->skb = NULL;
1745
1746			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1747					DMA_TO_DEVICE);
1748			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1749		}
1750
1751		/*
1752		 * It's possible that the hardware can say the buffer is
1753		 * completed when it hasn't yet loaded the ds_link from
1754		 * host memory and moved on.
1755		 * Always keep the last descriptor to avoid HW races...
1756		 */
1757		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1758			spin_lock(&ah->txbuflock);
1759			list_move_tail(&bf->list, &ah->txbuf);
1760			ah->txbuf_len++;
1761			txq->txq_len--;
1762			spin_unlock(&ah->txbuflock);
1763		}
1764	}
1765	spin_unlock(&txq->lock);
1766	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1767		ieee80211_wake_queue(ah->hw, txq->qnum);
1768}
1769
1770static void
1771ath5k_tasklet_tx(unsigned long data)
1772{
1773	int i;
1774	struct ath5k_hw *ah = (void *)data;
1775
1776	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1777		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1778			ath5k_tx_processq(ah, &ah->txqs[i]);
1779
1780	ah->tx_pending = false;
1781	ath5k_set_current_imask(ah);
1782}
1783
1784
1785/*****************\
1786* Beacon handling *
1787\*****************/
1788
1789/*
1790 * Setup the beacon frame for transmit.
1791 */
1792static int
1793ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1794{
1795	struct sk_buff *skb = bf->skb;
1796	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1797	struct ath5k_desc *ds;
1798	int ret = 0;
1799	u8 antenna;
1800	u32 flags;
1801	const int padsize = 0;
1802
1803	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1804			DMA_TO_DEVICE);
1805	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1806			"skbaddr %llx\n", skb, skb->data, skb->len,
1807			(unsigned long long)bf->skbaddr);
1808
1809	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1810		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1811		dev_kfree_skb_any(skb);
1812		bf->skb = NULL;
1813		return -EIO;
1814	}
1815
1816	ds = bf->desc;
1817	antenna = ah->ah_tx_ant;
1818
1819	flags = AR5K_TXDESC_NOACK;
1820	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1821		ds->ds_link = bf->daddr;	/* self-linked */
1822		flags |= AR5K_TXDESC_VEOL;
1823	} else
1824		ds->ds_link = 0;
1825
1826	/*
1827	 * If we use multiple antennas on AP and use
1828	 * the Sectored AP scenario, switch antenna every
1829	 * 4 beacons to make sure everybody hears our AP.
1830	 * When a client tries to associate, hw will keep
1831	 * track of the tx antenna to be used for this client
1832	 * automatically, based on ACKed packets.
1833	 *
1834	 * Note: AP still listens and transmits RTS on the
1835	 * default antenna which is supposed to be an omni.
1836	 *
1837	 * Note2: On sectored scenarios it's possible to have
1838	 * multiple antennas (1 omni -- the default -- and 14
1839	 * sectors), so if we choose to actually support this
1840	 * mode, we need to allow the user to set how many antennas
1841	 * we have and tweak the code below to send beacons
1842	 * on all of them.
1843	 */
1844	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1845		antenna = ah->bsent & 4 ? 2 : 1;
1846
1847
1848	/* FIXME: If we are in g mode and rate is a CCK rate
1849	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1850	 * from tx power (value is in dB units already) */
1851	ds->ds_data = bf->skbaddr;
1852	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1853			ieee80211_get_hdrlen_from_skb(skb), padsize,
1854			AR5K_PKT_TYPE_BEACON,
1855			(ah->ah_txpower.txp_requested * 2),
1856			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1857			1, AR5K_TXKEYIX_INVALID,
1858			antenna, flags, 0, 0);
1859	if (ret)
1860		goto err_unmap;
1861
1862	return 0;
1863err_unmap:
1864	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1865	return ret;
1866}
1867
1868/*
1869 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1870 * this is called only once at config_bss time, for AP we do it every
1871 * SWBA interrupt so that the TIM will reflect buffered frames.
1872 *
1873 * Called with the beacon lock.
1874 */
1875int
1876ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1877{
1878	int ret;
1879	struct ath5k_hw *ah = hw->priv;
1880	struct ath5k_vif *avf;
1881	struct sk_buff *skb;
1882
1883	if (WARN_ON(!vif)) {
1884		ret = -EINVAL;
1885		goto out;
1886	}
1887
1888	skb = ieee80211_beacon_get(hw, vif);
1889
1890	if (!skb) {
1891		ret = -ENOMEM;
1892		goto out;
1893	}
1894
1895	avf = (void *)vif->drv_priv;
1896	ath5k_txbuf_free_skb(ah, avf->bbuf);
1897	avf->bbuf->skb = skb;
1898	ret = ath5k_beacon_setup(ah, avf->bbuf);
1899out:
1900	return ret;
1901}
1902
1903/*
1904 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1905 * frame contents are done as needed and the slot time is
1906 * also adjusted based on current state.
1907 *
1908 * This is called from software irq context (beacontq tasklets)
1909 * or user context from ath5k_beacon_config.
1910 */
1911static void
1912ath5k_beacon_send(struct ath5k_hw *ah)
1913{
1914	struct ieee80211_vif *vif;
1915	struct ath5k_vif *avf;
1916	struct ath5k_buf *bf;
1917	struct sk_buff *skb;
1918	int err;
1919
1920	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1921
1922	/*
1923	 * Check if the previous beacon has gone out.  If
1924	 * not, don't don't try to post another: skip this
1925	 * period and wait for the next.  Missed beacons
1926	 * indicate a problem and should not occur.  If we
1927	 * miss too many consecutive beacons reset the device.
