hw.c revision 4f17c48e3902c823e4af68d2de9546f5b707533d
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <asm/unaligned.h>
21
22#include "hw.h"
23#include "hw-ops.h"
24#include "rc.h"
25#include "ar9003_mac.h"
26
27static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28
29MODULE_AUTHOR("Atheros Communications");
30MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32MODULE_LICENSE("Dual BSD/GPL");
33
34static int __init ath9k_init(void)
35{
36	return 0;
37}
38module_init(ath9k_init);
39
40static void __exit ath9k_exit(void)
41{
42	return;
43}
44module_exit(ath9k_exit);
45
46/* Private hardware callbacks */
47
48static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49{
50	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
51}
52
53static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54{
55	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
56}
57
58static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
59					struct ath9k_channel *chan)
60{
61	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
62}
63
64static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
65{
66	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
67		return;
68
69	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
70}
71
72static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
73{
74	/* You will not have this callback if using the old ANI */
75	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
76		return;
77
78	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
79}
80
81/********************/
82/* Helper Functions */
83/********************/
84
85static void ath9k_hw_set_clockrate(struct ath_hw *ah)
86{
87	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88	struct ath_common *common = ath9k_hw_common(ah);
89	unsigned int clockrate;
90
91	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
93		clockrate = 117;
94	else if (!ah->curchan) /* should really check for CCK instead */
95		clockrate = ATH9K_CLOCK_RATE_CCK;
96	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
97		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
98	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
99		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
100	else
101		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
102
103	if (conf_is_ht40(conf))
104		clockrate *= 2;
105
106	if (ah->curchan) {
107		if (IS_CHAN_HALF_RATE(ah->curchan))
108			clockrate /= 2;
109		if (IS_CHAN_QUARTER_RATE(ah->curchan))
110			clockrate /= 4;
111	}
112
113	common->clockrate = clockrate;
114}
115
116static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
117{
118	struct ath_common *common = ath9k_hw_common(ah);
119
120	return usecs * common->clockrate;
121}
122
123bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
124{
125	int i;
126
127	BUG_ON(timeout < AH_TIME_QUANTUM);
128
129	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
130		if ((REG_READ(ah, reg) & mask) == val)
131			return true;
132
133		udelay(AH_TIME_QUANTUM);
134	}
135
136	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
137		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138		timeout, reg, REG_READ(ah, reg), mask, val);
139
140	return false;
141}
142EXPORT_SYMBOL(ath9k_hw_wait);
143
144void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
145			  int column, unsigned int *writecnt)
146{
147	int r;
148
149	ENABLE_REGWRITE_BUFFER(ah);
150	for (r = 0; r < array->ia_rows; r++) {
151		REG_WRITE(ah, INI_RA(array, r, 0),
152			  INI_RA(array, r, column));
153		DO_DELAY(*writecnt);
154	}
155	REGWRITE_BUFFER_FLUSH(ah);
156}
157
158u32 ath9k_hw_reverse_bits(u32 val, u32 n)
159{
160	u32 retval;
161	int i;
162
163	for (i = 0, retval = 0; i < n; i++) {
164		retval = (retval << 1) | (val & 1);
165		val >>= 1;
166	}
167	return retval;
168}
169
170u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171			   u8 phy, int kbps,
172			   u32 frameLen, u16 rateix,
173			   bool shortPreamble)
174{
175	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176
177	if (kbps == 0)
178		return 0;
179
180	switch (phy) {
181	case WLAN_RC_PHY_CCK:
182		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183		if (shortPreamble)
184			phyTime >>= 1;
185		numBits = frameLen << 3;
186		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187		break;
188	case WLAN_RC_PHY_OFDM:
189		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193			txTime = OFDM_SIFS_TIME_QUARTER
194				+ OFDM_PREAMBLE_TIME_QUARTER
195				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196		} else if (ah->curchan &&
197			   IS_CHAN_HALF_RATE(ah->curchan)) {
198			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199			numBits = OFDM_PLCP_BITS + (frameLen << 3);
200			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201			txTime = OFDM_SIFS_TIME_HALF +
202				OFDM_PREAMBLE_TIME_HALF
203				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
204		} else {
205			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206			numBits = OFDM_PLCP_BITS + (frameLen << 3);
207			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209				+ (numSymbols * OFDM_SYMBOL_TIME);
210		}
211		break;
212	default:
213		ath_err(ath9k_hw_common(ah),
214			"Unknown phy %u (rate ix %u)\n", phy, rateix);
215		txTime = 0;
216		break;
217	}
218
219	return txTime;
220}
221EXPORT_SYMBOL(ath9k_hw_computetxtime);
222
223void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224				  struct ath9k_channel *chan,
225				  struct chan_centers *centers)
226{
227	int8_t extoff;
228
229	if (!IS_CHAN_HT40(chan)) {
230		centers->ctl_center = centers->ext_center =
231			centers->synth_center = chan->channel;
232		return;
233	}
234
235	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237		centers->synth_center =
238			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239		extoff = 1;
240	} else {
241		centers->synth_center =
242			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243		extoff = -1;
244	}
245
246	centers->ctl_center =
247		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248	/* 25 MHz spacing is supported by hw but not on upper layers */
249	centers->ext_center =
250		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251}
252
253/******************/
254/* Chip Revisions */
255/******************/
256
257static void ath9k_hw_read_revisions(struct ath_hw *ah)
258{
259	u32 val;
260
261	switch (ah->hw_version.devid) {
262	case AR5416_AR9100_DEVID:
263		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264		break;
265	case AR9300_DEVID_AR9330:
266		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267		if (ah->get_mac_revision) {
268			ah->hw_version.macRev = ah->get_mac_revision();
269		} else {
270			val = REG_READ(ah, AR_SREV);
271			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272		}
273		return;
274	case AR9300_DEVID_AR9340:
275		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276		val = REG_READ(ah, AR_SREV);
277		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
278		return;
279	}
280
281	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
282
283	if (val == 0xFF) {
284		val = REG_READ(ah, AR_SREV);
285		ah->hw_version.macVersion =
286			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
287		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
288
289		if (AR_SREV_9462(ah))
290			ah->is_pciexpress = true;
291		else
292			ah->is_pciexpress = (val &
293					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
294	} else {
295		if (!AR_SREV_9100(ah))
296			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
297
298		ah->hw_version.macRev = val & AR_SREV_REVISION;
299
300		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
301			ah->is_pciexpress = true;
302	}
303}
304
305/************************************/
306/* HW Attach, Detach, Init Routines */
307/************************************/
308
309static void ath9k_hw_disablepcie(struct ath_hw *ah)
310{
311	if (!AR_SREV_5416(ah))
312		return;
313
314	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
315	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
317	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
318	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
319	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
320	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
321	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
322	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
323
324	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
325}
326
327static void ath9k_hw_aspm_init(struct ath_hw *ah)
328{
329	struct ath_common *common = ath9k_hw_common(ah);
330
331	if (common->bus_ops->aspm_init)
332		common->bus_ops->aspm_init(common);
333}
334
335/* This should work for all families including legacy */
336static bool ath9k_hw_chip_test(struct ath_hw *ah)
337{
338	struct ath_common *common = ath9k_hw_common(ah);
339	u32 regAddr[2] = { AR_STA_ID0 };
340	u32 regHold[2];
341	static const u32 patternData[4] = {
342		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
343	};
344	int i, j, loop_max;
345
346	if (!AR_SREV_9300_20_OR_LATER(ah)) {
347		loop_max = 2;
348		regAddr[1] = AR_PHY_BASE + (8 << 2);
349	} else
350		loop_max = 1;
351
352	for (i = 0; i < loop_max; i++) {
353		u32 addr = regAddr[i];
354		u32 wrData, rdData;
355
356		regHold[i] = REG_READ(ah, addr);
357		for (j = 0; j < 0x100; j++) {
358			wrData = (j << 16) | j;
359			REG_WRITE(ah, addr, wrData);
360			rdData = REG_READ(ah, addr);
361			if (rdData != wrData) {
362				ath_err(common,
363					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364					addr, wrData, rdData);
365				return false;
366			}
367		}
368		for (j = 0; j < 4; j++) {
369			wrData = patternData[j];
370			REG_WRITE(ah, addr, wrData);
371			rdData = REG_READ(ah, addr);
372			if (wrData != rdData) {
373				ath_err(common,
374					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375					addr, wrData, rdData);
376				return false;
377			}
378		}
379		REG_WRITE(ah, regAddr[i], regHold[i]);
380	}
381	udelay(100);
382
383	return true;
384}
385
386static void ath9k_hw_init_config(struct ath_hw *ah)
387{
388	int i;
389
390	ah->config.dma_beacon_response_time = 2;
391	ah->config.sw_beacon_response_time = 10;
392	ah->config.additional_swba_backoff = 0;
393	ah->config.ack_6mb = 0x0;
394	ah->config.cwm_ignore_extcca = 0;
395	ah->config.pcie_clock_req = 0;
396	ah->config.pcie_waen = 0;
397	ah->config.analog_shiftreg = 1;
398	ah->config.enable_ani = true;
399
400	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
401		ah->config.spurchans[i][0] = AR_NO_SPUR;
402		ah->config.spurchans[i][1] = AR_NO_SPUR;
403	}
404
405	/* PAPRD needs some more work to be enabled */
406	ah->config.paprd_disable = 1;
407
408	ah->config.rx_intr_mitigation = true;
409	ah->config.pcieSerDesWrite = true;
410
411	/*
412	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414	 * This means we use it for all AR5416 devices, and the few
415	 * minor PCI AR9280 devices out there.
416	 *
417	 * Serialization is required because these devices do not handle
418	 * well the case of two concurrent reads/writes due to the latency
419	 * involved. During one read/write another read/write can be issued
420	 * on another CPU while the previous read/write may still be working
421	 * on our hardware, if we hit this case the hardware poops in a loop.
422	 * We prevent this by serializing reads and writes.
423	 *
424	 * This issue is not present on PCI-Express devices or pre-AR5416
425	 * devices (legacy, 802.11abg).
