hw.c revision 6054069a03f77ffa686e2dfd5f07cff8ee40b72d
1/* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17#include <linux/io.h> 18#include <linux/slab.h> 19#include <asm/unaligned.h> 20 21#include "hw.h" 22#include "hw-ops.h" 23#include "rc.h" 24#include "ar9003_mac.h" 25 26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 27 28MODULE_AUTHOR("Atheros Communications"); 29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 31MODULE_LICENSE("Dual BSD/GPL"); 32 33static int __init ath9k_init(void) 34{ 35 return 0; 36} 37module_init(ath9k_init); 38 39static void __exit ath9k_exit(void) 40{ 41 return; 42} 43module_exit(ath9k_exit); 44 45/* Private hardware callbacks */ 46 47static void ath9k_hw_init_cal_settings(struct ath_hw *ah) 48{ 49 ath9k_hw_private_ops(ah)->init_cal_settings(ah); 50} 51 52static void ath9k_hw_init_mode_regs(struct ath_hw *ah) 53{ 54 ath9k_hw_private_ops(ah)->init_mode_regs(ah); 55} 56 57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, 58 struct ath9k_channel *chan) 59{ 60 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); 61} 62 63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) 64{ 65 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) 66 return; 67 68 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); 69} 70 71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) 72{ 73 /* You will not have this callback if using the old ANI */ 74 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) 75 return; 76 77 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); 78} 79 80/********************/ 81/* Helper Functions */ 82/********************/ 83 84static void ath9k_hw_set_clockrate(struct ath_hw *ah) 85{ 86 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 87 struct ath_common *common = ath9k_hw_common(ah); 88 unsigned int clockrate; 89 90 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 91 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 92 clockrate = 117; 93 else if (!ah->curchan) /* should really check for CCK instead */ 94 clockrate = ATH9K_CLOCK_RATE_CCK; 95 else if (conf->channel->band == IEEE80211_BAND_2GHZ) 96 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 97 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 98 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 99 else 100 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 101 102 if (conf_is_ht40(conf)) 103 clockrate *= 2; 104 105 if (ah->curchan) { 106 if (IS_CHAN_HALF_RATE(ah->curchan)) 107 clockrate /= 2; 108 if (IS_CHAN_QUARTER_RATE(ah->curchan)) 109 clockrate /= 4; 110 } 111 112 common->clockrate = clockrate; 113} 114 115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 116{ 117 struct ath_common *common = ath9k_hw_common(ah); 118 119 return usecs * common->clockrate; 120} 121 122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 123{ 124 int i; 125 126 BUG_ON(timeout < AH_TIME_QUANTUM); 127 128 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 129 if ((REG_READ(ah, reg) & mask) == val) 130 return true; 131 132 udelay(AH_TIME_QUANTUM); 133 } 134 135 ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY, 136 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 137 timeout, reg, REG_READ(ah, reg), mask, val); 138 139 return false; 140} 141EXPORT_SYMBOL(ath9k_hw_wait); 142 143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array, 144 int column, unsigned int *writecnt) 145{ 146 int r; 147 148 ENABLE_REGWRITE_BUFFER(ah); 149 for (r = 0; r < array->ia_rows; r++) { 150 REG_WRITE(ah, INI_RA(array, r, 0), 151 INI_RA(array, r, column)); 152 DO_DELAY(*writecnt); 153 } 154 REGWRITE_BUFFER_FLUSH(ah); 155} 156 157u32 ath9k_hw_reverse_bits(u32 val, u32 n) 158{ 159 u32 retval; 160 int i; 161 162 for (i = 0, retval = 0; i < n; i++) { 163 retval = (retval << 1) | (val & 1); 164 val >>= 1; 165 } 166 return retval; 167} 168 169u16 ath9k_hw_computetxtime(struct ath_hw *ah, 170 u8 phy, int kbps, 171 u32 frameLen, u16 rateix, 172 bool shortPreamble) 173{ 174 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 175 176 if (kbps == 0) 177 return 0; 178 179 switch (phy) { 180 case WLAN_RC_PHY_CCK: 181 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 182 if (shortPreamble) 183 phyTime >>= 1; 184 numBits = frameLen << 3; 185 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 186 break; 187 case WLAN_RC_PHY_OFDM: 188 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 189 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 190 numBits = OFDM_PLCP_BITS + (frameLen << 3); 191 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 192 txTime = OFDM_SIFS_TIME_QUARTER 193 + OFDM_PREAMBLE_TIME_QUARTER 194 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 195 } else if (ah->curchan && 196 IS_CHAN_HALF_RATE(ah->curchan)) { 197 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 198 numBits = OFDM_PLCP_BITS + (frameLen << 3); 199 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 200 txTime = OFDM_SIFS_TIME_HALF + 201 OFDM_PREAMBLE_TIME_HALF 202 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 203 } else { 204 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 205 numBits = OFDM_PLCP_BITS + (frameLen << 3); 206 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 207 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 208 + (numSymbols * OFDM_SYMBOL_TIME); 209 } 210 break; 211 default: 212 ath_err(ath9k_hw_common(ah), 213 "Unknown phy %u (rate ix %u)\n", phy, rateix); 214 txTime = 0; 215 break; 216 } 217 218 return txTime; 219} 220EXPORT_SYMBOL(ath9k_hw_computetxtime); 221 222void ath9k_hw_get_channel_centers(struct ath_hw *ah, 223 struct ath9k_channel *chan, 224 struct chan_centers *centers) 225{ 226 int8_t extoff; 227 228 if (!IS_CHAN_HT40(chan)) { 229 centers->ctl_center = centers->ext_center = 230 centers->synth_center = chan->channel; 231 return; 232 } 233 234 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 235 (chan->chanmode == CHANNEL_G_HT40PLUS)) { 236 centers->synth_center = 237 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 238 extoff = 1; 239 } else { 240 centers->synth_center = 241 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 242 extoff = -1; 243 } 244 245 centers->ctl_center = 246 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 247 /* 25 MHz spacing is supported by hw but not on upper layers */ 248 centers->ext_center = 249 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 250} 251 252/******************/ 253/* Chip Revisions */ 254/******************/ 255 256static void ath9k_hw_read_revisions(struct ath_hw *ah) 257{ 258 u32 val; 259 260 switch (ah->hw_version.devid) { 261 case AR5416_AR9100_DEVID: 262 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 263 break; 264 case AR9300_DEVID_AR9330: 265 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 266 if (ah->get_mac_revision) { 267 ah->hw_version.macRev = ah->get_mac_revision(); 268 } else { 269 val = REG_READ(ah, AR_SREV); 270 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 271 } 272 return; 273 case AR9300_DEVID_AR9340: 274 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 275 val = REG_READ(ah, AR_SREV); 276 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 277 return; 278 } 279 280 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 281 282 if (val == 0xFF) { 283 val = REG_READ(ah, AR_SREV); 284 ah->hw_version.macVersion = 285 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 286 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 287 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 288 } else { 289 if (!AR_SREV_9100(ah)) 290 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 291 292 ah->hw_version.macRev = val & AR_SREV_REVISION; 293 294 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 295 ah->is_pciexpress = true; 296 } 297} 298 299/************************************/ 300/* HW Attach, Detach, Init Routines */ 301/************************************/ 302 303static void ath9k_hw_disablepcie(struct ath_hw *ah) 304{ 305 if (!AR_SREV_5416(ah)) 306 return; 307 308 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 309 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 310 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 311 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 312 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 313 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 314 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 315 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 316 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 317 318 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 319} 320 321/* This should work for all families including legacy */ 322static bool ath9k_hw_chip_test(struct ath_hw *ah) 323{ 324 struct ath_common *common = ath9k_hw_common(ah); 325 u32 regAddr[2] = { AR_STA_ID0 }; 326 u32 regHold[2]; 327 static const u32 patternData[4] = { 328 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 329 }; 330 int i, j, loop_max; 331 332 if (!AR_SREV_9300_20_OR_LATER(ah)) { 333 loop_max = 2; 334 regAddr[1] = AR_PHY_BASE + (8 << 2); 335 } else 336 loop_max = 1; 337 338 for (i = 0; i < loop_max; i++) { 339 u32 addr = regAddr[i]; 340 u32 wrData, rdData; 341 342 regHold[i] = REG_READ(ah, addr); 343 for (j = 0; j < 0x100; j++) { 344 wrData = (j << 16) | j; 345 REG_WRITE(ah, addr, wrData); 346 rdData = REG_READ(ah, addr); 347 if (rdData != wrData) { 348 ath_err(common, 349 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 350 addr, wrData, rdData); 351 return false; 352 } 353 } 354 for (j = 0; j < 4; j++) { 355 wrData = patternData[j]; 356 REG_WRITE(ah, addr, wrData); 357 rdData = REG_READ(ah, addr); 358 if (wrData != rdData) { 359 ath_err(common, 360 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 361 addr, wrData, rdData); 362 return false; 363 } 364 } 365 REG_WRITE(ah, regAddr[i], regHold[i]); 366 } 367 udelay(100); 368 369 return true; 370} 371 372static void ath9k_hw_init_config(struct ath_hw *ah) 373{ 374 int i; 375 376 ah->config.dma_beacon_response_time = 2; 377 ah->config.sw_beacon_response_time = 10; 378 ah->config.additional_swba_backoff = 0; 379 ah->config.ack_6mb = 0x0; 380 ah->config.cwm_ignore_extcca = 0; 381 ah->config.pcie_powersave_enable = 0; 382 ah->config.pcie_clock_req = 0; 383 ah->config.pcie_waen = 0; 384 ah->config.analog_shiftreg = 1; 385 ah->config.enable_ani = true; 386 387 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 388 ah->config.spurchans[i][0] = AR_NO_SPUR; 389 ah->config.spurchans[i][1] = AR_NO_SPUR; 390 } 391 392 /* PAPRD needs some more work to be enabled */ 393 ah->config.paprd_disable = 1; 394 395 ah->config.rx_intr_mitigation = true; 396 ah->config.pcieSerDesWrite = true; 397 398 /* 399 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 400 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 401 * This means we use it for all AR5416 devices, and the few 402 * minor PCI AR9280 devices out there. 