ar9002_phy.c revision ae0c40314a86c5c942d32d9cbbc9f96d70839935
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17/**
18 * DOC: Programming Atheros 802.11n analog front end radios
19 *
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
24 *
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
28 *
29 * The following single-chips exist with a respective embedded radio:
30 *
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
35 *
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
38 *
39 * AR9287 - 11n single-band 1x1 MIMO for USB
40 */
41
42#include "hw.h"
43#include "ar9002_phy.h"
44
45/**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
49 *
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
52 *
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
55 *
56 * Actual Expression,
57 *
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
61 *
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
65 */
66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67{
68	u16 bMode, fracMode, aModeRefSel = 0;
69	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70	struct chan_centers centers;
71	u32 refDivA = 24;
72
73	ath9k_hw_get_channel_centers(ah, chan, &centers);
74	freq = centers.synth_center;
75
76	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77	reg32 &= 0xc0000000;
78
79	if (freq < 4800) { /* 2 GHz, fractional mode */
80		u32 txctl;
81		int regWrites = 0;
82
83		bMode = 1;
84		fracMode = 1;
85		aModeRefSel = 0;
86		channelSel = CHANSEL_2G(freq);
87
88		if (AR_SREV_9287_11_OR_LATER(ah)) {
89			if (freq == 2484) {
90				/* Enable channel spreading for channel 14 */
91				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92						1, regWrites);
93			} else {
94				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95						1, regWrites);
96			}
97		} else {
98			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99			if (freq == 2484) {
100				/* Enable channel spreading for channel 14 */
101				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103			} else {
104				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106			}
107		}
108	} else {
109		bMode = 0;
110		fracMode = 0;
111
112		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113		case 0:
114			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115				aModeRefSel = 0;
116			else if ((freq % 20) == 0)
117				aModeRefSel = 3;
118			else if ((freq % 10) == 0)
119				aModeRefSel = 2;
120			if (aModeRefSel)
121				break;
122		case 1:
123		default:
124			aModeRefSel = 0;
125			/*
126			 * Enable 2G (fractional) mode for channels
127			 * which are 5MHz spaced.
128			 */
129			fracMode = 1;
130			refDivA = 1;
131			channelSel = CHANSEL_5G(freq);
132
133			/* RefDivA setting */
134			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135				      AR_AN_SYNTH9_REFDIVA,
136				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137
138		}
139
140		if (!fracMode) {
141			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142			channelSel = ndiv & 0x1ff;
143			channelFrac = (ndiv & 0xfffffe00) * 2;
144			channelSel = (channelSel << 17) | channelFrac;
145		}
146	}
147
148	reg32 = reg32 |
149	    (bMode << 29) |
150	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151
152	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153
154	ah->curchan = chan;
155
156	return 0;
157}
158
159/**
160 * ar9002_hw_spur_mitigate - convert baseband spur frequency
161 * @ah: atheros hardware structure
162 * @chan:
163 *
164 * For single-chip solutions. Converts to baseband spur frequency given the
165 * input channel frequency and compute register settings below.
166 */
167static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168				    struct ath9k_channel *chan)
169{
170	int bb_spur = AR_NO_SPUR;
171	int freq;
172	int bin, cur_bin;
173	int bb_spur_off, spur_subchannel_sd;
174	int spur_freq_sd;
175	int spur_delta_phase;
176	int denominator;
177	int upper, lower, cur_vit_mask;
178	int tmp, newVal;
179	int i;
180	static const int pilot_mask_reg[4] = {
181		AR_PHY_TIMING7, AR_PHY_TIMING8,
182		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
183	};
184	static const int chan_mask_reg[4] = {
185		AR_PHY_TIMING9, AR_PHY_TIMING10,
186		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
187	};
188	static const int inc[4] = { 0, 100, 0, 0 };
189	struct chan_centers centers;
190
191	int8_t mask_m[123];
192	int8_t mask_p[123];
193	int8_t mask_amt;
194	int tmp_mask;
195	int cur_bb_spur;
196	bool is2GHz = IS_CHAN_2GHZ(chan);
197
198	memset(&mask_m, 0, sizeof(int8_t) * 123);
199	memset(&mask_p, 0, sizeof(int8_t) * 123);
200
201	ath9k_hw_get_channel_centers(ah, chan, &centers);
202	freq = centers.synth_center;
203
204	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
205		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
206
207		if (AR_NO_SPUR == cur_bb_spur)
208			break;
209
210		if (is2GHz)
211			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
212		else
213			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
214
215		cur_bb_spur = cur_bb_spur - freq;
216
217		if (IS_CHAN_HT40(chan)) {
218			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
219			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
220				bb_spur = cur_bb_spur;
221				break;
222			}
223		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
224			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
225			bb_spur = cur_bb_spur;
226			break;
227		}
228	}
229
230	if (AR_NO_SPUR == bb_spur) {
231		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
232			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
233		return;
234	} else {
235		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
236			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
237	}
238
239	bin = bb_spur * 320;
240
