hw.c revision 324c74ad64c7528a9cf243455723d5ed57238e15
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
92		clockrate = 117;
93	else if (!ah->curchan) /* should really check for CCK instead */
94		clockrate = ATH9K_CLOCK_RATE_CCK;
95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
99	else
100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
101
102	if (conf_is_ht40(conf))
103		clockrate *= 2;
104
105	if (ah->curchan) {
106		if (IS_CHAN_HALF_RATE(ah->curchan))
107			clockrate /= 2;
108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
109			clockrate /= 4;
110	}
111
112	common->clockrate = clockrate;
113}
114
115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
116{
117	struct ath_common *common = ath9k_hw_common(ah);
118
119	return usecs * common->clockrate;
120}
121
122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123{
124	int i;
125
126	BUG_ON(timeout < AH_TIME_QUANTUM);
127
128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
129		if ((REG_READ(ah, reg) & mask) == val)
130			return true;
131
132		udelay(AH_TIME_QUANTUM);
133	}
134
135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137		timeout, reg, REG_READ(ah, reg), mask, val);
138
139	return false;
140}
141EXPORT_SYMBOL(ath9k_hw_wait);
142
143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
144			  int column, unsigned int *writecnt)
145{
146	int r;
147
148	ENABLE_REGWRITE_BUFFER(ah);
149	for (r = 0; r < array->ia_rows; r++) {
150		REG_WRITE(ah, INI_RA(array, r, 0),
151			  INI_RA(array, r, column));
152		DO_DELAY(*writecnt);
153	}
154	REGWRITE_BUFFER_FLUSH(ah);
155}
156
157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
158{
159	u32 retval;
160	int i;
161
162	for (i = 0, retval = 0; i < n; i++) {
163		retval = (retval << 1) | (val & 1);
164		val >>= 1;
165	}
166	return retval;
167}
168
169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
170			   u8 phy, int kbps,
171			   u32 frameLen, u16 rateix,
172			   bool shortPreamble)
173{
174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175
176	if (kbps == 0)
177		return 0;
178
179	switch (phy) {
180	case WLAN_RC_PHY_CCK:
181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
182		if (shortPreamble)
183			phyTime >>= 1;
184		numBits = frameLen << 3;
185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
186		break;
187	case WLAN_RC_PHY_OFDM:
188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192			txTime = OFDM_SIFS_TIME_QUARTER
193				+ OFDM_PREAMBLE_TIME_QUARTER
194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195		} else if (ah->curchan &&
196			   IS_CHAN_HALF_RATE(ah->curchan)) {
197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200			txTime = OFDM_SIFS_TIME_HALF +
201				OFDM_PREAMBLE_TIME_HALF
202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203		} else {
204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208				+ (numSymbols * OFDM_SYMBOL_TIME);
209		}
210		break;
211	default:
212		ath_err(ath9k_hw_common(ah),
213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214		txTime = 0;
215		break;
216	}
217
218	return txTime;
219}
220EXPORT_SYMBOL(ath9k_hw_computetxtime);
221
222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223				  struct ath9k_channel *chan,
224				  struct chan_centers *centers)
225{
226	int8_t extoff;
227
228	if (!IS_CHAN_HT40(chan)) {
229		centers->ctl_center = centers->ext_center =
230			centers->synth_center = chan->channel;
231		return;
232	}
233
234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
236		centers->synth_center =
237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
238		extoff = 1;
239	} else {
240		centers->synth_center =
241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
242		extoff = -1;
243	}
244
245	centers->ctl_center =
246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247	/* 25 MHz spacing is supported by hw but not on upper layers */
248	centers->ext_center =
249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
250}
251
252/******************/
253/* Chip Revisions */
254/******************/
255
256static void ath9k_hw_read_revisions(struct ath_hw *ah)
257{
258	u32 val;
259
260	switch (ah->hw_version.devid) {
261	case AR5416_AR9100_DEVID:
262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263		break;
264	case AR9300_DEVID_AR9330:
265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266		if (ah->get_mac_revision) {
267			ah->hw_version.macRev = ah->get_mac_revision();
268		} else {
269			val = REG_READ(ah, AR_SREV);
270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271		}
272		return;
273	case AR9300_DEVID_AR9340:
274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275		val = REG_READ(ah, AR_SREV);
276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
277		return;
278	}
279
280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
281
282	if (val == 0xFF) {
283		val = REG_READ(ah, AR_SREV);
284		ah->hw_version.macVersion =
285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
287
288		if (AR_SREV_9480(ah))
289			ah->is_pciexpress = true;
290		else
291			ah->is_pciexpress = (val &
292					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
293	} else {
294		if (!AR_SREV_9100(ah))
295			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
296
297		ah->hw_version.macRev = val & AR_SREV_REVISION;
298
299		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
300			ah->is_pciexpress = true;
301	}
302}
303
304/************************************/
305/* HW Attach, Detach, Init Routines */
306/************************************/
307
308static void ath9k_hw_disablepcie(struct ath_hw *ah)
309{
310	if (!AR_SREV_5416(ah))
311		return;
312
313	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
314	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
315	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
317	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
318	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
319	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
320	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
321	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
322
323	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
324}
325
326static void ath9k_hw_aspm_init(struct ath_hw *ah)
327{
328	struct ath_common *common = ath9k_hw_common(ah);
329
330	if (common->bus_ops->aspm_init)
331		common->bus_ops->aspm_init(common);
332}
333
334/* This should work for all families including legacy */
335static bool ath9k_hw_chip_test(struct ath_hw *ah)
336{
337	struct ath_common *common = ath9k_hw_common(ah);
338	u32 regAddr[2] = { AR_STA_ID0 };
339	u32 regHold[2];
340	static const u32 patternData[4] = {
341		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
342	};
343	int i, j, loop_max;
344
345	if (!AR_SREV_9300_20_OR_LATER(ah)) {
346		loop_max = 2;
347		regAddr[1] = AR_PHY_BASE + (8 << 2);
348	} else
349		loop_max = 1;
350
351	for (i = 0; i < loop_max; i++) {
352		u32 addr = regAddr[i];
353		u32 wrData, rdData;
354
355		regHold[i] = REG_READ(ah, addr);
356		for (j = 0; j < 0x100; j++) {
357			wrData = (j << 16) | j;
358			REG_WRITE(ah, addr, wrData);
359			rdData = REG_READ(ah, addr);
360			if (rdData != wrData) {
361				ath_err(common,
362					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
363					addr, wrData, rdData);
364				return false;
365			}
366		}
367		for (j = 0; j < 4; j++) {
368			wrData = patternData[j];
369			REG_WRITE(ah, addr, wrData);
370			rdData = REG_READ(ah, addr);
371			if (wrData != rdData) {
372				ath_err(common,
373					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
374					addr, wrData, rdData);
375				return false;
376			}
377		}
378		REG_WRITE(ah, regAddr[i], regHold[i]);
379	}
380	udelay(100);
381
382	return true;
383}
384
385static void ath9k_hw_init_config(struct ath_hw *ah)
386{
387	int i;
388
389	ah->config.dma_beacon_response_time = 2;
390	ah->config.sw_beacon_response_time = 10;
391	ah->config.additional_swba_backoff = 0;
392	ah->config.ack_6mb = 0x0;
393	ah->config.cwm_ignore_extcca = 0;
394	ah->config.pcie_clock_req = 0;
395	ah->config.pcie_waen = 0;
396	ah->config.analog_shiftreg = 1;
397	ah->config.enable_ani = true;
398
399	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
400		ah->config.spurchans[i][0] = AR_NO_SPUR;
401		ah->config.spurchans[i][1] = AR_NO_SPUR;
402	}
403
404	/* PAPRD needs some more work to be enabled */
405	ah->config.paprd_disable = 1;
406
407	ah->config.rx_intr_mitigation = true;
408	ah->config.pcieSerDesWrite = true;
409
410	/*
411	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
412	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
413	 * This means we use it for all AR5416 devices, and the few
414	 * minor PCI AR9280 devices out there.
415	 *
416	 * Serialization is required because these devices do not handle
417	 * well the case of two concurrent reads/writes due to the latency
418	 * involved. During one read/write another read/write can be issued
419	 * on another CPU while the previous read/write may still be working
420	 * on our hardware, if we hit this case the hardware poops in a loop.
421	 * We prevent this by serializing reads and writes.
422	 *
423	 * This issue is not present on PCI-Express devices or pre-AR5416
424	 * devices (legacy, 802.11abg).
