hw.c revision 6a0ec30ad4acae63a81526ca8c157f718904993b
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58{
59	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61	return priv_ops->macversion_supported(ah->hw_version.macVersion);
62}
63
64static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65					struct ath9k_channel *chan)
66{
67	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68}
69
70static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71{
72	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73		return;
74
75	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76}
77
78static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79{
80	/* You will not have this callback if using the old ANI */
81	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82		return;
83
84	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85}
86
87/********************/
88/* Helper Functions */
89/********************/
90
91static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
92{
93	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95	if (!ah->curchan) /* should really check for CCK instead */
96		return usecs *ATH9K_CLOCK_RATE_CCK;
97	if (conf->channel->band == IEEE80211_BAND_2GHZ)
98		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
99
100	if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101		return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102	else
103		return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
104}
105
106static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
107{
108	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
109
110	if (conf_is_ht40(conf))
111		return ath9k_hw_mac_clks(ah, usecs) * 2;
112	else
113		return ath9k_hw_mac_clks(ah, usecs);
114}
115
116bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117{
118	int i;
119
120	BUG_ON(timeout < AH_TIME_QUANTUM);
121
122	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123		if ((REG_READ(ah, reg) & mask) == val)
124			return true;
125
126		udelay(AH_TIME_QUANTUM);
127	}
128
129	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131		  timeout, reg, REG_READ(ah, reg), mask, val);
132
133	return false;
134}
135EXPORT_SYMBOL(ath9k_hw_wait);
136
137u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138{
139	u32 retval;
140	int i;
141
142	for (i = 0, retval = 0; i < n; i++) {
143		retval = (retval << 1) | (val & 1);
144		val >>= 1;
145	}
146	return retval;
147}
148
149bool ath9k_get_channel_edges(struct ath_hw *ah,
150			     u16 flags, u16 *low,
151			     u16 *high)
152{
153	struct ath9k_hw_capabilities *pCap = &ah->caps;
154
155	if (flags & CHANNEL_5GHZ) {
156		*low = pCap->low_5ghz_chan;
157		*high = pCap->high_5ghz_chan;
158		return true;
159	}
160	if ((flags & CHANNEL_2GHZ)) {
161		*low = pCap->low_2ghz_chan;
162		*high = pCap->high_2ghz_chan;
163		return true;
164	}
165	return false;
166}
167
168u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169			   u8 phy, int kbps,
170			   u32 frameLen, u16 rateix,
171			   bool shortPreamble)
172{
173	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174
175	if (kbps == 0)
176		return 0;
177
178	switch (phy) {
179	case WLAN_RC_PHY_CCK:
180		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181		if (shortPreamble)
182			phyTime >>= 1;
183		numBits = frameLen << 3;
184		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185		break;
186	case WLAN_RC_PHY_OFDM:
187		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189			numBits = OFDM_PLCP_BITS + (frameLen << 3);
190			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191			txTime = OFDM_SIFS_TIME_QUARTER
192				+ OFDM_PREAMBLE_TIME_QUARTER
193				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194		} else if (ah->curchan &&
195			   IS_CHAN_HALF_RATE(ah->curchan)) {
196			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197			numBits = OFDM_PLCP_BITS + (frameLen << 3);
198			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199			txTime = OFDM_SIFS_TIME_HALF +
200				OFDM_PREAMBLE_TIME_HALF
201				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
202		} else {
203			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204			numBits = OFDM_PLCP_BITS + (frameLen << 3);
205			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207				+ (numSymbols * OFDM_SYMBOL_TIME);
208		}
209		break;
210	default:
211		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
213		txTime = 0;
214		break;
215	}
216
217	return txTime;
218}
219EXPORT_SYMBOL(ath9k_hw_computetxtime);
220
221void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222				  struct ath9k_channel *chan,
223				  struct chan_centers *centers)
224{
225	int8_t extoff;
226
227	if (!IS_CHAN_HT40(chan)) {
228		centers->ctl_center = centers->ext_center =
229			centers->synth_center = chan->channel;
230		return;
231	}
232
233	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235		centers->synth_center =
236			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237		extoff = 1;
238	} else {
239		centers->synth_center =
240			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241		extoff = -1;
242	}
243
244	centers->ctl_center =
245		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246	/* 25 MHz spacing is supported by hw but not on upper layers */
247	centers->ext_center =
248		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249}
250
251/******************/
252/* Chip Revisions */
253/******************/
254
255static void ath9k_hw_read_revisions(struct ath_hw *ah)
256{
257	u32 val;
258
259	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
260
261	if (val == 0xFF) {
262		val = REG_READ(ah, AR_SREV);
263		ah->hw_version.macVersion =
264			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267	} else {
268		if (!AR_SREV_9100(ah))
269			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270
271		ah->hw_version.macRev = val & AR_SREV_REVISION;
272
273		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274			ah->is_pciexpress = true;
275	}
276}
277
278/************************************/
279/* HW Attach, Detach, Init Routines */
280/************************************/
281
282static void ath9k_hw_disablepcie(struct ath_hw *ah)
283{
284	if (AR_SREV_9100(ah))
285		return;
286
287	ENABLE_REGWRITE_BUFFER(ah);
288
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298
299	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300
301	REGWRITE_BUFFER_FLUSH(ah);
302	DISABLE_REGWRITE_BUFFER(ah);
303}
304
305/* This should work for all families including legacy */
306static bool ath9k_hw_chip_test(struct ath_hw *ah)
307{
308	struct ath_common *common = ath9k_hw_common(ah);
309	u32 regAddr[2] = { AR_STA_ID0 };
310	u32 regHold[2];
311	u32 patternData[4] = { 0x55555555,
312			       0xaaaaaaaa,
313			       0x66666666,
314			       0x99999999 };
315	int i, j, loop_max;
316
317	if (!AR_SREV_9300_20_OR_LATER(ah)) {
318		loop_max = 2;
319		regAddr[1] = AR_PHY_BASE + (8 << 2);
320	} else
321		loop_max = 1;
322
323	for (i = 0; i < loop_max; i++) {
324		u32 addr = regAddr[i];
325		u32 wrData, rdData;
326
327		regHold[i] = REG_READ(ah, addr);
328		for (j = 0; j < 0x100; j++) {
329			wrData = (j << 16) | j;
330			REG_WRITE(ah, addr, wrData);
331			rdData = REG_READ(ah, addr);
332			if (rdData != wrData) {
333				ath_print(common, ATH_DBG_FATAL,
334					  "address test failed "
335					  "addr: 0x%08x - wr:0x%08x != "
336					  "rd:0x%08x\n",
337					  addr, wrData, rdData);
338				return false;
339			}
340		}
341		for (j = 0; j < 4; j++) {
342			wrData = patternData[j];
343			REG_WRITE(ah, addr, wrData);
344			rdData = REG_READ(ah, addr);
345			if (wrData != rdData) {
346				ath_print(common, ATH_DBG_FATAL,
347					  "address test failed "
348					  "addr: 0x%08x - wr:0x%08x != "
349					  "rd:0x%08x\n",
350					  addr, wrData, rdData);
351				return false;
352			}
353		}
354		REG_WRITE(ah, regAddr[i], regHold[i]);
355	}
356	udelay(100);
357
358	return true;
359}
360
361static void ath9k_hw_init_config(struct ath_hw *ah)
362{
363	int i;
364
365	ah->config.dma_beacon_response_time = 2;
366	ah->config.sw_beacon_response_time = 10;
367	ah->config.additional_swba_backoff = 0;
368	ah->config.ack_6mb = 0x0;
369	ah->config.cwm_ignore_extcca = 0;
370	ah->config.pcie_powersave_enable = 0;
371	ah->config.pcie_clock_req = 0;
372	ah->config.pcie_waen = 0;
373	ah->config.analog_shiftreg = 1;
374	ah->config.ofdm_trig_low = 200;
375	ah->config.ofdm_trig_high = 500;
376	ah->config.cck_trig_high = 200;
377	ah->config.cck_trig_low = 100;
378	ah->config.enable_ani = true;
379
380	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381		ah->config.spurchans[i][0] = AR_NO_SPUR;
382		ah->config.spurchans[i][1] = AR_NO_SPUR;
383	}
384
385	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386		ah->config.ht_enable = 1;
387	else
388		ah->config.ht_enable = 0;
389
390	ah->config.rx_intr_mitigation = true;
391	ah->config.pcieSerDesWrite = true;
392
393	/*
394	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
395	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
396	 * This means we use it for all AR5416 devices, and the few
397	 * minor PCI AR9280 devices out there.
398	 *
399	 * Serialization is required because these devices do not handle
400	 * well the case of two concurrent reads/writes due to the latency
401	 * involved. During one read/write another read/write can be issued
402	 * on another CPU while the previous read/write may still be working
403	 * on our hardware, if we hit this case the hardware poops in a loop.
404	 * We prevent this by serializing reads and writes.
405	 *
406	 * This issue is not present on PCI-Express devices or pre-AR5416
407	 * devices (legacy, 802.11abg).
