hw.c revision 040b74f741b20dbf07359716d5c540356a036ade
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58{
59	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61	return priv_ops->macversion_supported(ah->hw_version.macVersion);
62}
63
64static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65					struct ath9k_channel *chan)
66{
67	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68}
69
70static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71{
72	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73		return;
74
75	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76}
77
78static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79{
80	/* You will not have this callback if using the old ANI */
81	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82		return;
83
84	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85}
86
87/********************/
88/* Helper Functions */
89/********************/
90
91static void ath9k_hw_set_clockrate(struct ath_hw *ah)
92{
93	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94	struct ath_common *common = ath9k_hw_common(ah);
95	unsigned int clockrate;
96
97	if (!ah->curchan) /* should really check for CCK instead */
98		clockrate = ATH9K_CLOCK_RATE_CCK;
99	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
100		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
101	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
102		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
103	else
104		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
105
106	if (conf_is_ht40(conf))
107		clockrate *= 2;
108
109	common->clockrate = clockrate;
110}
111
112static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
113{
114	struct ath_common *common = ath9k_hw_common(ah);
115
116	return usecs * common->clockrate;
117}
118
119bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120{
121	int i;
122
123	BUG_ON(timeout < AH_TIME_QUANTUM);
124
125	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126		if ((REG_READ(ah, reg) & mask) == val)
127			return true;
128
129		udelay(AH_TIME_QUANTUM);
130	}
131
132	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
133		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134		timeout, reg, REG_READ(ah, reg), mask, val);
135
136	return false;
137}
138EXPORT_SYMBOL(ath9k_hw_wait);
139
140u32 ath9k_hw_reverse_bits(u32 val, u32 n)
141{
142	u32 retval;
143	int i;
144
145	for (i = 0, retval = 0; i < n; i++) {
146		retval = (retval << 1) | (val & 1);
147		val >>= 1;
148	}
149	return retval;
150}
151
152bool ath9k_get_channel_edges(struct ath_hw *ah,
153			     u16 flags, u16 *low,
154			     u16 *high)
155{
156	struct ath9k_hw_capabilities *pCap = &ah->caps;
157
158	if (flags & CHANNEL_5GHZ) {
159		*low = pCap->low_5ghz_chan;
160		*high = pCap->high_5ghz_chan;
161		return true;
162	}
163	if ((flags & CHANNEL_2GHZ)) {
164		*low = pCap->low_2ghz_chan;
165		*high = pCap->high_2ghz_chan;
166		return true;
167	}
168	return false;
169}
170
171u16 ath9k_hw_computetxtime(struct ath_hw *ah,
172			   u8 phy, int kbps,
173			   u32 frameLen, u16 rateix,
174			   bool shortPreamble)
175{
176	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
177
178	if (kbps == 0)
179		return 0;
180
181	switch (phy) {
182	case WLAN_RC_PHY_CCK:
183		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
184		if (shortPreamble)
185			phyTime >>= 1;
186		numBits = frameLen << 3;
187		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
188		break;
189	case WLAN_RC_PHY_OFDM:
190		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192			numBits = OFDM_PLCP_BITS + (frameLen << 3);
193			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194			txTime = OFDM_SIFS_TIME_QUARTER
195				+ OFDM_PREAMBLE_TIME_QUARTER
196				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197		} else if (ah->curchan &&
198			   IS_CHAN_HALF_RATE(ah->curchan)) {
199			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202			txTime = OFDM_SIFS_TIME_HALF +
203				OFDM_PREAMBLE_TIME_HALF
204				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
205		} else {
206			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207			numBits = OFDM_PLCP_BITS + (frameLen << 3);
208			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210				+ (numSymbols * OFDM_SYMBOL_TIME);
211		}
212		break;
213	default:
214		ath_err(ath9k_hw_common(ah),
215			"Unknown phy %u (rate ix %u)\n", phy, rateix);
216		txTime = 0;
217		break;
218	}
219
220	return txTime;
221}
222EXPORT_SYMBOL(ath9k_hw_computetxtime);
223
224void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225				  struct ath9k_channel *chan,
226				  struct chan_centers *centers)
227{
228	int8_t extoff;
229
230	if (!IS_CHAN_HT40(chan)) {
231		centers->ctl_center = centers->ext_center =
232			centers->synth_center = chan->channel;
233		return;
234	}
235
236	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238		centers->synth_center =
239			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
240		extoff = 1;
241	} else {
242		centers->synth_center =
243			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
244		extoff = -1;
245	}
246
247	centers->ctl_center =
248		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249	/* 25 MHz spacing is supported by hw but not on upper layers */
250	centers->ext_center =
251		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
252}
253
254/******************/
255/* Chip Revisions */
256/******************/
257
258static void ath9k_hw_read_revisions(struct ath_hw *ah)
259{
260	u32 val;
261
262	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
263
264	if (val == 0xFF) {
265		val = REG_READ(ah, AR_SREV);
266		ah->hw_version.macVersion =
267			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
270	} else {
271		if (!AR_SREV_9100(ah))
272			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
273
274		ah->hw_version.macRev = val & AR_SREV_REVISION;
275
276		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277			ah->is_pciexpress = true;
278	}
279}
280
281/************************************/
282/* HW Attach, Detach, Init Routines */
283/************************************/
284
285static void ath9k_hw_disablepcie(struct ath_hw *ah)
286{
287	if (!AR_SREV_5416(ah))
288		return;
289
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
298	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
299
300	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
301}
302
303/* This should work for all families including legacy */
304static bool ath9k_hw_chip_test(struct ath_hw *ah)
305{
306	struct ath_common *common = ath9k_hw_common(ah);
307	u32 regAddr[2] = { AR_STA_ID0 };
308	u32 regHold[2];
309	static const u32 patternData[4] = {
310		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
311	};
312	int i, j, loop_max;
313
314	if (!AR_SREV_9300_20_OR_LATER(ah)) {
315		loop_max = 2;
316		regAddr[1] = AR_PHY_BASE + (8 << 2);
317	} else
318		loop_max = 1;
319
320	for (i = 0; i < loop_max; i++) {
321		u32 addr = regAddr[i];
322		u32 wrData, rdData;
323
324		regHold[i] = REG_READ(ah, addr);
325		for (j = 0; j < 0x100; j++) {
326			wrData = (j << 16) | j;
327			REG_WRITE(ah, addr, wrData);
328			rdData = REG_READ(ah, addr);
329			if (rdData != wrData) {
330				ath_err(common,
331					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
332					addr, wrData, rdData);
333				return false;
334			}
335		}
336		for (j = 0; j < 4; j++) {
337			wrData = patternData[j];
338			REG_WRITE(ah, addr, wrData);
339			rdData = REG_READ(ah, addr);
340			if (wrData != rdData) {
341				ath_err(common,
342					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
343					addr, wrData, rdData);
344				return false;
345			}
346		}
347		REG_WRITE(ah, regAddr[i], regHold[i]);
348	}
349	udelay(100);
350
351	return true;
352}
353
354static void ath9k_hw_init_config(struct ath_hw *ah)
355{
356	int i;
357
358	ah->config.dma_beacon_response_time = 2;
359	ah->config.sw_beacon_response_time = 10;
360	ah->config.additional_swba_backoff = 0;
361	ah->config.ack_6mb = 0x0;
362	ah->config.cwm_ignore_extcca = 0;
363	ah->config.pcie_powersave_enable = 0;
364	ah->config.pcie_clock_req = 0;
365	ah->config.pcie_waen = 0;
366	ah->config.analog_shiftreg = 1;
367	ah->config.enable_ani = true;
368
369	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
370		ah->config.spurchans[i][0] = AR_NO_SPUR;
371		ah->config.spurchans[i][1] = AR_NO_SPUR;
372	}
373
374	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
375		ah->config.ht_enable = 1;
376	else
377		ah->config.ht_enable = 0;
378
379	ah->config.rx_intr_mitigation = true;
380	ah->config.pcieSerDesWrite = true;
381
382	/*
383	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
384	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
385	 * This means we use it for all AR5416 devices, and the few
386	 * minor PCI AR9280 devices out there.
387	 *
388	 * Serialization is required because these devices do not handle
389	 * well the case of two concurrent reads/writes due to the latency
390	 * involved. During one read/write another read/write can be issued
391	 * on another CPU while the previous read/write may still be working
392	 * on our hardware, if we hit this case the hardware poops in a loop.
393	 * We prevent this by serializing reads and writes.
394	 *
395	 * This issue is not present on PCI-Express devices or pre-AR5416
396	 * devices (legacy, 802.11abg).
