hw.c revision 21d2c63a2866a47030803de3db9b4e8759806095
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	if (!ah->curchan) /* should really check for CCK instead */
91		clockrate = ATH9K_CLOCK_RATE_CCK;
92	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96	else
97		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98
99	if (conf_is_ht40(conf))
100		clockrate *= 2;
101
102	common->clockrate = clockrate;
103}
104
105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106{
107	struct ath_common *common = ath9k_hw_common(ah);
108
109	return usecs * common->clockrate;
110}
111
112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113{
114	int i;
115
116	BUG_ON(timeout < AH_TIME_QUANTUM);
117
118	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119		if ((REG_READ(ah, reg) & mask) == val)
120			return true;
121
122		udelay(AH_TIME_QUANTUM);
123	}
124
125	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127		timeout, reg, REG_READ(ah, reg), mask, val);
128
129	return false;
130}
131EXPORT_SYMBOL(ath9k_hw_wait);
132
133void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
134			  int column, unsigned int *writecnt)
135{
136	int r;
137
138	ENABLE_REGWRITE_BUFFER(ah);
139	for (r = 0; r < array->ia_rows; r++) {
140		REG_WRITE(ah, INI_RA(array, r, 0),
141			  INI_RA(array, r, column));
142		DO_DELAY(*writecnt);
143	}
144	REGWRITE_BUFFER_FLUSH(ah);
145}
146
147u32 ath9k_hw_reverse_bits(u32 val, u32 n)
148{
149	u32 retval;
150	int i;
151
152	for (i = 0, retval = 0; i < n; i++) {
153		retval = (retval << 1) | (val & 1);
154		val >>= 1;
155	}
156	return retval;
157}
158
159u16 ath9k_hw_computetxtime(struct ath_hw *ah,
160			   u8 phy, int kbps,
161			   u32 frameLen, u16 rateix,
162			   bool shortPreamble)
163{
164	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
165
166	if (kbps == 0)
167		return 0;
168
169	switch (phy) {
170	case WLAN_RC_PHY_CCK:
171		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
172		if (shortPreamble)
173			phyTime >>= 1;
174		numBits = frameLen << 3;
175		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
176		break;
177	case WLAN_RC_PHY_OFDM:
178		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
179			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
180			numBits = OFDM_PLCP_BITS + (frameLen << 3);
181			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
182			txTime = OFDM_SIFS_TIME_QUARTER
183				+ OFDM_PREAMBLE_TIME_QUARTER
184				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
185		} else if (ah->curchan &&
186			   IS_CHAN_HALF_RATE(ah->curchan)) {
187			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
188			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190			txTime = OFDM_SIFS_TIME_HALF +
191				OFDM_PREAMBLE_TIME_HALF
192				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
193		} else {
194			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
195			numBits = OFDM_PLCP_BITS + (frameLen << 3);
196			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
197			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
198				+ (numSymbols * OFDM_SYMBOL_TIME);
199		}
200		break;
201	default:
202		ath_err(ath9k_hw_common(ah),
203			"Unknown phy %u (rate ix %u)\n", phy, rateix);
204		txTime = 0;
205		break;
206	}
207
208	return txTime;
209}
210EXPORT_SYMBOL(ath9k_hw_computetxtime);
211
212void ath9k_hw_get_channel_centers(struct ath_hw *ah,
213				  struct ath9k_channel *chan,
214				  struct chan_centers *centers)
215{
216	int8_t extoff;
217
218	if (!IS_CHAN_HT40(chan)) {
219		centers->ctl_center = centers->ext_center =
220			centers->synth_center = chan->channel;
221		return;
222	}
223
224	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
225	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
226		centers->synth_center =
227			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
228		extoff = 1;
229	} else {
230		centers->synth_center =
231			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
232		extoff = -1;
233	}
234
235	centers->ctl_center =
236		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
237	/* 25 MHz spacing is supported by hw but not on upper layers */
238	centers->ext_center =
239		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
240}
241
242/******************/
243/* Chip Revisions */
244/******************/
245
246static void ath9k_hw_read_revisions(struct ath_hw *ah)
247{
248	u32 val;
249
250	switch (ah->hw_version.devid) {
251	case AR5416_AR9100_DEVID:
252		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
253		break;
254	case AR9300_DEVID_AR9340:
255		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
256		val = REG_READ(ah, AR_SREV);
257		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
258		return;
259	}
260
261	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
262
263	if (val == 0xFF) {
264		val = REG_READ(ah, AR_SREV);
265		ah->hw_version.macVersion =
266			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
267		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
268		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
269	} else {
270		if (!AR_SREV_9100(ah))
271			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
272
273		ah->hw_version.macRev = val & AR_SREV_REVISION;
274
275		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
276			ah->is_pciexpress = true;
277	}
278}
279
280/************************************/
281/* HW Attach, Detach, Init Routines */
282/************************************/
283
284static void ath9k_hw_disablepcie(struct ath_hw *ah)
285{
286	if (!AR_SREV_5416(ah))
287		return;
288
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298
299	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300}
301
302/* This should work for all families including legacy */
303static bool ath9k_hw_chip_test(struct ath_hw *ah)
304{
305	struct ath_common *common = ath9k_hw_common(ah);
306	u32 regAddr[2] = { AR_STA_ID0 };
307	u32 regHold[2];
308	static const u32 patternData[4] = {
309		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
310	};
311	int i, j, loop_max;
312
313	if (!AR_SREV_9300_20_OR_LATER(ah)) {
314		loop_max = 2;
315		regAddr[1] = AR_PHY_BASE + (8 << 2);
316	} else
317		loop_max = 1;
318
319	for (i = 0; i < loop_max; i++) {
320		u32 addr = regAddr[i];
321		u32 wrData, rdData;
322
323		regHold[i] = REG_READ(ah, addr);
324		for (j = 0; j < 0x100; j++) {
325			wrData = (j << 16) | j;
326			REG_WRITE(ah, addr, wrData);
327			rdData = REG_READ(ah, addr);
328			if (rdData != wrData) {
329				ath_err(common,
330					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
331					addr, wrData, rdData);
332				return false;
333			}
334		}
335		for (j = 0; j < 4; j++) {
336			wrData = patternData[j];
337			REG_WRITE(ah, addr, wrData);
338			rdData = REG_READ(ah, addr);
339			if (wrData != rdData) {
340				ath_err(common,
341					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
342					addr, wrData, rdData);
343				return false;
344			}
345		}
346		REG_WRITE(ah, regAddr[i], regHold[i]);
347	}
348	udelay(100);
349
350	return true;
351}
352
353static void ath9k_hw_init_config(struct ath_hw *ah)
354{
355	int i;
356
357	ah->config.dma_beacon_response_time = 2;
358	ah->config.sw_beacon_response_time = 10;
359	ah->config.additional_swba_backoff = 0;
360	ah->config.ack_6mb = 0x0;
361	ah->config.cwm_ignore_extcca = 0;
362	ah->config.pcie_powersave_enable = 0;
363	ah->config.pcie_clock_req = 0;
364	ah->config.pcie_waen = 0;
365	ah->config.analog_shiftreg = 1;
366	ah->config.enable_ani = true;
367
368	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
369		ah->config.spurchans[i][0] = AR_NO_SPUR;
370		ah->config.spurchans[i][1] = AR_NO_SPUR;
371	}
372
373	/* PAPRD needs some more work to be enabled */
374	ah->config.paprd_disable = 1;
375
376	ah->config.rx_intr_mitigation = true;
377	ah->config.pcieSerDesWrite = true;
378
379	/*
380	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
381	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
382	 * This means we use it for all AR5416 devices, and the few
383	 * minor PCI AR9280 devices out there.
384	 *
385	 * Serialization is required because these devices do not handle
386	 * well the case of two concurrent reads/writes due to the latency
387	 * involved. During one read/write another read/write can be issued
388	 * on another CPU while the previous read/write may still be working
389	 * on our hardware, if we hit this case the hardware poops in a loop.
390	 * We prevent this by serializing reads and writes.
391	 *
392	 * This issue is not present on PCI-Express devices or pre-AR5416
393	 * devices (legacy, 802.11abg).