408	 */
409	if (num_possible_cpus() > 1)
410		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
411}
412
413static void ath9k_hw_init_defaults(struct ath_hw *ah)
414{
415	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
416
417	regulatory->country_code = CTRY_DEFAULT;
418	regulatory->power_limit = MAX_RATE_POWER;
419	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
420
421	ah->hw_version.magic = AR5416_MAGIC;
422	ah->hw_version.subvendorid = 0;
423
424	ah->ah_flags = 0;
425	if (!AR_SREV_9100(ah))
426		ah->ah_flags = AH_USE_EEPROM;
427
428	ah->atim_window = 0;
429	ah->sta_id1_defaults =
430		AR_STA_ID1_CRPT_MIC_ENABLE |
431		AR_STA_ID1_MCAST_KSRCH;
432	ah->beacon_interval = 100;
433	ah->enable_32kHz_clock = DONT_USE_32KHZ;
434	ah->slottime = (u32) -1;
435	ah->globaltxtimeout = (u32) -1;
436	ah->power_mode = ATH9K_PM_UNDEFINED;
437}
438
439static int ath9k_hw_init_macaddr(struct ath_hw *ah)
440{
441	struct ath_common *common = ath9k_hw_common(ah);
442	u32 sum;
443	int i;
444	u16 eeval;
445	u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
446
447	sum = 0;
448	for (i = 0; i < 3; i++) {
449		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
450		sum += eeval;
451		common->macaddr[2 * i] = eeval >> 8;
452		common->macaddr[2 * i + 1] = eeval & 0xff;
453	}
454	if (sum == 0 || sum == 0xffff * 3)
455		return -EADDRNOTAVAIL;
456
457	return 0;
458}
459
460static int ath9k_hw_post_init(struct ath_hw *ah)
461{
462	int ecode;
463
464	if (!AR_SREV_9271(ah)) {
465		if (!ath9k_hw_chip_test(ah))
466			return -ENODEV;
467	}
468
469	if (!AR_SREV_9300_20_OR_LATER(ah)) {
470		ecode = ar9002_hw_rf_claim(ah);
471		if (ecode != 0)
472			return ecode;
473	}
474
475	ecode = ath9k_hw_eeprom_init(ah);
476	if (ecode != 0)
477		return ecode;
478
479	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
480		  "Eeprom VER: %d, REV: %d\n",
481		  ah->eep_ops->get_eeprom_ver(ah),
482		  ah->eep_ops->get_eeprom_rev(ah));
483
484	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
485	if (ecode) {
486		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
487			  "Failed allocating banks for "
488			  "external radio\n");
489		return ecode;
490	}
491
492	if (!AR_SREV_9100(ah)) {
493		ath9k_hw_ani_setup(ah);
494		ath9k_hw_ani_init(ah);
495	}
496
497	return 0;
498}
499
500static void ath9k_hw_attach_ops(struct ath_hw *ah)
501{
502	if (AR_SREV_9300_20_OR_LATER(ah))
503		ar9003_hw_attach_ops(ah);
504	else
505		ar9002_hw_attach_ops(ah);
506}
507
508/* Called for all hardware families */
509static int __ath9k_hw_init(struct ath_hw *ah)
510{
511	struct ath_common *common = ath9k_hw_common(ah);
512	int r = 0;
513
514	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
515		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
516
517	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
518		ath_print(common, ATH_DBG_FATAL,
519			  "Couldn't reset chip\n");
520		return -EIO;
521	}
522
523	ath9k_hw_init_defaults(ah);
524	ath9k_hw_init_config(ah);
525
526	ath9k_hw_attach_ops(ah);
527
528	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
529		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
530		return -EIO;
531	}
532
533	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
534		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
535		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
536			ah->config.serialize_regmode =
537				SER_REG_MODE_ON;
538		} else {
539			ah->config.serialize_regmode =
540				SER_REG_MODE_OFF;
541		}
542	}
543
544	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
545		ah->config.serialize_regmode);
546
547	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
548		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
549	else
550		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
551
552	if (!ath9k_hw_macversion_supported(ah)) {
553		ath_print(common, ATH_DBG_FATAL,
554			  "Mac Chip Rev 0x%02x.%x is not supported by "
555			  "this driver\n", ah->hw_version.macVersion,
556			  ah->hw_version.macRev);
557		return -EOPNOTSUPP;
558	}
559
560	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
561		ah->is_pciexpress = false;
562
563	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
564	ath9k_hw_init_cal_settings(ah);
565
566	ah->ani_function = ATH9K_ANI_ALL;
567	if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
568		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
569	if (!AR_SREV_9300_20_OR_LATER(ah))
570		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
571
572	ath9k_hw_init_mode_regs(ah);
573
574	/*
575	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
576	 * We need to do this to avoid RMW of this register. We cannot
577	 * read the reg when chip is asleep.
578	 */
579	ah->WARegVal = REG_READ(ah, AR_WA);
580	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
581			 AR_WA_ASPM_TIMER_BASED_DISABLE);
582
583	if (ah->is_pciexpress)
584		ath9k_hw_configpcipowersave(ah, 0, 0);
585	else
586		ath9k_hw_disablepcie(ah);
587
588	if (!AR_SREV_9300_20_OR_LATER(ah))
589		ar9002_hw_cck_chan14_spread(ah);
590
591	r = ath9k_hw_post_init(ah);
592	if (r)
593		return r;
594
595	ath9k_hw_init_mode_gain_regs(ah);
596	r = ath9k_hw_fill_cap_info(ah);
597	if (r)
598		return r;
599
600	r = ath9k_hw_init_macaddr(ah);
601	if (r) {
602		ath_print(common, ATH_DBG_FATAL,
603			  "Failed to initialize MAC address\n");
604		return r;
605	}
606
607	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
608		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
609	else
610		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
611
612	if (AR_SREV_9300_20_OR_LATER(ah))
613		ar9003_hw_set_nf_limits(ah);
614
615	ath9k_init_nfcal_hist_buffer(ah);
616	ah->bb_watchdog_timeout_ms = 25;
617
618	common->state = ATH_HW_INITIALIZED;
619
620	return 0;
621}
622
623int ath9k_hw_init(struct ath_hw *ah)
624{
625	int ret;
626	struct ath_common *common = ath9k_hw_common(ah);
627
628	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
629	switch (ah->hw_version.devid) {
630	case AR5416_DEVID_PCI:
631	case AR5416_DEVID_PCIE:
632	case AR5416_AR9100_DEVID:
633	case AR9160_DEVID_PCI:
634	case AR9280_DEVID_PCI:
635	case AR9280_DEVID_PCIE:
636	case AR9285_DEVID_PCIE:
637	case AR9287_DEVID_PCI:
638	case AR9287_DEVID_PCIE:
639	case AR2427_DEVID_PCIE:
640	case AR9300_DEVID_PCIE:
641		break;
642	default:
643		if (common->bus_ops->ath_bus_type == ATH_USB)
644			break;
645		ath_print(common, ATH_DBG_FATAL,
646			  "Hardware device ID 0x%04x not supported\n",
647			  ah->hw_version.devid);
648		return -EOPNOTSUPP;
649	}
650
651	ret = __ath9k_hw_init(ah);
652	if (ret) {
653		ath_print(common, ATH_DBG_FATAL,
654			  "Unable to initialize hardware; "
655			  "initialization status: %d\n", ret);
656		return ret;
657	}
658
659	return 0;
660}
661EXPORT_SYMBOL(ath9k_hw_init);
662
663static void ath9k_hw_init_qos(struct ath_hw *ah)
664{
665	ENABLE_REGWRITE_BUFFER(ah);
666
667	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
668	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
669
670	REG_WRITE(ah, AR_QOS_NO_ACK,
671		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
672		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
673		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
674
675	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
676	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
677	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
678	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
679	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
680
681	REGWRITE_BUFFER_FLUSH(ah);
682	DISABLE_REGWRITE_BUFFER(ah);
683}
684
685static void ath9k_hw_init_pll(struct ath_hw *ah,
686			      struct ath9k_channel *chan)
687{
688	u32 pll = ath9k_hw_compute_pll_control(ah, chan);
689
690	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
691
692	/* Switch the core clock for ar9271 to 117Mhz */
693	if (AR_SREV_9271(ah)) {
694		udelay(500);
695		REG_WRITE(ah, 0x50040, 0x304);
696	}
697
698	udelay(RTC_PLL_SETTLE_DELAY);
699
700	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
701}
702
703static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
704					  enum nl80211_iftype opmode)
705{
706	u32 imr_reg = AR_IMR_TXERR |
707		AR_IMR_TXURN |
708		AR_IMR_RXERR |
709		AR_IMR_RXORN |
710		AR_IMR_BCNMISC;
711
712	if (AR_SREV_9300_20_OR_LATER(ah)) {
713		imr_reg |= AR_IMR_RXOK_HP;
714		if (ah->config.rx_intr_mitigation)
715			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
716		else
717			imr_reg |= AR_IMR_RXOK_LP;
718
719	} else {
720		if (ah->config.rx_intr_mitigation)
721			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
722		else
723			imr_reg |= AR_IMR_RXOK;
724	}
725
726	if (ah->config.tx_intr_mitigation)
727		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
728	else
729		imr_reg |= AR_IMR_TXOK;
730
731	if (opmode == NL80211_IFTYPE_AP)
732		imr_reg |= AR_IMR_MIB;
733
734	ENABLE_REGWRITE_BUFFER(ah);
735
736	REG_WRITE(ah, AR_IMR, imr_reg);
737	ah->imrs2_reg |= AR_IMR_S2_GTT;
738	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
739
740	if (!AR_SREV_9100(ah)) {
741		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
742		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
743		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
744	}
745
746	REGWRITE_BUFFER_FLUSH(ah);
747	DISABLE_REGWRITE_BUFFER(ah);
748
749	if (AR_SREV_9300_20_OR_LATER(ah)) {
750		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
751		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
752		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
753		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
754	}
755}
756
757static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
758{
759	u32 val = ath9k_hw_mac_to_clks(ah, us);
760	val = min(val, (u32) 0xFFFF);
761	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
762}
763
764static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
765{
766	u32 val = ath9k_hw_mac_to_clks(ah, us);
767	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
768	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
769}
770
771static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
772{
773	u32 val = ath9k_hw_mac_to_clks(ah, us);
774	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
775	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
776}
777
778static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
779{
780	if (tu > 0xFFFF) {
781		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
782			  "bad global tx timeout %u\n", tu);
783		ah->globaltxtimeout = (u32) -1;
784		return false;
785	} else {
786		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
787		ah->globaltxtimeout = tu;
788		return true;
789	}
790}
791
792void ath9k_hw_init_global_settings(struct ath_hw *ah)
793{
794	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
795	int acktimeout;
796	int slottime;
797	int sifstime;
798
799	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
800		  ah->misc_mode);
801
802	if (ah->misc_mode != 0)
803		REG_WRITE(ah, AR_PCU_MISC,
804			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
805
806	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
807		sifstime = 16;
808	else
809		sifstime = 10;
810
811	/* As defined by IEEE 802.11-2007 17.3.8.6 */
812	slottime = ah->slottime + 3 * ah->coverage_class;
813	acktimeout = slottime + sifstime;
814
815	/*
816	 * Workaround for early ACK timeouts, add an offset to match the
817	 * initval's 64us ack timeout value.