397	 */
398	if (num_possible_cpus() > 1)
399		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
400}
401
402static void ath9k_hw_init_defaults(struct ath_hw *ah)
403{
404	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
405
406	regulatory->country_code = CTRY_DEFAULT;
407	regulatory->power_limit = MAX_RATE_POWER;
408	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
409
410	ah->hw_version.magic = AR5416_MAGIC;
411	ah->hw_version.subvendorid = 0;
412
413	ah->atim_window = 0;
414	ah->sta_id1_defaults =
415		AR_STA_ID1_CRPT_MIC_ENABLE |
416		AR_STA_ID1_MCAST_KSRCH;
417	ah->beacon_interval = 100;
418	ah->enable_32kHz_clock = DONT_USE_32KHZ;
419	ah->slottime = (u32) -1;
420	ah->globaltxtimeout = (u32) -1;
421	ah->power_mode = ATH9K_PM_UNDEFINED;
422}
423
424static int ath9k_hw_init_macaddr(struct ath_hw *ah)
425{
426	struct ath_common *common = ath9k_hw_common(ah);
427	u32 sum;
428	int i;
429	u16 eeval;
430	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
431
432	sum = 0;
433	for (i = 0; i < 3; i++) {
434		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
435		sum += eeval;
436		common->macaddr[2 * i] = eeval >> 8;
437		common->macaddr[2 * i + 1] = eeval & 0xff;
438	}
439	if (sum == 0 || sum == 0xffff * 3)
440		return -EADDRNOTAVAIL;
441
442	return 0;
443}
444
445static int ath9k_hw_post_init(struct ath_hw *ah)
446{
447	int ecode;
448
449	if (!AR_SREV_9271(ah)) {
450		if (!ath9k_hw_chip_test(ah))
451			return -ENODEV;
452	}
453
454	if (!AR_SREV_9300_20_OR_LATER(ah)) {
455		ecode = ar9002_hw_rf_claim(ah);
456		if (ecode != 0)
457			return ecode;
458	}
459
460	ecode = ath9k_hw_eeprom_init(ah);
461	if (ecode != 0)
462		return ecode;
463
464	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
465		"Eeprom VER: %d, REV: %d\n",
466		ah->eep_ops->get_eeprom_ver(ah),
467		ah->eep_ops->get_eeprom_rev(ah));
468
469	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
470	if (ecode) {
471		ath_err(ath9k_hw_common(ah),
472			"Failed allocating banks for external radio\n");
473		ath9k_hw_rf_free_ext_banks(ah);
474		return ecode;
475	}
476
477	if (!AR_SREV_9100(ah)) {
478		ath9k_hw_ani_setup(ah);
479		ath9k_hw_ani_init(ah);
480	}
481
482	return 0;
483}
484
485static void ath9k_hw_attach_ops(struct ath_hw *ah)
486{
487	if (AR_SREV_9300_20_OR_LATER(ah))
488		ar9003_hw_attach_ops(ah);
489	else
490		ar9002_hw_attach_ops(ah);
491}
492
493/* Called for all hardware families */
494static int __ath9k_hw_init(struct ath_hw *ah)
495{
496	struct ath_common *common = ath9k_hw_common(ah);
497	int r = 0;
498
499	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
500		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
501
502	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
503		ath_err(common, "Couldn't reset chip\n");
504		return -EIO;
505	}
506
507	ath9k_hw_init_defaults(ah);
508	ath9k_hw_init_config(ah);
509
510	ath9k_hw_attach_ops(ah);
511
512	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
513		ath_err(common, "Couldn't wakeup chip\n");
514		return -EIO;
515	}
516
517	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
518		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
519		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
520		     !ah->is_pciexpress)) {
521			ah->config.serialize_regmode =
522				SER_REG_MODE_ON;
523		} else {
524			ah->config.serialize_regmode =
525				SER_REG_MODE_OFF;
526		}
527	}
528
529	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
530		ah->config.serialize_regmode);
531
532	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
533		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
534	else
535		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
536
537	if (!ath9k_hw_macversion_supported(ah)) {
538		ath_err(common,
539			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
540			ah->hw_version.macVersion, ah->hw_version.macRev);
541		return -EOPNOTSUPP;
542	}
543
544	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
545		ah->is_pciexpress = false;
546
547	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
548	ath9k_hw_init_cal_settings(ah);
549
550	ah->ani_function = ATH9K_ANI_ALL;
551	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
552		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
553	if (!AR_SREV_9300_20_OR_LATER(ah))
554		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
555
556	ath9k_hw_init_mode_regs(ah);
557
558	/*
559	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
560	 * We need to do this to avoid RMW of this register. We cannot
561	 * read the reg when chip is asleep.
562	 */
563	ah->WARegVal = REG_READ(ah, AR_WA);
564	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
565			 AR_WA_ASPM_TIMER_BASED_DISABLE);
566
567	if (ah->is_pciexpress)
568		ath9k_hw_configpcipowersave(ah, 0, 0);
569	else
570		ath9k_hw_disablepcie(ah);
571
572	if (!AR_SREV_9300_20_OR_LATER(ah))
573		ar9002_hw_cck_chan14_spread(ah);
574
575	r = ath9k_hw_post_init(ah);
576	if (r)
577		return r;
578
579	ath9k_hw_init_mode_gain_regs(ah);
580	r = ath9k_hw_fill_cap_info(ah);
581	if (r)
582		return r;
583
584	r = ath9k_hw_init_macaddr(ah);
585	if (r) {
586		ath_err(common, "Failed to initialize MAC address\n");
587		return r;
588	}
589
590	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
591		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
592	else
593		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
594
595	ah->bb_watchdog_timeout_ms = 25;
596
597	common->state = ATH_HW_INITIALIZED;
598
599	return 0;
600}
601
602int ath9k_hw_init(struct ath_hw *ah)
603{
604	int ret;
605	struct ath_common *common = ath9k_hw_common(ah);
606
607	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
608	switch (ah->hw_version.devid) {
609	case AR5416_DEVID_PCI:
610	case AR5416_DEVID_PCIE:
611	case AR5416_AR9100_DEVID:
612	case AR9160_DEVID_PCI:
613	case AR9280_DEVID_PCI:
614	case AR9280_DEVID_PCIE:
615	case AR9285_DEVID_PCIE:
616	case AR9287_DEVID_PCI:
617	case AR9287_DEVID_PCIE:
618	case AR2427_DEVID_PCIE:
619	case AR9300_DEVID_PCIE:
620	case AR9300_DEVID_AR9485_PCIE:
621		break;
622	default:
623		if (common->bus_ops->ath_bus_type == ATH_USB)
624			break;
625		ath_err(common, "Hardware device ID 0x%04x not supported\n",
626			ah->hw_version.devid);
627		return -EOPNOTSUPP;
628	}
629
630	ret = __ath9k_hw_init(ah);
631	if (ret) {
632		ath_err(common,
633			"Unable to initialize hardware; initialization status: %d\n",
634			ret);
635		return ret;
636	}
637
638	return 0;
639}
640EXPORT_SYMBOL(ath9k_hw_init);
641
642static void ath9k_hw_init_qos(struct ath_hw *ah)
643{
644	ENABLE_REGWRITE_BUFFER(ah);
645
646	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
647	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
648
649	REG_WRITE(ah, AR_QOS_NO_ACK,
650		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
651		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
652		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
653
654	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
655	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
656	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
657	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
658	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
659
660	REGWRITE_BUFFER_FLUSH(ah);
661}
662
663static void ath9k_hw_init_pll(struct ath_hw *ah,
664			      struct ath9k_channel *chan)
665{
666	u32 pll;
667
668	if (AR_SREV_9485(ah))
669		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
670
671	pll = ath9k_hw_compute_pll_control(ah, chan);
672
673	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
674
675	/* Switch the core clock for ar9271 to 117Mhz */
676	if (AR_SREV_9271(ah)) {
677		udelay(500);
678		REG_WRITE(ah, 0x50040, 0x304);
679	}
680
681	udelay(RTC_PLL_SETTLE_DELAY);
682
683	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
684}
685
686static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
687					  enum nl80211_iftype opmode)
688{
689	u32 imr_reg = AR_IMR_TXERR |
690		AR_IMR_TXURN |
691		AR_IMR_RXERR |
692		AR_IMR_RXORN |
693		AR_IMR_BCNMISC;
694
695	if (AR_SREV_9300_20_OR_LATER(ah)) {
696		imr_reg |= AR_IMR_RXOK_HP;
697		if (ah->config.rx_intr_mitigation)
698			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
699		else
700			imr_reg |= AR_IMR_RXOK_LP;
701
702	} else {
703		if (ah->config.rx_intr_mitigation)
704			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
705		else
706			imr_reg |= AR_IMR_RXOK;
707	}
708
709	if (ah->config.tx_intr_mitigation)
710		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
711	else
712		imr_reg |= AR_IMR_TXOK;
713
714	if (opmode == NL80211_IFTYPE_AP)
715		imr_reg |= AR_IMR_MIB;
716
717	ENABLE_REGWRITE_BUFFER(ah);
718
719	REG_WRITE(ah, AR_IMR, imr_reg);
720	ah->imrs2_reg |= AR_IMR_S2_GTT;
721	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
722
723	if (!AR_SREV_9100(ah)) {
724		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
725		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
726		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
727	}
728
729	REGWRITE_BUFFER_FLUSH(ah);
730
731	if (AR_SREV_9300_20_OR_LATER(ah)) {
732		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
733		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
734		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
735		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
736	}
737}
738
739static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
740{
741	u32 val = ath9k_hw_mac_to_clks(ah, us);
742	val = min(val, (u32) 0xFFFF);
743	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
744}
745
746static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
747{
748	u32 val = ath9k_hw_mac_to_clks(ah, us);
749	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
750	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
751}
752
753static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
754{
755	u32 val = ath9k_hw_mac_to_clks(ah, us);
756	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
757	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
758}
759
760static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
761{
762	if (tu > 0xFFFF) {
763		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
764			"bad global tx timeout %u\n", tu);
765		ah->globaltxtimeout = (u32) -1;
766		return false;
767	} else {
768		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
769		ah->globaltxtimeout = tu;
770		return true;
771	}
772}
773
774void ath9k_hw_init_global_settings(struct ath_hw *ah)
775{
776	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
777	int acktimeout;
778	int slottime;
779	int sifstime;
780
781	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
782		ah->misc_mode);
783
784	if (ah->misc_mode != 0)
785		REG_WRITE(ah, AR_PCU_MISC,
786			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
787
788	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
789		sifstime = 16;
790	else
791		sifstime = 10;
792
793	/* As defined by IEEE 802.11-2007 17.3.8.6 */
794	slottime = ah->slottime + 3 * ah->coverage_class;
795	acktimeout = slottime + sifstime;
796
797	/*
798	 * Workaround for early ACK timeouts, add an offset to match the
799	 * initval's 64us ack timeout value.