426	 */
427	if (num_possible_cpus() > 1)
428		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
429}
430
431static void ath9k_hw_init_defaults(struct ath_hw *ah)
432{
433	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
434
435	regulatory->country_code = CTRY_DEFAULT;
436	regulatory->power_limit = MAX_RATE_POWER;
437
438	ah->hw_version.magic = AR5416_MAGIC;
439	ah->hw_version.subvendorid = 0;
440
441	ah->atim_window = 0;
442	ah->sta_id1_defaults =
443		AR_STA_ID1_CRPT_MIC_ENABLE |
444		AR_STA_ID1_MCAST_KSRCH;
445	if (AR_SREV_9100(ah))
446		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
447	ah->enable_32kHz_clock = DONT_USE_32KHZ;
448	ah->slottime = ATH9K_SLOT_TIME_9;
449	ah->globaltxtimeout = (u32) -1;
450	ah->power_mode = ATH9K_PM_UNDEFINED;
451}
452
453static int ath9k_hw_init_macaddr(struct ath_hw *ah)
454{
455	struct ath_common *common = ath9k_hw_common(ah);
456	u32 sum;
457	int i;
458	u16 eeval;
459	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
460
461	sum = 0;
462	for (i = 0; i < 3; i++) {
463		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
464		sum += eeval;
465		common->macaddr[2 * i] = eeval >> 8;
466		common->macaddr[2 * i + 1] = eeval & 0xff;
467	}
468	if (sum == 0 || sum == 0xffff * 3)
469		return -EADDRNOTAVAIL;
470
471	return 0;
472}
473
474static int ath9k_hw_post_init(struct ath_hw *ah)
475{
476	struct ath_common *common = ath9k_hw_common(ah);
477	int ecode;
478
479	if (common->bus_ops->ath_bus_type != ATH_USB) {
480		if (!ath9k_hw_chip_test(ah))
481			return -ENODEV;
482	}
483
484	if (!AR_SREV_9300_20_OR_LATER(ah)) {
485		ecode = ar9002_hw_rf_claim(ah);
486		if (ecode != 0)
487			return ecode;
488	}
489
490	ecode = ath9k_hw_eeprom_init(ah);
491	if (ecode != 0)
492		return ecode;
493
494	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
495		"Eeprom VER: %d, REV: %d\n",
496		ah->eep_ops->get_eeprom_ver(ah),
497		ah->eep_ops->get_eeprom_rev(ah));
498
499	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
500	if (ecode) {
501		ath_err(ath9k_hw_common(ah),
502			"Failed allocating banks for external radio\n");
503		ath9k_hw_rf_free_ext_banks(ah);
504		return ecode;
505	}
506
507	if (ah->config.enable_ani) {
508		ath9k_hw_ani_setup(ah);
509		ath9k_hw_ani_init(ah);
510	}
511
512	return 0;
513}
514
515static void ath9k_hw_attach_ops(struct ath_hw *ah)
516{
517	if (AR_SREV_9300_20_OR_LATER(ah))
518		ar9003_hw_attach_ops(ah);
519	else
520		ar9002_hw_attach_ops(ah);
521}
522
523/* Called for all hardware families */
524static int __ath9k_hw_init(struct ath_hw *ah)
525{
526	struct ath_common *common = ath9k_hw_common(ah);
527	int r = 0;
528
529	ath9k_hw_read_revisions(ah);
530
531	/*
532	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
533	 * We need to do this to avoid RMW of this register. We cannot
534	 * read the reg when chip is asleep.
535	 */
536	ah->WARegVal = REG_READ(ah, AR_WA);
537	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
538			 AR_WA_ASPM_TIMER_BASED_DISABLE);
539
540	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
541		ath_err(common, "Couldn't reset chip\n");
542		return -EIO;
543	}
544
545	if (AR_SREV_9462(ah))
546		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
547
548	ath9k_hw_init_defaults(ah);
549	ath9k_hw_init_config(ah);
550
551	ath9k_hw_attach_ops(ah);
552
553	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
554		ath_err(common, "Couldn't wakeup chip\n");
555		return -EIO;
556	}
557
558	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
559		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
560		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
561		     !ah->is_pciexpress)) {
562			ah->config.serialize_regmode =
563				SER_REG_MODE_ON;
564		} else {
565			ah->config.serialize_regmode =
566				SER_REG_MODE_OFF;
567		}
568	}
569
570	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
571		ah->config.serialize_regmode);
572
573	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
574		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
575	else
576		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
577
578	switch (ah->hw_version.macVersion) {
579	case AR_SREV_VERSION_5416_PCI:
580	case AR_SREV_VERSION_5416_PCIE:
581	case AR_SREV_VERSION_9160:
582	case AR_SREV_VERSION_9100:
583	case AR_SREV_VERSION_9280:
584	case AR_SREV_VERSION_9285:
585	case AR_SREV_VERSION_9287:
586	case AR_SREV_VERSION_9271:
587	case AR_SREV_VERSION_9300:
588	case AR_SREV_VERSION_9330:
589	case AR_SREV_VERSION_9485:
590	case AR_SREV_VERSION_9340:
591	case AR_SREV_VERSION_9462:
592		break;
593	default:
594		ath_err(common,
595			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
596			ah->hw_version.macVersion, ah->hw_version.macRev);
597		return -EOPNOTSUPP;
598	}
599
600	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
601	    AR_SREV_9330(ah))
602		ah->is_pciexpress = false;
603
604	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
605	ath9k_hw_init_cal_settings(ah);
606
607	ah->ani_function = ATH9K_ANI_ALL;
608	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
609		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
610	if (!AR_SREV_9300_20_OR_LATER(ah))
611		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
612
613	/* disable ANI for 9340 */
614	if (AR_SREV_9340(ah))
615		ah->config.enable_ani = false;
616
617	ath9k_hw_init_mode_regs(ah);
618
619	if (!ah->is_pciexpress)
620		ath9k_hw_disablepcie(ah);
621
622	if (!AR_SREV_9300_20_OR_LATER(ah))
623		ar9002_hw_cck_chan14_spread(ah);
624
625	r = ath9k_hw_post_init(ah);
626	if (r)
627		return r;
628
629	ath9k_hw_init_mode_gain_regs(ah);
630	r = ath9k_hw_fill_cap_info(ah);
631	if (r)
632		return r;
633
634	if (ah->is_pciexpress)
635		ath9k_hw_aspm_init(ah);
636
637	r = ath9k_hw_init_macaddr(ah);
638	if (r) {
639		ath_err(common, "Failed to initialize MAC address\n");
640		return r;
641	}
642
643	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
644		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
645	else
646		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
647
648	if (AR_SREV_9330(ah))
649		ah->bb_watchdog_timeout_ms = 85;
650	else
651		ah->bb_watchdog_timeout_ms = 25;
652
653	common->state = ATH_HW_INITIALIZED;
654
655	return 0;
656}
657
658int ath9k_hw_init(struct ath_hw *ah)
659{
660	int ret;
661	struct ath_common *common = ath9k_hw_common(ah);
662
663	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
664	switch (ah->hw_version.devid) {
665	case AR5416_DEVID_PCI:
666	case AR5416_DEVID_PCIE:
667	case AR5416_AR9100_DEVID:
668	case AR9160_DEVID_PCI:
669	case AR9280_DEVID_PCI:
670	case AR9280_DEVID_PCIE:
671	case AR9285_DEVID_PCIE:
672	case AR9287_DEVID_PCI:
673	case AR9287_DEVID_PCIE:
674	case AR2427_DEVID_PCIE:
675	case AR9300_DEVID_PCIE:
676	case AR9300_DEVID_AR9485_PCIE:
677	case AR9300_DEVID_AR9330:
678	case AR9300_DEVID_AR9340:
679	case AR9300_DEVID_AR9580:
680	case AR9300_DEVID_AR9462:
681		break;
682	default:
683		if (common->bus_ops->ath_bus_type == ATH_USB)
684			break;
685		ath_err(common, "Hardware device ID 0x%04x not supported\n",
686			ah->hw_version.devid);
687		return -EOPNOTSUPP;
688	}
689
690	ret = __ath9k_hw_init(ah);
691	if (ret) {
692		ath_err(common,
693			"Unable to initialize hardware; initialization status: %d\n",
694			ret);
695		return ret;
696	}
697
698	return 0;
699}
700EXPORT_SYMBOL(ath9k_hw_init);
701
702static void ath9k_hw_init_qos(struct ath_hw *ah)
703{
704	ENABLE_REGWRITE_BUFFER(ah);
705
706	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
707	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
708
709	REG_WRITE(ah, AR_QOS_NO_ACK,
710		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
711		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
712		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
713
714	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
715	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
716	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
717	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
718	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
719
720	REGWRITE_BUFFER_FLUSH(ah);
721}
722
723u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
724{
725	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
726	udelay(100);
727	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
728
729	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
730		udelay(100);
731
732	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
733}
734EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
735
736static void ath9k_hw_init_pll(struct ath_hw *ah,
737			      struct ath9k_channel *chan)
738{
739	u32 pll;
740
741	if (AR_SREV_9485(ah)) {
742
743		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
744		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
745			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
746		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
747			      AR_CH0_DPLL2_KD, 0x40);
748		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
749			      AR_CH0_DPLL2_KI, 0x4);
750
751		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
752			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
753		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
754			      AR_CH0_BB_DPLL1_NINI, 0x58);
755		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
756			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
757
758		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
760		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
761			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
762		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
763			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
764
765		/* program BB PLL phase_shift to 0x6 */
766		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
767			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
768
769		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
770			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
771		udelay(1000);
772	} else if (AR_SREV_9330(ah)) {
773		u32 ddr_dpll2, pll_control2, kd;
774
775		if (ah->is_clk_25mhz) {
776			ddr_dpll2 = 0x18e82f01;
777			pll_control2 = 0xe04a3d;
778			kd = 0x1d;
779		} else {
780			ddr_dpll2 = 0x19e82f01;
781			pll_control2 = 0x886666;
782			kd = 0x3d;
783		}
784
785		/* program DDR PLL ki and kd value */
786		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
787
788		/* program DDR PLL phase_shift */
789		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
790			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
791
792		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
793		udelay(1000);
794