1928	 */
1929	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1930		ah->bmisscount++;
1931		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1932			"missed %u consecutive beacons\n", ah->bmisscount);
1933		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1934			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1935				"stuck beacon time (%u missed)\n",
1936				ah->bmisscount);
1937			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1938				  "stuck beacon, resetting\n");
1939			ieee80211_queue_work(ah->hw, &ah->reset_work);
1940		}
1941		return;
1942	}
1943	if (unlikely(ah->bmisscount != 0)) {
1944		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1945			"resume beacon xmit after %u misses\n",
1946			ah->bmisscount);
1947		ah->bmisscount = 0;
1948	}
1949
1950	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1951			ah->num_mesh_vifs > 1) ||
1952			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1953		u64 tsf = ath5k_hw_get_tsf64(ah);
1954		u32 tsftu = TSF_TO_TU(tsf);
1955		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1956		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1957		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1958			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1959			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1960	} else /* only one interface */
1961		vif = ah->bslot[0];
1962
1963	if (!vif)
1964		return;
1965
1966	avf = (void *)vif->drv_priv;
1967	bf = avf->bbuf;
1968
1969	/*
1970	 * Stop any current dma and put the new frame on the queue.
1971	 * This should never fail since we check above that no frames
1972	 * are still pending on the queue.
1973	 */
1974	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1975		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1976		/* NB: hw still stops DMA, so proceed */
1977	}
1978
1979	/* refresh the beacon for AP or MESH mode */
1980	if (ah->opmode == NL80211_IFTYPE_AP ||
1981	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1982		err = ath5k_beacon_update(ah->hw, vif);
1983		if (err)
1984			return;
1985	}
1986
1987	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1988		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1989		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1990		return;
1991	}
1992
1993	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1994
1995	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1996	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1997	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1998		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1999
2000	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2001	while (skb) {
2002		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2003
2004		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2005			break;
2006
2007		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2008	}
2009
2010	ah->bsent++;
2011}
2012
2013/**
2014 * ath5k_beacon_update_timers - update beacon timers
2015 *
2016 * @ah: struct ath5k_hw pointer we are operating on
2017 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2018 *          beacon timer update based on the current HW TSF.
2019 *
2020 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2021 * of a received beacon or the current local hardware TSF and write it to the
2022 * beacon timer registers.
2023 *
2024 * This is called in a variety of situations, e.g. when a beacon is received,
2025 * when a TSF update has been detected, but also when an new IBSS is created or
2026 * when we otherwise know we have to update the timers, but we keep it in this
2027 * function to have it all together in one place.
2028 */
2029void
2030ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2031{
2032	u32 nexttbtt, intval, hw_tu, bc_tu;
2033	u64 hw_tsf;
2034
2035	intval = ah->bintval & AR5K_BEACON_PERIOD;
2036	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2037		+ ah->num_mesh_vifs > 1) {
2038		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2039		if (intval < 15)
2040			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2041				   intval);
2042	}
2043	if (WARN_ON(!intval))
2044		return;
2045
2046	/* beacon TSF converted to TU */
2047	bc_tu = TSF_TO_TU(bc_tsf);
2048
2049	/* current TSF converted to TU */
2050	hw_tsf = ath5k_hw_get_tsf64(ah);
2051	hw_tu = TSF_TO_TU(hw_tsf);
2052
2053#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2054	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2055	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2056	 * configuration we need to make sure it is bigger than that. */
2057
2058	if (bc_tsf == -1) {
2059		/*
2060		 * no beacons received, called internally.
2061		 * just need to refresh timers based on HW TSF.
2062		 */
2063		nexttbtt = roundup(hw_tu + FUDGE, intval);
2064	} else if (bc_tsf == 0) {
2065		/*
2066		 * no beacon received, probably called by ath5k_reset_tsf().
2067		 * reset TSF to start with 0.
2068		 */
2069		nexttbtt = intval;
2070		intval |= AR5K_BEACON_RESET_TSF;
2071	} else if (bc_tsf > hw_tsf) {
2072		/*
2073		 * beacon received, SW merge happened but HW TSF not yet updated.
2074		 * not possible to reconfigure timers yet, but next time we
2075		 * receive a beacon with the same BSSID, the hardware will
2076		 * automatically update the TSF and then we need to reconfigure
2077		 * the timers.
2078		 */
2079		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2080			"need to wait for HW TSF sync\n");
2081		return;
2082	} else {
2083		/*
2084		 * most important case for beacon synchronization between STA.
2085		 *
2086		 * beacon received and HW TSF has been already updated by HW.
2087		 * update next TBTT based on the TSF of the beacon, but make
2088		 * sure it is ahead of our local TSF timer.
2089		 */
2090		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2091	}
2092#undef FUDGE
2093
2094	ah->nexttbtt = nexttbtt;
2095
2096	intval |= AR5K_BEACON_ENA;
2097	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2098
2099	/*
2100	 * debugging output last in order to preserve the time critical aspect
2101	 * of this function
2102	 */
2103	if (bc_tsf == -1)
2104		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2105			"reconfigured timers based on HW TSF\n");
2106	else if (bc_tsf == 0)
2107		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2108			"reset HW TSF and timers\n");
2109	else
2110		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2111			"updated timers based on beacon TSF\n");
2112
2113	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2114			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2115			  (unsigned long long) bc_tsf,
2116			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2117	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2118		intval & AR5K_BEACON_PERIOD,
2119		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2120		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2121}
2122
2123/**
2124 * ath5k_beacon_config - Configure the beacon queues and interrupts
2125 *
2126 * @ah: struct ath5k_hw pointer we are operating on
2127 *
2128 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2129 * interrupts to detect TSF updates only.
