hw.c revision 00e0003e0969517c5a447ac3173442dfbdb0613b
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	if (!ah->curchan) /* should really check for CCK instead */
91		clockrate = ATH9K_CLOCK_RATE_CCK;
92	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96	else
97		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98
99	if (conf_is_ht40(conf))
100		clockrate *= 2;
101
102	common->clockrate = clockrate;
103}
104
105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106{
107	struct ath_common *common = ath9k_hw_common(ah);
108
109	return usecs * common->clockrate;
110}
111
112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113{
114	int i;
115
116	BUG_ON(timeout < AH_TIME_QUANTUM);
117
118	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119		if ((REG_READ(ah, reg) & mask) == val)
120			return true;
121
122		udelay(AH_TIME_QUANTUM);
123	}
124
125	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127		timeout, reg, REG_READ(ah, reg), mask, val);
128
129	return false;
130}
131EXPORT_SYMBOL(ath9k_hw_wait);
132
133u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134{
135	u32 retval;
136	int i;
137
138	for (i = 0, retval = 0; i < n; i++) {
139		retval = (retval << 1) | (val & 1);
140		val >>= 1;
141	}
142	return retval;
143}
144
145bool ath9k_get_channel_edges(struct ath_hw *ah,
146			     u16 flags, u16 *low,
147			     u16 *high)
148{
149	struct ath9k_hw_capabilities *pCap = &ah->caps;
150
151	if (flags & CHANNEL_5GHZ) {
152		*low = pCap->low_5ghz_chan;
153		*high = pCap->high_5ghz_chan;
154		return true;
155	}
156	if ((flags & CHANNEL_2GHZ)) {
157		*low = pCap->low_2ghz_chan;
158		*high = pCap->high_2ghz_chan;
159		return true;
160	}
161	return false;
162}
163
164u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165			   u8 phy, int kbps,
166			   u32 frameLen, u16 rateix,
167			   bool shortPreamble)
168{
169	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170
171	if (kbps == 0)
172		return 0;
173
174	switch (phy) {
175	case WLAN_RC_PHY_CCK:
176		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177		if (shortPreamble)
178			phyTime >>= 1;
179		numBits = frameLen << 3;
180		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181		break;
182	case WLAN_RC_PHY_OFDM:
183		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185			numBits = OFDM_PLCP_BITS + (frameLen << 3);
186			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187			txTime = OFDM_SIFS_TIME_QUARTER
188				+ OFDM_PREAMBLE_TIME_QUARTER
189				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190		} else if (ah->curchan &&
191			   IS_CHAN_HALF_RATE(ah->curchan)) {
192			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193			numBits = OFDM_PLCP_BITS + (frameLen << 3);
194			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195			txTime = OFDM_SIFS_TIME_HALF +
196				OFDM_PREAMBLE_TIME_HALF
197				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
198		} else {
199			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203				+ (numSymbols * OFDM_SYMBOL_TIME);
204		}
205		break;
206	default:
207		ath_err(ath9k_hw_common(ah),
208			"Unknown phy %u (rate ix %u)\n", phy, rateix);
209		txTime = 0;
210		break;
211	}
212
213	return txTime;
214}
215EXPORT_SYMBOL(ath9k_hw_computetxtime);
216
217void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218				  struct ath9k_channel *chan,
219				  struct chan_centers *centers)
220{
221	int8_t extoff;
222
223	if (!IS_CHAN_HT40(chan)) {
224		centers->ctl_center = centers->ext_center =
225			centers->synth_center = chan->channel;
226		return;
227	}
228
229	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231		centers->synth_center =
232			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233		extoff = 1;
234	} else {
235		centers->synth_center =
236			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237		extoff = -1;
238	}
239
240	centers->ctl_center =
241		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242	/* 25 MHz spacing is supported by hw but not on upper layers */
243	centers->ext_center =
244		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245}
246
247/******************/
248/* Chip Revisions */
249/******************/
250
251static void ath9k_hw_read_revisions(struct ath_hw *ah)
252{
253	u32 val;
254
255	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256
257	if (val == 0xFF) {
258		val = REG_READ(ah, AR_SREV);
259		ah->hw_version.macVersion =
260			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263	} else {
264		if (!AR_SREV_9100(ah))
265			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266
267		ah->hw_version.macRev = val & AR_SREV_REVISION;
268
269		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270			ah->is_pciexpress = true;
271	}
272}
273
274/************************************/
275/* HW Attach, Detach, Init Routines */
276/************************************/
277
278static void ath9k_hw_disablepcie(struct ath_hw *ah)
279{
280	if (!AR_SREV_5416(ah))
281		return;
282
283	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292
293	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294}
295
296/* This should work for all families including legacy */
297static bool ath9k_hw_chip_test(struct ath_hw *ah)
298{
299	struct ath_common *common = ath9k_hw_common(ah);
300	u32 regAddr[2] = { AR_STA_ID0 };
301	u32 regHold[2];
302	static const u32 patternData[4] = {
303		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304	};
305	int i, j, loop_max;
306
307	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308		loop_max = 2;
309		regAddr[1] = AR_PHY_BASE + (8 << 2);
310	} else
311		loop_max = 1;
312
313	for (i = 0; i < loop_max; i++) {
314		u32 addr = regAddr[i];
315		u32 wrData, rdData;
316
317		regHold[i] = REG_READ(ah, addr);
318		for (j = 0; j < 0x100; j++) {
319			wrData = (j << 16) | j;
320			REG_WRITE(ah, addr, wrData);
321			rdData = REG_READ(ah, addr);
322			if (rdData != wrData) {
323				ath_err(common,
324					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325					addr, wrData, rdData);
326				return false;
327			}
328		}
329		for (j = 0; j < 4; j++) {
330			wrData = patternData[j];
331			REG_WRITE(ah, addr, wrData);
332			rdData = REG_READ(ah, addr);
333			if (wrData != rdData) {
334				ath_err(common,
335					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336					addr, wrData, rdData);
337				return false;
338			}
339		}
340		REG_WRITE(ah, regAddr[i], regHold[i]);
341	}
342	udelay(100);
343
344	return true;
345}
346
347static void ath9k_hw_init_config(struct ath_hw *ah)
348{
349	int i;
350
351	ah->config.dma_beacon_response_time = 2;
352	ah->config.sw_beacon_response_time = 10;
353	ah->config.additional_swba_backoff = 0;
354	ah->config.ack_6mb = 0x0;
355	ah->config.cwm_ignore_extcca = 0;
356	ah->config.pcie_powersave_enable = 0;
357	ah->config.pcie_clock_req = 0;
358	ah->config.pcie_waen = 0;
359	ah->config.analog_shiftreg = 1;
360	ah->config.enable_ani = true;
361
362	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363		ah->config.spurchans[i][0] = AR_NO_SPUR;
364		ah->config.spurchans[i][1] = AR_NO_SPUR;
365	}
366
367	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368		ah->config.ht_enable = 1;
369	else
370		ah->config.ht_enable = 0;
371
372	ah->config.rx_intr_mitigation = true;
373	ah->config.pcieSerDesWrite = true;
374
375	/*
376	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
377	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
378	 * This means we use it for all AR5416 devices, and the few
379	 * minor PCI AR9280 devices out there.
380	 *
381	 * Serialization is required because these devices do not handle
382	 * well the case of two concurrent reads/writes due to the latency
383	 * involved. During one read/write another read/write can be issued
384	 * on another CPU while the previous read/write may still be working
385	 * on our hardware, if we hit this case the hardware poops in a loop.
386	 * We prevent this by serializing reads and writes.
387	 *
388	 * This issue is not present on PCI-Express devices or pre-AR5416
389	 * devices (legacy, 802.11abg).