403 * 404 * Serialization is required because these devices do not handle 405 * well the case of two concurrent reads/writes due to the latency 406 * involved. During one read/write another read/write can be issued 407 * on another CPU while the previous read/write may still be working 408 * on our hardware, if we hit this case the hardware poops in a loop. 409 * We prevent this by serializing reads and writes. 410 * 411 * This issue is not present on PCI-Express devices or pre-AR5416 412 * devices (legacy, 802.11abg). 413 */ 414 if (num_possible_cpus() > 1) 415 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 416} 417 418static void ath9k_hw_init_defaults(struct ath_hw *ah) 419{ 420 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 421 422 regulatory->country_code = CTRY_DEFAULT; 423 regulatory->power_limit = MAX_RATE_POWER; 424 regulatory->tp_scale = ATH9K_TP_SCALE_MAX; 425 426 ah->hw_version.magic = AR5416_MAGIC; 427 ah->hw_version.subvendorid = 0; 428 429 ah->atim_window = 0; 430 ah->sta_id1_defaults = 431 AR_STA_ID1_CRPT_MIC_ENABLE | 432 AR_STA_ID1_MCAST_KSRCH; 433 if (AR_SREV_9100(ah)) 434 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 435 ah->enable_32kHz_clock = DONT_USE_32KHZ; 436 ah->slottime = 20; 437 ah->globaltxtimeout = (u32) -1; 438 ah->power_mode = ATH9K_PM_UNDEFINED; 439} 440 441static int ath9k_hw_init_macaddr(struct ath_hw *ah) 442{ 443 struct ath_common *common = ath9k_hw_common(ah); 444 u32 sum; 445 int i; 446 u16 eeval; 447 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 448 449 sum = 0; 450 for (i = 0; i < 3; i++) { 451 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 452 sum += eeval; 453 common->macaddr[2 * i] = eeval >> 8; 454 common->macaddr[2 * i + 1] = eeval & 0xff; 455 } 456 if (sum == 0 || sum == 0xffff * 3) 457 return -EADDRNOTAVAIL; 458 459 return 0; 460} 461 462static int ath9k_hw_post_init(struct ath_hw *ah) 463{ 464 struct ath_common *common = ath9k_hw_common(ah); 465 int ecode; 466 467 if (common->bus_ops->ath_bus_type != ATH_USB) { 468 if (!ath9k_hw_chip_test(ah)) 469 return -ENODEV; 470 } 471 472 if (!AR_SREV_9300_20_OR_LATER(ah)) { 473 ecode = ar9002_hw_rf_claim(ah); 474 if (ecode != 0) 475 return ecode; 476 } 477 478 ecode = ath9k_hw_eeprom_init(ah); 479 if (ecode != 0) 480 return ecode; 481 482 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG, 483 "Eeprom VER: %d, REV: %d\n", 484 ah->eep_ops->get_eeprom_ver(ah), 485 ah->eep_ops->get_eeprom_rev(ah)); 486 487 ecode = ath9k_hw_rf_alloc_ext_banks(ah); 488 if (ecode) { 489 ath_err(ath9k_hw_common(ah), 490 "Failed allocating banks for external radio\n"); 491 ath9k_hw_rf_free_ext_banks(ah); 492 return ecode; 493 } 494 495 if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) { 496 ath9k_hw_ani_setup(ah); 497 ath9k_hw_ani_init(ah); 498 } 499 500 return 0; 501} 502 503static void ath9k_hw_attach_ops(struct ath_hw *ah) 504{ 505 if (AR_SREV_9300_20_OR_LATER(ah)) 506 ar9003_hw_attach_ops(ah); 507 else 508 ar9002_hw_attach_ops(ah); 509} 510 511/* Called for all hardware families */ 512static int __ath9k_hw_init(struct ath_hw *ah) 513{ 514 struct ath_common *common = ath9k_hw_common(ah); 515 int r = 0; 516 517 ath9k_hw_read_revisions(ah); 518 519 /* 520 * Read back AR_WA into a permanent copy and set bits 14 and 17. 521 * We need to do this to avoid RMW of this register. We cannot 522 * read the reg when chip is asleep. 523 */ 524 ah->WARegVal = REG_READ(ah, AR_WA); 525 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 526 AR_WA_ASPM_TIMER_BASED_DISABLE); 527 528 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 529 ath_err(common, "Couldn't reset chip\n"); 530 return -EIO; 531 } 532 533 ath9k_hw_init_defaults(ah); 534 ath9k_hw_init_config(ah); 535 536 ath9k_hw_attach_ops(ah); 537 538 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 539 ath_err(common, "Couldn't wakeup chip\n"); 540 return -EIO; 541 } 542 543 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 544 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 545 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) && 546 !ah->is_pciexpress)) { 547 ah->config.serialize_regmode = 548 SER_REG_MODE_ON; 549 } else { 550 ah->config.serialize_regmode = 551 SER_REG_MODE_OFF; 552 } 553 } 554 555 ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n", 556 ah->config.serialize_regmode); 557 558 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 559 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 560 else 561 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 562 563 switch (ah->hw_version.macVersion) { 564 case AR_SREV_VERSION_5416_PCI: 565 case AR_SREV_VERSION_5416_PCIE: 566 case AR_SREV_VERSION_9160: 567 case AR_SREV_VERSION_9100: 568 case AR_SREV_VERSION_9280: 569 case AR_SREV_VERSION_9285: 570 case AR_SREV_VERSION_9287: 571 case AR_SREV_VERSION_9271: 572 case AR_SREV_VERSION_9300: 573 case AR_SREV_VERSION_9330: 574 case AR_SREV_VERSION_9485: 575 case AR_SREV_VERSION_9340: 576 break; 577 default: 578 ath_err(common, 579 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 580 ah->hw_version.macVersion, ah->hw_version.macRev); 581 return -EOPNOTSUPP; 582 } 583 584 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 585 AR_SREV_9330(ah)) 586 ah->is_pciexpress = false; 587 588 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 589 ath9k_hw_init_cal_settings(ah); 590 591 ah->ani_function = ATH9K_ANI_ALL; 592 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 593 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; 594 if (!AR_SREV_9300_20_OR_LATER(ah)) 595 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 596 597 ath9k_hw_init_mode_regs(ah); 598 599 600 if (ah->is_pciexpress) 601 ath9k_hw_configpcipowersave(ah, 0, 0); 602 else 603 ath9k_hw_disablepcie(ah); 604 605 if (!AR_SREV_9300_20_OR_LATER(ah)) 606 ar9002_hw_cck_chan14_spread(ah); 607 608 r = ath9k_hw_post_init(ah); 609 if (r) 610 return r; 611 612 ath9k_hw_init_mode_gain_regs(ah); 613 r = ath9k_hw_fill_cap_info(ah); 614 if (r) 615 return r; 616 617 r = ath9k_hw_init_macaddr(ah); 618 if (r) { 619 ath_err(common, "Failed to initialize MAC address\n"); 620 return r; 621 } 622 623 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 624 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 625 else 626 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 627 628 if (AR_SREV_9330(ah)) 629 ah->bb_watchdog_timeout_ms = 85; 630 else 631 ah->bb_watchdog_timeout_ms = 25; 632 633 common->state = ATH_HW_INITIALIZED; 634 635 return 0; 636} 637 638int ath9k_hw_init(struct ath_hw *ah) 639{ 640 int ret; 641 struct ath_common *common = ath9k_hw_common(ah); 642 643 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */ 644 switch (ah->hw_version.devid) { 645 case AR5416_DEVID_PCI: 646 case AR5416_DEVID_PCIE: 647 case AR5416_AR9100_DEVID: 648 case AR9160_DEVID_PCI: 649 case AR9280_DEVID_PCI: 650 case AR9280_DEVID_PCIE: 651 case AR9285_DEVID_PCIE: 652 case AR9287_DEVID_PCI: 653 case AR9287_DEVID_PCIE: 654 case AR2427_DEVID_PCIE: 655 case AR9300_DEVID_PCIE: 656 case AR9300_DEVID_AR9485_PCIE: 657 case AR9300_DEVID_AR9330: 658 case AR9300_DEVID_AR9340: 659 break; 660 default: 661 if (common->bus_ops->ath_bus_type == ATH_USB) 662 break; 663 ath_err(common, "Hardware device ID 0x%04x not supported\n", 664 ah->hw_version.devid); 665 return -EOPNOTSUPP; 666 } 667 668 ret = __ath9k_hw_init(ah); 669 if (ret) { 670 ath_err(common, 671 "Unable to initialize hardware; initialization status: %d\n", 672 ret); 673 return ret; 674 } 675 676 return 0; 677} 678EXPORT_SYMBOL(ath9k_hw_init); 679 680static void ath9k_hw_init_qos(struct ath_hw *ah) 681{ 682 ENABLE_REGWRITE_BUFFER(ah); 683 684 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 685 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 686 687 REG_WRITE(ah, AR_QOS_NO_ACK, 688 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 689 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 690 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 691 692 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 693 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 694 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 695 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 696 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 697 698 REGWRITE_BUFFER_FLUSH(ah); 699} 700 701u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 702{ 703 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 704 udelay(100); 705 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 706 707 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) 708 udelay(100); 709 710 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 711} 712EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 713 714static void ath9k_hw_init_pll(struct ath_hw *ah, 715 struct ath9k_channel *chan) 716{ 717 u32 pll; 718 719 if (AR_SREV_9485(ah)) { 720 721 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 722 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 723 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 724 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 725 AR_CH0_DPLL2_KD, 0x40); 726 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 727 AR_CH0_DPLL2_KI, 0x4); 728 729 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 730 AR_CH0_BB_DPLL1_REFDIV, 0x5); 731 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 732 AR_CH0_BB_DPLL1_NINI, 0x58); 733 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 734 AR_CH0_BB_DPLL1_NFRAC, 0x0); 735 736 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 737 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 738 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 739 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 