818	 * This was initially only meant to work around an issue with delayed
819	 * BA frames in some implementations, but it has been found to fix ACK
820	 * timeout issues in other cases as well.
821	 */
822	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
823		acktimeout += 64 - sifstime - ah->slottime;
824
825	ath9k_hw_setslottime(ah, slottime);
826	ath9k_hw_set_ack_timeout(ah, acktimeout);
827	ath9k_hw_set_cts_timeout(ah, acktimeout);
828	if (ah->globaltxtimeout != (u32) -1)
829		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
830}
831EXPORT_SYMBOL(ath9k_hw_init_global_settings);
832
833void ath9k_hw_deinit(struct ath_hw *ah)
834{
835	struct ath_common *common = ath9k_hw_common(ah);
836
837	if (common->state < ATH_HW_INITIALIZED)
838		goto free_hw;
839
840	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
841
842free_hw:
843	ath9k_hw_rf_free_ext_banks(ah);
844}
845EXPORT_SYMBOL(ath9k_hw_deinit);
846
847/*******/
848/* INI */
849/*******/
850
851u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
852{
853	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
854
855	if (IS_CHAN_B(chan))
856		ctl |= CTL_11B;
857	else if (IS_CHAN_G(chan))
858		ctl |= CTL_11G;
859	else
860		ctl |= CTL_11A;
861
862	return ctl;
863}
864
865/****************************************/
866/* Reset and Channel Switching Routines */
867/****************************************/
868
869static inline void ath9k_hw_set_dma(struct ath_hw *ah)
870{
871	struct ath_common *common = ath9k_hw_common(ah);
872	u32 regval;
873
874	ENABLE_REGWRITE_BUFFER(ah);
875
876	/*
877	 * set AHB_MODE not to do cacheline prefetches
878	*/
879	if (!AR_SREV_9300_20_OR_LATER(ah)) {
880		regval = REG_READ(ah, AR_AHB_MODE);
881		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
882	}
883
884	/*
885	 * let mac dma reads be in 128 byte chunks
886	 */
887	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
888	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
889
890	REGWRITE_BUFFER_FLUSH(ah);
891	DISABLE_REGWRITE_BUFFER(ah);
892
893	/*
894	 * Restore TX Trigger Level to its pre-reset value.
895	 * The initial value depends on whether aggregation is enabled, and is
896	 * adjusted whenever underruns are detected.
897	 */
898	if (!AR_SREV_9300_20_OR_LATER(ah))
899		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
900
901	ENABLE_REGWRITE_BUFFER(ah);
902
903	/*
904	 * let mac dma writes be in 128 byte chunks
905	 */
906	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
907	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
908
909	/*
910	 * Setup receive FIFO threshold to hold off TX activities
911	 */
912	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
913
914	if (AR_SREV_9300_20_OR_LATER(ah)) {
915		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
916		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
917
918		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
919			ah->caps.rx_status_len);
920	}
921
922	/*
923	 * reduce the number of usable entries in PCU TXBUF to avoid
924	 * wrap around issues.
925	 */
926	if (AR_SREV_9285(ah)) {
927		/* For AR9285 the number of Fifos are reduced to half.
928		 * So set the usable tx buf size also to half to
929		 * avoid data/delimiter underruns
930		 */
931		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
932			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
933	} else if (!AR_SREV_9271(ah)) {
934		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
935			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
936	}
937
938	REGWRITE_BUFFER_FLUSH(ah);
939	DISABLE_REGWRITE_BUFFER(ah);
940
941	if (AR_SREV_9300_20_OR_LATER(ah))
942		ath9k_hw_reset_txstatus_ring(ah);
943}
944
945static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
946{
947	u32 val;
948
949	val = REG_READ(ah, AR_STA_ID1);
950	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
951	switch (opmode) {
952	case NL80211_IFTYPE_AP:
953		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
954			  | AR_STA_ID1_KSRCH_MODE);
955		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
956		break;
957	case NL80211_IFTYPE_ADHOC:
958	case NL80211_IFTYPE_MESH_POINT:
959		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
960			  | AR_STA_ID1_KSRCH_MODE);
961		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
962		break;
963	case NL80211_IFTYPE_STATION:
964	case NL80211_IFTYPE_MONITOR:
965		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
966		break;
967	}
968}
969
970void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
971				   u32 *coef_mantissa, u32 *coef_exponent)
972{
973	u32 coef_exp, coef_man;
974
975	for (coef_exp = 31; coef_exp > 0; coef_exp--)
976		if ((coef_scaled >> coef_exp) & 0x1)
977			break;
978
979	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
980
981	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
982
983	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
984	*coef_exponent = coef_exp - 16;
985}
986
987static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
988{
989	u32 rst_flags;
990	u32 tmpReg;
991
992	if (AR_SREV_9100(ah)) {
993		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
994		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
995		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
996		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
997		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
998	}
999
1000	ENABLE_REGWRITE_BUFFER(ah);
1001
1002	if (AR_SREV_9300_20_OR_LATER(ah)) {
1003		REG_WRITE(ah, AR_WA, ah->WARegVal);
1004		udelay(10);
1005	}
1006
1007	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1008		  AR_RTC_FORCE_WAKE_ON_INT);
1009
1010	if (AR_SREV_9100(ah)) {
1011		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1012			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1013	} else {
1014		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1015		if (tmpReg &
1016		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1017		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1018			u32 val;
1019			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1020
1021			val = AR_RC_HOSTIF;
1022			if (!AR_SREV_9300_20_OR_LATER(ah))
1023				val |= AR_RC_AHB;
1024			REG_WRITE(ah, AR_RC, val);
1025
1026		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1027			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1028
1029		rst_flags = AR_RTC_RC_MAC_WARM;
1030		if (type == ATH9K_RESET_COLD)
1031			rst_flags |= AR_RTC_RC_MAC_COLD;
1032	}
1033
1034	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1035
1036	REGWRITE_BUFFER_FLUSH(ah);
1037	DISABLE_REGWRITE_BUFFER(ah);
1038
1039	udelay(50);
1040
1041	REG_WRITE(ah, AR_RTC_RC, 0);
1042	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1043		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1044			  "RTC stuck in MAC reset\n");
1045		return false;
1046	}
1047
1048	if (!AR_SREV_9100(ah))
1049		REG_WRITE(ah, AR_RC, 0);
1050
1051	if (AR_SREV_9100(ah))
1052		udelay(50);
1053
1054	return true;
1055}
1056
1057static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1058{
1059	ENABLE_REGWRITE_BUFFER(ah);
1060
1061	if (AR_SREV_9300_20_OR_LATER(ah)) {
1062		REG_WRITE(ah, AR_WA, ah->WARegVal);
1063		udelay(10);
1064	}
1065
1066	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1067		  AR_RTC_FORCE_WAKE_ON_INT);
1068
1069	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1070		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1071
1072	REG_WRITE(ah, AR_RTC_RESET, 0);
1073
1074	REGWRITE_BUFFER_FLUSH(ah);
1075	DISABLE_REGWRITE_BUFFER(ah);
1076
1077	if (!AR_SREV_9300_20_OR_LATER(ah))
1078		udelay(2);
1079
1080	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1081		REG_WRITE(ah, AR_RC, 0);
1082
1083	REG_WRITE(ah, AR_RTC_RESET, 1);
1084
1085	if (!ath9k_hw_wait(ah,
1086			   AR_RTC_STATUS,
1087			   AR_RTC_STATUS_M,
1088			   AR_RTC_STATUS_ON,
1089			   AH_WAIT_TIMEOUT)) {
1090		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1091			  "RTC not waking up\n");
1092		return false;
1093	}
1094
1095	ath9k_hw_read_revisions(ah);
1096
1097	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1098}
1099
1100static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1101{
1102	if (AR_SREV_9300_20_OR_LATER(ah)) {
1103		REG_WRITE(ah, AR_WA, ah->WARegVal);
1104		udelay(10);
1105	}
1106
1107	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1108		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1109
1110	switch (type) {
1111	case ATH9K_RESET_POWER_ON:
1112		return ath9k_hw_set_reset_power_on(ah);
1113	case ATH9K_RESET_WARM:
1114	case ATH9K_RESET_COLD:
1115		return ath9k_hw_set_reset(ah, type);
1116	default:
1117		return false;
1118	}
1119}
1120
1121static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1122				struct ath9k_channel *chan)
1123{
1124	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1125		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1126			return false;
1127	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1128		return false;
1129
1130	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1131		return false;
1132
1133	ah->chip_fullsleep = false;
1134	ath9k_hw_init_pll(ah, chan);
1135	ath9k_hw_set_rfmode(ah, chan);
1136
1137	return true;
1138}
1139
1140static bool ath9k_hw_channel_change(struct ath_hw *ah,
1141				    struct ath9k_channel *chan)
1142{
1143	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1144	struct ath_common *common = ath9k_hw_common(ah);
1145	struct ieee80211_channel *channel = chan->chan;
1146	u32 qnum;
1147	int r;
1148
1149	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1150		if (ath9k_hw_numtxpending(ah, qnum)) {
1151			ath_print(common, ATH_DBG_QUEUE,
1152				  "Transmit frames pending on "
1153				  "queue %d\n", qnum);
1154			return false;
1155		}
1156	}
1157
1158	if (!ath9k_hw_rfbus_req(ah)) {
1159		ath_print(common, ATH_DBG_FATAL,
1160			  "Could not kill baseband RX\n");
1161		return false;
1162	}
1163
1164	ath9k_hw_set_channel_regs(ah, chan);
1165
1166	r = ath9k_hw_rf_set_freq(ah, chan);
1167	if (r) {
1168		ath_print(common, ATH_DBG_FATAL,
1169			  "Failed to set channel\n");
1170		return false;
1171	}
1172
1173	ah->eep_ops->set_txpower(ah, chan,
