hw.c revision 75e03512455827eb2c09e057578ae23178a93cf8
1/* 2 * Copyright (c) 2008-2010 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17#include <linux/io.h> 18#include <linux/slab.h> 19#include <asm/unaligned.h> 20 21#include "hw.h" 22#include "hw-ops.h" 23#include "rc.h" 24#include "ar9003_mac.h" 25 26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 27 28MODULE_AUTHOR("Atheros Communications"); 29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 31MODULE_LICENSE("Dual BSD/GPL"); 32 33static int __init ath9k_init(void) 34{ 35 return 0; 36} 37module_init(ath9k_init); 38 39static void __exit ath9k_exit(void) 40{ 41 return; 42} 43module_exit(ath9k_exit); 44 45/* Private hardware callbacks */ 46 47static void ath9k_hw_init_cal_settings(struct ath_hw *ah) 48{ 49 ath9k_hw_private_ops(ah)->init_cal_settings(ah); 50} 51 52static void ath9k_hw_init_mode_regs(struct ath_hw *ah) 53{ 54 ath9k_hw_private_ops(ah)->init_mode_regs(ah); 55} 56 57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, 58 struct ath9k_channel *chan) 59{ 60 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); 61} 62 63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) 64{ 65 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) 66 return; 67 68 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); 69} 70 71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) 72{ 73 /* You will not have this callback if using the old ANI */ 74 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) 75 return; 76 77 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); 78} 79 80/********************/ 81/* Helper Functions */ 82/********************/ 83 84static void ath9k_hw_set_clockrate(struct ath_hw *ah) 85{ 86 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 87 struct ath_common *common = ath9k_hw_common(ah); 88 unsigned int clockrate; 89 90 if (!ah->curchan) /* should really check for CCK instead */ 91 clockrate = ATH9K_CLOCK_RATE_CCK; 92 else if (conf->channel->band == IEEE80211_BAND_2GHZ) 93 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 94 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 95 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 96 else 97 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 98 99 if (conf_is_ht40(conf)) 100 clockrate *= 2; 101 102 common->clockrate = clockrate; 103} 104 105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 106{ 107 struct ath_common *common = ath9k_hw_common(ah); 108 109 return usecs * common->clockrate; 110} 111 112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 113{ 114 int i; 115 116 BUG_ON(timeout < AH_TIME_QUANTUM); 117 118 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 119 if ((REG_READ(ah, reg) & mask) == val) 120 return true; 121 122 udelay(AH_TIME_QUANTUM); 123 } 124 125 ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY, 126 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 127 timeout, reg, REG_READ(ah, reg), mask, val); 128 129 return false; 130} 131EXPORT_SYMBOL(ath9k_hw_wait); 132 133u32 ath9k_hw_reverse_bits(u32 val, u32 n) 134{ 135 u32 retval; 136 int i; 137 138 for (i = 0, retval = 0; i < n; i++) { 139 retval = (retval << 1) | (val & 1); 140 val >>= 1; 141 } 142 return retval; 143} 144 145bool ath9k_get_channel_edges(struct ath_hw *ah, 146 u16 flags, u16 *low, 147 u16 *high) 148{ 149 struct ath9k_hw_capabilities *pCap = &ah->caps; 150 151 if (flags & CHANNEL_5GHZ) { 152 *low = pCap->low_5ghz_chan; 153 *high = pCap->high_5ghz_chan; 154 return true; 155 } 156 if ((flags & CHANNEL_2GHZ)) { 157 *low = pCap->low_2ghz_chan; 158 *high = pCap->high_2ghz_chan; 159 return true; 160 } 161 return false; 162} 163 164u16 ath9k_hw_computetxtime(struct ath_hw *ah, 165 u8 phy, int kbps, 166 u32 frameLen, u16 rateix, 167 bool shortPreamble) 168{ 169 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 170 171 if (kbps == 0) 172 return 0; 173 174 switch (phy) { 175 case WLAN_RC_PHY_CCK: 176 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 177 if (shortPreamble) 178 phyTime >>= 1; 179 numBits = frameLen << 3; 180 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 181 break; 182 case WLAN_RC_PHY_OFDM: 183 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 184 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 185 numBits = OFDM_PLCP_BITS + (frameLen << 3); 186 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 187 txTime = OFDM_SIFS_TIME_QUARTER 188 + OFDM_PREAMBLE_TIME_QUARTER 189 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 190 } else if (ah->curchan && 191 IS_CHAN_HALF_RATE(ah->curchan)) { 192 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 193 numBits = OFDM_PLCP_BITS + (frameLen << 3); 194 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 195 txTime = OFDM_SIFS_TIME_HALF + 196 OFDM_PREAMBLE_TIME_HALF 197 