394	 */
395	if (num_possible_cpus() > 1)
396		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
397}
398
399static void ath9k_hw_init_defaults(struct ath_hw *ah)
400{
401	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
402
403	regulatory->country_code = CTRY_DEFAULT;
404	regulatory->power_limit = MAX_RATE_POWER;
405	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
406
407	ah->hw_version.magic = AR5416_MAGIC;
408	ah->hw_version.subvendorid = 0;
409
410	ah->atim_window = 0;
411	ah->sta_id1_defaults =
412		AR_STA_ID1_CRPT_MIC_ENABLE |
413		AR_STA_ID1_MCAST_KSRCH;
414	if (AR_SREV_9100(ah))
415		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
416	ah->enable_32kHz_clock = DONT_USE_32KHZ;
417	ah->slottime = 20;
418	ah->globaltxtimeout = (u32) -1;
419	ah->power_mode = ATH9K_PM_UNDEFINED;
420}
421
422static int ath9k_hw_init_macaddr(struct ath_hw *ah)
423{
424	struct ath_common *common = ath9k_hw_common(ah);
425	u32 sum;
426	int i;
427	u16 eeval;
428	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
429
430	sum = 0;
431	for (i = 0; i < 3; i++) {
432		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
433		sum += eeval;
434		common->macaddr[2 * i] = eeval >> 8;
435		common->macaddr[2 * i + 1] = eeval & 0xff;
436	}
437	if (sum == 0 || sum == 0xffff * 3)
438		return -EADDRNOTAVAIL;
439
440	return 0;
441}
442
443static int ath9k_hw_post_init(struct ath_hw *ah)
444{
445	struct ath_common *common = ath9k_hw_common(ah);
446	int ecode;
447
448	if (common->bus_ops->ath_bus_type != ATH_USB) {
449		if (!ath9k_hw_chip_test(ah))
450			return -ENODEV;
451	}
452
453	if (!AR_SREV_9300_20_OR_LATER(ah)) {
454		ecode = ar9002_hw_rf_claim(ah);
455		if (ecode != 0)
456			return ecode;
457	}
458
459	ecode = ath9k_hw_eeprom_init(ah);
460	if (ecode != 0)
461		return ecode;
462
463	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
464		"Eeprom VER: %d, REV: %d\n",
465		ah->eep_ops->get_eeprom_ver(ah),
466		ah->eep_ops->get_eeprom_rev(ah));
467
468	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
469	if (ecode) {
470		ath_err(ath9k_hw_common(ah),
471			"Failed allocating banks for external radio\n");
472		ath9k_hw_rf_free_ext_banks(ah);
473		return ecode;
474	}
475
476	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
477		ath9k_hw_ani_setup(ah);
478		ath9k_hw_ani_init(ah);
479	}
480
481	return 0;
482}
483
484static void ath9k_hw_attach_ops(struct ath_hw *ah)
485{
486	if (AR_SREV_9300_20_OR_LATER(ah))
487		ar9003_hw_attach_ops(ah);
488	else
489		ar9002_hw_attach_ops(ah);
490}
491
492/* Called for all hardware families */
493static int __ath9k_hw_init(struct ath_hw *ah)
494{
495	struct ath_common *common = ath9k_hw_common(ah);
496	int r = 0;
497
498	ath9k_hw_read_revisions(ah);
499
500	/*
501	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
502	 * We need to do this to avoid RMW of this register. We cannot
503	 * read the reg when chip is asleep.
504	 */
505	ah->WARegVal = REG_READ(ah, AR_WA);
506	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
507			 AR_WA_ASPM_TIMER_BASED_DISABLE);
508
509	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
510		ath_err(common, "Couldn't reset chip\n");
511		return -EIO;
512	}
513
514	ath9k_hw_init_defaults(ah);
515	ath9k_hw_init_config(ah);
516
517	ath9k_hw_attach_ops(ah);
518
519	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
520		ath_err(common, "Couldn't wakeup chip\n");
521		return -EIO;
522	}
523
524	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
525		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
526		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
527		     !ah->is_pciexpress)) {
528			ah->config.serialize_regmode =
529				SER_REG_MODE_ON;
530		} else {
531			ah->config.serialize_regmode =
532				SER_REG_MODE_OFF;
533		}
534	}
535
536	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
537		ah->config.serialize_regmode);
538
539	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
540		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
541	else
542		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
543
544	switch (ah->hw_version.macVersion) {
545	case AR_SREV_VERSION_5416_PCI:
546	case AR_SREV_VERSION_5416_PCIE:
547	case AR_SREV_VERSION_9160:
548	case AR_SREV_VERSION_9100:
549	case AR_SREV_VERSION_9280:
550	case AR_SREV_VERSION_9285:
551	case AR_SREV_VERSION_9287:
552	case AR_SREV_VERSION_9271:
553	case AR_SREV_VERSION_9300:
554	case AR_SREV_VERSION_9485:
555	case AR_SREV_VERSION_9340:
556		break;
557	default:
558		ath_err(common,
559			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
560			ah->hw_version.macVersion, ah->hw_version.macRev);
561		return -EOPNOTSUPP;
562	}
563
564	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah))
565		ah->is_pciexpress = false;
566
567	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
568	ath9k_hw_init_cal_settings(ah);
569
570	ah->ani_function = ATH9K_ANI_ALL;
571	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
572		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
573	if (!AR_SREV_9300_20_OR_LATER(ah))
574		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
575
576	ath9k_hw_init_mode_regs(ah);
577
578
579	if (ah->is_pciexpress)
580		ath9k_hw_configpcipowersave(ah, 0, 0);
581	else
582		ath9k_hw_disablepcie(ah);
583
584	if (!AR_SREV_9300_20_OR_LATER(ah))
585		ar9002_hw_cck_chan14_spread(ah);
586
587	r = ath9k_hw_post_init(ah);
588	if (r)
589		return r;
590
591	ath9k_hw_init_mode_gain_regs(ah);
592	r = ath9k_hw_fill_cap_info(ah);
593	if (r)
594		return r;
595
596	r = ath9k_hw_init_macaddr(ah);
597	if (r) {
598		ath_err(common, "Failed to initialize MAC address\n");
599		return r;
600	}
601
602	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
603		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
604	else
605		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
606
607	ah->bb_watchdog_timeout_ms = 25;
608
609	common->state = ATH_HW_INITIALIZED;
610
611	return 0;
612}
613
614int ath9k_hw_init(struct ath_hw *ah)
615{
616	int ret;
617	struct ath_common *common = ath9k_hw_common(ah);
618
619	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
620	switch (ah->hw_version.devid) {
621	case AR5416_DEVID_PCI:
622	case AR5416_DEVID_PCIE:
623	case AR5416_AR9100_DEVID:
624	case AR9160_DEVID_PCI:
625	case AR9280_DEVID_PCI:
626	case AR9280_DEVID_PCIE:
627	case AR9285_DEVID_PCIE:
628	case AR9287_DEVID_PCI:
629	case AR9287_DEVID_PCIE:
630	case AR2427_DEVID_PCIE:
631	case AR9300_DEVID_PCIE:
632	case AR9300_DEVID_AR9485_PCIE:
633	case AR9300_DEVID_AR9340:
634		break;
635	default:
636		if (common->bus_ops->ath_bus_type == ATH_USB)
637			break;
638		ath_err(common, "Hardware device ID 0x%04x not supported\n",
639			ah->hw_version.devid);
640		return -EOPNOTSUPP;
641	}
642
643	ret = __ath9k_hw_init(ah);
644	if (ret) {
645		ath_err(common,
646			"Unable to initialize hardware; initialization status: %d\n",
647			ret);
648		return ret;
649	}
650
651	return 0;
652}
653EXPORT_SYMBOL(ath9k_hw_init);
654
655static void ath9k_hw_init_qos(struct ath_hw *ah)
656{
657	ENABLE_REGWRITE_BUFFER(ah);
658
659	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
660	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
661
662	REG_WRITE(ah, AR_QOS_NO_ACK,
663		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
664		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
665		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
666
667	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
668	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
669	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
670	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
671	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
672
673	REGWRITE_BUFFER_FLUSH(ah);
674}
675
676u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
677{
678	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
679	udelay(100);
680	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
681
682	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
683		udelay(100);
684
685	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
686}
687EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
688
689static void ath9k_hw_init_pll(struct ath_hw *ah,
690			      struct ath9k_channel *chan)
691{
692	u32 pll;
693
694	if (AR_SREV_9485(ah)) {
695
696		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
697		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
698			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
699		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
700			      AR_CH0_DPLL2_KD, 0x40);
701		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
702			      AR_CH0_DPLL2_KI, 0x4);
703
704		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
705			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
706		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
707			      AR_CH0_BB_DPLL1_NINI, 0x58);
708		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
