hw.c revision 2638126a7c7cce87d51ae5d3bfaca9350503c0b4
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	if (!ah->curchan) /* should really check for CCK instead */
91		clockrate = ATH9K_CLOCK_RATE_CCK;
92	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96	else
97		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98
99	if (conf_is_ht40(conf))
100		clockrate *= 2;
101
102	common->clockrate = clockrate;
103}
104
105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106{
107	struct ath_common *common = ath9k_hw_common(ah);
108
109	return usecs * common->clockrate;
110}
111
112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113{
114	int i;
115
116	BUG_ON(timeout < AH_TIME_QUANTUM);
117
118	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119		if ((REG_READ(ah, reg) & mask) == val)
120			return true;
121
122		udelay(AH_TIME_QUANTUM);
123	}
124
125	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127		timeout, reg, REG_READ(ah, reg), mask, val);
128
129	return false;
130}
131EXPORT_SYMBOL(ath9k_hw_wait);
132
133void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
134			  int column, unsigned int *writecnt)
135{
136	int r;
137
138	ENABLE_REGWRITE_BUFFER(ah);
139	for (r = 0; r < array->ia_rows; r++) {
140		REG_WRITE(ah, INI_RA(array, r, 0),
141			  INI_RA(array, r, column));
142		DO_DELAY(*writecnt);
143	}
144	REGWRITE_BUFFER_FLUSH(ah);
145}
146
147u32 ath9k_hw_reverse_bits(u32 val, u32 n)
148{
149	u32 retval;
150	int i;
151
152	for (i = 0, retval = 0; i < n; i++) {
153		retval = (retval << 1) | (val & 1);
154		val >>= 1;
155	}
156	return retval;
157}
158
159u16 ath9k_hw_computetxtime(struct ath_hw *ah,
160			   u8 phy, int kbps,
161			   u32 frameLen, u16 rateix,
162			   bool shortPreamble)
163{
164	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
165
166	if (kbps == 0)
167		return 0;
168
169	switch (phy) {
170	case WLAN_RC_PHY_CCK:
171		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
172		if (shortPreamble)
173			phyTime >>= 1;
174		numBits = frameLen << 3;
175		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
176		break;
177	case WLAN_RC_PHY_OFDM:
178		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
179			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
180			numBits = OFDM_PLCP_BITS + (frameLen << 3);
181			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
182			txTime = OFDM_SIFS_TIME_QUARTER
183				+ OFDM_PREAMBLE_TIME_QUARTER
184				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
185		} else if (ah->curchan &&
186			   IS_CHAN_HALF_RATE(ah->curchan)) {
187			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
188			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190			txTime = OFDM_SIFS_TIME_HALF +
191				OFDM_PREAMBLE_TIME_HALF
192				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
193		} else {
194			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
195			numBits = OFDM_PLCP_BITS + (frameLen << 3);
196			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
197			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
198				+ (numSymbols * OFDM_SYMBOL_TIME);
199		}
200		break;
201	default:
202		ath_err(ath9k_hw_common(ah),
203			"Unknown phy %u (rate ix %u)\n", phy, rateix);
204		txTime = 0;
205		break;
206	}
207
208	return txTime;
209}
210EXPORT_SYMBOL(ath9k_hw_computetxtime);
211
212void ath9k_hw_get_channel_centers(struct ath_hw *ah,
213				  struct ath9k_channel *chan,
214				  struct chan_centers *centers)
215{
216	int8_t extoff;
217
218	if (!IS_CHAN_HT40(chan)) {
219		centers->ctl_center = centers->ext_center =
220			centers->synth_center = chan->channel;
221		return;
222	}
223
224	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
225	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
226		centers->synth_center =
227			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
228		extoff = 1;
229	} else {
230		centers->synth_center =
231			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
232		extoff = -1;
233	}
234
235	centers->ctl_center =
236		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
237	/* 25 MHz spacing is supported by hw but not on upper layers */
238	centers->ext_center =
239		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
240}
241
242/******************/
243/* Chip Revisions */
244/******************/
245
246static void ath9k_hw_read_revisions(struct ath_hw *ah)
247{
248	u32 val;
249
250	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
251
252	if (val == 0xFF) {
253		val = REG_READ(ah, AR_SREV);
254		ah->hw_version.macVersion =
255			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
256		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
257		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
258	} else {
259		if (!AR_SREV_9100(ah))
260			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
261
262		ah->hw_version.macRev = val & AR_SREV_REVISION;
263
264		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
265			ah->is_pciexpress = true;
266	}
267}
268
269/************************************/
270/* HW Attach, Detach, Init Routines */
271/************************************/
272
273static void ath9k_hw_disablepcie(struct ath_hw *ah)
274{
275	if (!AR_SREV_5416(ah))
276		return;
277
278	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
279	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
280	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
281	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
282	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
283	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
284	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
285	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
286	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
287
288	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
289}
290
291/* This should work for all families including legacy */
292static bool ath9k_hw_chip_test(struct ath_hw *ah)
293{
294	struct ath_common *common = ath9k_hw_common(ah);
295	u32 regAddr[2] = { AR_STA_ID0 };
296	u32 regHold[2];
297	static const u32 patternData[4] = {
298		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
299	};
300	int i, j, loop_max;
301
302	if (!AR_SREV_9300_20_OR_LATER(ah)) {
303		loop_max = 2;
304		regAddr[1] = AR_PHY_BASE + (8 << 2);
305	} else
306		loop_max = 1;
307
308	for (i = 0; i < loop_max; i++) {
309		u32 addr = regAddr[i];
310		u32 wrData, rdData;
311
312		regHold[i] = REG_READ(ah, addr);
313		for (j = 0; j < 0x100; j++) {
314			wrData = (j << 16) | j;
315			REG_WRITE(ah, addr, wrData);
316			rdData = REG_READ(ah, addr);
317			if (rdData != wrData) {
318				ath_err(common,
319					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
320					addr, wrData, rdData);
321				return false;
322			}
323		}
324		for (j = 0; j < 4; j++) {
325			wrData = patternData[j];
326			REG_WRITE(ah, addr, wrData);
327			rdData = REG_READ(ah, addr);
328			if (wrData != rdData) {
329				ath_err(common,
330					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
331					addr, wrData, rdData);
332				return false;
333			}
334		}
335		REG_WRITE(ah, regAddr[i], regHold[i]);
336	}
337	udelay(100);
338
339	return true;
340}
341
342static void ath9k_hw_init_config(struct ath_hw *ah)
343{
344	int i;
345
346	ah->config.dma_beacon_response_time = 2;
347	ah->config.sw_beacon_response_time = 10;
348	ah->config.additional_swba_backoff = 0;
349	ah->config.ack_6mb = 0x0;
350	ah->config.cwm_ignore_extcca = 0;
351	ah->config.pcie_powersave_enable = 0;
352	ah->config.pcie_clock_req = 0;
353	ah->config.pcie_waen = 0;
354	ah->config.analog_shiftreg = 1;
355	ah->config.enable_ani = true;
356
357	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
358		ah->config.spurchans[i][0] = AR_NO_SPUR;
359		ah->config.spurchans[i][1] = AR_NO_SPUR;
360	}
361
362	/* PAPRD needs some more work to be enabled */
363	ah->config.paprd_disable = 1;
364
365	ah->config.rx_intr_mitigation = true;
366	ah->config.pcieSerDesWrite = true;
367
368	/*
369	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
370	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
371	 * This means we use it for all AR5416 devices, and the few
372	 * minor PCI AR9280 devices out there.
373	 *
374	 * Serialization is required because these devices do not handle
375	 * well the case of two concurrent reads/writes due to the latency
376	 * involved. During one read/write another read/write can be issued
377	 * on another CPU while the previous read/write may still be working
378	 * on our hardware, if we hit this case the hardware poops in a loop.
379	 * We prevent this by serializing reads and writes.
380	 *
381	 * This issue is not present on PCI-Express devices or pre-AR5416
382	 * devices (legacy, 802.11abg).