390	 */
391	if (num_possible_cpus() > 1)
392		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
393}
394
395static void ath9k_hw_init_defaults(struct ath_hw *ah)
396{
397	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
398
399	regulatory->country_code = CTRY_DEFAULT;
400	regulatory->power_limit = MAX_RATE_POWER;
401	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
402
403	ah->hw_version.magic = AR5416_MAGIC;
404	ah->hw_version.subvendorid = 0;
405
406	ah->atim_window = 0;
407	ah->sta_id1_defaults =
408		AR_STA_ID1_CRPT_MIC_ENABLE |
409		AR_STA_ID1_MCAST_KSRCH;
410	ah->enable_32kHz_clock = DONT_USE_32KHZ;
411	ah->slottime = 20;
412	ah->globaltxtimeout = (u32) -1;
413	ah->power_mode = ATH9K_PM_UNDEFINED;
414}
415
416static int ath9k_hw_init_macaddr(struct ath_hw *ah)
417{
418	struct ath_common *common = ath9k_hw_common(ah);
419	u32 sum;
420	int i;
421	u16 eeval;
422	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
423
424	sum = 0;
425	for (i = 0; i < 3; i++) {
426		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
427		sum += eeval;
428		common->macaddr[2 * i] = eeval >> 8;
429		common->macaddr[2 * i + 1] = eeval & 0xff;
430	}
431	if (sum == 0 || sum == 0xffff * 3)
432		return -EADDRNOTAVAIL;
433
434	return 0;
435}
436
437static int ath9k_hw_post_init(struct ath_hw *ah)
438{
439	struct ath_common *common = ath9k_hw_common(ah);
440	int ecode;
441
442	if (common->bus_ops->ath_bus_type != ATH_USB) {
443		if (!ath9k_hw_chip_test(ah))
444			return -ENODEV;
445	}
446
447	if (!AR_SREV_9300_20_OR_LATER(ah)) {
448		ecode = ar9002_hw_rf_claim(ah);
449		if (ecode != 0)
450			return ecode;
451	}
452
453	ecode = ath9k_hw_eeprom_init(ah);
454	if (ecode != 0)
455		return ecode;
456
457	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
458		"Eeprom VER: %d, REV: %d\n",
459		ah->eep_ops->get_eeprom_ver(ah),
460		ah->eep_ops->get_eeprom_rev(ah));
461
462	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
463	if (ecode) {
464		ath_err(ath9k_hw_common(ah),
465			"Failed allocating banks for external radio\n");
466		ath9k_hw_rf_free_ext_banks(ah);
467		return ecode;
468	}
469
470	if (!AR_SREV_9100(ah)) {
471		ath9k_hw_ani_setup(ah);
472		ath9k_hw_ani_init(ah);
473	}
474
475	return 0;
476}
477
478static void ath9k_hw_attach_ops(struct ath_hw *ah)
479{
480	if (AR_SREV_9300_20_OR_LATER(ah))
481		ar9003_hw_attach_ops(ah);
482	else
483		ar9002_hw_attach_ops(ah);
484}
485
486/* Called for all hardware families */
487static int __ath9k_hw_init(struct ath_hw *ah)
488{
489	struct ath_common *common = ath9k_hw_common(ah);
490	int r = 0;
491
492	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
493		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
494
495	ath9k_hw_read_revisions(ah);
496
497	/*
498	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
499	 * We need to do this to avoid RMW of this register. We cannot
500	 * read the reg when chip is asleep.
501	 */
502	ah->WARegVal = REG_READ(ah, AR_WA);
503	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
504			 AR_WA_ASPM_TIMER_BASED_DISABLE);
505
506	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
507		ath_err(common, "Couldn't reset chip\n");
508		return -EIO;
509	}
510
511	ath9k_hw_init_defaults(ah);
512	ath9k_hw_init_config(ah);
513
514	ath9k_hw_attach_ops(ah);
515
516	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
517		ath_err(common, "Couldn't wakeup chip\n");
518		return -EIO;
519	}
520
521	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
522		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
523		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
524		     !ah->is_pciexpress)) {
525			ah->config.serialize_regmode =
526				SER_REG_MODE_ON;
527		} else {
528			ah->config.serialize_regmode =
529				SER_REG_MODE_OFF;
530		}
531	}
532
533	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
534		ah->config.serialize_regmode);
535
536	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
537		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
538	else
539		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
540
541	switch (ah->hw_version.macVersion) {
542	case AR_SREV_VERSION_5416_PCI:
543	case AR_SREV_VERSION_5416_PCIE:
544	case AR_SREV_VERSION_9160:
545	case AR_SREV_VERSION_9100:
546	case AR_SREV_VERSION_9280:
547	case AR_SREV_VERSION_9285:
548	case AR_SREV_VERSION_9287:
549	case AR_SREV_VERSION_9271:
550	case AR_SREV_VERSION_9300:
551	case AR_SREV_VERSION_9485:
552		break;
553	default:
554		ath_err(common,
555			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
556			ah->hw_version.macVersion, ah->hw_version.macRev);
557		return -EOPNOTSUPP;
558	}
559
560	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
561		ah->is_pciexpress = false;
562
563	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
564	ath9k_hw_init_cal_settings(ah);
565
566	ah->ani_function = ATH9K_ANI_ALL;
567	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
568		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
569	if (!AR_SREV_9300_20_OR_LATER(ah))
570		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
571
572	ath9k_hw_init_mode_regs(ah);
573
574
575	if (ah->is_pciexpress)
576		ath9k_hw_configpcipowersave(ah, 0, 0);
577	else
578		ath9k_hw_disablepcie(ah);
579
580	if (!AR_SREV_9300_20_OR_LATER(ah))
581		ar9002_hw_cck_chan14_spread(ah);
582
583	r = ath9k_hw_post_init(ah);
584	if (r)
585		return r;
586
587	ath9k_hw_init_mode_gain_regs(ah);
588	r = ath9k_hw_fill_cap_info(ah);
589	if (r)
590		return r;
591
592	r = ath9k_hw_init_macaddr(ah);
593	if (r) {
594		ath_err(common, "Failed to initialize MAC address\n");
595		return r;
596	}
597
598	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
599		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
600	else
601		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
602
603	ah->bb_watchdog_timeout_ms = 25;
604
605	common->state = ATH_HW_INITIALIZED;
606
607	return 0;
608}
609
610int ath9k_hw_init(struct ath_hw *ah)
611{
612	int ret;
613	struct ath_common *common = ath9k_hw_common(ah);
614
615	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
616	switch (ah->hw_version.devid) {
617	case AR5416_DEVID_PCI:
618	case AR5416_DEVID_PCIE:
619	case AR5416_AR9100_DEVID:
620	case AR9160_DEVID_PCI:
621	case AR9280_DEVID_PCI:
622	case AR9280_DEVID_PCIE:
623	case AR9285_DEVID_PCIE:
624	case AR9287_DEVID_PCI:
625	case AR9287_DEVID_PCIE:
626	case AR2427_DEVID_PCIE:
627	case AR9300_DEVID_PCIE:
628	case AR9300_DEVID_AR9485_PCIE:
629		break;
630	default:
631		if (common->bus_ops->ath_bus_type == ATH_USB)
632			break;
633		ath_err(common, "Hardware device ID 0x%04x not supported\n",
634			ah->hw_version.devid);
635		return -EOPNOTSUPP;
636	}
637
638	ret = __ath9k_hw_init(ah);
639	if (ret) {
640		ath_err(common,
641			"Unable to initialize hardware; initialization status: %d\n",
642			ret);
643		return ret;
644	}
645
646	return 0;
647}
648EXPORT_SYMBOL(ath9k_hw_init);
649
650static void ath9k_hw_init_qos(struct ath_hw *ah)
651{
652	ENABLE_REGWRITE_BUFFER(ah);
653
654	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
655	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
656
657	REG_WRITE(ah, AR_QOS_NO_ACK,
658		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
659		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
660		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
661
662	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
663	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
664	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
665	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
666	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
667
668	REGWRITE_BUFFER_FLUSH(ah);
669}
670
671static void ath9k_hw_init_pll(struct ath_hw *ah,
672			      struct ath9k_channel *chan)
673{
674	u32 pll;
675
676	if (AR_SREV_9485(ah))
677		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
678
679	pll = ath9k_hw_compute_pll_control(ah, chan);
680
681	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
682
683	/* Switch the core clock for ar9271 to 117Mhz */
684	if (AR_SREV_9271(ah)) {
685		udelay(500);
686		REG_WRITE(ah, 0x50040, 0x304);
687	}
688
689	udelay(RTC_PLL_SETTLE_DELAY);
690
691	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
692}
693
694static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
695					  enum nl80211_iftype opmode)
696{
697	u32 imr_reg = AR_IMR_TXERR |
698		AR_IMR_TXURN |
699		AR_IMR_RXERR |
700		AR_IMR_RXORN |
701		AR_IMR_BCNMISC;
702
703	if (AR_SREV_9300_20_OR_LATER(ah)) {
704		imr_reg |= AR_IMR_RXOK_HP;
705		if (ah->config.rx_intr_mitigation)
706			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
707		else
708			imr_reg |= AR_IMR_RXOK_LP;
709
710	} else {
711		if (ah->config.rx_intr_mitigation)
712			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
713		else
714			imr_reg |= AR_IMR_RXOK;
715	}
716
717	if (ah->config.tx_intr_mitigation)
718		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
719	else
720		imr_reg |= AR_IMR_TXOK;
721
722	if (opmode == NL80211_IFTYPE_AP)
723		imr_reg |= AR_IMR_MIB;
724
725	ENABLE_REGWRITE_BUFFER(ah);
726
727	REG_WRITE(ah, AR_IMR, imr_reg);
728	ah->imrs2_reg |= AR_IMR_S2_GTT;
729	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
730
731	if (!AR_SREV_9100(ah)) {
732		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
733		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
734		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
735	}
736
737	REGWRITE_BUFFER_FLUSH(ah);
738
739	if (AR_SREV_9300_20_OR_LATER(ah)) {
740		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
741		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
742		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
743		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
744	}
745}
746
747static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
748{
749	u32 val = ath9k_hw_mac_to_clks(ah, us);
750	val = min(val, (u32) 0xFFFF);
751	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
752}
753
754static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
755{
756	u32 val = ath9k_hw_mac_to_clks(ah, us);
757	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
758	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
759}
760
761static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
762{
763	u32 val = ath9k_hw_mac_to_clks(ah, us);
764	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
765	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
766}
767
768static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
769{
770	if (tu > 0xFFFF) {
771		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
772			"bad global tx timeout %u\n", tu);
773		ah->globaltxtimeout = (u32) -1;
774		return false;
775	} else {
776		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
777		ah->globaltxtimeout = tu;
778		return true;
779	}
780}
781
782void ath9k_hw_init_global_settings(struct ath_hw *ah)
783{
784	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
785	int acktimeout;
786	int slottime;
787	int sifstime;
788
789	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
790		ah->misc_mode);
791
792	if (ah->misc_mode != 0)
793		REG_WRITE(ah, AR_PCU_MISC,
794			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
795
796	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
797		sifstime = 16;
798	else
799		sifstime = 10;
800
801	/* As defined by IEEE 802.11-2007 17.3.8.6 */
802	slottime = ah->slottime + 3 * ah->coverage_class;
803	acktimeout = slottime + sifstime;
804
805	/*
806	 * Workaround for early ACK timeouts, add an offset to match the
807	 * initval's 64us ack timeout value.