709			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
710
711		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
713		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
714			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
715		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
716			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
717
718		/* program BB PLL phase_shift to 0x6 */
719		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
720			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
721
722		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
724		udelay(1000);
725	} else if (AR_SREV_9340(ah)) {
726		u32 regval, pll2_divint, pll2_divfrac, refdiv;
727
728		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
729		udelay(1000);
730
731		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
732		udelay(100);
733
734		if (ah->is_clk_25mhz) {
735			pll2_divint = 0x54;
736			pll2_divfrac = 0x1eb85;
737			refdiv = 3;
738		} else {
739			pll2_divint = 88;
740			pll2_divfrac = 0;
741			refdiv = 5;
742		}
743
744		regval = REG_READ(ah, AR_PHY_PLL_MODE);
745		regval |= (0x1 << 16);
746		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
747		udelay(100);
748
749		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
750			  (pll2_divint << 18) | pll2_divfrac);
751		udelay(100);
752
753		regval = REG_READ(ah, AR_PHY_PLL_MODE);
754		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
755			 (0x4 << 26) | (0x18 << 19);
756		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
757		REG_WRITE(ah, AR_PHY_PLL_MODE,
758			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
759		udelay(1000);
760	}
761
762	pll = ath9k_hw_compute_pll_control(ah, chan);
763
764	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
765
766	if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
767		udelay(1000);
768
769	/* Switch the core clock for ar9271 to 117Mhz */
770	if (AR_SREV_9271(ah)) {
771		udelay(500);
772		REG_WRITE(ah, 0x50040, 0x304);
773	}
774
775	udelay(RTC_PLL_SETTLE_DELAY);
776
777	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
778
779	if (AR_SREV_9340(ah)) {
780		if (ah->is_clk_25mhz) {
781			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
782			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
783			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
784		} else {
785			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
786			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
787			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
788		}
789		udelay(100);
790	}
791}
792
793static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
794					  enum nl80211_iftype opmode)
795{
796	u32 sync_default = AR_INTR_SYNC_DEFAULT;
797	u32 imr_reg = AR_IMR_TXERR |
798		AR_IMR_TXURN |
799		AR_IMR_RXERR |
800		AR_IMR_RXORN |
801		AR_IMR_BCNMISC;
802
803	if (AR_SREV_9340(ah))
804		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
805
806	if (AR_SREV_9300_20_OR_LATER(ah)) {
807		imr_reg |= AR_IMR_RXOK_HP;
808		if (ah->config.rx_intr_mitigation)
809			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
810		else
811			imr_reg |= AR_IMR_RXOK_LP;
812
813	} else {
814		if (ah->config.rx_intr_mitigation)
815			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
816		else
817			imr_reg |= AR_IMR_RXOK;
818	}
819
820	if (ah->config.tx_intr_mitigation)
821		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
822	else
823		imr_reg |= AR_IMR_TXOK;
824
825	if (opmode == NL80211_IFTYPE_AP)
826		imr_reg |= AR_IMR_MIB;
827
828	ENABLE_REGWRITE_BUFFER(ah);
829
830	REG_WRITE(ah, AR_IMR, imr_reg);
831	ah->imrs2_reg |= AR_IMR_S2_GTT;
832	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
833
834	if (!AR_SREV_9100(ah)) {
835		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
836		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
837		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
838	}
839
840	REGWRITE_BUFFER_FLUSH(ah);
841
842	if (AR_SREV_9300_20_OR_LATER(ah)) {
843		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
844		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
845		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
846		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
847	}
848}
849
850static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
851{
852	u32 val = ath9k_hw_mac_to_clks(ah, us);
853	val = min(val, (u32) 0xFFFF);
854	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
855}
856
857static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
858{
859	u32 val = ath9k_hw_mac_to_clks(ah, us);
860	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
861	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
862}
863
864static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
865{
866	u32 val = ath9k_hw_mac_to_clks(ah, us);
867	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
868	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
869}
870
871static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
872{
873	if (tu > 0xFFFF) {
874		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
875			"bad global tx timeout %u\n", tu);
876		ah->globaltxtimeout = (u32) -1;
877		return false;
878	} else {
879		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
880		ah->globaltxtimeout = tu;
881		return true;
882	}
883}
884
885void ath9k_hw_init_global_settings(struct ath_hw *ah)
886{
887	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
888	int acktimeout;
889	int slottime;
890	int sifstime;
891
892	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
893		ah->misc_mode);
894
895	if (ah->misc_mode != 0)
896		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
897
898	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
899		sifstime = 16;
900	else
901		sifstime = 10;
902
903	/* As defined by IEEE 802.11-2007 17.3.8.6 */
904	slottime = ah->slottime + 3 * ah->coverage_class;
905	acktimeout = slottime + sifstime;
906
907	/*
908	 * Workaround for early ACK timeouts, add an offset to match the
909	 * initval's 64us ack timeout value.
910	 * This was initially only meant to work around an issue with delayed
911	 * BA frames in some implementations, but it has been found to fix ACK
912	 * timeout issues in other cases as well.
913	 */
914	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
915		acktimeout += 64 - sifstime - ah->slottime;
916
917	ath9k_hw_setslottime(ah, ah->slottime);
918	ath9k_hw_set_ack_timeout(ah, acktimeout);
919	ath9k_hw_set_cts_timeout(ah, acktimeout);
920	if (ah->globaltxtimeout != (u32) -1)
921		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
922}
923EXPORT_SYMBOL(ath9k_hw_init_global_settings);
924
925void ath9k_hw_deinit(struct ath_hw *ah)
926{
927	struct ath_common *common = ath9k_hw_common(ah);
928
929	if (common->state < ATH_HW_INITIALIZED)
930		goto free_hw;
931
932	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
933
934free_hw:
935	ath9k_hw_rf_free_ext_banks(ah);
936}
937EXPORT_SYMBOL(ath9k_hw_deinit);
938
939/*******/
940/* INI */
941/*******/
942
943u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
944{
945	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
946
947	if (IS_CHAN_B(chan))
948		ctl |= CTL_11B;
949	else if (IS_CHAN_G(chan))
950		ctl |= CTL_11G;
951	else
952		ctl |= CTL_11A;
953
954	return ctl;
955}
956
957/****************************************/
958/* Reset and Channel Switching Routines */
959/****************************************/
960
961static inline void ath9k_hw_set_dma(struct ath_hw *ah)
962{
963	struct ath_common *common = ath9k_hw_common(ah);
964
965	ENABLE_REGWRITE_BUFFER(ah);
966
967	/*
968	 * set AHB_MODE not to do cacheline prefetches
969	*/
970	if (!AR_SREV_9300_20_OR_LATER(ah))
971		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
972
973	/*
974	 * let mac dma reads be in 128 byte chunks
975	 */
976	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
977
978	REGWRITE_BUFFER_FLUSH(ah);
979
980	/*
981	 * Restore TX Trigger Level to its pre-reset value.
982	 * The initial value depends on whether aggregation is enabled, and is
983	 * adjusted whenever underruns are detected.
984	 */
985	if (!AR_SREV_9300_20_OR_LATER(ah))
986		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
987
988	ENABLE_REGWRITE_BUFFER(ah);
989
990	/*
991	 * let mac dma writes be in 128 byte chunks
992	 */
993	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
994
995	/*
996	 * Setup receive FIFO threshold to hold off TX activities
997	 */
998	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
999
1000	if (AR_SREV_9300_20_OR_LATER(ah)) {
1001		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1002		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1003
1004		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1005			ah->caps.rx_status_len);
1006	}
1007
1008	/*
1009	 * reduce the number of usable entries in PCU TXBUF to avoid
1010	 * wrap around issues.
1011	 */
1012	if (AR_SREV_9285(ah)) {
1013		/* For AR9285 the number of Fifos are reduced to half.