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 198 } else { 199 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 200 numBits = OFDM_PLCP_BITS + (frameLen << 3); 201 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 202 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 203 + (numSymbols * OFDM_SYMBOL_TIME); 204 } 205 break; 206 default: 207 ath_err(ath9k_hw_common(ah), 208 "Unknown phy %u (rate ix %u)\n", phy, rateix); 209 txTime = 0; 210 break; 211 } 212 213 return txTime; 214} 215EXPORT_SYMBOL(ath9k_hw_computetxtime); 216 217void ath9k_hw_get_channel_centers(struct ath_hw *ah, 218 struct ath9k_channel *chan, 219 struct chan_centers *centers) 220{ 221 int8_t extoff; 222 223 if (!IS_CHAN_HT40(chan)) { 224 centers->ctl_center = centers->ext_center = 225 centers->synth_center = chan->channel; 226 return; 227 } 228 229 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 230 (chan->chanmode == CHANNEL_G_HT40PLUS)) { 231 centers->synth_center = 232 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 233 extoff = 1; 234 } else { 235 centers->synth_center = 236 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 237 extoff = -1; 238 } 239 240 centers->ctl_center = 241 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 242 /* 25 MHz spacing is supported by hw but not on upper layers */ 243 centers->ext_center = 244 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 245} 246 247/******************/ 248/* Chip Revisions */ 249/******************/ 250 251static void ath9k_hw_read_revisions(struct ath_hw *ah) 252{ 253 u32 val; 254 255 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 256 257 if (val == 0xFF) { 258 val = REG_READ(ah, AR_SREV); 259 ah->hw_version.macVersion = 260 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 261 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 262 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 263 } else { 264 if (!AR_SREV_9100(ah)) 265 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 266 267 ah->hw_version.macRev = val & AR_SREV_REVISION; 268 269 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 270 ah->is_pciexpress = true; 271 } 272} 273 274/************************************/ 275/* HW Attach, Detach, Init Routines */ 276/************************************/ 277 278static void ath9k_hw_disablepcie(struct ath_hw *ah) 279{ 280 if (!AR_SREV_5416(ah)) 281 return; 282 283 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 284 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 285 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 286 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 287 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 288 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 289 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 290 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 291 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 292 293 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 294} 295 296/* This should work for all families including legacy */ 297static bool ath9k_hw_chip_test(struct ath_hw *ah) 298{ 299 struct ath_common *common = ath9k_hw_common(ah); 300 u32 regAddr[2] = { AR_STA_ID0 }; 301 u32 regHold[2]; 302 static const u32 patternData[4] = { 303 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 304 }; 305 int i, j, loop_max; 306 307 if (!AR_SREV_9300_20_OR_LATER(ah)) { 308 loop_max = 2; 309 regAddr[1] = AR_PHY_BASE + (8 << 2); 310 } else 311 loop_max = 1; 312 313 for (i = 0; i < loop_max; i++) { 314 u32 addr = regAddr[i]; 315 u32 wrData, rdData; 316 317 regHold[i] = REG_READ(ah, addr); 318 for (j = 0; j < 0x100; j++) { 319 wrData = (j << 16) | j; 320 REG_WRITE(ah, addr, wrData); 321 rdData = REG_READ(ah, addr); 322 if (rdData != wrData) { 323 ath_err(common, 324 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 325 addr, wrData, rdData); 326 return false; 327 } 328 } 329 for (j = 0; j < 4; j++) { 330 wrData = patternData[j]; 331 REG_WRITE(ah, addr, wrData); 332 rdData = REG_READ(ah, addr); 333 if (wrData != rdData) { 334 ath_err(common, 335 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 336 addr, wrData, rdData); 337 return false; 338 } 339 } 340 REG_WRITE(ah, regAddr[i], regHold[i]); 341 } 342 udelay(100); 343 344 return true; 345} 346 347static void ath9k_hw_init_config(struct ath_hw *ah) 348{ 349 int i; 350 351 ah->config.dma_beacon_response_time = 2; 352 ah->config.sw_beacon_response_time = 10; 353 ah->config.additional_swba_backoff = 0; 354 ah->config.ack_6mb = 0x0; 355 ah->config.cwm_ignore_extcca = 0; 356 ah->config.pcie_powersave_enable = 0; 357 ah->config.pcie_clock_req = 0; 358 ah->config.pcie_waen = 0; 359 ah->config.analog_shiftreg = 1; 360 ah->config.enable_ani = true; 361 362 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 363 ah->config.spurchans[i][0] = AR_NO_SPUR; 364 ah->config.spurchans[i][1] = AR_NO_SPUR; 365 } 366 367 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 368 ah->config.ht_enable = 1; 369 else 370 ah->config.ht_enable = 0; 371 372 /* PAPRD needs some more work to be enabled */ 373 ah->config.paprd_disable = 1; 374 375 ah->config.rx_intr_mitigation = true; 376 ah->config.pcieSerDesWrite = true; 377 378 /* 379 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 380 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 381 * This means we use it for all AR5416 devices, and the few 382 * minor PCI AR9280 devices out there. 