383	 */
384	if (num_possible_cpus() > 1)
385		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
386}
387
388static void ath9k_hw_init_defaults(struct ath_hw *ah)
389{
390	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
391
392	regulatory->country_code = CTRY_DEFAULT;
393	regulatory->power_limit = MAX_RATE_POWER;
394	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
395
396	ah->hw_version.magic = AR5416_MAGIC;
397	ah->hw_version.subvendorid = 0;
398
399	ah->atim_window = 0;
400	ah->sta_id1_defaults =
401		AR_STA_ID1_CRPT_MIC_ENABLE |
402		AR_STA_ID1_MCAST_KSRCH;
403	if (AR_SREV_9100(ah))
404		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
405	ah->enable_32kHz_clock = DONT_USE_32KHZ;
406	ah->slottime = 20;
407	ah->globaltxtimeout = (u32) -1;
408	ah->power_mode = ATH9K_PM_UNDEFINED;
409}
410
411static int ath9k_hw_init_macaddr(struct ath_hw *ah)
412{
413	struct ath_common *common = ath9k_hw_common(ah);
414	u32 sum;
415	int i;
416	u16 eeval;
417	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
418
419	sum = 0;
420	for (i = 0; i < 3; i++) {
421		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
422		sum += eeval;
423		common->macaddr[2 * i] = eeval >> 8;
424		common->macaddr[2 * i + 1] = eeval & 0xff;
425	}
426	if (sum == 0 || sum == 0xffff * 3)
427		return -EADDRNOTAVAIL;
428
429	return 0;
430}
431
432static int ath9k_hw_post_init(struct ath_hw *ah)
433{
434	struct ath_common *common = ath9k_hw_common(ah);
435	int ecode;
436
437	if (common->bus_ops->ath_bus_type != ATH_USB) {
438		if (!ath9k_hw_chip_test(ah))
439			return -ENODEV;
440	}
441
442	if (!AR_SREV_9300_20_OR_LATER(ah)) {
443		ecode = ar9002_hw_rf_claim(ah);
444		if (ecode != 0)
445			return ecode;
446	}
447
448	ecode = ath9k_hw_eeprom_init(ah);
449	if (ecode != 0)
450		return ecode;
451
452	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
453		"Eeprom VER: %d, REV: %d\n",
454		ah->eep_ops->get_eeprom_ver(ah),
455		ah->eep_ops->get_eeprom_rev(ah));
456
457	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
458	if (ecode) {
459		ath_err(ath9k_hw_common(ah),
460			"Failed allocating banks for external radio\n");
461		ath9k_hw_rf_free_ext_banks(ah);
462		return ecode;
463	}
464
465	if (!AR_SREV_9100(ah)) {
466		ath9k_hw_ani_setup(ah);
467		ath9k_hw_ani_init(ah);
468	}
469
470	return 0;
471}
472
473static void ath9k_hw_attach_ops(struct ath_hw *ah)
474{
475	if (AR_SREV_9300_20_OR_LATER(ah))
476		ar9003_hw_attach_ops(ah);
477	else
478		ar9002_hw_attach_ops(ah);
479}
480
481/* Called for all hardware families */
482static int __ath9k_hw_init(struct ath_hw *ah)
483{
484	struct ath_common *common = ath9k_hw_common(ah);
485	int r = 0;
486
487	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
488		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
489
490	ath9k_hw_read_revisions(ah);
491
492	/*
493	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
494	 * We need to do this to avoid RMW of this register. We cannot
495	 * read the reg when chip is asleep.
496	 */
497	ah->WARegVal = REG_READ(ah, AR_WA);
498	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
499			 AR_WA_ASPM_TIMER_BASED_DISABLE);
500
501	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
502		ath_err(common, "Couldn't reset chip\n");
503		return -EIO;
504	}
505
506	ath9k_hw_init_defaults(ah);
507	ath9k_hw_init_config(ah);
508
509	ath9k_hw_attach_ops(ah);
510
511	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
512		ath_err(common, "Couldn't wakeup chip\n");
513		return -EIO;
514	}
515
516	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
517		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
518		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
519		     !ah->is_pciexpress)) {
520			ah->config.serialize_regmode =
521				SER_REG_MODE_ON;
522		} else {
523			ah->config.serialize_regmode =
524				SER_REG_MODE_OFF;
525		}
526	}
527
528	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
529		ah->config.serialize_regmode);
530
531	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
532		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
533	else
534		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
535
536	switch (ah->hw_version.macVersion) {
537	case AR_SREV_VERSION_5416_PCI:
538	case AR_SREV_VERSION_5416_PCIE:
539	case AR_SREV_VERSION_9160:
540	case AR_SREV_VERSION_9100:
541	case AR_SREV_VERSION_9280:
542	case AR_SREV_VERSION_9285:
543	case AR_SREV_VERSION_9287:
544	case AR_SREV_VERSION_9271:
545	case AR_SREV_VERSION_9300:
546	case AR_SREV_VERSION_9485:
547		break;
548	default:
549		ath_err(common,
550			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
551			ah->hw_version.macVersion, ah->hw_version.macRev);
552		return -EOPNOTSUPP;
553	}
554
555	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
556		ah->is_pciexpress = false;
557
558	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
559	ath9k_hw_init_cal_settings(ah);
560
561	ah->ani_function = ATH9K_ANI_ALL;
562	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
563		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
564	if (!AR_SREV_9300_20_OR_LATER(ah))
565		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
566
567	ath9k_hw_init_mode_regs(ah);
568
569
570	if (ah->is_pciexpress)
571		ath9k_hw_configpcipowersave(ah, 0, 0);
572	else
573		ath9k_hw_disablepcie(ah);
574
575	if (!AR_SREV_9300_20_OR_LATER(ah))
576		ar9002_hw_cck_chan14_spread(ah);
577
578	r = ath9k_hw_post_init(ah);
579	if (r)
580		return r;
581
582	ath9k_hw_init_mode_gain_regs(ah);
583	r = ath9k_hw_fill_cap_info(ah);
584	if (r)
585		return r;
586
587	r = ath9k_hw_init_macaddr(ah);
588	if (r) {
589		ath_err(common, "Failed to initialize MAC address\n");
590		return r;
591	}
592
593	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
594		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
595	else
596		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
597
598	ah->bb_watchdog_timeout_ms = 25;
599
600	common->state = ATH_HW_INITIALIZED;
601
602	return 0;
603}
604
605int ath9k_hw_init(struct ath_hw *ah)
606{
607	int ret;
608	struct ath_common *common = ath9k_hw_common(ah);
609
610	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
611	switch (ah->hw_version.devid) {
612	case AR5416_DEVID_PCI:
613	case AR5416_DEVID_PCIE:
614	case AR5416_AR9100_DEVID:
615	case AR9160_DEVID_PCI:
616	case AR9280_DEVID_PCI:
617	case AR9280_DEVID_PCIE:
618	case AR9285_DEVID_PCIE:
619	case AR9287_DEVID_PCI:
620	case AR9287_DEVID_PCIE:
621	case AR2427_DEVID_PCIE:
622	case AR9300_DEVID_PCIE:
623	case AR9300_DEVID_AR9485_PCIE:
624		break;
625	default:
626		if (common->bus_ops->ath_bus_type == ATH_USB)
627			break;
628		ath_err(common, "Hardware device ID 0x%04x not supported\n",
629			ah->hw_version.devid);
630		return -EOPNOTSUPP;
631	}
632
633	ret = __ath9k_hw_init(ah);
634	if (ret) {
635		ath_err(common,
636			"Unable to initialize hardware; initialization status: %d\n",
637			ret);
638		return ret;
639	}
640
641	return 0;
642}
643EXPORT_SYMBOL(ath9k_hw_init);
644
645static void ath9k_hw_init_qos(struct ath_hw *ah)
646{
647	ENABLE_REGWRITE_BUFFER(ah);
648
649	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
650	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
651
652	REG_WRITE(ah, AR_QOS_NO_ACK,
653		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
654		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
655		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
656
657	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
658	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
659	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
660	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
661	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
662
663	REGWRITE_BUFFER_FLUSH(ah);
664}
665
666unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
667{
668	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
669	udelay(100);
670	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
671