795		/* program refdiv, nint, frac to RTC register */
796		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
797
798		/* program BB PLL kd and ki value */
799		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
800		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
801
802		/* program BB PLL phase_shift */
803		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
804			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
805	} else if (AR_SREV_9340(ah)) {
806		u32 regval, pll2_divint, pll2_divfrac, refdiv;
807
808		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
809		udelay(1000);
810
811		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
812		udelay(100);
813
814		if (ah->is_clk_25mhz) {
815			pll2_divint = 0x54;
816			pll2_divfrac = 0x1eb85;
817			refdiv = 3;
818		} else {
819			pll2_divint = 88;
820			pll2_divfrac = 0;
821			refdiv = 5;
822		}
823
824		regval = REG_READ(ah, AR_PHY_PLL_MODE);
825		regval |= (0x1 << 16);
826		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
827		udelay(100);
828
829		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
830			  (pll2_divint << 18) | pll2_divfrac);
831		udelay(100);
832
833		regval = REG_READ(ah, AR_PHY_PLL_MODE);
834		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
835			 (0x4 << 26) | (0x18 << 19);
836		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
837		REG_WRITE(ah, AR_PHY_PLL_MODE,
838			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
839		udelay(1000);
840	}
841
842	pll = ath9k_hw_compute_pll_control(ah, chan);
843
844	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
845
846	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
847		udelay(1000);
848
849	/* Switch the core clock for ar9271 to 117Mhz */
850	if (AR_SREV_9271(ah)) {
851		udelay(500);
852		REG_WRITE(ah, 0x50040, 0x304);
853	}
854
855	udelay(RTC_PLL_SETTLE_DELAY);
856
857	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
858
859	if (AR_SREV_9340(ah)) {
860		if (ah->is_clk_25mhz) {
861			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
862			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
863			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
864		} else {
865			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
866			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
867			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
868		}
869		udelay(100);
870	}
871}
872
873static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
874					  enum nl80211_iftype opmode)
875{
876	u32 sync_default = AR_INTR_SYNC_DEFAULT;
877	u32 imr_reg = AR_IMR_TXERR |
878		AR_IMR_TXURN |
879		AR_IMR_RXERR |
880		AR_IMR_RXORN |
881		AR_IMR_BCNMISC;
882
883	if (AR_SREV_9340(ah))
884		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
885
886	if (AR_SREV_9300_20_OR_LATER(ah)) {
887		imr_reg |= AR_IMR_RXOK_HP;
888		if (ah->config.rx_intr_mitigation)
889			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
890		else
891			imr_reg |= AR_IMR_RXOK_LP;
892
893	} else {
894		if (ah->config.rx_intr_mitigation)
895			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
896		else
897			imr_reg |= AR_IMR_RXOK;
898	}
899
900	if (ah->config.tx_intr_mitigation)
901		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
902	else
903		imr_reg |= AR_IMR_TXOK;
904
905	if (opmode == NL80211_IFTYPE_AP)
906		imr_reg |= AR_IMR_MIB;
907
908	ENABLE_REGWRITE_BUFFER(ah);
909
910	REG_WRITE(ah, AR_IMR, imr_reg);
911	ah->imrs2_reg |= AR_IMR_S2_GTT;
912	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
913
914	if (!AR_SREV_9100(ah)) {
915		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
916		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
917		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
918	}
919
920	REGWRITE_BUFFER_FLUSH(ah);
921
922	if (AR_SREV_9300_20_OR_LATER(ah)) {
923		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
924		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
925		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
926		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
927	}
928}
929
930static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
931{
932	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
933	val = min(val, (u32) 0xFFFF);
934	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
935}
936
937static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
938{
939	u32 val = ath9k_hw_mac_to_clks(ah, us);
940	val = min(val, (u32) 0xFFFF);
941	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
942}
943
944static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
945{
946	u32 val = ath9k_hw_mac_to_clks(ah, us);
947	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
948	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
949}
950
951static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
952{
953	u32 val = ath9k_hw_mac_to_clks(ah, us);
954	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
955	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
956}
957
958static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
959{
960	if (tu > 0xFFFF) {
961		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
962			"bad global tx timeout %u\n", tu);
963		ah->globaltxtimeout = (u32) -1;
964		return false;
965	} else {
966		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
967		ah->globaltxtimeout = tu;
968		return true;
969	}
970}
971
972void ath9k_hw_init_global_settings(struct ath_hw *ah)
973{
974	struct ath_common *common = ath9k_hw_common(ah);
975	struct ieee80211_conf *conf = &common->hw->conf;
976	const struct ath9k_channel *chan = ah->curchan;
977	int acktimeout, ctstimeout;
978	int slottime;
979	int sifstime;
980	int rx_lat = 0, tx_lat = 0, eifs = 0;
981	u32 reg;
982
983	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
984		ah->misc_mode);
985
986	if (!chan)
987		return;
988
989	if (ah->misc_mode != 0)
990		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
991
992	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
993		rx_lat = 41;
994	else
995		rx_lat = 37;
996	tx_lat = 54;
997
998	if (IS_CHAN_HALF_RATE(chan)) {
999		eifs = 175;
1000		rx_lat *= 2;
1001		tx_lat *= 2;
1002		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1003		    tx_lat += 11;
1004
1005		slottime = 13;
1006		sifstime = 32;
1007	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1008		eifs = 340;
1009		rx_lat = (rx_lat * 4) - 1;
1010		tx_lat *= 4;
1011		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1012		    tx_lat += 22;
1013
1014		slottime = 21;
1015		sifstime = 64;
1016	} else {
1017		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1018			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1019			reg = AR_USEC_ASYNC_FIFO;
1020		} else {
1021			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1022				common->clockrate;
1023			reg = REG_READ(ah, AR_USEC);
1024		}
1025		rx_lat = MS(reg, AR_USEC_RX_LAT);
1026		tx_lat = MS(reg, AR_USEC_TX_LAT);
1027
1028		slottime = ah->slottime;
1029		if (IS_CHAN_5GHZ(chan))
1030			sifstime = 16;
1031		else
1032			sifstime = 10;
1033	}
1034
1035	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1036	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1037	ctstimeout = acktimeout;
1038
1039	/*
1040	 * Workaround for early ACK timeouts, add an offset to match the
1041	 * initval's 64us ack timeout value.
1042	 * This was initially only meant to work around an issue with delayed
1043	 * BA frames in some implementations, but it has been found to fix ACK
1044	 * timeout issues in other cases as well.
1045	 */
1046	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1047		acktimeout += 64 - sifstime - ah->slottime;
1048
1049	ath9k_hw_set_sifs_time(ah, sifstime);
1050	ath9k_hw_setslottime(ah, slottime);
1051	ath9k_hw_set_ack_timeout(ah, acktimeout);
1052	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1053	if (ah->globaltxtimeout != (u32) -1)
1054		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1055
1056	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1057	REG_RMW(ah, AR_USEC,
1058		(common->clockrate - 1) |
1059		SM(rx_lat, AR_USEC_RX_LAT) |
1060		SM(tx_lat, AR_USEC_TX_LAT),
1061		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1062
1063}
1064EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1065
1066void ath9k_hw_deinit(struct ath_hw *ah)
1067{
1068	struct ath_common *common = ath9k_hw_common(ah);
1069
1070	if (common->state < ATH_HW_INITIALIZED)
1071		goto free_hw;
1072
1073	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1074
1075free_hw:
1076	ath9k_hw_rf_free_ext_banks(ah);
1077}
1078EXPORT_SYMBOL(ath9k_hw_deinit);
1079
1080/*******/
1081/* INI */
1082/*******/
1083
1084u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1085{
1086	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1087
1088	if (IS_CHAN_B(chan))
1089		ctl |= CTL_11B;
1090	else if (IS_CHAN_G(chan))
1091		ctl |= CTL_11G;
1092	else
1093		ctl |= CTL_11A;
1094
1095	return ctl;
1096}
1097
1098/****************************************/
1099/* Reset and Channel Switching Routines */
1100/****************************************/
1101
1102static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1103{
1104	struct ath_common *common = ath9k_hw_common(ah);
1105
1106	ENABLE_REGWRITE_BUFFER(ah);
1107
1108	/*
1109	 * set AHB_MODE not to do cacheline prefetches
1110	*/
1111	if (!AR_SREV_9300_20_OR_LATER(ah))
1112		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1113
1114	/*
1115	 * let mac dma reads be in 128 byte chunks
1116	 */
1117	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1118
1119	REGWRITE_BUFFER_FLUSH(ah);
1120
1121	/*
1122	 * Restore TX Trigger Level to its pre-reset value.
1123	 * The initial value depends on whether aggregation is enabled, and is
1124	 * adjusted whenever underruns are detected.
1125	 */
1126	if (!AR_SREV_9300_20_OR_LATER(ah))
1127		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1128
1129	ENABLE_REGWRITE_BUFFER(ah);
1130
1131	/*
1132	 * let mac dma writes be in 128 byte chunks
1133	 */
1134	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1135
1136	/*
1137	 * Setup receive FIFO threshold to hold off TX activities
1138	 */
1139	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1140
1141	if (AR_SREV_9300_20_OR_LATER(ah)) {
1142		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1143		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1144
1145		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1146			ah->caps.rx_status_len);
1147	}
1148
1149	/*
1150	 * reduce the number of usable entries in PCU TXBUF to avoid
1151	 * wrap around issues.
1152	 */
1153	if (AR_SREV_9285(ah)) {
1154		/* For AR9285 the number of Fifos are reduced to half.