1174			     ath9k_regd_get_ctl(regulatory, chan),
1175			     channel->max_antenna_gain * 2,
1176			     channel->max_power * 2,
1177			     min((u32) MAX_RATE_POWER,
1178			     (u32) regulatory->power_limit));
1179
1180	ath9k_hw_rfbus_done(ah);
1181
1182	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1183		ath9k_hw_set_delta_slope(ah, chan);
1184
1185	ath9k_hw_spur_mitigate_freq(ah, chan);
1186
1187	if (!chan->oneTimeCalsDone)
1188		chan->oneTimeCalsDone = true;
1189
1190	return true;
1191}
1192
1193bool ath9k_hw_check_alive(struct ath_hw *ah)
1194{
1195	int count = 50;
1196	u32 reg;
1197
1198	if (AR_SREV_9285_10_OR_LATER(ah))
1199		return true;
1200
1201	do {
1202		reg = REG_READ(ah, AR_OBS_BUS_1);
1203
1204		if ((reg & 0x7E7FFFEF) == 0x00702400)
1205			continue;
1206
1207		switch (reg & 0x7E000B00) {
1208		case 0x1E000000:
1209		case 0x52000B00:
1210		case 0x18000B00:
1211			continue;
1212		default:
1213			return true;
1214		}
1215	} while (count-- > 0);
1216
1217	return false;
1218}
1219EXPORT_SYMBOL(ath9k_hw_check_alive);
1220
1221int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1222		    bool bChannelChange)
1223{
1224	struct ath_common *common = ath9k_hw_common(ah);
1225	u32 saveLedState;
1226	struct ath9k_channel *curchan = ah->curchan;
1227	u32 saveDefAntenna;
1228	u32 macStaId1;
1229	u64 tsf = 0;
1230	int i, r;
1231
1232	ah->txchainmask = common->tx_chainmask;
1233	ah->rxchainmask = common->rx_chainmask;
1234
1235	if (!ah->chip_fullsleep) {
1236		ath9k_hw_abortpcurecv(ah);
1237		if (!ath9k_hw_stopdmarecv(ah))
1238			ath_print(common, ATH_DBG_XMIT,
1239				"Failed to stop receive dma\n");
1240	}
1241
1242	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1243		return -EIO;
1244
1245	if (curchan && !ah->chip_fullsleep)
1246		ath9k_hw_getnf(ah, curchan);
1247
1248	if (bChannelChange &&
1249	    (ah->chip_fullsleep != true) &&
1250	    (ah->curchan != NULL) &&
1251	    (chan->channel != ah->curchan->channel) &&
1252	    ((chan->channelFlags & CHANNEL_ALL) ==
1253	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1254	    !AR_SREV_9280(ah)) {
1255
1256		if (ath9k_hw_channel_change(ah, chan)) {
1257			ath9k_hw_loadnf(ah, ah->curchan);
1258			ath9k_hw_start_nfcal(ah);
1259			return 0;
1260		}
1261	}
1262
1263	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1264	if (saveDefAntenna == 0)
1265		saveDefAntenna = 1;
1266
1267	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1268
1269	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1270	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1271		tsf = ath9k_hw_gettsf64(ah);
1272
1273	saveLedState = REG_READ(ah, AR_CFG_LED) &
1274		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1275		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1276
1277	ath9k_hw_mark_phy_inactive(ah);
1278
1279	/* Only required on the first reset */
1280	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1281		REG_WRITE(ah,
1282			  AR9271_RESET_POWER_DOWN_CONTROL,
1283			  AR9271_RADIO_RF_RST);
1284		udelay(50);
1285	}
1286
1287	if (!ath9k_hw_chip_reset(ah, chan)) {
1288		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1289		return -EINVAL;
1290	}
1291
1292	/* Only required on the first reset */
1293	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1294		ah->htc_reset_init = false;
1295		REG_WRITE(ah,
1296			  AR9271_RESET_POWER_DOWN_CONTROL,
1297			  AR9271_GATE_MAC_CTL);
1298		udelay(50);
1299	}
1300
1301	/* Restore TSF */
1302	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1303		ath9k_hw_settsf64(ah, tsf);
1304
1305	if (AR_SREV_9280_10_OR_LATER(ah))
1306		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1307
1308	if (!AR_SREV_9300_20_OR_LATER(ah))
1309		ar9002_hw_enable_async_fifo(ah);
1310
1311	r = ath9k_hw_process_ini(ah, chan);
1312	if (r)
1313		return r;
1314
1315	/* Setup MFP options for CCMP */
1316	if (AR_SREV_9280_20_OR_LATER(ah)) {
1317		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1318		 * frames when constructing CCMP AAD. */
1319		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1320			      0xc7ff);
1321		ah->sw_mgmt_crypto = false;
1322	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1323		/* Disable hardware crypto for management frames */
1324		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1325			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1326		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1327			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1328		ah->sw_mgmt_crypto = true;
1329	} else
1330		ah->sw_mgmt_crypto = true;
1331
1332	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1333		ath9k_hw_set_delta_slope(ah, chan);
1334
1335	ath9k_hw_spur_mitigate_freq(ah, chan);
1336	ah->eep_ops->set_board_values(ah, chan);
1337
1338	ath9k_hw_set_operating_mode(ah, ah->opmode);
1339
1340	ENABLE_REGWRITE_BUFFER(ah);
1341
1342	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1343	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1344		  | macStaId1
1345		  | AR_STA_ID1_RTS_USE_DEF
1346		  | (ah->config.
1347		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1348		  | ah->sta_id1_defaults);
1349	ath_hw_setbssidmask(common);
1350	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1351	ath9k_hw_write_associd(ah);
1352	REG_WRITE(ah, AR_ISR, ~0);
1353	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1354
1355	REGWRITE_BUFFER_FLUSH(ah);
1356	DISABLE_REGWRITE_BUFFER(ah);
1357
1358	r = ath9k_hw_rf_set_freq(ah, chan);
1359	if (r)
1360		return r;
1361
1362	ENABLE_REGWRITE_BUFFER(ah);
1363
1364	for (i = 0; i < AR_NUM_DCU; i++)
1365		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1366
1367	REGWRITE_BUFFER_FLUSH(ah);
1368	DISABLE_REGWRITE_BUFFER(ah);
1369
1370	ah->intr_txqs = 0;
1371	for (i = 0; i < ah->caps.total_queues; i++)
1372		ath9k_hw_resettxqueue(ah, i);
1373
1374	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1375	ath9k_hw_ani_cache_ini_regs(ah);
1376	ath9k_hw_init_qos(ah);
1377
1378	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1379		ath9k_enable_rfkill(ah);
1380
1381	ath9k_hw_init_global_settings(ah);
1382
1383	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1384		ar9002_hw_update_async_fifo(ah);
1385		ar9002_hw_enable_wep_aggregation(ah);
1386	}
1387
1388	REG_WRITE(ah, AR_STA_ID1,
1389		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1390
1391	ath9k_hw_set_dma(ah);
1392
1393	REG_WRITE(ah, AR_OBS, 8);
1394
1395	if (ah->config.rx_intr_mitigation) {
1396		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1397		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1398	}
1399
1400	if (ah->config.tx_intr_mitigation) {
1401		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1402		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1403	}
1404
1405	ath9k_hw_init_bb(ah, chan);
1406
1407	if (!ath9k_hw_init_cal(ah, chan))
1408		return -EIO;
1409
1410	ENABLE_REGWRITE_BUFFER(ah);
1411
1412	ath9k_hw_restore_chainmask(ah);
1413	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1414
1415	REGWRITE_BUFFER_FLUSH(ah);
1416	DISABLE_REGWRITE_BUFFER(ah);
1417
1418	/*
1419	 * For big endian systems turn on swapping for descriptors
1420	 */
1421	if (AR_SREV_9100(ah)) {
1422		u32 mask;
1423		mask = REG_READ(ah, AR_CFG);
1424		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1425			ath_print(common, ATH_DBG_RESET,
1426				"CFG Byte Swap Set 0x%x\n", mask);
1427		} else {
1428			mask =
1429				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1430			REG_WRITE(ah, AR_CFG, mask);
1431			ath_print(common, ATH_DBG_RESET,
1432				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1433		}
1434	} else {
1435		if (common->bus_ops->ath_bus_type == ATH_USB) {
1436			/* Configure AR9271 target WLAN */
1437			if (AR_SREV_9271(ah))
1438				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1439			else
1440				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1441		}
1442#ifdef __BIG_ENDIAN
1443                else
1444			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1445#endif
1446	}
1447
1448	if (ah->btcoex_hw.enabled)
1449		ath9k_hw_btcoex_enable(ah);
1450
1451	if (AR_SREV_9300_20_OR_LATER(ah)) {
1452		ath9k_hw_loadnf(ah, curchan);
1453		ath9k_hw_start_nfcal(ah);
1454		ar9003_hw_bb_watchdog_config(ah);
1455	}
1456
1457	return 0;
1458}
1459EXPORT_SYMBOL(ath9k_hw_reset);
1460
1461/************************/
1462/* Key Cache Management */
1463/************************/
1464
1465bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1466{
1467	u32 keyType;
1468
1469	if (entry >= ah->caps.keycache_size) {
1470		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1471			  "keychache entry %u out of range\n", entry);
1472		return false;
1473	}
1474
1475	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1476
1477	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1478	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1479	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1480	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1481	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1482	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1483	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1484	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1485
1486	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1487		u16 micentry = entry + 64;
1488
1489		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1490		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1491		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1492		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1493
1494	}
1495
1496	return true;
1497}
1498EXPORT_SYMBOL(ath9k_hw_keyreset);
1499
1500bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1501{
1502	u32 macHi, macLo;
1503	u32 unicast_flag = AR_KEYTABLE_VALID;
1504
1505	if (entry >= ah->caps.keycache_size) {
1506		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1507			  "keychache entry %u out of range\n", entry);
1508		return false;
1509	}
1510
1511	if (mac != NULL) {
1512		/*
1513		 * AR_KEYTABLE_VALID indicates that the address is a unicast
1514		 * address, which must match the transmitter address for
1515		 * decrypting frames.