672	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
673		udelay(100);
674
675	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
676}
677EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
678
679#define DPLL2_KD_VAL            0x3D
680#define DPLL2_KI_VAL            0x06
681#define DPLL3_PHASE_SHIFT_VAL   0x1
682
683static void ath9k_hw_init_pll(struct ath_hw *ah,
684			      struct ath9k_channel *chan)
685{
686	u32 pll;
687
688	if (AR_SREV_9485(ah)) {
689		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
690		REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
691
692		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
693			      AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
694
695		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
696		udelay(1000);
697
698		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
699
700		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
701			      AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
702		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
703			      AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
704
705		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
706			      AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
707		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
708		udelay(1000);
709	}
710
711	pll = ath9k_hw_compute_pll_control(ah, chan);
712
713	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
714
715	/* Switch the core clock for ar9271 to 117Mhz */
716	if (AR_SREV_9271(ah)) {
717		udelay(500);
718		REG_WRITE(ah, 0x50040, 0x304);
719	}
720
721	udelay(RTC_PLL_SETTLE_DELAY);
722
723	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
724}
725
726static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
727					  enum nl80211_iftype opmode)
728{
729	u32 imr_reg = AR_IMR_TXERR |
730		AR_IMR_TXURN |
731		AR_IMR_RXERR |
732		AR_IMR_RXORN |
733		AR_IMR_BCNMISC;
734
735	if (AR_SREV_9300_20_OR_LATER(ah)) {
736		imr_reg |= AR_IMR_RXOK_HP;
737		if (ah->config.rx_intr_mitigation)
738			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
739		else
740			imr_reg |= AR_IMR_RXOK_LP;
741
742	} else {
743		if (ah->config.rx_intr_mitigation)
744			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
745		else
746			imr_reg |= AR_IMR_RXOK;
747	}
748
749	if (ah->config.tx_intr_mitigation)
750		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
751	else
752		imr_reg |= AR_IMR_TXOK;
753
754	if (opmode == NL80211_IFTYPE_AP)
755		imr_reg |= AR_IMR_MIB;
756
757	ENABLE_REGWRITE_BUFFER(ah);
758
759	REG_WRITE(ah, AR_IMR, imr_reg);
760	ah->imrs2_reg |= AR_IMR_S2_GTT;
761	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
762
763	if (!AR_SREV_9100(ah)) {
764		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
765		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
766		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
767	}
768
769	REGWRITE_BUFFER_FLUSH(ah);
770
771	if (AR_SREV_9300_20_OR_LATER(ah)) {
772		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
773		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
774		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
775		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
776	}
777}
778
779static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
780{
781	u32 val = ath9k_hw_mac_to_clks(ah, us);
782	val = min(val, (u32) 0xFFFF);
783	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
784}
785
786static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
787{
788	u32 val = ath9k_hw_mac_to_clks(ah, us);
789	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
790	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
791}
792
793static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
794{
795	u32 val = ath9k_hw_mac_to_clks(ah, us);
796	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
797	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
798}
799
800static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
801{
802	if (tu > 0xFFFF) {
803		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
804			"bad global tx timeout %u\n", tu);
805		ah->globaltxtimeout = (u32) -1;
806		return false;
807	} else {
808		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
809		ah->globaltxtimeout = tu;
810		return true;
811	}
812}
813
814void ath9k_hw_init_global_settings(struct ath_hw *ah)
815{
816	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
817	int acktimeout;
818	int slottime;
819	int sifstime;
820
821	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
822		ah->misc_mode);
823
824	if (ah->misc_mode != 0)
825		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
826
827	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
828		sifstime = 16;
829	else
830		sifstime = 10;
831
832	/* As defined by IEEE 802.11-2007 17.3.8.6 */
833	slottime = ah->slottime + 3 * ah->coverage_class;
834	acktimeout = slottime + sifstime;
835
836	/*
837	 * Workaround for early ACK timeouts, add an offset to match the
838	 * initval's 64us ack timeout value.
839	 * This was initially only meant to work around an issue with delayed
840	 * BA frames in some implementations, but it has been found to fix ACK
841	 * timeout issues in other cases as well.
842	 */
843	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
844		acktimeout += 64 - sifstime - ah->slottime;
845
846	ath9k_hw_setslottime(ah, ah->slottime);
847	ath9k_hw_set_ack_timeout(ah, acktimeout);
848	ath9k_hw_set_cts_timeout(ah, acktimeout);
849	if (ah->globaltxtimeout != (u32) -1)
850		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
851}
852EXPORT_SYMBOL(ath9k_hw_init_global_settings);
853
854void ath9k_hw_deinit(struct ath_hw *ah)
855{
856	struct ath_common *common = ath9k_hw_common(ah);
857
858	if (common->state < ATH_HW_INITIALIZED)
859		goto free_hw;
860
861	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
862
863free_hw:
864	ath9k_hw_rf_free_ext_banks(ah);
865}
866EXPORT_SYMBOL(ath9k_hw_deinit);
867
868/*******/
869/* INI */
870/*******/
871
872u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
873{
874	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
875
876	if (IS_CHAN_B(chan))
877		ctl |= CTL_11B;
878	else if (IS_CHAN_G(chan))
879		ctl |= CTL_11G;
880	else
881		ctl |= CTL_11A;
882
883	return ctl;
884}
885
886/****************************************/
887/* Reset and Channel Switching Routines */
888/****************************************/
889
890static inline void ath9k_hw_set_dma(struct ath_hw *ah)
891{
892	struct ath_common *common = ath9k_hw_common(ah);
893
894	ENABLE_REGWRITE_BUFFER(ah);
895
896	/*
897	 * set AHB_MODE not to do cacheline prefetches
898	*/
899	if (!AR_SREV_9300_20_OR_LATER(ah))
900		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
901
902	/*
903	 * let mac dma reads be in 128 byte chunks
904	 */
905	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
906
907	REGWRITE_BUFFER_FLUSH(ah);
908
909	/*
910	 * Restore TX Trigger Level to its pre-reset value.
911	 * The initial value depends on whether aggregation is enabled, and is
912	 * adjusted whenever underruns are detected.
913	 */
914	if (!AR_SREV_9300_20_OR_LATER(ah))
915		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
916
917	ENABLE_REGWRITE_BUFFER(ah);
918
919	/*
920	 * let mac dma writes be in 128 byte chunks
921	 */
922	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
923
924	/*
925	 * Setup receive FIFO threshold to hold off TX activities
926	 */
927	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
928
929	if (AR_SREV_9300_20_OR_LATER(ah)) {
930		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
931		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
932
933		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
934			ah->caps.rx_status_len);
935	}
936
937	/*
938	 * reduce the number of usable entries in PCU TXBUF to avoid
939	 * wrap around issues.
940	 */
941	if (AR_SREV_9285(ah)) {
942		/* For AR9285 the number of Fifos are reduced to half.