740 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 741 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 742 743 /* program BB PLL phase_shift to 0x6 */ 744 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 745 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 746 747 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 748 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 749 udelay(1000); 750 } else if (AR_SREV_9330(ah)) { 751 u32 ddr_dpll2, pll_control2, kd; 752 753 if (ah->is_clk_25mhz) { 754 ddr_dpll2 = 0x18e82f01; 755 pll_control2 = 0xe04a3d; 756 kd = 0x1d; 757 } else { 758 ddr_dpll2 = 0x19e82f01; 759 pll_control2 = 0x886666; 760 kd = 0x3d; 761 } 762 763 /* program DDR PLL ki and kd value */ 764 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 765 766 /* program DDR PLL phase_shift */ 767 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 768 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 769 770 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 771 udelay(1000); 772 773 /* program refdiv, nint, frac to RTC register */ 774 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 775 776 /* program BB PLL kd and ki value */ 777 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 778 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 779 780 /* program BB PLL phase_shift */ 781 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 782 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 783 } else if (AR_SREV_9340(ah)) { 784 u32 regval, pll2_divint, pll2_divfrac, refdiv; 785 786 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 787 udelay(1000); 788 789 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 790 udelay(100); 791 792 if (ah->is_clk_25mhz) { 793 pll2_divint = 0x54; 794 pll2_divfrac = 0x1eb85; 795 refdiv = 3; 796 } else { 797 pll2_divint = 88; 798 pll2_divfrac = 0; 799 refdiv = 5; 800 } 801 802 regval = REG_READ(ah, AR_PHY_PLL_MODE); 803 regval |= (0x1 << 16); 804 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 805 udelay(100); 806 807 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 808 (pll2_divint << 18) | pll2_divfrac); 809 udelay(100); 810 811 regval = REG_READ(ah, AR_PHY_PLL_MODE); 812 regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) | 813 (0x4 << 26) | (0x18 << 19); 814 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 815 REG_WRITE(ah, AR_PHY_PLL_MODE, 816 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 817 udelay(1000); 818 } 819 820 pll = ath9k_hw_compute_pll_control(ah, chan); 821 822 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 823 824 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) 825 udelay(1000); 826 827 /* Switch the core clock for ar9271 to 117Mhz */ 828 if (AR_SREV_9271(ah)) { 829 udelay(500); 830 REG_WRITE(ah, 0x50040, 0x304); 831 } 832 833 udelay(RTC_PLL_SETTLE_DELAY); 834 835 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 836 837 if (AR_SREV_9340(ah)) { 838 if (ah->is_clk_25mhz) { 839 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); 840 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 841 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 842 } else { 843 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); 844 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 845 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 846 } 847 udelay(100); 848 } 849} 850 851static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 852 enum nl80211_iftype opmode) 853{ 854 u32 sync_default = AR_INTR_SYNC_DEFAULT; 855 u32 imr_reg = AR_IMR_TXERR | 856 AR_IMR_TXURN | 857 AR_IMR_RXERR | 858 AR_IMR_RXORN | 859 AR_IMR_BCNMISC; 860 861 if (AR_SREV_9340(ah)) 862 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 863 864 if (AR_SREV_9300_20_OR_LATER(ah)) { 865 imr_reg |= AR_IMR_RXOK_HP; 866 if (ah->config.rx_intr_mitigation) 867 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 868 else 869 imr_reg |= AR_IMR_RXOK_LP; 870 871 } else { 872 if (ah->config.rx_intr_mitigation) 873 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 874 else 875 imr_reg |= AR_IMR_RXOK; 876 } 877 878 if (ah->config.tx_intr_mitigation) 879 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 880 else 881 imr_reg |= AR_IMR_TXOK; 882 883 if (opmode == NL80211_IFTYPE_AP) 884 imr_reg |= AR_IMR_MIB; 885 886 ENABLE_REGWRITE_BUFFER(ah); 887 888 REG_WRITE(ah, AR_IMR, imr_reg); 889 ah->imrs2_reg |= AR_IMR_S2_GTT; 890 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 891 892 if (!AR_SREV_9100(ah)) { 893 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 894 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 895 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 896 } 897 898 REGWRITE_BUFFER_FLUSH(ah); 899 900 if (AR_SREV_9300_20_OR_LATER(ah)) { 901 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 902 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 903 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 904 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 905 } 906} 907 908static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 909{ 910 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 911 val = min(val, (u32) 0xFFFF); 912 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 913} 914 915static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 916{ 917 u32 val = ath9k_hw_mac_to_clks(ah, us); 918 val = min(val, (u32) 0xFFFF); 919 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 920} 921 922static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 923{ 924 u32 val = ath9k_hw_mac_to_clks(ah, us); 925 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 926 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 927} 928 929static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 930{ 931 u32 val = ath9k_hw_mac_to_clks(ah, us); 932 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 933 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 934} 935 936static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 937{ 938 if (tu > 0xFFFF) { 939 ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT, 940 "bad global tx timeout %u\n", tu); 941 ah->globaltxtimeout = (u32) -1; 942 return false; 943 } else { 944 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 945 ah->globaltxtimeout = tu; 946 return true; 947 } 948} 949 950void ath9k_hw_init_global_settings(struct ath_hw *ah) 951{ 952 struct ath_common *common = ath9k_hw_common(ah); 953 struct ieee80211_conf *conf = &common->hw->conf; 954 const struct ath9k_channel *chan = ah->curchan; 955 int acktimeout; 956 int slottime; 957 int sifstime; 958 int rx_lat = 0, tx_lat = 0, eifs = 0; 959 u32 reg; 960 961 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n", 962 ah->misc_mode); 963 964 if (!chan) 965 return; 966 967 if (ah->misc_mode != 0) 968 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 969 970 rx_lat = 37; 971 tx_lat = 54; 972 973 if (IS_CHAN_HALF_RATE(chan)) { 974 eifs = 175; 975 rx_lat *= 2; 976 tx_lat *= 2; 977 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 978 tx_lat += 11; 979 980 slottime = 13; 981 sifstime = 32; 982 } else if (IS_CHAN_QUARTER_RATE(chan)) { 983 eifs = 340; 984 rx_lat *= 4; 985 tx_lat *= 4; 986 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 987 tx_lat += 22; 988 989 slottime = 21; 990 sifstime = 64; 991 } else { 992 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS); 993 reg = REG_READ(ah, AR_USEC); 994 rx_lat = MS(reg, AR_USEC_RX_LAT); 995 tx_lat = MS(reg, AR_USEC_TX_LAT); 996 997 slottime = ah->slottime; 998 if (IS_CHAN_5GHZ(chan)) 999 sifstime = 16; 1000 else 1001 sifstime = 10; 1002 } 1003 1004 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1005 acktimeout = slottime + sifstime + 3 * ah->coverage_class; 1006 1007 /* 1008 * Workaround for early ACK timeouts, add an offset to match the 1009 * initval's 64us ack timeout value. 1010 * This was initially only meant to work around an issue with delayed 1011 * BA frames in some implementations, but it has been found to fix ACK 1012 * timeout issues in other cases as well. 1013 */ 1014 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) 1015 acktimeout += 64 - sifstime - ah->slottime; 1016 1017 ath9k_hw_set_sifs_time(ah, sifstime); 1018 ath9k_hw_setslottime(ah, slottime); 1019 ath9k_hw_set_ack_timeout(ah, acktimeout); 1020 ath9k_hw_set_cts_timeout(ah, acktimeout); 1021 if (ah->globaltxtimeout != (u32) -1) 1022 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1023 1024 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1025 REG_RMW(ah, AR_USEC, 1026 (common->clockrate - 1) | 1027 SM(rx_lat, AR_USEC_RX_LAT) | 1028 SM(tx_lat, AR_USEC_TX_LAT), 1029 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1030 1031} 1032EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1033 1034void ath9k_hw_deinit(struct ath_hw *ah) 1035{ 1036 struct ath_common *common = ath9k_hw_common(ah); 1037 1038 if (common->state < ATH_HW_INITIALIZED) 1039 goto free_hw; 1040 1041 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1042 1043free_hw: 1044 ath9k_hw_rf_free_ext_banks(ah); 1045} 1046EXPORT_SYMBOL(ath9k_hw_deinit); 1047 1048/*******/ 1049/* INI */ 1050/*******/ 1051 1052u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1053{ 1054 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1055 1056 if (IS_CHAN_B(chan)) 1057 ctl |= CTL_11B; 1058 else if (IS_CHAN_G(chan)) 1059 ctl |= CTL_11G; 1060 else 1061 ctl |= CTL_11A; 1062 1063 return ctl; 1064} 1065 1066/****************************************/ 1067/* Reset and Channel Switching Routines */ 1068/****************************************/ 1069 1070static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1071{ 1072 struct ath_common *common = ath9k_hw_common(ah); 1073 1074 ENABLE_REGWRITE_BUFFER(ah); 1075 1076 /* 1077 * set AHB_MODE not to do cacheline prefetches 1078 */ 1079 if (!AR_SREV_9300_20_OR_LATER(ah)) 1080 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1081 1082 /* 1083 * let mac dma reads be in 128 byte chunks 1084 */ 1085 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1086 1087 REGWRITE_BUFFER_FLUSH(ah); 1088 1089 /* 1090 * Restore TX Trigger Level to its pre-reset value. 1091 * The initial value depends on whether aggregation is enabled, and is 1092 * adjusted whenever underruns are detected. 