hw.c revision 397e5d5b93ba99ad3dc56f1e294f487e77d2daa8
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
92		clockrate = 117;
93	else if (!ah->curchan) /* should really check for CCK instead */
94		clockrate = ATH9K_CLOCK_RATE_CCK;
95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
99	else
100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
101
102	if (conf_is_ht40(conf))
103		clockrate *= 2;
104
105	if (ah->curchan) {
106		if (IS_CHAN_HALF_RATE(ah->curchan))
107			clockrate /= 2;
108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
109			clockrate /= 4;
110	}
111
112	common->clockrate = clockrate;
113}
114
115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
116{
117	struct ath_common *common = ath9k_hw_common(ah);
118
119	return usecs * common->clockrate;
120}
121
122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123{
124	int i;
125
126	BUG_ON(timeout < AH_TIME_QUANTUM);
127
128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
129		if ((REG_READ(ah, reg) & mask) == val)
130			return true;
131
132		udelay(AH_TIME_QUANTUM);
133	}
134
135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137		timeout, reg, REG_READ(ah, reg), mask, val);
138
139	return false;
140}
141EXPORT_SYMBOL(ath9k_hw_wait);
142
143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
144			  int column, unsigned int *writecnt)
145{
146	int r;
147
148	ENABLE_REGWRITE_BUFFER(ah);
149	for (r = 0; r < array->ia_rows; r++) {
150		REG_WRITE(ah, INI_RA(array, r, 0),
151			  INI_RA(array, r, column));
152		DO_DELAY(*writecnt);
153	}
154	REGWRITE_BUFFER_FLUSH(ah);
155}
156
157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
158{
159	u32 retval;
160	int i;
161
162	for (i = 0, retval = 0; i < n; i++) {
163		retval = (retval << 1) | (val & 1);
164		val >>= 1;
165	}
166	return retval;
167}
168
169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
170			   u8 phy, int kbps,
171			   u32 frameLen, u16 rateix,
172			   bool shortPreamble)
173{
174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175
176	if (kbps == 0)
177		return 0;
178
179	switch (phy) {
180	case WLAN_RC_PHY_CCK:
181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
182		if (shortPreamble)
183			phyTime >>= 1;
184		numBits = frameLen << 3;
185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
186		break;
187	case WLAN_RC_PHY_OFDM:
188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192			txTime = OFDM_SIFS_TIME_QUARTER
193				+ OFDM_PREAMBLE_TIME_QUARTER
194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195		} else if (ah->curchan &&
196			   IS_CHAN_HALF_RATE(ah->curchan)) {
197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200			txTime = OFDM_SIFS_TIME_HALF +
201				OFDM_PREAMBLE_TIME_HALF
202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203		} else {
204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208				+ (numSymbols * OFDM_SYMBOL_TIME);
209		}
210		break;
211	default:
212		ath_err(ath9k_hw_common(ah),
213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214		txTime = 0;
215		break;
216	}
217
218	return txTime;
219}
220EXPORT_SYMBOL(ath9k_hw_computetxtime);
221
222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223				  struct ath9k_channel *chan,
224				  struct chan_centers *centers)
225{
226	int8_t extoff;
227
228	if (!IS_CHAN_HT40(chan)) {
229		centers->ctl_center = centers->ext_center =
230			centers->synth_center = chan->channel;
231		return;
232	}
233
234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
236		centers->synth_center =
237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
238		extoff = 1;
239	} else {
240		centers->synth_center =
241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
242		extoff = -1;
243	}
244
245	centers->ctl_center =
246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247	/* 25 MHz spacing is supported by hw but not on upper layers */
248	centers->ext_center =
249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
250}
251
252/******************/
253/* Chip Revisions */
254/******************/
255
256static void ath9k_hw_read_revisions(struct ath_hw *ah)
257{
258	u32 val;
259
260	switch (ah->hw_version.devid) {
261	case AR5416_AR9100_DEVID:
262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263		break;
264	case AR9300_DEVID_AR9330:
265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266		if (ah->get_mac_revision) {
267			ah->hw_version.macRev = ah->get_mac_revision();
268		} else {
269			val = REG_READ(ah, AR_SREV);
270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271		}
272		return;
273	case AR9300_DEVID_AR9340:
274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275		val = REG_READ(ah, AR_SREV);
276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
277		return;
278	}
279
280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
281
282	if (val == 0xFF) {
283		val = REG_READ(ah, AR_SREV);
284		ah->hw_version.macVersion =
285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
287		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
288	} else {
289		if (!AR_SREV_9100(ah))
290			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
291
292		ah->hw_version.macRev = val & AR_SREV_REVISION;
293
294		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
295			ah->is_pciexpress = true;
296	}
297}
298
299/************************************/
300/* HW Attach, Detach, Init Routines */
301/************************************/
302
303static void ath9k_hw_disablepcie(struct ath_hw *ah)
304{
305	if (!AR_SREV_5416(ah))
306		return;
307
308	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319}
320
321static void ath9k_hw_aspm_init(struct ath_hw *ah)
322{
323	struct ath_common *common = ath9k_hw_common(ah);
324
325	if (common->bus_ops->aspm_init)
326		common->bus_ops->aspm_init(common);
327}
328
329/* This should work for all families including legacy */
330static bool ath9k_hw_chip_test(struct ath_hw *ah)
331{
332	struct ath_common *common = ath9k_hw_common(ah);
333	u32 regAddr[2] = { AR_STA_ID0 };
334	u32 regHold[2];
335	static const u32 patternData[4] = {
336		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
337	};
338	int i, j, loop_max;
339
340	if (!AR_SREV_9300_20_OR_LATER(ah)) {
341		loop_max = 2;
342		regAddr[1] = AR_PHY_BASE + (8 << 2);
343	} else
344		loop_max = 1;
345
346	for (i = 0; i < loop_max; i++) {
347		u32 addr = regAddr[i];
348		u32 wrData, rdData;
349
350		regHold[i] = REG_READ(ah, addr);
351		for (j = 0; j < 0x100; j++) {
352			wrData = (j << 16) | j;
353			REG_WRITE(ah, addr, wrData);
354			rdData = REG_READ(ah, addr);
355			if (rdData != wrData) {
356				ath_err(common,
357					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
358					addr, wrData, rdData);
359				return false;
360			}
361		}
362		for (j = 0; j < 4; j++) {
363			wrData = patternData[j];
364			REG_WRITE(ah, addr, wrData);
365			rdData = REG_READ(ah, addr);
366			if (wrData != rdData) {
367				ath_err(common,
368					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
369					addr, wrData, rdData);
370				return false;
371			}
372		}
373		REG_WRITE(ah, regAddr[i], regHold[i]);
374	}
375	udelay(100);
376
377	return true;
378}
379
380static void ath9k_hw_init_config(struct ath_hw *ah)
381{
382	int i;
383
384	ah->config.dma_beacon_response_time = 2;
385	ah->config.sw_beacon_response_time = 10;
386	ah->config.additional_swba_backoff = 0;
387	ah->config.ack_6mb = 0x0;
388	ah->config.cwm_ignore_extcca = 0;
389	ah->config.pcie_clock_req = 0;
390	ah->config.pcie_waen = 0;
391	ah->config.analog_shiftreg = 1;
392	ah->config.enable_ani = true;
393
394	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
395		ah->config.spurchans[i][0] = AR_NO_SPUR;
396		ah->config.spurchans[i][1] = AR_NO_SPUR;
397	}
398
399	/* PAPRD needs some more work to be enabled */
400	ah->config.paprd_disable = 1;
401
402	ah->config.rx_intr_mitigation = true;
403	ah->config.pcieSerDesWrite = true;
404
405	/*
406	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
407	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
408	 * This means we use it for all AR5416 devices, and the few
409	 * minor PCI AR9280 devices out there.
410	 *
411	 * Serialization is required because these devices do not handle
412	 * well the case of two concurrent reads/writes due to the latency
413	 * involved. During one read/write another read/write can be issued
414	 * on another CPU while the previous read/write may still be working
415	 * on our hardware, if we hit this case the hardware poops in a loop.
416	 * We prevent this by serializing reads and writes.
417	 *
418	 * This issue is not present on PCI-Express devices or pre-AR5416
419	 * devices (legacy, 802.11abg).