943		 * So set the usable tx buf size also to half to
944		 * avoid data/delimiter underruns
945		 */
946		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
947			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
948	} else if (!AR_SREV_9271(ah)) {
949		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
950			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
951	}
952
953	REGWRITE_BUFFER_FLUSH(ah);
954
955	if (AR_SREV_9300_20_OR_LATER(ah))
956		ath9k_hw_reset_txstatus_ring(ah);
957}
958
959static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
960{
961	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
962	u32 set = AR_STA_ID1_KSRCH_MODE;
963
964	switch (opmode) {
965	case NL80211_IFTYPE_ADHOC:
966	case NL80211_IFTYPE_MESH_POINT:
967		set |= AR_STA_ID1_ADHOC;
968		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
969		break;
970	case NL80211_IFTYPE_AP:
971		set |= AR_STA_ID1_STA_AP;
972		/* fall through */
973	case NL80211_IFTYPE_STATION:
974		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
975		break;
976	default:
977		if (!ah->is_monitoring)
978			set = 0;
979		break;
980	}
981	REG_RMW(ah, AR_STA_ID1, set, mask);
982}
983
984void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
985				   u32 *coef_mantissa, u32 *coef_exponent)
986{
987	u32 coef_exp, coef_man;
988
989	for (coef_exp = 31; coef_exp > 0; coef_exp--)
990		if ((coef_scaled >> coef_exp) & 0x1)
991			break;
992
993	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
994
995	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
996
997	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
998	*coef_exponent = coef_exp - 16;
999}
1000
1001static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1002{
1003	u32 rst_flags;
1004	u32 tmpReg;
1005
1006	if (AR_SREV_9100(ah)) {
1007		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1008			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1009		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1010	}
1011
1012	ENABLE_REGWRITE_BUFFER(ah);
1013
1014	if (AR_SREV_9300_20_OR_LATER(ah)) {
1015		REG_WRITE(ah, AR_WA, ah->WARegVal);
1016		udelay(10);
1017	}
1018
1019	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1020		  AR_RTC_FORCE_WAKE_ON_INT);
1021
1022	if (AR_SREV_9100(ah)) {
1023		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1024			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1025	} else {
1026		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1027		if (tmpReg &
1028		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1029		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1030			u32 val;
1031			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1032
1033			val = AR_RC_HOSTIF;
1034			if (!AR_SREV_9300_20_OR_LATER(ah))
1035				val |= AR_RC_AHB;
1036			REG_WRITE(ah, AR_RC, val);
1037
1038		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1039			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1040
1041		rst_flags = AR_RTC_RC_MAC_WARM;
1042		if (type == ATH9K_RESET_COLD)
1043			rst_flags |= AR_RTC_RC_MAC_COLD;
1044	}
1045
1046	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1047
1048	REGWRITE_BUFFER_FLUSH(ah);
1049
1050	udelay(50);
1051
1052	REG_WRITE(ah, AR_RTC_RC, 0);
1053	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1054		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1055			"RTC stuck in MAC reset\n");
1056		return false;
1057	}
1058
1059	if (!AR_SREV_9100(ah))
1060		REG_WRITE(ah, AR_RC, 0);
1061
1062	if (AR_SREV_9100(ah))
1063		udelay(50);
1064
1065	return true;
1066}
1067
1068static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1069{
1070	ENABLE_REGWRITE_BUFFER(ah);
1071
1072	if (AR_SREV_9300_20_OR_LATER(ah)) {
1073		REG_WRITE(ah, AR_WA, ah->WARegVal);
1074		udelay(10);
1075	}
1076
1077	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1078		  AR_RTC_FORCE_WAKE_ON_INT);
1079
1080	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1081		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1082
1083	REG_WRITE(ah, AR_RTC_RESET, 0);
1084
1085	REGWRITE_BUFFER_FLUSH(ah);
1086
1087	if (!AR_SREV_9300_20_OR_LATER(ah))
1088		udelay(2);
1089
1090	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1091		REG_WRITE(ah, AR_RC, 0);
1092
1093	REG_WRITE(ah, AR_RTC_RESET, 1);
1094
1095	if (!ath9k_hw_wait(ah,
1096			   AR_RTC_STATUS,
1097			   AR_RTC_STATUS_M,
1098			   AR_RTC_STATUS_ON,
1099			   AH_WAIT_TIMEOUT)) {
1100		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1101			"RTC not waking up\n");
1102		return false;
1103	}
1104
1105	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1106}
1107
1108static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1109{
1110	if (AR_SREV_9300_20_OR_LATER(ah)) {
1111		REG_WRITE(ah, AR_WA, ah->WARegVal);
1112		udelay(10);
1113	}
1114
1115	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1116		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1117
1118	switch (type) {
1119	case ATH9K_RESET_POWER_ON:
1120		return ath9k_hw_set_reset_power_on(ah);
1121	case ATH9K_RESET_WARM:
1122	case ATH9K_RESET_COLD:
1123		return ath9k_hw_set_reset(ah, type);
1124	default:
1125		return false;
1126	}
1127}
1128
1129static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1130				struct ath9k_channel *chan)
1131{
1132	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1133		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1134			return false;
1135	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1136		return false;
1137
1138	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1139		return false;
1140
1141	ah->chip_fullsleep = false;
1142	ath9k_hw_init_pll(ah, chan);
1143	ath9k_hw_set_rfmode(ah, chan);
1144
1145	return true;
1146}
1147
1148static bool ath9k_hw_channel_change(struct ath_hw *ah,
1149				    struct ath9k_channel *chan)
1150{
1151	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1152	struct ath_common *common = ath9k_hw_common(ah);
1153	struct ieee80211_channel *channel = chan->chan;
1154	u32 qnum;
1155	int r;
1156
1157	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1158		if (ath9k_hw_numtxpending(ah, qnum)) {
1159			ath_dbg(common, ATH_DBG_QUEUE,
1160				"Transmit frames pending on queue %d\n", qnum);
1161			return false;
1162		}
1163	}
1164
1165	if (!ath9k_hw_rfbus_req(ah)) {
1166		ath_err(common, "Could not kill baseband RX\n");
1167		return false;
1168	}
1169
1170	ath9k_hw_set_channel_regs(ah, chan);
1171
1172	r = ath9k_hw_rf_set_freq(ah, chan);
1173	if (r) {
1174		ath_err(common, "Failed to set channel\n");
1175		return false;
1176	}
1177	ath9k_hw_set_clockrate(ah);
1178
1179	ah->eep_ops->set_txpower(ah, chan,
1180			     ath9k_regd_get_ctl(regulatory, chan),
1181			     channel->max_antenna_gain * 2,
1182			     channel->max_power * 2,
1183			     min((u32) MAX_RATE_POWER,
1184			     (u32) regulatory->power_limit), false);
1185
1186	ath9k_hw_rfbus_done(ah);
1187
1188	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1189		ath9k_hw_set_delta_slope(ah, chan);
1190
1191	ath9k_hw_spur_mitigate_freq(ah, chan);
1192
1193	return true;
1194}
1195
1196static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1197{
1198	u32 gpio_mask = ah->gpio_mask;
1199	int i;
1200
1201	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1202		if (!(gpio_mask & 1))
1203			continue;
1204
1205		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1206		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1207	}
1208}
1209
1210bool ath9k_hw_check_alive(struct ath_hw *ah)
1211{
1212	int count = 50;
1213	u32 reg;
1214
1215	if (AR_SREV_9285_12_OR_LATER(ah))
1216		return true;
1217
1218	do {
1219		reg = REG_READ(ah, AR_OBS_BUS_1);
1220
1221		if ((reg & 0x7E7FFFEF) == 0x00702400)
1222			continue;
1223
1224		switch (reg & 0x7E000B00) {
1225		case 0x1E000000:
1226		case 0x52000B00:
1227		case 0x18000B00:
1228			continue;
1229		default:
1230			return true;
1231		}
1232	} while (count-- > 0);
1233
1234	return false;
1235}
1236EXPORT_SYMBOL(ath9k_hw_check_alive);
1237
1238int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1239		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1240{
1241	struct ath_common *common = ath9k_hw_common(ah);
1242	u32 saveLedState;
1243	struct ath9k_channel *curchan = ah->curchan;
1244	u32 saveDefAntenna;
1245	u32 macStaId1;
1246	u64 tsf = 0;
1247	int i, r;
1248
1249	ah->txchainmask = common->tx_chainmask;
1250	ah->rxchainmask = common->rx_chainmask;
1251
1252	if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1253		ath9k_hw_abortpcurecv(ah);
1254		if (!ath9k_hw_stopdmarecv(ah)) {
1255			ath_dbg(common, ATH_DBG_XMIT,
1256				"Failed to stop receive dma\n");
1257			bChannelChange = false;
1258		}
1259	}
1260
1261	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1262		return -EIO;
1263
1264	if (curchan && !ah->chip_fullsleep)
1265		ath9k_hw_getnf(ah, curchan);
1266
1267	ah->caldata = caldata;
1268	if (caldata &&
1269	    (chan->channel != caldata->channel ||
1270	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1271	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1272		/* Operating channel changed, reset channel calibration data */
1273		memset(caldata, 0, sizeof(*caldata));
1274		ath9k_init_nfcal_hist_buffer(ah, chan);
1275	}
1276
1277	if (bChannelChange &&
1278	    (ah->chip_fullsleep != true) &&
1279	    (ah->curchan != NULL) &&
1280	    (chan->channel != ah->curchan->channel) &&
1281	    ((chan->channelFlags & CHANNEL_ALL) ==
1282	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1283	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1284
1285		if (ath9k_hw_channel_change(ah, chan)) {
1286			ath9k_hw_loadnf(ah, ah->curchan);
1287			ath9k_hw_start_nfcal(ah, true);
1288			if (AR_SREV_9271(ah))
1289				ar9002_hw_load_ani_reg(ah, chan);
1290			return 0;
1291		}
1292	}
1293
1294	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1295	if (saveDefAntenna == 0)
1296		saveDefAntenna = 1;
1297
1298	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1299
1300	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1301	if (AR_SREV_9100(ah) ||
1302	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1303		tsf = ath9k_hw_gettsf64(ah);
1304
1305	saveLedState = REG_READ(ah, AR_CFG_LED) &
1306		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1307		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1308
1309	ath9k_hw_mark_phy_inactive(ah);
1310
1311	ah->paprd_table_write_done = false;
1312
1313	/* Only required on the first reset */
1314	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1315		REG_WRITE(ah,
1316			  AR9271_RESET_POWER_DOWN_CONTROL,
1317			  AR9271_RADIO_RF_RST);
1318		udelay(50);
1319	}
1320
1321	if (!ath9k_hw_chip_reset(ah, chan)) {
1322		ath_err(common, "Chip reset failed\n");
1323		return -EINVAL;
1324	}
1325
1326	/* Only required on the first reset */
1327	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1328		ah->htc_reset_init = false;
1329		REG_WRITE(ah,
1330			  AR9271_RESET_POWER_DOWN_CONTROL,
1331			  AR9271_GATE_MAC_CTL);
1332		udelay(50);
1333	}
1334
1335	/* Restore TSF */
1336	if (tsf)
1337		ath9k_hw_settsf64(ah, tsf);
1338
1339	if (AR_SREV_9280_20_OR_LATER(ah))
1340		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1341
1342	if (!AR_SREV_9300_20_OR_LATER(ah))
1343		ar9002_hw_enable_async_fifo(ah);
1344
1345	r = ath9k_hw_process_ini(ah, chan);
1346	if (r)
1347		return r;
1348
1349	/*
1350	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1351	 * right after the chip reset. When that happens, write a new
1352	 * value after the initvals have been applied, with an offset
1353	 * based on measured time difference
1354	 */
1355	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1356		tsf += 1500;
1357		ath9k_hw_settsf64(ah, tsf);
1358	}
1359
1360	/* Setup MFP options for CCMP */
1361	if (AR_SREV_9280_20_OR_LATER(ah)) {
1362		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1363		 * frames when constructing CCMP AAD. */
1364		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1365			      0xc7ff);
1366		ah->sw_mgmt_crypto = false;
1367	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1368		/* Disable hardware crypto for management frames */
1369		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1370			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1371		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1372			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1373		ah->sw_mgmt_crypto = true;
1374	} else
1375		ah->sw_mgmt_crypto = true;
1376
1377	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1378		ath9k_hw_set_delta_slope(ah, chan);
1379
1380	ath9k_hw_spur_mitigate_freq(ah, chan);
1381	ah->eep_ops->set_board_values(ah, chan);
1382
1383	ENABLE_REGWRITE_BUFFER(ah);
1384
1385	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1386	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1387		  | macStaId1
1388		  | AR_STA_ID1_RTS_USE_DEF
1389		  | (ah->config.