425	 */
426	if (num_possible_cpus() > 1)
427		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
428}
429
430static void ath9k_hw_init_defaults(struct ath_hw *ah)
431{
432	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
433
434	regulatory->country_code = CTRY_DEFAULT;
435	regulatory->power_limit = MAX_RATE_POWER;
436
437	ah->hw_version.magic = AR5416_MAGIC;
438	ah->hw_version.subvendorid = 0;
439
440	ah->atim_window = 0;
441	ah->sta_id1_defaults =
442		AR_STA_ID1_CRPT_MIC_ENABLE |
443		AR_STA_ID1_MCAST_KSRCH;
444	if (AR_SREV_9100(ah))
445		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
446	ah->enable_32kHz_clock = DONT_USE_32KHZ;
447	ah->slottime = ATH9K_SLOT_TIME_9;
448	ah->globaltxtimeout = (u32) -1;
449	ah->power_mode = ATH9K_PM_UNDEFINED;
450}
451
452static int ath9k_hw_init_macaddr(struct ath_hw *ah)
453{
454	struct ath_common *common = ath9k_hw_common(ah);
455	u32 sum;
456	int i;
457	u16 eeval;
458	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
459
460	sum = 0;
461	for (i = 0; i < 3; i++) {
462		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
463		sum += eeval;
464		common->macaddr[2 * i] = eeval >> 8;
465		common->macaddr[2 * i + 1] = eeval & 0xff;
466	}
467	if (sum == 0 || sum == 0xffff * 3)
468		return -EADDRNOTAVAIL;
469
470	return 0;
471}
472
473static int ath9k_hw_post_init(struct ath_hw *ah)
474{
475	struct ath_common *common = ath9k_hw_common(ah);
476	int ecode;
477
478	if (common->bus_ops->ath_bus_type != ATH_USB) {
479		if (!ath9k_hw_chip_test(ah))
480			return -ENODEV;
481	}
482
483	if (!AR_SREV_9300_20_OR_LATER(ah)) {
484		ecode = ar9002_hw_rf_claim(ah);
485		if (ecode != 0)
486			return ecode;
487	}
488
489	ecode = ath9k_hw_eeprom_init(ah);
490	if (ecode != 0)
491		return ecode;
492
493	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
494		"Eeprom VER: %d, REV: %d\n",
495		ah->eep_ops->get_eeprom_ver(ah),
496		ah->eep_ops->get_eeprom_rev(ah));
497
498	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
499	if (ecode) {
500		ath_err(ath9k_hw_common(ah),
501			"Failed allocating banks for external radio\n");
502		ath9k_hw_rf_free_ext_banks(ah);
503		return ecode;
504	}
505
506	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
507		ath9k_hw_ani_setup(ah);
508		ath9k_hw_ani_init(ah);
509	}
510
511	return 0;
512}
513
514static void ath9k_hw_attach_ops(struct ath_hw *ah)
515{
516	if (AR_SREV_9300_20_OR_LATER(ah))
517		ar9003_hw_attach_ops(ah);
518	else
519		ar9002_hw_attach_ops(ah);
520}
521
522/* Called for all hardware families */
523static int __ath9k_hw_init(struct ath_hw *ah)
524{
525	struct ath_common *common = ath9k_hw_common(ah);
526	int r = 0;
527
528	ath9k_hw_read_revisions(ah);
529
530	/*
531	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532	 * We need to do this to avoid RMW of this register. We cannot
533	 * read the reg when chip is asleep.
534	 */
535	ah->WARegVal = REG_READ(ah, AR_WA);
536	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
537			 AR_WA_ASPM_TIMER_BASED_DISABLE);
538
539	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540		ath_err(common, "Couldn't reset chip\n");
541		return -EIO;
542	}
543
544	if (AR_SREV_9480(ah))
545		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
546
547	ath9k_hw_init_defaults(ah);
548	ath9k_hw_init_config(ah);
549
550	ath9k_hw_attach_ops(ah);
551
552	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
553		ath_err(common, "Couldn't wakeup chip\n");
554		return -EIO;
555	}
556
557	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
558		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
559		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
560		     !ah->is_pciexpress)) {
561			ah->config.serialize_regmode =
562				SER_REG_MODE_ON;
563		} else {
564			ah->config.serialize_regmode =
565				SER_REG_MODE_OFF;
566		}
567	}
568
569	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
570		ah->config.serialize_regmode);
571
572	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
573		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
574	else
575		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
576
577	switch (ah->hw_version.macVersion) {
578	case AR_SREV_VERSION_5416_PCI:
579	case AR_SREV_VERSION_5416_PCIE:
580	case AR_SREV_VERSION_9160:
581	case AR_SREV_VERSION_9100:
582	case AR_SREV_VERSION_9280:
583	case AR_SREV_VERSION_9285:
584	case AR_SREV_VERSION_9287:
585	case AR_SREV_VERSION_9271:
586	case AR_SREV_VERSION_9300:
587	case AR_SREV_VERSION_9330:
588	case AR_SREV_VERSION_9485:
589	case AR_SREV_VERSION_9340:
590	case AR_SREV_VERSION_9480:
591		break;
592	default:
593		ath_err(common,
594			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
595			ah->hw_version.macVersion, ah->hw_version.macRev);
596		return -EOPNOTSUPP;
597	}
598
599	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
600	    AR_SREV_9330(ah))
601		ah->is_pciexpress = false;
602
603	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
604	ath9k_hw_init_cal_settings(ah);
605
606	ah->ani_function = ATH9K_ANI_ALL;
607	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
608		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
609	if (!AR_SREV_9300_20_OR_LATER(ah))
610		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
611
612	ath9k_hw_init_mode_regs(ah);
613
614	if (!ah->is_pciexpress)
615		ath9k_hw_disablepcie(ah);
616
617	if (!AR_SREV_9300_20_OR_LATER(ah))
618		ar9002_hw_cck_chan14_spread(ah);
619
620	r = ath9k_hw_post_init(ah);
621	if (r)
622		return r;
623
624	ath9k_hw_init_mode_gain_regs(ah);
625	r = ath9k_hw_fill_cap_info(ah);
626	if (r)
627		return r;
628
629	if (ah->is_pciexpress)
630		ath9k_hw_aspm_init(ah);
631
632	r = ath9k_hw_init_macaddr(ah);
633	if (r) {
634		ath_err(common, "Failed to initialize MAC address\n");
635		return r;
636	}
637
638	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
639		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
640	else
641		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
642
643	if (AR_SREV_9330(ah))
644		ah->bb_watchdog_timeout_ms = 85;
645	else
646		ah->bb_watchdog_timeout_ms = 25;
647
648	common->state = ATH_HW_INITIALIZED;
649
650	return 0;
651}
652
653int ath9k_hw_init(struct ath_hw *ah)
654{
655	int ret;
656	struct ath_common *common = ath9k_hw_common(ah);
657
658	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
659	switch (ah->hw_version.devid) {
660	case AR5416_DEVID_PCI:
661	case AR5416_DEVID_PCIE:
662	case AR5416_AR9100_DEVID:
663	case AR9160_DEVID_PCI:
664	case AR9280_DEVID_PCI:
665	case AR9280_DEVID_PCIE:
666	case AR9285_DEVID_PCIE:
667	case AR9287_DEVID_PCI:
668	case AR9287_DEVID_PCIE:
669	case AR2427_DEVID_PCIE:
670	case AR9300_DEVID_PCIE:
671	case AR9300_DEVID_AR9485_PCIE:
672	case AR9300_DEVID_AR9330:
673	case AR9300_DEVID_AR9340:
674	case AR9300_DEVID_AR9580:
675	case AR9300_DEVID_AR9480:
676		break;
677	default:
678		if (common->bus_ops->ath_bus_type == ATH_USB)
679			break;
680		ath_err(common, "Hardware device ID 0x%04x not supported\n",
681			ah->hw_version.devid);
682		return -EOPNOTSUPP;
683	}
684
685	ret = __ath9k_hw_init(ah);
686	if (ret) {
687		ath_err(common,
688			"Unable to initialize hardware; initialization status: %d\n",
689			ret);
690		return ret;
691	}
692
693	return 0;
694}
695EXPORT_SYMBOL(ath9k_hw_init);
696
697static void ath9k_hw_init_qos(struct ath_hw *ah)
698{
699	ENABLE_REGWRITE_BUFFER(ah);
700
701	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
702	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
703
704	REG_WRITE(ah, AR_QOS_NO_ACK,
705		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
706		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
707		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
708
709	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
710	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
711	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
712	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
713	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
714
715	REGWRITE_BUFFER_FLUSH(ah);
716}
717
718u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
719{
720	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
721	udelay(100);
722	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
723
724	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
725		udelay(100);
726
727	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
728}
729EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
730
731static void ath9k_hw_init_pll(struct ath_hw *ah,
732			      struct ath9k_channel *chan)
733{
734	u32 pll;
735
736	if (AR_SREV_9485(ah)) {
737
738		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
739		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
740			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
741		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
742			      AR_CH0_DPLL2_KD, 0x40);
743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744			      AR_CH0_DPLL2_KI, 0x4);
745
746		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
747			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
748		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
749			      AR_CH0_BB_DPLL1_NINI, 0x58);
750		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
751			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
752
753		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
754			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
755		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
756			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
757		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
759
760		/* program BB PLL phase_shift to 0x6 */
761		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
762			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
763
764		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
765			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
766		udelay(1000);
767	} else if (AR_SREV_9330(ah)) {
768		u32 ddr_dpll2, pll_control2, kd;
769
770		if (ah->is_clk_25mhz) {
771			ddr_dpll2 = 0x18e82f01;
772			pll_control2 = 0xe04a3d;
773			kd = 0x1d;
774		} else {
775			ddr_dpll2 = 0x19e82f01;
776			pll_control2 = 0x886666;
777			kd = 0x3d;
778		}
779
780		/* program DDR PLL ki and kd value */
781		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
782
783		/* program DDR PLL phase_shift */
784		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
785			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
786
787		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
788		udelay(1000);
789
790		/* program refdiv, nint, frac to RTC register */