1516		 * Not setting this bit allows the hardware to use the key
1517		 * for multicast frame decryption.
1518		 */
1519		if (mac[0] & 0x01)
1520			unicast_flag = 0;
1521
1522		macHi = (mac[5] << 8) | mac[4];
1523		macLo = (mac[3] << 24) |
1524			(mac[2] << 16) |
1525			(mac[1] << 8) |
1526			mac[0];
1527		macLo >>= 1;
1528		macLo |= (macHi & 1) << 31;
1529		macHi >>= 1;
1530	} else {
1531		macLo = macHi = 0;
1532	}
1533	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1534	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1535
1536	return true;
1537}
1538EXPORT_SYMBOL(ath9k_hw_keysetmac);
1539
1540bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1541				 const struct ath9k_keyval *k,
1542				 const u8 *mac)
1543{
1544	const struct ath9k_hw_capabilities *pCap = &ah->caps;
1545	struct ath_common *common = ath9k_hw_common(ah);
1546	u32 key0, key1, key2, key3, key4;
1547	u32 keyType;
1548
1549	if (entry >= pCap->keycache_size) {
1550		ath_print(common, ATH_DBG_FATAL,
1551			  "keycache entry %u out of range\n", entry);
1552		return false;
1553	}
1554
1555	switch (k->kv_type) {
1556	case ATH9K_CIPHER_AES_OCB:
1557		keyType = AR_KEYTABLE_TYPE_AES;
1558		break;
1559	case ATH9K_CIPHER_AES_CCM:
1560		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1561			ath_print(common, ATH_DBG_ANY,
1562				  "AES-CCM not supported by mac rev 0x%x\n",
1563				  ah->hw_version.macRev);
1564			return false;
1565		}
1566		keyType = AR_KEYTABLE_TYPE_CCM;
1567		break;
1568	case ATH9K_CIPHER_TKIP:
1569		keyType = AR_KEYTABLE_TYPE_TKIP;
1570		if (ATH9K_IS_MIC_ENABLED(ah)
1571		    && entry + 64 >= pCap->keycache_size) {
1572			ath_print(common, ATH_DBG_ANY,
1573				  "entry %u inappropriate for TKIP\n", entry);
1574			return false;
1575		}
1576		break;
1577	case ATH9K_CIPHER_WEP:
1578		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1579			ath_print(common, ATH_DBG_ANY,
1580				  "WEP key length %u too small\n", k->kv_len);
1581			return false;
1582		}
1583		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1584			keyType = AR_KEYTABLE_TYPE_40;
1585		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1586			keyType = AR_KEYTABLE_TYPE_104;
1587		else
1588			keyType = AR_KEYTABLE_TYPE_128;
1589		break;
1590	case ATH9K_CIPHER_CLR:
1591		keyType = AR_KEYTABLE_TYPE_CLR;
1592		break;
1593	default:
1594		ath_print(common, ATH_DBG_FATAL,
1595			  "cipher %u not supported\n", k->kv_type);
1596		return false;
1597	}
1598
1599	key0 = get_unaligned_le32(k->kv_val + 0);
1600	key1 = get_unaligned_le16(k->kv_val + 4);
1601	key2 = get_unaligned_le32(k->kv_val + 6);
1602	key3 = get_unaligned_le16(k->kv_val + 10);
1603	key4 = get_unaligned_le32(k->kv_val + 12);
1604	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1605		key4 &= 0xff;
1606
1607	/*
1608	 * Note: Key cache registers access special memory area that requires
1609	 * two 32-bit writes to actually update the values in the internal
1610	 * memory. Consequently, the exact order and pairs used here must be
1611	 * maintained.
1612	 */
1613
1614	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1615		u16 micentry = entry + 64;
1616
1617		/*
1618		 * Write inverted key[47:0] first to avoid Michael MIC errors
1619		 * on frames that could be sent or received at the same time.
1620		 * The correct key will be written in the end once everything
1621		 * else is ready.
1622		 */
1623		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1624		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1625
1626		/* Write key[95:48] */
1627		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1628		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1629
1630		/* Write key[127:96] and key type */
1631		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1632		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1633
1634		/* Write MAC address for the entry */
1635		(void) ath9k_hw_keysetmac(ah, entry, mac);
1636
1637		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1638			/*
1639			 * TKIP uses two key cache entries:
1640			 * Michael MIC TX/RX keys in the same key cache entry
1641			 * (idx = main index + 64):
1642			 * key0 [31:0] = RX key [31:0]
1643			 * key1 [15:0] = TX key [31:16]
1644			 * key1 [31:16] = reserved
1645			 * key2 [31:0] = RX key [63:32]
1646			 * key3 [15:0] = TX key [15:0]
1647			 * key3 [31:16] = reserved
1648			 * key4 [31:0] = TX key [63:32]
1649			 */
1650			u32 mic0, mic1, mic2, mic3, mic4;
1651
1652			mic0 = get_unaligned_le32(k->kv_mic + 0);
1653			mic2 = get_unaligned_le32(k->kv_mic + 4);
1654			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1655			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1656			mic4 = get_unaligned_le32(k->kv_txmic + 4);
1657
1658			/* Write RX[31:0] and TX[31:16] */
1659			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1660			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1661
1662			/* Write RX[63:32] and TX[15:0] */
1663			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1664			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1665
1666			/* Write TX[63:32] and keyType(reserved) */
1667			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1668			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1669				  AR_KEYTABLE_TYPE_CLR);
1670
1671		} else {
1672			/*
1673			 * TKIP uses four key cache entries (two for group
1674			 * keys):
1675			 * Michael MIC TX/RX keys are in different key cache
1676			 * entries (idx = main index + 64 for TX and
1677			 * main index + 32 + 96 for RX):
1678			 * key0 [31:0] = TX/RX MIC key [31:0]
1679			 * key1 [31:0] = reserved
1680			 * key2 [31:0] = TX/RX MIC key [63:32]
1681			 * key3 [31:0] = reserved
1682			 * key4 [31:0] = reserved
1683			 *
1684			 * Upper layer code will call this function separately
1685			 * for TX and RX keys when these registers offsets are
1686			 * used.
1687			 */
1688			u32 mic0, mic2;
1689
1690			mic0 = get_unaligned_le32(k->kv_mic + 0);
1691			mic2 = get_unaligned_le32(k->kv_mic + 4);
1692
1693			/* Write MIC key[31:0] */
1694			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1695			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1696
1697			/* Write MIC key[63:32] */
1698			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1699			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1700
1701			/* Write TX[63:32] and keyType(reserved) */
1702			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1703			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1704				  AR_KEYTABLE_TYPE_CLR);
1705		}
1706
1707		/* MAC address registers are reserved for the MIC entry */
1708		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1709		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1710
1711		/*
1712		 * Write the correct (un-inverted) key[47:0] last to enable
1713		 * TKIP now that all other registers are set with correct
1714		 * values.
1715		 */
1716		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1717		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1718	} else {
1719		/* Write key[47:0] */
1720		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1721		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1722
1723		/* Write key[95:48] */
1724		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1725		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1726
1727		/* Write key[127:96] and key type */
1728		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1729		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1730
1731		/* Write MAC address for the entry */
1732		(void) ath9k_hw_keysetmac(ah, entry, mac);
1733	}
1734
1735	return true;
1736}
1737EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1738
1739bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1740{
1741	if (entry < ah->caps.keycache_size) {
1742		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1743		if (val & AR_KEYTABLE_VALID)
1744			return true;
1745	}
1746	return false;
1747}
1748EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1749
1750/******************************/
1751/* Power Management (Chipset) */
1752/******************************/
1753
1754/*
1755 * Notify Power Mgt is disabled in self-generated frames.
1756 * If requested, force chip to sleep.