241	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
242
243	ENABLE_REGWRITE_BUFFER(ah);
244
245	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
246			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
247			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
248			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
249	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
250
251	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
252		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
253		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
254		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
255		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
256	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
257
258	if (IS_CHAN_HT40(chan)) {
259		if (bb_spur < 0) {
260			spur_subchannel_sd = 1;
261			bb_spur_off = bb_spur + 10;
262		} else {
263			spur_subchannel_sd = 0;
264			bb_spur_off = bb_spur - 10;
265		}
266	} else {
267		spur_subchannel_sd = 0;
268		bb_spur_off = bb_spur;
269	}
270
271	if (IS_CHAN_HT40(chan))
272		spur_delta_phase =
273			((bb_spur * 262144) /
274			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
275	else
276		spur_delta_phase =
277			((bb_spur * 524288) /
278			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
279
280	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
281	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
282
283	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
284		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
285		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
286	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
287
288	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
289	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
290
291	cur_bin = -6000;
292	upper = bin + 100;
293	lower = bin - 100;
294
295	for (i = 0; i < 4; i++) {
296		int pilot_mask = 0;
297		int chan_mask = 0;
298		int bp = 0;
299		for (bp = 0; bp < 30; bp++) {
300			if ((cur_bin > lower) && (cur_bin < upper)) {
301				pilot_mask = pilot_mask | 0x1 << bp;
302				chan_mask = chan_mask | 0x1 << bp;
303			}
304			cur_bin += 100;
305		}
306		cur_bin += inc[i];
307		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
308		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
309	}
310
311	cur_vit_mask = 6100;
312	upper = bin + 120;
313	lower = bin - 120;
314
315	for (i = 0; i < 123; i++) {
316		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
317
318			/* workaround for gcc bug #37014 */
319			volatile int tmp_v = abs(cur_vit_mask - bin);
320
321			if (tmp_v < 75)
322				mask_amt = 1;
323			else
324				mask_amt = 0;
325			if (cur_vit_mask < 0)
326				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
327			else
328				mask_p[cur_vit_mask / 100] = mask_amt;
329		}
330		cur_vit_mask -= 100;
331	}
332
333	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
334		| (mask_m[48] << 26) | (mask_m[49] << 24)
335		| (mask_m[50] << 22) | (mask_m[51] << 20)
336		| (mask_m[52] << 18) | (mask_m[53] << 16)
337		| (mask_m[54] << 14) | (mask_m[55] << 12)
338		| (mask_m[56] << 10) | (mask_m[57] << 8)
339		| (mask_m[58] << 6) | (mask_m[59] << 4)
340		| (mask_m[60] << 2) | (mask_m[61] << 0);
341	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
342	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
343
344	tmp_mask = (mask_m[31] << 28)
345		| (mask_m[32] << 26) | (mask_m[33] << 24)
346		| (mask_m[34] << 22) | (mask_m[35] << 20)
347		| (mask_m[36] << 18) | (mask_m[37] << 16)
348		| (mask_m[48] << 14) | (mask_m[39] << 12)
349		| (mask_m[40] << 10) | (mask_m[41] << 8)
350		| (mask_m[42] << 6) | (mask_m[43] << 4)
351		| (mask_m[44] << 2) | (mask_m[45] << 0);
352	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
353	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
354
355	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
356		| (mask_m[18] << 26) | (mask_m[18] << 24)
357		| (mask_m[20] << 22) | (mask_m[20] << 20)
358		| (mask_m[22] << 18) | (mask_m[22] << 16)
359		| (mask_m[24] << 14) | (mask_m[24] << 12)
360		| (mask_m[25] << 10) | (mask_m[26] << 8)
361		| (mask_m[27] << 6) | (mask_m[28] << 4)
362		| (mask_m[29] << 2) | (mask_m[30] << 0);
363	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
364	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
365
366	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
367		| (mask_m[2] << 26) | (mask_m[3] << 24)
368		| (mask_m[4] << 22) | (mask_m[5] << 20)
369		| (mask_m[6] << 18) | (mask_m[7] << 16)
370		| (mask_m[8] << 14) | (mask_m[9] << 12)
371		| (mask_m[10] << 10) | (mask_m[11] << 8)
372		| (mask_m[12] << 6) | (mask_m[13] << 4)
373		| (mask_m[14] << 2) | (mask_m[15] << 0);
374	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
375	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
376
377	tmp_mask = (mask_p[15] << 28)
378		| (mask_p[14] << 26) | (mask_p[13] << 24)
379		| (mask_p[12] << 22) | (mask_p[11] << 20)
380		| (mask_p[10] << 18) | (mask_p[9] << 16)
381		| (mask_p[8] << 14) | (mask_p[7] << 12)
382		| (mask_p[6] << 10) | (mask_p[5] << 8)
383		| (mask_p[4] << 6) | (mask_p[3] << 4)
384		| (mask_p[2] << 2) | (mask_p[1] << 0);
385	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
386	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
387
388	tmp_mask = (mask_p[30] << 28)
389		| (mask_p[29] << 26) | (mask_p[28] << 24)
390		| (mask_p[27] << 22) | (mask_p[26] << 20)
391		| (mask_p[25] << 18) | (mask_p[24] << 16)
392		| (mask_p[23] << 14) | (mask_p[22] << 12)
393		| (mask_p[21] << 10) | (mask_p[20] << 8)
394		| (mask_p[19] << 6) | (mask_p[18] << 4)
395		| (mask_p[17] << 2) | (mask_p[16] << 0);
396	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
397	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
398
399	tmp_mask = (mask_p[45] << 28)