2130 */
2131void
2132ath5k_beacon_config(struct ath5k_hw *ah)
2133{
2134	spin_lock_bh(&ah->block);
2135	ah->bmisscount = 0;
2136	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2137
2138	if (ah->enable_beacon) {
2139		/*
2140		 * In IBSS mode we use a self-linked tx descriptor and let the
2141		 * hardware send the beacons automatically. We have to load it
2142		 * only once here.
2143		 * We use the SWBA interrupt only to keep track of the beacon
2144		 * timers in order to detect automatic TSF updates.
2145		 */
2146		ath5k_beaconq_config(ah);
2147
2148		ah->imask |= AR5K_INT_SWBA;
2149
2150		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2151			if (ath5k_hw_hasveol(ah))
2152				ath5k_beacon_send(ah);
2153		} else
2154			ath5k_beacon_update_timers(ah, -1);
2155	} else {
2156		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2157	}
2158
2159	ath5k_hw_set_imr(ah, ah->imask);
2160	mmiowb();
2161	spin_unlock_bh(&ah->block);
2162}
2163
2164static void ath5k_tasklet_beacon(unsigned long data)
2165{
2166	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2167
2168	/*
2169	 * Software beacon alert--time to send a beacon.
2170	 *
2171	 * In IBSS mode we use this interrupt just to
2172	 * keep track of the next TBTT (target beacon
2173	 * transmission time) in order to detect whether
2174	 * automatic TSF updates happened.
2175	 */
2176	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2177		/* XXX: only if VEOL supported */
2178		u64 tsf = ath5k_hw_get_tsf64(ah);
2179		ah->nexttbtt += ah->bintval;
2180		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2181				"SWBA nexttbtt: %x hw_tu: %x "
2182				"TSF: %llx\n",
2183				ah->nexttbtt,
2184				TSF_TO_TU(tsf),
2185				(unsigned long long) tsf);
2186	} else {
2187		spin_lock(&ah->block);
2188		ath5k_beacon_send(ah);
2189		spin_unlock(&ah->block);
2190	}
2191}
2192
2193
2194/********************\
2195* Interrupt handling *
2196\********************/
2197
2198static void
2199ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2200{
2201	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2202	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2203	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2204
2205		/* Run ANI only when calibration is not active */
2206
2207		ah->ah_cal_next_ani = jiffies +
2208			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2209		tasklet_schedule(&ah->ani_tasklet);
2210
2211	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2212		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2213		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2214
2215		/* Run calibration only when another calibration
2216		 * is not running.
2217		 *
2218		 * Note: This is for both full/short calibration,
2219		 * if it's time for a full one, ath5k_calibrate_work will deal
2220		 * with it. */
2221
2222		ah->ah_cal_next_short = jiffies +
2223			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2224		ieee80211_queue_work(ah->hw, &ah->calib_work);
2225	}
2226	/* we could use SWI to generate enough interrupts to meet our
2227	 * calibration interval requirements, if necessary:
2228	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2229}
2230
2231static void
2232ath5k_schedule_rx(struct ath5k_hw *ah)
2233{
2234	ah->rx_pending = true;
2235	tasklet_schedule(&ah->rxtq);
2236}
2237
2238static void
2239ath5k_schedule_tx(struct ath5k_hw *ah)
2240{
2241	ah->tx_pending = true;
2242	tasklet_schedule(&ah->txtq);
2243}
2244
2245static irqreturn_t
2246ath5k_intr(int irq, void *dev_id)
2247{
2248	struct ath5k_hw *ah = dev_id;
2249	enum ath5k_int status;
2250	unsigned int counter = 1000;
2251
2252
2253	/*
2254	 * If hw is not ready (or detached) and we get an
2255	 * interrupt, or if we have no interrupts pending
2256	 * (that means it's not for us) skip it.
2257	 *
2258	 * NOTE: Group 0/1 PCI interface registers are not
2259	 * supported on WiSOCs, so we can't check for pending
2260	 * interrupts (ISR belongs to another register group
2261	 * so we are ok).
2262	 */
2263	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2264			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2265			!ath5k_hw_is_intr_pending(ah))))
2266		return IRQ_NONE;
2267
2268	/** Main loop **/
2269	do {
2270		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2271
2272		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2273				status, ah->imask);
2274
2275		/*
2276		 * Fatal hw error -> Log and reset
2277		 *
2278		 * Fatal errors are unrecoverable so we have to
2279		 * reset the card. These errors include bus and
2280		 * dma errors.
2281		 */
2282		if (unlikely(status & AR5K_INT_FATAL)) {
2283
2284			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2285				  "fatal int, resetting\n");
2286			ieee80211_queue_work(ah->hw, &ah->reset_work);
2287
2288		/*
2289		 * RX Overrun -> Count and reset if needed
2290		 *
2291		 * Receive buffers are full. Either the bus is busy or
2292		 * the CPU is not fast enough to process all received
2293		 * frames.
2294		 */
2295		} else if (unlikely(status & AR5K_INT_RXORN)) {
2296
2297			/*
2298			 * Older chipsets need a reset to come out of this
2299			 * condition, but we treat it as RX for newer chips.
2300			 * We don't know exactly which versions need a reset
2301			 * this guess is copied from the HAL.