1014		 * So set the usable tx buf size also to half to
1015		 * avoid data/delimiter underruns
1016		 */
1017		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1018			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1019	} else if (!AR_SREV_9271(ah)) {
1020		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1021			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1022	}
1023
1024	REGWRITE_BUFFER_FLUSH(ah);
1025
1026	if (AR_SREV_9300_20_OR_LATER(ah))
1027		ath9k_hw_reset_txstatus_ring(ah);
1028}
1029
1030static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1031{
1032	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1033	u32 set = AR_STA_ID1_KSRCH_MODE;
1034
1035	switch (opmode) {
1036	case NL80211_IFTYPE_ADHOC:
1037	case NL80211_IFTYPE_MESH_POINT:
1038		set |= AR_STA_ID1_ADHOC;
1039		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1040		break;
1041	case NL80211_IFTYPE_AP:
1042		set |= AR_STA_ID1_STA_AP;
1043		/* fall through */
1044	case NL80211_IFTYPE_STATION:
1045		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1046		break;
1047	default:
1048		if (!ah->is_monitoring)
1049			set = 0;
1050		break;
1051	}
1052	REG_RMW(ah, AR_STA_ID1, set, mask);
1053}
1054
1055void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1056				   u32 *coef_mantissa, u32 *coef_exponent)
1057{
1058	u32 coef_exp, coef_man;
1059
1060	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1061		if ((coef_scaled >> coef_exp) & 0x1)
1062			break;
1063
1064	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1065
1066	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1067
1068	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1069	*coef_exponent = coef_exp - 16;
1070}
1071
1072static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1073{
1074	u32 rst_flags;
1075	u32 tmpReg;
1076
1077	if (AR_SREV_9100(ah)) {
1078		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1079			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1080		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1081	}
1082
1083	ENABLE_REGWRITE_BUFFER(ah);
1084
1085	if (AR_SREV_9300_20_OR_LATER(ah)) {
1086		REG_WRITE(ah, AR_WA, ah->WARegVal);
1087		udelay(10);
1088	}
1089
1090	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1091		  AR_RTC_FORCE_WAKE_ON_INT);
1092
1093	if (AR_SREV_9100(ah)) {
1094		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1095			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1096	} else {
1097		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1098		if (tmpReg &
1099		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1100		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1101			u32 val;
1102			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1103
1104			val = AR_RC_HOSTIF;
1105			if (!AR_SREV_9300_20_OR_LATER(ah))
1106				val |= AR_RC_AHB;
1107			REG_WRITE(ah, AR_RC, val);
1108
1109		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1110			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1111
1112		rst_flags = AR_RTC_RC_MAC_WARM;
1113		if (type == ATH9K_RESET_COLD)
1114			rst_flags |= AR_RTC_RC_MAC_COLD;
1115	}
1116
1117	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1118
1119	REGWRITE_BUFFER_FLUSH(ah);
1120
1121	udelay(50);
1122
1123	REG_WRITE(ah, AR_RTC_RC, 0);
1124	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1125		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1126			"RTC stuck in MAC reset\n");
1127		return false;
1128	}
1129
1130	if (!AR_SREV_9100(ah))
1131		REG_WRITE(ah, AR_RC, 0);
1132
1133	if (AR_SREV_9100(ah))
1134		udelay(50);
1135
1136	return true;
1137}
1138
1139static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1140{
1141	ENABLE_REGWRITE_BUFFER(ah);
1142
1143	if (AR_SREV_9300_20_OR_LATER(ah)) {
1144		REG_WRITE(ah, AR_WA, ah->WARegVal);
1145		udelay(10);
1146	}
1147
1148	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1149		  AR_RTC_FORCE_WAKE_ON_INT);
1150
1151	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1152		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1153
1154	REG_WRITE(ah, AR_RTC_RESET, 0);
1155
1156	REGWRITE_BUFFER_FLUSH(ah);
1157
1158	if (!AR_SREV_9300_20_OR_LATER(ah))
1159		udelay(2);
1160
1161	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1162		REG_WRITE(ah, AR_RC, 0);
1163
1164	REG_WRITE(ah, AR_RTC_RESET, 1);
1165
1166	if (!ath9k_hw_wait(ah,
1167			   AR_RTC_STATUS,
1168			   AR_RTC_STATUS_M,
1169			   AR_RTC_STATUS_ON,
1170			   AH_WAIT_TIMEOUT)) {
1171		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1172			"RTC not waking up\n");
1173		return false;
1174	}
1175
1176	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1177}
1178
1179static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1180{
1181	if (AR_SREV_9300_20_OR_LATER(ah)) {
1182		REG_WRITE(ah, AR_WA, ah->WARegVal);
1183		udelay(10);
1184	}
1185
1186	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1187		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1188
1189	switch (type) {
1190	case ATH9K_RESET_POWER_ON:
1191		return ath9k_hw_set_reset_power_on(ah);
1192	case ATH9K_RESET_WARM:
1193	case ATH9K_RESET_COLD:
1194		return ath9k_hw_set_reset(ah, type);
1195	default:
1196		return false;
1197	}
1198}
1199
1200static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1201				struct ath9k_channel *chan)
1202{
1203	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1204		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1205			return false;
1206	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1207		return false;
1208
1209	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1210		return false;
1211
1212	ah->chip_fullsleep = false;
1213	ath9k_hw_init_pll(ah, chan);
1214	ath9k_hw_set_rfmode(ah, chan);
1215
1216	return true;
1217}
1218
1219static bool ath9k_hw_channel_change(struct ath_hw *ah,
1220				    struct ath9k_channel *chan)
1221{
1222	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1223	struct ath_common *common = ath9k_hw_common(ah);
1224	struct ieee80211_channel *channel = chan->chan;
1225	u32 qnum;
1226	int r;
1227
1228	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1229		if (ath9k_hw_numtxpending(ah, qnum)) {
1230			ath_dbg(common, ATH_DBG_QUEUE,
1231				"Transmit frames pending on queue %d\n", qnum);
1232			return false;
1233		}
1234	}
1235
1236	if (!ath9k_hw_rfbus_req(ah)) {
1237		ath_err(common, "Could not kill baseband RX\n");
1238		return false;
1239	}
1240
1241	ath9k_hw_set_channel_regs(ah, chan);
1242
1243	r = ath9k_hw_rf_set_freq(ah, chan);
1244	if (r) {
1245		ath_err(common, "Failed to set channel\n");
1246		return false;
1247	}
1248	ath9k_hw_set_clockrate(ah);
1249
1250	ah->eep_ops->set_txpower(ah, chan,
1251			     ath9k_regd_get_ctl(regulatory, chan),
1252			     channel->max_antenna_gain * 2,
1253			     channel->max_power * 2,
1254			     min((u32) MAX_RATE_POWER,
1255			     (u32) regulatory->power_limit), false);
1256
1257	ath9k_hw_rfbus_done(ah);
1258
1259	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1260		ath9k_hw_set_delta_slope(ah, chan);
1261
1262	ath9k_hw_spur_mitigate_freq(ah, chan);
1263
1264	return true;
1265}
1266
1267static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1268{
1269	u32 gpio_mask = ah->gpio_mask;
1270	int i;
1271
1272	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1273		if (!(gpio_mask & 1))
1274			continue;
1275
1276		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1277		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1278	}
1279}
1280
1281bool ath9k_hw_check_alive(struct ath_hw *ah)
1282{
1283	int count = 50;
1284	u32 reg;
1285
1286	if (AR_SREV_9285_12_OR_LATER(ah))
1287		return true;
1288
1289	do {
1290		reg = REG_READ(ah, AR_OBS_BUS_1);
1291
1292		if ((reg & 0x7E7FFFEF) == 0x00702400)
1293			continue;
1294
1295		switch (reg & 0x7E000B00) {
1296		case 0x1E000000:
1297		case 0x52000B00:
1298		case 0x18000B00:
1299			continue;
1300		default:
1301			return true;
1302		}
1303	} while (count-- > 0);
1304
1305	return false;
1306}
1307EXPORT_SYMBOL(ath9k_hw_check_alive);
1308
1309int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1310		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1311{
1312	struct ath_common *common = ath9k_hw_common(ah);
1313	u32 saveLedState;
1314	struct ath9k_channel *curchan = ah->curchan;
1315	u32 saveDefAntenna;
1316	u32 macStaId1;
1317	u64 tsf = 0;
1318	int i, r;
1319
1320	ah->txchainmask = common->tx_chainmask;
1321	ah->rxchainmask = common->rx_chainmask;
1322
1323	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1324		return -EIO;
1325
1326	if (curchan && !ah->chip_fullsleep)
1327		ath9k_hw_getnf(ah, curchan);
1328
1329	ah->caldata = caldata;
1330	if (caldata &&
1331	    (chan->channel != caldata->channel ||
1332	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1333	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1334		/* Operating channel changed, reset channel calibration data */
1335		memset(caldata, 0, sizeof(*caldata));
1336		ath9k_init_nfcal_hist_buffer(ah, chan);
1337	}
1338
1339	if (bChannelChange &&
1340	    (ah->chip_fullsleep != true) &&
1341	    (ah->curchan != NULL) &&
1342	    (chan->channel != ah->curchan->channel) &&
1343	    ((chan->channelFlags & CHANNEL_ALL) ==
1344	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1345	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1346
1347		if (ath9k_hw_channel_change(ah, chan)) {
1348			ath9k_hw_loadnf(ah, ah->curchan);
1349			ath9k_hw_start_nfcal(ah, true);
1350			if (AR_SREV_9271(ah))
1351				ar9002_hw_load_ani_reg(ah, chan);
1352			return 0;
1353		}
1354	}
1355
1356	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1357	if (saveDefAntenna == 0)
1358		saveDefAntenna = 1;
1359
1360	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1361
1362	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1363	if (AR_SREV_9100(ah) ||
1364	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1365		tsf = ath9k_hw_gettsf64(ah);
1366
1367	saveLedState = REG_READ(ah, AR_CFG_LED) &
1368		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1369		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1370
1371	ath9k_hw_mark_phy_inactive(ah);
1372
1373	ah->paprd_table_write_done = false;
1374
1375	/* Only required on the first reset */
1376	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1377		REG_WRITE(ah,
1378			  AR9271_RESET_POWER_DOWN_CONTROL,
1379			  AR9271_RADIO_RF_RST);
1380		udelay(50);
1381	}
1382
1383	if (!ath9k_hw_chip_reset(ah, chan)) {
1384		ath_err(common, "Chip reset failed\n");
1385		return -EINVAL;
1386	}
1387
1388	/* Only required on the first reset */
1389	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1390		ah->htc_reset_init = false;
1391		REG_WRITE(ah,
1392			  AR9271_RESET_POWER_DOWN_CONTROL,
1393			  AR9271_GATE_MAC_CTL);
1394		udelay(50);
1395	}
1396
1397	/* Restore TSF */
1398	if (tsf)
1399		ath9k_hw_settsf64(ah, tsf);
1400
1401	if (AR_SREV_9280_20_OR_LATER(ah))
1402		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1403
1404	if (!AR_SREV_9300_20_OR_LATER(ah))
1405		ar9002_hw_enable_async_fifo(ah);
1406
1407	r = ath9k_hw_process_ini(ah, chan);
1408	if (r)
1409		return r;
1410
1411	/*
1412	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1413	 * right after the chip reset. When that happens, write a new
1414	 * value after the initvals have been applied, with an offset
1415	 * based on measured time difference
1416	 */
1417	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1418		tsf += 1500;
1419		ath9k_hw_settsf64(ah, tsf);
1420	}
1421
1422	/* Setup MFP options for CCMP */
1423	if (AR_SREV_9280_20_OR_LATER(ah)) {
1424		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1425		 * frames when constructing CCMP AAD. */
1426		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1427			      0xc7ff);
1428		ah->sw_mgmt_crypto = false;
1429	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1430		/* Disable hardware crypto for management frames */
1431		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1432			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1433		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1434			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1435		ah->sw_mgmt_crypto = true;
1436	} else
1437		ah->sw_mgmt_crypto = true;
1438
1439	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1440		ath9k_hw_set_delta_slope(ah, chan);
1441
1442	ath9k_hw_spur_mitigate_freq(ah, chan);
1443	ah->eep_ops->set_board_values(ah, chan);
1444
1445	ENABLE_REGWRITE_BUFFER(ah);
1446
1447	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1448	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1449		  | macStaId1
1450		  | AR_STA_ID1_RTS_USE_DEF
1451		  | (ah->config.