1155		 * So set the usable tx buf size also to half to
1156		 * avoid data/delimiter underruns
1157		 */
1158		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1159			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1160	} else if (!AR_SREV_9271(ah)) {
1161		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1162			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1163	}
1164
1165	REGWRITE_BUFFER_FLUSH(ah);
1166
1167	if (AR_SREV_9300_20_OR_LATER(ah))
1168		ath9k_hw_reset_txstatus_ring(ah);
1169}
1170
1171static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1172{
1173	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1174	u32 set = AR_STA_ID1_KSRCH_MODE;
1175
1176	switch (opmode) {
1177	case NL80211_IFTYPE_ADHOC:
1178	case NL80211_IFTYPE_MESH_POINT:
1179		set |= AR_STA_ID1_ADHOC;
1180		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1181		break;
1182	case NL80211_IFTYPE_AP:
1183		set |= AR_STA_ID1_STA_AP;
1184		/* fall through */
1185	case NL80211_IFTYPE_STATION:
1186		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1187		break;
1188	default:
1189		if (!ah->is_monitoring)
1190			set = 0;
1191		break;
1192	}
1193	REG_RMW(ah, AR_STA_ID1, set, mask);
1194}
1195
1196void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1197				   u32 *coef_mantissa, u32 *coef_exponent)
1198{
1199	u32 coef_exp, coef_man;
1200
1201	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1202		if ((coef_scaled >> coef_exp) & 0x1)
1203			break;
1204
1205	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1206
1207	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1208
1209	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1210	*coef_exponent = coef_exp - 16;
1211}
1212
1213static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1214{
1215	u32 rst_flags;
1216	u32 tmpReg;
1217
1218	if (AR_SREV_9100(ah)) {
1219		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1220			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1221		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1222	}
1223
1224	ENABLE_REGWRITE_BUFFER(ah);
1225
1226	if (AR_SREV_9300_20_OR_LATER(ah)) {
1227		REG_WRITE(ah, AR_WA, ah->WARegVal);
1228		udelay(10);
1229	}
1230
1231	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1232		  AR_RTC_FORCE_WAKE_ON_INT);
1233
1234	if (AR_SREV_9100(ah)) {
1235		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1236			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1237	} else {
1238		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1239		if (tmpReg &
1240		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1241		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1242			u32 val;
1243			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1244
1245			val = AR_RC_HOSTIF;
1246			if (!AR_SREV_9300_20_OR_LATER(ah))
1247				val |= AR_RC_AHB;
1248			REG_WRITE(ah, AR_RC, val);
1249
1250		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1251			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1252
1253		rst_flags = AR_RTC_RC_MAC_WARM;
1254		if (type == ATH9K_RESET_COLD)
1255			rst_flags |= AR_RTC_RC_MAC_COLD;
1256	}
1257
1258	if (AR_SREV_9330(ah)) {
1259		int npend = 0;
1260		int i;
1261
1262		/* AR9330 WAR:
1263		 * call external reset function to reset WMAC if:
1264		 * - doing a cold reset
1265		 * - we have pending frames in the TX queues
1266		 */
1267
1268		for (i = 0; i < AR_NUM_QCU; i++) {
1269			npend = ath9k_hw_numtxpending(ah, i);
1270			if (npend)
1271				break;
1272		}
1273
1274		if (ah->external_reset &&
1275		    (npend || type == ATH9K_RESET_COLD)) {
1276			int reset_err = 0;
1277
1278			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1279				"reset MAC via external reset\n");
1280
1281			reset_err = ah->external_reset();
1282			if (reset_err) {
1283				ath_err(ath9k_hw_common(ah),
1284					"External reset failed, err=%d\n",
1285					reset_err);
1286				return false;
1287			}
1288
1289			REG_WRITE(ah, AR_RTC_RESET, 1);
1290		}
1291	}
1292
1293	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1294
1295	REGWRITE_BUFFER_FLUSH(ah);
1296
1297	udelay(50);
1298
1299	REG_WRITE(ah, AR_RTC_RC, 0);
1300	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1301		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1302			"RTC stuck in MAC reset\n");
1303		return false;
1304	}
1305
1306	if (!AR_SREV_9100(ah))
1307		REG_WRITE(ah, AR_RC, 0);
1308
1309	if (AR_SREV_9100(ah))
1310		udelay(50);
1311
1312	return true;
1313}
1314
1315static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1316{
1317	ENABLE_REGWRITE_BUFFER(ah);
1318
1319	if (AR_SREV_9300_20_OR_LATER(ah)) {
1320		REG_WRITE(ah, AR_WA, ah->WARegVal);
1321		udelay(10);
1322	}
1323
1324	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1325		  AR_RTC_FORCE_WAKE_ON_INT);
1326
1327	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1328		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1329
1330	REG_WRITE(ah, AR_RTC_RESET, 0);
1331
1332	REGWRITE_BUFFER_FLUSH(ah);
1333
1334	if (!AR_SREV_9300_20_OR_LATER(ah))
1335		udelay(2);
1336
1337	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1338		REG_WRITE(ah, AR_RC, 0);
1339
1340	REG_WRITE(ah, AR_RTC_RESET, 1);
1341
1342	if (!ath9k_hw_wait(ah,
1343			   AR_RTC_STATUS,
1344			   AR_RTC_STATUS_M,
1345			   AR_RTC_STATUS_ON,
1346			   AH_WAIT_TIMEOUT)) {
1347		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1348			"RTC not waking up\n");
1349		return false;
1350	}
1351
1352	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1353}
1354
1355static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1356{
1357	bool ret = false;
1358
1359	if (AR_SREV_9300_20_OR_LATER(ah)) {
1360		REG_WRITE(ah, AR_WA, ah->WARegVal);
1361		udelay(10);
1362	}
1363
1364	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1365		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1366
1367	switch (type) {
1368	case ATH9K_RESET_POWER_ON:
1369		ret = ath9k_hw_set_reset_power_on(ah);
1370		break;
1371	case ATH9K_RESET_WARM:
1372	case ATH9K_RESET_COLD:
1373		ret = ath9k_hw_set_reset(ah, type);
1374		break;
1375	default:
1376		break;
1377	}
1378
1379	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1380		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1381
1382	return ret;
1383}
1384
1385static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1386				struct ath9k_channel *chan)
1387{
1388	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1389		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1390			return false;
1391	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1392		return false;
1393
1394	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1395		return false;
1396
1397	ah->chip_fullsleep = false;
1398	ath9k_hw_init_pll(ah, chan);
1399	ath9k_hw_set_rfmode(ah, chan);
1400
1401	return true;
1402}
1403
1404static bool ath9k_hw_channel_change(struct ath_hw *ah,
1405				    struct ath9k_channel *chan)
1406{
1407	struct ath_common *common = ath9k_hw_common(ah);
1408	u32 qnum;
1409	int r;
1410	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1411	bool band_switch, mode_diff;
1412	u8 ini_reloaded;
1413
1414	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1415		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1416						    CHANNEL_5GHZ));
1417	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1418
1419	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1420		if (ath9k_hw_numtxpending(ah, qnum)) {
1421			ath_dbg(common, ATH_DBG_QUEUE,
1422				"Transmit frames pending on queue %d\n", qnum);
1423			return false;
1424		}
1425	}
1426
1427	if (!ath9k_hw_rfbus_req(ah)) {
1428		ath_err(common, "Could not kill baseband RX\n");
1429		return false;
1430	}
1431
1432	if (edma && (band_switch || mode_diff)) {
1433		ath9k_hw_mark_phy_inactive(ah);
1434		udelay(5);
1435
1436		ath9k_hw_init_pll(ah, NULL);
1437
1438		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1439			ath_err(common, "Failed to do fast channel change\n");
1440			return false;
1441		}
1442	}
1443
1444	ath9k_hw_set_channel_regs(ah, chan);
1445
1446	r = ath9k_hw_rf_set_freq(ah, chan);
1447	if (r) {
1448		ath_err(common, "Failed to set channel\n");
1449		return false;
1450	}
1451	ath9k_hw_set_clockrate(ah);
1452	ath9k_hw_apply_txpower(ah, chan);
1453	ath9k_hw_rfbus_done(ah);
1454
1455	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1456		ath9k_hw_set_delta_slope(ah, chan);
1457
1458	ath9k_hw_spur_mitigate_freq(ah, chan);
1459
1460	if (edma && (band_switch || mode_diff)) {
1461		ah->ah_flags |= AH_FASTCC;
1462		if (band_switch || ini_reloaded)
1463			ah->eep_ops->set_board_values(ah, chan);
1464
1465		ath9k_hw_init_bb(ah, chan);
1466
1467		if (band_switch || ini_reloaded)
1468			ath9k_hw_init_cal(ah, chan);
1469		ah->ah_flags &= ~AH_FASTCC;
1470	}
1471
1472	return true;
1473}
1474
1475static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1476{
1477	u32 gpio_mask = ah->gpio_mask;
1478	int i;
1479
1480	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1481		if (!(gpio_mask & 1))
1482			continue;
1483
1484		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1485		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1486	}
1487}
1488
1489bool ath9k_hw_check_alive(struct ath_hw *ah)
1490{
1491	int count = 50;
1492	u32 reg;
1493
1494	if (AR_SREV_9285_12_OR_LATER(ah))
1495		return true;
1496
1497	do {
1498		reg = REG_READ(ah, AR_OBS_BUS_1);
1499
1500		if ((reg & 0x7E7FFFEF) == 0x00702400)
1501			continue;
1502
1503		switch (reg & 0x7E000B00) {
1504		case 0x1E000000:
1505		case 0x52000B00:
1506		case 0x18000B00:
1507			continue;
1508		default:
1509			return true;
1510		}
1511	} while (count-- > 0);
1512
1513	return false;
1514}
1515EXPORT_SYMBOL(ath9k_hw_check_alive);
1516
1517int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1518		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1519{
1520	struct ath_common *common = ath9k_hw_common(ah);
1521	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
1522	u32 saveLedState;
1523	struct ath9k_channel *curchan = ah->curchan;
1524	u32 saveDefAntenna;
1525	u32 macStaId1;
1526	u64 tsf = 0;
1527	int i, r;
1528	bool allow_fbs = false;
1529	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1530	bool save_fullsleep = ah->chip_fullsleep;
1531
1532	if (mci) {
1533
1534		ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
1535
1536		if (mci_hw->bt_state == MCI_BT_CAL_START) {
1537			u32 payload[4] = {0, 0, 0, 0};
1538
1539			ath_dbg(common, ATH_DBG_MCI, "MCI stop rx for BT CAL");
1540
1541			mci_hw->bt_state = MCI_BT_CAL;
1542
1543			/*
1544			 * MCI FIX: disable mci interrupt here. This is to avoid
1545			 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
1546			 * lead to mci_intr reentry.