2302			 */
2303			ah->stats.rxorn_intr++;
2304
2305			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2306				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2307					  "rx overrun, resetting\n");
2308				ieee80211_queue_work(ah->hw, &ah->reset_work);
2309			} else
2310				ath5k_schedule_rx(ah);
2311
2312		} else {
2313
2314			/* Software Beacon Alert -> Schedule beacon tasklet */
2315			if (status & AR5K_INT_SWBA)
2316				tasklet_hi_schedule(&ah->beacontq);
2317
2318			/*
2319			 * No more RX descriptors -> Just count
2320			 *
2321			 * NB: the hardware should re-read the link when
2322			 *     RXE bit is written, but it doesn't work at
2323			 *     least on older hardware revs.
2324			 */
2325			if (status & AR5K_INT_RXEOL)
2326				ah->stats.rxeol_intr++;
2327
2328
2329			/* TX Underrun -> Bump tx trigger level */
2330			if (status & AR5K_INT_TXURN)
2331				ath5k_hw_update_tx_triglevel(ah, true);
2332
2333			/* RX -> Schedule rx tasklet */
2334			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2335				ath5k_schedule_rx(ah);
2336
2337			/* TX -> Schedule tx tasklet */
2338			if (status & (AR5K_INT_TXOK
2339					| AR5K_INT_TXDESC
2340					| AR5K_INT_TXERR
2341					| AR5K_INT_TXEOL))
2342				ath5k_schedule_tx(ah);
2343
2344			/* Missed beacon -> TODO
2345			if (status & AR5K_INT_BMISS)
2346			*/
2347
2348			/* MIB event -> Update counters and notify ANI */
2349			if (status & AR5K_INT_MIB) {
2350				ah->stats.mib_intr++;
2351				ath5k_hw_update_mib_counters(ah);
2352				ath5k_ani_mib_intr(ah);
2353			}
2354
2355			/* GPIO -> Notify RFKill layer */
2356			if (status & AR5K_INT_GPIO)
2357				tasklet_schedule(&ah->rf_kill.toggleq);
2358
2359		}
2360
2361		if (ath5k_get_bus_type(ah) == ATH_AHB)
2362			break;
2363
2364	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2365
2366	/*
2367	 * Until we handle rx/tx interrupts mask them on IMR
2368	 *
2369	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2370	 * and unset after we 've handled the interrupts.
2371	 */
2372	if (ah->rx_pending || ah->tx_pending)
2373		ath5k_set_current_imask(ah);
2374
2375	if (unlikely(!counter))
2376		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2377
2378	/* Fire up calibration poll */
2379	ath5k_intr_calibration_poll(ah);
2380
2381	return IRQ_HANDLED;
2382}
2383
2384/*
2385 * Periodically recalibrate the PHY to account
2386 * for temperature/environment changes.
2387 */
2388static void
2389ath5k_calibrate_work(struct work_struct *work)
2390{
2391	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2392		calib_work);
2393
2394	/* Should we run a full calibration ? */
2395	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2396
2397		ah->ah_cal_next_full = jiffies +
2398			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2399		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2400
2401		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2402				"running full calibration\n");
2403
2404		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2405			/*
2406			 * Rfgain is out of bounds, reset the chip
2407			 * to load new gain values.
2408			 */
2409			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2410					"got new rfgain, resetting\n");
2411			ieee80211_queue_work(ah->hw, &ah->reset_work);
2412		}
2413	} else
2414		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2415
2416
2417	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2418		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2419		ah->curchan->hw_value);
2420
2421	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2422		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2423			ieee80211_frequency_to_channel(
2424				ah->curchan->center_freq));
2425
2426	/* Clear calibration flags */
2427	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2428		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2429	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2430		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2431}
2432
2433
2434static void
2435ath5k_tasklet_ani(unsigned long data)
2436{
2437	struct ath5k_hw *ah = (void *)data;
2438
2439	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2440	ath5k_ani_calibration(ah);
2441	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2442}
2443
2444
2445static void
2446ath5k_tx_complete_poll_work(struct work_struct *work)
2447{
2448	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2449			tx_complete_work.work);
2450	struct ath5k_txq *txq;
2451	int i;
2452	bool needreset = false;
2453
2454	if (!test_bit(ATH_STAT_STARTED, ah->status))
2455		return;
2456
2457	mutex_lock(&ah->lock);
2458
2459	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2460		if (ah->txqs[i].setup) {
2461			txq = &ah->txqs[i];
2462			spin_lock_bh(&txq->lock);
2463			if (txq->txq_len > 1) {
2464				if (txq->txq_poll_mark) {
2465					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2466						  "TX queue stuck %d\n",
2467						  txq->qnum);
2468					needreset = true;
2469					txq->txq_stuck++;
2470					spin_unlock_bh(&txq->lock);
2471					break;
2472				} else {
2473					txq->txq_poll_mark = true;
2474				}
2475			}
2476			spin_unlock_bh(&txq->lock);
2477		}
2478	}
2479
2480	if (needreset) {
2481		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2482			  "TX queues stuck, resetting\n");
2483		ath5k_reset(ah, NULL, true);
2484	}
2485
2486	mutex_unlock(&ah->lock);
2487
2488	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2489		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2490}
2491
2492
2493/*************************\
2494* Initialization routines *
2495\*************************/
2496
2497static const struct ieee80211_iface_limit if_limits[] = {
2498	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2499	{ .max = 4,	.types =
2500#ifdef CONFIG_MAC80211_MESH