420	 */
421	if (num_possible_cpus() > 1)
422		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
423}
424
425static void ath9k_hw_init_defaults(struct ath_hw *ah)
426{
427	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
428
429	regulatory->country_code = CTRY_DEFAULT;
430	regulatory->power_limit = MAX_RATE_POWER;
431	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
432
433	ah->hw_version.magic = AR5416_MAGIC;
434	ah->hw_version.subvendorid = 0;
435
436	ah->atim_window = 0;
437	ah->sta_id1_defaults =
438		AR_STA_ID1_CRPT_MIC_ENABLE |
439		AR_STA_ID1_MCAST_KSRCH;
440	if (AR_SREV_9100(ah))
441		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
442	ah->enable_32kHz_clock = DONT_USE_32KHZ;
443	ah->slottime = 20;
444	ah->globaltxtimeout = (u32) -1;
445	ah->power_mode = ATH9K_PM_UNDEFINED;
446}
447
448static int ath9k_hw_init_macaddr(struct ath_hw *ah)
449{
450	struct ath_common *common = ath9k_hw_common(ah);
451	u32 sum;
452	int i;
453	u16 eeval;
454	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
455
456	sum = 0;
457	for (i = 0; i < 3; i++) {
458		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
459		sum += eeval;
460		common->macaddr[2 * i] = eeval >> 8;
461		common->macaddr[2 * i + 1] = eeval & 0xff;
462	}
463	if (sum == 0 || sum == 0xffff * 3)
464		return -EADDRNOTAVAIL;
465
466	return 0;
467}
468
469static int ath9k_hw_post_init(struct ath_hw *ah)
470{
471	struct ath_common *common = ath9k_hw_common(ah);
472	int ecode;
473
474	if (common->bus_ops->ath_bus_type != ATH_USB) {
475		if (!ath9k_hw_chip_test(ah))
476			return -ENODEV;
477	}
478
479	if (!AR_SREV_9300_20_OR_LATER(ah)) {
480		ecode = ar9002_hw_rf_claim(ah);
481		if (ecode != 0)
482			return ecode;
483	}
484
485	ecode = ath9k_hw_eeprom_init(ah);
486	if (ecode != 0)
487		return ecode;
488
489	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
490		"Eeprom VER: %d, REV: %d\n",
491		ah->eep_ops->get_eeprom_ver(ah),
492		ah->eep_ops->get_eeprom_rev(ah));
493
494	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
495	if (ecode) {
496		ath_err(ath9k_hw_common(ah),
497			"Failed allocating banks for external radio\n");
498		ath9k_hw_rf_free_ext_banks(ah);
499		return ecode;
500	}
501
502	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
503		ath9k_hw_ani_setup(ah);
504		ath9k_hw_ani_init(ah);
505	}
506
507	return 0;
508}
509
510static void ath9k_hw_attach_ops(struct ath_hw *ah)
511{
512	if (AR_SREV_9300_20_OR_LATER(ah))
513		ar9003_hw_attach_ops(ah);
514	else
515		ar9002_hw_attach_ops(ah);
516}
517
518/* Called for all hardware families */
519static int __ath9k_hw_init(struct ath_hw *ah)
520{
521	struct ath_common *common = ath9k_hw_common(ah);
522	int r = 0;
523
524	ath9k_hw_read_revisions(ah);
525
526	/*
527	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
528	 * We need to do this to avoid RMW of this register. We cannot
529	 * read the reg when chip is asleep.
530	 */
531	ah->WARegVal = REG_READ(ah, AR_WA);
532	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
533			 AR_WA_ASPM_TIMER_BASED_DISABLE);
534
535	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
536		ath_err(common, "Couldn't reset chip\n");
537		return -EIO;
538	}
539
540	ath9k_hw_init_defaults(ah);
541	ath9k_hw_init_config(ah);
542
543	ath9k_hw_attach_ops(ah);
544
545	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
546		ath_err(common, "Couldn't wakeup chip\n");
547		return -EIO;
548	}
549
550	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
551		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
552		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
553		     !ah->is_pciexpress)) {
554			ah->config.serialize_regmode =
555				SER_REG_MODE_ON;
556		} else {
557			ah->config.serialize_regmode =
558				SER_REG_MODE_OFF;
559		}
560	}
561
562	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
563		ah->config.serialize_regmode);
564
565	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
566		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
567	else
568		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
569
570	switch (ah->hw_version.macVersion) {
571	case AR_SREV_VERSION_5416_PCI:
572	case AR_SREV_VERSION_5416_PCIE:
573	case AR_SREV_VERSION_9160:
574	case AR_SREV_VERSION_9100:
575	case AR_SREV_VERSION_9280:
576	case AR_SREV_VERSION_9285:
577	case AR_SREV_VERSION_9287:
578	case AR_SREV_VERSION_9271:
579	case AR_SREV_VERSION_9300:
580	case AR_SREV_VERSION_9330:
581	case AR_SREV_VERSION_9485:
582	case AR_SREV_VERSION_9340:
583		break;
584	default:
585		ath_err(common,
586			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
587			ah->hw_version.macVersion, ah->hw_version.macRev);
588		return -EOPNOTSUPP;
589	}
590
591	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
592	    AR_SREV_9330(ah))
593		ah->is_pciexpress = false;
594
595	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
596	ath9k_hw_init_cal_settings(ah);
597
598	ah->ani_function = ATH9K_ANI_ALL;
599	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
600		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
601	if (!AR_SREV_9300_20_OR_LATER(ah))
602		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
603
604	ath9k_hw_init_mode_regs(ah);
605
606	if (!ah->is_pciexpress)
607		ath9k_hw_disablepcie(ah);
608
609	if (!AR_SREV_9300_20_OR_LATER(ah))
610		ar9002_hw_cck_chan14_spread(ah);
611
612	r = ath9k_hw_post_init(ah);
613	if (r)
614		return r;
615
616	ath9k_hw_init_mode_gain_regs(ah);
617	r = ath9k_hw_fill_cap_info(ah);
618	if (r)
619		return r;
620
621	if (ah->is_pciexpress)
622		ath9k_hw_aspm_init(ah);
623
624	r = ath9k_hw_init_macaddr(ah);
625	if (r) {
626		ath_err(common, "Failed to initialize MAC address\n");
627		return r;
628	}
629
630	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
631		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
632	else
633		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
634
635	if (AR_SREV_9330(ah))
636		ah->bb_watchdog_timeout_ms = 85;
637	else
638		ah->bb_watchdog_timeout_ms = 25;
639
640	common->state = ATH_HW_INITIALIZED;
641
642	return 0;
643}
644
645int ath9k_hw_init(struct ath_hw *ah)
646{
647	int ret;
648	struct ath_common *common = ath9k_hw_common(ah);
649
650	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
651	switch (ah->hw_version.devid) {
652	case AR5416_DEVID_PCI:
653	case AR5416_DEVID_PCIE:
654	case AR5416_AR9100_DEVID:
655	case AR9160_DEVID_PCI:
656	case AR9280_DEVID_PCI:
657	case AR9280_DEVID_PCIE:
658	case AR9285_DEVID_PCIE:
659	case AR9287_DEVID_PCI:
660	case AR9287_DEVID_PCIE:
661	case AR2427_DEVID_PCIE:
662	case AR9300_DEVID_PCIE:
663	case AR9300_DEVID_AR9485_PCIE:
664	case AR9300_DEVID_AR9330:
665	case AR9300_DEVID_AR9340:
666	case AR9300_DEVID_AR9580:
667		break;
668	default:
669		if (common->bus_ops->ath_bus_type == ATH_USB)
670			break;
671		ath_err(common, "Hardware device ID 0x%04x not supported\n",
672			ah->hw_version.devid);
673		return -EOPNOTSUPP;
674	}
675
676	ret = __ath9k_hw_init(ah);
677	if (ret) {
678		ath_err(common,
679			"Unable to initialize hardware; initialization status: %d\n",
680			ret);
681		return ret;
682	}
683
684	return 0;
685}
686EXPORT_SYMBOL(ath9k_hw_init);
687
688static void ath9k_hw_init_qos(struct ath_hw *ah)
689{
690	ENABLE_REGWRITE_BUFFER(ah);
691
692	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
693	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
694
695	REG_WRITE(ah, AR_QOS_NO_ACK,
696		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
697		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
698		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
699
700	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
701	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
702	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
703	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
704	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
705
706	REGWRITE_BUFFER_FLUSH(ah);
707}
708
709u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
710{
711	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
712	udelay(100);
713	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
714
715	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
716		udelay(100);
717
718	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
719}
720EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
721
722static void ath9k_hw_init_pll(struct ath_hw *ah,
723			      struct ath9k_channel *chan)
724{
725	u32 pll;
726
727	if (AR_SREV_9485(ah)) {
728
729		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
730		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
731			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
732		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
733			      AR_CH0_DPLL2_KD, 0x40);
734		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
735			      AR_CH0_DPLL2_KI, 0x4);
736
737		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
738			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
739		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
740			      AR_CH0_BB_DPLL1_NINI, 0x58);
741		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
742			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
743
744		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
745			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
746		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
747			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
748		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
749			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
750
751		/* program BB PLL phase_shift to 0x6 */
752		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
753			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
754
755		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
756			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
757		udelay(1000);
758	} else if (AR_SREV_9330(ah)) {
759		u32 ddr_dpll2, pll_control2, kd;
760
761		if (ah->is_clk_25mhz) {
762			ddr_dpll2 = 0x18e82f01;
763			pll_control2 = 0xe04a3d;
764			kd = 0x1d;
765		} else {
766			ddr_dpll2 = 0x19e82f01;
767			pll_control2 = 0x886666;
768			kd = 0x3d;
769		}
770
771		/* program DDR PLL ki and kd value */
772		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
773
774		/* program DDR PLL phase_shift */
775		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
776			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