1452		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1453		  | ah->sta_id1_defaults);
1454	ath_hw_setbssidmask(common);
1455	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1456	ath9k_hw_write_associd(ah);
1457	REG_WRITE(ah, AR_ISR, ~0);
1458	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1459
1460	REGWRITE_BUFFER_FLUSH(ah);
1461
1462	ath9k_hw_set_operating_mode(ah, ah->opmode);
1463
1464	r = ath9k_hw_rf_set_freq(ah, chan);
1465	if (r)
1466		return r;
1467
1468	ath9k_hw_set_clockrate(ah);
1469
1470	ENABLE_REGWRITE_BUFFER(ah);
1471
1472	for (i = 0; i < AR_NUM_DCU; i++)
1473		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1474
1475	REGWRITE_BUFFER_FLUSH(ah);
1476
1477	ah->intr_txqs = 0;
1478	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1479		ath9k_hw_resettxqueue(ah, i);
1480
1481	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1482	ath9k_hw_ani_cache_ini_regs(ah);
1483	ath9k_hw_init_qos(ah);
1484
1485	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1486		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1487
1488	ath9k_hw_init_global_settings(ah);
1489
1490	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1491		ar9002_hw_update_async_fifo(ah);
1492		ar9002_hw_enable_wep_aggregation(ah);
1493	}
1494
1495	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1496
1497	ath9k_hw_set_dma(ah);
1498
1499	REG_WRITE(ah, AR_OBS, 8);
1500
1501	if (ah->config.rx_intr_mitigation) {
1502		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1503		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1504	}
1505
1506	if (ah->config.tx_intr_mitigation) {
1507		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1508		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1509	}
1510
1511	ath9k_hw_init_bb(ah, chan);
1512
1513	if (!ath9k_hw_init_cal(ah, chan))
1514		return -EIO;
1515
1516	ENABLE_REGWRITE_BUFFER(ah);
1517
1518	ath9k_hw_restore_chainmask(ah);
1519	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1520
1521	REGWRITE_BUFFER_FLUSH(ah);
1522
1523	/*
1524	 * For big endian systems turn on swapping for descriptors
1525	 */
1526	if (AR_SREV_9100(ah)) {
1527		u32 mask;
1528		mask = REG_READ(ah, AR_CFG);
1529		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1530			ath_dbg(common, ATH_DBG_RESET,
1531				"CFG Byte Swap Set 0x%x\n", mask);
1532		} else {
1533			mask =
1534				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1535			REG_WRITE(ah, AR_CFG, mask);
1536			ath_dbg(common, ATH_DBG_RESET,
1537				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1538		}
1539	} else {
1540		if (common->bus_ops->ath_bus_type == ATH_USB) {
1541			/* Configure AR9271 target WLAN */
1542			if (AR_SREV_9271(ah))
1543				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1544			else
1545				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1546		}
1547#ifdef __BIG_ENDIAN
1548		else if (AR_SREV_9340(ah))
1549			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1550		else
1551			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1552#endif
1553	}
1554
1555	if (ah->btcoex_hw.enabled)
1556		ath9k_hw_btcoex_enable(ah);
1557
1558	if (AR_SREV_9300_20_OR_LATER(ah))
1559		ar9003_hw_bb_watchdog_config(ah);
1560
1561	ath9k_hw_apply_gpio_override(ah);
1562
1563	return 0;
1564}
1565EXPORT_SYMBOL(ath9k_hw_reset);
1566
1567/******************************/
1568/* Power Management (Chipset) */
1569/******************************/
1570
1571/*
1572 * Notify Power Mgt is disabled in self-generated frames.
1573 * If requested, force chip to sleep.
1574 */
1575static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1576{
1577	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1578	if (setChip) {
1579		/*
1580		 * Clear the RTC force wake bit to allow the
1581		 * mac to go to sleep.
1582		 */
1583		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1584			    AR_RTC_FORCE_WAKE_EN);
1585		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1586			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1587
1588		/* Shutdown chip. Active low */
1589		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1590			REG_CLR_BIT(ah, (AR_RTC_RESET),
1591				    AR_RTC_RESET_EN);
1592	}
1593
1594	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1595	if (AR_SREV_9300_20_OR_LATER(ah))
1596		REG_WRITE(ah, AR_WA,
1597			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1598}
1599
1600/*
1601 * Notify Power Management is enabled in self-generating
1602 * frames. If request, set power mode of chip to
1603 * auto/normal.  Duration in units of 128us (1/8 TU).
1604 */
1605static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1606{
1607	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1608	if (setChip) {
1609		struct ath9k_hw_capabilities *pCap = &ah->caps;
1610
1611		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1612			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1613			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1614				  AR_RTC_FORCE_WAKE_ON_INT);
1615		} else {
1616			/*
1617			 * Clear the RTC force wake bit to allow the
1618			 * mac to go to sleep.
1619			 */
1620			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1621				    AR_RTC_FORCE_WAKE_EN);
1622		}
1623	}
1624
1625	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1626	if (AR_SREV_9300_20_OR_LATER(ah))
1627		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1628}
1629
1630static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1631{
1632	u32 val;
1633	int i;
1634
1635	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1636	if (AR_SREV_9300_20_OR_LATER(ah)) {
1637		REG_WRITE(ah, AR_WA, ah->WARegVal);
1638		udelay(10);
1639	}
1640
1641	if (setChip) {
1642		if ((REG_READ(ah, AR_RTC_STATUS) &
1643		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1644			if (ath9k_hw_set_reset_reg(ah,
1645					   ATH9K_RESET_POWER_ON) != true) {
1646				return false;
1647			}
1648			if (!AR_SREV_9300_20_OR_LATER(ah))
1649				ath9k_hw_init_pll(ah, NULL);
1650		}
1651		if (AR_SREV_9100(ah))
1652			REG_SET_BIT(ah, AR_RTC_RESET,
1653				    AR_RTC_RESET_EN);
1654
1655		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1656			    AR_RTC_FORCE_WAKE_EN);
1657		udelay(50);
1658
1659		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1660			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1661			if (val == AR_RTC_STATUS_ON)
1662				break;
1663			udelay(50);
1664			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1665				    AR_RTC_FORCE_WAKE_EN);
1666		}
1667		if (i == 0) {
1668			ath_err(ath9k_hw_common(ah),
1669				"Failed to wakeup in %uus\n",
1670				POWER_UP_TIME / 20);
1671			return false;
1672		}
1673	}
1674
1675	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1676
1677	return true;
1678}
1679
1680bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1681{
1682	struct ath_common *common = ath9k_hw_common(ah);
1683	int status = true, setChip = true;
1684	static const char *modes[] = {
1685		"AWAKE",
1686		"FULL-SLEEP",
1687		"NETWORK SLEEP",
1688		"UNDEFINED"
1689	};
1690
1691	if (ah->power_mode == mode)
1692		return status;
1693
1694	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1695		modes[ah->power_mode], modes[mode]);
1696
1697	switch (mode) {
1698	case ATH9K_PM_AWAKE:
1699		status = ath9k_hw_set_power_awake(ah, setChip);
1700		break;
1701	case ATH9K_PM_FULL_SLEEP:
1702		ath9k_set_power_sleep(ah, setChip);
1703		ah->chip_fullsleep = true;
1704		break;
1705	case ATH9K_PM_NETWORK_SLEEP:
1706		ath9k_set_power_network_sleep(ah, setChip);
1707		break;
1708	default:
1709		ath_err(common, "Unknown power mode %u\n", mode);
1710		return false;
1711	}
1712	ah->power_mode = mode;
1713
1714	/*
1715	 * XXX: If this warning never comes up after a while then
1716	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1717	 * ath9k_hw_setpower() return type void.