2501				 BIT(NL80211_IFTYPE_MESH_POINT) |
2502#endif
2503				 BIT(NL80211_IFTYPE_AP) },
2504};
2505
2506static const struct ieee80211_iface_combination if_comb = {
2507	.limits = if_limits,
2508	.n_limits = ARRAY_SIZE(if_limits),
2509	.max_interfaces = 2048,
2510	.num_different_channels = 1,
2511};
2512
2513int
2514ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2515{
2516	struct ieee80211_hw *hw = ah->hw;
2517	struct ath_common *common;
2518	int ret;
2519	int csz;
2520
2521	/* Initialize driver private data */
2522	SET_IEEE80211_DEV(hw, ah->dev);
2523	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2524			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2525			IEEE80211_HW_SIGNAL_DBM |
2526			IEEE80211_HW_MFP_CAPABLE |
2527			IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2528			IEEE80211_HW_SUPPORTS_RC_TABLE;
2529
2530	hw->wiphy->interface_modes =
2531		BIT(NL80211_IFTYPE_AP) |
2532		BIT(NL80211_IFTYPE_STATION) |
2533		BIT(NL80211_IFTYPE_ADHOC) |
2534		BIT(NL80211_IFTYPE_MESH_POINT);
2535
2536	hw->wiphy->iface_combinations = &if_comb;
2537	hw->wiphy->n_iface_combinations = 1;
2538
2539	/* SW support for IBSS_RSN is provided by mac80211 */
2540	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2541
2542	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2543
2544	/* both antennas can be configured as RX or TX */
2545	hw->wiphy->available_antennas_tx = 0x3;
2546	hw->wiphy->available_antennas_rx = 0x3;
2547
2548	hw->extra_tx_headroom = 2;
2549
2550	/*
2551	 * Mark the device as detached to avoid processing
2552	 * interrupts until setup is complete.
2553	 */
2554	__set_bit(ATH_STAT_INVALID, ah->status);
2555
2556	ah->opmode = NL80211_IFTYPE_STATION;
2557	ah->bintval = 1000;
2558	mutex_init(&ah->lock);
2559	spin_lock_init(&ah->rxbuflock);
2560	spin_lock_init(&ah->txbuflock);
2561	spin_lock_init(&ah->block);
2562	spin_lock_init(&ah->irqlock);
2563
2564	/* Setup interrupt handler */
2565	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2566	if (ret) {
2567		ATH5K_ERR(ah, "request_irq failed\n");
2568		goto err;
2569	}
2570
2571	common = ath5k_hw_common(ah);
2572	common->ops = &ath5k_common_ops;
2573	common->bus_ops = bus_ops;
2574	common->ah = ah;
2575	common->hw = hw;
2576	common->priv = ah;
2577	common->clockrate = 40;
2578
2579	/*
2580	 * Cache line size is used to size and align various
2581	 * structures used to communicate with the hardware.
2582	 */
2583	ath5k_read_cachesize(common, &csz);
2584	common->cachelsz = csz << 2; /* convert to bytes */
2585
2586	spin_lock_init(&common->cc_lock);
2587
2588	/* Initialize device */
2589	ret = ath5k_hw_init(ah);
2590	if (ret)
2591		goto err_irq;
2592
2593	/* Set up multi-rate retry capabilities */
2594	if (ah->ah_capabilities.cap_has_mrr_support) {
2595		hw->max_rates = 4;
2596		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2597					 AR5K_INIT_RETRY_LONG);
2598	}
2599
2600	hw->vif_data_size = sizeof(struct ath5k_vif);
2601
2602	/* Finish private driver data initialization */
2603	ret = ath5k_init(hw);
2604	if (ret)
2605		goto err_ah;
2606
2607	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2608			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2609					ah->ah_mac_srev,
2610					ah->ah_phy_revision);
2611
2612	if (!ah->ah_single_chip) {
2613		/* Single chip radio (!RF5111) */
2614		if (ah->ah_radio_5ghz_revision &&
2615			!ah->ah_radio_2ghz_revision) {
2616			/* No 5GHz support -> report 2GHz radio */
2617			if (!test_bit(AR5K_MODE_11A,
2618				ah->ah_capabilities.cap_mode)) {
2619				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2620					ath5k_chip_name(AR5K_VERSION_RAD,
2621						ah->ah_radio_5ghz_revision),
2622						ah->ah_radio_5ghz_revision);
2623			/* No 2GHz support (5110 and some
2624			 * 5GHz only cards) -> report 5GHz radio */
2625			} else if (!test_bit(AR5K_MODE_11B,
2626				ah->ah_capabilities.cap_mode)) {
2627				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2628					ath5k_chip_name(AR5K_VERSION_RAD,
2629						ah->ah_radio_5ghz_revision),
2630						ah->ah_radio_5ghz_revision);
2631			/* Multiband radio */
2632			} else {
2633				ATH5K_INFO(ah, "RF%s multiband radio found"
2634					" (0x%x)\n",
2635					ath5k_chip_name(AR5K_VERSION_RAD,
2636						ah->ah_radio_5ghz_revision),
2637						ah->ah_radio_5ghz_revision);
2638			}
2639		}
2640		/* Multi chip radio (RF5111 - RF2111) ->
2641		 * report both 2GHz/5GHz radios */
2642		else if (ah->ah_radio_5ghz_revision &&
2643				ah->ah_radio_2ghz_revision) {
2644			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2645				ath5k_chip_name(AR5K_VERSION_RAD,
2646					ah->ah_radio_5ghz_revision),
2647					ah->ah_radio_5ghz_revision);
2648			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2649				ath5k_chip_name(AR5K_VERSION_RAD,
2650					ah->ah_radio_2ghz_revision),
2651					ah->ah_radio_2ghz_revision);
2652		}
2653	}
2654
2655	ath5k_debug_init_device(ah);
2656
2657	/* ready to process interrupts */
2658	__clear_bit(ATH_STAT_INVALID, ah->status);
2659
2660	return 0;
2661err_ah:
2662	ath5k_hw_deinit(ah);
2663err_irq:
2664	free_irq(ah->irq, ah);
2665err:
2666	return ret;
2667}
2668
2669static int
2670ath5k_stop_locked(struct ath5k_hw *ah)
2671{
2672
2673	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2674			test_bit(ATH_STAT_INVALID, ah->status));
2675
2676	/*
2677	 * Shutdown the hardware and driver:
2678	 *    stop output from above
2679	 *    disable interrupts
2680	 *    turn off timers
2681	 *    turn off the radio
2682	 *    clear transmit machinery
2683	 *    clear receive machinery
2684	 *    drain and release tx queues
2685	 *    reclaim beacon resources
2686	 *    power down hardware
2687	 *
2688	 * Note that some of this work is not possible if the
2689	 * hardware is gone (invalid).