777
778		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
779		udelay(1000);
780
781		/* program refdiv, nint, frac to RTC register */
782		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
783
784		/* program BB PLL kd and ki value */
785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
786		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
787
788		/* program BB PLL phase_shift */
789		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
790			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
791	} else if (AR_SREV_9340(ah)) {
792		u32 regval, pll2_divint, pll2_divfrac, refdiv;
793
794		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
795		udelay(1000);
796
797		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
798		udelay(100);
799
800		if (ah->is_clk_25mhz) {
801			pll2_divint = 0x54;
802			pll2_divfrac = 0x1eb85;
803			refdiv = 3;
804		} else {
805			pll2_divint = 88;
806			pll2_divfrac = 0;
807			refdiv = 5;
808		}
809
810		regval = REG_READ(ah, AR_PHY_PLL_MODE);
811		regval |= (0x1 << 16);
812		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
813		udelay(100);
814
815		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
816			  (pll2_divint << 18) | pll2_divfrac);
817		udelay(100);
818
819		regval = REG_READ(ah, AR_PHY_PLL_MODE);
820		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
821			 (0x4 << 26) | (0x18 << 19);
822		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
823		REG_WRITE(ah, AR_PHY_PLL_MODE,
824			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
825		udelay(1000);
826	}
827
828	pll = ath9k_hw_compute_pll_control(ah, chan);
829
830	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
831
832	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
833		udelay(1000);
834
835	/* Switch the core clock for ar9271 to 117Mhz */
836	if (AR_SREV_9271(ah)) {
837		udelay(500);
838		REG_WRITE(ah, 0x50040, 0x304);
839	}
840
841	udelay(RTC_PLL_SETTLE_DELAY);
842
843	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
844
845	if (AR_SREV_9340(ah)) {
846		if (ah->is_clk_25mhz) {
847			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
848			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
849			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
850		} else {
851			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
852			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
853			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
854		}
855		udelay(100);
856	}
857}
858
859static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
860					  enum nl80211_iftype opmode)
861{
862	u32 sync_default = AR_INTR_SYNC_DEFAULT;
863	u32 imr_reg = AR_IMR_TXERR |
864		AR_IMR_TXURN |
865		AR_IMR_RXERR |
866		AR_IMR_RXORN |
867		AR_IMR_BCNMISC;
868
869	if (AR_SREV_9340(ah))
870		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
871
872	if (AR_SREV_9300_20_OR_LATER(ah)) {
873		imr_reg |= AR_IMR_RXOK_HP;
874		if (ah->config.rx_intr_mitigation)
875			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
876		else
877			imr_reg |= AR_IMR_RXOK_LP;
878
879	} else {
880		if (ah->config.rx_intr_mitigation)
881			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
882		else
883			imr_reg |= AR_IMR_RXOK;
884	}
885
886	if (ah->config.tx_intr_mitigation)
887		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
888	else
889		imr_reg |= AR_IMR_TXOK;
890
891	if (opmode == NL80211_IFTYPE_AP)
892		imr_reg |= AR_IMR_MIB;
893
894	ENABLE_REGWRITE_BUFFER(ah);
895
896	REG_WRITE(ah, AR_IMR, imr_reg);
897	ah->imrs2_reg |= AR_IMR_S2_GTT;
898	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
899
900	if (!AR_SREV_9100(ah)) {
901		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
902		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
903		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
904	}
905
906	REGWRITE_BUFFER_FLUSH(ah);
907
908	if (AR_SREV_9300_20_OR_LATER(ah)) {
909		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
910		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
911		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
912		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
913	}
914}
915
916static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
917{
918	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
919	val = min(val, (u32) 0xFFFF);
920	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
921}
922
923static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
924{
925	u32 val = ath9k_hw_mac_to_clks(ah, us);
926	val = min(val, (u32) 0xFFFF);
927	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
928}
929
930static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
931{
932	u32 val = ath9k_hw_mac_to_clks(ah, us);
933	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
934	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
935}
936
937static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
938{
939	u32 val = ath9k_hw_mac_to_clks(ah, us);
940	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
941	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
942}
943
944static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
945{
946	if (tu > 0xFFFF) {
947		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
948			"bad global tx timeout %u\n", tu);
949		ah->globaltxtimeout = (u32) -1;
950		return false;
951	} else {
952		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
953		ah->globaltxtimeout = tu;
954		return true;
955	}
956}
957
958void ath9k_hw_init_global_settings(struct ath_hw *ah)
959{
960	struct ath_common *common = ath9k_hw_common(ah);
961	struct ieee80211_conf *conf = &common->hw->conf;
962	const struct ath9k_channel *chan = ah->curchan;
963	int acktimeout;
964	int slottime;
965	int sifstime;
966	int rx_lat = 0, tx_lat = 0, eifs = 0;
967	u32 reg;
968
969	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
970		ah->misc_mode);
971
972	if (!chan)
973		return;
974
975	if (ah->misc_mode != 0)
976		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
977
978	rx_lat = 37;
979	tx_lat = 54;
980
981	if (IS_CHAN_HALF_RATE(chan)) {
982		eifs = 175;
983		rx_lat *= 2;
984		tx_lat *= 2;
985		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
986		    tx_lat += 11;
987
988		slottime = 13;
989		sifstime = 32;
990	} else if (IS_CHAN_QUARTER_RATE(chan)) {
991		eifs = 340;
992		rx_lat *= 4;
993		tx_lat *= 4;
994		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
995		    tx_lat += 22;
996
997		slottime = 21;
998		sifstime = 64;
999	} else {
1000		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/common->clockrate;
1001		reg = REG_READ(ah, AR_USEC);
1002		rx_lat = MS(reg, AR_USEC_RX_LAT);
1003		tx_lat = MS(reg, AR_USEC_TX_LAT);
1004
1005		slottime = ah->slottime;
1006		if (IS_CHAN_5GHZ(chan))
1007			sifstime = 16;
1008		else
1009			sifstime = 10;
1010	}
1011
1012	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1013	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1014
1015	/*
1016	 * Workaround for early ACK timeouts, add an offset to match the
1017	 * initval's 64us ack timeout value.
1018	 * This was initially only meant to work around an issue with delayed
1019	 * BA frames in some implementations, but it has been found to fix ACK
1020	 * timeout issues in other cases as well.
1021	 */
1022	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1023		acktimeout += 64 - sifstime - ah->slottime;
1024
1025	ath9k_hw_set_sifs_time(ah, sifstime);
1026	ath9k_hw_setslottime(ah, slottime);
1027	ath9k_hw_set_ack_timeout(ah, acktimeout);
1028	ath9k_hw_set_cts_timeout(ah, acktimeout);
1029	if (ah->globaltxtimeout != (u32) -1)
1030		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1031
1032	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1033	REG_RMW(ah, AR_USEC,
1034		(common->clockrate - 1) |
1035		SM(rx_lat, AR_USEC_RX_LAT) |
1036		SM(tx_lat, AR_USEC_TX_LAT),
1037		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1038
1039}
1040EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1041
1042void ath9k_hw_deinit(struct ath_hw *ah)
1043{
1044	struct ath_common *common = ath9k_hw_common(ah);
1045
1046	if (common->state < ATH_HW_INITIALIZED)
1047		goto free_hw;
1048
1049	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1050
1051free_hw:
1052	ath9k_hw_rf_free_ext_banks(ah);
1053}
1054EXPORT_SYMBOL(ath9k_hw_deinit);
1055
1056/*******/
1057/* INI */
1058/*******/
1059
1060u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1061{
1062	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1063
1064	if (IS_CHAN_B(chan))
1065		ctl |= CTL_11B;
1066	else if (IS_CHAN_G(chan))
1067		ctl |= CTL_11G;
1068	else
1069		ctl |= CTL_11A;
1070
1071	return ctl;
1072}
1073
1074/****************************************/
1075/* Reset and Channel Switching Routines */
1076/****************************************/
1077
1078static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1079{
1080	struct ath_common *common = ath9k_hw_common(ah);
1081
1082	ENABLE_REGWRITE_BUFFER(ah);
1083
1084	/*
1085	 * set AHB_MODE not to do cacheline prefetches
1086	*/
1087	if (!AR_SREV_9300_20_OR_LATER(ah))
1088		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1089
1090	/*
1091	 * let mac dma reads be in 128 byte chunks
1092	 */
1093	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1094
1095	REGWRITE_BUFFER_FLUSH(ah);
1096
1097	/*
1098	 * Restore TX Trigger Level to its pre-reset value.
1099	 * The initial value depends on whether aggregation is enabled, and is
1100	 * adjusted whenever underruns are detected.
1101	 */
1102	if (!AR_SREV_9300_20_OR_LATER(ah))
1103		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1104
1105	ENABLE_REGWRITE_BUFFER(ah);
1106
1107	/*
1108	 * let mac dma writes be in 128 byte chunks
1109	 */
1110	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1111
1112	/*
1113	 * Setup receive FIFO threshold to hold off TX activities
1114	 */
1115	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1116
1117	if (AR_SREV_9300_20_OR_LATER(ah)) {
1118		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1119		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1120
1121		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1122			ah->caps.rx_status_len);
1123	}
1124
1125	/*
1126	 * reduce the number of usable entries in PCU TXBUF to avoid
1127	 * wrap around issues.
1128	 */
1129	if (AR_SREV_9285(ah)) {
1130		/* For AR9285 the number of Fifos are reduced to half.