800	 * This was initially only meant to work around an issue with delayed
801	 * BA frames in some implementations, but it has been found to fix ACK
802	 * timeout issues in other cases as well.
803	 */
804	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
805		acktimeout += 64 - sifstime - ah->slottime;
806
807	ath9k_hw_setslottime(ah, slottime);
808	ath9k_hw_set_ack_timeout(ah, acktimeout);
809	ath9k_hw_set_cts_timeout(ah, acktimeout);
810	if (ah->globaltxtimeout != (u32) -1)
811		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
812}
813EXPORT_SYMBOL(ath9k_hw_init_global_settings);
814
815void ath9k_hw_deinit(struct ath_hw *ah)
816{
817	struct ath_common *common = ath9k_hw_common(ah);
818
819	if (common->state < ATH_HW_INITIALIZED)
820		goto free_hw;
821
822	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
823
824free_hw:
825	ath9k_hw_rf_free_ext_banks(ah);
826}
827EXPORT_SYMBOL(ath9k_hw_deinit);
828
829/*******/
830/* INI */
831/*******/
832
833u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
834{
835	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
836
837	if (IS_CHAN_B(chan))
838		ctl |= CTL_11B;
839	else if (IS_CHAN_G(chan))
840		ctl |= CTL_11G;
841	else
842		ctl |= CTL_11A;
843
844	return ctl;
845}
846
847/****************************************/
848/* Reset and Channel Switching Routines */
849/****************************************/
850
851static inline void ath9k_hw_set_dma(struct ath_hw *ah)
852{
853	struct ath_common *common = ath9k_hw_common(ah);
854	u32 regval;
855
856	ENABLE_REGWRITE_BUFFER(ah);
857
858	/*
859	 * set AHB_MODE not to do cacheline prefetches
860	*/
861	if (!AR_SREV_9300_20_OR_LATER(ah)) {
862		regval = REG_READ(ah, AR_AHB_MODE);
863		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
864	}
865
866	/*
867	 * let mac dma reads be in 128 byte chunks
868	 */
869	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
870	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
871
872	REGWRITE_BUFFER_FLUSH(ah);
873
874	/*
875	 * Restore TX Trigger Level to its pre-reset value.
876	 * The initial value depends on whether aggregation is enabled, and is
877	 * adjusted whenever underruns are detected.
878	 */
879	if (!AR_SREV_9300_20_OR_LATER(ah))
880		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
881
882	ENABLE_REGWRITE_BUFFER(ah);
883
884	/*
885	 * let mac dma writes be in 128 byte chunks
886	 */
887	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
888	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
889
890	/*
891	 * Setup receive FIFO threshold to hold off TX activities
892	 */
893	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
894
895	if (AR_SREV_9300_20_OR_LATER(ah)) {
896		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
897		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
898
899		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
900			ah->caps.rx_status_len);
901	}
902
903	/*
904	 * reduce the number of usable entries in PCU TXBUF to avoid
905	 * wrap around issues.
906	 */
907	if (AR_SREV_9285(ah)) {
908		/* For AR9285 the number of Fifos are reduced to half.
909		 * So set the usable tx buf size also to half to
910		 * avoid data/delimiter underruns
911		 */
912		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
913			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
914	} else if (!AR_SREV_9271(ah)) {
915		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
916			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
917	}
918
919	REGWRITE_BUFFER_FLUSH(ah);
920
921	if (AR_SREV_9300_20_OR_LATER(ah))
922		ath9k_hw_reset_txstatus_ring(ah);
923}
924
925static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
926{
927	u32 val;
928
929	val = REG_READ(ah, AR_STA_ID1);
930	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
931	switch (opmode) {
932	case NL80211_IFTYPE_AP:
933		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
934			  | AR_STA_ID1_KSRCH_MODE);
935		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
936		break;
937	case NL80211_IFTYPE_ADHOC:
938	case NL80211_IFTYPE_MESH_POINT:
939		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
940			  | AR_STA_ID1_KSRCH_MODE);
941		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
942		break;
943	case NL80211_IFTYPE_STATION:
944		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
945		break;
946	default:
947		if (ah->is_monitoring)
948			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
949		break;
950	}
951}
952
953void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
954				   u32 *coef_mantissa, u32 *coef_exponent)
955{
956	u32 coef_exp, coef_man;
957
958	for (coef_exp = 31; coef_exp > 0; coef_exp--)
959		if ((coef_scaled >> coef_exp) & 0x1)
960			break;
961
962	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
963
964	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
965
966	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
967	*coef_exponent = coef_exp - 16;
968}
969
970static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
971{
972	u32 rst_flags;
973	u32 tmpReg;
974
975	if (AR_SREV_9100(ah)) {
976		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
977		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
978		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
979		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
980		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
981	}
982
983	ENABLE_REGWRITE_BUFFER(ah);
984
985	if (AR_SREV_9300_20_OR_LATER(ah)) {
986		REG_WRITE(ah, AR_WA, ah->WARegVal);
987		udelay(10);
988	}
989
990	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
991		  AR_RTC_FORCE_WAKE_ON_INT);
992
993	if (AR_SREV_9100(ah)) {
994		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
995			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
996	} else {
997		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
998		if (tmpReg &
999		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1000		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1001			u32 val;
1002			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1003
1004			val = AR_RC_HOSTIF;
1005			if (!AR_SREV_9300_20_OR_LATER(ah))
1006				val |= AR_RC_AHB;
1007			REG_WRITE(ah, AR_RC, val);
1008
1009		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1010			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1011
1012		rst_flags = AR_RTC_RC_MAC_WARM;
1013		if (type == ATH9K_RESET_COLD)
1014			rst_flags |= AR_RTC_RC_MAC_COLD;
1015	}
1016
1017	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1018
1019	REGWRITE_BUFFER_FLUSH(ah);
1020
1021	udelay(50);
1022
1023	REG_WRITE(ah, AR_RTC_RC, 0);
1024	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1025		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1026			"RTC stuck in MAC reset\n");
1027		return false;
1028	}
1029
1030	if (!AR_SREV_9100(ah))
1031		REG_WRITE(ah, AR_RC, 0);
1032
1033	if (AR_SREV_9100(ah))
1034		udelay(50);
1035
1036	return true;
1037}
1038
1039static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1040{
1041	ENABLE_REGWRITE_BUFFER(ah);
1042
1043	if (AR_SREV_9300_20_OR_LATER(ah)) {
1044		REG_WRITE(ah, AR_WA, ah->WARegVal);
1045		udelay(10);
1046	}
1047
1048	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1049		  AR_RTC_FORCE_WAKE_ON_INT);
1050
1051	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1052		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1053
1054	REG_WRITE(ah, AR_RTC_RESET, 0);
1055	udelay(2);
1056
1057	REGWRITE_BUFFER_FLUSH(ah);
1058
1059	if (!AR_SREV_9300_20_OR_LATER(ah))
1060		udelay(2);
1061
1062	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1063		REG_WRITE(ah, AR_RC, 0);
1064
1065	REG_WRITE(ah, AR_RTC_RESET, 1);
1066
1067	if (!ath9k_hw_wait(ah,
1068			   AR_RTC_STATUS,
1069			   AR_RTC_STATUS_M,
1070			   AR_RTC_STATUS_ON,
1071			   AH_WAIT_TIMEOUT)) {
1072		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1073			"RTC not waking up\n");
1074		return false;
1075	}
1076
1077	ath9k_hw_read_revisions(ah);