791		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
792
793		/* program BB PLL kd and ki value */
794		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
795		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
796
797		/* program BB PLL phase_shift */
798		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
799			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
800	} else if (AR_SREV_9340(ah)) {
801		u32 regval, pll2_divint, pll2_divfrac, refdiv;
802
803		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
804		udelay(1000);
805
806		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
807		udelay(100);
808
809		if (ah->is_clk_25mhz) {
810			pll2_divint = 0x54;
811			pll2_divfrac = 0x1eb85;
812			refdiv = 3;
813		} else {
814			pll2_divint = 88;
815			pll2_divfrac = 0;
816			refdiv = 5;
817		}
818
819		regval = REG_READ(ah, AR_PHY_PLL_MODE);
820		regval |= (0x1 << 16);
821		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
822		udelay(100);
823
824		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
825			  (pll2_divint << 18) | pll2_divfrac);
826		udelay(100);
827
828		regval = REG_READ(ah, AR_PHY_PLL_MODE);
829		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
830			 (0x4 << 26) | (0x18 << 19);
831		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
832		REG_WRITE(ah, AR_PHY_PLL_MODE,
833			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
834		udelay(1000);
835	}
836
837	pll = ath9k_hw_compute_pll_control(ah, chan);
838
839	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
840
841	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
842		udelay(1000);
843
844	/* Switch the core clock for ar9271 to 117Mhz */
845	if (AR_SREV_9271(ah)) {
846		udelay(500);
847		REG_WRITE(ah, 0x50040, 0x304);
848	}
849
850	udelay(RTC_PLL_SETTLE_DELAY);
851
852	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
853
854	if (AR_SREV_9340(ah)) {
855		if (ah->is_clk_25mhz) {
856			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
857			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
858			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
859		} else {
860			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
861			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
862			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
863		}
864		udelay(100);
865	}
866}
867
868static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
869					  enum nl80211_iftype opmode)
870{
871	u32 sync_default = AR_INTR_SYNC_DEFAULT;
872	u32 imr_reg = AR_IMR_TXERR |
873		AR_IMR_TXURN |
874		AR_IMR_RXERR |
875		AR_IMR_RXORN |
876		AR_IMR_BCNMISC;
877
878	if (AR_SREV_9340(ah))
879		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
880
881	if (AR_SREV_9300_20_OR_LATER(ah)) {
882		imr_reg |= AR_IMR_RXOK_HP;
883		if (ah->config.rx_intr_mitigation)
884			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
885		else
886			imr_reg |= AR_IMR_RXOK_LP;
887
888	} else {
889		if (ah->config.rx_intr_mitigation)
890			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
891		else
892			imr_reg |= AR_IMR_RXOK;
893	}
894
895	if (ah->config.tx_intr_mitigation)
896		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
897	else
898		imr_reg |= AR_IMR_TXOK;
899
900	if (opmode == NL80211_IFTYPE_AP)
901		imr_reg |= AR_IMR_MIB;
902
903	ENABLE_REGWRITE_BUFFER(ah);
904
905	REG_WRITE(ah, AR_IMR, imr_reg);
906	ah->imrs2_reg |= AR_IMR_S2_GTT;
907	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
908
909	if (!AR_SREV_9100(ah)) {
910		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
911		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
912		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
913	}
914
915	REGWRITE_BUFFER_FLUSH(ah);
916
917	if (AR_SREV_9300_20_OR_LATER(ah)) {
918		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
919		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
920		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
921		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
922	}
923}
924
925static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
926{
927	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
928	val = min(val, (u32) 0xFFFF);
929	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
930}
931
932static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
933{
934	u32 val = ath9k_hw_mac_to_clks(ah, us);
935	val = min(val, (u32) 0xFFFF);
936	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
937}
938
939static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
940{
941	u32 val = ath9k_hw_mac_to_clks(ah, us);
942	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
943	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
944}
945
946static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
947{
948	u32 val = ath9k_hw_mac_to_clks(ah, us);
949	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
950	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
951}
952
953static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
954{
955	if (tu > 0xFFFF) {
956		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
957			"bad global tx timeout %u\n", tu);
958		ah->globaltxtimeout = (u32) -1;
959		return false;
960	} else {
961		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
962		ah->globaltxtimeout = tu;
963		return true;
964	}
965}
966
967void ath9k_hw_init_global_settings(struct ath_hw *ah)
968{
969	struct ath_common *common = ath9k_hw_common(ah);
970	struct ieee80211_conf *conf = &common->hw->conf;
971	const struct ath9k_channel *chan = ah->curchan;
972	int acktimeout, ctstimeout;
973	int slottime;
974	int sifstime;
975	int rx_lat = 0, tx_lat = 0, eifs = 0;
976	u32 reg;
977
978	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
979		ah->misc_mode);
980
981	if (!chan)
982		return;
983
984	if (ah->misc_mode != 0)
985		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
986
987	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
988		rx_lat = 41;
989	else
990		rx_lat = 37;
991	tx_lat = 54;
992
993	if (IS_CHAN_HALF_RATE(chan)) {
994		eifs = 175;
995		rx_lat *= 2;
996		tx_lat *= 2;
997		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
998		    tx_lat += 11;
999
1000		slottime = 13;
1001		sifstime = 32;
1002	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1003		eifs = 340;
1004		rx_lat = (rx_lat * 4) - 1;
1005		tx_lat *= 4;
1006		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007		    tx_lat += 22;
1008
1009		slottime = 21;
1010		sifstime = 64;
1011	} else {
1012		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1013			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1014			reg = AR_USEC_ASYNC_FIFO;
1015		} else {
1016			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1017				common->clockrate;
1018			reg = REG_READ(ah, AR_USEC);
1019		}
1020		rx_lat = MS(reg, AR_USEC_RX_LAT);
1021		tx_lat = MS(reg, AR_USEC_TX_LAT);
1022
1023		slottime = ah->slottime;
1024		if (IS_CHAN_5GHZ(chan))
1025			sifstime = 16;
1026		else
1027			sifstime = 10;
1028	}
1029
1030	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1031	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1032	ctstimeout = acktimeout;
1033
1034	/*
1035	 * Workaround for early ACK timeouts, add an offset to match the
1036	 * initval's 64us ack timeout value.
1037	 * This was initially only meant to work around an issue with delayed
1038	 * BA frames in some implementations, but it has been found to fix ACK
1039	 * timeout issues in other cases as well.
1040	 */
1041	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1042		acktimeout += 64 - sifstime - ah->slottime;
1043
1044	ath9k_hw_set_sifs_time(ah, sifstime);
1045	ath9k_hw_setslottime(ah, slottime);
1046	ath9k_hw_set_ack_timeout(ah, acktimeout);
1047	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1048	if (ah->globaltxtimeout != (u32) -1)
1049		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1050
1051	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1052	REG_RMW(ah, AR_USEC,
1053		(common->clockrate - 1) |
1054		SM(rx_lat, AR_USEC_RX_LAT) |
1055		SM(tx_lat, AR_USEC_TX_LAT),
1056		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1057
1058}
1059EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1060
1061void ath9k_hw_deinit(struct ath_hw *ah)
1062{
1063	struct ath_common *common = ath9k_hw_common(ah);
1064
1065	if (common->state < ATH_HW_INITIALIZED)
1066		goto free_hw;
1067
1068	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1069
1070free_hw:
1071	ath9k_hw_rf_free_ext_banks(ah);
1072}
1073EXPORT_SYMBOL(ath9k_hw_deinit);
1074
1075/*******/
1076/* INI */
1077/*******/
1078
1079u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1080{
1081	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1082
1083	if (IS_CHAN_B(chan))
1084		ctl |= CTL_11B;
1085	else if (IS_CHAN_G(chan))
1086		ctl |= CTL_11G;
1087	else
1088		ctl |= CTL_11A;
1089
1090	return ctl;
1091}
1092
1093/****************************************/
1094/* Reset and Channel Switching Routines */
1095/****************************************/
1096
1097static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1098{
1099	struct ath_common *common = ath9k_hw_common(ah);
1100
1101	ENABLE_REGWRITE_BUFFER(ah);
1102
1103	/*
1104	 * set AHB_MODE not to do cacheline prefetches
1105	*/
1106	if (!AR_SREV_9300_20_OR_LATER(ah))
1107		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1108
1109	/*
1110	 * let mac dma reads be in 128 byte chunks
1111	 */
1112	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1113
1114	REGWRITE_BUFFER_FLUSH(ah);
1115
1116	/*
1117	 * Restore TX Trigger Level to its pre-reset value.
1118	 * The initial value depends on whether aggregation is enabled, and is
1119	 * adjusted whenever underruns are detected.
1120	 */
1121	if (!AR_SREV_9300_20_OR_LATER(ah))
1122		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1123
1124	ENABLE_REGWRITE_BUFFER(ah);
1125
1126	/*
1127	 * let mac dma writes be in 128 byte chunks
1128	 */
1129	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1130
1131	/*
1132	 * Setup receive FIFO threshold to hold off TX activities
1133	 */
1134	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1135
1136	if (AR_SREV_9300_20_OR_LATER(ah)) {
1137		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1138		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1139
1140		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1141			ah->caps.rx_status_len);
1142	}
1143
1144	/*
1145	 * reduce the number of usable entries in PCU TXBUF to avoid
1146	 * wrap around issues.
1147	 */
1148	if (AR_SREV_9285(ah)) {
1149		/* For AR9285 the number of Fifos are reduced to half.