808	 * This was initially only meant to work around an issue with delayed
809	 * BA frames in some implementations, but it has been found to fix ACK
810	 * timeout issues in other cases as well.
811	 */
812	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
813		acktimeout += 64 - sifstime - ah->slottime;
814
815	ath9k_hw_setslottime(ah, ah->slottime);
816	ath9k_hw_set_ack_timeout(ah, acktimeout);
817	ath9k_hw_set_cts_timeout(ah, acktimeout);
818	if (ah->globaltxtimeout != (u32) -1)
819		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
820}
821EXPORT_SYMBOL(ath9k_hw_init_global_settings);
822
823void ath9k_hw_deinit(struct ath_hw *ah)
824{
825	struct ath_common *common = ath9k_hw_common(ah);
826
827	if (common->state < ATH_HW_INITIALIZED)
828		goto free_hw;
829
830	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
831
832free_hw:
833	ath9k_hw_rf_free_ext_banks(ah);
834}
835EXPORT_SYMBOL(ath9k_hw_deinit);
836
837/*******/
838/* INI */
839/*******/
840
841u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
842{
843	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
844
845	if (IS_CHAN_B(chan))
846		ctl |= CTL_11B;
847	else if (IS_CHAN_G(chan))
848		ctl |= CTL_11G;
849	else
850		ctl |= CTL_11A;
851
852	return ctl;
853}
854
855/****************************************/
856/* Reset and Channel Switching Routines */
857/****************************************/
858
859static inline void ath9k_hw_set_dma(struct ath_hw *ah)
860{
861	struct ath_common *common = ath9k_hw_common(ah);
862	u32 regval;
863
864	ENABLE_REGWRITE_BUFFER(ah);
865
866	/*
867	 * set AHB_MODE not to do cacheline prefetches
868	*/
869	if (!AR_SREV_9300_20_OR_LATER(ah)) {
870		regval = REG_READ(ah, AR_AHB_MODE);
871		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
872	}
873
874	/*
875	 * let mac dma reads be in 128 byte chunks
876	 */
877	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
878	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
879
880	REGWRITE_BUFFER_FLUSH(ah);
881
882	/*
883	 * Restore TX Trigger Level to its pre-reset value.
884	 * The initial value depends on whether aggregation is enabled, and is
885	 * adjusted whenever underruns are detected.
886	 */
887	if (!AR_SREV_9300_20_OR_LATER(ah))
888		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
889
890	ENABLE_REGWRITE_BUFFER(ah);
891
892	/*
893	 * let mac dma writes be in 128 byte chunks
894	 */
895	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
896	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
897
898	/*
899	 * Setup receive FIFO threshold to hold off TX activities
900	 */
901	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
902
903	if (AR_SREV_9300_20_OR_LATER(ah)) {
904		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
905		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
906
907		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
908			ah->caps.rx_status_len);
909	}
910
911	/*
912	 * reduce the number of usable entries in PCU TXBUF to avoid
913	 * wrap around issues.
914	 */
915	if (AR_SREV_9285(ah)) {
916		/* For AR9285 the number of Fifos are reduced to half.
917		 * So set the usable tx buf size also to half to
918		 * avoid data/delimiter underruns
919		 */
920		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
921			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
922	} else if (!AR_SREV_9271(ah)) {
923		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
924			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
925	}
926
927	REGWRITE_BUFFER_FLUSH(ah);
928
929	if (AR_SREV_9300_20_OR_LATER(ah))
930		ath9k_hw_reset_txstatus_ring(ah);
931}
932
933static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
934{
935	u32 val;
936
937	val = REG_READ(ah, AR_STA_ID1);
938	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
939	switch (opmode) {
940	case NL80211_IFTYPE_AP:
941		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
942			  | AR_STA_ID1_KSRCH_MODE);
943		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
944		break;
945	case NL80211_IFTYPE_ADHOC:
946	case NL80211_IFTYPE_MESH_POINT:
947		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
948			  | AR_STA_ID1_KSRCH_MODE);
949		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
950		break;
951	case NL80211_IFTYPE_STATION:
952		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
953		break;
954	default:
955		if (ah->is_monitoring)
956			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
957		break;
958	}
959}
960
961void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
962				   u32 *coef_mantissa, u32 *coef_exponent)
963{
964	u32 coef_exp, coef_man;
965
966	for (coef_exp = 31; coef_exp > 0; coef_exp--)
967		if ((coef_scaled >> coef_exp) & 0x1)
968			break;
969
970	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
971
972	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
973
974	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
975	*coef_exponent = coef_exp - 16;
976}
977
978static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
979{
980	u32 rst_flags;
981	u32 tmpReg;
982
983	if (AR_SREV_9100(ah)) {
984		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
985		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
986		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
987		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
988		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
989	}
990
991	ENABLE_REGWRITE_BUFFER(ah);
992
993	if (AR_SREV_9300_20_OR_LATER(ah)) {
994		REG_WRITE(ah, AR_WA, ah->WARegVal);
995		udelay(10);
996	}
997
998	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
999		  AR_RTC_FORCE_WAKE_ON_INT);
1000
1001	if (AR_SREV_9100(ah)) {
1002		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1003			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1004	} else {
1005		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1006		if (tmpReg &
1007		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1008		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1009			u32 val;
1010			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1011
1012			val = AR_RC_HOSTIF;
1013			if (!AR_SREV_9300_20_OR_LATER(ah))
1014				val |= AR_RC_AHB;
1015			REG_WRITE(ah, AR_RC, val);
1016
1017		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1018			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1019
1020		rst_flags = AR_RTC_RC_MAC_WARM;
1021		if (type == ATH9K_RESET_COLD)
1022			rst_flags |= AR_RTC_RC_MAC_COLD;
1023	}
1024
1025	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1026
1027	REGWRITE_BUFFER_FLUSH(ah);
1028
1029	udelay(50);
1030
1031	REG_WRITE(ah, AR_RTC_RC, 0);
1032	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1033		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1034			"RTC stuck in MAC reset\n");
1035		return false;
1036	}
1037
1038	if (!AR_SREV_9100(ah))
1039		REG_WRITE(ah, AR_RC, 0);
1040
1041	if (AR_SREV_9100(ah))
1042		udelay(50);
1043
1044	return true;
1045}
1046
1047static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1048{
1049	ENABLE_REGWRITE_BUFFER(ah);
1050
1051	if (AR_SREV_9300_20_OR_LATER(ah)) {
1052		REG_WRITE(ah, AR_WA, ah->WARegVal);
1053		udelay(10);
1054	}
1055
1056	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1057		  AR_RTC_FORCE_WAKE_ON_INT);
1058
1059	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1060		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1061
1062	REG_WRITE(ah, AR_RTC_RESET, 0);
1063	udelay(2);
1064
1065	REGWRITE_BUFFER_FLUSH(ah);
1066
1067	if (!AR_SREV_9300_20_OR_LATER(ah))
1068		udelay(2);
1069
1070	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1071		REG_WRITE(ah, AR_RC, 0);
1072
1073	REG_WRITE(ah, AR_RTC_RESET, 1);
1074
1075	if (!ath9k_hw_wait(ah,
1076			   AR_RTC_STATUS,
1077			   AR_RTC_STATUS_M,
1078			   AR_RTC_STATUS_ON,
1079			   AH_WAIT_TIMEOUT)) {
1080		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1081			"RTC not waking up\n");
1082		return false;
1083	}
1084