1131		 * So set the usable tx buf size also to half to
1132		 * avoid data/delimiter underruns
1133		 */
1134		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1135			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1136	} else if (!AR_SREV_9271(ah)) {
1137		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1138			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1139	}
1140
1141	REGWRITE_BUFFER_FLUSH(ah);
1142
1143	if (AR_SREV_9300_20_OR_LATER(ah))
1144		ath9k_hw_reset_txstatus_ring(ah);
1145}
1146
1147static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1148{
1149	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1150	u32 set = AR_STA_ID1_KSRCH_MODE;
1151
1152	switch (opmode) {
1153	case NL80211_IFTYPE_ADHOC:
1154	case NL80211_IFTYPE_MESH_POINT:
1155		set |= AR_STA_ID1_ADHOC;
1156		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1157		break;
1158	case NL80211_IFTYPE_AP:
1159		set |= AR_STA_ID1_STA_AP;
1160		/* fall through */
1161	case NL80211_IFTYPE_STATION:
1162		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1163		break;
1164	default:
1165		if (!ah->is_monitoring)
1166			set = 0;
1167		break;
1168	}
1169	REG_RMW(ah, AR_STA_ID1, set, mask);
1170}
1171
1172void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1173				   u32 *coef_mantissa, u32 *coef_exponent)
1174{
1175	u32 coef_exp, coef_man;
1176
1177	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1178		if ((coef_scaled >> coef_exp) & 0x1)
1179			break;
1180
1181	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1182
1183	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1184
1185	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1186	*coef_exponent = coef_exp - 16;
1187}
1188
1189static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1190{
1191	u32 rst_flags;
1192	u32 tmpReg;
1193
1194	if (AR_SREV_9100(ah)) {
1195		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1196			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1197		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1198	}
1199
1200	ENABLE_REGWRITE_BUFFER(ah);
1201
1202	if (AR_SREV_9300_20_OR_LATER(ah)) {
1203		REG_WRITE(ah, AR_WA, ah->WARegVal);
1204		udelay(10);
1205	}
1206
1207	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1208		  AR_RTC_FORCE_WAKE_ON_INT);
1209
1210	if (AR_SREV_9100(ah)) {
1211		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1212			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1213	} else {
1214		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1215		if (tmpReg &
1216		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1217		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1218			u32 val;
1219			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1220
1221			val = AR_RC_HOSTIF;
1222			if (!AR_SREV_9300_20_OR_LATER(ah))
1223				val |= AR_RC_AHB;
1224			REG_WRITE(ah, AR_RC, val);
1225
1226		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1227			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1228
1229		rst_flags = AR_RTC_RC_MAC_WARM;
1230		if (type == ATH9K_RESET_COLD)
1231			rst_flags |= AR_RTC_RC_MAC_COLD;
1232	}
1233
1234	if (AR_SREV_9330(ah)) {
1235		int npend = 0;
1236		int i;
1237
1238		/* AR9330 WAR:
1239		 * call external reset function to reset WMAC if:
1240		 * - doing a cold reset
1241		 * - we have pending frames in the TX queues
1242		 */
1243
1244		for (i = 0; i < AR_NUM_QCU; i++) {
1245			npend = ath9k_hw_numtxpending(ah, i);
1246			if (npend)
1247				break;
1248		}
1249
1250		if (ah->external_reset &&
1251		    (npend || type == ATH9K_RESET_COLD)) {
1252			int reset_err = 0;
1253
1254			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1255				"reset MAC via external reset\n");
1256
1257			reset_err = ah->external_reset();
1258			if (reset_err) {
1259				ath_err(ath9k_hw_common(ah),
1260					"External reset failed, err=%d\n",
1261					reset_err);
1262				return false;
1263			}
1264
1265			REG_WRITE(ah, AR_RTC_RESET, 1);
1266		}
1267	}
1268
1269	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1270
1271	REGWRITE_BUFFER_FLUSH(ah);
1272
1273	udelay(50);
1274
1275	REG_WRITE(ah, AR_RTC_RC, 0);
1276	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1277		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1278			"RTC stuck in MAC reset\n");
1279		return false;
1280	}
1281
1282	if (!AR_SREV_9100(ah))
1283		REG_WRITE(ah, AR_RC, 0);
1284
1285	if (AR_SREV_9100(ah))
1286		udelay(50);
1287
1288	return true;
1289}
1290
1291static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1292{
1293	ENABLE_REGWRITE_BUFFER(ah);
1294
1295	if (AR_SREV_9300_20_OR_LATER(ah)) {
1296		REG_WRITE(ah, AR_WA, ah->WARegVal);
1297		udelay(10);
1298	}
1299
1300	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1301		  AR_RTC_FORCE_WAKE_ON_INT);
1302
1303	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1304		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1305
1306	REG_WRITE(ah, AR_RTC_RESET, 0);
1307
1308	REGWRITE_BUFFER_FLUSH(ah);
1309
1310	if (!AR_SREV_9300_20_OR_LATER(ah))
1311		udelay(2);
1312
1313	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1314		REG_WRITE(ah, AR_RC, 0);
1315
1316	REG_WRITE(ah, AR_RTC_RESET, 1);
1317
1318	if (!ath9k_hw_wait(ah,
1319			   AR_RTC_STATUS,
1320			   AR_RTC_STATUS_M,
1321			   AR_RTC_STATUS_ON,
1322			   AH_WAIT_TIMEOUT)) {
1323		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1324			"RTC not waking up\n");
1325		return false;
1326	}
1327
1328	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1329}
1330
1331static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1332{
1333	if (AR_SREV_9300_20_OR_LATER(ah)) {
1334		REG_WRITE(ah, AR_WA, ah->WARegVal);
1335		udelay(10);
1336	}
1337
1338	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1339		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1340
1341	switch (type) {
1342	case ATH9K_RESET_POWER_ON:
1343		return ath9k_hw_set_reset_power_on(ah);
1344	case ATH9K_RESET_WARM:
1345	case ATH9K_RESET_COLD:
1346		return ath9k_hw_set_reset(ah, type);
1347	default:
1348		return false;
1349	}
1350}
1351
1352static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1353				struct ath9k_channel *chan)
1354{
1355	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1356		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1357			return false;
1358	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1359		return false;
1360
1361	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1362		return false;
1363
1364	ah->chip_fullsleep = false;
1365	ath9k_hw_init_pll(ah, chan);
1366	ath9k_hw_set_rfmode(ah, chan);
1367
1368	return true;
1369}
1370
1371static bool ath9k_hw_channel_change(struct ath_hw *ah,
1372				    struct ath9k_channel *chan)
1373{
1374	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1375	struct ath_common *common = ath9k_hw_common(ah);
1376	struct ieee80211_channel *channel = chan->chan;
1377	u32 qnum;
1378	int r;
1379
1380	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1381		if (ath9k_hw_numtxpending(ah, qnum)) {
1382			ath_dbg(common, ATH_DBG_QUEUE,
1383				"Transmit frames pending on queue %d\n", qnum);
1384			return false;
1385		}
1386	}
1387
1388	if (!ath9k_hw_rfbus_req(ah)) {
1389		ath_err(common, "Could not kill baseband RX\n");
1390		return false;
1391	}
1392
1393	ath9k_hw_set_channel_regs(ah, chan);
1394
1395	r = ath9k_hw_rf_set_freq(ah, chan);
1396	if (r) {
1397		ath_err(common, "Failed to set channel\n");
1398		return false;
1399	}
1400	ath9k_hw_set_clockrate(ah);
1401
1402	ah->eep_ops->set_txpower(ah, chan,
1403			     ath9k_regd_get_ctl(regulatory, chan),
1404			     channel->max_antenna_gain * 2,
1405			     channel->max_power * 2,
1406			     min((u32) MAX_RATE_POWER,
1407			     (u32) regulatory->power_limit), false);
1408
1409	ath9k_hw_rfbus_done(ah);
1410
1411	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1412		ath9k_hw_set_delta_slope(ah, chan);
1413
1414	ath9k_hw_spur_mitigate_freq(ah, chan);
1415
1416	return true;
1417}
1418
1419static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1420{
1421	u32 gpio_mask = ah->gpio_mask;
1422	int i;
1423
1424	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1425		if (!(gpio_mask & 1))
1426			continue;
1427
1428		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1429		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1430	}
1431}
1432
1433bool ath9k_hw_check_alive(struct ath_hw *ah)
1434{
1435	int count = 50;
1436	u32 reg;
1437
1438	if (AR_SREV_9285_12_OR_LATER(ah))
1439		return true;
1440
1441	do {
1442		reg = REG_READ(ah, AR_OBS_BUS_1);
1443
1444		if ((reg & 0x7E7FFFEF) == 0x00702400)
1445			continue;
1446
1447		switch (reg & 0x7E000B00) {
1448		case 0x1E000000:
1449		case 0x52000B00:
1450		case 0x18000B00:
1451			continue;
1452		default:
1453			return true;
1454		}
1455	} while (count-- > 0);
1456
1457	return false;
1458}
1459EXPORT_SYMBOL(ath9k_hw_check_alive);
1460
1461int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1462		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1463{
1464	struct ath_common *common = ath9k_hw_common(ah);
1465	u32 saveLedState;
1466	struct ath9k_channel *curchan = ah->curchan;
1467	u32 saveDefAntenna;
1468	u32 macStaId1;
1469	u64 tsf = 0;
1470	int i, r;
1471
1472	ah->txchainmask = common->tx_chainmask;
1473	ah->rxchainmask = common->rx_chainmask;
1474
1475	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1476		return -EIO;
1477
1478	if (curchan && !ah->chip_fullsleep)
1479		ath9k_hw_getnf(ah, curchan);
1480