1547			 */
1548
1549			ar9003_mci_disable_interrupt(ah);
1550
1551			ath_dbg(common, ATH_DBG_MCI, "send WLAN_CAL_GRANT");
1552			MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
1553			ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
1554						16, true, false);
1555
1556			ath_dbg(common, ATH_DBG_MCI, "\nMCI BT is calibrating");
1557
1558			/* Wait BT calibration to be completed for 25ms */
1559
1560			if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
1561								  0, 25000))
1562				ath_dbg(common, ATH_DBG_MCI,
1563					"MCI got BT_CAL_DONE\n");
1564			else
1565				ath_dbg(common, ATH_DBG_MCI,
1566					"MCI ### BT cal takes to long, force"
1567					"bt_state to be bt_awake\n");
1568			mci_hw->bt_state = MCI_BT_AWAKE;
1569			/* MCI FIX: enable mci interrupt here */
1570			ar9003_mci_enable_interrupt(ah);
1571
1572			return true;
1573		}
1574	}
1575
1576
1577	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1578		return -EIO;
1579
1580	if (curchan && !ah->chip_fullsleep)
1581		ath9k_hw_getnf(ah, curchan);
1582
1583	ah->caldata = caldata;
1584	if (caldata &&
1585	    (chan->channel != caldata->channel ||
1586	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1587	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1588		/* Operating channel changed, reset channel calibration data */
1589		memset(caldata, 0, sizeof(*caldata));
1590		ath9k_init_nfcal_hist_buffer(ah, chan);
1591	}
1592	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1593
1594	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1595		bChannelChange = false;
1596
1597	if (caldata &&
1598	    caldata->done_txiqcal_once &&
1599	    caldata->done_txclcal_once &&
1600	    caldata->rtt_hist.num_readings)
1601		allow_fbs = true;
1602
1603	if (bChannelChange &&
1604	    (ah->chip_fullsleep != true) &&
1605	    (ah->curchan != NULL) &&
1606	    (chan->channel != ah->curchan->channel) &&
1607	    (allow_fbs ||
1608	     ((chan->channelFlags & CHANNEL_ALL) ==
1609	      (ah->curchan->channelFlags & CHANNEL_ALL)))) {
1610		if (ath9k_hw_channel_change(ah, chan)) {
1611			ath9k_hw_loadnf(ah, ah->curchan);
1612			ath9k_hw_start_nfcal(ah, true);
1613			if (mci && mci_hw->ready)
1614				ar9003_mci_2g5g_switch(ah, true);
1615
1616			if (AR_SREV_9271(ah))
1617				ar9002_hw_load_ani_reg(ah, chan);
1618			return 0;
1619		}
1620	}
1621
1622	if (mci) {
1623		ar9003_mci_disable_interrupt(ah);
1624
1625		if (mci_hw->ready && !save_fullsleep) {
1626			ar9003_mci_mute_bt(ah);
1627			udelay(20);
1628			REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
1629		}
1630
1631		mci_hw->bt_state = MCI_BT_SLEEP;
1632		mci_hw->ready = false;
1633	}
1634
1635
1636	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1637	if (saveDefAntenna == 0)
1638		saveDefAntenna = 1;
1639
1640	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1641
1642	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1643	if (AR_SREV_9100(ah) ||
1644	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1645		tsf = ath9k_hw_gettsf64(ah);
1646
1647	saveLedState = REG_READ(ah, AR_CFG_LED) &
1648		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1649		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1650
1651	ath9k_hw_mark_phy_inactive(ah);
1652
1653	ah->paprd_table_write_done = false;
1654
1655	/* Only required on the first reset */
1656	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1657		REG_WRITE(ah,
1658			  AR9271_RESET_POWER_DOWN_CONTROL,
1659			  AR9271_RADIO_RF_RST);
1660		udelay(50);
1661	}
1662
1663	if (!ath9k_hw_chip_reset(ah, chan)) {
1664		ath_err(common, "Chip reset failed\n");
1665		return -EINVAL;
1666	}
1667
1668	/* Only required on the first reset */
1669	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1670		ah->htc_reset_init = false;
1671		REG_WRITE(ah,
1672			  AR9271_RESET_POWER_DOWN_CONTROL,
1673			  AR9271_GATE_MAC_CTL);
1674		udelay(50);
1675	}
1676
1677	/* Restore TSF */
1678	if (tsf)
1679		ath9k_hw_settsf64(ah, tsf);
1680
1681	if (AR_SREV_9280_20_OR_LATER(ah))
1682		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1683
1684	if (!AR_SREV_9300_20_OR_LATER(ah))
1685		ar9002_hw_enable_async_fifo(ah);
1686
1687	r = ath9k_hw_process_ini(ah, chan);
1688	if (r)
1689		return r;
1690
1691	if (mci)
1692		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1693
1694	/*
1695	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1696	 * right after the chip reset. When that happens, write a new
1697	 * value after the initvals have been applied, with an offset
1698	 * based on measured time difference
1699	 */
1700	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1701		tsf += 1500;
1702		ath9k_hw_settsf64(ah, tsf);
1703	}
1704
1705	/* Setup MFP options for CCMP */
1706	if (AR_SREV_9280_20_OR_LATER(ah)) {
1707		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1708		 * frames when constructing CCMP AAD. */
1709		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1710			      0xc7ff);
1711		ah->sw_mgmt_crypto = false;
1712	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1713		/* Disable hardware crypto for management frames */
1714		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1715			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1716		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1717			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1718		ah->sw_mgmt_crypto = true;
1719	} else
1720		ah->sw_mgmt_crypto = true;
1721
1722	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1723		ath9k_hw_set_delta_slope(ah, chan);
1724
1725	ath9k_hw_spur_mitigate_freq(ah, chan);
1726	ah->eep_ops->set_board_values(ah, chan);
1727
1728	ENABLE_REGWRITE_BUFFER(ah);
1729
1730	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1731	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1732		  | macStaId1
1733		  | AR_STA_ID1_RTS_USE_DEF
1734		  | (ah->config.
1735		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1736		  | ah->sta_id1_defaults);
1737	ath_hw_setbssidmask(common);
1738	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1739	ath9k_hw_write_associd(ah);
1740	REG_WRITE(ah, AR_ISR, ~0);
1741	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1742
1743	REGWRITE_BUFFER_FLUSH(ah);
1744
1745	ath9k_hw_set_operating_mode(ah, ah->opmode);
1746
1747	r = ath9k_hw_rf_set_freq(ah, chan);
1748	if (r)
1749		return r;
1750
1751	ath9k_hw_set_clockrate(ah);
1752
1753	ENABLE_REGWRITE_BUFFER(ah);
1754
1755	for (i = 0; i < AR_NUM_DCU; i++)
1756		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1757
1758	REGWRITE_BUFFER_FLUSH(ah);
1759
1760	ah->intr_txqs = 0;
1761	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1762		ath9k_hw_resettxqueue(ah, i);
1763
1764	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1765	ath9k_hw_ani_cache_ini_regs(ah);
1766	ath9k_hw_init_qos(ah);
1767
1768	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1769		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1770
1771	ath9k_hw_init_global_settings(ah);
1772
1773	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1774		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1775			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1776		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1777			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1778		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1779			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1780	}
1781
1782	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1783
1784	ath9k_hw_set_dma(ah);
1785
1786	REG_WRITE(ah, AR_OBS, 8);
1787
1788	if (ah->config.rx_intr_mitigation) {
1789		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1790		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1791	}
1792
1793	if (ah->config.tx_intr_mitigation) {
1794		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1795		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1796	}
1797
1798	ath9k_hw_init_bb(ah, chan);
1799
1800	if (caldata) {
1801		caldata->done_txiqcal_once = false;
1802		caldata->done_txclcal_once = false;
1803		caldata->rtt_hist.num_readings = 0;
1804	}
1805	if (!ath9k_hw_init_cal(ah, chan))
1806		return -EIO;
1807
1808	ath9k_hw_loadnf(ah, chan);
1809	ath9k_hw_start_nfcal(ah, true);
1810
1811	if (mci && mci_hw->ready) {
1812
1813		if (IS_CHAN_2GHZ(chan) &&
1814		    (mci_hw->bt_state == MCI_BT_SLEEP)) {
1815
1816			if (ar9003_mci_check_int(ah,
1817			    AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
1818			    ar9003_mci_check_int(ah,
1819			    AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) {
1820
1821				/*
1822				 * BT is sleeping. Check if BT wakes up during
1823				 * WLAN calibration. If BT wakes up during
1824				 * WLAN calibration, need to go through all
1825				 * message exchanges again and recal.
1826				 */
1827
1828				ath_dbg(common, ATH_DBG_MCI, "MCI BT wakes up"
1829					"during WLAN calibration\n");
1830
1831				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
1832					  AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
1833					  AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
1834				ath_dbg(common, ATH_DBG_MCI, "MCI send"
1835					"REMOTE_RESET\n");
1836				ar9003_mci_remote_reset(ah, true);
1837				ar9003_mci_send_sys_waking(ah, true);
1838				udelay(1);
1839				if (IS_CHAN_2GHZ(chan))
1840					ar9003_mci_send_lna_transfer(ah, true);
1841
1842				mci_hw->bt_state = MCI_BT_AWAKE;
1843
1844				ath_dbg(common, ATH_DBG_MCI, "MCI re-cal\n");
1845
1846				if (caldata) {
1847					caldata->done_txiqcal_once = false;
1848					caldata->done_txclcal_once = false;
1849					caldata->rtt_hist.num_readings = 0;
1850				}
1851
1852				if (!ath9k_hw_init_cal(ah, chan))
1853					return -EIO;
1854
1855			}
1856		}
1857		ar9003_mci_enable_interrupt(ah);
1858	}
1859
1860	ENABLE_REGWRITE_BUFFER(ah);
1861
1862	ath9k_hw_restore_chainmask(ah);
1863	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1864
1865	REGWRITE_BUFFER_FLUSH(ah);
1866
1867	/*
1868	 * For big endian systems turn on swapping for descriptors
1869	 */
1870	if (AR_SREV_9100(ah)) {
1871		u32 mask;
1872		mask = REG_READ(ah, AR_CFG);
1873		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1874			ath_dbg(common, ATH_DBG_RESET,
1875				"CFG Byte Swap Set 0x%x\n", mask);
1876		} else {
1877			mask =
1878				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1879			REG_WRITE(ah, AR_CFG, mask);
1880			ath_dbg(common, ATH_DBG_RESET,
1881				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1882		}
1883	} else {
1884		if (common->bus_ops->ath_bus_type == ATH_USB) {
1885			/* Configure AR9271 target WLAN */
1886			if (AR_SREV_9271(ah))
1887				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1888			else
1889				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1890		}
1891#ifdef __BIG_ENDIAN
1892		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1893			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1894		else
1895			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1896#endif
1897	}
1898
1899	if (ah->btcoex_hw.enabled)
1900		ath9k_hw_btcoex_enable(ah);
1901
1902	if (mci && mci_hw->ready) {
1903		/*
1904		 * check BT state again to make
1905		 * sure it's not changed.
1906		 */
1907
1908		ar9003_mci_sync_bt_state(ah);
1909		ar9003_mci_2g5g_switch(ah, true);
1910
1911		if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
1912				(mci_hw->query_bt == true)) {
1913			mci_hw->need_flush_btinfo = true;
1914		}
1915	}
1916
1917	if (AR_SREV_9300_20_OR_LATER(ah)) {
1918		ar9003_hw_bb_watchdog_config(ah);
1919
1920		ar9003_hw_disable_phy_restart(ah);
1921	}
1922
1923	ath9k_hw_apply_gpio_override(ah);
1924
1925	return 0;
1926}
1927EXPORT_SYMBOL(ath9k_hw_reset);
1928
1929/******************************/
1930/* Power Management (Chipset) */
1931/******************************/
1932
1933/*
1934 * Notify Power Mgt is disabled in self-generated frames.
1935 * If requested, force chip to sleep.
1936 */
1937static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1938{
1939	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1940	if (setChip) {
1941		if (AR_SREV_9462(ah)) {
1942			REG_WRITE(ah, AR_TIMER_MODE,
1943				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1944			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1945				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1946			REG_WRITE(ah, AR_SLP32_INC,
1947				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1948			/* xxx Required for WLAN only case ? */
1949			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1950			udelay(100);
1951		}
1952
1953		/*
1954		 * Clear the RTC force wake bit to allow the
1955		 * mac to go to sleep.
1956		 */
1957		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1958
1959		if (AR_SREV_9462(ah))
1960			udelay(100);
1961
1962		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1963			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1964
1965		/* Shutdown chip. Active low */
1966		if (!AR_SREV_5416(ah) &&
1967				!AR_SREV_9271(ah) && !AR_SREV_9462_10(ah)) {
1968			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1969			udelay(2);
1970		}
1971	}
1972
1973	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1974	if (AR_SREV_9300_20_OR_LATER(ah))
1975		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1976}
1977
1978/*
1979 * Notify Power Management is enabled in self-generating
1980 * frames. If request, set power mode of chip to
1981 * auto/normal.  Duration in units of 128us (1/8 TU).