1150		 * So set the usable tx buf size also to half to
1151		 * avoid data/delimiter underruns
1152		 */
1153		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1154			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1155	} else if (!AR_SREV_9271(ah)) {
1156		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1157			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1158	}
1159
1160	REGWRITE_BUFFER_FLUSH(ah);
1161
1162	if (AR_SREV_9300_20_OR_LATER(ah))
1163		ath9k_hw_reset_txstatus_ring(ah);
1164}
1165
1166static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1167{
1168	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1169	u32 set = AR_STA_ID1_KSRCH_MODE;
1170
1171	switch (opmode) {
1172	case NL80211_IFTYPE_ADHOC:
1173	case NL80211_IFTYPE_MESH_POINT:
1174		set |= AR_STA_ID1_ADHOC;
1175		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1176		break;
1177	case NL80211_IFTYPE_AP:
1178		set |= AR_STA_ID1_STA_AP;
1179		/* fall through */
1180	case NL80211_IFTYPE_STATION:
1181		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1182		break;
1183	default:
1184		if (!ah->is_monitoring)
1185			set = 0;
1186		break;
1187	}
1188	REG_RMW(ah, AR_STA_ID1, set, mask);
1189}
1190
1191void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1192				   u32 *coef_mantissa, u32 *coef_exponent)
1193{
1194	u32 coef_exp, coef_man;
1195
1196	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1197		if ((coef_scaled >> coef_exp) & 0x1)
1198			break;
1199
1200	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1201
1202	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1203
1204	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1205	*coef_exponent = coef_exp - 16;
1206}
1207
1208static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1209{
1210	u32 rst_flags;
1211	u32 tmpReg;
1212
1213	if (AR_SREV_9100(ah)) {
1214		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1215			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1216		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1217	}
1218
1219	ENABLE_REGWRITE_BUFFER(ah);
1220
1221	if (AR_SREV_9300_20_OR_LATER(ah)) {
1222		REG_WRITE(ah, AR_WA, ah->WARegVal);
1223		udelay(10);
1224	}
1225
1226	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1227		  AR_RTC_FORCE_WAKE_ON_INT);
1228
1229	if (AR_SREV_9100(ah)) {
1230		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1231			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1232	} else {
1233		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1234		if (tmpReg &
1235		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1236		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1237			u32 val;
1238			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1239
1240			val = AR_RC_HOSTIF;
1241			if (!AR_SREV_9300_20_OR_LATER(ah))
1242				val |= AR_RC_AHB;
1243			REG_WRITE(ah, AR_RC, val);
1244
1245		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1246			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1247
1248		rst_flags = AR_RTC_RC_MAC_WARM;
1249		if (type == ATH9K_RESET_COLD)
1250			rst_flags |= AR_RTC_RC_MAC_COLD;
1251	}
1252
1253	if (AR_SREV_9330(ah)) {
1254		int npend = 0;
1255		int i;
1256
1257		/* AR9330 WAR:
1258		 * call external reset function to reset WMAC if:
1259		 * - doing a cold reset
1260		 * - we have pending frames in the TX queues
1261		 */
1262
1263		for (i = 0; i < AR_NUM_QCU; i++) {
1264			npend = ath9k_hw_numtxpending(ah, i);
1265			if (npend)
1266				break;
1267		}
1268
1269		if (ah->external_reset &&
1270		    (npend || type == ATH9K_RESET_COLD)) {
1271			int reset_err = 0;
1272
1273			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1274				"reset MAC via external reset\n");
1275
1276			reset_err = ah->external_reset();
1277			if (reset_err) {
1278				ath_err(ath9k_hw_common(ah),
1279					"External reset failed, err=%d\n",
1280					reset_err);
1281				return false;
1282			}
1283
1284			REG_WRITE(ah, AR_RTC_RESET, 1);
1285		}
1286	}
1287
1288	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1289
1290	REGWRITE_BUFFER_FLUSH(ah);
1291
1292	udelay(50);
1293
1294	REG_WRITE(ah, AR_RTC_RC, 0);
1295	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1296		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1297			"RTC stuck in MAC reset\n");
1298		return false;
1299	}
1300
1301	if (!AR_SREV_9100(ah))
1302		REG_WRITE(ah, AR_RC, 0);
1303
1304	if (AR_SREV_9100(ah))
1305		udelay(50);
1306
1307	return true;
1308}
1309
1310static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1311{
1312	ENABLE_REGWRITE_BUFFER(ah);
1313
1314	if (AR_SREV_9300_20_OR_LATER(ah)) {
1315		REG_WRITE(ah, AR_WA, ah->WARegVal);
1316		udelay(10);
1317	}
1318
1319	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1320		  AR_RTC_FORCE_WAKE_ON_INT);
1321
1322	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1323		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1324
1325	REG_WRITE(ah, AR_RTC_RESET, 0);
1326
1327	REGWRITE_BUFFER_FLUSH(ah);
1328
1329	if (!AR_SREV_9300_20_OR_LATER(ah))
1330		udelay(2);
1331
1332	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1333		REG_WRITE(ah, AR_RC, 0);
1334
1335	REG_WRITE(ah, AR_RTC_RESET, 1);
1336
1337	if (!ath9k_hw_wait(ah,
1338			   AR_RTC_STATUS,
1339			   AR_RTC_STATUS_M,
1340			   AR_RTC_STATUS_ON,
1341			   AH_WAIT_TIMEOUT)) {
1342		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1343			"RTC not waking up\n");
1344		return false;
1345	}
1346
1347	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1348}
1349
1350static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1351{
1352
1353	if (AR_SREV_9300_20_OR_LATER(ah)) {
1354		REG_WRITE(ah, AR_WA, ah->WARegVal);
1355		udelay(10);
1356	}
1357
1358	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1359		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1360
1361	switch (type) {
1362	case ATH9K_RESET_POWER_ON:
1363		return ath9k_hw_set_reset_power_on(ah);
1364	case ATH9K_RESET_WARM:
1365	case ATH9K_RESET_COLD:
1366		return ath9k_hw_set_reset(ah, type);
1367	default:
1368		return false;
1369	}
1370}
1371
1372static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1373				struct ath9k_channel *chan)
1374{
1375	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1376		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1377			return false;
1378	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1379		return false;
1380
1381	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1382		return false;
1383
1384	ah->chip_fullsleep = false;
1385	ath9k_hw_init_pll(ah, chan);
1386	ath9k_hw_set_rfmode(ah, chan);
1387
1388	return true;
1389}
1390
1391static bool ath9k_hw_channel_change(struct ath_hw *ah,
1392				    struct ath9k_channel *chan)
1393{
1394	struct ath_common *common = ath9k_hw_common(ah);
1395	u32 qnum;
1396	int r;
1397	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1398	bool band_switch, mode_diff;
1399	u8 ini_reloaded;
1400
1401	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1402		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1403						    CHANNEL_5GHZ));
1404	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1405
1406	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1407		if (ath9k_hw_numtxpending(ah, qnum)) {
1408			ath_dbg(common, ATH_DBG_QUEUE,
1409				"Transmit frames pending on queue %d\n", qnum);
1410			return false;
1411		}
1412	}
1413
1414	if (!ath9k_hw_rfbus_req(ah)) {
1415		ath_err(common, "Could not kill baseband RX\n");
1416		return false;
1417	}
1418
1419	if (edma && (band_switch || mode_diff)) {
1420		ath9k_hw_mark_phy_inactive(ah);
1421		udelay(5);
1422
1423		ath9k_hw_init_pll(ah, NULL);
1424
1425		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1426			ath_err(common, "Failed to do fast channel change\n");
1427			return false;
1428		}
1429	}
1430
1431	ath9k_hw_set_channel_regs(ah, chan);
1432
1433	r = ath9k_hw_rf_set_freq(ah, chan);
1434	if (r) {
1435		ath_err(common, "Failed to set channel\n");
1436		return false;
1437	}
1438	ath9k_hw_set_clockrate(ah);
1439	ath9k_hw_apply_txpower(ah, chan);
1440	ath9k_hw_rfbus_done(ah);
1441
1442	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1443		ath9k_hw_set_delta_slope(ah, chan);
1444
1445	ath9k_hw_spur_mitigate_freq(ah, chan);
1446
1447	if (edma && (band_switch || mode_diff)) {
1448		if (band_switch || ini_reloaded)
1449			ah->eep_ops->set_board_values(ah, chan);
1450
1451		ath9k_hw_init_bb(ah, chan);
1452
1453		if (band_switch || ini_reloaded)
1454			ath9k_hw_init_cal(ah, chan);
1455	}
1456
1457	return true;
1458}
1459
1460static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1461{
1462	u32 gpio_mask = ah->gpio_mask;
1463	int i;
1464
1465	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1466		if (!(gpio_mask & 1))
1467			continue;
1468
1469		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1470		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1471	}
1472}
1473
1474bool ath9k_hw_check_alive(struct ath_hw *ah)
1475{
1476	int count = 50;
1477	u32 reg;
1478
1479	if (AR_SREV_9285_12_OR_LATER(ah))
1480		return true;
1481
1482	do {
1483		reg = REG_READ(ah, AR_OBS_BUS_1);
1484
1485		if ((reg & 0x7E7FFFEF) == 0x00702400)
1486			continue;
1487
1488		switch (reg & 0x7E000B00) {
1489		case 0x1E000000:
1490		case 0x52000B00:
1491		case 0x18000B00:
1492			continue;
1493		default:
1494			return true;
1495		}
1496	} while (count-- > 0);
1497
1498	return false;
1499}
1500EXPORT_SYMBOL(ath9k_hw_check_alive);
1501
1502int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1503		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1504{
1505	struct ath_common *common = ath9k_hw_common(ah);
1506	u32 saveLedState;
1507	struct ath9k_channel *curchan = ah->curchan;
1508	u32 saveDefAntenna;
1509	u32 macStaId1;
1510	u64 tsf = 0;
1511	int i, r;
1512
1513	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1514		return -EIO;
1515
1516	if (curchan && !ah->chip_fullsleep)
1517		ath9k_hw_getnf(ah, curchan);
1518
1519	ah->caldata = caldata;
1520	if (caldata &&
1521	    (chan->channel != caldata->channel ||
1522	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1523	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1524		/* Operating channel changed, reset channel calibration data */
1525		memset(caldata, 0, sizeof(*caldata));
1526		ath9k_init_nfcal_hist_buffer(ah, chan);
1527	}
1528	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1529
1530	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1531		bChannelChange = false;