400		| (mask_p[44] << 26) | (mask_p[43] << 24)
401		| (mask_p[42] << 22) | (mask_p[41] << 20)
402		| (mask_p[40] << 18) | (mask_p[39] << 16)
403		| (mask_p[38] << 14) | (mask_p[37] << 12)
404		| (mask_p[36] << 10) | (mask_p[35] << 8)
405		| (mask_p[34] << 6) | (mask_p[33] << 4)
406		| (mask_p[32] << 2) | (mask_p[31] << 0);
407	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
408	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
409
410	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
411		| (mask_p[59] << 26) | (mask_p[58] << 24)
412		| (mask_p[57] << 22) | (mask_p[56] << 20)
413		| (mask_p[55] << 18) | (mask_p[54] << 16)
414		| (mask_p[53] << 14) | (mask_p[52] << 12)
415		| (mask_p[51] << 10) | (mask_p[50] << 8)
416		| (mask_p[49] << 6) | (mask_p[48] << 4)
417		| (mask_p[47] << 2) | (mask_p[46] << 0);
418	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
419	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
420
421	REGWRITE_BUFFER_FLUSH(ah);
422}
423
424static void ar9002_olc_init(struct ath_hw *ah)
425{
426	u32 i;
427
428	if (!OLC_FOR_AR9280_20_LATER)
429		return;
430
431	if (OLC_FOR_AR9287_10_LATER) {
432		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
433				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
434		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
435				AR9287_AN_TXPC0_TXPCMODE,
436				AR9287_AN_TXPC0_TXPCMODE_S,
437				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
438		udelay(100);
439	} else {
440		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
441			ah->originalGain[i] =
442				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
443						AR_PHY_TX_GAIN);
444		ah->PDADCdelta = 0;
445	}
446}
447
448static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
449					 struct ath9k_channel *chan)
450{
451	int ref_div = 5;
452	int pll_div = 0x2c;
453	u32 pll;
454
455	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
456		if (AR_SREV_9280_20(ah)) {
457			ref_div = 10;
458			pll_div = 0x50;
459		} else {
460			pll_div = 0x28;
461		}
462	}
463
464	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
465	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
466
467	if (chan && IS_CHAN_HALF_RATE(chan))
468		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
469	else if (chan && IS_CHAN_QUARTER_RATE(chan))
470		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
471
472	return pll;
473}
474
475static void ar9002_hw_do_getnf(struct ath_hw *ah,
476			      int16_t nfarray[NUM_NF_READINGS])
477{
478	int16_t nf;
479
480	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
481	nfarray[0] = sign_extend32(nf, 8);
482
483	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
484	if (IS_CHAN_HT40(ah->curchan))
485		nfarray[3] = sign_extend32(nf, 8);
486
487	if (!(ah->rxchainmask & BIT(1)))
488		return;
489
490	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
491	nfarray[1] = sign_extend32(nf, 8);
492
493	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
494	if (IS_CHAN_HT40(ah->curchan))
495		nfarray[4] = sign_extend32(nf, 8);
496}
497
498static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
499{
500	if (AR_SREV_9285(ah)) {
501		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
502		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
503		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
504	} else if (AR_SREV_9287(ah)) {
505		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
506		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
507		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
508	} else if (AR_SREV_9271(ah)) {
509		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
510		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
511		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
512	} else {
513		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
514		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
515		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
516		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
517		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
518		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
519	}
520}
521
522static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
523				   struct ath_hw_antcomb_conf *antconf)
524{
525	u32 regval;
526
527	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
528	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
529				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
530	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
531				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
532	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
533				  AR_PHY_9285_FAST_DIV_BIAS_S;
534	antconf->lna1_lna2_switch_delta = -1;
535	antconf->lna1_lna2_delta = -3;
536	antconf->div_group = 0;
537}
538
539static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
540				   struct ath_hw_antcomb_conf *antconf)
541{
542	u32 regval;
543
544	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
545	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
546		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
547		    AR_PHY_9285_FAST_DIV_BIAS);
548	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
549		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
550	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
551		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
552	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
553		   & AR_PHY_9285_FAST_DIV_BIAS);
554
555	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
556}
557
558#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
559
560static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
561{
562	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
563	u8 antdiv_ctrl1, antdiv_ctrl2;
564	u32 regval;
565
566	if (enable) {