2690	 */
2691	ieee80211_stop_queues(ah->hw);
2692
2693	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2694		ath5k_led_off(ah);
2695		ath5k_hw_set_imr(ah, 0);
2696		synchronize_irq(ah->irq);
2697		ath5k_rx_stop(ah);
2698		ath5k_hw_dma_stop(ah);
2699		ath5k_drain_tx_buffs(ah);
2700		ath5k_hw_phy_disable(ah);
2701	}
2702
2703	return 0;
2704}
2705
2706int ath5k_start(struct ieee80211_hw *hw)
2707{
2708	struct ath5k_hw *ah = hw->priv;
2709	struct ath_common *common = ath5k_hw_common(ah);
2710	int ret, i;
2711
2712	mutex_lock(&ah->lock);
2713
2714	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2715
2716	/*
2717	 * Stop anything previously setup.  This is safe
2718	 * no matter this is the first time through or not.
2719	 */
2720	ath5k_stop_locked(ah);
2721
2722	/*
2723	 * The basic interface to setting the hardware in a good
2724	 * state is ``reset''.  On return the hardware is known to
2725	 * be powered up and with interrupts disabled.  This must
2726	 * be followed by initialization of the appropriate bits
2727	 * and then setup of the interrupt mask.
2728	 */
2729	ah->curchan = ah->hw->conf.chandef.chan;
2730	ah->imask = AR5K_INT_RXOK
2731		| AR5K_INT_RXERR
2732		| AR5K_INT_RXEOL
2733		| AR5K_INT_RXORN
2734		| AR5K_INT_TXDESC
2735		| AR5K_INT_TXEOL
2736		| AR5K_INT_FATAL
2737		| AR5K_INT_GLOBAL
2738		| AR5K_INT_MIB;
2739
2740	ret = ath5k_reset(ah, NULL, false);
2741	if (ret)
2742		goto done;
2743
2744	if (!ath5k_modparam_no_hw_rfkill_switch)
2745		ath5k_rfkill_hw_start(ah);
2746
2747	/*
2748	 * Reset the key cache since some parts do not reset the
2749	 * contents on initial power up or resume from suspend.
2750	 */
2751	for (i = 0; i < common->keymax; i++)
2752		ath_hw_keyreset(common, (u16) i);
2753
2754	/* Use higher rates for acks instead of base
2755	 * rate */
2756	ah->ah_ack_bitrate_high = true;
2757
2758	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2759		ah->bslot[i] = NULL;
2760
2761	ret = 0;
2762done:
2763	mmiowb();
2764	mutex_unlock(&ah->lock);
2765
2766	set_bit(ATH_STAT_STARTED, ah->status);
2767	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2768			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2769
2770	return ret;
2771}
2772
2773static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2774{
2775	ah->rx_pending = false;
2776	ah->tx_pending = false;
2777	tasklet_kill(&ah->rxtq);
2778	tasklet_kill(&ah->txtq);
2779	tasklet_kill(&ah->beacontq);
2780	tasklet_kill(&ah->ani_tasklet);
2781}
2782
2783/*
2784 * Stop the device, grabbing the top-level lock to protect
2785 * against concurrent entry through ath5k_init (which can happen
2786 * if another thread does a system call and the thread doing the
2787 * stop is preempted).
2788 */
2789void ath5k_stop(struct ieee80211_hw *hw)
2790{
2791	struct ath5k_hw *ah = hw->priv;
2792	int ret;
2793
2794	mutex_lock(&ah->lock);
2795	ret = ath5k_stop_locked(ah);
2796	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2797		/*
2798		 * Don't set the card in full sleep mode!
2799		 *
2800		 * a) When the device is in this state it must be carefully
2801		 * woken up or references to registers in the PCI clock
2802		 * domain may freeze the bus (and system).  This varies
2803		 * by chip and is mostly an issue with newer parts
2804		 * (madwifi sources mentioned srev >= 0x78) that go to
2805		 * sleep more quickly.
2806		 *
2807		 * b) On older chips full sleep results a weird behaviour
2808		 * during wakeup. I tested various cards with srev < 0x78
2809		 * and they don't wake up after module reload, a second
2810		 * module reload is needed to bring the card up again.