1093 */ 1094 if (!AR_SREV_9300_20_OR_LATER(ah)) 1095 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1096 1097 ENABLE_REGWRITE_BUFFER(ah); 1098 1099 /* 1100 * let mac dma writes be in 128 byte chunks 1101 */ 1102 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1103 1104 /* 1105 * Setup receive FIFO threshold to hold off TX activities 1106 */ 1107 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1108 1109 if (AR_SREV_9300_20_OR_LATER(ah)) { 1110 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1111 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1112 1113 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1114 ah->caps.rx_status_len); 1115 } 1116 1117 /* 1118 * reduce the number of usable entries in PCU TXBUF to avoid 1119 * wrap around issues. 1120 */ 1121 if (AR_SREV_9285(ah)) { 1122 /* For AR9285 the number of Fifos are reduced to half. 1123 * So set the usable tx buf size also to half to 1124 * avoid data/delimiter underruns 1125 */ 1126 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1127 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 1128 } else if (!AR_SREV_9271(ah)) { 1129 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1130 AR_PCU_TXBUF_CTRL_USABLE_SIZE); 1131 } 1132 1133 REGWRITE_BUFFER_FLUSH(ah); 1134 1135 if (AR_SREV_9300_20_OR_LATER(ah)) 1136 ath9k_hw_reset_txstatus_ring(ah); 1137} 1138 1139static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1140{ 1141 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1142 u32 set = AR_STA_ID1_KSRCH_MODE; 1143 1144 switch (opmode) { 1145 case NL80211_IFTYPE_ADHOC: 1146 case NL80211_IFTYPE_MESH_POINT: 1147 set |= AR_STA_ID1_ADHOC; 1148 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1149 break; 1150 case NL80211_IFTYPE_AP: 1151 set |= AR_STA_ID1_STA_AP; 1152 /* fall through */ 1153 case NL80211_IFTYPE_STATION: 1154 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1155 break; 1156 default: 1157 if (!ah->is_monitoring) 1158 set = 0; 1159 break; 1160 } 1161 REG_RMW(ah, AR_STA_ID1, set, mask); 1162} 1163 1164void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1165 u32 *coef_mantissa, u32 *coef_exponent) 1166{ 1167 u32 coef_exp, coef_man; 1168 1169 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1170 if ((coef_scaled >> coef_exp) & 0x1) 1171 break; 1172 1173 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1174 1175 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1176 1177 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1178 *coef_exponent = coef_exp - 16; 1179} 1180 1181static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1182{ 1183 u32 rst_flags; 1184 u32 tmpReg; 1185 1186 if (AR_SREV_9100(ah)) { 1187 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1188 AR_RTC_DERIVED_CLK_PERIOD, 1); 1189 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1190 } 1191 1192 ENABLE_REGWRITE_BUFFER(ah); 1193 1194 if (AR_SREV_9300_20_OR_LATER(ah)) { 1195 REG_WRITE(ah, AR_WA, ah->WARegVal); 1196 udelay(10); 1197 } 1198 1199 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1200 AR_RTC_FORCE_WAKE_ON_INT); 1201 1202 if (AR_SREV_9100(ah)) { 1203 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1204 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1205 } else { 1206 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1207 if (tmpReg & 1208 (AR_INTR_SYNC_LOCAL_TIMEOUT | 1209 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1210 u32 val; 1211 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1212 1213 val = AR_RC_HOSTIF; 1214 if (!AR_SREV_9300_20_OR_LATER(ah)) 1215 val |= AR_RC_AHB; 1216 REG_WRITE(ah, AR_RC, val); 1217 1218 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1219 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1220 1221 rst_flags = AR_RTC_RC_MAC_WARM; 1222 if (type == ATH9K_RESET_COLD) 1223 rst_flags |= AR_RTC_RC_MAC_COLD; 1224 } 1225 1226 if (AR_SREV_9330(ah)) { 1227 int npend = 0; 1228 int i; 1229 1230 /* AR9330 WAR: 1231 * call external reset function to reset WMAC if: 1232 * - doing a cold reset 1233 * - we have pending frames in the TX queues 1234 */ 1235 1236 for (i = 0; i < AR_NUM_QCU; i++) { 1237 npend = ath9k_hw_numtxpending(ah, i); 1238 if (npend) 1239 break; 1240 } 1241 1242 if (ah->external_reset && 1243 (npend || type == ATH9K_RESET_COLD)) { 1244 int reset_err = 0; 1245 1246 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 1247 "reset MAC via external reset\n"); 1248 1249 reset_err = ah->external_reset(); 1250 if (reset_err) { 1251 ath_err(ath9k_hw_common(ah), 1252 "External reset failed, err=%d\n", 1253 reset_err); 1254 return false; 1255 } 1256 1257 REG_WRITE(ah, AR_RTC_RESET, 1); 1258 } 1259 } 1260 1261 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1262 1263 REGWRITE_BUFFER_FLUSH(ah); 1264 1265 udelay(50); 1266 1267 REG_WRITE(ah, AR_RTC_RC, 0); 1268 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1269 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 1270 "RTC stuck in MAC reset\n"); 1271 return false; 1272 } 1273 1274 if (!AR_SREV_9100(ah)) 1275 REG_WRITE(ah, AR_RC, 0); 1276 1277 if (AR_SREV_9100(ah)) 1278 udelay(50); 1279 1280 return true; 1281} 1282 1283static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1284{ 1285 ENABLE_REGWRITE_BUFFER(ah); 1286 1287 if (AR_SREV_9300_20_OR_LATER(ah)) { 1288 REG_WRITE(ah, AR_WA, ah->WARegVal); 1289 udelay(10); 1290 } 1291 1292 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1293 AR_RTC_FORCE_WAKE_ON_INT); 1294 1295 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1296 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1297 1298 REG_WRITE(ah, AR_RTC_RESET, 0); 1299 1300 REGWRITE_BUFFER_FLUSH(ah); 1301 1302 if (!AR_SREV_9300_20_OR_LATER(ah)) 1303 udelay(2); 1304 1305 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1306 REG_WRITE(ah, AR_RC, 0); 1307 1308 REG_WRITE(ah, AR_RTC_RESET, 1); 1309 1310 if (!ath9k_hw_wait(ah, 1311 AR_RTC_STATUS, 1312 AR_RTC_STATUS_M, 1313 AR_RTC_STATUS_ON, 1314 AH_WAIT_TIMEOUT)) { 1315 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 1316 "RTC not waking up\n"); 1317 return false; 1318 } 1319 1320 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1321} 1322 1323static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1324{ 1325 if (AR_SREV_9300_20_OR_LATER(ah)) { 1326 REG_WRITE(ah, AR_WA, ah->WARegVal); 1327 udelay(10); 1328 } 1329 1330 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1331 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1332 1333 switch (type) { 1334 case ATH9K_RESET_POWER_ON: 1335 return ath9k_hw_set_reset_power_on(ah); 1336 case ATH9K_RESET_WARM: 1337 case ATH9K_RESET_COLD: 1338 return ath9k_hw_set_reset(ah, type); 1339 default: 1340 return false; 1341 } 1342} 1343 1344static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1345 struct ath9k_channel *chan) 1346{ 1347 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) { 1348 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) 1349 return false; 1350 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 1351 return false; 1352 1353 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1354 return false; 1355 1356 ah->chip_fullsleep = false; 1357 ath9k_hw_init_pll(ah, chan); 1358 ath9k_hw_set_rfmode(ah, chan); 1359 1360 return true; 1361} 1362 1363static bool ath9k_hw_channel_change(struct ath_hw *ah, 1364 struct ath9k_channel *chan) 1365{ 1366 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 1367 struct ath_common *common = ath9k_hw_common(ah); 1368 struct ieee80211_channel *channel = chan->chan; 1369 u32 qnum; 1370 int r; 1371 1372 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1373 if (ath9k_hw_numtxpending(ah, qnum)) { 1374 ath_dbg(common, ATH_DBG_QUEUE, 1375 "Transmit frames pending on queue %d\n", qnum); 1376 return false; 1377 } 1378 } 1379 1380 if (!ath9k_hw_rfbus_req(ah)) { 1381 ath_err(common, "Could not kill baseband RX\n"); 1382 return false; 1383 } 1384 1385 ath9k_hw_set_channel_regs(ah, chan); 1386 1387 r = ath9k_hw_rf_set_freq(ah, chan); 1388 if (r) { 1389 ath_err(common, "Failed to set channel\n"); 1390 return false; 1391 } 1392 ath9k_hw_set_clockrate(ah); 1393 1394 ah->eep_ops->set_txpower(ah, chan, 1395 ath9k_regd_get_ctl(regulatory, chan), 1396 channel->max_antenna_gain * 2, 1397 channel->max_power * 2, 1398 min((u32) MAX_RATE_POWER, 1399 (u32) regulatory->power_limit), false); 1400 1401 ath9k_hw_rfbus_done(ah); 1402 1403 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1404 ath9k_hw_set_delta_slope(ah, chan); 1405 1406 ath9k_hw_spur_mitigate_freq(ah, chan); 1407 1408 return true; 1409} 1410 1411static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1412{ 1413 u32 gpio_mask = ah->gpio_mask; 1414 int i; 1415 1416 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1417 if (!(gpio_mask & 1)) 1418 continue; 1419 1420 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1421 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1422 } 1423} 1424 1425bool ath9k_hw_check_alive(struct ath_hw *ah) 1426{ 1427 int count = 50; 1428 u32 reg; 1429 1430 if (AR_SREV_9285_12_OR_LATER(ah)) 1431 return true; 1432 1433 do { 1434 reg = REG_READ(ah, AR_OBS_BUS_1); 1435 1436 if ((reg & 0x7E7FFFEF) == 0x00702400) 1437 continue; 1438 1439 switch (reg & 0x7E000B00) { 1440 case 0x1E000000: 1441 case 0x52000B00: 1442 case 0x18000B00: 1443 continue; 1444 default: 1445 return true; 1446 } 1447 } while (count-- > 0); 1448 1449 return false; 1450} 1451EXPORT_SYMBOL(ath9k_hw_check_alive); 1452 1453int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1454 struct ath9k_hw_cal_data *caldata, bool bChannelChange) 1455{ 1456 struct ath_common *common = ath9k_hw_common(ah); 1457 u32 saveLedState; 1458 struct ath9k_channel *curchan = ah->curchan; 1459 u32 saveDefAntenna; 1460 u32 macStaId1; 1461 u64 tsf = 0; 1462 int i, r; 1463 1464 ah->txchainmask = common->tx_chainmask; 1465 ah->rxchainmask = common->rx_chainmask; 1466 1467 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1468 return -EIO; 1469 1470 if (curchan && !ah->chip_fullsleep) 1471 ath9k_hw_getnf(ah, curchan); 1472 1473 ah->caldata = caldata; 1474 if (caldata && 1475 (chan->channel != caldata->channel || 1476 (chan->channelFlags & ~CHANNEL_CW_INT) != 1477 (caldata->channelFlags & ~CHANNEL_CW_INT))) { 1478 /* Operating channel changed, reset channel calibration data */ 1479 memset(caldata, 0, sizeof(*caldata)); 1480 ath9k_init_nfcal_hist_buffer(ah, chan); 