1718	 */
1719
1720	if (!(ah->ah_flags & AH_UNPLUGGED))
1721		ATH_DBG_WARN_ON_ONCE(!status);
1722
1723	return status;
1724}
1725EXPORT_SYMBOL(ath9k_hw_setpower);
1726
1727/*******************/
1728/* Beacon Handling */
1729/*******************/
1730
1731void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1732{
1733	int flags = 0;
1734
1735	ENABLE_REGWRITE_BUFFER(ah);
1736
1737	switch (ah->opmode) {
1738	case NL80211_IFTYPE_ADHOC:
1739	case NL80211_IFTYPE_MESH_POINT:
1740		REG_SET_BIT(ah, AR_TXCFG,
1741			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1742		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1743			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1744		flags |= AR_NDP_TIMER_EN;
1745	case NL80211_IFTYPE_AP:
1746		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1747		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1748			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1749		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1750			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1751		flags |=
1752			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1753		break;
1754	default:
1755		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1756			"%s: unsupported opmode: %d\n",
1757			__func__, ah->opmode);
1758		return;
1759		break;
1760	}
1761
1762	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1763	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1764	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1765	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1766
1767	REGWRITE_BUFFER_FLUSH(ah);
1768
1769	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1770}
1771EXPORT_SYMBOL(ath9k_hw_beaconinit);
1772
1773void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1774				    const struct ath9k_beacon_state *bs)
1775{
1776	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1777	struct ath9k_hw_capabilities *pCap = &ah->caps;
1778	struct ath_common *common = ath9k_hw_common(ah);
1779
1780	ENABLE_REGWRITE_BUFFER(ah);
1781
1782	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1783
1784	REG_WRITE(ah, AR_BEACON_PERIOD,
1785		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1786	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1787		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1788
1789	REGWRITE_BUFFER_FLUSH(ah);
1790
1791	REG_RMW_FIELD(ah, AR_RSSI_THR,
1792		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1793
1794	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1795
1796	if (bs->bs_sleepduration > beaconintval)
1797		beaconintval = bs->bs_sleepduration;
1798
1799	dtimperiod = bs->bs_dtimperiod;
1800	if (bs->bs_sleepduration > dtimperiod)
1801		dtimperiod = bs->bs_sleepduration;
1802
1803	if (beaconintval == dtimperiod)
1804		nextTbtt = bs->bs_nextdtim;
1805	else
1806		nextTbtt = bs->bs_nexttbtt;
1807
1808	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1809	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1810	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1811	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1812
1813	ENABLE_REGWRITE_BUFFER(ah);
1814
1815	REG_WRITE(ah, AR_NEXT_DTIM,
1816		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1817	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1818
1819	REG_WRITE(ah, AR_SLEEP1,
1820		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1821		  | AR_SLEEP1_ASSUME_DTIM);
1822
1823	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1824		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1825	else
1826		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1827
1828	REG_WRITE(ah, AR_SLEEP2,
1829		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1830
1831	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1832	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1833
1834	REGWRITE_BUFFER_FLUSH(ah);
1835
1836	REG_SET_BIT(ah, AR_TIMER_MODE,
1837		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1838		    AR_DTIM_TIMER_EN);
1839
1840	/* TSF Out of Range Threshold */
1841	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1842}
1843EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1844
1845/*******************/
1846/* HW Capabilities */
1847/*******************/
1848
1849int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1850{
1851	struct ath9k_hw_capabilities *pCap = &ah->caps;
1852	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1853	struct ath_common *common = ath9k_hw_common(ah);
1854	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1855
1856	u16 eeval;
1857	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1858
1859	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1860	regulatory->current_rd = eeval;
1861
1862	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1863	if (AR_SREV_9285_12_OR_LATER(ah))
1864		eeval |= AR9285_RDEXT_DEFAULT;
1865	regulatory->current_rd_ext = eeval;
1866
1867	if (ah->opmode != NL80211_IFTYPE_AP &&
1868	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1869		if (regulatory->current_rd == 0x64 ||
1870		    regulatory->current_rd == 0x65)
1871			regulatory->current_rd += 5;
1872		else if (regulatory->current_rd == 0x41)
1873			regulatory->current_rd = 0x43;
1874		ath_dbg(common, ATH_DBG_REGULATORY,
1875			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1876	}
1877
1878	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1879	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1880		ath_err(common,
1881			"no band has been marked as supported in EEPROM\n");
1882		return -EINVAL;
1883	}
1884
1885	if (eeval & AR5416_OPFLAGS_11A)
1886		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1887
1888	if (eeval & AR5416_OPFLAGS_11G)
1889		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1890
1891	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1892	/*
1893	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1894	 * the EEPROM.
1895	 */
1896	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1897	    !(eeval & AR5416_OPFLAGS_11A) &&
1898	    !(AR_SREV_9271(ah)))
1899		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1900		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1901	else if (AR_SREV_9100(ah))
1902		pCap->rx_chainmask = 0x7;
1903	else
1904		/* Use rx_chainmask from EEPROM. */
1905		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1906
1907	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1908
1909	/* enable key search for every frame in an aggregate */
1910	if (AR_SREV_9300_20_OR_LATER(ah))
1911		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1912
1913	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1914
1915	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
1916		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1917	else
1918		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1919
1920	if (AR_SREV_9271(ah))
1921		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1922	else if (AR_DEVID_7010(ah))
1923		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1924	else if (AR_SREV_9285_12_OR_LATER(ah))
1925		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1926	else if (AR_SREV_9280_20_OR_LATER(ah))
1927		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1928	else
1929		pCap->num_gpio_pins = AR_NUM_GPIO;
1930
1931	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1932		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1933		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1934	} else {
1935		pCap->rts_aggr_limit = (8 * 1024);
1936	}
1937
1938#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1939	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1940	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1941		ah->rfkill_gpio =
1942			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1943		ah->rfkill_polarity =
1944			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1945
1946		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1947	}
1948#endif
1949	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1950		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1951	else
1952		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1953
1954	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1955		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1956	else
1957		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1958
1959	if (common->btcoex_enabled) {
1960		if (AR_SREV_9300_20_OR_LATER(ah)) {
1961			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1962			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
1963			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
1964			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
1965		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1966			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
1967			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
1968
1969			if (AR_SREV_9285(ah)) {
1970				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1971				btcoex_hw->btpriority_gpio =
1972						ATH_BTPRIORITY_GPIO_9285;
1973			} else {
1974				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1975			}
1976		}
1977	} else {
1978		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1979	}
1980
1981	if (AR_SREV_9300_20_OR_LATER(ah)) {
1982		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1983		if (!AR_SREV_9485(ah))
1984			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1985
1986		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1987		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1988		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1989		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1990		pCap->txs_len = sizeof(struct ar9003_txs);
1991		if (!ah->config.paprd_disable &&
1992		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1993			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1994	} else {
1995		pCap->tx_desc_len = sizeof(struct ath_desc);
1996		if (AR_SREV_9280_20(ah) &&