1085	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1086}
1087
1088static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1089{
1090	if (AR_SREV_9300_20_OR_LATER(ah)) {
1091		REG_WRITE(ah, AR_WA, ah->WARegVal);
1092		udelay(10);
1093	}
1094
1095	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1096		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1097
1098	switch (type) {
1099	case ATH9K_RESET_POWER_ON:
1100		return ath9k_hw_set_reset_power_on(ah);
1101	case ATH9K_RESET_WARM:
1102	case ATH9K_RESET_COLD:
1103		return ath9k_hw_set_reset(ah, type);
1104	default:
1105		return false;
1106	}
1107}
1108
1109static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1110				struct ath9k_channel *chan)
1111{
1112	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1113		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1114			return false;
1115	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1116		return false;
1117
1118	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1119		return false;
1120
1121	ah->chip_fullsleep = false;
1122	ath9k_hw_init_pll(ah, chan);
1123	ath9k_hw_set_rfmode(ah, chan);
1124
1125	return true;
1126}
1127
1128static bool ath9k_hw_channel_change(struct ath_hw *ah,
1129				    struct ath9k_channel *chan)
1130{
1131	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1132	struct ath_common *common = ath9k_hw_common(ah);
1133	struct ieee80211_channel *channel = chan->chan;
1134	u32 qnum;
1135	int r;
1136
1137	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1138		if (ath9k_hw_numtxpending(ah, qnum)) {
1139			ath_dbg(common, ATH_DBG_QUEUE,
1140				"Transmit frames pending on queue %d\n", qnum);
1141			return false;
1142		}
1143	}
1144
1145	if (!ath9k_hw_rfbus_req(ah)) {
1146		ath_err(common, "Could not kill baseband RX\n");
1147		return false;
1148	}
1149
1150	ath9k_hw_set_channel_regs(ah, chan);
1151
1152	r = ath9k_hw_rf_set_freq(ah, chan);
1153	if (r) {
1154		ath_err(common, "Failed to set channel\n");
1155		return false;
1156	}
1157	ath9k_hw_set_clockrate(ah);
1158
1159	ah->eep_ops->set_txpower(ah, chan,
1160			     ath9k_regd_get_ctl(regulatory, chan),
1161			     channel->max_antenna_gain * 2,
1162			     channel->max_power * 2,
1163			     min((u32) MAX_RATE_POWER,
1164			     (u32) regulatory->power_limit), false);
1165
1166	ath9k_hw_rfbus_done(ah);
1167
1168	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1169		ath9k_hw_set_delta_slope(ah, chan);
1170
1171	ath9k_hw_spur_mitigate_freq(ah, chan);
1172
1173	return true;
1174}
1175
1176bool ath9k_hw_check_alive(struct ath_hw *ah)
1177{
1178	int count = 50;
1179	u32 reg;
1180
1181	if (AR_SREV_9285_12_OR_LATER(ah))
1182		return true;
1183
1184	do {
1185		reg = REG_READ(ah, AR_OBS_BUS_1);
1186
1187		if ((reg & 0x7E7FFFEF) == 0x00702400)
1188			continue;
1189
1190		switch (reg & 0x7E000B00) {
1191		case 0x1E000000:
1192		case 0x52000B00:
1193		case 0x18000B00:
1194			continue;
1195		default:
1196			return true;
1197		}
1198	} while (count-- > 0);
1199
1200	return false;
1201}
1202EXPORT_SYMBOL(ath9k_hw_check_alive);
1203
1204int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1205		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1206{
1207	struct ath_common *common = ath9k_hw_common(ah);
1208	u32 saveLedState;
1209	struct ath9k_channel *curchan = ah->curchan;
1210	u32 saveDefAntenna;
1211	u32 macStaId1;
1212	u64 tsf = 0;
1213	int i, r;
1214
1215	ah->txchainmask = common->tx_chainmask;
1216	ah->rxchainmask = common->rx_chainmask;
1217
1218	if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1219		ath9k_hw_abortpcurecv(ah);
1220		if (!ath9k_hw_stopdmarecv(ah)) {
1221			ath_dbg(common, ATH_DBG_XMIT,
1222				"Failed to stop receive dma\n");
1223			bChannelChange = false;
1224		}
1225	}
1226
1227	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1228		return -EIO;
1229
1230	if (curchan && !ah->chip_fullsleep)
1231		ath9k_hw_getnf(ah, curchan);
1232
1233	ah->caldata = caldata;
1234	if (caldata &&
1235	    (chan->channel != caldata->channel ||
1236	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1237	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1238		/* Operating channel changed, reset channel calibration data */
1239		memset(caldata, 0, sizeof(*caldata));
1240		ath9k_init_nfcal_hist_buffer(ah, chan);
1241	}
1242
1243	if (bChannelChange &&
1244	    (ah->chip_fullsleep != true) &&
1245	    (ah->curchan != NULL) &&
1246	    (chan->channel != ah->curchan->channel) &&
1247	    ((chan->channelFlags & CHANNEL_ALL) ==
1248	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1249	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1250
1251		if (ath9k_hw_channel_change(ah, chan)) {
1252			ath9k_hw_loadnf(ah, ah->curchan);
1253			ath9k_hw_start_nfcal(ah, true);
1254			if (AR_SREV_9271(ah))
1255				ar9002_hw_load_ani_reg(ah, chan);
1256			return 0;
1257		}
1258	}
1259
1260	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1261	if (saveDefAntenna == 0)
1262		saveDefAntenna = 1;
1263
1264	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1265
1266	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1267	if (AR_SREV_9100(ah) ||
1268	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1269		tsf = ath9k_hw_gettsf64(ah);
1270
1271	saveLedState = REG_READ(ah, AR_CFG_LED) &
1272		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1273		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1274
1275	ath9k_hw_mark_phy_inactive(ah);
1276
1277	ah->paprd_table_write_done = false;
1278
1279	/* Only required on the first reset */
1280	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1281		REG_WRITE(ah,
1282			  AR9271_RESET_POWER_DOWN_CONTROL,
1283			  AR9271_RADIO_RF_RST);
1284		udelay(50);
1285	}
1286
1287	if (!ath9k_hw_chip_reset(ah, chan)) {
1288		ath_err(common, "Chip reset failed\n");
1289		return -EINVAL;
1290	}
1291
1292	/* Only required on the first reset */
1293	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1294		ah->htc_reset_init = false;
1295		REG_WRITE(ah,
1296			  AR9271_RESET_POWER_DOWN_CONTROL,
1297			  AR9271_GATE_MAC_CTL);
1298		udelay(50);
1299	}
1300
1301	/* Restore TSF */
1302	if (tsf)
1303		ath9k_hw_settsf64(ah, tsf);
1304
1305	if (AR_SREV_9280_20_OR_LATER(ah))
1306		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1307
1308	if (!AR_SREV_9300_20_OR_LATER(ah))
1309		ar9002_hw_enable_async_fifo(ah);
1310
1311	r = ath9k_hw_process_ini(ah, chan);
1312	if (r)
1313		return r;
1314
1315	/*
1316	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1317	 * right after the chip reset. When that happens, write a new
1318	 * value after the initvals have been applied, with an offset
1319	 * based on measured time difference
1320	 */
1321	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1322		tsf += 1500;
1323		ath9k_hw_settsf64(ah, tsf);
1324	}
1325
1326	/* Setup MFP options for CCMP */
1327	if (AR_SREV_9280_20_OR_LATER(ah)) {
1328		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1329		 * frames when constructing CCMP AAD. */
1330		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1331			      0xc7ff);
1332		ah->sw_mgmt_crypto = false;
1333	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1334		/* Disable hardware crypto for management frames */
1335		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1336			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1337		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1338			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1339		ah->sw_mgmt_crypto = true;
1340	} else
1341		ah->sw_mgmt_crypto = true;
1342
1343	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1344		ath9k_hw_set_delta_slope(ah, chan);
1345
1346	ath9k_hw_spur_mitigate_freq(ah, chan);
1347	ah->eep_ops->set_board_values(ah, chan);
1348
1349	ENABLE_REGWRITE_BUFFER(ah);
1350
1351	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1352	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1353		  | macStaId1
1354		  | AR_STA_ID1_RTS_USE_DEF
1355		  | (ah->config.