2811		 *
2812		 * Until we figure out what's going on don't enable
2813		 * full chip reset on any chip (this is what Legacy HAL
2814		 * and Sam's HAL do anyway). Instead Perform a full reset
2815		 * on the device (same as initial state after attach) and
2816		 * leave it idle (keep MAC/BB on warm reset) */
2817		ret = ath5k_hw_on_hold(ah);
2818
2819		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2820				"putting device to sleep\n");
2821	}
2822
2823	mmiowb();
2824	mutex_unlock(&ah->lock);
2825
2826	ath5k_stop_tasklets(ah);
2827
2828	clear_bit(ATH_STAT_STARTED, ah->status);
2829	cancel_delayed_work_sync(&ah->tx_complete_work);
2830
2831	if (!ath5k_modparam_no_hw_rfkill_switch)
2832		ath5k_rfkill_hw_stop(ah);
2833}
2834
2835/*
2836 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2837 * and change to the given channel.
2838 *
2839 * This should be called with ah->lock.
2840 */
2841static int
2842ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2843							bool skip_pcu)
2844{
2845	struct ath_common *common = ath5k_hw_common(ah);
2846	int ret, ani_mode;
2847	bool fast;
2848
2849	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2850
2851	ath5k_hw_set_imr(ah, 0);
2852	synchronize_irq(ah->irq);
2853	ath5k_stop_tasklets(ah);
2854
2855	/* Save ani mode and disable ANI during
2856	 * reset. If we don't we might get false
2857	 * PHY error interrupts. */
2858	ani_mode = ah->ani_state.ani_mode;
2859	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2860
2861	/* We are going to empty hw queues
2862	 * so we should also free any remaining
2863	 * tx buffers */
2864	ath5k_drain_tx_buffs(ah);
2865	if (chan)
2866		ah->curchan = chan;
2867
2868	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2869
2870	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2871	if (ret) {
2872		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2873		goto err;
2874	}
2875
2876	ret = ath5k_rx_start(ah);
2877	if (ret) {
2878		ATH5K_ERR(ah, "can't start recv logic\n");
2879		goto err;
2880	}
2881
2882	ath5k_ani_init(ah, ani_mode);
2883
2884	/*
2885	 * Set calibration intervals
2886	 *
2887	 * Note: We don't need to run calibration imediately
2888	 * since some initial calibration is done on reset
2889	 * even for fast channel switching. Also on scanning
2890	 * this will get set again and again and it won't get
2891	 * executed unless we connect somewhere and spend some
2892	 * time on the channel (that's what calibration needs
2893	 * anyway to be accurate).
2894	 */
2895	ah->ah_cal_next_full = jiffies +
2896		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2897	ah->ah_cal_next_ani = jiffies +
2898		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2899	ah->ah_cal_next_short = jiffies +
2900		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2901
2902	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2903
2904	/* clear survey data and cycle counters */
2905	memset(&ah->survey, 0, sizeof(ah->survey));
2906	spin_lock_bh(&common->cc_lock);
2907	ath_hw_cycle_counters_update(common);
2908	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2909	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2910	spin_unlock_bh(&common->cc_lock);
2911
2912	/*
2913	 * Change channels and update the h/w rate map if we're switching;
2914	 * e.g. 11a to 11b/g.
2915	 *
2916	 * We may be doing a reset in response to an ioctl that changes the
2917	 * channel so update any state that might change as a result.
2918	 *
2919	 * XXX needed?
2920	 */
2921/*	ath5k_chan_change(ah, c); */
2922
2923	ath5k_beacon_config(ah);
2924	/* intrs are enabled by ath5k_beacon_config */
2925
2926	ieee80211_wake_queues(ah->hw);
2927
2928	return 0;
2929err:
2930	return ret;
2931}
2932
2933static void ath5k_reset_work(struct work_struct *work)
2934{
2935	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2936		reset_work);
2937
2938	mutex_lock(&ah->lock);
2939	ath5k_reset(ah, NULL, true);
2940	mutex_unlock(&ah->lock);
2941}
2942
2943static int
2944ath5k_init(struct ieee80211_hw *hw)
2945{
2946
2947	struct ath5k_hw *ah = hw->priv;
2948	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2949	struct ath5k_txq *txq;
2950	u8 mac[ETH_ALEN] = {};
2951	int ret;
2952
2953
2954	/*
2955	 * Collect the channel list.  The 802.11 layer
2956	 * is responsible for filtering this list based
2957	 * on settings like the phy mode and regulatory
2958	 * domain restrictions.
2959	 */
2960	ret = ath5k_setup_bands(hw);
2961	if (ret) {
2962		ATH5K_ERR(ah, "can't get channels\n");
2963		goto err;
2964	}
2965
2966	/*
2967	 * Allocate tx+rx descriptors and populate the lists.
2968	 */
2969	ret = ath5k_desc_alloc(ah);
2970	if (ret) {
2971		ATH5K_ERR(ah, "can't allocate descriptors\n");
2972		goto err;
2973	}
2974
2975	/*
2976	 * Allocate hardware transmit queues: one queue for
2977	 * beacon frames and one data queue for each QoS
2978	 * priority.  Note that hw functions handle resetting
2979	 * these queues at the needed time.