1078
1079	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1080}
1081
1082static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1083{
1084	if (AR_SREV_9300_20_OR_LATER(ah)) {
1085		REG_WRITE(ah, AR_WA, ah->WARegVal);
1086		udelay(10);
1087	}
1088
1089	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1090		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1091
1092	switch (type) {
1093	case ATH9K_RESET_POWER_ON:
1094		return ath9k_hw_set_reset_power_on(ah);
1095	case ATH9K_RESET_WARM:
1096	case ATH9K_RESET_COLD:
1097		return ath9k_hw_set_reset(ah, type);
1098	default:
1099		return false;
1100	}
1101}
1102
1103static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1104				struct ath9k_channel *chan)
1105{
1106	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1107		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1108			return false;
1109	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1110		return false;
1111
1112	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1113		return false;
1114
1115	ah->chip_fullsleep = false;
1116	ath9k_hw_init_pll(ah, chan);
1117	ath9k_hw_set_rfmode(ah, chan);
1118
1119	return true;
1120}
1121
1122static bool ath9k_hw_channel_change(struct ath_hw *ah,
1123				    struct ath9k_channel *chan)
1124{
1125	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1126	struct ath_common *common = ath9k_hw_common(ah);
1127	struct ieee80211_channel *channel = chan->chan;
1128	u32 qnum;
1129	int r;
1130
1131	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1132		if (ath9k_hw_numtxpending(ah, qnum)) {
1133			ath_dbg(common, ATH_DBG_QUEUE,
1134				"Transmit frames pending on queue %d\n", qnum);
1135			return false;
1136		}
1137	}
1138
1139	if (!ath9k_hw_rfbus_req(ah)) {
1140		ath_err(common, "Could not kill baseband RX\n");
1141		return false;
1142	}
1143
1144	ath9k_hw_set_channel_regs(ah, chan);
1145
1146	r = ath9k_hw_rf_set_freq(ah, chan);
1147	if (r) {
1148		ath_err(common, "Failed to set channel\n");
1149		return false;
1150	}
1151	ath9k_hw_set_clockrate(ah);
1152
1153	ah->eep_ops->set_txpower(ah, chan,
1154			     ath9k_regd_get_ctl(regulatory, chan),
1155			     channel->max_antenna_gain * 2,
1156			     channel->max_power * 2,
1157			     min((u32) MAX_RATE_POWER,
1158			     (u32) regulatory->power_limit), false);
1159
1160	ath9k_hw_rfbus_done(ah);
1161
1162	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1163		ath9k_hw_set_delta_slope(ah, chan);
1164
1165	ath9k_hw_spur_mitigate_freq(ah, chan);
1166
1167	return true;
1168}
1169
1170bool ath9k_hw_check_alive(struct ath_hw *ah)
1171{
1172	int count = 50;
1173	u32 reg;
1174
1175	if (AR_SREV_9285_12_OR_LATER(ah))
1176		return true;
1177
1178	do {
1179		reg = REG_READ(ah, AR_OBS_BUS_1);
1180
1181		if ((reg & 0x7E7FFFEF) == 0x00702400)
1182			continue;
1183
1184		switch (reg & 0x7E000B00) {
1185		case 0x1E000000:
1186		case 0x52000B00:
1187		case 0x18000B00:
1188			continue;
1189		default:
1190			return true;
1191		}
1192	} while (count-- > 0);
1193
1194	return false;
1195}
1196EXPORT_SYMBOL(ath9k_hw_check_alive);
1197
1198int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1199		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1200{
1201	struct ath_common *common = ath9k_hw_common(ah);
1202	u32 saveLedState;
1203	struct ath9k_channel *curchan = ah->curchan;
1204	u32 saveDefAntenna;
1205	u32 macStaId1;
1206	u64 tsf = 0;
1207	int i, r;
1208
1209	ah->txchainmask = common->tx_chainmask;
1210	ah->rxchainmask = common->rx_chainmask;
1211
1212	if (!ah->chip_fullsleep) {
1213		ath9k_hw_abortpcurecv(ah);
1214		if (!ath9k_hw_stopdmarecv(ah)) {
1215			ath_dbg(common, ATH_DBG_XMIT,
1216				"Failed to stop receive dma\n");
1217			bChannelChange = false;
1218		}
1219	}
1220
1221	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1222		return -EIO;
1223
1224	if (curchan && !ah->chip_fullsleep)
1225		ath9k_hw_getnf(ah, curchan);
1226
1227	ah->caldata = caldata;
1228	if (caldata &&
1229	    (chan->channel != caldata->channel ||
1230	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1231	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1232		/* Operating channel changed, reset channel calibration data */
1233		memset(caldata, 0, sizeof(*caldata));
1234		ath9k_init_nfcal_hist_buffer(ah, chan);
1235	}
1236
1237	if (bChannelChange &&
1238	    (ah->chip_fullsleep != true) &&
1239	    (ah->curchan != NULL) &&
1240	    (chan->channel != ah->curchan->channel) &&
1241	    ((chan->channelFlags & CHANNEL_ALL) ==
1242	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1243	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1244
1245		if (ath9k_hw_channel_change(ah, chan)) {
1246			ath9k_hw_loadnf(ah, ah->curchan);
1247			ath9k_hw_start_nfcal(ah, true);
1248			if (AR_SREV_9271(ah))
1249				ar9002_hw_load_ani_reg(ah, chan);
1250			return 0;
1251		}
1252	}
1253
1254	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1255	if (saveDefAntenna == 0)
1256		saveDefAntenna = 1;
1257
1258	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1259
1260	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1261	if (AR_SREV_9100(ah) ||
1262	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1263		tsf = ath9k_hw_gettsf64(ah);
1264
1265	saveLedState = REG_READ(ah, AR_CFG_LED) &
1266		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1267		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1268
1269	ath9k_hw_mark_phy_inactive(ah);
1270
1271	/* Only required on the first reset */
1272	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1273		REG_WRITE(ah,
1274			  AR9271_RESET_POWER_DOWN_CONTROL,
1275			  AR9271_RADIO_RF_RST);
1276		udelay(50);
1277	}
1278
1279	if (!ath9k_hw_chip_reset(ah, chan)) {
1280		ath_err(common, "Chip reset failed\n");
1281		return -EINVAL;
1282	}
1283
1284	/* Only required on the first reset */
1285	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1286		ah->htc_reset_init = false;
1287		REG_WRITE(ah,
1288			  AR9271_RESET_POWER_DOWN_CONTROL,
1289			  AR9271_GATE_MAC_CTL);
1290		udelay(50);
1291	}
1292
1293	/* Restore TSF */
1294	if (tsf)
1295		ath9k_hw_settsf64(ah, tsf);
1296
1297	if (AR_SREV_9280_20_OR_LATER(ah))
1298		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1299
1300	if (!AR_SREV_9300_20_OR_LATER(ah))
1301		ar9002_hw_enable_async_fifo(ah);
1302
1303	r = ath9k_hw_process_ini(ah, chan);
1304	if (r)
1305		return r;
1306
1307	/*
1308	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1309	 * right after the chip reset. When that happens, write a new
1310	 * value after the initvals have been applied, with an offset
1311	 * based on measured time difference
1312	 */
1313	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1314		tsf += 1500;
1315		ath9k_hw_settsf64(ah, tsf);
1316	}
1317
1318	/* Setup MFP options for CCMP */
1319	if (AR_SREV_9280_20_OR_LATER(ah)) {
1320		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1321		 * frames when constructing CCMP AAD. */
1322		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1323			      0xc7ff);
1324		ah->sw_mgmt_crypto = false;
1325	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1326		/* Disable hardware crypto for management frames */
1327		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1328			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1329		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1330			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1331		ah->sw_mgmt_crypto = true;
1332	} else
1333		ah->sw_mgmt_crypto = true;
1334
1335	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1336		ath9k_hw_set_delta_slope(ah, chan);
1337
1338	ath9k_hw_spur_mitigate_freq(ah, chan);
1339	ah->eep_ops->set_board_values(ah, chan);
1340
1341	ath9k_hw_set_operating_mode(ah, ah->opmode);
1342
1343	ENABLE_REGWRITE_BUFFER(ah);
1344
1345	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1346	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1347		  | macStaId1
1348		  | AR_STA_ID1_RTS_USE_DEF
1349		  | (ah->config.