1356		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1357		  | ah->sta_id1_defaults);
1358	ath_hw_setbssidmask(common);
1359	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1360	ath9k_hw_write_associd(ah);
1361	REG_WRITE(ah, AR_ISR, ~0);
1362	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1363
1364	REGWRITE_BUFFER_FLUSH(ah);
1365
1366	ath9k_hw_set_operating_mode(ah, ah->opmode);
1367
1368	r = ath9k_hw_rf_set_freq(ah, chan);
1369	if (r)
1370		return r;
1371
1372	ath9k_hw_set_clockrate(ah);
1373
1374	ENABLE_REGWRITE_BUFFER(ah);
1375
1376	for (i = 0; i < AR_NUM_DCU; i++)
1377		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1378
1379	REGWRITE_BUFFER_FLUSH(ah);
1380
1381	ah->intr_txqs = 0;
1382	for (i = 0; i < ah->caps.total_queues; i++)
1383		ath9k_hw_resettxqueue(ah, i);
1384
1385	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1386	ath9k_hw_ani_cache_ini_regs(ah);
1387	ath9k_hw_init_qos(ah);
1388
1389	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1390		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1391
1392	ath9k_hw_init_global_settings(ah);
1393
1394	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1395		ar9002_hw_update_async_fifo(ah);
1396		ar9002_hw_enable_wep_aggregation(ah);
1397	}
1398
1399	REG_WRITE(ah, AR_STA_ID1,
1400		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1401
1402	ath9k_hw_set_dma(ah);
1403
1404	REG_WRITE(ah, AR_OBS, 8);
1405
1406	if (ah->config.rx_intr_mitigation) {
1407		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1408		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1409	}
1410
1411	if (ah->config.tx_intr_mitigation) {
1412		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1413		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1414	}
1415
1416	ath9k_hw_init_bb(ah, chan);
1417
1418	if (!ath9k_hw_init_cal(ah, chan))
1419		return -EIO;
1420
1421	ENABLE_REGWRITE_BUFFER(ah);
1422
1423	ath9k_hw_restore_chainmask(ah);
1424	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1425
1426	REGWRITE_BUFFER_FLUSH(ah);
1427
1428	/*
1429	 * For big endian systems turn on swapping for descriptors
1430	 */
1431	if (AR_SREV_9100(ah)) {
1432		u32 mask;
1433		mask = REG_READ(ah, AR_CFG);
1434		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1435			ath_dbg(common, ATH_DBG_RESET,
1436				"CFG Byte Swap Set 0x%x\n", mask);
1437		} else {
1438			mask =
1439				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1440			REG_WRITE(ah, AR_CFG, mask);
1441			ath_dbg(common, ATH_DBG_RESET,
1442				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1443		}
1444	} else {
1445		if (common->bus_ops->ath_bus_type == ATH_USB) {
1446			/* Configure AR9271 target WLAN */
1447			if (AR_SREV_9271(ah))
1448				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1449			else
1450				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1451		}
1452#ifdef __BIG_ENDIAN
1453                else
1454			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1455#endif
1456	}
1457
1458	if (ah->btcoex_hw.enabled)
1459		ath9k_hw_btcoex_enable(ah);
1460
1461	if (AR_SREV_9300_20_OR_LATER(ah))
1462		ar9003_hw_bb_watchdog_config(ah);
1463
1464	return 0;
1465}
1466EXPORT_SYMBOL(ath9k_hw_reset);
1467
1468/******************************/
1469/* Power Management (Chipset) */
1470/******************************/
1471
1472/*
1473 * Notify Power Mgt is disabled in self-generated frames.
1474 * If requested, force chip to sleep.
1475 */
1476static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1477{
1478	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1479	if (setChip) {
1480		/*
1481		 * Clear the RTC force wake bit to allow the
1482		 * mac to go to sleep.
1483		 */
1484		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1485			    AR_RTC_FORCE_WAKE_EN);
1486		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1487			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1488
1489		/* Shutdown chip. Active low */
1490		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1491			REG_CLR_BIT(ah, (AR_RTC_RESET),
1492				    AR_RTC_RESET_EN);
1493	}
1494
1495	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1496	if (AR_SREV_9300_20_OR_LATER(ah))
1497		REG_WRITE(ah, AR_WA,
1498			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1499}
1500
1501/*
1502 * Notify Power Management is enabled in self-generating
1503 * frames. If request, set power mode of chip to
1504 * auto/normal.  Duration in units of 128us (1/8 TU).
1505 */
1506static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1507{
1508	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1509	if (setChip) {
1510		struct ath9k_hw_capabilities *pCap = &ah->caps;
1511
1512		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1513			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1514			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1515				  AR_RTC_FORCE_WAKE_ON_INT);
1516		} else {
1517			/*
1518			 * Clear the RTC force wake bit to allow the
1519			 * mac to go to sleep.
1520			 */
1521			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1522				    AR_RTC_FORCE_WAKE_EN);
1523		}
1524	}
1525
1526	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1527	if (AR_SREV_9300_20_OR_LATER(ah))
1528		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1529}
1530
1531static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1532{
1533	u32 val;
1534	int i;
1535
1536	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1537	if (AR_SREV_9300_20_OR_LATER(ah)) {
1538		REG_WRITE(ah, AR_WA, ah->WARegVal);
1539		udelay(10);
1540	}
1541
1542	if (setChip) {
1543		if ((REG_READ(ah, AR_RTC_STATUS) &
1544		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1545			if (ath9k_hw_set_reset_reg(ah,
1546					   ATH9K_RESET_POWER_ON) != true) {
1547				return false;
1548			}
1549			if (!AR_SREV_9300_20_OR_LATER(ah))
1550				ath9k_hw_init_pll(ah, NULL);
1551		}
1552		if (AR_SREV_9100(ah))
1553			REG_SET_BIT(ah, AR_RTC_RESET,
1554				    AR_RTC_RESET_EN);
1555
1556		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1557			    AR_RTC_FORCE_WAKE_EN);
1558		udelay(50);
1559
1560		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1561			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1562			if (val == AR_RTC_STATUS_ON)
1563				break;
1564			udelay(50);
1565			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1566				    AR_RTC_FORCE_WAKE_EN);
1567		}
1568		if (i == 0) {
1569			ath_err(ath9k_hw_common(ah),
1570				"Failed to wakeup in %uus\n",
1571				POWER_UP_TIME / 20);
1572			return false;
1573		}
1574	}
1575
1576	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1577
1578	return true;
1579}
1580
1581bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1582{
1583	struct ath_common *common = ath9k_hw_common(ah);
1584	int status = true, setChip = true;
1585	static const char *modes[] = {
1586		"AWAKE",
1587		"FULL-SLEEP",
1588		"NETWORK SLEEP",
1589		"UNDEFINED"
1590	};
1591
1592	if (ah->power_mode == mode)
1593		return status;
1594
1595	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1596		modes[ah->power_mode], modes[mode]);
1597
1598	switch (mode) {
1599	case ATH9K_PM_AWAKE:
1600		status = ath9k_hw_set_power_awake(ah, setChip);
1601		break;
1602	case ATH9K_PM_FULL_SLEEP:
1603		ath9k_set_power_sleep(ah, setChip);
1604		ah->chip_fullsleep = true;
1605		break;
1606	case ATH9K_PM_NETWORK_SLEEP:
1607		ath9k_set_power_network_sleep(ah, setChip);
1608		break;
1609	default:
1610		ath_err(common, "Unknown power mode %u\n", mode);
1611		return false;
1612	}
1613	ah->power_mode = mode;
1614
1615	/*
1616	 * XXX: If this warning never comes up after a while then
1617	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1618	 * ath9k_hw_setpower() return type void.