2980	 */
2981	ret = ath5k_beaconq_setup(ah);
2982	if (ret < 0) {
2983		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2984		goto err_desc;
2985	}
2986	ah->bhalq = ret;
2987	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2988	if (IS_ERR(ah->cabq)) {
2989		ATH5K_ERR(ah, "can't setup cab queue\n");
2990		ret = PTR_ERR(ah->cabq);
2991		goto err_bhal;
2992	}
2993
2994	/* 5211 and 5212 usually support 10 queues but we better rely on the
2995	 * capability information */
2996	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2997		/* This order matches mac80211's queue priority, so we can
2998		* directly use the mac80211 queue number without any mapping */
2999		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3000		if (IS_ERR(txq)) {
3001			ATH5K_ERR(ah, "can't setup xmit queue\n");
3002			ret = PTR_ERR(txq);
3003			goto err_queues;
3004		}
3005		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3006		if (IS_ERR(txq)) {
3007			ATH5K_ERR(ah, "can't setup xmit queue\n");
3008			ret = PTR_ERR(txq);
3009			goto err_queues;
3010		}
3011		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3012		if (IS_ERR(txq)) {
3013			ATH5K_ERR(ah, "can't setup xmit queue\n");
3014			ret = PTR_ERR(txq);
3015			goto err_queues;
3016		}
3017		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3018		if (IS_ERR(txq)) {
3019			ATH5K_ERR(ah, "can't setup xmit queue\n");
3020			ret = PTR_ERR(txq);
3021			goto err_queues;
3022		}
3023		hw->queues = 4;
3024	} else {
3025		/* older hardware (5210) can only support one data queue */
3026		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3027		if (IS_ERR(txq)) {
3028			ATH5K_ERR(ah, "can't setup xmit queue\n");
3029			ret = PTR_ERR(txq);
3030			goto err_queues;
3031		}
3032		hw->queues = 1;
3033	}
3034
3035	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3036	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3037	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3038	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3039
3040	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3041	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3042	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3043
3044	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3045	if (ret) {
3046		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3047		goto err_queues;
3048	}
3049
3050	SET_IEEE80211_PERM_ADDR(hw, mac);
3051	/* All MAC address bits matter for ACKs */
3052	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3053
3054	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3055	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3056	if (ret) {
3057		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3058		goto err_queues;
3059	}
3060
3061	ret = ieee80211_register_hw(hw);
3062	if (ret) {
3063		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3064		goto err_queues;
3065	}
3066
3067	if (!ath_is_world_regd(regulatory))
3068		regulatory_hint(hw->wiphy, regulatory->alpha2);
3069
3070	ath5k_init_leds(ah);
3071
3072	ath5k_sysfs_register(ah);
3073
3074	return 0;
3075err_queues:
3076	ath5k_txq_release(ah);
3077err_bhal:
3078	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3079err_desc:
3080	ath5k_desc_free(ah);
3081err:
3082	return ret;
3083}
3084
3085void
3086ath5k_deinit_ah(struct ath5k_hw *ah)
3087{
3088	struct ieee80211_hw *hw = ah->hw;
3089
3090	/*
3091	 * NB: the order of these is important:
3092	 * o call the 802.11 layer before detaching ath5k_hw to
3093	 *   ensure callbacks into the driver to delete global
3094	 *   key cache entries can be handled
3095	 * o reclaim the tx queue data structures after calling
3096	 *   the 802.11 layer as we'll get called back to reclaim
3097	 *   node state and potentially want to use them
3098	 * o to cleanup the tx queues the hal is called, so detach
3099	 *   it last
3100	 * XXX: ??? detach ath5k_hw ???
3101	 * Other than that, it's straightforward...
3102	 */
3103	ieee80211_unregister_hw(hw);
3104	ath5k_desc_free(ah);
3105	ath5k_txq_release(ah);
3106	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3107	ath5k_unregister_leds(ah);
3108
3109	ath5k_sysfs_unregister(ah);
3110	/*
3111	 * NB: can't reclaim these until after ieee80211_ifdetach
3112	 * returns because we'll get called back to reclaim node
3113	 * state and potentially want to use them.
3114	 */
3115	ath5k_hw_deinit(ah);
3116	free_irq(ah->irq, ah);
3117}
3118
3119bool
3120ath5k_any_vif_assoc(struct ath5k_hw *ah)
3121{
3122	struct ath5k_vif_iter_data iter_data;
3123	iter_data.hw_macaddr = NULL;
3124	iter_data.any_assoc = false;
3125	iter_data.need_set_hw_addr = false;
3126	iter_data.found_active = true;
3127
3128	ieee80211_iterate_active_interfaces_atomic(
3129		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3130		ath5k_vif_iter, &iter_data);
3131	return iter_data.any_assoc;
3132}
3133
3134void
3135ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3136{
3137	struct ath5k_hw *ah = hw->priv;
3138	u32 rfilt;
3139	rfilt = ath5k_hw_get_rx_filter(ah);
3140	if (enable)
3141		rfilt |= AR5K_RX_FILTER_BEACON;
3142	else
3143		rfilt &= ~AR5K_RX_FILTER_BEACON;
3144	ath5k_hw_set_rx_filter(ah, rfilt);
3145	ah->filter_flags = rfilt;
3146}
3147
3148void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3149		   const char *fmt, ...)
3150{
3151	struct va_format vaf;
3152	va_list args;
3153
3154	va_start(args, fmt);
3155
3156	vaf.fmt = fmt;
3157	vaf.va = &args;
3158
3159	if (ah && ah->hw)
3160		printk("%s" pr_fmt("%s: %pV"),
3161		       level, wiphy_name(ah->hw->wiphy), &vaf);
3162	else
3163		printk("%s" pr_fmt("%pV"), level, &vaf);
3164
3165	va_end(args);
3166}
3167