1390		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1391		  | ah->sta_id1_defaults);
1392	ath_hw_setbssidmask(common);
1393	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1394	ath9k_hw_write_associd(ah);
1395	REG_WRITE(ah, AR_ISR, ~0);
1396	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1397
1398	REGWRITE_BUFFER_FLUSH(ah);
1399
1400	ath9k_hw_set_operating_mode(ah, ah->opmode);
1401
1402	r = ath9k_hw_rf_set_freq(ah, chan);
1403	if (r)
1404		return r;
1405
1406	ath9k_hw_set_clockrate(ah);
1407
1408	ENABLE_REGWRITE_BUFFER(ah);
1409
1410	for (i = 0; i < AR_NUM_DCU; i++)
1411		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1412
1413	REGWRITE_BUFFER_FLUSH(ah);
1414
1415	ah->intr_txqs = 0;
1416	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1417		ath9k_hw_resettxqueue(ah, i);
1418
1419	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1420	ath9k_hw_ani_cache_ini_regs(ah);
1421	ath9k_hw_init_qos(ah);
1422
1423	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1424		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1425
1426	ath9k_hw_init_global_settings(ah);
1427
1428	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1429		ar9002_hw_update_async_fifo(ah);
1430		ar9002_hw_enable_wep_aggregation(ah);
1431	}
1432
1433	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1434
1435	ath9k_hw_set_dma(ah);
1436
1437	REG_WRITE(ah, AR_OBS, 8);
1438
1439	if (ah->config.rx_intr_mitigation) {
1440		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1441		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1442	}
1443
1444	if (ah->config.tx_intr_mitigation) {
1445		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1446		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1447	}
1448
1449	ath9k_hw_init_bb(ah, chan);
1450
1451	if (!ath9k_hw_init_cal(ah, chan))
1452		return -EIO;
1453
1454	ENABLE_REGWRITE_BUFFER(ah);
1455
1456	ath9k_hw_restore_chainmask(ah);
1457	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1458
1459	REGWRITE_BUFFER_FLUSH(ah);
1460
1461	/*
1462	 * For big endian systems turn on swapping for descriptors
1463	 */
1464	if (AR_SREV_9100(ah)) {
1465		u32 mask;
1466		mask = REG_READ(ah, AR_CFG);
1467		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1468			ath_dbg(common, ATH_DBG_RESET,
1469				"CFG Byte Swap Set 0x%x\n", mask);
1470		} else {
1471			mask =
1472				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1473			REG_WRITE(ah, AR_CFG, mask);
1474			ath_dbg(common, ATH_DBG_RESET,
1475				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1476		}
1477	} else {
1478		if (common->bus_ops->ath_bus_type == ATH_USB) {
1479			/* Configure AR9271 target WLAN */
1480			if (AR_SREV_9271(ah))
1481				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1482			else
1483				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1484		}
1485#ifdef __BIG_ENDIAN
1486                else
1487			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1488#endif
1489	}
1490
1491	if (ah->btcoex_hw.enabled)
1492		ath9k_hw_btcoex_enable(ah);
1493
1494	if (AR_SREV_9300_20_OR_LATER(ah))
1495		ar9003_hw_bb_watchdog_config(ah);
1496
1497	ath9k_hw_apply_gpio_override(ah);
1498
1499	return 0;
1500}
1501EXPORT_SYMBOL(ath9k_hw_reset);
1502
1503/******************************/
1504/* Power Management (Chipset) */
1505/******************************/
1506
1507/*
1508 * Notify Power Mgt is disabled in self-generated frames.
1509 * If requested, force chip to sleep.
1510 */
1511static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1512{
1513	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1514	if (setChip) {
1515		/*
1516		 * Clear the RTC force wake bit to allow the
1517		 * mac to go to sleep.
1518		 */
1519		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1520			    AR_RTC_FORCE_WAKE_EN);
1521		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1522			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1523
1524		/* Shutdown chip. Active low */
1525		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1526			REG_CLR_BIT(ah, (AR_RTC_RESET),
1527				    AR_RTC_RESET_EN);
1528	}
1529
1530	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1531	if (AR_SREV_9300_20_OR_LATER(ah))
1532		REG_WRITE(ah, AR_WA,
1533			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1534}
1535
1536/*
1537 * Notify Power Management is enabled in self-generating
1538 * frames. If request, set power mode of chip to
1539 * auto/normal.  Duration in units of 128us (1/8 TU).
1540 */
1541static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1542{
1543	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1544	if (setChip) {
1545		struct ath9k_hw_capabilities *pCap = &ah->caps;
1546
1547		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1548			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1549			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1550				  AR_RTC_FORCE_WAKE_ON_INT);
1551		} else {
1552			/*
1553			 * Clear the RTC force wake bit to allow the
1554			 * mac to go to sleep.
1555			 */
1556			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1557				    AR_RTC_FORCE_WAKE_EN);
1558		}
1559	}
1560
1561	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1562	if (AR_SREV_9300_20_OR_LATER(ah))
1563		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1564}
1565
1566static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1567{
1568	u32 val;
1569	int i;
1570
1571	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1572	if (AR_SREV_9300_20_OR_LATER(ah)) {
1573		REG_WRITE(ah, AR_WA, ah->WARegVal);
1574		udelay(10);
1575	}
1576
1577	if (setChip) {
1578		if ((REG_READ(ah, AR_RTC_STATUS) &
1579		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1580			if (ath9k_hw_set_reset_reg(ah,
1581					   ATH9K_RESET_POWER_ON) != true) {
1582				return false;
1583			}
1584			if (!AR_SREV_9300_20_OR_LATER(ah))
1585				ath9k_hw_init_pll(ah, NULL);
1586		}
1587		if (AR_SREV_9100(ah))
1588			REG_SET_BIT(ah, AR_RTC_RESET,
1589				    AR_RTC_RESET_EN);
1590
1591		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1592			    AR_RTC_FORCE_WAKE_EN);
1593		udelay(50);
1594
1595		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1596			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1597			if (val == AR_RTC_STATUS_ON)
1598				break;
1599			udelay(50);
1600			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1601				    AR_RTC_FORCE_WAKE_EN);
1602		}
1603		if (i == 0) {
1604			ath_err(ath9k_hw_common(ah),
1605				"Failed to wakeup in %uus\n",
1606				POWER_UP_TIME / 20);
1607			return false;
1608		}
1609	}
1610
1611	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1612
1613	return true;
1614}
1615
1616bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1617{
1618	struct ath_common *common = ath9k_hw_common(ah);
1619	int status = true, setChip = true;
1620	static const char *modes[] = {
1621		"AWAKE",
1622		"FULL-SLEEP",
1623		"NETWORK SLEEP",
1624		"UNDEFINED"
1625	};
1626
1627	if (ah->power_mode == mode)
1628		return status;
1629
1630	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1631		modes[ah->power_mode], modes[mode]);
1632
1633	switch (mode) {
1634	case ATH9K_PM_AWAKE:
1635		status = ath9k_hw_set_power_awake(ah, setChip);
1636		break;
1637	case ATH9K_PM_FULL_SLEEP:
1638		ath9k_set_power_sleep(ah, setChip);
1639		ah->chip_fullsleep = true;
1640		break;
1641	case ATH9K_PM_NETWORK_SLEEP:
1642		ath9k_set_power_network_sleep(ah, setChip);
1643		break;
1644	default:
1645		ath_err(common, "Unknown power mode %u\n", mode);
1646		return false;
1647	}
1648	ah->power_mode = mode;
1649
1650	/*
1651	 * XXX: If this warning never comes up after a while then
1652	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1653	 * ath9k_hw_setpower() return type void.