1757 */
1758static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1759{
1760	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1761	if (setChip) {
1762		/*
1763		 * Clear the RTC force wake bit to allow the
1764		 * mac to go to sleep.
1765		 */
1766		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1767			    AR_RTC_FORCE_WAKE_EN);
1768		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1769			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1770
1771		/* Shutdown chip. Active low */
1772		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1773			REG_CLR_BIT(ah, (AR_RTC_RESET),
1774				    AR_RTC_RESET_EN);
1775	}
1776
1777	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1778	if (AR_SREV_9300_20_OR_LATER(ah))
1779		REG_WRITE(ah, AR_WA,
1780			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1781}
1782
1783/*
1784 * Notify Power Management is enabled in self-generating
1785 * frames. If request, set power mode of chip to
1786 * auto/normal.  Duration in units of 128us (1/8 TU).
1787 */
1788static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1789{
1790	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1791	if (setChip) {
1792		struct ath9k_hw_capabilities *pCap = &ah->caps;
1793
1794		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1795			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1796			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1797				  AR_RTC_FORCE_WAKE_ON_INT);
1798		} else {
1799			/*
1800			 * Clear the RTC force wake bit to allow the
1801			 * mac to go to sleep.
1802			 */
1803			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1804				    AR_RTC_FORCE_WAKE_EN);
1805		}
1806	}
1807
1808	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1809	if (AR_SREV_9300_20_OR_LATER(ah))
1810		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1811}
1812
1813static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1814{
1815	u32 val;
1816	int i;
1817
1818	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1819	if (AR_SREV_9300_20_OR_LATER(ah)) {
1820		REG_WRITE(ah, AR_WA, ah->WARegVal);
1821		udelay(10);
1822	}
1823
1824	if (setChip) {
1825		if ((REG_READ(ah, AR_RTC_STATUS) &
1826		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1827			if (ath9k_hw_set_reset_reg(ah,
1828					   ATH9K_RESET_POWER_ON) != true) {
1829				return false;
1830			}
1831			if (!AR_SREV_9300_20_OR_LATER(ah))
1832				ath9k_hw_init_pll(ah, NULL);
1833		}
1834		if (AR_SREV_9100(ah))
1835			REG_SET_BIT(ah, AR_RTC_RESET,
1836				    AR_RTC_RESET_EN);
1837
1838		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1839			    AR_RTC_FORCE_WAKE_EN);
1840		udelay(50);
1841
1842		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1843			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1844			if (val == AR_RTC_STATUS_ON)
1845				break;
1846			udelay(50);
1847			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1848				    AR_RTC_FORCE_WAKE_EN);
1849		}
1850		if (i == 0) {
1851			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1852				  "Failed to wakeup in %uus\n",
1853				  POWER_UP_TIME / 20);
1854			return false;
1855		}
1856	}
1857
1858	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1859
1860	return true;
1861}
1862
1863bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1864{
1865	struct ath_common *common = ath9k_hw_common(ah);
1866	int status = true, setChip = true;
1867	static const char *modes[] = {
1868		"AWAKE",
1869		"FULL-SLEEP",
1870		"NETWORK SLEEP",
1871		"UNDEFINED"
1872	};
1873
1874	if (ah->power_mode == mode)
1875		return status;
1876
1877	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1878		  modes[ah->power_mode], modes[mode]);
1879
1880	switch (mode) {
1881	case ATH9K_PM_AWAKE:
1882		status = ath9k_hw_set_power_awake(ah, setChip);
1883		break;
1884	case ATH9K_PM_FULL_SLEEP:
1885		ath9k_set_power_sleep(ah, setChip);
1886		ah->chip_fullsleep = true;
1887		break;
1888	case ATH9K_PM_NETWORK_SLEEP:
1889		ath9k_set_power_network_sleep(ah, setChip);
1890		break;
1891	default:
1892		ath_print(common, ATH_DBG_FATAL,
1893			  "Unknown power mode %u\n", mode);
1894		return false;
1895	}
1896	ah->power_mode = mode;
1897
1898	return status;
1899}
1900EXPORT_SYMBOL(ath9k_hw_setpower);
1901
1902/*******************/
1903/* Beacon Handling */
1904/*******************/
1905
1906void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1907{
1908	int flags = 0;
1909
1910	ah->beacon_interval = beacon_period;
1911
1912	ENABLE_REGWRITE_BUFFER(ah);
1913
1914	switch (ah->opmode) {
1915	case NL80211_IFTYPE_STATION:
1916	case NL80211_IFTYPE_MONITOR:
1917		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1918		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1919		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1920		flags |= AR_TBTT_TIMER_EN;
1921		break;
1922	case NL80211_IFTYPE_ADHOC:
1923	case NL80211_IFTYPE_MESH_POINT:
1924		REG_SET_BIT(ah, AR_TXCFG,
1925			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1926		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1927			  TU_TO_USEC(next_beacon +
1928				     (ah->atim_window ? ah->
1929				      atim_window : 1)));
1930		flags |= AR_NDP_TIMER_EN;
1931	case NL80211_IFTYPE_AP:
1932		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1933		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1934			  TU_TO_USEC(next_beacon -
1935				     ah->config.
1936				     dma_beacon_response_time));
1937		REG_WRITE(ah, AR_NEXT_SWBA,
1938			  TU_TO_USEC(next_beacon -
1939				     ah->config.
1940				     sw_beacon_response_time));
1941		flags |=
1942			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1943		break;
1944	default:
1945		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1946			  "%s: unsupported opmode: %d\n",
1947			  __func__, ah->opmode);
1948		return;
1949		break;
1950	}
1951
1952	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1953	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1954	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1955	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1956
1957	REGWRITE_BUFFER_FLUSH(ah);
1958	DISABLE_REGWRITE_BUFFER(ah);
1959
1960	beacon_period &= ~ATH9K_BEACON_ENA;
1961	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1962		ath9k_hw_reset_tsf(ah);
1963	}
1964
1965	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1966}
1967EXPORT_SYMBOL(ath9k_hw_beaconinit);
1968
1969void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1970				    const struct ath9k_beacon_state *bs)
1971{
1972	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1973	struct ath9k_hw_capabilities *pCap = &ah->caps;
1974	struct ath_common *common = ath9k_hw_common(ah);
1975
1976	ENABLE_REGWRITE_BUFFER(ah);
1977
1978	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1979
1980	REG_WRITE(ah, AR_BEACON_PERIOD,
1981		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1982	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1983		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1984
1985	REGWRITE_BUFFER_FLUSH(ah);
1986	DISABLE_REGWRITE_BUFFER(ah);
1987
1988	REG_RMW_FIELD(ah, AR_RSSI_THR,
1989		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1990
1991	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1992
1993	if (bs->bs_sleepduration > beaconintval)
1994		beaconintval = bs->bs_sleepduration;
1995
1996	dtimperiod = bs->bs_dtimperiod;
1997	if (bs->bs_sleepduration > dtimperiod)
1998		dtimperiod = bs->bs_sleepduration;
1999
2000	if (beaconintval == dtimperiod)
2001		nextTbtt = bs->bs_nextdtim;
2002	else
2003		nextTbtt = bs->bs_nexttbtt;
2004
2005	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2006	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2007	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2008	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2009
2010	ENABLE_REGWRITE_BUFFER(ah);
2011
2012	REG_WRITE(ah, AR_NEXT_DTIM,
2013		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2014	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2015
2016	REG_WRITE(ah, AR_SLEEP1,
2017		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2018		  | AR_SLEEP1_ASSUME_DTIM);
2019
2020	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2021		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2022	else
2023		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2024
2025	REG_WRITE(ah, AR_SLEEP2,
2026		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2027
2028	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2029	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2030
2031	REGWRITE_BUFFER_FLUSH(ah);
2032	DISABLE_REGWRITE_BUFFER(ah);
2033
2034	REG_SET_BIT(ah, AR_TIMER_MODE,
2035		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2036		    AR_DTIM_TIMER_EN);
2037
2038	/* TSF Out of Range Threshold */
2039	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2040}
2041EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2042
2043/*******************/
2044/* HW Capabilities */
2045/*******************/
2046
2047int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2048{
2049	struct ath9k_hw_capabilities *pCap = &ah->caps;
2050	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2051	struct ath_common *common = ath9k_hw_common(ah);
2052	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2053
2054	u16 capField = 0, eeval;
2055
2056	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2057	regulatory->current_rd = eeval;
2058
2059	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2060	if (AR_SREV_9285_10_OR_LATER(ah))
2061		eeval |= AR9285_RDEXT_DEFAULT;
2062	regulatory->current_rd_ext = eeval;
2063
2064	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2065
2066	if (ah->opmode != NL80211_IFTYPE_AP &&
2067	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2068		if (regulatory->current_rd == 0x64 ||
2069		    regulatory->current_rd == 0x65)
2070			regulatory->current_rd += 5;
2071		else if (regulatory->current_rd == 0x41)
2072			regulatory->current_rd = 0x43;
2073		ath_print(common, ATH_DBG_REGULATORY,
2074			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
2075	}
2076
2077	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2078	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2079		ath_print(common, ATH_DBG_FATAL,
2080			  "no band has been marked as supported in EEPROM.\n");
2081		return -EINVAL;
2082	}
2083
2084	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2085
2086	if (eeval & AR5416_OPFLAGS_11A) {
2087		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2088		if (ah->config.ht_enable) {
2089			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2090				set_bit(ATH9K_MODE_11NA_HT20,
2091					pCap->wireless_modes);
2092			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2093				set_bit(ATH9K_MODE_11NA_HT40PLUS,
2094					pCap->wireless_modes);
2095				set_bit(ATH9K_MODE_11NA_HT40MINUS,
2096					pCap->wireless_modes);
2097			}
2098		}
2099	}
2100
2101	if (eeval & AR5416_OPFLAGS_11G) {
2102		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2103		if (ah->config.ht_enable) {
2104			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2105				set_bit(ATH9K_MODE_11NG_HT20,
2106					pCap->wireless_modes);
2107			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2108				set_bit(ATH9K_MODE_11NG_HT40PLUS,
2109					pCap->wireless_modes);
2110				set_bit(ATH9K_MODE_11NG_HT40MINUS,
2111					pCap->wireless_modes);
2112			}
2113		}
2114	}
2115
2116	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2117	/*
2118	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2119	 * the EEPROM.