1532
1533	if (bChannelChange &&
1534	    (ah->chip_fullsleep != true) &&
1535	    (ah->curchan != NULL) &&
1536	    (chan->channel != ah->curchan->channel) &&
1537	    ((chan->channelFlags & CHANNEL_ALL) ==
1538	     (ah->curchan->channelFlags & CHANNEL_ALL))) {
1539		if (ath9k_hw_channel_change(ah, chan)) {
1540			ath9k_hw_loadnf(ah, ah->curchan);
1541			ath9k_hw_start_nfcal(ah, true);
1542			if (AR_SREV_9271(ah))
1543				ar9002_hw_load_ani_reg(ah, chan);
1544			return 0;
1545		}
1546	}
1547
1548	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1549	if (saveDefAntenna == 0)
1550		saveDefAntenna = 1;
1551
1552	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1553
1554	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1555	if (AR_SREV_9100(ah) ||
1556	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1557		tsf = ath9k_hw_gettsf64(ah);
1558
1559	saveLedState = REG_READ(ah, AR_CFG_LED) &
1560		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1561		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1562
1563	ath9k_hw_mark_phy_inactive(ah);
1564
1565	ah->paprd_table_write_done = false;
1566
1567	/* Only required on the first reset */
1568	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1569		REG_WRITE(ah,
1570			  AR9271_RESET_POWER_DOWN_CONTROL,
1571			  AR9271_RADIO_RF_RST);
1572		udelay(50);
1573	}
1574
1575	if (!ath9k_hw_chip_reset(ah, chan)) {
1576		ath_err(common, "Chip reset failed\n");
1577		return -EINVAL;
1578	}
1579
1580	/* Only required on the first reset */
1581	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1582		ah->htc_reset_init = false;
1583		REG_WRITE(ah,
1584			  AR9271_RESET_POWER_DOWN_CONTROL,
1585			  AR9271_GATE_MAC_CTL);
1586		udelay(50);
1587	}
1588
1589	/* Restore TSF */
1590	if (tsf)
1591		ath9k_hw_settsf64(ah, tsf);
1592
1593	if (AR_SREV_9280_20_OR_LATER(ah))
1594		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1595
1596	if (!AR_SREV_9300_20_OR_LATER(ah))
1597		ar9002_hw_enable_async_fifo(ah);
1598
1599	r = ath9k_hw_process_ini(ah, chan);
1600	if (r)
1601		return r;
1602
1603	/*
1604	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1605	 * right after the chip reset. When that happens, write a new
1606	 * value after the initvals have been applied, with an offset
1607	 * based on measured time difference
1608	 */
1609	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1610		tsf += 1500;
1611		ath9k_hw_settsf64(ah, tsf);
1612	}
1613
1614	/* Setup MFP options for CCMP */
1615	if (AR_SREV_9280_20_OR_LATER(ah)) {
1616		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1617		 * frames when constructing CCMP AAD. */
1618		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1619			      0xc7ff);
1620		ah->sw_mgmt_crypto = false;
1621	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1622		/* Disable hardware crypto for management frames */
1623		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1624			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1625		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1626			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1627		ah->sw_mgmt_crypto = true;
1628	} else
1629		ah->sw_mgmt_crypto = true;
1630
1631	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1632		ath9k_hw_set_delta_slope(ah, chan);
1633
1634	ath9k_hw_spur_mitigate_freq(ah, chan);
1635	ah->eep_ops->set_board_values(ah, chan);
1636
1637	ENABLE_REGWRITE_BUFFER(ah);
1638
1639	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1640	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1641		  | macStaId1
1642		  | AR_STA_ID1_RTS_USE_DEF
1643		  | (ah->config.
1644		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1645		  | ah->sta_id1_defaults);
1646	ath_hw_setbssidmask(common);
1647	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1648	ath9k_hw_write_associd(ah);
1649	REG_WRITE(ah, AR_ISR, ~0);
1650	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1651
1652	REGWRITE_BUFFER_FLUSH(ah);
1653
1654	ath9k_hw_set_operating_mode(ah, ah->opmode);
1655
1656	r = ath9k_hw_rf_set_freq(ah, chan);
1657	if (r)
1658		return r;
1659
1660	ath9k_hw_set_clockrate(ah);
1661
1662	ENABLE_REGWRITE_BUFFER(ah);
1663
1664	for (i = 0; i < AR_NUM_DCU; i++)
1665		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1666
1667	REGWRITE_BUFFER_FLUSH(ah);
1668
1669	ah->intr_txqs = 0;
1670	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1671		ath9k_hw_resettxqueue(ah, i);
1672
1673	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1674	ath9k_hw_ani_cache_ini_regs(ah);
1675	ath9k_hw_init_qos(ah);
1676
1677	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1678		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1679
1680	ath9k_hw_init_global_settings(ah);
1681
1682	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1683		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1684			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1685		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1686			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1687		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1688			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1689	}
1690
1691	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1692
1693	ath9k_hw_set_dma(ah);
1694
1695	REG_WRITE(ah, AR_OBS, 8);
1696
1697	if (ah->config.rx_intr_mitigation) {
1698		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1699		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1700	}
1701
1702	if (ah->config.tx_intr_mitigation) {
1703		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1704		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1705	}
1706
1707	ath9k_hw_init_bb(ah, chan);
1708
1709	if (caldata) {
1710		caldata->done_txiqcal_once = false;
1711		caldata->done_txclcal_once = false;
1712		caldata->rtt_hist.num_readings = 0;
1713	}
1714	if (!ath9k_hw_init_cal(ah, chan))
1715		return -EIO;
1716
1717	ENABLE_REGWRITE_BUFFER(ah);
1718
1719	ath9k_hw_restore_chainmask(ah);
1720	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1721
1722	REGWRITE_BUFFER_FLUSH(ah);
1723
1724	/*
1725	 * For big endian systems turn on swapping for descriptors
1726	 */
1727	if (AR_SREV_9100(ah)) {
1728		u32 mask;
1729		mask = REG_READ(ah, AR_CFG);
1730		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1731			ath_dbg(common, ATH_DBG_RESET,
1732				"CFG Byte Swap Set 0x%x\n", mask);
1733		} else {
1734			mask =
1735				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1736			REG_WRITE(ah, AR_CFG, mask);
1737			ath_dbg(common, ATH_DBG_RESET,
1738				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1739		}
1740	} else {
1741		if (common->bus_ops->ath_bus_type == ATH_USB) {
1742			/* Configure AR9271 target WLAN */
1743			if (AR_SREV_9271(ah))
1744				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1745			else
1746				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1747		}
1748#ifdef __BIG_ENDIAN
1749		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1750			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1751		else
1752			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1753#endif
1754	}
1755
1756	if (ah->btcoex_hw.enabled)
1757		ath9k_hw_btcoex_enable(ah);
1758
1759	if (AR_SREV_9300_20_OR_LATER(ah)) {
1760		ar9003_hw_bb_watchdog_config(ah);
1761
1762		ar9003_hw_disable_phy_restart(ah);
1763	}
1764
1765	ath9k_hw_apply_gpio_override(ah);
1766
1767	return 0;
1768}
1769EXPORT_SYMBOL(ath9k_hw_reset);
1770
1771/******************************/
1772/* Power Management (Chipset) */
1773/******************************/
1774
1775/*
1776 * Notify Power Mgt is disabled in self-generated frames.
1777 * If requested, force chip to sleep.
1778 */
1779static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1780{
1781	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1782	if (setChip) {
1783		if (AR_SREV_9480(ah)) {
1784			REG_WRITE(ah, AR_TIMER_MODE,
1785				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1786			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1787				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1788			REG_WRITE(ah, AR_SLP32_INC,
1789				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1790			/* xxx Required for WLAN only case ? */
1791			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1792			udelay(100);
1793		}
1794
1795		/*
1796		 * Clear the RTC force wake bit to allow the
1797		 * mac to go to sleep.
1798		 */
1799		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1800
1801		if (AR_SREV_9480(ah))
1802			udelay(100);
1803
1804		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1805			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1806
1807		/* Shutdown chip. Active low */
1808		if (!AR_SREV_5416(ah) &&
1809				!AR_SREV_9271(ah) && !AR_SREV_9480_10(ah)) {
1810			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1811			udelay(2);
1812		}
1813	}
1814
1815	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1816	REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1817}
1818
1819/*
1820 * Notify Power Management is enabled in self-generating
1821 * frames. If request, set power mode of chip to
1822 * auto/normal.  Duration in units of 128us (1/8 TU).
1823 */
1824static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1825{
1826	u32 val;
1827
1828	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1829	if (setChip) {
1830		struct ath9k_hw_capabilities *pCap = &ah->caps;
1831
1832		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1833			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1834			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1835				  AR_RTC_FORCE_WAKE_ON_INT);
1836		} else {
1837
1838			/* When chip goes into network sleep, it could be waken
1839			 * up by MCI_INT interrupt caused by BT's HW messages
1840			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1841			 * rate (~100us). This will cause chip to leave and
1842			 * re-enter network sleep mode frequently, which in
1843			 * consequence will have WLAN MCI HW to generate lots of
1844			 * SYS_WAKING and SYS_SLEEPING messages which will make
1845			 * BT CPU to busy to process.
1846			 */
1847			if (AR_SREV_9480(ah)) {
1848				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
1849					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
1850				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
1851			}
1852			/*
1853			 * Clear the RTC force wake bit to allow the
1854			 * mac to go to sleep.