1982 */
1983static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1984{
1985	u32 val;
1986
1987	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1988	if (setChip) {
1989		struct ath9k_hw_capabilities *pCap = &ah->caps;
1990
1991		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1992			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1993			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1994				  AR_RTC_FORCE_WAKE_ON_INT);
1995		} else {
1996
1997			/* When chip goes into network sleep, it could be waken
1998			 * up by MCI_INT interrupt caused by BT's HW messages
1999			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2000			 * rate (~100us). This will cause chip to leave and
2001			 * re-enter network sleep mode frequently, which in
2002			 * consequence will have WLAN MCI HW to generate lots of
2003			 * SYS_WAKING and SYS_SLEEPING messages which will make
2004			 * BT CPU to busy to process.
2005			 */
2006			if (AR_SREV_9462(ah)) {
2007				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2008					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2009				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2010			}
2011			/*
2012			 * Clear the RTC force wake bit to allow the
2013			 * mac to go to sleep.
2014			 */
2015			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2016				    AR_RTC_FORCE_WAKE_EN);
2017
2018			if (AR_SREV_9462(ah))
2019				udelay(30);
2020		}
2021	}
2022
2023	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2024	if (AR_SREV_9300_20_OR_LATER(ah))
2025		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2026}
2027
2028static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2029{
2030	u32 val;
2031	int i;
2032
2033	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2034	if (AR_SREV_9300_20_OR_LATER(ah)) {
2035		REG_WRITE(ah, AR_WA, ah->WARegVal);
2036		udelay(10);
2037	}
2038
2039	if (setChip) {
2040		if ((REG_READ(ah, AR_RTC_STATUS) &
2041		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2042			if (ath9k_hw_set_reset_reg(ah,
2043					   ATH9K_RESET_POWER_ON) != true) {
2044				return false;
2045			}
2046			if (!AR_SREV_9300_20_OR_LATER(ah))
2047				ath9k_hw_init_pll(ah, NULL);
2048		}
2049		if (AR_SREV_9100(ah))
2050			REG_SET_BIT(ah, AR_RTC_RESET,
2051				    AR_RTC_RESET_EN);
2052
2053		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2054			    AR_RTC_FORCE_WAKE_EN);
2055		udelay(50);
2056
2057		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2058			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2059			if (val == AR_RTC_STATUS_ON)
2060				break;
2061			udelay(50);
2062			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2063				    AR_RTC_FORCE_WAKE_EN);
2064		}
2065		if (i == 0) {
2066			ath_err(ath9k_hw_common(ah),
2067				"Failed to wakeup in %uus\n",
2068				POWER_UP_TIME / 20);
2069			return false;
2070		}
2071	}
2072
2073	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2074
2075	return true;
2076}
2077
2078bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2079{
2080	struct ath_common *common = ath9k_hw_common(ah);
2081	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
2082	int status = true, setChip = true;
2083	static const char *modes[] = {
2084		"AWAKE",
2085		"FULL-SLEEP",
2086		"NETWORK SLEEP",
2087		"UNDEFINED"
2088	};
2089
2090	if (ah->power_mode == mode)
2091		return status;
2092
2093	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
2094		modes[ah->power_mode], modes[mode]);
2095
2096	switch (mode) {
2097	case ATH9K_PM_AWAKE:
2098		status = ath9k_hw_set_power_awake(ah, setChip);
2099
2100		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2101			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2102
2103		break;
2104	case ATH9K_PM_FULL_SLEEP:
2105
2106		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) {
2107			if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
2108				(mci->bt_state != MCI_BT_SLEEP) &&
2109				!mci->halted_bt_gpm) {
2110				ath_dbg(common, ATH_DBG_MCI, "MCI halt BT GPM"
2111						"(full_sleep)");
2112				ar9003_mci_send_coex_halt_bt_gpm(ah,
2113								 true, true);
2114			}
2115
2116			mci->ready = false;
2117			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2118		}
2119
2120		ath9k_set_power_sleep(ah, setChip);
2121		ah->chip_fullsleep = true;
2122		break;
2123	case ATH9K_PM_NETWORK_SLEEP:
2124
2125		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2126			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2127
2128		ath9k_set_power_network_sleep(ah, setChip);
2129		break;
2130	default:
2131		ath_err(common, "Unknown power mode %u\n", mode);
2132		return false;
2133	}
2134	ah->power_mode = mode;
2135
2136	/*
2137	 * XXX: If this warning never comes up after a while then
2138	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2139	 * ath9k_hw_setpower() return type void.
2140	 */
2141
2142	if (!(ah->ah_flags & AH_UNPLUGGED))
2143		ATH_DBG_WARN_ON_ONCE(!status);
2144
2145	return status;
2146}
2147EXPORT_SYMBOL(ath9k_hw_setpower);
2148
2149/*******************/
2150/* Beacon Handling */
2151/*******************/
2152
2153void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2154{
2155	int flags = 0;
2156
2157	ENABLE_REGWRITE_BUFFER(ah);
2158
2159	switch (ah->opmode) {
2160	case NL80211_IFTYPE_ADHOC:
2161	case NL80211_IFTYPE_MESH_POINT:
2162		REG_SET_BIT(ah, AR_TXCFG,
2163			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2164		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2165			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2166		flags |= AR_NDP_TIMER_EN;
2167	case NL80211_IFTYPE_AP:
2168		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2169		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2170			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2171		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2172			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2173		flags |=
2174			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2175		break;
2176	default:
2177		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
2178			"%s: unsupported opmode: %d\n",
2179			__func__, ah->opmode);
2180		return;
2181		break;
2182	}
2183
2184	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2185	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2186	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2187	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2188
2189	REGWRITE_BUFFER_FLUSH(ah);
2190
2191	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2192}
2193EXPORT_SYMBOL(ath9k_hw_beaconinit);
2194
2195void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2196				    const struct ath9k_beacon_state *bs)
2197{
2198	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2199	struct ath9k_hw_capabilities *pCap = &ah->caps;
2200	struct ath_common *common = ath9k_hw_common(ah);
2201
2202	ENABLE_REGWRITE_BUFFER(ah);
2203
2204	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2205
2206	REG_WRITE(ah, AR_BEACON_PERIOD,
2207		  TU_TO_USEC(bs->bs_intval));
2208	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2209		  TU_TO_USEC(bs->bs_intval));
2210
2211	REGWRITE_BUFFER_FLUSH(ah);
2212
2213	REG_RMW_FIELD(ah, AR_RSSI_THR,
2214		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2215
2216	beaconintval = bs->bs_intval;
2217
2218	if (bs->bs_sleepduration > beaconintval)
2219		beaconintval = bs->bs_sleepduration;
2220
2221	dtimperiod = bs->bs_dtimperiod;
2222	if (bs->bs_sleepduration > dtimperiod)
2223		dtimperiod = bs->bs_sleepduration;
2224
2225	if (beaconintval == dtimperiod)
2226		nextTbtt = bs->bs_nextdtim;
2227	else
2228		nextTbtt = bs->bs_nexttbtt;
2229
2230	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2231	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2232	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2233	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2234
2235	ENABLE_REGWRITE_BUFFER(ah);
2236
2237	REG_WRITE(ah, AR_NEXT_DTIM,
2238		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2239	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2240
2241	REG_WRITE(ah, AR_SLEEP1,
2242		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2243		  | AR_SLEEP1_ASSUME_DTIM);
2244
2245	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2246		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2247	else
2248		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2249
2250	REG_WRITE(ah, AR_SLEEP2,
2251		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2252
2253	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2254	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2255
2256	REGWRITE_BUFFER_FLUSH(ah);
2257
2258	REG_SET_BIT(ah, AR_TIMER_MODE,
2259		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2260		    AR_DTIM_TIMER_EN);
2261
2262	/* TSF Out of Range Threshold */
2263	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2264}
2265EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2266
2267/*******************/
2268/* HW Capabilities */
2269/*******************/
2270
2271static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2272{
2273	eeprom_chainmask &= chip_chainmask;
2274	if (eeprom_chainmask)
2275		return eeprom_chainmask;
2276	else
2277		return chip_chainmask;
2278}
2279
2280int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2281{
2282	struct ath9k_hw_capabilities *pCap = &ah->caps;
2283	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2284	struct ath_common *common = ath9k_hw_common(ah);
2285	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2286	unsigned int chip_chainmask;
2287
2288	u16 eeval;
2289	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2290
2291	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2292	regulatory->current_rd = eeval;
2293
2294	if (ah->opmode != NL80211_IFTYPE_AP &&
2295	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2296		if (regulatory->current_rd == 0x64 ||
2297		    regulatory->current_rd == 0x65)
2298			regulatory->current_rd += 5;
2299		else if (regulatory->current_rd == 0x41)
2300			regulatory->current_rd = 0x43;
2301		ath_dbg(common, ATH_DBG_REGULATORY,
2302			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2303	}
2304
2305	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2306	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2307		ath_err(common,
2308			"no band has been marked as supported in EEPROM\n");
2309		return -EINVAL;
2310	}
2311
2312	if (eeval & AR5416_OPFLAGS_11A)
2313		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2314
2315	if (eeval & AR5416_OPFLAGS_11G)
2316		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2317
2318	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2319		chip_chainmask = 1;
2320	else if (AR_SREV_9462(ah))
2321		chip_chainmask = 3;
2322	else if (!AR_SREV_9280_20_OR_LATER(ah))
2323		chip_chainmask = 7;
2324	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2325		chip_chainmask = 3;
2326	else
2327		chip_chainmask = 7;
2328
2329	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2330	/*
2331	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2332	 * the EEPROM.