1481	ah->caldata = caldata;
1482	if (caldata &&
1483	    (chan->channel != caldata->channel ||
1484	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1485	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1486		/* Operating channel changed, reset channel calibration data */
1487		memset(caldata, 0, sizeof(*caldata));
1488		ath9k_init_nfcal_hist_buffer(ah, chan);
1489	}
1490	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1491
1492	if (bChannelChange &&
1493	    (ah->chip_fullsleep != true) &&
1494	    (ah->curchan != NULL) &&
1495	    (chan->channel != ah->curchan->channel) &&
1496	    ((chan->channelFlags & CHANNEL_ALL) ==
1497	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1498	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1499
1500		if (ath9k_hw_channel_change(ah, chan)) {
1501			ath9k_hw_loadnf(ah, ah->curchan);
1502			ath9k_hw_start_nfcal(ah, true);
1503			if (AR_SREV_9271(ah))
1504				ar9002_hw_load_ani_reg(ah, chan);
1505			return 0;
1506		}
1507	}
1508
1509	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1510	if (saveDefAntenna == 0)
1511		saveDefAntenna = 1;
1512
1513	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1514
1515	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1516	if (AR_SREV_9100(ah) ||
1517	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1518		tsf = ath9k_hw_gettsf64(ah);
1519
1520	saveLedState = REG_READ(ah, AR_CFG_LED) &
1521		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1522		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1523
1524	ath9k_hw_mark_phy_inactive(ah);
1525
1526	ah->paprd_table_write_done = false;
1527
1528	/* Only required on the first reset */
1529	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1530		REG_WRITE(ah,
1531			  AR9271_RESET_POWER_DOWN_CONTROL,
1532			  AR9271_RADIO_RF_RST);
1533		udelay(50);
1534	}
1535
1536	if (!ath9k_hw_chip_reset(ah, chan)) {
1537		ath_err(common, "Chip reset failed\n");
1538		return -EINVAL;
1539	}
1540
1541	/* Only required on the first reset */
1542	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1543		ah->htc_reset_init = false;
1544		REG_WRITE(ah,
1545			  AR9271_RESET_POWER_DOWN_CONTROL,
1546			  AR9271_GATE_MAC_CTL);
1547		udelay(50);
1548	}
1549
1550	/* Restore TSF */
1551	if (tsf)
1552		ath9k_hw_settsf64(ah, tsf);
1553
1554	if (AR_SREV_9280_20_OR_LATER(ah))
1555		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1556
1557	if (!AR_SREV_9300_20_OR_LATER(ah))
1558		ar9002_hw_enable_async_fifo(ah);
1559
1560	r = ath9k_hw_process_ini(ah, chan);
1561	if (r)
1562		return r;
1563
1564	/*
1565	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1566	 * right after the chip reset. When that happens, write a new
1567	 * value after the initvals have been applied, with an offset
1568	 * based on measured time difference
1569	 */
1570	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1571		tsf += 1500;
1572		ath9k_hw_settsf64(ah, tsf);
1573	}
1574
1575	/* Setup MFP options for CCMP */
1576	if (AR_SREV_9280_20_OR_LATER(ah)) {
1577		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1578		 * frames when constructing CCMP AAD. */
1579		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1580			      0xc7ff);
1581		ah->sw_mgmt_crypto = false;
1582	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1583		/* Disable hardware crypto for management frames */
1584		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1586		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1587			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1588		ah->sw_mgmt_crypto = true;
1589	} else
1590		ah->sw_mgmt_crypto = true;
1591
1592	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1593		ath9k_hw_set_delta_slope(ah, chan);
1594
1595	ath9k_hw_spur_mitigate_freq(ah, chan);
1596	ah->eep_ops->set_board_values(ah, chan);
1597
1598	ENABLE_REGWRITE_BUFFER(ah);
1599
1600	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1601	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1602		  | macStaId1
1603		  | AR_STA_ID1_RTS_USE_DEF
1604		  | (ah->config.
1605		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1606		  | ah->sta_id1_defaults);
1607	ath_hw_setbssidmask(common);
1608	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1609	ath9k_hw_write_associd(ah);
1610	REG_WRITE(ah, AR_ISR, ~0);
1611	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1612
1613	REGWRITE_BUFFER_FLUSH(ah);
1614
1615	ath9k_hw_set_operating_mode(ah, ah->opmode);
1616
1617	r = ath9k_hw_rf_set_freq(ah, chan);
1618	if (r)
1619		return r;
1620
1621	ath9k_hw_set_clockrate(ah);
1622
1623	ENABLE_REGWRITE_BUFFER(ah);
1624
1625	for (i = 0; i < AR_NUM_DCU; i++)
1626		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1627
1628	REGWRITE_BUFFER_FLUSH(ah);
1629
1630	ah->intr_txqs = 0;
1631	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1632		ath9k_hw_resettxqueue(ah, i);
1633
1634	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1635	ath9k_hw_ani_cache_ini_regs(ah);
1636	ath9k_hw_init_qos(ah);
1637
1638	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1639		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1640
1641	ath9k_hw_init_global_settings(ah);
1642
1643	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1644		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1645			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1646		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1647			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1648		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1649			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1650	}
1651
1652	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1653
1654	ath9k_hw_set_dma(ah);
1655
1656	REG_WRITE(ah, AR_OBS, 8);
1657
1658	if (ah->config.rx_intr_mitigation) {
1659		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1660		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1661	}
1662
1663	if (ah->config.tx_intr_mitigation) {
1664		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1665		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1666	}
1667
1668	ath9k_hw_init_bb(ah, chan);
1669
1670	if (!ath9k_hw_init_cal(ah, chan))
1671		return -EIO;
1672
1673	ENABLE_REGWRITE_BUFFER(ah);
1674
1675	ath9k_hw_restore_chainmask(ah);
1676	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1677
1678	REGWRITE_BUFFER_FLUSH(ah);
1679
1680	/*
1681	 * For big endian systems turn on swapping for descriptors
1682	 */
1683	if (AR_SREV_9100(ah)) {
1684		u32 mask;
1685		mask = REG_READ(ah, AR_CFG);
1686		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1687			ath_dbg(common, ATH_DBG_RESET,
1688				"CFG Byte Swap Set 0x%x\n", mask);
1689		} else {
1690			mask =
1691				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1692			REG_WRITE(ah, AR_CFG, mask);
1693			ath_dbg(common, ATH_DBG_RESET,
1694				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1695		}
1696	} else {
1697		if (common->bus_ops->ath_bus_type == ATH_USB) {
1698			/* Configure AR9271 target WLAN */
1699			if (AR_SREV_9271(ah))
1700				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1701			else
1702				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1703		}
1704#ifdef __BIG_ENDIAN
1705		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1706			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1707		else
1708			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1709#endif
1710	}
1711
1712	if (ah->btcoex_hw.enabled)
1713		ath9k_hw_btcoex_enable(ah);
1714
1715	if (AR_SREV_9300_20_OR_LATER(ah)) {
1716		ar9003_hw_bb_watchdog_config(ah);
1717
1718		ar9003_hw_disable_phy_restart(ah);
1719	}
1720
1721	ath9k_hw_apply_gpio_override(ah);
1722
1723	return 0;
1724}
1725EXPORT_SYMBOL(ath9k_hw_reset);
1726
1727/******************************/
1728/* Power Management (Chipset) */
1729/******************************/
1730
1731/*
1732 * Notify Power Mgt is disabled in self-generated frames.
1733 * If requested, force chip to sleep.
1734 */
1735static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1736{
1737	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1738	if (setChip) {
1739		/*
1740		 * Clear the RTC force wake bit to allow the
1741		 * mac to go to sleep.
1742		 */
1743		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1744			    AR_RTC_FORCE_WAKE_EN);
1745		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1746			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1747
1748		/* Shutdown chip. Active low */
1749		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1750			REG_CLR_BIT(ah, (AR_RTC_RESET),
1751				    AR_RTC_RESET_EN);
1752	}
1753
1754	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1755	if (AR_SREV_9300_20_OR_LATER(ah))
1756		REG_WRITE(ah, AR_WA,
1757			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1758}
1759
1760/*
1761 * Notify Power Management is enabled in self-generating
1762 * frames. If request, set power mode of chip to
1763 * auto/normal.  Duration in units of 128us (1/8 TU).
1764 */
1765static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1766{
1767	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1768	if (setChip) {
1769		struct ath9k_hw_capabilities *pCap = &ah->caps;
1770
1771		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1772			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1773			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1774				  AR_RTC_FORCE_WAKE_ON_INT);
1775		} else {
1776			/*
1777			 * Clear the RTC force wake bit to allow the
1778			 * mac to go to sleep.