1654	 */
1655
1656	if (!(ah->ah_flags & AH_UNPLUGGED))
1657		ATH_DBG_WARN_ON_ONCE(!status);
1658
1659	return status;
1660}
1661EXPORT_SYMBOL(ath9k_hw_setpower);
1662
1663/*******************/
1664/* Beacon Handling */
1665/*******************/
1666
1667void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1668{
1669	int flags = 0;
1670
1671	ENABLE_REGWRITE_BUFFER(ah);
1672
1673	switch (ah->opmode) {
1674	case NL80211_IFTYPE_ADHOC:
1675	case NL80211_IFTYPE_MESH_POINT:
1676		REG_SET_BIT(ah, AR_TXCFG,
1677			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1678		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1679			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1680		flags |= AR_NDP_TIMER_EN;
1681	case NL80211_IFTYPE_AP:
1682		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1683		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1684			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1685		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1686			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1687		flags |=
1688			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1689		break;
1690	default:
1691		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1692			"%s: unsupported opmode: %d\n",
1693			__func__, ah->opmode);
1694		return;
1695		break;
1696	}
1697
1698	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1699	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1700	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1701	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1702
1703	REGWRITE_BUFFER_FLUSH(ah);
1704
1705	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1706}
1707EXPORT_SYMBOL(ath9k_hw_beaconinit);
1708
1709void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1710				    const struct ath9k_beacon_state *bs)
1711{
1712	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1713	struct ath9k_hw_capabilities *pCap = &ah->caps;
1714	struct ath_common *common = ath9k_hw_common(ah);
1715
1716	ENABLE_REGWRITE_BUFFER(ah);
1717
1718	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1719
1720	REG_WRITE(ah, AR_BEACON_PERIOD,
1721		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1722	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1723		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1724
1725	REGWRITE_BUFFER_FLUSH(ah);
1726
1727	REG_RMW_FIELD(ah, AR_RSSI_THR,
1728		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1729
1730	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1731
1732	if (bs->bs_sleepduration > beaconintval)
1733		beaconintval = bs->bs_sleepduration;
1734
1735	dtimperiod = bs->bs_dtimperiod;
1736	if (bs->bs_sleepduration > dtimperiod)
1737		dtimperiod = bs->bs_sleepduration;
1738
1739	if (beaconintval == dtimperiod)
1740		nextTbtt = bs->bs_nextdtim;
1741	else
1742		nextTbtt = bs->bs_nexttbtt;
1743
1744	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1745	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1746	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1747	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1748
1749	ENABLE_REGWRITE_BUFFER(ah);
1750
1751	REG_WRITE(ah, AR_NEXT_DTIM,
1752		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1753	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1754
1755	REG_WRITE(ah, AR_SLEEP1,
1756		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1757		  | AR_SLEEP1_ASSUME_DTIM);
1758
1759	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1760		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1761	else
1762		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1763
1764	REG_WRITE(ah, AR_SLEEP2,
1765		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1766
1767	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1768	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1769
1770	REGWRITE_BUFFER_FLUSH(ah);
1771
1772	REG_SET_BIT(ah, AR_TIMER_MODE,
1773		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1774		    AR_DTIM_TIMER_EN);
1775
1776	/* TSF Out of Range Threshold */
1777	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1778}
1779EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1780
1781/*******************/
1782/* HW Capabilities */
1783/*******************/
1784
1785int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1786{
1787	struct ath9k_hw_capabilities *pCap = &ah->caps;
1788	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1789	struct ath_common *common = ath9k_hw_common(ah);
1790	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1791
1792	u16 capField = 0, eeval;
1793	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1794
1795	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1796	regulatory->current_rd = eeval;
1797
1798	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1799	if (AR_SREV_9285_12_OR_LATER(ah))
1800		eeval |= AR9285_RDEXT_DEFAULT;
1801	regulatory->current_rd_ext = eeval;
1802
1803	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1804
1805	if (ah->opmode != NL80211_IFTYPE_AP &&
1806	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1807		if (regulatory->current_rd == 0x64 ||
1808		    regulatory->current_rd == 0x65)
1809			regulatory->current_rd += 5;
1810		else if (regulatory->current_rd == 0x41)
1811			regulatory->current_rd = 0x43;
1812		ath_dbg(common, ATH_DBG_REGULATORY,
1813			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1814	}
1815
1816	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1817	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1818		ath_err(common,
1819			"no band has been marked as supported in EEPROM\n");
1820		return -EINVAL;
1821	}
1822
1823	if (eeval & AR5416_OPFLAGS_11A)
1824		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1825
1826	if (eeval & AR5416_OPFLAGS_11G)
1827		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1828
1829	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1830	/*
1831	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1832	 * the EEPROM.