1350		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1351		  | ah->sta_id1_defaults);
1352	ath_hw_setbssidmask(common);
1353	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1354	ath9k_hw_write_associd(ah);
1355	REG_WRITE(ah, AR_ISR, ~0);
1356	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1357
1358	REGWRITE_BUFFER_FLUSH(ah);
1359
1360	r = ath9k_hw_rf_set_freq(ah, chan);
1361	if (r)
1362		return r;
1363
1364	ath9k_hw_set_clockrate(ah);
1365
1366	ENABLE_REGWRITE_BUFFER(ah);
1367
1368	for (i = 0; i < AR_NUM_DCU; i++)
1369		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1370
1371	REGWRITE_BUFFER_FLUSH(ah);
1372
1373	ah->intr_txqs = 0;
1374	for (i = 0; i < ah->caps.total_queues; i++)
1375		ath9k_hw_resettxqueue(ah, i);
1376
1377	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1378	ath9k_hw_ani_cache_ini_regs(ah);
1379	ath9k_hw_init_qos(ah);
1380
1381	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1382		ath9k_enable_rfkill(ah);
1383
1384	ath9k_hw_init_global_settings(ah);
1385
1386	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1387		ar9002_hw_update_async_fifo(ah);
1388		ar9002_hw_enable_wep_aggregation(ah);
1389	}
1390
1391	REG_WRITE(ah, AR_STA_ID1,
1392		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1393
1394	ath9k_hw_set_dma(ah);
1395
1396	REG_WRITE(ah, AR_OBS, 8);
1397
1398	if (ah->config.rx_intr_mitigation) {
1399		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1400		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1401	}
1402
1403	if (ah->config.tx_intr_mitigation) {
1404		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1405		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1406	}
1407
1408	ath9k_hw_init_bb(ah, chan);
1409
1410	if (!ath9k_hw_init_cal(ah, chan))
1411		return -EIO;
1412
1413	ENABLE_REGWRITE_BUFFER(ah);
1414
1415	ath9k_hw_restore_chainmask(ah);
1416	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1417
1418	REGWRITE_BUFFER_FLUSH(ah);
1419
1420	/*
1421	 * For big endian systems turn on swapping for descriptors
1422	 */
1423	if (AR_SREV_9100(ah)) {
1424		u32 mask;
1425		mask = REG_READ(ah, AR_CFG);
1426		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1427			ath_dbg(common, ATH_DBG_RESET,
1428				"CFG Byte Swap Set 0x%x\n", mask);
1429		} else {
1430			mask =
1431				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1432			REG_WRITE(ah, AR_CFG, mask);
1433			ath_dbg(common, ATH_DBG_RESET,
1434				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1435		}
1436	} else {
1437		if (common->bus_ops->ath_bus_type == ATH_USB) {
1438			/* Configure AR9271 target WLAN */
1439			if (AR_SREV_9271(ah))
1440				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1441			else
1442				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1443		}
1444#ifdef __BIG_ENDIAN
1445                else
1446			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1447#endif
1448	}
1449
1450	if (ah->btcoex_hw.enabled)
1451		ath9k_hw_btcoex_enable(ah);
1452
1453	if (AR_SREV_9300_20_OR_LATER(ah))
1454		ar9003_hw_bb_watchdog_config(ah);
1455
1456	return 0;
1457}
1458EXPORT_SYMBOL(ath9k_hw_reset);
1459
1460/******************************/
1461/* Power Management (Chipset) */
1462/******************************/
1463
1464/*
1465 * Notify Power Mgt is disabled in self-generated frames.
1466 * If requested, force chip to sleep.
1467 */
1468static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1469{
1470	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1471	if (setChip) {
1472		/*
1473		 * Clear the RTC force wake bit to allow the
1474		 * mac to go to sleep.
1475		 */
1476		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1477			    AR_RTC_FORCE_WAKE_EN);
1478		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1479			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1480
1481		/* Shutdown chip. Active low */
1482		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1483			REG_CLR_BIT(ah, (AR_RTC_RESET),
1484				    AR_RTC_RESET_EN);
1485	}
1486
1487	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1488	if (AR_SREV_9300_20_OR_LATER(ah))
1489		REG_WRITE(ah, AR_WA,
1490			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1491}
1492
1493/*
1494 * Notify Power Management is enabled in self-generating
1495 * frames. If request, set power mode of chip to
1496 * auto/normal.  Duration in units of 128us (1/8 TU).
1497 */
1498static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1499{
1500	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1501	if (setChip) {
1502		struct ath9k_hw_capabilities *pCap = &ah->caps;
1503
1504		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1505			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1506			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1507				  AR_RTC_FORCE_WAKE_ON_INT);
1508		} else {
1509			/*
1510			 * Clear the RTC force wake bit to allow the
1511			 * mac to go to sleep.
1512			 */
1513			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1514				    AR_RTC_FORCE_WAKE_EN);
1515		}
1516	}
1517
1518	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1519	if (AR_SREV_9300_20_OR_LATER(ah))
1520		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1521}
1522
1523static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1524{
1525	u32 val;
1526	int i;
1527
1528	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1529	if (AR_SREV_9300_20_OR_LATER(ah)) {
1530		REG_WRITE(ah, AR_WA, ah->WARegVal);
1531		udelay(10);
1532	}
1533
1534	if (setChip) {
1535		if ((REG_READ(ah, AR_RTC_STATUS) &
1536		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1537			if (ath9k_hw_set_reset_reg(ah,
1538					   ATH9K_RESET_POWER_ON) != true) {
1539				return false;
1540			}
1541			if (!AR_SREV_9300_20_OR_LATER(ah))
1542				ath9k_hw_init_pll(ah, NULL);
1543		}
1544		if (AR_SREV_9100(ah))
1545			REG_SET_BIT(ah, AR_RTC_RESET,
1546				    AR_RTC_RESET_EN);
1547
1548		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1549			    AR_RTC_FORCE_WAKE_EN);
1550		udelay(50);
1551
1552		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1553			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1554			if (val == AR_RTC_STATUS_ON)
1555				break;
1556			udelay(50);
1557			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1558				    AR_RTC_FORCE_WAKE_EN);
1559		}
1560		if (i == 0) {
1561			ath_err(ath9k_hw_common(ah),
1562				"Failed to wakeup in %uus\n",
1563				POWER_UP_TIME / 20);
1564			return false;
1565		}
1566	}
1567
1568	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1569
1570	return true;
1571}
1572
1573bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1574{
1575	struct ath_common *common = ath9k_hw_common(ah);
1576	int status = true, setChip = true;
1577	static const char *modes[] = {
1578		"AWAKE",
1579		"FULL-SLEEP",
1580		"NETWORK SLEEP",
1581		"UNDEFINED"
1582	};
1583
1584	if (ah->power_mode == mode)
1585		return status;
1586
1587	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1588		modes[ah->power_mode], modes[mode]);
1589
1590	switch (mode) {
1591	case ATH9K_PM_AWAKE:
1592		status = ath9k_hw_set_power_awake(ah, setChip);
1593		break;
1594	case ATH9K_PM_FULL_SLEEP:
1595		ath9k_set_power_sleep(ah, setChip);
1596		ah->chip_fullsleep = true;
1597		break;
1598	case ATH9K_PM_NETWORK_SLEEP:
1599		ath9k_set_power_network_sleep(ah, setChip);
1600		break;
1601	default:
1602		ath_err(common, "Unknown power mode %u\n", mode);
1603		return false;
1604	}
1605	ah->power_mode = mode;
1606
1607	/*
1608	 * XXX: If this warning never comes up after a while then
1609	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1610	 * ath9k_hw_setpower() return type void.