2333	 */
2334	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2335	    !(eeval & AR5416_OPFLAGS_11A) &&
2336	    !(AR_SREV_9271(ah)))
2337		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2338		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2339	else if (AR_SREV_9100(ah))
2340		pCap->rx_chainmask = 0x7;
2341	else
2342		/* Use rx_chainmask from EEPROM. */
2343		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2344
2345	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2346	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2347	ah->txchainmask = pCap->tx_chainmask;
2348	ah->rxchainmask = pCap->rx_chainmask;
2349
2350	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2351
2352	/* enable key search for every frame in an aggregate */
2353	if (AR_SREV_9300_20_OR_LATER(ah))
2354		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2355
2356	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2357
2358	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2359		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2360	else
2361		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2362
2363	if (AR_SREV_9271(ah))
2364		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2365	else if (AR_DEVID_7010(ah))
2366		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2367	else if (AR_SREV_9300_20_OR_LATER(ah))
2368		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2369	else if (AR_SREV_9287_11_OR_LATER(ah))
2370		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2371	else if (AR_SREV_9285_12_OR_LATER(ah))
2372		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2373	else if (AR_SREV_9280_20_OR_LATER(ah))
2374		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2375	else
2376		pCap->num_gpio_pins = AR_NUM_GPIO;
2377
2378	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2379		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2380		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2381	} else {
2382		pCap->rts_aggr_limit = (8 * 1024);
2383	}
2384
2385#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2386	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2387	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2388		ah->rfkill_gpio =
2389			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2390		ah->rfkill_polarity =
2391			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2392
2393		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2394	}
2395#endif
2396	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2397		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2398	else
2399		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2400
2401	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2402		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2403	else
2404		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2405
2406	if (common->btcoex_enabled) {
2407		if (AR_SREV_9462(ah))
2408			btcoex_hw->scheme = ATH_BTCOEX_CFG_MCI;
2409		else if (AR_SREV_9300_20_OR_LATER(ah)) {
2410			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2411			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2412			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2413			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2414		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2415			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2416			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2417
2418			if (AR_SREV_9285(ah)) {
2419				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2420				btcoex_hw->btpriority_gpio =
2421						ATH_BTPRIORITY_GPIO_9285;
2422			} else {
2423				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2424			}
2425		}
2426	} else {
2427		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2428	}
2429
2430	if (AR_SREV_9300_20_OR_LATER(ah)) {
2431		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2432		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2433			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2434
2435		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2436		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2437		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2438		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2439		pCap->txs_len = sizeof(struct ar9003_txs);
2440		if (!ah->config.paprd_disable &&
2441		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2442			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2443	} else {
2444		pCap->tx_desc_len = sizeof(struct ath_desc);
2445		if (AR_SREV_9280_20(ah))
2446			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2447	}
2448
2449	if (AR_SREV_9300_20_OR_LATER(ah))
2450		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2451
2452	if (AR_SREV_9300_20_OR_LATER(ah))
2453		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2454
2455	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2456		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2457
2458	if (AR_SREV_9285(ah))
2459		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2460			ant_div_ctl1 =
2461				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2462			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2463				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2464		}
2465	if (AR_SREV_9300_20_OR_LATER(ah)) {
2466		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2467			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2468	}
2469
2470
2471	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2472		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2473		/*
2474		 * enable the diversity-combining algorithm only when
2475		 * both enable_lna_div and enable_fast_div are set
2476		 *		Table for Diversity
2477		 * ant_div_alt_lnaconf		bit 0-1
2478		 * ant_div_main_lnaconf		bit 2-3
2479		 * ant_div_alt_gaintb		bit 4
2480		 * ant_div_main_gaintb		bit 5
2481		 * enable_ant_div_lnadiv	bit 6
2482		 * enable_ant_fast_div		bit 7
2483		 */
2484		if ((ant_div_ctl1 >> 0x6) == 0x3)
2485			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2486	}
2487
2488	if (AR_SREV_9485_10(ah)) {
2489		pCap->pcie_lcr_extsync_en = true;
2490		pCap->pcie_lcr_offset = 0x80;
2491	}
2492
2493	tx_chainmask = pCap->tx_chainmask;
2494	rx_chainmask = pCap->rx_chainmask;
2495	while (tx_chainmask || rx_chainmask) {
2496		if (tx_chainmask & BIT(0))
2497			pCap->max_txchains++;
2498		if (rx_chainmask & BIT(0))
2499			pCap->max_rxchains++;
2500
2501		tx_chainmask >>= 1;
2502		rx_chainmask >>= 1;
2503	}
2504
2505	if (AR_SREV_9300_20_OR_LATER(ah)) {
2506		ah->enabled_cals |= TX_IQ_CAL;
2507		if (AR_SREV_9485_OR_LATER(ah))
2508			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2509	}
2510	if (AR_SREV_9462(ah))
2511		pCap->hw_caps |= ATH9K_HW_CAP_RTT | ATH9K_HW_CAP_MCI;
2512
2513	return 0;
2514}
2515
2516/****************************/
2517/* GPIO / RFKILL / Antennae */
2518/****************************/
2519
2520static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2521					 u32 gpio, u32 type)
2522{
2523	int addr;
2524	u32 gpio_shift, tmp;
2525
2526	if (gpio > 11)
2527		addr = AR_GPIO_OUTPUT_MUX3;
2528	else if (gpio > 5)
2529		addr = AR_GPIO_OUTPUT_MUX2;
2530	else
2531		addr = AR_GPIO_OUTPUT_MUX1;
2532
2533	gpio_shift = (gpio % 6) * 5;
2534
2535	if (AR_SREV_9280_20_OR_LATER(ah)
2536	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2537		REG_RMW(ah, addr, (type << gpio_shift),
2538			(0x1f << gpio_shift));
2539	} else {
2540		tmp = REG_READ(ah, addr);
2541		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2542		tmp &= ~(0x1f << gpio_shift);
2543		tmp |= (type << gpio_shift);
2544		REG_WRITE(ah, addr, tmp);
2545	}
2546}
2547
2548void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2549{
2550	u32 gpio_shift;
2551
2552	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2553
2554	if (AR_DEVID_7010(ah)) {
2555		gpio_shift = gpio;
2556		REG_RMW(ah, AR7010_GPIO_OE,
2557			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2558			(AR7010_GPIO_OE_MASK << gpio_shift));
2559		return;
2560	}
2561
2562	gpio_shift = gpio << 1;
2563	REG_RMW(ah,
2564		AR_GPIO_OE_OUT,
2565		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2566		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2567}
2568EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2569
2570u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2571{
2572#define MS_REG_READ(x, y) \
2573	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2574
2575	if (gpio >= ah->caps.num_gpio_pins)
2576		return 0xffffffff;
2577
2578	if (AR_DEVID_7010(ah)) {
2579		u32 val;
2580		val = REG_READ(ah, AR7010_GPIO_IN);
2581		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2582	} else if (AR_SREV_9300_20_OR_LATER(ah))
2583		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2584			AR_GPIO_BIT(gpio)) != 0;
2585	else if (AR_SREV_9271(ah))
2586		return MS_REG_READ(AR9271, gpio) != 0;
2587	else if (AR_SREV_9287_11_OR_LATER(ah))
2588		return MS_REG_READ(AR9287, gpio) != 0;
2589	else if (AR_SREV_9285_12_OR_LATER(ah))
2590		return MS_REG_READ(AR9285, gpio) != 0;
2591	else if (AR_SREV_9280_20_OR_LATER(ah))
2592		return MS_REG_READ(AR928X, gpio) != 0;
2593	else
2594		return MS_REG_READ(AR, gpio) != 0;
2595}
2596EXPORT_SYMBOL(ath9k_hw_gpio_get);
2597
2598void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2599			 u32 ah_signal_type)
2600{
2601	u32 gpio_shift;
2602
2603	if (AR_DEVID_7010(ah)) {
2604		gpio_shift = gpio;
2605		REG_RMW(ah, AR7010_GPIO_OE,
2606			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2607			(AR7010_GPIO_OE_MASK << gpio_shift));
2608		return;
2609	}
2610
2611	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2612	gpio_shift = 2 * gpio;
2613	REG_RMW(ah,
2614		AR_GPIO_OE_OUT,
2615		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2616		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2617}
2618EXPORT_SYMBOL(ath9k_hw_cfg_output);
2619
2620void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2621{
2622	if (AR_DEVID_7010(ah)) {
2623		val = val ? 0 : 1;
2624		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2625			AR_GPIO_BIT(gpio));
2626		return;
2627	}
2628
2629	if (AR_SREV_9271(ah))
2630		val = ~val;
2631
2632	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2633		AR_GPIO_BIT(gpio));
2634}
2635EXPORT_SYMBOL(ath9k_hw_set_gpio);
2636
2637u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2638{
2639	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2640}
2641EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2642
2643void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2644{
2645	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2646}
2647EXPORT_SYMBOL(ath9k_hw_setantenna);
2648
2649/*********************/
2650/* General Operation */
2651/*********************/
2652
2653u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2654{
2655	u32 bits = REG_READ(ah, AR_RX_FILTER);
2656	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2657
2658	if (phybits & AR_PHY_ERR_RADAR)
2659		bits |= ATH9K_RX_FILTER_PHYRADAR;
2660	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2661		bits |= ATH9K_RX_FILTER_PHYERR;
2662
2663	return bits;
2664}
2665EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2666
2667void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2668{
2669	u32 phybits;
2670
2671	ENABLE_REGWRITE_BUFFER(ah);
2672
2673	if (AR_SREV_9462(ah))
2674		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2675
2676	REG_WRITE(ah, AR_RX_FILTER, bits);
2677
2678	phybits = 0;
2679	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2680		phybits |= AR_PHY_ERR_RADAR;
2681	if (bits & ATH9K_RX_FILTER_PHYERR)
2682		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2683	REG_WRITE(ah, AR_PHY_ERR, phybits);
2684
2685	if (phybits)
2686		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2687	else
2688		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2689
2690	REGWRITE_BUFFER_FLUSH(ah);
2691}
2692EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2693
2694bool ath9k_hw_phy_disable(struct ath_hw *ah)
2695{
2696	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2697		return false;
2698
2699	ath9k_hw_init_pll(ah, NULL);
2700	return true;
2701}
2702EXPORT_SYMBOL(ath9k_hw_phy_disable);
2703
2704bool ath9k_hw_disable(struct ath_hw *ah)
2705{
2706	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2707		return false;
2708
2709	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2710		return false;
2711
2712	ath9k_hw_init_pll(ah, NULL);
2713	return true;
2714}
2715EXPORT_SYMBOL(ath9k_hw_disable);
2716
2717static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2718{
2719	enum eeprom_param gain_param;
2720
2721	if (IS_CHAN_2GHZ(chan))
2722		gain_param = EEP_ANTENNA_GAIN_2G;
2723	else
2724		gain_param = EEP_ANTENNA_GAIN_5G;
2725
2726	return ah->eep_ops->get_eeprom(ah, gain_param);
2727}
2728
2729void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2730{
2731	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2732	struct ieee80211_channel *channel;
2733	int chan_pwr, new_pwr, max_gain;
2734	int ant_gain, ant_reduction = 0;
2735
2736	if (!chan)
2737		return;
2738
2739	channel = chan->chan;