1855			 */
1856			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1857				    AR_RTC_FORCE_WAKE_EN);
1858
1859			if (AR_SREV_9480(ah))
1860				udelay(30);
1861		}
1862	}
1863
1864	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1865	if (AR_SREV_9300_20_OR_LATER(ah))
1866		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1867}
1868
1869static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1870{
1871	u32 val;
1872	int i;
1873
1874	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1875	if (AR_SREV_9300_20_OR_LATER(ah)) {
1876		REG_WRITE(ah, AR_WA, ah->WARegVal);
1877		udelay(10);
1878	}
1879
1880	if (setChip) {
1881		if ((REG_READ(ah, AR_RTC_STATUS) &
1882		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1883			if (ath9k_hw_set_reset_reg(ah,
1884					   ATH9K_RESET_POWER_ON) != true) {
1885				return false;
1886			}
1887			if (!AR_SREV_9300_20_OR_LATER(ah))
1888				ath9k_hw_init_pll(ah, NULL);
1889		}
1890		if (AR_SREV_9100(ah))
1891			REG_SET_BIT(ah, AR_RTC_RESET,
1892				    AR_RTC_RESET_EN);
1893
1894		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1895			    AR_RTC_FORCE_WAKE_EN);
1896		udelay(50);
1897
1898		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1899			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1900			if (val == AR_RTC_STATUS_ON)
1901				break;
1902			udelay(50);
1903			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1904				    AR_RTC_FORCE_WAKE_EN);
1905		}
1906		if (i == 0) {
1907			ath_err(ath9k_hw_common(ah),
1908				"Failed to wakeup in %uus\n",
1909				POWER_UP_TIME / 20);
1910			return false;
1911		}
1912	}
1913
1914	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1915
1916	return true;
1917}
1918
1919bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1920{
1921	struct ath_common *common = ath9k_hw_common(ah);
1922	int status = true, setChip = true;
1923	static const char *modes[] = {
1924		"AWAKE",
1925		"FULL-SLEEP",
1926		"NETWORK SLEEP",
1927		"UNDEFINED"
1928	};
1929
1930	if (ah->power_mode == mode)
1931		return status;
1932
1933	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1934		modes[ah->power_mode], modes[mode]);
1935
1936	switch (mode) {
1937	case ATH9K_PM_AWAKE:
1938		status = ath9k_hw_set_power_awake(ah, setChip);
1939		break;
1940	case ATH9K_PM_FULL_SLEEP:
1941		ath9k_set_power_sleep(ah, setChip);
1942		ah->chip_fullsleep = true;
1943		break;
1944	case ATH9K_PM_NETWORK_SLEEP:
1945		ath9k_set_power_network_sleep(ah, setChip);
1946		break;
1947	default:
1948		ath_err(common, "Unknown power mode %u\n", mode);
1949		return false;
1950	}
1951	ah->power_mode = mode;
1952
1953	/*
1954	 * XXX: If this warning never comes up after a while then
1955	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1956	 * ath9k_hw_setpower() return type void.
1957	 */
1958
1959	if (!(ah->ah_flags & AH_UNPLUGGED))
1960		ATH_DBG_WARN_ON_ONCE(!status);
1961
1962	return status;
1963}
1964EXPORT_SYMBOL(ath9k_hw_setpower);
1965
1966/*******************/
1967/* Beacon Handling */
1968/*******************/
1969
1970void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1971{
1972	int flags = 0;
1973
1974	ENABLE_REGWRITE_BUFFER(ah);
1975
1976	switch (ah->opmode) {
1977	case NL80211_IFTYPE_ADHOC:
1978	case NL80211_IFTYPE_MESH_POINT:
1979		REG_SET_BIT(ah, AR_TXCFG,
1980			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1981		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1982			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1983		flags |= AR_NDP_TIMER_EN;
1984	case NL80211_IFTYPE_AP:
1985		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1986		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1987			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1988		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1989			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1990		flags |=
1991			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1992		break;
1993	default:
1994		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1995			"%s: unsupported opmode: %d\n",
1996			__func__, ah->opmode);
1997		return;
1998		break;
1999	}
2000
2001	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2002	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2003	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2004	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2005
2006	REGWRITE_BUFFER_FLUSH(ah);
2007
2008	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2009}
2010EXPORT_SYMBOL(ath9k_hw_beaconinit);
2011
2012void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2013				    const struct ath9k_beacon_state *bs)
2014{
2015	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2016	struct ath9k_hw_capabilities *pCap = &ah->caps;
2017	struct ath_common *common = ath9k_hw_common(ah);
2018
2019	ENABLE_REGWRITE_BUFFER(ah);
2020
2021	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2022
2023	REG_WRITE(ah, AR_BEACON_PERIOD,
2024		  TU_TO_USEC(bs->bs_intval));
2025	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2026		  TU_TO_USEC(bs->bs_intval));
2027
2028	REGWRITE_BUFFER_FLUSH(ah);
2029
2030	REG_RMW_FIELD(ah, AR_RSSI_THR,
2031		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2032
2033	beaconintval = bs->bs_intval;
2034
2035	if (bs->bs_sleepduration > beaconintval)
2036		beaconintval = bs->bs_sleepduration;
2037
2038	dtimperiod = bs->bs_dtimperiod;
2039	if (bs->bs_sleepduration > dtimperiod)
2040		dtimperiod = bs->bs_sleepduration;
2041
2042	if (beaconintval == dtimperiod)
2043		nextTbtt = bs->bs_nextdtim;
2044	else
2045		nextTbtt = bs->bs_nexttbtt;
2046
2047	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2048	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2049	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2050	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2051
2052	ENABLE_REGWRITE_BUFFER(ah);
2053
2054	REG_WRITE(ah, AR_NEXT_DTIM,
2055		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2056	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2057
2058	REG_WRITE(ah, AR_SLEEP1,
2059		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2060		  | AR_SLEEP1_ASSUME_DTIM);
2061
2062	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2063		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2064	else
2065		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2066
2067	REG_WRITE(ah, AR_SLEEP2,
2068		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2069
2070	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2071	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2072
2073	REGWRITE_BUFFER_FLUSH(ah);
2074
2075	REG_SET_BIT(ah, AR_TIMER_MODE,
2076		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2077		    AR_DTIM_TIMER_EN);
2078
2079	/* TSF Out of Range Threshold */
2080	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2081}
2082EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2083
2084/*******************/
2085/* HW Capabilities */
2086/*******************/
2087
2088static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2089{
2090	eeprom_chainmask &= chip_chainmask;
2091	if (eeprom_chainmask)
2092		return eeprom_chainmask;
2093	else
2094		return chip_chainmask;
2095}
2096
2097int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2098{
2099	struct ath9k_hw_capabilities *pCap = &ah->caps;
2100	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2101	struct ath_common *common = ath9k_hw_common(ah);
2102	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2103	unsigned int chip_chainmask;
2104
2105	u16 eeval;
2106	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2107
2108	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2109	regulatory->current_rd = eeval;
2110
2111	if (ah->opmode != NL80211_IFTYPE_AP &&
2112	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2113		if (regulatory->current_rd == 0x64 ||
2114		    regulatory->current_rd == 0x65)
2115			regulatory->current_rd += 5;
2116		else if (regulatory->current_rd == 0x41)
2117			regulatory->current_rd = 0x43;
2118		ath_dbg(common, ATH_DBG_REGULATORY,
2119			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2120	}
2121
2122	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2123	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2124		ath_err(common,
2125			"no band has been marked as supported in EEPROM\n");
2126		return -EINVAL;
2127	}
2128
2129	if (eeval & AR5416_OPFLAGS_11A)
2130		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2131
2132	if (eeval & AR5416_OPFLAGS_11G)
2133		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2134
2135	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2136		chip_chainmask = 1;
2137	else if (!AR_SREV_9280_20_OR_LATER(ah))
2138		chip_chainmask = 7;
2139	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2140		chip_chainmask = 3;
2141	else
2142		chip_chainmask = 7;
2143
2144	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2145	/*
2146	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2147	 * the EEPROM.