1611	 */
1612	ATH_DBG_WARN_ON_ONCE(!status);
1613
1614	return status;
1615}
1616EXPORT_SYMBOL(ath9k_hw_setpower);
1617
1618/*******************/
1619/* Beacon Handling */
1620/*******************/
1621
1622void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1623{
1624	int flags = 0;
1625
1626	ah->beacon_interval = beacon_period;
1627
1628	ENABLE_REGWRITE_BUFFER(ah);
1629
1630	switch (ah->opmode) {
1631	case NL80211_IFTYPE_ADHOC:
1632	case NL80211_IFTYPE_MESH_POINT:
1633		REG_SET_BIT(ah, AR_TXCFG,
1634			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1635		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1636			  TU_TO_USEC(next_beacon +
1637				     (ah->atim_window ? ah->
1638				      atim_window : 1)));
1639		flags |= AR_NDP_TIMER_EN;
1640	case NL80211_IFTYPE_AP:
1641		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1642		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1643			  TU_TO_USEC(next_beacon -
1644				     ah->config.
1645				     dma_beacon_response_time));
1646		REG_WRITE(ah, AR_NEXT_SWBA,
1647			  TU_TO_USEC(next_beacon -
1648				     ah->config.
1649				     sw_beacon_response_time));
1650		flags |=
1651			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1652		break;
1653	default:
1654		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1655			"%s: unsupported opmode: %d\n",
1656			__func__, ah->opmode);
1657		return;
1658		break;
1659	}
1660
1661	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1662	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1663	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1664	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1665
1666	REGWRITE_BUFFER_FLUSH(ah);
1667
1668	beacon_period &= ~ATH9K_BEACON_ENA;
1669	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1670		ath9k_hw_reset_tsf(ah);
1671	}
1672
1673	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1674}
1675EXPORT_SYMBOL(ath9k_hw_beaconinit);
1676
1677void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1678				    const struct ath9k_beacon_state *bs)
1679{
1680	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1681	struct ath9k_hw_capabilities *pCap = &ah->caps;
1682	struct ath_common *common = ath9k_hw_common(ah);
1683
1684	ENABLE_REGWRITE_BUFFER(ah);
1685
1686	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1687
1688	REG_WRITE(ah, AR_BEACON_PERIOD,
1689		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1690	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1691		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1692
1693	REGWRITE_BUFFER_FLUSH(ah);
1694
1695	REG_RMW_FIELD(ah, AR_RSSI_THR,
1696		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1697
1698	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1699
1700	if (bs->bs_sleepduration > beaconintval)
1701		beaconintval = bs->bs_sleepduration;
1702
1703	dtimperiod = bs->bs_dtimperiod;
1704	if (bs->bs_sleepduration > dtimperiod)
1705		dtimperiod = bs->bs_sleepduration;
1706
1707	if (beaconintval == dtimperiod)
1708		nextTbtt = bs->bs_nextdtim;
1709	else
1710		nextTbtt = bs->bs_nexttbtt;
1711
1712	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1713	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1714	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1715	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1716
1717	ENABLE_REGWRITE_BUFFER(ah);
1718
1719	REG_WRITE(ah, AR_NEXT_DTIM,
1720		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1721	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1722
1723	REG_WRITE(ah, AR_SLEEP1,
1724		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1725		  | AR_SLEEP1_ASSUME_DTIM);
1726
1727	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1728		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1729	else
1730		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1731
1732	REG_WRITE(ah, AR_SLEEP2,
1733		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1734
1735	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1736	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1737
1738	REGWRITE_BUFFER_FLUSH(ah);
1739
1740	REG_SET_BIT(ah, AR_TIMER_MODE,
1741		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1742		    AR_DTIM_TIMER_EN);
1743
1744	/* TSF Out of Range Threshold */
1745	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1746}
1747EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1748
1749/*******************/
1750/* HW Capabilities */
1751/*******************/
1752
1753int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1754{
1755	struct ath9k_hw_capabilities *pCap = &ah->caps;
1756	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1757	struct ath_common *common = ath9k_hw_common(ah);
1758	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1759
1760	u16 capField = 0, eeval;
1761	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1762
1763	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1764	regulatory->current_rd = eeval;
1765
1766	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1767	if (AR_SREV_9285_12_OR_LATER(ah))
1768		eeval |= AR9285_RDEXT_DEFAULT;
1769	regulatory->current_rd_ext = eeval;
1770
1771	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1772
1773	if (ah->opmode != NL80211_IFTYPE_AP &&
1774	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1775		if (regulatory->current_rd == 0x64 ||
1776		    regulatory->current_rd == 0x65)
1777			regulatory->current_rd += 5;
1778		else if (regulatory->current_rd == 0x41)
1779			regulatory->current_rd = 0x43;
1780		ath_dbg(common, ATH_DBG_REGULATORY,
1781			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1782	}
1783
1784	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1785	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1786		ath_err(common,
1787			"no band has been marked as supported in EEPROM\n");
1788		return -EINVAL;
1789	}
1790
1791	if (eeval & AR5416_OPFLAGS_11A)
1792		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1793
1794	if (eeval & AR5416_OPFLAGS_11G)
1795		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1796
1797	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1798	/*
1799	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1800	 * the EEPROM.
1801	 */
1802	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1803	    !(eeval & AR5416_OPFLAGS_11A) &&
1804	    !(AR_SREV_9271(ah)))
1805		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1806		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1807	else
1808		/* Use rx_chainmask from EEPROM. */
1809		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1810
1811	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1812
1813	/* enable key search for every frame in an aggregate */
1814	if (AR_SREV_9300_20_OR_LATER(ah))
1815		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1816
1817	pCap->low_2ghz_chan = 2312;
1818	pCap->high_2ghz_chan = 2732;
1819
1820	pCap->low_5ghz_chan = 4920;
1821	pCap->high_5ghz_chan = 6100;
1822
1823	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1824
1825	if (ah->config.ht_enable)
1826		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1827	else
1828		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1829
1830	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1831		pCap->total_queues =
1832			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1833	else
1834		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1835
1836	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1837		pCap->keycache_size =
1838			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1839	else
1840		pCap->keycache_size = AR_KEYTABLE_SIZE;
1841
1842	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1843		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1844	else
1845		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1846
1847	if (AR_SREV_9271(ah))
1848		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1849	else if (AR_DEVID_7010(ah))
1850		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1851	else if (AR_SREV_9285_12_OR_LATER(ah))
1852		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1853	else if (AR_SREV_9280_20_OR_LATER(ah))
1854		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1855	else
1856		pCap->num_gpio_pins = AR_NUM_GPIO;
1857
1858	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1859		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1860		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1861	} else {
1862		pCap->rts_aggr_limit = (8 * 1024);
1863	}
1864
1865	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1866
1867#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1868	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1869	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1870		ah->rfkill_gpio =
1871			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1872		ah->rfkill_polarity =
1873			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1874
1875		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1876	}
1877#endif
1878	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1879		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1880	else
1881		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1882
1883	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1884		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1885	else
1886		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1887
1888	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1889		pCap->reg_cap =
1890			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1891			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1892			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1893			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1894	} else {
1895		pCap->reg_cap =
1896			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1897			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1898	}
1899
1900	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1901	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1902	    AR_SREV_5416(ah))
1903		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1904
1905	pCap->num_antcfg_5ghz =
1906		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
1907	pCap->num_antcfg_2ghz =
1908		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