567		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
568		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
569
570		/*
571		 * Don't disable BT ant to allow BB to control SWCOM.
572		 */
573		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
574		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
575
576		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
577		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
578	} else {
579		/*
580		 * Disable antenna diversity, use LNA1 only.
581		 */
582		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
583		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
584
585		/*
586		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
587		 */
588		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
589		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
590
591		/*
592		 * Program SWCOM table to make sure RF switch always parks
593		 * at BT side.
594		 */
595		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
596		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
597	}
598
599	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
600	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
601        /*
602	 * Clear ant_fast_div_bias [14:9] since for WB195,
603	 * the main LNA is always LNA1.
604	 */
605	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
606	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
607	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
608	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
609	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
610	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
611	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
612
613	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
614	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
615	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
616	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
617}
618
619#endif
620
621static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
622				    struct ath_spec_scan *param)
623{
624	u8 count;
625
626	if (!param->enabled) {
627		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
628			    AR_PHY_SPECTRAL_SCAN_ENABLE);
629		return;
630	}
631	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
632	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
633
634	if (param->short_repeat)
635		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
636			    AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
637	else
638		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
639			    AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
640
641	/* on AR92xx, the highest bit of count will make the the chip send
642	 * spectral samples endlessly. Check if this really was intended,
643	 * and fix otherwise.
644	 */
645	count = param->count;
646	if (param->endless)
647		count = 0x80;
648	else if (count & 0x80)
649		count = 0x7f;
650
651	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
652		      AR_PHY_SPECTRAL_SCAN_COUNT, count);
653	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
654		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
655	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
656		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
657
658	return;
659}
660
661static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
662{
663	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
664	/* Activate spectral scan */
665	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
666		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
667}
668
669static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
670{
671	struct ath_common *common = ath9k_hw_common(ah);
672
673	/* Poll for spectral scan complete */
674	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
675			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
676			   0, AH_WAIT_TIMEOUT)) {
677		ath_err(common, "spectral scan wait failed\n");
678		return;
679	}
680}
681
682static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
683{
684	REG_SET_BIT(ah, 0x9864, 0x7f000);
685	REG_SET_BIT(ah, 0x9924, 0x7f00fe);
686	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
687	REG_WRITE(ah, AR_CR, AR_CR_RXD);
688	REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
689	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
690	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
691	REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
692	REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
693	REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
694	REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
695}
696
697static void ar9002_hw_tx99_stop(struct ath_hw *ah)
698{
699	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
700}
701
702void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
703{
704	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
705	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
706
707	priv_ops->set_rf_regs = NULL;
708	priv_ops->rf_set_freq = ar9002_hw_set_channel;
709	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
710	priv_ops->olc_init = ar9002_olc_init;
711	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
712	priv_ops->do_getnf = ar9002_hw_do_getnf;
713
714	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
715	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
716	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
717	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
718	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
719
720#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
721	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
722#endif
723	ops->tx99_start = ar9002_hw_tx99_start;
724	ops->tx99_stop = ar9002_hw_tx99_stop;
725
726	ar9002_hw_set_nf_limits(ah);
727}
728