2148	 */
2149	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2150	    !(eeval & AR5416_OPFLAGS_11A) &&
2151	    !(AR_SREV_9271(ah)))
2152		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2153		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2154	else if (AR_SREV_9100(ah))
2155		pCap->rx_chainmask = 0x7;
2156	else
2157		/* Use rx_chainmask from EEPROM. */
2158		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2159
2160	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2161	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2162	ah->txchainmask = pCap->tx_chainmask;
2163	ah->rxchainmask = pCap->rx_chainmask;
2164
2165	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2166
2167	/* enable key search for every frame in an aggregate */
2168	if (AR_SREV_9300_20_OR_LATER(ah))
2169		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2170
2171	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2172
2173	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2174		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2175	else
2176		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2177
2178	if (AR_SREV_9271(ah))
2179		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2180	else if (AR_DEVID_7010(ah))
2181		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2182	else if (AR_SREV_9300_20_OR_LATER(ah))
2183		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2184	else if (AR_SREV_9287_11_OR_LATER(ah))
2185		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2186	else if (AR_SREV_9285_12_OR_LATER(ah))
2187		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2188	else if (AR_SREV_9280_20_OR_LATER(ah))
2189		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2190	else
2191		pCap->num_gpio_pins = AR_NUM_GPIO;
2192
2193	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2194		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2195		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2196	} else {
2197		pCap->rts_aggr_limit = (8 * 1024);
2198	}
2199
2200#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2201	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2202	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2203		ah->rfkill_gpio =
2204			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2205		ah->rfkill_polarity =
2206			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2207
2208		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2209	}
2210#endif
2211	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2212		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2213	else
2214		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2215
2216	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2217		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2218	else
2219		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2220
2221	if (common->btcoex_enabled) {
2222		if (AR_SREV_9300_20_OR_LATER(ah)) {
2223			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2224			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2225			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2226			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2227		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2228			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2229			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2230
2231			if (AR_SREV_9285(ah)) {
2232				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2233				btcoex_hw->btpriority_gpio =
2234						ATH_BTPRIORITY_GPIO_9285;
2235			} else {
2236				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2237			}
2238		}
2239	} else {
2240		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2241	}
2242
2243	if (AR_SREV_9300_20_OR_LATER(ah)) {
2244		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2245		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2246			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2247
2248		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2249		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2250		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2251		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2252		pCap->txs_len = sizeof(struct ar9003_txs);
2253		if (!ah->config.paprd_disable &&
2254		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2255			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2256	} else {
2257		pCap->tx_desc_len = sizeof(struct ath_desc);
2258		if (AR_SREV_9280_20(ah))
2259			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2260	}
2261
2262	if (AR_SREV_9300_20_OR_LATER(ah))
2263		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2264
2265	if (AR_SREV_9300_20_OR_LATER(ah))
2266		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2267
2268	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2269		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2270
2271	if (AR_SREV_9285(ah))
2272		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2273			ant_div_ctl1 =
2274				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2275			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2276				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2277		}
2278	if (AR_SREV_9300_20_OR_LATER(ah)) {
2279		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2280			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2281	}
2282
2283
2284	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2285		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2286		/*
2287		 * enable the diversity-combining algorithm only when
2288		 * both enable_lna_div and enable_fast_div are set
2289		 *		Table for Diversity
2290		 * ant_div_alt_lnaconf		bit 0-1
2291		 * ant_div_main_lnaconf		bit 2-3
2292		 * ant_div_alt_gaintb		bit 4
2293		 * ant_div_main_gaintb		bit 5
2294		 * enable_ant_div_lnadiv	bit 6
2295		 * enable_ant_fast_div		bit 7
2296		 */
2297		if ((ant_div_ctl1 >> 0x6) == 0x3)
2298			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2299	}
2300
2301	if (AR_SREV_9485_10(ah)) {
2302		pCap->pcie_lcr_extsync_en = true;
2303		pCap->pcie_lcr_offset = 0x80;
2304	}
2305
2306	tx_chainmask = pCap->tx_chainmask;
2307	rx_chainmask = pCap->rx_chainmask;
2308	while (tx_chainmask || rx_chainmask) {
2309		if (tx_chainmask & BIT(0))
2310			pCap->max_txchains++;
2311		if (rx_chainmask & BIT(0))
2312			pCap->max_rxchains++;
2313
2314		tx_chainmask >>= 1;
2315		rx_chainmask >>= 1;
2316	}
2317
2318	if (AR_SREV_9300_20_OR_LATER(ah)) {
2319		ah->enabled_cals |= TX_IQ_CAL;
2320		if (!AR_SREV_9330(ah))
2321			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2322	}
2323	if (AR_SREV_9480(ah))
2324		pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2325
2326	return 0;
2327}
2328
2329/****************************/
2330/* GPIO / RFKILL / Antennae */
2331/****************************/
2332
2333static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2334					 u32 gpio, u32 type)
2335{
2336	int addr;
2337	u32 gpio_shift, tmp;
2338
2339	if (gpio > 11)
2340		addr = AR_GPIO_OUTPUT_MUX3;
2341	else if (gpio > 5)
2342		addr = AR_GPIO_OUTPUT_MUX2;
2343	else
2344		addr = AR_GPIO_OUTPUT_MUX1;
2345
2346	gpio_shift = (gpio % 6) * 5;
2347
2348	if (AR_SREV_9280_20_OR_LATER(ah)
2349	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2350		REG_RMW(ah, addr, (type << gpio_shift),
2351			(0x1f << gpio_shift));
2352	} else {
2353		tmp = REG_READ(ah, addr);
2354		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2355		tmp &= ~(0x1f << gpio_shift);
2356		tmp |= (type << gpio_shift);
2357		REG_WRITE(ah, addr, tmp);
2358	}
2359}
2360
2361void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2362{
2363	u32 gpio_shift;
2364
2365	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2366
2367	if (AR_DEVID_7010(ah)) {
2368		gpio_shift = gpio;
2369		REG_RMW(ah, AR7010_GPIO_OE,
2370			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2371			(AR7010_GPIO_OE_MASK << gpio_shift));
2372		return;
2373	}
2374
2375	gpio_shift = gpio << 1;
2376	REG_RMW(ah,
2377		AR_GPIO_OE_OUT,
2378		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2379		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2380}
2381EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2382
2383u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2384{
2385#define MS_REG_READ(x, y) \
2386	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2387
2388	if (gpio >= ah->caps.num_gpio_pins)
2389		return 0xffffffff;
2390
2391	if (AR_DEVID_7010(ah)) {
2392		u32 val;
2393		val = REG_READ(ah, AR7010_GPIO_IN);
2394		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2395	} else if (AR_SREV_9300_20_OR_LATER(ah))
2396		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2397			AR_GPIO_BIT(gpio)) != 0;
2398	else if (AR_SREV_9271(ah))
2399		return MS_REG_READ(AR9271, gpio) != 0;
2400	else if (AR_SREV_9287_11_OR_LATER(ah))
2401		return MS_REG_READ(AR9287, gpio) != 0;
2402	else if (AR_SREV_9285_12_OR_LATER(ah))
2403		return MS_REG_READ(AR9285, gpio) != 0;
2404	else if (AR_SREV_9280_20_OR_LATER(ah))
2405		return MS_REG_READ(AR928X, gpio) != 0;
2406	else
2407		return MS_REG_READ(AR, gpio) != 0;
2408}
2409EXPORT_SYMBOL(ath9k_hw_gpio_get);
2410
2411void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2412			 u32 ah_signal_type)
2413{
2414	u32 gpio_shift;
2415
2416	if (AR_DEVID_7010(ah)) {
2417		gpio_shift = gpio;
2418		REG_RMW(ah, AR7010_GPIO_OE,
2419			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2420			(AR7010_GPIO_OE_MASK << gpio_shift));
2421		return;
2422	}
2423
2424	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2425	gpio_shift = 2 * gpio;
2426	REG_RMW(ah,
2427		AR_GPIO_OE_OUT,
2428		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2429		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2430}
2431EXPORT_SYMBOL(ath9k_hw_cfg_output);
2432
2433void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2434{
2435	if (AR_DEVID_7010(ah)) {
2436		val = val ? 0 : 1;
2437		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2438			AR_GPIO_BIT(gpio));
2439		return;
2440	}
2441
2442	if (AR_SREV_9271(ah))
2443		val = ~val;
2444
2445	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2446		AR_GPIO_BIT(gpio));
2447}
2448EXPORT_SYMBOL(ath9k_hw_set_gpio);
2449
2450u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2451{
2452	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2453}
2454EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2455
2456void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2457{
2458	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2459}
2460EXPORT_SYMBOL(ath9k_hw_setantenna);
2461
2462/*********************/
2463/* General Operation */
2464/*********************/
2465
2466u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2467{
2468	u32 bits = REG_READ(ah, AR_RX_FILTER);
2469	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2470
2471	if (phybits & AR_PHY_ERR_RADAR)
2472		bits |= ATH9K_RX_FILTER_PHYRADAR;
2473	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2474		bits |= ATH9K_RX_FILTER_PHYERR;
2475
2476	return bits;
2477}
2478EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2479
2480void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2481{
2482	u32 phybits;
2483
2484	ENABLE_REGWRITE_BUFFER(ah);
2485
2486	if (AR_SREV_9480(ah))
2487		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2488
2489	REG_WRITE(ah, AR_RX_FILTER, bits);
2490
2491	phybits = 0;
2492	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2493		phybits |= AR_PHY_ERR_RADAR;
2494	if (bits & ATH9K_RX_FILTER_PHYERR)
2495		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2496	REG_WRITE(ah, AR_PHY_ERR, phybits);
2497
2498	if (phybits)
2499		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2500	else
2501		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2502
2503	REGWRITE_BUFFER_FLUSH(ah);
2504}
2505EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2506
2507bool ath9k_hw_phy_disable(struct ath_hw *ah)
2508{
2509	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2510		return false;
2511
2512	ath9k_hw_init_pll(ah, NULL);
2513	return true;
2514}
2515EXPORT_SYMBOL(ath9k_hw_phy_disable);
2516
2517bool ath9k_hw_disable(struct ath_hw *ah)
2518{
2519	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2520		return false;
2521
2522	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2523		return false;
2524
2525	ath9k_hw_init_pll(ah, NULL);
2526	return true;
2527}
2528EXPORT_SYMBOL(ath9k_hw_disable);
2529
2530static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2531{
2532	enum eeprom_param gain_param;
2533
2534	if (IS_CHAN_2GHZ(chan))
2535		gain_param = EEP_ANTENNA_GAIN_2G;
2536	else
2537		gain_param = EEP_ANTENNA_GAIN_5G;
2538
2539	return ah->eep_ops->get_eeprom(ah, gain_param);
2540}
2541
2542void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2543{
2544	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2545	struct ieee80211_channel *channel;
2546	int chan_pwr, new_pwr, max_gain;
2547	int ant_gain, ant_reduction = 0;
2548
2549	if (!chan)
2550		return;
2551
2552	channel = chan->chan;