1997		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1998		      AR5416_EEP_MINOR_VER_16) ||
1999		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2000			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2001	}
2002
2003	if (AR_SREV_9300_20_OR_LATER(ah))
2004		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2005
2006	if (AR_SREV_9300_20_OR_LATER(ah))
2007		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2008
2009	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2010		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2011
2012	if (AR_SREV_9285(ah))
2013		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2014			ant_div_ctl1 =
2015				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2016			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2017				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2018		}
2019	if (AR_SREV_9300_20_OR_LATER(ah)) {
2020		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2021			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2022	}
2023
2024
2025	if (AR_SREV_9485(ah)) {
2026		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2027		/*
2028		 * enable the diversity-combining algorithm only when
2029		 * both enable_lna_div and enable_fast_div are set
2030		 *		Table for Diversity
2031		 * ant_div_alt_lnaconf		bit 0-1
2032		 * ant_div_main_lnaconf		bit 2-3
2033		 * ant_div_alt_gaintb		bit 4
2034		 * ant_div_main_gaintb		bit 5
2035		 * enable_ant_div_lnadiv	bit 6
2036		 * enable_ant_fast_div		bit 7
2037		 */
2038		if ((ant_div_ctl1 >> 0x6) == 0x3)
2039			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2040	}
2041
2042	if (AR_SREV_9485_10(ah)) {
2043		pCap->pcie_lcr_extsync_en = true;
2044		pCap->pcie_lcr_offset = 0x80;
2045	}
2046
2047	tx_chainmask = pCap->tx_chainmask;
2048	rx_chainmask = pCap->rx_chainmask;
2049	while (tx_chainmask || rx_chainmask) {
2050		if (tx_chainmask & BIT(0))
2051			pCap->max_txchains++;
2052		if (rx_chainmask & BIT(0))
2053			pCap->max_rxchains++;
2054
2055		tx_chainmask >>= 1;
2056		rx_chainmask >>= 1;
2057	}
2058
2059	return 0;
2060}
2061
2062/****************************/
2063/* GPIO / RFKILL / Antennae */
2064/****************************/
2065
2066static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2067					 u32 gpio, u32 type)
2068{
2069	int addr;
2070	u32 gpio_shift, tmp;
2071
2072	if (gpio > 11)
2073		addr = AR_GPIO_OUTPUT_MUX3;
2074	else if (gpio > 5)
2075		addr = AR_GPIO_OUTPUT_MUX2;
2076	else
2077		addr = AR_GPIO_OUTPUT_MUX1;
2078
2079	gpio_shift = (gpio % 6) * 5;
2080
2081	if (AR_SREV_9280_20_OR_LATER(ah)
2082	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2083		REG_RMW(ah, addr, (type << gpio_shift),
2084			(0x1f << gpio_shift));
2085	} else {
2086		tmp = REG_READ(ah, addr);
2087		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2088		tmp &= ~(0x1f << gpio_shift);
2089		tmp |= (type << gpio_shift);
2090		REG_WRITE(ah, addr, tmp);
2091	}
2092}
2093
2094void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2095{
2096	u32 gpio_shift;
2097
2098	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2099
2100	if (AR_DEVID_7010(ah)) {
2101		gpio_shift = gpio;
2102		REG_RMW(ah, AR7010_GPIO_OE,
2103			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2104			(AR7010_GPIO_OE_MASK << gpio_shift));
2105		return;
2106	}
2107
2108	gpio_shift = gpio << 1;
2109	REG_RMW(ah,
2110		AR_GPIO_OE_OUT,
2111		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2112		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2113}
2114EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2115
2116u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2117{
2118#define MS_REG_READ(x, y) \
2119	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2120
2121	if (gpio >= ah->caps.num_gpio_pins)
2122		return 0xffffffff;
2123
2124	if (AR_DEVID_7010(ah)) {
2125		u32 val;
2126		val = REG_READ(ah, AR7010_GPIO_IN);
2127		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2128	} else if (AR_SREV_9300_20_OR_LATER(ah))
2129		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2130			AR_GPIO_BIT(gpio)) != 0;
2131	else if (AR_SREV_9271(ah))
2132		return MS_REG_READ(AR9271, gpio) != 0;
2133	else if (AR_SREV_9287_11_OR_LATER(ah))
2134		return MS_REG_READ(AR9287, gpio) != 0;
2135	else if (AR_SREV_9285_12_OR_LATER(ah))
2136		return MS_REG_READ(AR9285, gpio) != 0;
2137	else if (AR_SREV_9280_20_OR_LATER(ah))
2138		return MS_REG_READ(AR928X, gpio) != 0;
2139	else
2140		return MS_REG_READ(AR, gpio) != 0;
2141}
2142EXPORT_SYMBOL(ath9k_hw_gpio_get);
2143
2144void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2145			 u32 ah_signal_type)
2146{
2147	u32 gpio_shift;
2148
2149	if (AR_DEVID_7010(ah)) {
2150		gpio_shift = gpio;
2151		REG_RMW(ah, AR7010_GPIO_OE,
2152			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2153			(AR7010_GPIO_OE_MASK << gpio_shift));
2154		return;
2155	}
2156
2157	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2158	gpio_shift = 2 * gpio;
2159	REG_RMW(ah,
2160		AR_GPIO_OE_OUT,
2161		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2162		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2163}
2164EXPORT_SYMBOL(ath9k_hw_cfg_output);
2165
2166void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2167{
2168	if (AR_DEVID_7010(ah)) {
2169		val = val ? 0 : 1;
2170		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2171			AR_GPIO_BIT(gpio));
2172		return;
2173	}
2174
2175	if (AR_SREV_9271(ah))
2176		val = ~val;
2177
2178	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2179		AR_GPIO_BIT(gpio));
2180}
2181EXPORT_SYMBOL(ath9k_hw_set_gpio);
2182
2183u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2184{
2185	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2186}
2187EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2188
2189void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2190{
2191	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2192}
2193EXPORT_SYMBOL(ath9k_hw_setantenna);
2194
2195/*********************/
2196/* General Operation */
2197/*********************/
2198
2199u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2200{
2201	u32 bits = REG_READ(ah, AR_RX_FILTER);
2202	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2203
2204	if (phybits & AR_PHY_ERR_RADAR)
2205		bits |= ATH9K_RX_FILTER_PHYRADAR;
2206	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2207		bits |= ATH9K_RX_FILTER_PHYERR;
2208
2209	return bits;
2210}
2211EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2212
2213void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2214{
2215	u32 phybits;
2216
2217	ENABLE_REGWRITE_BUFFER(ah);
2218
2219	REG_WRITE(ah, AR_RX_FILTER, bits);
2220
2221	phybits = 0;
2222	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2223		phybits |= AR_PHY_ERR_RADAR;
2224	if (bits & ATH9K_RX_FILTER_PHYERR)
2225		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2226	REG_WRITE(ah, AR_PHY_ERR, phybits);
2227
2228	if (phybits)
2229		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2230	else
2231		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2232
2233	REGWRITE_BUFFER_FLUSH(ah);
2234}
2235EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2236
2237bool ath9k_hw_phy_disable(struct ath_hw *ah)
2238{
2239	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2240		return false;
2241
2242	ath9k_hw_init_pll(ah, NULL);
2243	return true;
2244}
2245EXPORT_SYMBOL(ath9k_hw_phy_disable);
2246
2247bool ath9k_hw_disable(struct ath_hw *ah)
2248{
2249	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2250		return false;
2251
2252	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2253		return false;
2254
2255	ath9k_hw_init_pll(ah, NULL);
2256	return true;
2257}
2258EXPORT_SYMBOL(ath9k_hw_disable);
2259
2260void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2261{
2262	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2263	struct ath9k_channel *chan = ah->curchan;
2264	struct ieee80211_channel *channel = chan->chan;
2265
2266	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2267
2268	ah->eep_ops->set_txpower(ah, chan,
2269				 ath9k_regd_get_ctl(regulatory, chan),
2270				 channel->max_antenna_gain * 2,
2271				 channel->max_power * 2,
2272				 min((u32) MAX_RATE_POWER,
2273				 (u32) regulatory->power_limit), test);
2274}
2275EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2276
2277void ath9k_hw_setopmode(struct ath_hw *ah)
2278{
2279	ath9k_hw_set_operating_mode(ah, ah->opmode);
2280}
2281EXPORT_SYMBOL(ath9k_hw_setopmode);
2282
2283void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2284{
2285	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2286	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2287}
2288EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2289
2290void ath9k_hw_write_associd(struct ath_hw *ah)
2291{
2292	struct ath_common *common = ath9k_hw_common(ah);
2293
2294	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2295	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2296		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2297}
2298EXPORT_SYMBOL(ath9k_hw_write_associd);
2299
2300#define ATH9K_MAX_TSF_READ 10
2301
2302u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2303{
2304	u32 tsf_lower, tsf_upper1, tsf_upper2;
2305	int i;
2306
2307	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2308	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2309		tsf_lower = REG_READ(ah, AR_TSF_L32);
2310		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2311		if (tsf_upper2 == tsf_upper1)
2312			break;
2313		tsf_upper1 = tsf_upper2;
2314	}
2315
2316	WARN_ON( i == ATH9K_MAX_TSF_READ );
2317
2318	return (((u64)tsf_upper1 << 32) | tsf_lower);
2319}
2320EXPORT_SYMBOL(ath9k_hw_gettsf64);
2321
2322void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2323{
2324	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2325	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2326}
2327EXPORT_SYMBOL(ath9k_hw_settsf64);