1779			 */
1780			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1781				    AR_RTC_FORCE_WAKE_EN);
1782		}
1783	}
1784
1785	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1786	if (AR_SREV_9300_20_OR_LATER(ah))
1787		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1788}
1789
1790static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1791{
1792	u32 val;
1793	int i;
1794
1795	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1796	if (AR_SREV_9300_20_OR_LATER(ah)) {
1797		REG_WRITE(ah, AR_WA, ah->WARegVal);
1798		udelay(10);
1799	}
1800
1801	if (setChip) {
1802		if ((REG_READ(ah, AR_RTC_STATUS) &
1803		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1804			if (ath9k_hw_set_reset_reg(ah,
1805					   ATH9K_RESET_POWER_ON) != true) {
1806				return false;
1807			}
1808			if (!AR_SREV_9300_20_OR_LATER(ah))
1809				ath9k_hw_init_pll(ah, NULL);
1810		}
1811		if (AR_SREV_9100(ah))
1812			REG_SET_BIT(ah, AR_RTC_RESET,
1813				    AR_RTC_RESET_EN);
1814
1815		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1816			    AR_RTC_FORCE_WAKE_EN);
1817		udelay(50);
1818
1819		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1820			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1821			if (val == AR_RTC_STATUS_ON)
1822				break;
1823			udelay(50);
1824			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1825				    AR_RTC_FORCE_WAKE_EN);
1826		}
1827		if (i == 0) {
1828			ath_err(ath9k_hw_common(ah),
1829				"Failed to wakeup in %uus\n",
1830				POWER_UP_TIME / 20);
1831			return false;
1832		}
1833	}
1834
1835	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1836
1837	return true;
1838}
1839
1840bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1841{
1842	struct ath_common *common = ath9k_hw_common(ah);
1843	int status = true, setChip = true;
1844	static const char *modes[] = {
1845		"AWAKE",
1846		"FULL-SLEEP",
1847		"NETWORK SLEEP",
1848		"UNDEFINED"
1849	};
1850
1851	if (ah->power_mode == mode)
1852		return status;
1853
1854	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1855		modes[ah->power_mode], modes[mode]);
1856
1857	switch (mode) {
1858	case ATH9K_PM_AWAKE:
1859		status = ath9k_hw_set_power_awake(ah, setChip);
1860		break;
1861	case ATH9K_PM_FULL_SLEEP:
1862		ath9k_set_power_sleep(ah, setChip);
1863		ah->chip_fullsleep = true;
1864		break;
1865	case ATH9K_PM_NETWORK_SLEEP:
1866		ath9k_set_power_network_sleep(ah, setChip);
1867		break;
1868	default:
1869		ath_err(common, "Unknown power mode %u\n", mode);
1870		return false;
1871	}
1872	ah->power_mode = mode;
1873
1874	/*
1875	 * XXX: If this warning never comes up after a while then
1876	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1877	 * ath9k_hw_setpower() return type void.
1878	 */
1879
1880	if (!(ah->ah_flags & AH_UNPLUGGED))
1881		ATH_DBG_WARN_ON_ONCE(!status);
1882
1883	return status;
1884}
1885EXPORT_SYMBOL(ath9k_hw_setpower);
1886
1887/*******************/
1888/* Beacon Handling */
1889/*******************/
1890
1891void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1892{
1893	int flags = 0;
1894
1895	ENABLE_REGWRITE_BUFFER(ah);
1896
1897	switch (ah->opmode) {
1898	case NL80211_IFTYPE_ADHOC:
1899	case NL80211_IFTYPE_MESH_POINT:
1900		REG_SET_BIT(ah, AR_TXCFG,
1901			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1902		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1903			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1904		flags |= AR_NDP_TIMER_EN;
1905	case NL80211_IFTYPE_AP:
1906		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1907		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1908			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1909		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1910			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1911		flags |=
1912			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1913		break;
1914	default:
1915		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1916			"%s: unsupported opmode: %d\n",
1917			__func__, ah->opmode);
1918		return;
1919		break;
1920	}
1921
1922	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1923	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1924	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1925	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1926
1927	REGWRITE_BUFFER_FLUSH(ah);
1928
1929	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1930}
1931EXPORT_SYMBOL(ath9k_hw_beaconinit);
1932
1933void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1934				    const struct ath9k_beacon_state *bs)
1935{
1936	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1937	struct ath9k_hw_capabilities *pCap = &ah->caps;
1938	struct ath_common *common = ath9k_hw_common(ah);
1939
1940	ENABLE_REGWRITE_BUFFER(ah);
1941
1942	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1943
1944	REG_WRITE(ah, AR_BEACON_PERIOD,
1945		  TU_TO_USEC(bs->bs_intval));
1946	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1947		  TU_TO_USEC(bs->bs_intval));
1948
1949	REGWRITE_BUFFER_FLUSH(ah);
1950
1951	REG_RMW_FIELD(ah, AR_RSSI_THR,
1952		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1953
1954	beaconintval = bs->bs_intval;
1955
1956	if (bs->bs_sleepduration > beaconintval)
1957		beaconintval = bs->bs_sleepduration;
1958
1959	dtimperiod = bs->bs_dtimperiod;
1960	if (bs->bs_sleepduration > dtimperiod)
1961		dtimperiod = bs->bs_sleepduration;
1962
1963	if (beaconintval == dtimperiod)
1964		nextTbtt = bs->bs_nextdtim;
1965	else
1966		nextTbtt = bs->bs_nexttbtt;
1967
1968	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1969	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1970	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1971	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1972
1973	ENABLE_REGWRITE_BUFFER(ah);
1974
1975	REG_WRITE(ah, AR_NEXT_DTIM,
1976		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1977	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1978
1979	REG_WRITE(ah, AR_SLEEP1,
1980		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1981		  | AR_SLEEP1_ASSUME_DTIM);
1982
1983	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1984		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1985	else
1986		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1987
1988	REG_WRITE(ah, AR_SLEEP2,
1989		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1990
1991	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1992	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1993
1994	REGWRITE_BUFFER_FLUSH(ah);
1995
1996	REG_SET_BIT(ah, AR_TIMER_MODE,
1997		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1998		    AR_DTIM_TIMER_EN);
1999
2000	/* TSF Out of Range Threshold */
2001	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2002}
2003EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2004
2005/*******************/
2006/* HW Capabilities */
2007/*******************/
2008
2009static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2010{
2011	eeprom_chainmask &= chip_chainmask;
2012	if (eeprom_chainmask)
2013		return eeprom_chainmask;
2014	else
2015		return chip_chainmask;
2016}
2017
2018int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2019{
2020	struct ath9k_hw_capabilities *pCap = &ah->caps;
2021	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2022	struct ath_common *common = ath9k_hw_common(ah);
2023	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2024	unsigned int chip_chainmask;
2025
2026	u16 eeval;
2027	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2028
2029	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2030	regulatory->current_rd = eeval;
2031
2032	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2033	if (AR_SREV_9285_12_OR_LATER(ah))
2034		eeval |= AR9285_RDEXT_DEFAULT;
2035	regulatory->current_rd_ext = eeval;
2036
2037	if (ah->opmode != NL80211_IFTYPE_AP &&
2038	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2039		if (regulatory->current_rd == 0x64 ||
2040		    regulatory->current_rd == 0x65)
2041			regulatory->current_rd += 5;
2042		else if (regulatory->current_rd == 0x41)
2043			regulatory->current_rd = 0x43;
2044		ath_dbg(common, ATH_DBG_REGULATORY,
2045			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2046	}
2047
2048	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2049	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2050		ath_err(common,
2051			"no band has been marked as supported in EEPROM\n");
2052		return -EINVAL;
2053	}
2054
2055	if (eeval & AR5416_OPFLAGS_11A)
2056		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2057
2058	if (eeval & AR5416_OPFLAGS_11G)
2059		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2060
2061	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2062		chip_chainmask = 1;
2063	else if (!AR_SREV_9280_20_OR_LATER(ah))
2064		chip_chainmask = 7;
2065	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2066		chip_chainmask = 3;
2067	else
2068		chip_chainmask = 7;
2069
2070	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2071	/*
2072	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2073	 * the EEPROM.