1481 } 1482 1483 if (bChannelChange && 1484 (ah->chip_fullsleep != true) && 1485 (ah->curchan != NULL) && 1486 (chan->channel != ah->curchan->channel) && 1487 ((chan->channelFlags & CHANNEL_ALL) == 1488 (ah->curchan->channelFlags & CHANNEL_ALL)) && 1489 (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) { 1490 1491 if (ath9k_hw_channel_change(ah, chan)) { 1492 ath9k_hw_loadnf(ah, ah->curchan); 1493 ath9k_hw_start_nfcal(ah, true); 1494 if (AR_SREV_9271(ah)) 1495 ar9002_hw_load_ani_reg(ah, chan); 1496 return 0; 1497 } 1498 } 1499 1500 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1501 if (saveDefAntenna == 0) 1502 saveDefAntenna = 1; 1503 1504 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1505 1506 /* For chips on which RTC reset is done, save TSF before it gets cleared */ 1507 if (AR_SREV_9100(ah) || 1508 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) 1509 tsf = ath9k_hw_gettsf64(ah); 1510 1511 saveLedState = REG_READ(ah, AR_CFG_LED) & 1512 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1513 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1514 1515 ath9k_hw_mark_phy_inactive(ah); 1516 1517 ah->paprd_table_write_done = false; 1518 1519 /* Only required on the first reset */ 1520 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1521 REG_WRITE(ah, 1522 AR9271_RESET_POWER_DOWN_CONTROL, 1523 AR9271_RADIO_RF_RST); 1524 udelay(50); 1525 } 1526 1527 if (!ath9k_hw_chip_reset(ah, chan)) { 1528 ath_err(common, "Chip reset failed\n"); 1529 return -EINVAL; 1530 } 1531 1532 /* Only required on the first reset */ 1533 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1534 ah->htc_reset_init = false; 1535 REG_WRITE(ah, 1536 AR9271_RESET_POWER_DOWN_CONTROL, 1537 AR9271_GATE_MAC_CTL); 1538 udelay(50); 1539 } 1540 1541 /* Restore TSF */ 1542 if (tsf) 1543 ath9k_hw_settsf64(ah, tsf); 1544 1545 if (AR_SREV_9280_20_OR_LATER(ah)) 1546 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1547 1548 if (!AR_SREV_9300_20_OR_LATER(ah)) 1549 ar9002_hw_enable_async_fifo(ah); 1550 1551 r = ath9k_hw_process_ini(ah, chan); 1552 if (r) 1553 return r; 1554 1555 /* 1556 * Some AR91xx SoC devices frequently fail to accept TSF writes 1557 * right after the chip reset. When that happens, write a new 1558 * value after the initvals have been applied, with an offset 1559 * based on measured time difference 1560 */ 1561 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1562 tsf += 1500; 1563 ath9k_hw_settsf64(ah, tsf); 1564 } 1565 1566 /* Setup MFP options for CCMP */ 1567 if (AR_SREV_9280_20_OR_LATER(ah)) { 1568 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1569 * frames when constructing CCMP AAD. */ 1570 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1571 0xc7ff); 1572 ah->sw_mgmt_crypto = false; 1573 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1574 /* Disable hardware crypto for management frames */ 1575 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1576 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1577 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1578 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1579 ah->sw_mgmt_crypto = true; 1580 } else 1581 ah->sw_mgmt_crypto = true; 1582 1583 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1584 ath9k_hw_set_delta_slope(ah, chan); 1585 1586 ath9k_hw_spur_mitigate_freq(ah, chan); 1587 ah->eep_ops->set_board_values(ah, chan); 1588 1589 ENABLE_REGWRITE_BUFFER(ah); 1590 1591 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); 1592 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) 1593 | macStaId1 1594 | AR_STA_ID1_RTS_USE_DEF 1595 | (ah->config. 1596 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 1597 | ah->sta_id1_defaults); 1598 ath_hw_setbssidmask(common); 1599 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1600 ath9k_hw_write_associd(ah); 1601 REG_WRITE(ah, AR_ISR, ~0); 1602 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1603 1604 REGWRITE_BUFFER_FLUSH(ah); 1605 1606 ath9k_hw_set_operating_mode(ah, ah->opmode); 1607 1608 r = ath9k_hw_rf_set_freq(ah, chan); 1609 if (r) 1610 return r; 1611 1612 ath9k_hw_set_clockrate(ah); 1613 1614 ENABLE_REGWRITE_BUFFER(ah); 1615 1616 for (i = 0; i < AR_NUM_DCU; i++) 1617 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1618 1619 REGWRITE_BUFFER_FLUSH(ah); 1620 1621 ah->intr_txqs = 0; 1622 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1623 ath9k_hw_resettxqueue(ah, i); 1624 1625 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1626 ath9k_hw_ani_cache_ini_regs(ah); 1627 ath9k_hw_init_qos(ah); 1628 1629 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1630 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1631 1632 ath9k_hw_init_global_settings(ah); 1633 1634 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1635 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1636 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1637 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1638 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1639 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1640 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1641 } 1642 1643 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 1644 1645 ath9k_hw_set_dma(ah); 1646 1647 REG_WRITE(ah, AR_OBS, 8); 1648 1649 if (ah->config.rx_intr_mitigation) { 1650 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 1651 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 1652 } 1653 1654 if (ah->config.tx_intr_mitigation) { 1655 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1656 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1657 } 1658 1659 ath9k_hw_init_bb(ah, chan); 1660 1661 if (!ath9k_hw_init_cal(ah, chan)) 1662 return -EIO; 1663 1664 ENABLE_REGWRITE_BUFFER(ah); 1665 1666 ath9k_hw_restore_chainmask(ah); 1667 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 1668 1669 REGWRITE_BUFFER_FLUSH(ah); 1670 1671 /* 1672 * For big endian systems turn on swapping for descriptors 1673 */ 1674 if (AR_SREV_9100(ah)) { 1675 u32 mask; 1676 mask = REG_READ(ah, AR_CFG); 1677 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1678 ath_dbg(common, ATH_DBG_RESET, 1679 "CFG Byte Swap Set 0x%x\n", mask); 1680 } else { 1681 mask = 1682 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1683 REG_WRITE(ah, AR_CFG, mask); 1684 ath_dbg(common, ATH_DBG_RESET, 1685 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); 1686 } 1687 } else { 1688 if (common->bus_ops->ath_bus_type == ATH_USB) { 1689 /* Configure AR9271 target WLAN */ 1690 if (AR_SREV_9271(ah)) 1691 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1692 else 1693 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1694 } 1695#ifdef __BIG_ENDIAN 1696 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah)) 1697 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1698 else 1699 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1700#endif 1701 } 1702 1703 if (ah->btcoex_hw.enabled) 1704 ath9k_hw_btcoex_enable(ah); 1705 1706 if (AR_SREV_9300_20_OR_LATER(ah)) { 1707 ar9003_hw_bb_watchdog_config(ah); 1708 1709 ar9003_hw_disable_phy_restart(ah); 1710 } 1711 1712 ath9k_hw_apply_gpio_override(ah); 1713 1714 return 0; 1715} 1716EXPORT_SYMBOL(ath9k_hw_reset); 1717 1718/******************************/ 1719/* Power Management (Chipset) */ 1720/******************************/ 1721 1722/* 1723 * Notify Power Mgt is disabled in self-generated frames. 1724 * If requested, force chip to sleep. 1725 */ 1726static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) 1727{ 1728 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1729 if (setChip) { 1730 /* 1731 * Clear the RTC force wake bit to allow the 1732 * mac to go to sleep. 1733 */ 1734 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1735 AR_RTC_FORCE_WAKE_EN); 1736 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1737 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 1738 1739 /* Shutdown chip. Active low */ 1740 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) 1741 REG_CLR_BIT(ah, (AR_RTC_RESET), 1742 AR_RTC_RESET_EN); 1743 } 1744 1745 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 1746 if (AR_SREV_9300_20_OR_LATER(ah)) 1747 REG_WRITE(ah, AR_WA, 1748 ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1749} 1750 1751/* 1752 * Notify Power Management is enabled in self-generating 1753 * frames. If request, set power mode of chip to 1754 * auto/normal. Duration in units of 128us (1/8 TU). 1755 */ 1756static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) 1757{ 1758 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1759 if (setChip) { 1760 struct ath9k_hw_capabilities *pCap = &ah->caps; 1761 1762 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 1763 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 1764 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1765 AR_RTC_FORCE_WAKE_ON_INT); 1766 } else { 1767 /* 1768 * Clear the RTC force wake bit to allow the 1769 * mac to go to sleep. 1770 */ 1771 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1772 AR_RTC_FORCE_WAKE_EN); 1773 } 1774 } 1775 1776 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 1777 if (AR_SREV_9300_20_OR_LATER(ah)) 1778 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1779} 1780 1781static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) 1782{ 1783 u32 val; 1784 int i; 1785 1786 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 1787 if (AR_SREV_9300_20_OR_LATER(ah)) { 1788 REG_WRITE(ah, AR_WA, ah->WARegVal); 1789 udelay(10); 1790 } 1791 1792 if (setChip) { 1793 if ((REG_READ(ah, AR_RTC_STATUS) & 1794 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 1795 if (ath9k_hw_set_reset_reg(ah, 1796 ATH9K_RESET_POWER_ON) != true) { 1797 return false; 1798 } 1799 if (!AR_SREV_9300_20_OR_LATER(ah)) 1800 ath9k_hw_init_pll(ah, NULL); 1801 } 1802 if (AR_SREV_9100(ah)) 1803 REG_SET_BIT(ah, AR_RTC_RESET, 1804 AR_RTC_RESET_EN); 1805 1806 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1807 AR_RTC_FORCE_WAKE_EN); 1808 udelay(50); 1809 1810 for (i = POWER_UP_TIME / 50; i > 0; i--) { 1811 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 1812 if (val == AR_RTC_STATUS_ON) 1813 break; 1814 udelay(50); 1815 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1816 AR_RTC_FORCE_WAKE_EN); 1817 } 1818 if (i == 0) { 1819 ath_err(ath9k_hw_common(ah), 1820 "Failed to wakeup in %uus\n", 1821 POWER_UP_TIME / 20); 1822 return false; 1823 } 1824 } 1825 1826 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1827 1828 return true; 1829} 1830 1831bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 1832{ 1833 struct ath_common *common = ath9k_hw_common(ah); 1834 int status = true, setChip = true; 1835 static const char *modes[] = { 1836 "AWAKE", 1837 "FULL-SLEEP", 1838 "NETWORK SLEEP", 1839 "UNDEFINED" 1840 }; 1841 1842 if (ah->power_mode == mode) 1843 return status; 1844 1845 ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n", 1846 modes[ah->power_mode], modes[mode]); 1847 1848 switch (mode) { 1849 case ATH9K_PM_AWAKE: 1850 status = ath9k_hw_set_power_awake(ah, setChip); 1851 break; 1852 case ATH9K_PM_FULL_SLEEP: 1853 ath9k_set_power_sleep(ah, setChip); 1854 ah->chip_fullsleep = true; 1855 break; 1856 case ATH9K_PM_NETWORK_SLEEP: 1857 ath9k_set_power_network_sleep(ah, setChip); 1858 break; 1859 default: 1860 ath_err(common, "Unknown power mode %u\n", mode); 1861 return false; 1862 } 1863 ah->power_mode = mode; 1864 1865 /* 1866 * XXX: If this warning never comes up after a while then 1867 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 1868 * ath9k_hw_setpower() return type void. 1869 */ 1870 1871 if (!