2120	 */
2121	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2122	    !(eeval & AR5416_OPFLAGS_11A) &&
2123	    !(AR_SREV_9271(ah)))
2124		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2125		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2126	else
2127		/* Use rx_chainmask from EEPROM. */
2128		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2129
2130	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2131		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2132
2133	pCap->low_2ghz_chan = 2312;
2134	pCap->high_2ghz_chan = 2732;
2135
2136	pCap->low_5ghz_chan = 4920;
2137	pCap->high_5ghz_chan = 6100;
2138
2139	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2140	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2141	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2142
2143	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2144	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2145	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2146
2147	if (ah->config.ht_enable)
2148		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2149	else
2150		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2151
2152	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2153	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2154	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2155	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2156
2157	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2158		pCap->total_queues =
2159			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2160	else
2161		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2162
2163	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2164		pCap->keycache_size =
2165			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2166	else
2167		pCap->keycache_size = AR_KEYTABLE_SIZE;
2168
2169	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2170
2171	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2172		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2173	else
2174		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2175
2176	if (AR_SREV_9271(ah))
2177		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2178	else if (AR_SREV_9285_10_OR_LATER(ah))
2179		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2180	else if (AR_SREV_9280_10_OR_LATER(ah))
2181		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2182	else
2183		pCap->num_gpio_pins = AR_NUM_GPIO;
2184
2185	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2186		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2187		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2188	} else {
2189		pCap->rts_aggr_limit = (8 * 1024);
2190	}
2191
2192	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2193
2194#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2195	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2196	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2197		ah->rfkill_gpio =
2198			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2199		ah->rfkill_polarity =
2200			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2201
2202		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2203	}
2204#endif
2205	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2206		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2207	else
2208		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2209
2210	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2211		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2212	else
2213		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2214
2215	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2216		pCap->reg_cap =
2217			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2218			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2219			AR_EEPROM_EEREGCAP_EN_KK_U2 |
2220			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2221	} else {
2222		pCap->reg_cap =
2223			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2224			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2225	}
2226
2227	/* Advertise midband for AR5416 with FCC midband set in eeprom */
2228	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2229	    AR_SREV_5416(ah))
2230		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2231
2232	pCap->num_antcfg_5ghz =
2233		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2234	pCap->num_antcfg_2ghz =
2235		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2236
2237	if (AR_SREV_9280_10_OR_LATER(ah) &&
2238	    ath9k_hw_btcoex_supported(ah)) {
2239		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2240		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2241
2242		if (AR_SREV_9285(ah)) {
2243			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2244			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2245		} else {
2246			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2247		}
2248	} else {
2249		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2250	}
2251
2252	if (AR_SREV_9300_20_OR_LATER(ah)) {
2253		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2254				 ATH9K_HW_CAP_FASTCLOCK;
2255		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2256		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2257		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2258		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2259		pCap->txs_len = sizeof(struct ar9003_txs);
2260		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2261			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2262	} else {
2263		pCap->tx_desc_len = sizeof(struct ath_desc);
2264		if (AR_SREV_9280_20(ah) &&
2265		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2266		      AR5416_EEP_MINOR_VER_16) ||
2267		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2268			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2269	}
2270
2271	if (AR_SREV_9300_20_OR_LATER(ah))
2272		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2273
2274	if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2275		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2276
2277	return 0;
2278}
2279
2280/****************************/
2281/* GPIO / RFKILL / Antennae */
2282/****************************/
2283
2284static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2285					 u32 gpio, u32 type)
2286{
2287	int addr;
2288	u32 gpio_shift, tmp;
2289
2290	if (gpio > 11)
2291		addr = AR_GPIO_OUTPUT_MUX3;
2292	else if (gpio > 5)
2293		addr = AR_GPIO_OUTPUT_MUX2;
2294	else
2295		addr = AR_GPIO_OUTPUT_MUX1;
2296
2297	gpio_shift = (gpio % 6) * 5;
2298
2299	if (AR_SREV_9280_20_OR_LATER(ah)
2300	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2301		REG_RMW(ah, addr, (type << gpio_shift),
2302			(0x1f << gpio_shift));
2303	} else {
2304		tmp = REG_READ(ah, addr);
2305		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2306		tmp &= ~(0x1f << gpio_shift);
2307		tmp |= (type << gpio_shift);
2308		REG_WRITE(ah, addr, tmp);
2309	}
2310}
2311
2312void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2313{
2314	u32 gpio_shift;
2315
2316	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2317
2318	gpio_shift = gpio << 1;
2319
2320	REG_RMW(ah,
2321		AR_GPIO_OE_OUT,
2322		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2323		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2324}
2325EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2326
2327u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2328{
2329#define MS_REG_READ(x, y) \
2330	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2331
2332	if (gpio >= ah->caps.num_gpio_pins)
2333		return 0xffffffff;
2334
2335	if (AR_SREV_9300_20_OR_LATER(ah))
2336		return MS_REG_READ(AR9300, gpio) != 0;
2337	else if (AR_SREV_9271(ah))
2338		return MS_REG_READ(AR9271, gpio) != 0;
2339	else if (AR_SREV_9287_10_OR_LATER(ah))
2340		return MS_REG_READ(AR9287, gpio) != 0;
2341	else if (AR_SREV_9285_10_OR_LATER(ah))
2342		return MS_REG_READ(AR9285, gpio) != 0;
2343	else if (AR_SREV_9280_10_OR_LATER(ah))
2344		return MS_REG_READ(AR928X, gpio) != 0;
2345	else
2346		return MS_REG_READ(AR, gpio) != 0;
2347}
2348EXPORT_SYMBOL(ath9k_hw_gpio_get);
2349
2350void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2351			 u32 ah_signal_type)
2352{
2353	u32 gpio_shift;
2354
2355	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2356
2357	gpio_shift = 2 * gpio;
2358
2359	REG_RMW(ah,
2360		AR_GPIO_OE_OUT,
2361		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2362		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2363}
2364EXPORT_SYMBOL(ath9k_hw_cfg_output);
2365
2366void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2367{
2368	if (AR_SREV_9271(ah))
2369		val = ~val;
2370
2371	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2372		AR_GPIO_BIT(gpio));
2373}
2374EXPORT_SYMBOL(ath9k_hw_set_gpio);
2375
2376u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2377{
2378	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2379}
2380EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2381
2382void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2383{
2384	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2385}
2386EXPORT_SYMBOL(ath9k_hw_setantenna);
2387
2388/*********************/
2389/* General Operation */
2390/*********************/
2391
2392u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2393{
2394	u32 bits = REG_READ(ah, AR_RX_FILTER);
2395	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2396
2397	if (phybits & AR_PHY_ERR_RADAR)
2398		bits |= ATH9K_RX_FILTER_PHYRADAR;
2399	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2400		bits |= ATH9K_RX_FILTER_PHYERR;
2401
2402	return bits;
2403}
2404EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2405
2406void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2407{
2408	u32 phybits;
2409
2410	ENABLE_REGWRITE_BUFFER(ah);
2411
2412	REG_WRITE(ah, AR_RX_FILTER, bits);
2413
2414	phybits = 0;
2415	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2416		phybits |= AR_PHY_ERR_RADAR;
2417	if (bits & ATH9K_RX_FILTER_PHYERR)
2418		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2419	REG_WRITE(ah, AR_PHY_ERR, phybits);
2420
2421	if (phybits)
2422		REG_WRITE(ah, AR_RXCFG,
2423			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2424	else
2425		REG_WRITE(ah, AR_RXCFG,
2426			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2427
2428	REGWRITE_BUFFER_FLUSH(ah);
2429	DISABLE_REGWRITE_BUFFER(ah);
2430}
2431EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2432
2433bool ath9k_hw_phy_disable(struct ath_hw *ah)
2434{
2435	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2436		return false;
2437
2438	ath9k_hw_init_pll(ah, NULL);
2439	return true;
2440}
2441EXPORT_SYMBOL(ath9k_hw_phy_disable);
2442
2443bool ath9k_hw_disable(struct ath_hw *ah)
2444{
2445	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2446		return false;
2447
2448	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2449		return false;
2450
2451	ath9k_hw_init_pll(ah, NULL);
2452	return true;
2453}
2454EXPORT_SYMBOL(ath9k_hw_disable);
2455
2456void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2457{
2458	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2459	struct ath9k_channel *chan = ah->curchan;
2460	struct ieee80211_channel *channel = chan->chan;
2461
2462	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2463
2464	ah->eep_ops->set_txpower(ah, chan,
2465				 ath9k_regd_get_ctl(regulatory, chan),
2466				 channel->max_antenna_gain * 2,
2467				 channel->max_power * 2,
2468				 min((u32) MAX_RATE_POWER,
2469				 (u32) regulatory->power_limit));
2470}
2471EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2472