1909
1910	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1911		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1912		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1913
1914		if (AR_SREV_9285(ah)) {
1915			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1916			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1917		} else {
1918			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1919		}
1920	} else {
1921		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1922	}
1923
1924	if (AR_SREV_9300_20_OR_LATER(ah)) {
1925		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1926		if (!AR_SREV_9485(ah))
1927			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1928
1929		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1930		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1931		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1932		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1933		pCap->txs_len = sizeof(struct ar9003_txs);
1934		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1935			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1936	} else {
1937		pCap->tx_desc_len = sizeof(struct ath_desc);
1938		if (AR_SREV_9280_20(ah) &&
1939		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1940		      AR5416_EEP_MINOR_VER_16) ||
1941		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1942			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1943	}
1944
1945	if (AR_SREV_9300_20_OR_LATER(ah))
1946		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1947
1948	if (AR_SREV_9300_20_OR_LATER(ah))
1949		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1950
1951	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1952		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1953
1954	if (AR_SREV_9285(ah))
1955		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1956			ant_div_ctl1 =
1957				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1958			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1959				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1960		}
1961	if (AR_SREV_9300_20_OR_LATER(ah)) {
1962		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1963			pCap->hw_caps |= ATH9K_HW_CAP_APM;
1964	}
1965
1966
1967
1968	if (AR_SREV_9485_10(ah)) {
1969		pCap->pcie_lcr_extsync_en = true;
1970		pCap->pcie_lcr_offset = 0x80;
1971	}
1972
1973	tx_chainmask = pCap->tx_chainmask;
1974	rx_chainmask = pCap->rx_chainmask;
1975	while (tx_chainmask || rx_chainmask) {
1976		if (tx_chainmask & BIT(0))
1977			pCap->max_txchains++;
1978		if (rx_chainmask & BIT(0))
1979			pCap->max_rxchains++;
1980
1981		tx_chainmask >>= 1;
1982		rx_chainmask >>= 1;
1983	}
1984
1985	return 0;
1986}
1987
1988/****************************/
1989/* GPIO / RFKILL / Antennae */
1990/****************************/
1991
1992static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1993					 u32 gpio, u32 type)
1994{
1995	int addr;
1996	u32 gpio_shift, tmp;
1997
1998	if (gpio > 11)
1999		addr = AR_GPIO_OUTPUT_MUX3;
2000	else if (gpio > 5)
2001		addr = AR_GPIO_OUTPUT_MUX2;
2002	else
2003		addr = AR_GPIO_OUTPUT_MUX1;
2004
2005	gpio_shift = (gpio % 6) * 5;
2006
2007	if (AR_SREV_9280_20_OR_LATER(ah)
2008	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2009		REG_RMW(ah, addr, (type << gpio_shift),
2010			(0x1f << gpio_shift));
2011	} else {
2012		tmp = REG_READ(ah, addr);
2013		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2014		tmp &= ~(0x1f << gpio_shift);
2015		tmp |= (type << gpio_shift);
2016		REG_WRITE(ah, addr, tmp);
2017	}
2018}
2019
2020void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2021{
2022	u32 gpio_shift;
2023
2024	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2025
2026	if (AR_DEVID_7010(ah)) {
2027		gpio_shift = gpio;
2028		REG_RMW(ah, AR7010_GPIO_OE,
2029			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2030			(AR7010_GPIO_OE_MASK << gpio_shift));
2031		return;
2032	}
2033
2034	gpio_shift = gpio << 1;
2035	REG_RMW(ah,
2036		AR_GPIO_OE_OUT,
2037		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2038		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2039}
2040EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2041
2042u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2043{
2044#define MS_REG_READ(x, y) \
2045	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2046
2047	if (gpio >= ah->caps.num_gpio_pins)
2048		return 0xffffffff;
2049
2050	if (AR_DEVID_7010(ah)) {
2051		u32 val;
2052		val = REG_READ(ah, AR7010_GPIO_IN);
2053		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2054	} else if (AR_SREV_9300_20_OR_LATER(ah))
2055		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2056			AR_GPIO_BIT(gpio)) != 0;
2057	else if (AR_SREV_9271(ah))
2058		return MS_REG_READ(AR9271, gpio) != 0;
2059	else if (AR_SREV_9287_11_OR_LATER(ah))
2060		return MS_REG_READ(AR9287, gpio) != 0;
2061	else if (AR_SREV_9285_12_OR_LATER(ah))
2062		return MS_REG_READ(AR9285, gpio) != 0;
2063	else if (AR_SREV_9280_20_OR_LATER(ah))
2064		return MS_REG_READ(AR928X, gpio) != 0;
2065	else
2066		return MS_REG_READ(AR, gpio) != 0;
2067}
2068EXPORT_SYMBOL(ath9k_hw_gpio_get);
2069
2070void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2071			 u32 ah_signal_type)
2072{
2073	u32 gpio_shift;
2074
2075	if (AR_DEVID_7010(ah)) {
2076		gpio_shift = gpio;
2077		REG_RMW(ah, AR7010_GPIO_OE,
2078			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2079			(AR7010_GPIO_OE_MASK << gpio_shift));
2080		return;
2081	}
2082
2083	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2084	gpio_shift = 2 * gpio;
2085	REG_RMW(ah,
2086		AR_GPIO_OE_OUT,
2087		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2088		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2089}
2090EXPORT_SYMBOL(ath9k_hw_cfg_output);
2091
2092void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2093{
2094	if (AR_DEVID_7010(ah)) {
2095		val = val ? 0 : 1;
2096		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2097			AR_GPIO_BIT(gpio));
2098		return;
2099	}
2100
2101	if (AR_SREV_9271(ah))
2102		val = ~val;
2103
2104	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2105		AR_GPIO_BIT(gpio));
2106}
2107EXPORT_SYMBOL(ath9k_hw_set_gpio);
2108
2109u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2110{
2111	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2112}
2113EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2114
2115void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2116{
2117	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2118}
2119EXPORT_SYMBOL(ath9k_hw_setantenna);
2120
2121/*********************/
2122/* General Operation */
2123/*********************/
2124
2125u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2126{
2127	u32 bits = REG_READ(ah, AR_RX_FILTER);
2128	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2129
2130	if (phybits & AR_PHY_ERR_RADAR)
2131		bits |= ATH9K_RX_FILTER_PHYRADAR;
2132	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2133		bits |= ATH9K_RX_FILTER_PHYERR;
2134
2135	return bits;
2136}
2137EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2138
2139void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2140{
2141	u32 phybits;
2142
2143	ENABLE_REGWRITE_BUFFER(ah);
2144
2145	REG_WRITE(ah, AR_RX_FILTER, bits);
2146
2147	phybits = 0;
2148	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2149		phybits |= AR_PHY_ERR_RADAR;
2150	if (bits & ATH9K_RX_FILTER_PHYERR)
2151		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2152	REG_WRITE(ah, AR_PHY_ERR, phybits);
2153
2154	if (phybits)
2155		REG_WRITE(ah, AR_RXCFG,
2156			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2157	else
2158		REG_WRITE(ah, AR_RXCFG,
2159			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2160
2161	REGWRITE_BUFFER_FLUSH(ah);
2162}
2163EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2164
2165bool ath9k_hw_phy_disable(struct ath_hw *ah)
2166{
2167	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2168		return false;
2169
2170	ath9k_hw_init_pll(ah, NULL);
2171	return true;
2172}
2173EXPORT_SYMBOL(ath9k_hw_phy_disable);
2174
2175bool ath9k_hw_disable(struct ath_hw *ah)
2176{
2177	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2178		return false;
2179
2180	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2181		return false;
2182
2183	ath9k_hw_init_pll(ah, NULL);
2184	return true;
2185}
2186EXPORT_SYMBOL(ath9k_hw_disable);
2187
2188void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2189{
2190	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2191	struct ath9k_channel *chan = ah->curchan;
2192	struct ieee80211_channel *channel = chan->chan;
2193
2194	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2195
2196	ah->eep_ops->set_txpower(ah, chan,
2197				 ath9k_regd_get_ctl(regulatory, chan),
2198				 channel->max_antenna_gain * 2,
2199				 channel->max_power * 2,
2200				 min((u32) MAX_RATE_POWER,
2201				 (u32) regulatory->power_limit), test);
2202}
2203EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2204
2205void ath9k_hw_setopmode(struct ath_hw *ah)
2206{
2207	ath9k_hw_set_operating_mode(ah, ah->opmode);
2208}
2209EXPORT_SYMBOL(ath9k_hw_setopmode);
2210
2211void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2212{
2213	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2214	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2215}
2216EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2217
2218void ath9k_hw_write_associd(struct ath_hw *ah)
2219{
2220	struct ath_common *common = ath9k_hw_common(ah);
2221
2222	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2223	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2224		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2225}
2226EXPORT_SYMBOL(ath9k_hw_write_associd);
2227
2228#define ATH9K_MAX_TSF_READ 10
2229
2230u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2231{
2232	u32 tsf_lower, tsf_upper1, tsf_upper2;
2233	int i;
2234
2235	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2236	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2237		tsf_lower = REG_READ(ah, AR_TSF_L32);
2238		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2239		if (tsf_upper2 == tsf_upper1)
2240			break;
2241		tsf_upper1 = tsf_upper2;