(ah->ah_flags & AH_UNPLUGGED)) 1872 ATH_DBG_WARN_ON_ONCE(!status); 1873 1874 return status; 1875} 1876EXPORT_SYMBOL(ath9k_hw_setpower); 1877 1878/*******************/ 1879/* Beacon Handling */ 1880/*******************/ 1881 1882void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 1883{ 1884 int flags = 0; 1885 1886 ENABLE_REGWRITE_BUFFER(ah); 1887 1888 switch (ah->opmode) { 1889 case NL80211_IFTYPE_ADHOC: 1890 case NL80211_IFTYPE_MESH_POINT: 1891 REG_SET_BIT(ah, AR_TXCFG, 1892 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 1893 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon + 1894 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1)); 1895 flags |= AR_NDP_TIMER_EN; 1896 case NL80211_IFTYPE_AP: 1897 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 1898 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 1899 TU_TO_USEC(ah->config.dma_beacon_response_time)); 1900 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 1901 TU_TO_USEC(ah->config.sw_beacon_response_time)); 1902 flags |= 1903 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 1904 break; 1905 default: 1906 ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON, 1907 "%s: unsupported opmode: %d\n", 1908 __func__, ah->opmode); 1909 return; 1910 break; 1911 } 1912 1913 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 1914 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 1915 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 1916 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period); 1917 1918 REGWRITE_BUFFER_FLUSH(ah); 1919 1920 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 1921} 1922EXPORT_SYMBOL(ath9k_hw_beaconinit); 1923 1924void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 1925 const struct ath9k_beacon_state *bs) 1926{ 1927 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 1928 struct ath9k_hw_capabilities *pCap = &ah->caps; 1929 struct ath_common *common = ath9k_hw_common(ah); 1930 1931 ENABLE_REGWRITE_BUFFER(ah); 1932 1933 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 1934 1935 REG_WRITE(ah, AR_BEACON_PERIOD, 1936 TU_TO_USEC(bs->bs_intval)); 1937 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 1938 TU_TO_USEC(bs->bs_intval)); 1939 1940 REGWRITE_BUFFER_FLUSH(ah); 1941 1942 REG_RMW_FIELD(ah, AR_RSSI_THR, 1943 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 1944 1945 beaconintval = bs->bs_intval; 1946 1947 if (bs->bs_sleepduration > beaconintval) 1948 beaconintval = bs->bs_sleepduration; 1949 1950 dtimperiod = bs->bs_dtimperiod; 1951 if (bs->bs_sleepduration > dtimperiod) 1952 dtimperiod = bs->bs_sleepduration; 1953 1954 if (beaconintval == dtimperiod) 1955 nextTbtt = bs->bs_nextdtim; 1956 else 1957 nextTbtt = bs->bs_nexttbtt; 1958 1959 ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); 1960 ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); 1961 ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); 1962 ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); 1963 1964 ENABLE_REGWRITE_BUFFER(ah); 1965 1966 REG_WRITE(ah, AR_NEXT_DTIM, 1967 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 1968 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 1969 1970 REG_WRITE(ah, AR_SLEEP1, 1971 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 1972 | AR_SLEEP1_ASSUME_DTIM); 1973 1974 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 1975 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 1976 else 1977 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 1978 1979 REG_WRITE(ah, AR_SLEEP2, 1980 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 1981 1982 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 1983 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 1984 1985 REGWRITE_BUFFER_FLUSH(ah); 1986 1987 REG_SET_BIT(ah, AR_TIMER_MODE, 1988 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 1989 AR_DTIM_TIMER_EN); 1990 1991 /* TSF Out of Range Threshold */ 1992 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 1993} 1994EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 1995 1996/*******************/ 1997/* HW Capabilities */ 1998/*******************/ 1999 2000static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2001{ 2002 eeprom_chainmask &= chip_chainmask; 2003 if (eeprom_chainmask) 2004 return eeprom_chainmask; 2005 else 2006 return chip_chainmask; 2007} 2008 2009int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2010{ 2011 struct ath9k_hw_capabilities *pCap = &ah->caps; 2012 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2013 struct ath_common *common = ath9k_hw_common(ah); 2014 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw; 2015 unsigned int chip_chainmask; 2016 2017 u16 eeval; 2018 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2019 2020 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2021 regulatory->current_rd = eeval; 2022 2023 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); 2024 if (AR_SREV_9285_12_OR_LATER(ah)) 2025 eeval |= AR9285_RDEXT_DEFAULT; 2026 regulatory->current_rd_ext = eeval; 2027 2028 if (ah->opmode != NL80211_IFTYPE_AP && 2029 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2030 if (regulatory->current_rd == 0x64 || 2031 regulatory->current_rd == 0x65) 2032 regulatory->current_rd += 5; 2033 else if (regulatory->current_rd == 0x41) 2034 regulatory->current_rd = 0x43; 2035 ath_dbg(common, ATH_DBG_REGULATORY, 2036 "regdomain mapped to 0x%x\n", regulatory->current_rd); 2037 } 2038 2039 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2040 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 2041 ath_err(common, 2042 "no band has been marked as supported in EEPROM\n"); 2043 return -EINVAL; 2044 } 2045 2046 if (eeval & AR5416_OPFLAGS_11A) 2047 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2048 2049 if (eeval & AR5416_OPFLAGS_11G) 2050 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2051 2052 if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah)) 2053 chip_chainmask = 1; 2054 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2055 chip_chainmask = 7; 2056 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah)) 2057 chip_chainmask = 3; 2058 else 2059 chip_chainmask = 7; 2060 2061 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2062 /* 2063 * For AR9271 we will temporarilly uses the rx chainmax as read from 2064 * the EEPROM. 2065 */ 2066 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2067 !(eeval & AR5416_OPFLAGS_11A) && 2068 !(AR_SREV_9271(ah))) 2069 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2070 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2071 else if (AR_SREV_9100(ah)) 2072 pCap->rx_chainmask = 0x7; 2073 else 2074 /* Use rx_chainmask from EEPROM. */ 2075 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2076 2077 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask); 2078 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask); 2079 2080 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2081 2082 /* enable key search for every frame in an aggregate */ 2083 if (AR_SREV_9300_20_OR_LATER(ah)) 2084 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2085 2086 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2087 2088 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2089 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2090 else 2091 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2092 2093 if (AR_SREV_9271(ah)) 2094 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2095 else if (AR_DEVID_7010(ah)) 2096 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2097 else if (AR_SREV_9285_12_OR_LATER(ah)) 2098 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2099 else if (AR_SREV_9280_20_OR_LATER(ah)) 2100 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2101 else 2102 pCap->num_gpio_pins = AR_NUM_GPIO; 2103 2104 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { 2105 pCap->hw_caps |= ATH9K_HW_CAP_CST; 2106 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2107 } else { 2108 pCap->rts_aggr_limit = (8 * 1024); 2109 } 2110 2111#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 2112 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2113 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2114 ah->rfkill_gpio = 2115 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2116 ah->rfkill_polarity = 2117 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2118 2119 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2120 } 2121#endif 2122 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2123 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2124 else 2125 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2126 2127 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2128 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2129 else 2130 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2131 2132 if (common->btcoex_enabled) { 2133 if (AR_SREV_9300_20_OR_LATER(ah)) { 2134 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; 2135 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300; 