2074	 */
2075	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2076	    !(eeval & AR5416_OPFLAGS_11A) &&
2077	    !(AR_SREV_9271(ah)))
2078		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2079		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2080	else if (AR_SREV_9100(ah))
2081		pCap->rx_chainmask = 0x7;
2082	else
2083		/* Use rx_chainmask from EEPROM. */
2084		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2085
2086	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2087	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2088
2089	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2090
2091	/* enable key search for every frame in an aggregate */
2092	if (AR_SREV_9300_20_OR_LATER(ah))
2093		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2094
2095	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2096
2097	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2098		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2099	else
2100		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2101
2102	if (AR_SREV_9271(ah))
2103		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2104	else if (AR_DEVID_7010(ah))
2105		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2106	else if (AR_SREV_9285_12_OR_LATER(ah))
2107		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2108	else if (AR_SREV_9280_20_OR_LATER(ah))
2109		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2110	else
2111		pCap->num_gpio_pins = AR_NUM_GPIO;
2112
2113	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2114		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2115		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2116	} else {
2117		pCap->rts_aggr_limit = (8 * 1024);
2118	}
2119
2120#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2121	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2122	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2123		ah->rfkill_gpio =
2124			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2125		ah->rfkill_polarity =
2126			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2127
2128		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2129	}
2130#endif
2131	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2132		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2133	else
2134		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2135
2136	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2137		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2138	else
2139		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2140
2141	if (common->btcoex_enabled) {
2142		if (AR_SREV_9300_20_OR_LATER(ah)) {
2143			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2144			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2145			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2146			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2147		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2148			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2149			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2150
2151			if (AR_SREV_9285(ah)) {
2152				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2153				btcoex_hw->btpriority_gpio =
2154						ATH_BTPRIORITY_GPIO_9285;
2155			} else {
2156				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2157			}
2158		}
2159	} else {
2160		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2161	}
2162
2163	if (AR_SREV_9300_20_OR_LATER(ah)) {
2164		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2165		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2166			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2167
2168		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2169		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2170		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2171		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2172		pCap->txs_len = sizeof(struct ar9003_txs);
2173		if (!ah->config.paprd_disable &&
2174		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2175			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2176	} else {
2177		pCap->tx_desc_len = sizeof(struct ath_desc);
2178		if (AR_SREV_9280_20(ah))
2179			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2180	}
2181
2182	if (AR_SREV_9300_20_OR_LATER(ah))
2183		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2184
2185	if (AR_SREV_9300_20_OR_LATER(ah))
2186		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2187
2188	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2189		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2190
2191	if (AR_SREV_9285(ah))
2192		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2193			ant_div_ctl1 =
2194				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2195			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2196				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2197		}
2198	if (AR_SREV_9300_20_OR_LATER(ah)) {
2199		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2200			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2201	}
2202
2203
2204	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2205		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2206		/*
2207		 * enable the diversity-combining algorithm only when
2208		 * both enable_lna_div and enable_fast_div are set
2209		 *		Table for Diversity
2210		 * ant_div_alt_lnaconf		bit 0-1
2211		 * ant_div_main_lnaconf		bit 2-3
2212		 * ant_div_alt_gaintb		bit 4
2213		 * ant_div_main_gaintb		bit 5
2214		 * enable_ant_div_lnadiv	bit 6
2215		 * enable_ant_fast_div		bit 7
2216		 */
2217		if ((ant_div_ctl1 >> 0x6) == 0x3)
2218			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2219	}
2220
2221	if (AR_SREV_9485_10(ah)) {
2222		pCap->pcie_lcr_extsync_en = true;
2223		pCap->pcie_lcr_offset = 0x80;
2224	}
2225
2226	tx_chainmask = pCap->tx_chainmask;
2227	rx_chainmask = pCap->rx_chainmask;
2228	while (tx_chainmask || rx_chainmask) {
2229		if (tx_chainmask & BIT(0))
2230			pCap->max_txchains++;
2231		if (rx_chainmask & BIT(0))
2232			pCap->max_rxchains++;
2233
2234		tx_chainmask >>= 1;
2235		rx_chainmask >>= 1;
2236	}
2237
2238	return 0;
2239}
2240
2241/****************************/
2242/* GPIO / RFKILL / Antennae */
2243/****************************/
2244
2245static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2246					 u32 gpio, u32 type)
2247{
2248	int addr;
2249	u32 gpio_shift, tmp;
2250
2251	if (gpio > 11)
2252		addr = AR_GPIO_OUTPUT_MUX3;
2253	else if (gpio > 5)
2254		addr = AR_GPIO_OUTPUT_MUX2;
2255	else
2256		addr = AR_GPIO_OUTPUT_MUX1;
2257
2258	gpio_shift = (gpio % 6) * 5;
2259
2260	if (AR_SREV_9280_20_OR_LATER(ah)
2261	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2262		REG_RMW(ah, addr, (type << gpio_shift),
2263			(0x1f << gpio_shift));
2264	} else {
2265		tmp = REG_READ(ah, addr);
2266		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2267		tmp &= ~(0x1f << gpio_shift);
2268		tmp |= (type << gpio_shift);
2269		REG_WRITE(ah, addr, tmp);
2270	}
2271}
2272
2273void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2274{
2275	u32 gpio_shift;
2276
2277	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2278
2279	if (AR_DEVID_7010(ah)) {
2280		gpio_shift = gpio;
2281		REG_RMW(ah, AR7010_GPIO_OE,
2282			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2283			(AR7010_GPIO_OE_MASK << gpio_shift));
2284		return;
2285	}
2286
2287	gpio_shift = gpio << 1;
2288	REG_RMW(ah,
2289		AR_GPIO_OE_OUT,
2290		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2291		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2292}
2293EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2294
2295u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2296{
2297#define MS_REG_READ(x, y) \
2298	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2299
2300	if (gpio >= ah->caps.num_gpio_pins)
2301		return 0xffffffff;
2302
2303	if (AR_DEVID_7010(ah)) {
2304		u32 val;
2305		val = REG_READ(ah, AR7010_GPIO_IN);
2306		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2307	} else if (AR_SREV_9300_20_OR_LATER(ah))
2308		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2309			AR_GPIO_BIT(gpio)) != 0;
2310	else if (AR_SREV_9271(ah))
2311		return MS_REG_READ(AR9271, gpio) != 0;
2312	else if (AR_SREV_9287_11_OR_LATER(ah))
2313		return MS_REG_READ(AR9287, gpio) != 0;
2314	else if (AR_SREV_9285_12_OR_LATER(ah))
2315		return MS_REG_READ(AR9285, gpio) != 0;
2316	else if (AR_SREV_9280_20_OR_LATER(ah))
2317		return MS_REG_READ(AR928X, gpio) != 0;
2318	else
2319		return MS_REG_READ(AR, gpio) != 0;
2320}
2321EXPORT_SYMBOL(ath9k_hw_gpio_get);
2322
2323void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2324			 u32 ah_signal_type)
2325{
2326	u32 gpio_shift;
2327
2328	if (AR_DEVID_7010(ah)) {
2329		gpio_shift = gpio;
2330		REG_RMW(ah, AR7010_GPIO_OE,
2331			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2332			(AR7010_GPIO_OE_MASK << gpio_shift));
2333		return;
2334	}
2335
2336	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2337	gpio_shift = 2 * gpio;
2338	REG_RMW(ah,
2339		AR_GPIO_OE_OUT,
2340		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2341		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2342}
2343EXPORT_SYMBOL(ath9k_hw_cfg_output);
2344
2345void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2346{
2347	if (AR_DEVID_7010(ah)) {
2348		val = val ? 0 : 1;
2349		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2350			AR_GPIO_BIT(gpio));
2351		return;
2352	}
2353
2354	if (AR_SREV_9271(ah))
2355		val = ~val;
2356
2357	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2358		AR_GPIO_BIT(gpio));
2359}
2360EXPORT_SYMBOL(ath9k_hw_set_gpio);
2361
2362u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2363{
2364	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2365}
2366EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2367
2368void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2369{
2370	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2371}
2372EXPORT_SYMBOL(ath9k_hw_setantenna);
2373
2374/*********************/
2375/* General Operation */
2376/*********************/
2377
2378u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2379{
2380	u32 bits = REG_READ(ah, AR_RX_FILTER);
2381	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2382
2383	if (phybits & AR_PHY_ERR_RADAR)
2384		bits |= ATH9K_RX_FILTER_PHYRADAR;
2385	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2386		bits |= ATH9K_RX_FILTER_PHYERR;
2387
2388	return bits;
2389}
2390EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2391
2392void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2393{
2394	u32 phybits;
2395
2396	ENABLE_REGWRITE_BUFFER(ah);
2397
2398	REG_WRITE(ah, AR_RX_FILTER, bits);
2399
2400	phybits = 0;
2401	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2402		phybits |= AR_PHY_ERR_RADAR;
2403	if (bits & ATH9K_RX_FILTER_PHYERR)
2404		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2405	REG_WRITE(ah, AR_PHY_ERR, phybits);
2406
2407	if (phybits)
2408		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2409	else
2410		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2411
2412	REGWRITE_BUFFER_FLUSH(ah);
2413}
2414EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2415
2416bool ath9k_hw_phy_disable(struct ath_hw *ah)
2417{
2418	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2419		return false;
2420
2421	ath9k_hw_init_pll(ah, NULL);
2422	return true;
2423}
2424EXPORT_SYMBOL(ath9k_hw_phy_disable);
2425
2426bool ath9k_hw_disable(struct ath_hw *ah)
2427{
2428	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2429		return false;
2430
2431	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2432		return false;
2433
2434	ath9k_hw_init_pll(ah, NULL);
2435	return true;
2436}
2437EXPORT_SYMBOL(ath9k_hw_disable);
2438
2439void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2440{
2441	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2442	struct ath9k_channel *chan = ah->curchan;
2443	struct ieee80211_channel *channel = chan->chan;
2444	int reg_pwr = min_t(int, MAX_RATE_POWER, regulatory->power_limit);