2553	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2554	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2555	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2556
2557	ant_gain = get_antenna_gain(ah, chan);
2558	if (ant_gain > max_gain)
2559		ant_reduction = ant_gain - max_gain;
2560
2561	ah->eep_ops->set_txpower(ah, chan,
2562				 ath9k_regd_get_ctl(reg, chan),
2563				 ant_reduction, new_pwr, false);
2564}
2565
2566void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2567{
2568	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2569	struct ath9k_channel *chan = ah->curchan;
2570	struct ieee80211_channel *channel = chan->chan;
2571
2572	reg->power_limit = min_t(int, limit, MAX_RATE_POWER);
2573	if (test)
2574		channel->max_power = MAX_RATE_POWER / 2;
2575
2576	ath9k_hw_apply_txpower(ah, chan);
2577
2578	if (test)
2579		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2580}
2581EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2582
2583void ath9k_hw_setopmode(struct ath_hw *ah)
2584{
2585	ath9k_hw_set_operating_mode(ah, ah->opmode);
2586}
2587EXPORT_SYMBOL(ath9k_hw_setopmode);
2588
2589void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2590{
2591	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2592	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2593}
2594EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2595
2596void ath9k_hw_write_associd(struct ath_hw *ah)
2597{
2598	struct ath_common *common = ath9k_hw_common(ah);
2599
2600	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2601	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2602		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2603}
2604EXPORT_SYMBOL(ath9k_hw_write_associd);
2605
2606#define ATH9K_MAX_TSF_READ 10
2607
2608u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2609{
2610	u32 tsf_lower, tsf_upper1, tsf_upper2;
2611	int i;
2612
2613	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2614	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2615		tsf_lower = REG_READ(ah, AR_TSF_L32);
2616		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2617		if (tsf_upper2 == tsf_upper1)
2618			break;
2619		tsf_upper1 = tsf_upper2;
2620	}
2621
2622	WARN_ON( i == ATH9K_MAX_TSF_READ );
2623
2624	return (((u64)tsf_upper1 << 32) | tsf_lower);
2625}
2626EXPORT_SYMBOL(ath9k_hw_gettsf64);
2627
2628void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2629{
2630	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2631	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2632}
2633EXPORT_SYMBOL(ath9k_hw_settsf64);
2634
2635void ath9k_hw_reset_tsf(struct ath_hw *ah)
2636{
2637	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2638			   AH_TSF_WRITE_TIMEOUT))
2639		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2640			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2641
2642	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2643}
2644EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2645
2646void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2647{
2648	if (setting)
2649		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2650	else
2651		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2652}
2653EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2654
2655void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2656{
2657	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2658	u32 macmode;
2659
2660	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2661		macmode = AR_2040_JOINED_RX_CLEAR;
2662	else
2663		macmode = 0;
2664
2665	REG_WRITE(ah, AR_2040_MODE, macmode);
2666}
2667
2668/* HW Generic timers configuration */
2669
2670static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2671{
2672	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2673	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2674	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2675	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2676	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2677	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2678	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2679	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2680	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2681	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2682				AR_NDP2_TIMER_MODE, 0x0002},
2683	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2684				AR_NDP2_TIMER_MODE, 0x0004},
2685	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2686				AR_NDP2_TIMER_MODE, 0x0008},
2687	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2688				AR_NDP2_TIMER_MODE, 0x0010},
2689	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2690				AR_NDP2_TIMER_MODE, 0x0020},
2691	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2692				AR_NDP2_TIMER_MODE, 0x0040},
2693	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2694				AR_NDP2_TIMER_MODE, 0x0080}
2695};
2696
2697/* HW generic timer primitives */
2698
2699/* compute and clear index of rightmost 1 */
2700static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2701{
2702	u32 b;
2703
2704	b = *mask;
2705	b &= (0-b);
2706	*mask &= ~b;
2707	b *= debruijn32;
2708	b >>= 27;
2709
2710	return timer_table->gen_timer_index[b];
2711}
2712
2713u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2714{
2715	return REG_READ(ah, AR_TSF_L32);
2716}
2717EXPORT_SYMBOL(ath9k_hw_gettsf32);
2718
2719struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2720					  void (*trigger)(void *),
2721					  void (*overflow)(void *),
2722					  void *arg,
2723					  u8 timer_index)
2724{
2725	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2726	struct ath_gen_timer *timer;
2727
2728	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2729
2730	if (timer == NULL) {
2731		ath_err(ath9k_hw_common(ah),
2732			"Failed to allocate memory for hw timer[%d]\n",
2733			timer_index);
2734		return NULL;
2735	}
2736
2737	/* allocate a hardware generic timer slot */
2738	timer_table->timers[timer_index] = timer;
2739	timer->index = timer_index;
2740	timer->trigger = trigger;
2741	timer->overflow = overflow;
2742	timer->arg = arg;
2743
2744	return timer;
2745}
2746EXPORT_SYMBOL(ath_gen_timer_alloc);
2747
2748void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2749			      struct ath_gen_timer *timer,
2750			      u32 trig_timeout,
2751			      u32 timer_period)
2752{
2753	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2754	u32 tsf, timer_next;
2755
2756	BUG_ON(!timer_period);
2757
2758	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2759
2760	tsf = ath9k_hw_gettsf32(ah);
2761
2762	timer_next = tsf + trig_timeout;
2763
2764	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2765		"current tsf %x period %x timer_next %x\n",
2766		tsf, timer_period, timer_next);
2767
2768	/*
2769	 * Program generic timer registers
2770	 */
2771	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2772		 timer_next);
2773	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2774		  timer_period);
2775	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2776		    gen_tmr_configuration[timer->index].mode_mask);
2777
2778	if (AR_SREV_9480(ah)) {
2779		/*
2780		 * Starting from AR9480, each generic timer can select which tsf
2781		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2782		 * 8 - 15  use tsf2.
2783		 */
2784		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2785			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2786				       (1 << timer->index));
2787		else
2788			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2789				       (1 << timer->index));
2790	}
2791
2792	/* Enable both trigger and thresh interrupt masks */
2793	REG_SET_BIT(ah, AR_IMR_S5,
2794		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2795		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2796}
2797EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2798
2799void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2800{
2801	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2802
2803	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2804		(timer->index >= ATH_MAX_GEN_TIMER)) {
2805		return;
2806	}
2807
2808	/* Clear generic timer enable bits. */
2809	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2810			gen_tmr_configuration[timer->index].mode_mask);
2811
2812	/* Disable both trigger and thresh interrupt masks */
2813	REG_CLR_BIT(ah, AR_IMR_S5,
2814		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2815		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2816
2817	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2818}
2819EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2820
2821void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2822{
2823	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2824
2825	/* free the hardware generic timer slot */
2826	timer_table->timers[timer->index] = NULL;
2827	kfree(timer);
2828}
2829EXPORT_SYMBOL(ath_gen_timer_free);
2830
2831/*
2832 * Generic Timer Interrupts handling
2833 */
2834void ath_gen_timer_isr(struct ath_hw *ah)
2835{
2836	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2837	struct ath_gen_timer *timer;
2838	struct ath_common *common = ath9k_hw_common(ah);
2839	u32 trigger_mask, thresh_mask, index;
2840
2841	/* get hardware generic timer interrupt status */
2842	trigger_mask = ah->intr_gen_timer_trigger;
2843	thresh_mask = ah->intr_gen_timer_thresh;
2844	trigger_mask &= timer_table->timer_mask.val;
2845	thresh_mask &= timer_table->timer_mask.val;
2846
2847	trigger_mask &= ~thresh_mask;
2848
2849	while (thresh_mask) {
2850		index = rightmost_index(timer_table, &thresh_mask);
2851		timer = timer_table->timers[index];
2852		BUG_ON(!timer);
2853		ath_dbg(common, ATH_DBG_HWTIMER,
2854			"TSF overflow for Gen timer %d\n", index);
2855		timer->overflow(timer->arg);
2856	}
2857
2858	while (trigger_mask) {
2859		index = rightmost_index(timer_table, &trigger_mask);
2860		timer = timer_table->timers[index];
2861		BUG_ON(!timer);
2862		ath_dbg(common, ATH_DBG_HWTIMER,
2863			"Gen timer[%d] trigger\n", index);
2864		timer->trigger(timer->arg);
2865	}
2866}
2867EXPORT_SYMBOL(ath_gen_timer_isr);
2868
2869/********/
2870/* HTC  */
2871/********/
2872
2873void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2874{
2875	ah->htc_reset_init = true;
2876}
2877EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2878
2879static struct {
2880	u32 version;
2881	const char * name;
2882} ath_mac_bb_names[] = {
2883	/* Devices with external radios */
2884	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2885	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2886	{ AR_SREV_VERSION_9100,		"9100" },
2887	{ AR_SREV_VERSION_9160,		"9160" },
2888	/* Single-chip solutions */
2889	{ AR_SREV_VERSION_9280,		"9280" },
2890	{ AR_SREV_VERSION_9285,		"9285" },
2891	{ AR_SREV_VERSION_9287,         "9287" },
2892	{ AR_SREV_VERSION_9271,         "9271" },
2893	{ AR_SREV_VERSION_9300,         "9300" },
2894	{ AR_SREV_VERSION_9330,         "9330" },
2895	{ AR_SREV_VERSION_9340,		"9340" },
2896	{ AR_SREV_VERSION_9485,         "9485" },
2897	{ AR_SREV_VERSION_9480,         "9480" },
2898};
2899
2900/* For devices with external radios */
2901static struct {
2902	u16 version;
2903	const char * name;
2904} ath_rf_names[] = {
2905	{ 0,				"5133" },
2906	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2907	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2908	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2909	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2910};
2911
2912/*
2913 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2914 */
2915static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2916{
2917	int i;
2918
2919	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2920		if (ath_mac_bb_names[i].version == mac_bb_version) {
2921			return ath_mac_bb_names[i].name;
2922		}
2923	}
2924
2925	return "????";
2926}
2927
2928/*
2929 * Return the RF name. "????" is returned if the RF is unknown.
2930 * Used for devices with external radios.
2931 */
2932static const char *ath9k_hw_rf_name(u16 rf_version)
2933{
2934	int i;
2935
2936	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2937		if (ath_rf_names[i].version == rf_version) {
2938			return ath_rf_names[i].name;
2939		}
2940	}
2941
2942	return "????";
2943}
2944
2945void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2946{
2947	int used;
2948
2949	/* chipsets >= AR9280 are single-chip */
2950	if (AR_SREV_9280_20_OR_LATER(ah)) {
2951		used = snprintf(hw_name, len,
2952			       "Atheros AR%s Rev:%x",
2953			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2954			       ah->hw_version.macRev);
2955	}
2956	else {
2957		used = snprintf(hw_name, len,
2958			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2959			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2960			       ah->hw_version.macRev,
2961			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2962						AR_RADIO_SREV_MAJOR)),
2963			       ah->hw_version.phyRev);
2964	}
2965
2966	hw_name[used] = '\0';
2967}
2968EXPORT_SYMBOL(ath9k_hw_name);
2969