2136 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300; 2137 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300; 2138 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 2139 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280; 2140 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280; 2141 2142 if (AR_SREV_9285(ah)) { 2143 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; 2144 btcoex_hw->btpriority_gpio = 2145 ATH_BTPRIORITY_GPIO_9285; 2146 } else { 2147 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE; 2148 } 2149 } 2150 } else { 2151 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE; 2152 } 2153 2154 if (AR_SREV_9300_20_OR_LATER(ah)) { 2155 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2156 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah)) 2157 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2158 2159 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2160 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2161 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2162 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2163 pCap->txs_len = sizeof(struct ar9003_txs); 2164 if (!ah->config.paprd_disable && 2165 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2166 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2167 } else { 2168 pCap->tx_desc_len = sizeof(struct ath_desc); 2169 if (AR_SREV_9280_20(ah)) 2170 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2171 } 2172 2173 if (AR_SREV_9300_20_OR_LATER(ah)) 2174 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2175 2176 if (AR_SREV_9300_20_OR_LATER(ah)) 2177 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2178 2179 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2180 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2181 2182 if (AR_SREV_9285(ah)) 2183 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2184 ant_div_ctl1 = 2185 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2186 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) 2187 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2188 } 2189 if (AR_SREV_9300_20_OR_LATER(ah)) { 2190 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2191 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2192 } 2193 2194 2195 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) { 2196 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2197 /* 2198 * enable the diversity-combining algorithm only when 2199 * both enable_lna_div and enable_fast_div are set 2200 * Table for Diversity 2201 * ant_div_alt_lnaconf bit 0-1 2202 * ant_div_main_lnaconf bit 2-3 2203 * ant_div_alt_gaintb bit 4 2204 * ant_div_main_gaintb bit 5 2205 * enable_ant_div_lnadiv bit 6 2206 * enable_ant_fast_div bit 7 2207 */ 2208 if ((ant_div_ctl1 >> 0x6) == 0x3) 2209 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2210 } 2211 2212 if (AR_SREV_9485_10(ah)) { 2213 pCap->pcie_lcr_extsync_en = true; 2214 pCap->pcie_lcr_offset = 0x80; 2215 } 2216 2217 tx_chainmask = pCap->tx_chainmask; 2218 rx_chainmask = pCap->rx_chainmask; 2219 while (tx_chainmask || rx_chainmask) { 2220 if (tx_chainmask & BIT(0)) 2221 pCap->max_txchains++; 2222 if (rx_chainmask & BIT(0)) 2223 pCap->max_rxchains++; 2224 2225 tx_chainmask >>= 1; 2226 rx_chainmask >>= 1; 2227 } 2228 2229 return 0; 2230} 2231 2232/****************************/ 2233/* GPIO / RFKILL / Antennae */ 2234/****************************/ 2235 2236static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2237 u32 gpio, u32 type) 2238{ 2239 int addr; 2240 u32 gpio_shift, tmp; 2241 2242 if (gpio > 11) 2243 addr = AR_GPIO_OUTPUT_MUX3; 2244 else if (gpio > 5) 2245 addr = AR_GPIO_OUTPUT_MUX2; 2246 else 2247 addr = AR_GPIO_OUTPUT_MUX1; 2248 2249 gpio_shift = (gpio % 6) * 5; 2250 2251 if (AR_SREV_9280_20_OR_LATER(ah) 2252 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2253 REG_RMW(ah, addr, (type << gpio_shift), 2254 (0x1f << gpio_shift)); 2255 } else { 2256 tmp = REG_READ(ah, addr); 2257 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2258 tmp &= ~(0x1f << gpio_shift); 2259 tmp |= (type << gpio_shift); 2260 REG_WRITE(ah, addr, tmp); 2261 } 2262} 2263 2264void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2265{ 2266 u32 gpio_shift; 2267 2268 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2269 2270 if (AR_DEVID_7010(ah)) { 2271 gpio_shift = gpio; 2272 REG_RMW(ah, AR7010_GPIO_OE, 2273 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2274 (AR7010_GPIO_OE_MASK << gpio_shift)); 2275 return; 2276 } 2277 2278 gpio_shift = gpio << 1; 2279 REG_RMW(ah, 2280 AR_GPIO_OE_OUT, 2281 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2282 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2283} 2284EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2285 2286u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2287{ 2288#define MS_REG_READ(x, y) \ 2289 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2290 2291 if (gpio >= ah->caps.num_gpio_pins) 2292 return 0xffffffff; 2293 2294 if (AR_DEVID_7010(ah)) { 2295 u32 val; 2296 val = REG_READ(ah, AR7010_GPIO_IN); 2297 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2298 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2299 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2300 AR_GPIO_BIT(gpio)) != 0; 2301 else if (AR_SREV_9271(ah)) 2302 return MS_REG_READ(AR9271, gpio) != 0; 2303 else if (AR_SREV_9287_11_OR_LATER(ah)) 2304 return MS_REG_READ(AR9287, gpio) != 0; 2305 else if (AR_SREV_9285_12_OR_LATER(ah)) 2306 return MS_REG_READ(AR9285, gpio) != 0; 2307 else if (AR_SREV_9280_20_OR_LATER(ah)) 2308 return MS_REG_READ(AR928X, gpio) != 0; 2309 else 2310 return MS_REG_READ(AR, gpio) != 0; 2311} 2312EXPORT_SYMBOL(ath9k_hw_gpio_get); 2313 2314void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2315 u32 ah_signal_type) 2316{ 2317 u32 gpio_shift; 2318 2319 if (AR_DEVID_7010(ah)) { 2320 gpio_shift = gpio; 2321 REG_RMW(ah, AR7010_GPIO_OE, 2322 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2323 (AR7010_GPIO_OE_MASK << gpio_shift)); 2324 return; 2325 } 2326 2327 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2328 gpio_shift = 2 * gpio; 2329 REG_RMW(ah, 2330 AR_GPIO_OE_OUT, 2331 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2332 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2333} 2334EXPORT_SYMBOL(ath9k_hw_cfg_output); 2335 2336void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2337{ 2338 if (AR_DEVID_7010(ah)) { 2339 val = val ? 0 : 1; 2340 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2341 AR_GPIO_BIT(gpio)); 2342 return; 2343 } 2344 2345 if (AR_SREV_9271(ah)) 2346 val = ~val; 2347 2348 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2349 AR_GPIO_BIT(gpio)); 2350} 2351EXPORT_SYMBOL(ath9k_hw_set_gpio); 2352 2353u32 ath9k_hw_getdefantenna(struct ath_hw *ah) 2354{ 2355 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; 2356} 2357EXPORT_SYMBOL(ath9k_hw_getdefantenna); 2358 2359void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2360{ 2361 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2362} 2363EXPORT_SYMBOL(ath9k_hw_setantenna); 2364 2365/*********************/ 2366/* General Operation */ 2367/*********************/ 2368 2369u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2370{ 2371 u32 bits = REG_READ(ah, AR_RX_FILTER); 2372 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2373 2374 if (phybits & AR_PHY_ERR_RADAR) 2375 bits |= ATH9K_RX_FILTER_PHYRADAR; 2376 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2377 bits |= ATH9K_RX_FILTER_PHYERR; 2378 2379 return bits; 2380} 2381EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2382 2383void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2384{ 2385 u32 phybits; 2386 2387 ENABLE_REGWRITE_BUFFER(ah); 2388 2389 REG_WRITE(ah, AR_RX_FILTER, bits); 2390 2391 phybits = 0; 2392 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2393 phybits |= AR_PHY_ERR_RADAR; 2394 if (bits & ATH9K_RX_FILTER_PHYERR) 2395 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2396 REG_WRITE(ah, AR_PHY_ERR, phybits); 2397 2398 if (phybits) 2399 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2400 else 2401 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2402 2403 REGWRITE_BUFFER_FLUSH(ah); 2404} 2405EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2406 2407bool ath9k_hw_phy_disable(struct ath_hw *ah) 2408{ 2409 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2410 return false; 2411 2412 ath9k_hw_init_pll(ah, NULL); 2413 return true; 2414} 2415EXPORT_SYMBOL(ath9k_hw_phy_disable); 2416 2417bool ath9k_hw_disable(struct ath_hw *ah) 2418{ 2419 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2420 return false; 2421 2422 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2423 return false; 2424 2425 ath9k_hw_init_pll(ah, NULL); 2426 return true; 2427} 2428EXPORT_SYMBOL(ath9k_hw_disable); 2429 2430void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2431{ 2432 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2433 struct ath9k_channel *chan = ah->curchan; 2434 struct ieee80211_channel *channel = chan->chan; 2435 2436 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER); 2437 2438 ah->eep_ops->set_txpower(ah, chan, 2439 ath9k_regd_get_ctl(regulatory, chan), 2440 channel->max_antenna_gain * 2, 2441 channel->max_power * 2, 2442 min((u32) MAX_RATE_POWER, 2443 (u32) regulatory->power_limit), test); 2444} 2445EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2446 2447void ath9k_hw_setopmode(struct ath_hw *ah) 2448{ 2449 ath9k_hw_set_operating_mode(ah, ah->opmode); 2450} 2451EXPORT_SYMBOL(ath9k_hw_setopmode); 2452 2453void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2454{ 2455 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2456 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2457} 2458EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2459 2460void ath9k_hw_write_associd(struct ath_hw *ah) 2461{ 2462 struct ath_common *common = ath9k_hw_common(ah); 2463 2464 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2465 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2466 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2467} 2468EXPORT_SYMBOL(ath9k_hw_write_associd); 2469 2470#define ATH9K_MAX_TSF_READ 10 2471 2472u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2473{ 2474 u32 