1619	 */
1620
1621	if (!(ah->ah_flags & AH_UNPLUGGED))
1622		ATH_DBG_WARN_ON_ONCE(!status);
1623
1624	return status;
1625}
1626EXPORT_SYMBOL(ath9k_hw_setpower);
1627
1628/*******************/
1629/* Beacon Handling */
1630/*******************/
1631
1632void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1633{
1634	int flags = 0;
1635
1636	ENABLE_REGWRITE_BUFFER(ah);
1637
1638	switch (ah->opmode) {
1639	case NL80211_IFTYPE_ADHOC:
1640	case NL80211_IFTYPE_MESH_POINT:
1641		REG_SET_BIT(ah, AR_TXCFG,
1642			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1643		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1644			  TU_TO_USEC(next_beacon +
1645				     (ah->atim_window ? ah->
1646				      atim_window : 1)));
1647		flags |= AR_NDP_TIMER_EN;
1648	case NL80211_IFTYPE_AP:
1649		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1650		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1651			  TU_TO_USEC(next_beacon -
1652				     ah->config.
1653				     dma_beacon_response_time));
1654		REG_WRITE(ah, AR_NEXT_SWBA,
1655			  TU_TO_USEC(next_beacon -
1656				     ah->config.
1657				     sw_beacon_response_time));
1658		flags |=
1659			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1660		break;
1661	default:
1662		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1663			"%s: unsupported opmode: %d\n",
1664			__func__, ah->opmode);
1665		return;
1666		break;
1667	}
1668
1669	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1670	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1671	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1672	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1673
1674	REGWRITE_BUFFER_FLUSH(ah);
1675
1676	beacon_period &= ~ATH9K_BEACON_ENA;
1677	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1678		ath9k_hw_reset_tsf(ah);
1679	}
1680
1681	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1682}
1683EXPORT_SYMBOL(ath9k_hw_beaconinit);
1684
1685void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1686				    const struct ath9k_beacon_state *bs)
1687{
1688	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1689	struct ath9k_hw_capabilities *pCap = &ah->caps;
1690	struct ath_common *common = ath9k_hw_common(ah);
1691
1692	ENABLE_REGWRITE_BUFFER(ah);
1693
1694	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1695
1696	REG_WRITE(ah, AR_BEACON_PERIOD,
1697		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1698	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1699		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1700
1701	REGWRITE_BUFFER_FLUSH(ah);
1702
1703	REG_RMW_FIELD(ah, AR_RSSI_THR,
1704		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1705
1706	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1707
1708	if (bs->bs_sleepduration > beaconintval)
1709		beaconintval = bs->bs_sleepduration;
1710
1711	dtimperiod = bs->bs_dtimperiod;
1712	if (bs->bs_sleepduration > dtimperiod)
1713		dtimperiod = bs->bs_sleepduration;
1714
1715	if (beaconintval == dtimperiod)
1716		nextTbtt = bs->bs_nextdtim;
1717	else
1718		nextTbtt = bs->bs_nexttbtt;
1719
1720	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1721	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1722	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1723	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1724
1725	ENABLE_REGWRITE_BUFFER(ah);
1726
1727	REG_WRITE(ah, AR_NEXT_DTIM,
1728		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1729	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1730
1731	REG_WRITE(ah, AR_SLEEP1,
1732		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1733		  | AR_SLEEP1_ASSUME_DTIM);
1734
1735	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1736		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1737	else
1738		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1739
1740	REG_WRITE(ah, AR_SLEEP2,
1741		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1742
1743	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1744	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1745
1746	REGWRITE_BUFFER_FLUSH(ah);
1747
1748	REG_SET_BIT(ah, AR_TIMER_MODE,
1749		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1750		    AR_DTIM_TIMER_EN);
1751
1752	/* TSF Out of Range Threshold */
1753	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1754}
1755EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1756
1757/*******************/
1758/* HW Capabilities */
1759/*******************/
1760
1761int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1762{
1763	struct ath9k_hw_capabilities *pCap = &ah->caps;
1764	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1765	struct ath_common *common = ath9k_hw_common(ah);
1766	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1767
1768	u16 capField = 0, eeval;
1769	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1770
1771	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1772	regulatory->current_rd = eeval;
1773
1774	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1775	if (AR_SREV_9285_12_OR_LATER(ah))
1776		eeval |= AR9285_RDEXT_DEFAULT;
1777	regulatory->current_rd_ext = eeval;
1778
1779	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1780
1781	if (ah->opmode != NL80211_IFTYPE_AP &&
1782	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1783		if (regulatory->current_rd == 0x64 ||
1784		    regulatory->current_rd == 0x65)
1785			regulatory->current_rd += 5;
1786		else if (regulatory->current_rd == 0x41)
1787			regulatory->current_rd = 0x43;
1788		ath_dbg(common, ATH_DBG_REGULATORY,
1789			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1790	}
1791
1792	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1793	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1794		ath_err(common,
1795			"no band has been marked as supported in EEPROM\n");
1796		return -EINVAL;
1797	}
1798
1799	if (eeval & AR5416_OPFLAGS_11A)
1800		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1801
1802	if (eeval & AR5416_OPFLAGS_11G)
1803		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1804
1805	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1806	/*
1807	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1808	 * the EEPROM.
1809	 */
1810	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1811	    !(eeval & AR5416_OPFLAGS_11A) &&
1812	    !(AR_SREV_9271(ah)))
1813		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1814		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1815	else
1816		/* Use rx_chainmask from EEPROM. */
1817		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1818
1819	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1820
1821	/* enable key search for every frame in an aggregate */
1822	if (AR_SREV_9300_20_OR_LATER(ah))
1823		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1824
1825	pCap->low_2ghz_chan = 2312;
1826	pCap->high_2ghz_chan = 2732;
1827
1828	pCap->low_5ghz_chan = 4920;
1829	pCap->high_5ghz_chan = 6100;
1830
1831	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1832
1833	if (ah->config.ht_enable)
1834		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1835	else
1836		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1837
1838	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1839		pCap->total_queues =
1840			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1841	else
1842		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1843
1844	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1845		pCap->keycache_size =
1846			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1847	else
1848		pCap->keycache_size = AR_KEYTABLE_SIZE;
1849
1850	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1851		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1852	else
1853		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1854
1855	if (AR_SREV_9271(ah))
1856		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1857	else if (AR_DEVID_7010(ah))
1858		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1859	else if (AR_SREV_9285_12_OR_LATER(ah))
1860		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1861	else if (AR_SREV_9280_20_OR_LATER(ah))
1862		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1863	else
1864		pCap->num_gpio_pins = AR_NUM_GPIO;
1865
1866	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1867		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1868		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1869	} else {
1870		pCap->rts_aggr_limit = (8 * 1024);
1871	}
1872
1873	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1874
1875#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1876	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1877	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1878		ah->rfkill_gpio =
1879			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1880		ah->rfkill_polarity =
1881			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1882
1883		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1884	}
1885#endif
1886	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1887		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1888	else
1889		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1890
1891	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1892		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1893	else
1894		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1895
1896	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1897		pCap->reg_cap =
1898			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1899			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1900			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1901			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1902	} else {
1903		pCap->reg_cap =
1904			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1905			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1906	}
1907
1908	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1909	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1910	    AR_SREV_5416(ah))
1911		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1912