2445	int chan_pwr = channel->max_power * 2;
2446
2447	if (test)
2448		reg_pwr = chan_pwr = MAX_RATE_POWER;
2449
2450	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2451
2452	ah->eep_ops->set_txpower(ah, chan,
2453				 ath9k_regd_get_ctl(regulatory, chan),
2454				 channel->max_antenna_gain * 2,
2455				 chan_pwr, reg_pwr, test);
2456}
2457EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2458
2459void ath9k_hw_setopmode(struct ath_hw *ah)
2460{
2461	ath9k_hw_set_operating_mode(ah, ah->opmode);
2462}
2463EXPORT_SYMBOL(ath9k_hw_setopmode);
2464
2465void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2466{
2467	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2468	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2469}
2470EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2471
2472void ath9k_hw_write_associd(struct ath_hw *ah)
2473{
2474	struct ath_common *common = ath9k_hw_common(ah);
2475
2476	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2477	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2478		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2479}
2480EXPORT_SYMBOL(ath9k_hw_write_associd);
2481
2482#define ATH9K_MAX_TSF_READ 10
2483
2484u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2485{
2486	u32 tsf_lower, tsf_upper1, tsf_upper2;
2487	int i;
2488
2489	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2490	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2491		tsf_lower = REG_READ(ah, AR_TSF_L32);
2492		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2493		if (tsf_upper2 == tsf_upper1)
2494			break;
2495		tsf_upper1 = tsf_upper2;
2496	}
2497
2498	WARN_ON( i == ATH9K_MAX_TSF_READ );
2499
2500	return (((u64)tsf_upper1 << 32) | tsf_lower);
2501}
2502EXPORT_SYMBOL(ath9k_hw_gettsf64);
2503
2504void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2505{
2506	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2507	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2508}
2509EXPORT_SYMBOL(ath9k_hw_settsf64);
2510
2511void ath9k_hw_reset_tsf(struct ath_hw *ah)
2512{
2513	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2514			   AH_TSF_WRITE_TIMEOUT))
2515		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2516			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2517
2518	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2519}
2520EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2521
2522void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2523{
2524	if (setting)
2525		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2526	else
2527		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2528}
2529EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2530
2531void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2532{
2533	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2534	u32 macmode;
2535
2536	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2537		macmode = AR_2040_JOINED_RX_CLEAR;
2538	else
2539		macmode = 0;
2540
2541	REG_WRITE(ah, AR_2040_MODE, macmode);
2542}
2543
2544/* HW Generic timers configuration */
2545
2546static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2547{
2548	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2549	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2550	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2551	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2552	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2553	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2554	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2555	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2556	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2557	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2558				AR_NDP2_TIMER_MODE, 0x0002},
2559	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2560				AR_NDP2_TIMER_MODE, 0x0004},
2561	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2562				AR_NDP2_TIMER_MODE, 0x0008},
2563	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2564				AR_NDP2_TIMER_MODE, 0x0010},
2565	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2566				AR_NDP2_TIMER_MODE, 0x0020},
2567	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2568				AR_NDP2_TIMER_MODE, 0x0040},
2569	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2570				AR_NDP2_TIMER_MODE, 0x0080}
2571};
2572
2573/* HW generic timer primitives */
2574
2575/* compute and clear index of rightmost 1 */
2576static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2577{
2578	u32 b;
2579
2580	b = *mask;
2581	b &= (0-b);
2582	*mask &= ~b;
2583	b *= debruijn32;
2584	b >>= 27;
2585
2586	return timer_table->gen_timer_index[b];
2587}
2588
2589u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2590{
2591	return REG_READ(ah, AR_TSF_L32);
2592}
2593EXPORT_SYMBOL(ath9k_hw_gettsf32);
2594
2595struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2596					  void (*trigger)(void *),
2597					  void (*overflow)(void *),
2598					  void *arg,
2599					  u8 timer_index)
2600{
2601	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2602	struct ath_gen_timer *timer;
2603
2604	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2605
2606	if (timer == NULL) {
2607		ath_err(ath9k_hw_common(ah),
2608			"Failed to allocate memory for hw timer[%d]\n",
2609			timer_index);
2610		return NULL;
2611	}
2612
2613	/* allocate a hardware generic timer slot */
2614	timer_table->timers[timer_index] = timer;
2615	timer->index = timer_index;
2616	timer->trigger = trigger;
2617	timer->overflow = overflow;
2618	timer->arg = arg;
2619
2620	return timer;
2621}
2622EXPORT_SYMBOL(ath_gen_timer_alloc);
2623
2624void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2625			      struct ath_gen_timer *timer,
2626			      u32 trig_timeout,
2627			      u32 timer_period)
2628{
2629	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2630	u32 tsf, timer_next;
2631
2632	BUG_ON(!timer_period);
2633
2634	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2635
2636	tsf = ath9k_hw_gettsf32(ah);
2637
2638	timer_next = tsf + trig_timeout;
2639
2640	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2641		"current tsf %x period %x timer_next %x\n",
2642		tsf, timer_period, timer_next);
2643
2644	/*
2645	 * Program generic timer registers
2646	 */
2647	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2648		 timer_next);
2649	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2650		  timer_period);
2651	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2652		    gen_tmr_configuration[timer->index].mode_mask);
2653
2654	/* Enable both trigger and thresh interrupt masks */
2655	REG_SET_BIT(ah, AR_IMR_S5,
2656		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2657		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2658}
2659EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2660
2661void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2662{
2663	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2664
2665	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2666		(timer->index >= ATH_MAX_GEN_TIMER)) {
2667		return;
2668	}
2669
2670	/* Clear generic timer enable bits. */
2671	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2672			gen_tmr_configuration[timer->index].mode_mask);
2673
2674	/* Disable both trigger and thresh interrupt masks */
2675	REG_CLR_BIT(ah, AR_IMR_S5,
2676		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2677		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2678
2679	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2680}
2681EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2682
2683void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2684{
2685	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2686
2687	/* free the hardware generic timer slot */
2688	timer_table->timers[timer->index] = NULL;
2689	kfree(timer);
2690}
2691EXPORT_SYMBOL(ath_gen_timer_free);
2692
2693/*
2694 * Generic Timer Interrupts handling
2695 */
2696void ath_gen_timer_isr(struct ath_hw *ah)
2697{
2698	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2699	struct ath_gen_timer *timer;
2700	struct ath_common *common = ath9k_hw_common(ah);
2701	u32 trigger_mask, thresh_mask, index;
2702
2703	/* get hardware generic timer interrupt status */
2704	trigger_mask = ah->intr_gen_timer_trigger;
2705	thresh_mask = ah->intr_gen_timer_thresh;
2706	trigger_mask &= timer_table->timer_mask.val;
2707	thresh_mask &= timer_table->timer_mask.val;
2708
2709	trigger_mask &= ~thresh_mask;
2710
2711	while (thresh_mask) {
2712		index = rightmost_index(timer_table, &thresh_mask);
2713		timer = timer_table->timers[index];
2714		BUG_ON(!timer);
2715		ath_dbg(common, ATH_DBG_HWTIMER,
2716			"TSF overflow for Gen timer %d\n", index);
2717		timer->overflow(timer->arg);
2718	}
2719
2720	while (trigger_mask) {
2721		index = rightmost_index(timer_table, &trigger_mask);
2722		timer = timer_table->timers[index];
2723		BUG_ON(!timer);
2724		ath_dbg(common, ATH_DBG_HWTIMER,
2725			"Gen timer[%d] trigger\n", index);
2726		timer->trigger(timer->arg);
2727	}
2728}
2729EXPORT_SYMBOL(ath_gen_timer_isr);
2730
2731/********/
2732/* HTC  */
2733/********/
2734
2735void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2736{
2737	ah->htc_reset_init = true;
2738}
2739EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2740
2741static struct {
2742	u32 version;
2743	const char * name;
2744} ath_mac_bb_names[] = {
2745	/* Devices with external radios */
2746	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2747	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2748	{ AR_SREV_VERSION_9100,		"9100" },
2749	{ AR_SREV_VERSION_9160,		"9160" },
2750	/* Single-chip solutions */
2751	{ AR_SREV_VERSION_9280,		"9280" },
2752	{ AR_SREV_VERSION_9285,		"9285" },
2753	{ AR_SREV_VERSION_9287,         "9287" },
2754	{ AR_SREV_VERSION_9271,         "9271" },
2755	{ AR_SREV_VERSION_9300,         "9300" },
2756	{ AR_SREV_VERSION_9330,         "9330" },
2757	{ AR_SREV_VERSION_9340,		"9340" },
2758	{ AR_SREV_VERSION_9485,         "9485" },
2759};
2760
2761/* For devices with external radios */
2762static struct {
2763	u16 version;
2764	const char * name;
2765} ath_rf_names[] = {
2766	{ 0,				"5133" },
2767	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2768	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2769	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2770	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2771};
2772
2773/*
2774 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2775 */
2776static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2777{
2778	int i;
2779
2780	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2781		if (ath_mac_bb_names[i].version == mac_bb_version) {
2782			return ath_mac_bb_names[i].name;
2783		}
2784	}
2785
2786	return "????";
2787}
2788
2789/*
2790 * Return the RF name. "????" is returned if the RF is unknown.
2791 * Used for devices with external radios.
2792 */
2793static const char *ath9k_hw_rf_name(u16 rf_version)
2794{
2795	int i;
2796
2797	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2798		if (ath_rf_names[i].version == rf_version) {
2799			return ath_rf_names[i].name;
2800		}
2801	}
2802
2803	return "????";
2804}
2805
2806void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2807{
2808	int used;
2809
2810	/* chipsets >= AR9280 are single-chip */
2811	if (AR_SREV_9280_20_OR_LATER(ah)) {
2812		used = snprintf(hw_name, len,
2813			       "Atheros AR%s Rev:%x",
2814			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2815			       ah->hw_version.macRev);
2816	}
2817	else {
2818		used = snprintf(hw_name, len,
2819			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2820			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2821			       ah->hw_version.macRev,
2822			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2823						AR_RADIO_SREV_MAJOR)),
2824			       ah->hw_version.phyRev);
2825	}
2826
2827	hw_name[used] = '\0';
2828}
2829EXPORT_SYMBOL(ath9k_hw_name);
2830