tsf_lower, tsf_upper1, tsf_upper2; 2475 int i; 2476 2477 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2478 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2479 tsf_lower = REG_READ(ah, AR_TSF_L32); 2480 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2481 if (tsf_upper2 == tsf_upper1) 2482 break; 2483 tsf_upper1 = tsf_upper2; 2484 } 2485 2486 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2487 2488 return (((u64)tsf_upper1 << 32) | tsf_lower); 2489} 2490EXPORT_SYMBOL(ath9k_hw_gettsf64); 2491 2492void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2493{ 2494 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2495 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2496} 2497EXPORT_SYMBOL(ath9k_hw_settsf64); 2498 2499void ath9k_hw_reset_tsf(struct ath_hw *ah) 2500{ 2501 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2502 AH_TSF_WRITE_TIMEOUT)) 2503 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 2504 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2505 2506 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2507} 2508EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2509 2510void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) 2511{ 2512 if (setting) 2513 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2514 else 2515 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2516} 2517EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2518 2519void ath9k_hw_set11nmac2040(struct ath_hw *ah) 2520{ 2521 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 2522 u32 macmode; 2523 2524 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) 2525 macmode = AR_2040_JOINED_RX_CLEAR; 2526 else 2527 macmode = 0; 2528 2529 REG_WRITE(ah, AR_2040_MODE, macmode); 2530} 2531 2532/* HW Generic timers configuration */ 2533 2534static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2535{ 2536 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2537 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2538 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2539 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2540 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2541 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2542 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2543 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2544 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2545 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2546 AR_NDP2_TIMER_MODE, 0x0002}, 2547 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2548 AR_NDP2_TIMER_MODE, 0x0004}, 2549 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2550 AR_NDP2_TIMER_MODE, 0x0008}, 2551 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2552 AR_NDP2_TIMER_MODE, 0x0010}, 2553 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2554 AR_NDP2_TIMER_MODE, 0x0020}, 2555 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2556 AR_NDP2_TIMER_MODE, 0x0040}, 2557 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2558 AR_NDP2_TIMER_MODE, 0x0080} 2559}; 2560 2561/* HW generic timer primitives */ 2562 2563/* compute and clear index of rightmost 1 */ 2564static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) 2565{ 2566 u32 b; 2567 2568 b = *mask; 2569 b &= (0-b); 2570 *mask &= ~b; 2571 b *= debruijn32; 2572 b >>= 27; 2573 2574 return timer_table->gen_timer_index[b]; 2575} 2576 2577u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2578{ 2579 return REG_READ(ah, AR_TSF_L32); 2580} 2581EXPORT_SYMBOL(ath9k_hw_gettsf32); 2582 2583struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 2584 void (*trigger)(void *), 2585 void (*overflow)(void *), 2586 void *arg, 2587 u8 timer_index) 2588{ 2589 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2590 struct ath_gen_timer *timer; 2591 2592 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 2593 2594 if (timer == NULL) { 2595 ath_err(ath9k_hw_common(ah), 2596 "Failed to allocate memory for hw timer[%d]\n", 2597 timer_index); 2598 return NULL; 2599 } 2600 2601 /* allocate a hardware generic timer slot */ 2602 timer_table->timers[timer_index] = timer; 2603 timer->index = timer_index; 2604 timer->trigger = trigger; 2605 timer->overflow = overflow; 2606 timer->arg = arg; 2607 2608 return timer; 2609} 2610EXPORT_SYMBOL(ath_gen_timer_alloc); 2611 2612void ath9k_hw_gen_timer_start(struct ath_hw *ah, 2613 struct ath_gen_timer *timer, 2614 u32 trig_timeout, 2615 u32 timer_period) 2616{ 2617 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2618 u32 tsf, timer_next; 2619 2620 BUG_ON(!timer_period); 2621 2622 set_bit(timer->index, &timer_table->timer_mask.timer_bits); 2623 2624 tsf = ath9k_hw_gettsf32(ah); 2625 2626 timer_next = tsf + trig_timeout; 2627 2628 ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER, 2629 "current tsf %x period %x timer_next %x\n", 2630 tsf, timer_period, timer_next); 2631 2632 /* 2633 * Program generic timer registers 2634 */ 2635 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 2636 timer_next); 2637 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 2638 timer_period); 2639 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2640 gen_tmr_configuration[timer->index].mode_mask); 2641 2642 /* Enable both trigger and thresh interrupt masks */ 2643 REG_SET_BIT(ah, AR_IMR_S5, 2644 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2645 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2646} 2647EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 2648 2649void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 2650{ 2651 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2652 2653 if ((timer->index < AR_FIRST_NDP_TIMER) || 2654 (timer->index >= ATH_MAX_GEN_TIMER)) { 2655 return; 2656 } 2657 2658 /* Clear generic timer enable bits. */ 2659 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2660 gen_tmr_configuration[timer->index].mode_mask); 2661 2662 /* Disable both trigger and thresh interrupt masks */ 2663 REG_CLR_BIT(ah, AR_IMR_S5, 2664 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2665 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2666 2667 clear_bit(timer->index, &timer_table->timer_mask.timer_bits); 2668} 2669EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 2670 2671void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 2672{ 2673 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2674 2675 /* free the hardware generic timer slot */ 2676 timer_table->timers[timer->index] = NULL; 2677 kfree(timer); 2678} 2679EXPORT_SYMBOL(ath_gen_timer_free); 2680 2681/* 2682 * Generic Timer Interrupts handling 2683 */ 2684void ath_gen_timer_isr(struct ath_hw *ah) 2685{ 2686 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2687 struct ath_gen_timer *timer; 2688 struct ath_common *common = ath9k_hw_common(ah); 2689 u32 trigger_mask, thresh_mask, index; 2690 2691 /* get hardware generic timer interrupt status */ 2692 trigger_mask = ah->intr_gen_timer_trigger; 2693 thresh_mask = ah->intr_gen_timer_thresh; 2694 trigger_mask &= timer_table->timer_mask.val; 2695 thresh_mask &= timer_table->timer_mask.val; 2696 2697 trigger_mask &= ~thresh_mask; 2698 2699 while (thresh_mask) { 2700 index = rightmost_index(timer_table, &thresh_mask); 2701 timer = timer_table->timers[index]; 2702 BUG_ON(!timer); 2703 ath_dbg(common, ATH_DBG_HWTIMER, 2704 "TSF overflow for Gen timer %d\n", index); 2705 timer->overflow(timer->arg); 2706 } 2707 2708 while (trigger_mask) { 2709 index = rightmost_index(timer_table, &trigger_mask); 2710 timer = timer_table->timers[index]; 2711 BUG_ON(!timer); 2712 ath_dbg(common, ATH_DBG_HWTIMER, 2713 "Gen timer[%d] trigger\n", index); 2714 timer->trigger(timer->arg); 2715 } 2716} 2717EXPORT_SYMBOL(ath_gen_timer_isr); 2718 2719/********/ 2720/* HTC */ 2721/********/ 2722 2723void ath9k_hw_htc_resetinit(struct ath_hw *ah) 2724{ 2725 ah->htc_reset_init = true; 2726} 2727EXPORT_SYMBOL(ath9k_hw_htc_resetinit); 2728 2729static struct { 2730 u32 version; 2731 const char * name; 2732} ath_mac_bb_names[] = { 2733 /* Devices with external radios */ 2734 { AR_SREV_VERSION_5416_PCI, "5416" }, 2735 { AR_SREV_VERSION_5416_PCIE, "5418" }, 2736 { AR_SREV_VERSION_9100, "9100" }, 2737 { AR_SREV_VERSION_9160, "9160" }, 2738 /* Single-chip solutions */ 2739 { AR_SREV_VERSION_9280, "9280" }, 2740 { AR_SREV_VERSION_9285, "9285" }, 2741 { AR_SREV_VERSION_9287, "9287" }, 2742 { AR_SREV_VERSION_9271, "9271" }, 2743 { AR_SREV_VERSION_9300, "9300" }, 2744 { AR_SREV_VERSION_9330, "9330" }, 2745 { AR_SREV_VERSION_9485, "9485" }, 2746}; 2747 2748/* For devices with external radios */ 2749static struct { 2750 u16 version; 2751 const char * name; 2752} ath_rf_names[] = { 2753 { 0, "5133" }, 2754 { AR_RAD5133_SREV_MAJOR, "5133" }, 2755 { AR_RAD5122_SREV_MAJOR, "5122" }, 2756 { AR_RAD2133_SREV_MAJOR, "2133" }, 2757 { AR_RAD2122_SREV_MAJOR, "2122" } 2758}; 2759 2760/* 2761 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 2762 */ 2763static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 2764{ 2765 int i; 2766 2767 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 2768 if (ath_mac_bb_names[i].version == mac_bb_version) { 2769 return ath_mac_bb_names[i].name; 2770 } 2771 } 2772 2773 return "????"; 2774} 2775 2776/* 2777 * Return the RF name. "????" is returned if the RF is unknown. 2778 * Used for devices with external radios. 2779 */ 2780static const char *ath9k_hw_rf_name(u16 rf_version) 2781{ 2782 int i; 2783 2784 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 2785 if (ath_rf_names[i].version == rf_version) { 2786 return ath_rf_names[i].name; 2787 } 2788 } 2789 2790 return "????"; 2791} 2792 2793void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 2794{ 2795 int used; 2796 2797 /* chipsets >= AR9280 are single-chip */ 2798 if (AR_SREV_9280_20_OR_LATER(ah)) { 2799 used = snprintf(hw_name, len, 2800 "Atheros AR%s Rev:%x", 2801 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 2802 ah->hw_version.macRev); 2803 } 2804 else { 2805 used = snprintf(hw_name, len, 2806 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 2807 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 2808 ah->hw_version.macRev, 2809 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & 2810 AR_RADIO_SREV_MAJOR)), 2811 ah->hw_version.phyRev); 2812 } 2813 2814 hw_name[used] = '\0'; 2815} 2816EXPORT_SYMBOL(ath9k_hw_name); 2817