1913	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1914		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1915		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1916
1917		if (AR_SREV_9285(ah)) {
1918			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1919			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1920		} else {
1921			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1922		}
1923	} else {
1924		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1925	}
1926
1927	if (AR_SREV_9300_20_OR_LATER(ah)) {
1928		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1929		if (!AR_SREV_9485(ah))
1930			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1931
1932		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1933		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1934		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1935		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1936		pCap->txs_len = sizeof(struct ar9003_txs);
1937		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1938			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1939	} else {
1940		pCap->tx_desc_len = sizeof(struct ath_desc);
1941		if (AR_SREV_9280_20(ah) &&
1942		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1943		      AR5416_EEP_MINOR_VER_16) ||
1944		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1945			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1946	}
1947
1948	if (AR_SREV_9300_20_OR_LATER(ah))
1949		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1950
1951	if (AR_SREV_9300_20_OR_LATER(ah))
1952		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1953
1954	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1955		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1956
1957	if (AR_SREV_9285(ah))
1958		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1959			ant_div_ctl1 =
1960				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1961			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1962				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1963		}
1964	if (AR_SREV_9300_20_OR_LATER(ah)) {
1965		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1966			pCap->hw_caps |= ATH9K_HW_CAP_APM;
1967	}
1968
1969
1970
1971	if (AR_SREV_9485_10(ah)) {
1972		pCap->pcie_lcr_extsync_en = true;
1973		pCap->pcie_lcr_offset = 0x80;
1974	}
1975
1976	tx_chainmask = pCap->tx_chainmask;
1977	rx_chainmask = pCap->rx_chainmask;
1978	while (tx_chainmask || rx_chainmask) {
1979		if (tx_chainmask & BIT(0))
1980			pCap->max_txchains++;
1981		if (rx_chainmask & BIT(0))
1982			pCap->max_rxchains++;
1983
1984		tx_chainmask >>= 1;
1985		rx_chainmask >>= 1;
1986	}
1987
1988	return 0;
1989}
1990
1991/****************************/
1992/* GPIO / RFKILL / Antennae */
1993/****************************/
1994
1995static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1996					 u32 gpio, u32 type)
1997{
1998	int addr;
1999	u32 gpio_shift, tmp;
2000
2001	if (gpio > 11)
2002		addr = AR_GPIO_OUTPUT_MUX3;
2003	else if (gpio > 5)
2004		addr = AR_GPIO_OUTPUT_MUX2;
2005	else
2006		addr = AR_GPIO_OUTPUT_MUX1;
2007
2008	gpio_shift = (gpio % 6) * 5;
2009
2010	if (AR_SREV_9280_20_OR_LATER(ah)
2011	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2012		REG_RMW(ah, addr, (type << gpio_shift),
2013			(0x1f << gpio_shift));
2014	} else {
2015		tmp = REG_READ(ah, addr);
2016		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2017		tmp &= ~(0x1f << gpio_shift);
2018		tmp |= (type << gpio_shift);
2019		REG_WRITE(ah, addr, tmp);
2020	}
2021}
2022
2023void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2024{
2025	u32 gpio_shift;
2026
2027	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2028
2029	if (AR_DEVID_7010(ah)) {
2030		gpio_shift = gpio;
2031		REG_RMW(ah, AR7010_GPIO_OE,
2032			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2033			(AR7010_GPIO_OE_MASK << gpio_shift));
2034		return;
2035	}
2036
2037	gpio_shift = gpio << 1;
2038	REG_RMW(ah,
2039		AR_GPIO_OE_OUT,
2040		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2041		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2042}
2043EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2044
2045u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2046{
2047#define MS_REG_READ(x, y) \
2048	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2049
2050	if (gpio >= ah->caps.num_gpio_pins)
2051		return 0xffffffff;
2052
2053	if (AR_DEVID_7010(ah)) {
2054		u32 val;
2055		val = REG_READ(ah, AR7010_GPIO_IN);
2056		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2057	} else if (AR_SREV_9300_20_OR_LATER(ah))
2058		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2059			AR_GPIO_BIT(gpio)) != 0;
2060	else if (AR_SREV_9271(ah))
2061		return MS_REG_READ(AR9271, gpio) != 0;
2062	else if (AR_SREV_9287_11_OR_LATER(ah))
2063		return MS_REG_READ(AR9287, gpio) != 0;
2064	else if (AR_SREV_9285_12_OR_LATER(ah))
2065		return MS_REG_READ(AR9285, gpio) != 0;
2066	else if (AR_SREV_9280_20_OR_LATER(ah))
2067		return MS_REG_READ(AR928X, gpio) != 0;
2068	else
2069		return MS_REG_READ(AR, gpio) != 0;
2070}
2071EXPORT_SYMBOL(ath9k_hw_gpio_get);
2072
2073void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2074			 u32 ah_signal_type)
2075{
2076	u32 gpio_shift;
2077
2078	if (AR_DEVID_7010(ah)) {
2079		gpio_shift = gpio;
2080		REG_RMW(ah, AR7010_GPIO_OE,
2081			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2082			(AR7010_GPIO_OE_MASK << gpio_shift));
2083		return;
2084	}
2085
2086	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2087	gpio_shift = 2 * gpio;
2088	REG_RMW(ah,
2089		AR_GPIO_OE_OUT,
2090		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2091		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2092}
2093EXPORT_SYMBOL(ath9k_hw_cfg_output);
2094
2095void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2096{
2097	if (AR_DEVID_7010(ah)) {
2098		val = val ? 0 : 1;
2099		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2100			AR_GPIO_BIT(gpio));
2101		return;
2102	}
2103
2104	if (AR_SREV_9271(ah))
2105		val = ~val;
2106
2107	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2108		AR_GPIO_BIT(gpio));
2109}
2110EXPORT_SYMBOL(ath9k_hw_set_gpio);
2111
2112u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2113{
2114	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2115}
2116EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2117
2118void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2119{
2120	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2121}
2122EXPORT_SYMBOL(ath9k_hw_setantenna);
2123
2124/*********************/
2125/* General Operation */
2126/*********************/
2127
2128u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2129{
2130	u32 bits = REG_READ(ah, AR_RX_FILTER);
2131	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2132
2133	if (phybits & AR_PHY_ERR_RADAR)
2134		bits |= ATH9K_RX_FILTER_PHYRADAR;
2135	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2136		bits |= ATH9K_RX_FILTER_PHYERR;
2137
2138	return bits;
2139}
2140EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2141
2142void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2143{
2144	u32 phybits;
2145
2146	ENABLE_REGWRITE_BUFFER(ah);
2147
2148	REG_WRITE(ah, AR_RX_FILTER, bits);
2149
2150	phybits = 0;
2151	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2152		phybits |= AR_PHY_ERR_RADAR;
2153	if (bits & ATH9K_RX_FILTER_PHYERR)
2154		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2155	REG_WRITE(ah, AR_PHY_ERR, phybits);
2156
2157	if (phybits)
2158		REG_WRITE(ah, AR_RXCFG,
2159			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2160	else
2161		REG_WRITE(ah, AR_RXCFG,
2162			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2163
2164	REGWRITE_BUFFER_FLUSH(ah);
2165}
2166EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2167
2168bool ath9k_hw_phy_disable(struct ath_hw *ah)
2169{
2170	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2171		return false;
2172
2173	ath9k_hw_init_pll(ah, NULL);
2174	return true;
2175}
2176EXPORT_SYMBOL(ath9k_hw_phy_disable);
2177
2178bool ath9k_hw_disable(struct ath_hw *ah)
2179{
2180	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2181		return false;
2182
2183	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2184		return false;
2185
2186	ath9k_hw_init_pll(ah, NULL);
2187	return true;
2188}
2189EXPORT_SYMBOL(ath9k_hw_disable);
2190
2191void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2192{
2193	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2194	struct ath9k_channel *chan = ah->curchan;
2195	struct ieee80211_channel *channel = chan->chan;
2196
2197	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2198
2199	ah->eep_ops->set_txpower(ah, chan,
2200				 ath9k_regd_get_ctl(regulatory, chan),
2201				 channel->max_antenna_gain * 2,
2202				 channel->max_power * 2,
2203				 min((u32) MAX_RATE_POWER,
2204				 (u32) regulatory->power_limit), test);
2205}
2206EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2207
2208void ath9k_hw_setopmode(struct ath_hw *ah)
2209{
2210	ath9k_hw_set_operating_mode(ah, ah->opmode);
2211}
2212EXPORT_SYMBOL(ath9k_hw_setopmode);
2213
2214void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2215{
2216	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2217	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2218}
2219EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2220
2221void ath9k_hw_write_associd(struct ath_hw *ah)
2222{
2223	struct ath_common *common = ath9k_hw_common(ah);
2224
2225	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2226	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2227		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2228}
2229EXPORT_SYMBOL(ath9k_hw_write_associd);
2230
2231#define ATH9K_MAX_TSF_READ 10
2232
2233u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2234{
2235	u32 tsf_lower, tsf_upper1, tsf_upper2;
2236	int i;
2237
2238	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2239	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2240		tsf_lower = REG_READ(ah, AR_TSF_L32);
2241		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2242		if (tsf_upper2 == tsf_upper1)
2243			break;
2244		tsf_upper1 = tsf_upper2;
2245	}
2246