2473void ath9k_hw_setopmode(struct ath_hw *ah)
2474{
2475	ath9k_hw_set_operating_mode(ah, ah->opmode);
2476}
2477EXPORT_SYMBOL(ath9k_hw_setopmode);
2478
2479void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2480{
2481	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2482	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2483}
2484EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2485
2486void ath9k_hw_write_associd(struct ath_hw *ah)
2487{
2488	struct ath_common *common = ath9k_hw_common(ah);
2489
2490	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2491	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2492		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2493}
2494EXPORT_SYMBOL(ath9k_hw_write_associd);
2495
2496#define ATH9K_MAX_TSF_READ 10
2497
2498u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2499{
2500	u32 tsf_lower, tsf_upper1, tsf_upper2;
2501	int i;
2502
2503	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2504	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2505		tsf_lower = REG_READ(ah, AR_TSF_L32);
2506		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2507		if (tsf_upper2 == tsf_upper1)
2508			break;
2509		tsf_upper1 = tsf_upper2;
2510	}
2511
2512	WARN_ON( i == ATH9K_MAX_TSF_READ );
2513
2514	return (((u64)tsf_upper1 << 32) | tsf_lower);
2515}
2516EXPORT_SYMBOL(ath9k_hw_gettsf64);
2517
2518void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2519{
2520	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2521	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2522}
2523EXPORT_SYMBOL(ath9k_hw_settsf64);
2524
2525void ath9k_hw_reset_tsf(struct ath_hw *ah)
2526{
2527	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2528			   AH_TSF_WRITE_TIMEOUT))
2529		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2530			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2531
2532	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2533}
2534EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2535
2536void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2537{
2538	if (setting)
2539		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2540	else
2541		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2542}
2543EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2544
2545void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2546{
2547	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2548	u32 macmode;
2549
2550	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2551		macmode = AR_2040_JOINED_RX_CLEAR;
2552	else
2553		macmode = 0;
2554
2555	REG_WRITE(ah, AR_2040_MODE, macmode);
2556}
2557
2558/* HW Generic timers configuration */
2559
2560static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2561{
2562	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2563	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2564	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2565	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2566	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2567	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2568	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2569	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2570	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2571	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2572				AR_NDP2_TIMER_MODE, 0x0002},
2573	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2574				AR_NDP2_TIMER_MODE, 0x0004},
2575	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2576				AR_NDP2_TIMER_MODE, 0x0008},
2577	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2578				AR_NDP2_TIMER_MODE, 0x0010},
2579	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2580				AR_NDP2_TIMER_MODE, 0x0020},
2581	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2582				AR_NDP2_TIMER_MODE, 0x0040},
2583	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2584				AR_NDP2_TIMER_MODE, 0x0080}
2585};
2586
2587/* HW generic timer primitives */
2588
2589/* compute and clear index of rightmost 1 */
2590static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2591{
2592	u32 b;
2593
2594	b = *mask;
2595	b &= (0-b);
2596	*mask &= ~b;
2597	b *= debruijn32;
2598	b >>= 27;
2599
2600	return timer_table->gen_timer_index[b];
2601}
2602
2603u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2604{
2605	return REG_READ(ah, AR_TSF_L32);
2606}
2607EXPORT_SYMBOL(ath9k_hw_gettsf32);
2608
2609struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2610					  void (*trigger)(void *),
2611					  void (*overflow)(void *),
2612					  void *arg,
2613					  u8 timer_index)
2614{
2615	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2616	struct ath_gen_timer *timer;
2617
2618	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2619
2620	if (timer == NULL) {
2621		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2622			  "Failed to allocate memory"
2623			  "for hw timer[%d]\n", timer_index);
2624		return NULL;
2625	}
2626
2627	/* allocate a hardware generic timer slot */
2628	timer_table->timers[timer_index] = timer;
2629	timer->index = timer_index;
2630	timer->trigger = trigger;
2631	timer->overflow = overflow;
2632	timer->arg = arg;
2633
2634	return timer;
2635}
2636EXPORT_SYMBOL(ath_gen_timer_alloc);
2637
2638void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2639			      struct ath_gen_timer *timer,
2640			      u32 timer_next,
2641			      u32 timer_period)
2642{
2643	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2644	u32 tsf;
2645
2646	BUG_ON(!timer_period);
2647
2648	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2649
2650	tsf = ath9k_hw_gettsf32(ah);
2651
2652	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2653		  "curent tsf %x period %x"
2654		  "timer_next %x\n", tsf, timer_period, timer_next);
2655
2656	/*
2657	 * Pull timer_next forward if the current TSF already passed it
2658	 * because of software latency
2659	 */
2660	if (timer_next < tsf)
2661		timer_next = tsf + timer_period;
2662
2663	/*
2664	 * Program generic timer registers
2665	 */
2666	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2667		 timer_next);
2668	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2669		  timer_period);
2670	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2671		    gen_tmr_configuration[timer->index].mode_mask);
2672
2673	/* Enable both trigger and thresh interrupt masks */
2674	REG_SET_BIT(ah, AR_IMR_S5,
2675		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2676		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2677}
2678EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2679
2680void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2681{
2682	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2683
2684	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2685		(timer->index >= ATH_MAX_GEN_TIMER)) {
2686		return;
2687	}
2688
2689	/* Clear generic timer enable bits. */
2690	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2691			gen_tmr_configuration[timer->index].mode_mask);
2692
2693	/* Disable both trigger and thresh interrupt masks */
2694	REG_CLR_BIT(ah, AR_IMR_S5,
2695		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2696		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2697
2698	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2699}
2700EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2701
2702void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2703{
2704	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2705
2706	/* free the hardware generic timer slot */
2707	timer_table->timers[timer->index] = NULL;
2708	kfree(timer);
2709}
2710EXPORT_SYMBOL(ath_gen_timer_free);
2711
2712/*
2713 * Generic Timer Interrupts handling
2714 */
2715void ath_gen_timer_isr(struct ath_hw *ah)
2716{
2717	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2718	struct ath_gen_timer *timer;
2719	struct ath_common *common = ath9k_hw_common(ah);
2720	u32 trigger_mask, thresh_mask, index;
2721
2722	/* get hardware generic timer interrupt status */
2723	trigger_mask = ah->intr_gen_timer_trigger;
2724	thresh_mask = ah->intr_gen_timer_thresh;
2725	trigger_mask &= timer_table->timer_mask.val;
2726	thresh_mask &= timer_table->timer_mask.val;
2727
2728	trigger_mask &= ~thresh_mask;
2729
2730	while (thresh_mask) {
2731		index = rightmost_index(timer_table, &thresh_mask);
2732		timer = timer_table->timers[index];
2733		BUG_ON(!timer);
2734		ath_print(common, ATH_DBG_HWTIMER,
2735			  "TSF overflow for Gen timer %d\n", index);
2736		timer->overflow(timer->arg);
2737	}
2738
2739	while (trigger_mask) {
2740		index = rightmost_index(timer_table, &trigger_mask);
2741		timer = timer_table->timers[index];
2742		BUG_ON(!timer);
2743		ath_print(common, ATH_DBG_HWTIMER,
2744			  "Gen timer[%d] trigger\n", index);
2745		timer->trigger(timer->arg);
2746	}
2747}
2748EXPORT_SYMBOL(ath_gen_timer_isr);
2749
2750/********/
2751/* HTC  */
2752/********/
2753
2754void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2755{
2756	ah->htc_reset_init = true;
2757}
2758EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2759
2760static struct {
2761	u32 version;
2762	const char * name;
2763} ath_mac_bb_names[] = {
2764	/* Devices with external radios */
2765	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2766	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2767	{ AR_SREV_VERSION_9100,		"9100" },
2768	{ AR_SREV_VERSION_9160,		"9160" },
2769	/* Single-chip solutions */
2770	{ AR_SREV_VERSION_9280,		"9280" },
2771	{ AR_SREV_VERSION_9285,		"9285" },
2772	{ AR_SREV_VERSION_9287,         "9287" },
2773	{ AR_SREV_VERSION_9271,         "9271" },
2774	{ AR_SREV_VERSION_9300,         "9300" },
2775};
2776
2777/* For devices with external radios */
2778static struct {
2779	u16 version;
2780	const char * name;
2781} ath_rf_names[] = {
2782	{ 0,				"5133" },
2783	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2784	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2785	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2786	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2787};
2788
2789/*
2790 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2791 */
2792static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2793{
2794	int i;
2795
2796	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2797		if (ath_mac_bb_names[i].version == mac_bb_version) {
2798			return ath_mac_bb_names[i].name;
2799		}
2800	}
2801
2802	return "????";
2803}
2804
2805/*
2806 * Return the RF name. "????" is returned if the RF is unknown.
2807 * Used for devices with external radios.
2808 */
2809static const char *ath9k_hw_rf_name(u16 rf_version)
2810{
2811	int i;
2812
2813	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2814		if (ath_rf_names[i].version == rf_version) {
2815			return ath_rf_names[i].name;
2816		}
2817	}
2818
2819	return "????";
2820}
2821
2822void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2823{
2824	int used;
2825
2826	/* chipsets >= AR9280 are single-chip */
2827	if (AR_SREV_9280_10_OR_LATER(ah)) {
2828		used = snprintf(hw_name, len,
2829			       "Atheros AR%s Rev:%x",
2830			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2831			       ah->hw_version.macRev);
2832	}
2833	else {
2834		used = snprintf(hw_name, len,
2835			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2836			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2837			       ah->hw_version.macRev,
2838			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2839						AR_RADIO_SREV_MAJOR)),
2840			       ah->hw_version.phyRev);
2841	}
2842
2843	hw_name[used] = '\0';
2844}
2845EXPORT_SYMBOL(ath9k_hw_name);
2846