2328
2329void ath9k_hw_reset_tsf(struct ath_hw *ah)
2330{
2331	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2332			   AH_TSF_WRITE_TIMEOUT))
2333		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2334			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2335
2336	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2337}
2338EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2339
2340void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2341{
2342	if (setting)
2343		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2344	else
2345		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2346}
2347EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2348
2349void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2350{
2351	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2352	u32 macmode;
2353
2354	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2355		macmode = AR_2040_JOINED_RX_CLEAR;
2356	else
2357		macmode = 0;
2358
2359	REG_WRITE(ah, AR_2040_MODE, macmode);
2360}
2361
2362/* HW Generic timers configuration */
2363
2364static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2365{
2366	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2367	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2368	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2369	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2370	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2371	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2372	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2373	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2374	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2375	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2376				AR_NDP2_TIMER_MODE, 0x0002},
2377	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2378				AR_NDP2_TIMER_MODE, 0x0004},
2379	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2380				AR_NDP2_TIMER_MODE, 0x0008},
2381	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2382				AR_NDP2_TIMER_MODE, 0x0010},
2383	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2384				AR_NDP2_TIMER_MODE, 0x0020},
2385	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2386				AR_NDP2_TIMER_MODE, 0x0040},
2387	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2388				AR_NDP2_TIMER_MODE, 0x0080}
2389};
2390
2391/* HW generic timer primitives */
2392
2393/* compute and clear index of rightmost 1 */
2394static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2395{
2396	u32 b;
2397
2398	b = *mask;
2399	b &= (0-b);
2400	*mask &= ~b;
2401	b *= debruijn32;
2402	b >>= 27;
2403
2404	return timer_table->gen_timer_index[b];
2405}
2406
2407u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2408{
2409	return REG_READ(ah, AR_TSF_L32);
2410}
2411EXPORT_SYMBOL(ath9k_hw_gettsf32);
2412
2413struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2414					  void (*trigger)(void *),
2415					  void (*overflow)(void *),
2416					  void *arg,
2417					  u8 timer_index)
2418{
2419	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2420	struct ath_gen_timer *timer;
2421
2422	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2423
2424	if (timer == NULL) {
2425		ath_err(ath9k_hw_common(ah),
2426			"Failed to allocate memory for hw timer[%d]\n",
2427			timer_index);
2428		return NULL;
2429	}
2430
2431	/* allocate a hardware generic timer slot */
2432	timer_table->timers[timer_index] = timer;
2433	timer->index = timer_index;
2434	timer->trigger = trigger;
2435	timer->overflow = overflow;
2436	timer->arg = arg;
2437
2438	return timer;
2439}
2440EXPORT_SYMBOL(ath_gen_timer_alloc);
2441
2442void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2443			      struct ath_gen_timer *timer,
2444			      u32 trig_timeout,
2445			      u32 timer_period)
2446{
2447	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2448	u32 tsf, timer_next;
2449
2450	BUG_ON(!timer_period);
2451
2452	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2453
2454	tsf = ath9k_hw_gettsf32(ah);
2455
2456	timer_next = tsf + trig_timeout;
2457
2458	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2459		"current tsf %x period %x timer_next %x\n",
2460		tsf, timer_period, timer_next);
2461
2462	/*
2463	 * Program generic timer registers
2464	 */
2465	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2466		 timer_next);
2467	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2468		  timer_period);
2469	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2470		    gen_tmr_configuration[timer->index].mode_mask);
2471
2472	/* Enable both trigger and thresh interrupt masks */
2473	REG_SET_BIT(ah, AR_IMR_S5,
2474		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2475		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2476}
2477EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2478
2479void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2480{
2481	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2482
2483	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2484		(timer->index >= ATH_MAX_GEN_TIMER)) {
2485		return;
2486	}
2487
2488	/* Clear generic timer enable bits. */
2489	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2490			gen_tmr_configuration[timer->index].mode_mask);
2491
2492	/* Disable both trigger and thresh interrupt masks */
2493	REG_CLR_BIT(ah, AR_IMR_S5,
2494		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2495		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2496
2497	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2498}
2499EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2500
2501void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2502{
2503	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2504
2505	/* free the hardware generic timer slot */
2506	timer_table->timers[timer->index] = NULL;
2507	kfree(timer);
2508}
2509EXPORT_SYMBOL(ath_gen_timer_free);
2510
2511/*
2512 * Generic Timer Interrupts handling
2513 */
2514void ath_gen_timer_isr(struct ath_hw *ah)
2515{
2516	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2517	struct ath_gen_timer *timer;
2518	struct ath_common *common = ath9k_hw_common(ah);
2519	u32 trigger_mask, thresh_mask, index;
2520
2521	/* get hardware generic timer interrupt status */
2522	trigger_mask = ah->intr_gen_timer_trigger;
2523	thresh_mask = ah->intr_gen_timer_thresh;
2524	trigger_mask &= timer_table->timer_mask.val;
2525	thresh_mask &= timer_table->timer_mask.val;
2526
2527	trigger_mask &= ~thresh_mask;
2528
2529	while (thresh_mask) {
2530		index = rightmost_index(timer_table, &thresh_mask);
2531		timer = timer_table->timers[index];
2532		BUG_ON(!timer);
2533		ath_dbg(common, ATH_DBG_HWTIMER,
2534			"TSF overflow for Gen timer %d\n", index);
2535		timer->overflow(timer->arg);
2536	}
2537
2538	while (trigger_mask) {
2539		index = rightmost_index(timer_table, &trigger_mask);
2540		timer = timer_table->timers[index];
2541		BUG_ON(!timer);
2542		ath_dbg(common, ATH_DBG_HWTIMER,
2543			"Gen timer[%d] trigger\n", index);
2544		timer->trigger(timer->arg);
2545	}
2546}
2547EXPORT_SYMBOL(ath_gen_timer_isr);
2548
2549/********/
2550/* HTC  */
2551/********/
2552
2553void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2554{
2555	ah->htc_reset_init = true;
2556}
2557EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2558
2559static struct {
2560	u32 version;
2561	const char * name;
2562} ath_mac_bb_names[] = {
2563	/* Devices with external radios */
2564	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2565	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2566	{ AR_SREV_VERSION_9100,		"9100" },
2567	{ AR_SREV_VERSION_9160,		"9160" },
2568	/* Single-chip solutions */
2569	{ AR_SREV_VERSION_9280,		"9280" },
2570	{ AR_SREV_VERSION_9285,		"9285" },
2571	{ AR_SREV_VERSION_9287,         "9287" },
2572	{ AR_SREV_VERSION_9271,         "9271" },
2573	{ AR_SREV_VERSION_9300,         "9300" },
2574	{ AR_SREV_VERSION_9485,         "9485" },
2575};
2576
2577/* For devices with external radios */
2578static struct {
2579	u16 version;
2580	const char * name;
2581} ath_rf_names[] = {
2582	{ 0,				"5133" },
2583	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2584	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2585	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2586	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2587};
2588
2589/*
2590 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2591 */
2592static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2593{
2594	int i;
2595
2596	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2597		if (ath_mac_bb_names[i].version == mac_bb_version) {
2598			return ath_mac_bb_names[i].name;
2599		}
2600	}
2601
2602	return "????";
2603}
2604
2605/*
2606 * Return the RF name. "????" is returned if the RF is unknown.
2607 * Used for devices with external radios.
2608 */
2609static const char *ath9k_hw_rf_name(u16 rf_version)
2610{
2611	int i;
2612
2613	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2614		if (ath_rf_names[i].version == rf_version) {
2615			return ath_rf_names[i].name;
2616		}
2617	}
2618
2619	return "????";
2620}
2621
2622void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2623{
2624	int used;
2625
2626	/* chipsets >= AR9280 are single-chip */
2627	if (AR_SREV_9280_20_OR_LATER(ah)) {
2628		used = snprintf(hw_name, len,
2629			       "Atheros AR%s Rev:%x",
2630			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2631			       ah->hw_version.macRev);
2632	}
2633	else {
2634		used = snprintf(hw_name, len,
2635			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2636			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2637			       ah->hw_version.macRev,
2638			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2639						AR_RADIO_SREV_MAJOR)),
2640			       ah->hw_version.phyRev);
2641	}
2642
2643	hw_name[used] = '\0';
2644}
2645EXPORT_SYMBOL(ath9k_hw_name);
2646