2247	WARN_ON( i == ATH9K_MAX_TSF_READ );
2248
2249	return (((u64)tsf_upper1 << 32) | tsf_lower);
2250}
2251EXPORT_SYMBOL(ath9k_hw_gettsf64);
2252
2253void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2254{
2255	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2256	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2257}
2258EXPORT_SYMBOL(ath9k_hw_settsf64);
2259
2260void ath9k_hw_reset_tsf(struct ath_hw *ah)
2261{
2262	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2263			   AH_TSF_WRITE_TIMEOUT))
2264		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2265			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2266
2267	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2268}
2269EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2270
2271void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2272{
2273	if (setting)
2274		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2275	else
2276		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2277}
2278EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2279
2280void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2281{
2282	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2283	u32 macmode;
2284
2285	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2286		macmode = AR_2040_JOINED_RX_CLEAR;
2287	else
2288		macmode = 0;
2289
2290	REG_WRITE(ah, AR_2040_MODE, macmode);
2291}
2292
2293/* HW Generic timers configuration */
2294
2295static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2296{
2297	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2298	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2299	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2300	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2304	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2305	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2306	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2307				AR_NDP2_TIMER_MODE, 0x0002},
2308	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2309				AR_NDP2_TIMER_MODE, 0x0004},
2310	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2311				AR_NDP2_TIMER_MODE, 0x0008},
2312	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2313				AR_NDP2_TIMER_MODE, 0x0010},
2314	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2315				AR_NDP2_TIMER_MODE, 0x0020},
2316	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2317				AR_NDP2_TIMER_MODE, 0x0040},
2318	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2319				AR_NDP2_TIMER_MODE, 0x0080}
2320};
2321
2322/* HW generic timer primitives */
2323
2324/* compute and clear index of rightmost 1 */
2325static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2326{
2327	u32 b;
2328
2329	b = *mask;
2330	b &= (0-b);
2331	*mask &= ~b;
2332	b *= debruijn32;
2333	b >>= 27;
2334
2335	return timer_table->gen_timer_index[b];
2336}
2337
2338static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2339{
2340	return REG_READ(ah, AR_TSF_L32);
2341}
2342
2343struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2344					  void (*trigger)(void *),
2345					  void (*overflow)(void *),
2346					  void *arg,
2347					  u8 timer_index)
2348{
2349	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2350	struct ath_gen_timer *timer;
2351
2352	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2353
2354	if (timer == NULL) {
2355		ath_err(ath9k_hw_common(ah),
2356			"Failed to allocate memory for hw timer[%d]\n",
2357			timer_index);
2358		return NULL;
2359	}
2360
2361	/* allocate a hardware generic timer slot */
2362	timer_table->timers[timer_index] = timer;
2363	timer->index = timer_index;
2364	timer->trigger = trigger;
2365	timer->overflow = overflow;
2366	timer->arg = arg;
2367
2368	return timer;
2369}
2370EXPORT_SYMBOL(ath_gen_timer_alloc);
2371
2372void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2373			      struct ath_gen_timer *timer,
2374			      u32 timer_next,
2375			      u32 timer_period)
2376{
2377	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2378	u32 tsf;
2379
2380	BUG_ON(!timer_period);
2381
2382	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2383
2384	tsf = ath9k_hw_gettsf32(ah);
2385
2386	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2387		"current tsf %x period %x timer_next %x\n",
2388		tsf, timer_period, timer_next);
2389
2390	/*
2391	 * Pull timer_next forward if the current TSF already passed it
2392	 * because of software latency
2393	 */
2394	if (timer_next < tsf)
2395		timer_next = tsf + timer_period;
2396
2397	/*
2398	 * Program generic timer registers
2399	 */
2400	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2401		 timer_next);
2402	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2403		  timer_period);
2404	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2405		    gen_tmr_configuration[timer->index].mode_mask);
2406
2407	/* Enable both trigger and thresh interrupt masks */
2408	REG_SET_BIT(ah, AR_IMR_S5,
2409		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2410		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2411}
2412EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2413
2414void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2415{
2416	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2417
2418	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2419		(timer->index >= ATH_MAX_GEN_TIMER)) {
2420		return;
2421	}
2422
2423	/* Clear generic timer enable bits. */
2424	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2425			gen_tmr_configuration[timer->index].mode_mask);
2426
2427	/* Disable both trigger and thresh interrupt masks */
2428	REG_CLR_BIT(ah, AR_IMR_S5,
2429		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2430		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2431
2432	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2433}
2434EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2435
2436void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2437{
2438	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2439
2440	/* free the hardware generic timer slot */
2441	timer_table->timers[timer->index] = NULL;
2442	kfree(timer);
2443}
2444EXPORT_SYMBOL(ath_gen_timer_free);
2445
2446/*
2447 * Generic Timer Interrupts handling
2448 */
2449void ath_gen_timer_isr(struct ath_hw *ah)
2450{
2451	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2452	struct ath_gen_timer *timer;
2453	struct ath_common *common = ath9k_hw_common(ah);
2454	u32 trigger_mask, thresh_mask, index;
2455
2456	/* get hardware generic timer interrupt status */
2457	trigger_mask = ah->intr_gen_timer_trigger;
2458	thresh_mask = ah->intr_gen_timer_thresh;
2459	trigger_mask &= timer_table->timer_mask.val;
2460	thresh_mask &= timer_table->timer_mask.val;
2461
2462	trigger_mask &= ~thresh_mask;
2463
2464	while (thresh_mask) {
2465		index = rightmost_index(timer_table, &thresh_mask);
2466		timer = timer_table->timers[index];
2467		BUG_ON(!timer);
2468		ath_dbg(common, ATH_DBG_HWTIMER,
2469			"TSF overflow for Gen timer %d\n", index);
2470		timer->overflow(timer->arg);
2471	}
2472
2473	while (trigger_mask) {
2474		index = rightmost_index(timer_table, &trigger_mask);
2475		timer = timer_table->timers[index];
2476		BUG_ON(!timer);
2477		ath_dbg(common, ATH_DBG_HWTIMER,
2478			"Gen timer[%d] trigger\n", index);
2479		timer->trigger(timer->arg);
2480	}
2481}
2482EXPORT_SYMBOL(ath_gen_timer_isr);
2483
2484/********/
2485/* HTC  */
2486/********/
2487
2488void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2489{
2490	ah->htc_reset_init = true;
2491}
2492EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2493
2494static struct {
2495	u32 version;
2496	const char * name;
2497} ath_mac_bb_names[] = {
2498	/* Devices with external radios */
2499	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2500	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2501	{ AR_SREV_VERSION_9100,		"9100" },
2502	{ AR_SREV_VERSION_9160,		"9160" },
2503	/* Single-chip solutions */
2504	{ AR_SREV_VERSION_9280,		"9280" },
2505	{ AR_SREV_VERSION_9285,		"9285" },
2506	{ AR_SREV_VERSION_9287,         "9287" },
2507	{ AR_SREV_VERSION_9271,         "9271" },
2508	{ AR_SREV_VERSION_9300,         "9300" },
2509};
2510
2511/* For devices with external radios */
2512static struct {
2513	u16 version;
2514	const char * name;
2515} ath_rf_names[] = {
2516	{ 0,				"5133" },
2517	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2518	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2519	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2520	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2521};
2522
2523/*
2524 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2525 */
2526static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2527{
2528	int i;
2529
2530	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2531		if (ath_mac_bb_names[i].version == mac_bb_version) {
2532			return ath_mac_bb_names[i].name;
2533		}
2534	}
2535
2536	return "????";
2537}
2538
2539/*
2540 * Return the RF name. "????" is returned if the RF is unknown.
2541 * Used for devices with external radios.
2542 */
2543static const char *ath9k_hw_rf_name(u16 rf_version)
2544{
2545	int i;
2546
2547	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2548		if (ath_rf_names[i].version == rf_version) {
2549			return ath_rf_names[i].name;
2550		}
2551	}
2552
2553	return "????";
2554}
2555
2556void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2557{
2558	int used;
2559
2560	/* chipsets >= AR9280 are single-chip */
2561	if (AR_SREV_9280_20_OR_LATER(ah)) {
2562		used = snprintf(hw_name, len,
2563			       "Atheros AR%s Rev:%x",
2564			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2565			       ah->hw_version.macRev);
2566	}
2567	else {
2568		used = snprintf(hw_name, len,
2569			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2570			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2571			       ah->hw_version.macRev,
2572			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2573						AR_RADIO_SREV_MAJOR)),
2574			       ah->hw_version.phyRev);
2575	}
2576
2577	hw_name[used] = '\0';
2578}
2579EXPORT_SYMBOL(ath9k_hw_name);
2580