1833	 */
1834	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1835	    !(eeval & AR5416_OPFLAGS_11A) &&
1836	    !(AR_SREV_9271(ah)))
1837		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1838		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1839	else if (AR_SREV_9100(ah))
1840		pCap->rx_chainmask = 0x7;
1841	else
1842		/* Use rx_chainmask from EEPROM. */
1843		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1844
1845	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1846
1847	/* enable key search for every frame in an aggregate */
1848	if (AR_SREV_9300_20_OR_LATER(ah))
1849		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1850
1851	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1852
1853	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
1854		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1855	else
1856		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1857
1858	if (AR_SREV_9271(ah))
1859		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1860	else if (AR_DEVID_7010(ah))
1861		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1862	else if (AR_SREV_9285_12_OR_LATER(ah))
1863		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1864	else if (AR_SREV_9280_20_OR_LATER(ah))
1865		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1866	else
1867		pCap->num_gpio_pins = AR_NUM_GPIO;
1868
1869	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1870		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1871		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1872	} else {
1873		pCap->rts_aggr_limit = (8 * 1024);
1874	}
1875
1876#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1877	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1878	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1879		ah->rfkill_gpio =
1880			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1881		ah->rfkill_polarity =
1882			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1883
1884		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1885	}
1886#endif
1887	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1888		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1889	else
1890		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1891
1892	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1893		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1894	else
1895		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1896
1897	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1898		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1899		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1900
1901		if (AR_SREV_9285(ah)) {
1902			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1903			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1904		} else {
1905			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1906		}
1907	} else {
1908		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1909	}
1910
1911	if (AR_SREV_9300_20_OR_LATER(ah)) {
1912		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1913		if (!AR_SREV_9485(ah))
1914			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1915
1916		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1917		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1918		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1919		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1920		pCap->txs_len = sizeof(struct ar9003_txs);
1921		if (!ah->config.paprd_disable &&
1922		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1923			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1924	} else {
1925		pCap->tx_desc_len = sizeof(struct ath_desc);
1926		if (AR_SREV_9280_20(ah) &&
1927		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1928		      AR5416_EEP_MINOR_VER_16) ||
1929		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1930			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1931	}
1932
1933	if (AR_SREV_9300_20_OR_LATER(ah))
1934		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1935
1936	if (AR_SREV_9300_20_OR_LATER(ah))
1937		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1938
1939	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1940		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1941
1942	if (AR_SREV_9285(ah))
1943		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1944			ant_div_ctl1 =
1945				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1946			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1947				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1948		}
1949	if (AR_SREV_9300_20_OR_LATER(ah)) {
1950		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1951			pCap->hw_caps |= ATH9K_HW_CAP_APM;
1952	}
1953
1954
1955
1956	if (AR_SREV_9485_10(ah)) {
1957		pCap->pcie_lcr_extsync_en = true;
1958		pCap->pcie_lcr_offset = 0x80;
1959	}
1960
1961	tx_chainmask = pCap->tx_chainmask;
1962	rx_chainmask = pCap->rx_chainmask;
1963	while (tx_chainmask || rx_chainmask) {
1964		if (tx_chainmask & BIT(0))
1965			pCap->max_txchains++;
1966		if (rx_chainmask & BIT(0))
1967			pCap->max_rxchains++;
1968
1969		tx_chainmask >>= 1;
1970		rx_chainmask >>= 1;
1971	}
1972
1973	return 0;
1974}
1975
1976/****************************/
1977/* GPIO / RFKILL / Antennae */
1978/****************************/
1979
1980static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1981					 u32 gpio, u32 type)
1982{
1983	int addr;
1984	u32 gpio_shift, tmp;
1985
1986	if (gpio > 11)
1987		addr = AR_GPIO_OUTPUT_MUX3;
1988	else if (gpio > 5)
1989		addr = AR_GPIO_OUTPUT_MUX2;
1990	else
1991		addr = AR_GPIO_OUTPUT_MUX1;
1992
1993	gpio_shift = (gpio % 6) * 5;
1994
1995	if (AR_SREV_9280_20_OR_LATER(ah)
1996	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
1997		REG_RMW(ah, addr, (type << gpio_shift),
1998			(0x1f << gpio_shift));
1999	} else {
2000		tmp = REG_READ(ah, addr);
2001		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2002		tmp &= ~(0x1f << gpio_shift);
2003		tmp |= (type << gpio_shift);
2004		REG_WRITE(ah, addr, tmp);
2005	}
2006}
2007
2008void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2009{
2010	u32 gpio_shift;
2011
2012	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2013
2014	if (AR_DEVID_7010(ah)) {
2015		gpio_shift = gpio;
2016		REG_RMW(ah, AR7010_GPIO_OE,
2017			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2018			(AR7010_GPIO_OE_MASK << gpio_shift));
2019		return;
2020	}
2021
2022	gpio_shift = gpio << 1;
2023	REG_RMW(ah,
2024		AR_GPIO_OE_OUT,
2025		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2026		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2027}
2028EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2029
2030u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2031{
2032#define MS_REG_READ(x, y) \
2033	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2034
2035	if (gpio >= ah->caps.num_gpio_pins)
2036		return 0xffffffff;
2037
2038	if (AR_DEVID_7010(ah)) {
2039		u32 val;
2040		val = REG_READ(ah, AR7010_GPIO_IN);
2041		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2042	} else if (AR_SREV_9300_20_OR_LATER(ah))
2043		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2044			AR_GPIO_BIT(gpio)) != 0;
2045	else if (AR_SREV_9271(ah))
2046		return MS_REG_READ(AR9271, gpio) != 0;
2047	else if (AR_SREV_9287_11_OR_LATER(ah))
2048		return MS_REG_READ(AR9287, gpio) != 0;
2049	else if (AR_SREV_9285_12_OR_LATER(ah))
2050		return MS_REG_READ(AR9285, gpio) != 0;
2051	else if (AR_SREV_9280_20_OR_LATER(ah))
2052		return MS_REG_READ(AR928X, gpio) != 0;
2053	else
2054		return MS_REG_READ(AR, gpio) != 0;
2055}
2056EXPORT_SYMBOL(ath9k_hw_gpio_get);
2057
2058void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2059			 u32 ah_signal_type)
2060{
2061	u32 gpio_shift;
2062
2063	if (AR_DEVID_7010(ah)) {
2064		gpio_shift = gpio;
2065		REG_RMW(ah, AR7010_GPIO_OE,
2066			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2067			(AR7010_GPIO_OE_MASK << gpio_shift));
2068		return;
2069	}
2070
2071	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2072	gpio_shift = 2 * gpio;
2073	REG_RMW(ah,
2074		AR_GPIO_OE_OUT,
2075		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2076		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2077}
2078EXPORT_SYMBOL(ath9k_hw_cfg_output);
2079
2080void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2081{
2082	if (AR_DEVID_7010(ah)) {
2083		val = val ? 0 : 1;
2084		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2085			AR_GPIO_BIT(gpio));
2086		return;
2087	}
2088
2089	if (AR_SREV_9271(ah))
2090		val = ~val;
2091
2092	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2093		AR_GPIO_BIT(gpio));
2094}
2095EXPORT_SYMBOL(ath9k_hw_set_gpio);
2096
2097u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2098{
2099	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2100}
2101EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2102
2103void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2104{
2105	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2106}
2107EXPORT_SYMBOL(ath9k_hw_setantenna);
2108
2109/*********************/
2110/* General Operation */
2111/*********************/
2112
2113u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2114{
2115	u32 bits = REG_READ(ah, AR_RX_FILTER);
2116	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2117
2118	if (phybits & AR_PHY_ERR_RADAR)
2119		bits |= ATH9K_RX_FILTER_PHYRADAR;
2120	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2121		bits |= ATH9K_RX_FILTER_PHYERR;
2122
2123	return bits;
2124}
2125EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2126
2127void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2128{
2129	u32 phybits;
2130
2131	ENABLE_REGWRITE_BUFFER(ah);
2132
2133	REG_WRITE(ah, AR_RX_FILTER, bits);
2134
2135	phybits = 0;
2136	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2137		phybits |= AR_PHY_ERR_RADAR;
2138	if (bits & ATH9K_RX_FILTER_PHYERR)
2139		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2140	REG_WRITE(ah, AR_PHY_ERR, phybits);
2141
2142	if (phybits)
2143		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2144	else
2145		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2146
2147	REGWRITE_BUFFER_FLUSH(ah);
2148}
2149EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2150
2151bool ath9k_hw_phy_disable(struct ath_hw *ah)
2152{
2153	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2154		return false;
2155
2156	ath9k_hw_init_pll(ah, NULL);
2157	return true;
2158}
2159EXPORT_SYMBOL(ath9k_hw_phy_disable);
2160
2161bool ath9k_hw_disable(struct ath_hw *ah)
2162{
2163	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2164		return false;
2165
2166	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2167		return false;
2168
2169	ath9k_hw_init_pll(ah, NULL);
2170	return true;
2171}
2172EXPORT_SYMBOL(ath9k_hw_disable);
2173
2174void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2175{
2176	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2177	struct ath9k_channel *chan = ah->curchan;
2178	struct ieee80211_channel *channel = chan->chan;
2179
2180	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2181
2182	ah->eep_ops->set_txpower(ah, chan,
2183				 ath9k_regd_get_ctl(regulatory, chan),
2184				 channel->max_antenna_gain * 2,
2185				 channel->max_power * 2,
2186				 min((u32) MAX_RATE_POWER,
2187				 (u32) regulatory->power_limit), test);
2188}
2189EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2190
2191void ath9k_hw_setopmode(struct ath_hw *ah)
2192{
2193	ath9k_hw_set_operating_mode(ah, ah->opmode);