2242	}
2243
2244	WARN_ON( i == ATH9K_MAX_TSF_READ );
2245
2246	return (((u64)tsf_upper1 << 32) | tsf_lower);
2247}
2248EXPORT_SYMBOL(ath9k_hw_gettsf64);
2249
2250void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2251{
2252	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2253	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2254}
2255EXPORT_SYMBOL(ath9k_hw_settsf64);
2256
2257void ath9k_hw_reset_tsf(struct ath_hw *ah)
2258{
2259	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2260			   AH_TSF_WRITE_TIMEOUT))
2261		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2262			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2263
2264	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2265}
2266EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2267
2268void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2269{
2270	if (setting)
2271		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2272	else
2273		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2274}
2275EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2276
2277void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2278{
2279	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2280	u32 macmode;
2281
2282	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2283		macmode = AR_2040_JOINED_RX_CLEAR;
2284	else
2285		macmode = 0;
2286
2287	REG_WRITE(ah, AR_2040_MODE, macmode);
2288}
2289
2290/* HW Generic timers configuration */
2291
2292static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2293{
2294	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2295	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2296	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2297	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2298	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2299	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2300	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2303	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2304				AR_NDP2_TIMER_MODE, 0x0002},
2305	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2306				AR_NDP2_TIMER_MODE, 0x0004},
2307	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2308				AR_NDP2_TIMER_MODE, 0x0008},
2309	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2310				AR_NDP2_TIMER_MODE, 0x0010},
2311	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2312				AR_NDP2_TIMER_MODE, 0x0020},
2313	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2314				AR_NDP2_TIMER_MODE, 0x0040},
2315	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2316				AR_NDP2_TIMER_MODE, 0x0080}
2317};
2318
2319/* HW generic timer primitives */
2320
2321/* compute and clear index of rightmost 1 */
2322static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2323{
2324	u32 b;
2325
2326	b = *mask;
2327	b &= (0-b);
2328	*mask &= ~b;
2329	b *= debruijn32;
2330	b >>= 27;
2331
2332	return timer_table->gen_timer_index[b];
2333}
2334
2335static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2336{
2337	return REG_READ(ah, AR_TSF_L32);
2338}
2339
2340struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2341					  void (*trigger)(void *),
2342					  void (*overflow)(void *),
2343					  void *arg,
2344					  u8 timer_index)
2345{
2346	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2347	struct ath_gen_timer *timer;
2348
2349	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2350
2351	if (timer == NULL) {
2352		ath_err(ath9k_hw_common(ah),
2353			"Failed to allocate memory for hw timer[%d]\n",
2354			timer_index);
2355		return NULL;
2356	}
2357
2358	/* allocate a hardware generic timer slot */
2359	timer_table->timers[timer_index] = timer;
2360	timer->index = timer_index;
2361	timer->trigger = trigger;
2362	timer->overflow = overflow;
2363	timer->arg = arg;
2364
2365	return timer;
2366}
2367EXPORT_SYMBOL(ath_gen_timer_alloc);
2368
2369void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2370			      struct ath_gen_timer *timer,
2371			      u32 timer_next,
2372			      u32 timer_period)
2373{
2374	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2375	u32 tsf;
2376
2377	BUG_ON(!timer_period);
2378
2379	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2380
2381	tsf = ath9k_hw_gettsf32(ah);
2382
2383	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2384		"current tsf %x period %x timer_next %x\n",
2385		tsf, timer_period, timer_next);
2386
2387	/*
2388	 * Pull timer_next forward if the current TSF already passed it
2389	 * because of software latency
2390	 */
2391	if (timer_next < tsf)
2392		timer_next = tsf + timer_period;
2393
2394	/*
2395	 * Program generic timer registers
2396	 */
2397	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2398		 timer_next);
2399	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2400		  timer_period);
2401	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2402		    gen_tmr_configuration[timer->index].mode_mask);
2403
2404	/* Enable both trigger and thresh interrupt masks */
2405	REG_SET_BIT(ah, AR_IMR_S5,
2406		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2407		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2408}
2409EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2410
2411void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2412{
2413	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2414
2415	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2416		(timer->index >= ATH_MAX_GEN_TIMER)) {
2417		return;
2418	}
2419
2420	/* Clear generic timer enable bits. */
2421	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2422			gen_tmr_configuration[timer->index].mode_mask);
2423
2424	/* Disable both trigger and thresh interrupt masks */
2425	REG_CLR_BIT(ah, AR_IMR_S5,
2426		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2427		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2428
2429	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2430}
2431EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2432
2433void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2434{
2435	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2436
2437	/* free the hardware generic timer slot */
2438	timer_table->timers[timer->index] = NULL;
2439	kfree(timer);
2440}
2441EXPORT_SYMBOL(ath_gen_timer_free);
2442
2443/*
2444 * Generic Timer Interrupts handling
2445 */
2446void ath_gen_timer_isr(struct ath_hw *ah)
2447{
2448	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2449	struct ath_gen_timer *timer;
2450	struct ath_common *common = ath9k_hw_common(ah);
2451	u32 trigger_mask, thresh_mask, index;
2452
2453	/* get hardware generic timer interrupt status */
2454	trigger_mask = ah->intr_gen_timer_trigger;
2455	thresh_mask = ah->intr_gen_timer_thresh;
2456	trigger_mask &= timer_table->timer_mask.val;
2457	thresh_mask &= timer_table->timer_mask.val;
2458
2459	trigger_mask &= ~thresh_mask;
2460
2461	while (thresh_mask) {
2462		index = rightmost_index(timer_table, &thresh_mask);
2463		timer = timer_table->timers[index];
2464		BUG_ON(!timer);
2465		ath_dbg(common, ATH_DBG_HWTIMER,
2466			"TSF overflow for Gen timer %d\n", index);
2467		timer->overflow(timer->arg);
2468	}
2469
2470	while (trigger_mask) {
2471		index = rightmost_index(timer_table, &trigger_mask);
2472		timer = timer_table->timers[index];
2473		BUG_ON(!timer);
2474		ath_dbg(common, ATH_DBG_HWTIMER,
2475			"Gen timer[%d] trigger\n", index);
2476		timer->trigger(timer->arg);
2477	}
2478}
2479EXPORT_SYMBOL(ath_gen_timer_isr);
2480
2481/********/
2482/* HTC  */
2483/********/
2484
2485void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2486{
2487	ah->htc_reset_init = true;
2488}
2489EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2490
2491static struct {
2492	u32 version;
2493	const char * name;
2494} ath_mac_bb_names[] = {
2495	/* Devices with external radios */
2496	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2497	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2498	{ AR_SREV_VERSION_9100,		"9100" },
2499	{ AR_SREV_VERSION_9160,		"9160" },
2500	/* Single-chip solutions */
2501	{ AR_SREV_VERSION_9280,		"9280" },
2502	{ AR_SREV_VERSION_9285,		"9285" },
2503	{ AR_SREV_VERSION_9287,         "9287" },
2504	{ AR_SREV_VERSION_9271,         "9271" },
2505	{ AR_SREV_VERSION_9300,         "9300" },
2506};
2507
2508/* For devices with external radios */
2509static struct {
2510	u16 version;
2511	const char * name;
2512} ath_rf_names[] = {
2513	{ 0,				"5133" },
2514	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2515	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2516	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2517	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2518};
2519
2520/*
2521 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2522 */
2523static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2524{
2525	int i;
2526
2527	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2528		if (ath_mac_bb_names[i].version == mac_bb_version) {
2529			return ath_mac_bb_names[i].name;
2530		}
2531	}
2532
2533	return "????";
2534}
2535
2536/*
2537 * Return the RF name. "????" is returned if the RF is unknown.
2538 * Used for devices with external radios.
2539 */
2540static const char *ath9k_hw_rf_name(u16 rf_version)
2541{
2542	int i;
2543
2544	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2545		if (ath_rf_names[i].version == rf_version) {
2546			return ath_rf_names[i].name;
2547		}
2548	}
2549
2550	return "????";
2551}
2552
2553void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2554{
2555	int used;
2556
2557	/* chipsets >= AR9280 are single-chip */
2558	if (AR_SREV_9280_20_OR_LATER(ah)) {
2559		used = snprintf(hw_name, len,
2560			       "Atheros AR%s Rev:%x",
2561			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2562			       ah->hw_version.macRev);
2563	}
2564	else {
2565		used = snprintf(hw_name, len,
2566			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2567			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2568			       ah->hw_version.macRev,
2569			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2570						AR_RADIO_SREV_MAJOR)),
2571			       ah->hw_version.phyRev);
2572	}
2573
2574	hw_name[used] = '\0';
2575}
2576EXPORT_SYMBOL(ath9k_hw_name);
2577