2740	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2741	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2742	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2743
2744	ant_gain = get_antenna_gain(ah, chan);
2745	if (ant_gain > max_gain)
2746		ant_reduction = ant_gain - max_gain;
2747
2748	ah->eep_ops->set_txpower(ah, chan,
2749				 ath9k_regd_get_ctl(reg, chan),
2750				 ant_reduction, new_pwr, false);
2751}
2752
2753void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2754{
2755	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2756	struct ath9k_channel *chan = ah->curchan;
2757	struct ieee80211_channel *channel = chan->chan;
2758
2759	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2760	if (test)
2761		channel->max_power = MAX_RATE_POWER / 2;
2762
2763	ath9k_hw_apply_txpower(ah, chan);
2764
2765	if (test)
2766		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2767}
2768EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2769
2770void ath9k_hw_setopmode(struct ath_hw *ah)
2771{
2772	ath9k_hw_set_operating_mode(ah, ah->opmode);
2773}
2774EXPORT_SYMBOL(ath9k_hw_setopmode);
2775
2776void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2777{
2778	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2779	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2780}
2781EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2782
2783void ath9k_hw_write_associd(struct ath_hw *ah)
2784{
2785	struct ath_common *common = ath9k_hw_common(ah);
2786
2787	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2788	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2789		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2790}
2791EXPORT_SYMBOL(ath9k_hw_write_associd);
2792
2793#define ATH9K_MAX_TSF_READ 10
2794
2795u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2796{
2797	u32 tsf_lower, tsf_upper1, tsf_upper2;
2798	int i;
2799
2800	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2801	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2802		tsf_lower = REG_READ(ah, AR_TSF_L32);
2803		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2804		if (tsf_upper2 == tsf_upper1)
2805			break;
2806		tsf_upper1 = tsf_upper2;
2807	}
2808
2809	WARN_ON( i == ATH9K_MAX_TSF_READ );
2810
2811	return (((u64)tsf_upper1 << 32) | tsf_lower);
2812}
2813EXPORT_SYMBOL(ath9k_hw_gettsf64);
2814
2815void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2816{
2817	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2818	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2819}
2820EXPORT_SYMBOL(ath9k_hw_settsf64);
2821
2822void ath9k_hw_reset_tsf(struct ath_hw *ah)
2823{
2824	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2825			   AH_TSF_WRITE_TIMEOUT))
2826		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2827			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2828
2829	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2830}
2831EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2832
2833void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2834{
2835	if (setting)
2836		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2837	else
2838		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2839}
2840EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2841
2842void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2843{
2844	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2845	u32 macmode;
2846
2847	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2848		macmode = AR_2040_JOINED_RX_CLEAR;
2849	else
2850		macmode = 0;
2851
2852	REG_WRITE(ah, AR_2040_MODE, macmode);
2853}
2854
2855/* HW Generic timers configuration */
2856
2857static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2858{
2859	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2860	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2861	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2862	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2863	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2864	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2865	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2866	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2867	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2868	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2869				AR_NDP2_TIMER_MODE, 0x0002},
2870	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2871				AR_NDP2_TIMER_MODE, 0x0004},
2872	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2873				AR_NDP2_TIMER_MODE, 0x0008},
2874	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2875				AR_NDP2_TIMER_MODE, 0x0010},
2876	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2877				AR_NDP2_TIMER_MODE, 0x0020},
2878	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2879				AR_NDP2_TIMER_MODE, 0x0040},
2880	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2881				AR_NDP2_TIMER_MODE, 0x0080}
2882};
2883
2884/* HW generic timer primitives */
2885
2886/* compute and clear index of rightmost 1 */
2887static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2888{
2889	u32 b;
2890
2891	b = *mask;
2892	b &= (0-b);
2893	*mask &= ~b;
2894	b *= debruijn32;
2895	b >>= 27;
2896
2897	return timer_table->gen_timer_index[b];
2898}
2899
2900u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2901{
2902	return REG_READ(ah, AR_TSF_L32);
2903}
2904EXPORT_SYMBOL(ath9k_hw_gettsf32);
2905
2906struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2907					  void (*trigger)(void *),
2908					  void (*overflow)(void *),
2909					  void *arg,
2910					  u8 timer_index)
2911{
2912	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2913	struct ath_gen_timer *timer;
2914
2915	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2916
2917	if (timer == NULL) {
2918		ath_err(ath9k_hw_common(ah),
2919			"Failed to allocate memory for hw timer[%d]\n",
2920			timer_index);
2921		return NULL;
2922	}
2923
2924	/* allocate a hardware generic timer slot */
2925	timer_table->timers[timer_index] = timer;
2926	timer->index = timer_index;
2927	timer->trigger = trigger;
2928	timer->overflow = overflow;
2929	timer->arg = arg;
2930
2931	return timer;
2932}
2933EXPORT_SYMBOL(ath_gen_timer_alloc);
2934
2935void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2936			      struct ath_gen_timer *timer,
2937			      u32 trig_timeout,
2938			      u32 timer_period)
2939{
2940	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2941	u32 tsf, timer_next;
2942
2943	BUG_ON(!timer_period);
2944
2945	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2946
2947	tsf = ath9k_hw_gettsf32(ah);
2948
2949	timer_next = tsf + trig_timeout;
2950
2951	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2952		"current tsf %x period %x timer_next %x\n",
2953		tsf, timer_period, timer_next);
2954
2955	/*
2956	 * Program generic timer registers
2957	 */
2958	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2959		 timer_next);
2960	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2961		  timer_period);
2962	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2963		    gen_tmr_configuration[timer->index].mode_mask);
2964
2965	if (AR_SREV_9462(ah)) {
2966		/*
2967		 * Starting from AR9462, each generic timer can select which tsf
2968		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2969		 * 8 - 15  use tsf2.
2970		 */
2971		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2972			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2973				       (1 << timer->index));
2974		else
2975			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2976				       (1 << timer->index));
2977	}
2978
2979	/* Enable both trigger and thresh interrupt masks */
2980	REG_SET_BIT(ah, AR_IMR_S5,
2981		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2982		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2983}
2984EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2985
2986void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2987{
2988	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2989
2990	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2991		(timer->index >= ATH_MAX_GEN_TIMER)) {
2992		return;
2993	}
2994
2995	/* Clear generic timer enable bits. */
2996	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2997			gen_tmr_configuration[timer->index].mode_mask);
2998
2999	/* Disable both trigger and thresh interrupt masks */
3000	REG_CLR_BIT(ah, AR_IMR_S5,
3001		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3002		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3003
3004	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3005}
3006EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3007
3008void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3009{
3010	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3011
3012	/* free the hardware generic timer slot */
3013	timer_table->timers[timer->index] = NULL;
3014	kfree(timer);
3015}
3016EXPORT_SYMBOL(ath_gen_timer_free);
3017
3018/*
3019 * Generic Timer Interrupts handling
3020 */
3021void ath_gen_timer_isr(struct ath_hw *ah)
3022{
3023	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3024	struct ath_gen_timer *timer;
3025	struct ath_common *common = ath9k_hw_common(ah);
3026	u32 trigger_mask, thresh_mask, index;
3027
3028	/* get hardware generic timer interrupt status */
3029	trigger_mask = ah->intr_gen_timer_trigger;
3030	thresh_mask = ah->intr_gen_timer_thresh;
3031	trigger_mask &= timer_table->timer_mask.val;
3032	thresh_mask &= timer_table->timer_mask.val;
3033
3034	trigger_mask &= ~thresh_mask;
3035
3036	while (thresh_mask) {
3037		index = rightmost_index(timer_table, &thresh_mask);
3038		timer = timer_table->timers[index];
3039		BUG_ON(!timer);
3040		ath_dbg(common, ATH_DBG_HWTIMER,
3041			"TSF overflow for Gen timer %d\n", index);
3042		timer->overflow(timer->arg);
3043	}
3044
3045	while (trigger_mask) {
3046		index = rightmost_index(timer_table, &trigger_mask);
3047		timer = timer_table->timers[index];
3048		BUG_ON(!timer);
3049		ath_dbg(common, ATH_DBG_HWTIMER,
3050			"Gen timer[%d] trigger\n", index);
3051		timer->trigger(timer->arg);
3052	}
3053}
3054EXPORT_SYMBOL(ath_gen_timer_isr);
3055
3056/********/
3057/* HTC  */
3058/********/
3059
3060void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3061{
3062	ah->htc_reset_init = true;
3063}
3064EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3065
3066static struct {
3067	u32 version;
3068	const char * name;
3069} ath_mac_bb_names[] = {
3070	/* Devices with external radios */
3071	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3072	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3073	{ AR_SREV_VERSION_9100,		"9100" },
3074	{ AR_SREV_VERSION_9160,		"9160" },
3075	/* Single-chip solutions */
3076	{ AR_SREV_VERSION_9280,		"9280" },
3077	{ AR_SREV_VERSION_9285,		"9285" },
3078	{ AR_SREV_VERSION_9287,         "9287" },
3079	{ AR_SREV_VERSION_9271,         "9271" },
3080	{ AR_SREV_VERSION_9300,         "9300" },
3081	{ AR_SREV_VERSION_9330,         "9330" },
3082	{ AR_SREV_VERSION_9340,		"9340" },
3083	{ AR_SREV_VERSION_9485,         "9485" },
3084	{ AR_SREV_VERSION_9462,         "9462" },
3085};
3086
3087/* For devices with external radios */
3088static struct {
3089	u16 version;
3090	const char * name;
3091} ath_rf_names[] = {
3092	{ 0,				"5133" },
3093	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3094	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3095	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3096	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3097};
3098
3099/*
3100 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3101 */
3102static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3103{
3104	int i;
3105
3106	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3107		if (ath_mac_bb_names[i].version == mac_bb_version) {
3108			return ath_mac_bb_names[i].name;
3109		}
3110	}
3111
3112	return "????";
3113}
3114
3115/*
3116 * Return the RF name. "????" is returned if the RF is unknown.
3117 * Used for devices with external radios.
3118 */
3119static const char *ath9k_hw_rf_name(u16 rf_version)
3120{
3121	int i;
3122
3123	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3124		if (ath_rf_names[i].version == rf_version) {
3125			return ath_rf_names[i].name;
3126		}
3127	}
3128
3129	return "????";
3130}
3131
3132void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3133{
3134	int used;
3135
3136	/* chipsets >= AR9280 are single-chip */
3137	if (AR_SREV_9280_20_OR_LATER(ah)) {
3138		used = snprintf(hw_name, len,
3139			       "Atheros AR%s Rev:%x",
3140			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3141			       ah->hw_version.macRev);
3142	}
3143	else {
3144		used = snprintf(hw_name, len,
3145			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3146			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3147			       ah->hw_version.macRev,
3148			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3149						AR_RADIO_SREV_MAJOR)),
3150			       ah->hw_version.phyRev);
3151	}
3152
3153	hw_name[used] = '\0';
3154}
3155EXPORT_SYMBOL(ath9k_hw_name);
3156