2194}
2195EXPORT_SYMBOL(ath9k_hw_setopmode);
2196
2197void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2198{
2199	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2200	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2201}
2202EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2203
2204void ath9k_hw_write_associd(struct ath_hw *ah)
2205{
2206	struct ath_common *common = ath9k_hw_common(ah);
2207
2208	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2209	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2210		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2211}
2212EXPORT_SYMBOL(ath9k_hw_write_associd);
2213
2214#define ATH9K_MAX_TSF_READ 10
2215
2216u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2217{
2218	u32 tsf_lower, tsf_upper1, tsf_upper2;
2219	int i;
2220
2221	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2222	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2223		tsf_lower = REG_READ(ah, AR_TSF_L32);
2224		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2225		if (tsf_upper2 == tsf_upper1)
2226			break;
2227		tsf_upper1 = tsf_upper2;
2228	}
2229
2230	WARN_ON( i == ATH9K_MAX_TSF_READ );
2231
2232	return (((u64)tsf_upper1 << 32) | tsf_lower);
2233}
2234EXPORT_SYMBOL(ath9k_hw_gettsf64);
2235
2236void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2237{
2238	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2239	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2240}
2241EXPORT_SYMBOL(ath9k_hw_settsf64);
2242
2243void ath9k_hw_reset_tsf(struct ath_hw *ah)
2244{
2245	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2246			   AH_TSF_WRITE_TIMEOUT))
2247		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2248			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2249
2250	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2251}
2252EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2253
2254void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2255{
2256	if (setting)
2257		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2258	else
2259		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2260}
2261EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2262
2263void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2264{
2265	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2266	u32 macmode;
2267
2268	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2269		macmode = AR_2040_JOINED_RX_CLEAR;
2270	else
2271		macmode = 0;
2272
2273	REG_WRITE(ah, AR_2040_MODE, macmode);
2274}
2275
2276/* HW Generic timers configuration */
2277
2278static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2279{
2280	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2281	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2282	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2283	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2284	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2285	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2286	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2287	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2288	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2289	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2290				AR_NDP2_TIMER_MODE, 0x0002},
2291	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2292				AR_NDP2_TIMER_MODE, 0x0004},
2293	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2294				AR_NDP2_TIMER_MODE, 0x0008},
2295	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2296				AR_NDP2_TIMER_MODE, 0x0010},
2297	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2298				AR_NDP2_TIMER_MODE, 0x0020},
2299	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2300				AR_NDP2_TIMER_MODE, 0x0040},
2301	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2302				AR_NDP2_TIMER_MODE, 0x0080}
2303};
2304
2305/* HW generic timer primitives */
2306
2307/* compute and clear index of rightmost 1 */
2308static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2309{
2310	u32 b;
2311
2312	b = *mask;
2313	b &= (0-b);
2314	*mask &= ~b;
2315	b *= debruijn32;
2316	b >>= 27;
2317
2318	return timer_table->gen_timer_index[b];
2319}
2320
2321u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2322{
2323	return REG_READ(ah, AR_TSF_L32);
2324}
2325EXPORT_SYMBOL(ath9k_hw_gettsf32);
2326
2327struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2328					  void (*trigger)(void *),
2329					  void (*overflow)(void *),
2330					  void *arg,
2331					  u8 timer_index)
2332{
2333	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2334	struct ath_gen_timer *timer;
2335
2336	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2337
2338	if (timer == NULL) {
2339		ath_err(ath9k_hw_common(ah),
2340			"Failed to allocate memory for hw timer[%d]\n",
2341			timer_index);
2342		return NULL;
2343	}
2344
2345	/* allocate a hardware generic timer slot */
2346	timer_table->timers[timer_index] = timer;
2347	timer->index = timer_index;
2348	timer->trigger = trigger;
2349	timer->overflow = overflow;
2350	timer->arg = arg;
2351
2352	return timer;
2353}
2354EXPORT_SYMBOL(ath_gen_timer_alloc);
2355
2356void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2357			      struct ath_gen_timer *timer,
2358			      u32 timer_next,
2359			      u32 timer_period)
2360{
2361	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2362	u32 tsf;
2363
2364	BUG_ON(!timer_period);
2365
2366	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2367
2368	tsf = ath9k_hw_gettsf32(ah);
2369
2370	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2371		"current tsf %x period %x timer_next %x\n",
2372		tsf, timer_period, timer_next);
2373
2374	/*
2375	 * Pull timer_next forward if the current TSF already passed it
2376	 * because of software latency
2377	 */
2378	if (timer_next < tsf)
2379		timer_next = tsf + timer_period;
2380
2381	/*
2382	 * Program generic timer registers
2383	 */
2384	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2385		 timer_next);
2386	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2387		  timer_period);
2388	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2389		    gen_tmr_configuration[timer->index].mode_mask);
2390
2391	/* Enable both trigger and thresh interrupt masks */
2392	REG_SET_BIT(ah, AR_IMR_S5,
2393		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2394		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2395}
2396EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2397
2398void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2399{
2400	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2401
2402	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2403		(timer->index >= ATH_MAX_GEN_TIMER)) {
2404		return;
2405	}
2406
2407	/* Clear generic timer enable bits. */
2408	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2409			gen_tmr_configuration[timer->index].mode_mask);
2410
2411	/* Disable both trigger and thresh interrupt masks */
2412	REG_CLR_BIT(ah, AR_IMR_S5,
2413		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2414		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2415
2416	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2417}
2418EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2419
2420void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2421{
2422	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2423
2424	/* free the hardware generic timer slot */
2425	timer_table->timers[timer->index] = NULL;
2426	kfree(timer);
2427}
2428EXPORT_SYMBOL(ath_gen_timer_free);
2429
2430/*
2431 * Generic Timer Interrupts handling
2432 */
2433void ath_gen_timer_isr(struct ath_hw *ah)
2434{
2435	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2436	struct ath_gen_timer *timer;
2437	struct ath_common *common = ath9k_hw_common(ah);
2438	u32 trigger_mask, thresh_mask, index;
2439
2440	/* get hardware generic timer interrupt status */
2441	trigger_mask = ah->intr_gen_timer_trigger;
2442	thresh_mask = ah->intr_gen_timer_thresh;
2443	trigger_mask &= timer_table->timer_mask.val;
2444	thresh_mask &= timer_table->timer_mask.val;
2445
2446	trigger_mask &= ~thresh_mask;
2447
2448	while (thresh_mask) {
2449		index = rightmost_index(timer_table, &thresh_mask);
2450		timer = timer_table->timers[index];
2451		BUG_ON(!timer);
2452		ath_dbg(common, ATH_DBG_HWTIMER,
2453			"TSF overflow for Gen timer %d\n", index);
2454		timer->overflow(timer->arg);
2455	}
2456
2457	while (trigger_mask) {
2458		index = rightmost_index(timer_table, &trigger_mask);
2459		timer = timer_table->timers[index];
2460		BUG_ON(!timer);
2461		ath_dbg(common, ATH_DBG_HWTIMER,
2462			"Gen timer[%d] trigger\n", index);
2463		timer->trigger(timer->arg);
2464	}
2465}
2466EXPORT_SYMBOL(ath_gen_timer_isr);
2467
2468/********/
2469/* HTC  */
2470/********/
2471
2472void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2473{
2474	ah->htc_reset_init = true;
2475}
2476EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2477
2478static struct {
2479	u32 version;
2480	const char * name;
2481} ath_mac_bb_names[] = {
2482	/* Devices with external radios */
2483	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2484	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2485	{ AR_SREV_VERSION_9100,		"9100" },
2486	{ AR_SREV_VERSION_9160,		"9160" },
2487	/* Single-chip solutions */
2488	{ AR_SREV_VERSION_9280,		"9280" },
2489	{ AR_SREV_VERSION_9285,		"9285" },
2490	{ AR_SREV_VERSION_9287,         "9287" },
2491	{ AR_SREV_VERSION_9271,         "9271" },
2492	{ AR_SREV_VERSION_9300,         "9300" },
2493};
2494
2495/* For devices with external radios */
2496static struct {
2497	u16 version;
2498	const char * name;
2499} ath_rf_names[] = {
2500	{ 0,				"5133" },
2501	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2502	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2503	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2504	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2505};
2506
2507/*
2508 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2509 */
2510static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2511{
2512	int i;
2513
2514	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2515		if (ath_mac_bb_names[i].version == mac_bb_version) {
2516			return ath_mac_bb_names[i].name;
2517		}
2518	}
2519
2520	return "????";
2521}
2522
2523/*
2524 * Return the RF name. "????" is returned if the RF is unknown.
2525 * Used for devices with external radios.
2526 */
2527static const char *ath9k_hw_rf_name(u16 rf_version)
2528{
2529	int i;
2530
2531	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2532		if (ath_rf_names[i].version == rf_version) {
2533			return ath_rf_names[i].name;
2534		}
2535	}
2536
2537	return "????";
2538}
2539
2540void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2541{
2542	int used;
2543
2544	/* chipsets >= AR9280 are single-chip */
2545	if (AR_SREV_9280_20_OR_LATER(ah)) {
2546		used = snprintf(hw_name, len,
2547			       "Atheros AR%s Rev:%x",
2548			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2549			       ah->hw_version.macRev);
2550	}
2551	else {
2552		used = snprintf(hw_name, len,
2553			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2554			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2555			       ah->hw_version.macRev,
2556			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2557						AR_RADIO_SREV_MAJOR)),
2558			       ah->hw_version.phyRev);
2559	}
2560
2561	hw_name[used] = '\0';
2562}
2563EXPORT_SYMBOL(ath9k_hw_name);
2564