383 * 384 * Serialization is required because these devices do not handle 385 * well the case of two concurrent reads/writes due to the latency 386 * involved. During one read/write another read/write can be issued 387 * on another CPU while the previous read/write may still be working 388 * on our hardware, if we hit this case the hardware poops in a loop. 389 * We prevent this by serializing reads and writes. 390 * 391 * This issue is not present on PCI-Express devices or pre-AR5416 392 * devices (legacy, 802.11abg). 393 */ 394 if (num_possible_cpus() > 1) 395 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 396} 397 398static void ath9k_hw_init_defaults(struct ath_hw *ah) 399{ 400 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 401 402 regulatory->country_code = CTRY_DEFAULT; 403 regulatory->power_limit = MAX_RATE_POWER; 404 regulatory->tp_scale = ATH9K_TP_SCALE_MAX; 405 406 ah->hw_version.magic = AR5416_MAGIC; 407 ah->hw_version.subvendorid = 0; 408 409 ah->atim_window = 0; 410 ah->sta_id1_defaults = 411 AR_STA_ID1_CRPT_MIC_ENABLE | 412 AR_STA_ID1_MCAST_KSRCH; 413 ah->enable_32kHz_clock = DONT_USE_32KHZ; 414 ah->slottime = 20; 415 ah->globaltxtimeout = (u32) -1; 416 ah->power_mode = ATH9K_PM_UNDEFINED; 417} 418 419static int ath9k_hw_init_macaddr(struct ath_hw *ah) 420{ 421 struct ath_common *common = ath9k_hw_common(ah); 422 u32 sum; 423 int i; 424 u16 eeval; 425 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 426 427 sum = 0; 428 for (i = 0; i < 3; i++) { 429 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 430 sum += eeval; 431 common->macaddr[2 * i] = eeval >> 8; 432 common->macaddr[2 * i + 1] = eeval & 0xff; 433 } 434 if (sum == 0 || sum == 0xffff * 3) 435 return -EADDRNOTAVAIL; 436 437 return 0; 438} 439 440static int ath9k_hw_post_init(struct ath_hw *ah) 441{ 442 struct ath_common *common = ath9k_hw_common(ah); 443 int ecode; 444 445 if (common->bus_ops->ath_bus_type != ATH_USB) { 446 if (!ath9k_hw_chip_test(ah)) 447 return -ENODEV; 448 } 449 450 if (!AR_SREV_9300_20_OR_LATER(ah)) { 451 ecode = ar9002_hw_rf_claim(ah); 452 if (ecode != 0) 453 return ecode; 454 } 455 456 ecode = ath9k_hw_eeprom_init(ah); 457 if (ecode != 0) 458 return ecode; 459 460 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG, 461 "Eeprom VER: %d, REV: %d\n", 462 ah->eep_ops->get_eeprom_ver(ah), 463 ah->eep_ops->get_eeprom_rev(ah)); 464 465 ecode = ath9k_hw_rf_alloc_ext_banks(ah); 466 if (ecode) { 467 ath_err(ath9k_hw_common(ah), 468 "Failed allocating banks for external radio\n"); 469 ath9k_hw_rf_free_ext_banks(ah); 470 return ecode; 471 } 472 473 if (!AR_SREV_9100(ah)) { 474 ath9k_hw_ani_setup(ah); 475 ath9k_hw_ani_init(ah); 476 } 477 478 return 0; 479} 480 481static void ath9k_hw_attach_ops(struct ath_hw *ah) 482{ 483 if (AR_SREV_9300_20_OR_LATER(ah)) 484 ar9003_hw_attach_ops(ah); 485 else 486 ar9002_hw_attach_ops(ah); 487} 488 489/* Called for all hardware families */ 490static int __ath9k_hw_init(struct ath_hw *ah) 491{ 492 struct ath_common *common = ath9k_hw_common(ah); 493 int r = 0; 494 495 if (ah->hw_version.devid == AR5416_AR9100_DEVID) 496 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 497 498 ath9k_hw_read_revisions(ah); 499 500 /* 501 * Read back AR_WA into a permanent copy and set bits 14 and 17. 502 * We need to do this to avoid RMW of this register. We cannot 503 * read the reg when chip is asleep. 504 */ 505 ah->WARegVal = REG_READ(ah, AR_WA); 506 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 507 AR_WA_ASPM_TIMER_BASED_DISABLE); 508 509 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 510 ath_err(common, "Couldn't reset chip\n"); 511 return -EIO; 512 } 513 514 ath9k_hw_init_defaults(ah); 515 ath9k_hw_init_config(ah); 516 517 ath9k_hw_attach_ops(ah); 518 519 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 520 ath_err(common, "Couldn't wakeup chip\n"); 521 return -EIO; 522 } 523 524 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 525 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 526 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) && 527 !ah->is_pciexpress)) { 528 ah->config.serialize_regmode = 529 SER_REG_MODE_ON; 530 } else { 531 ah->config.serialize_regmode = 532 SER_REG_MODE_OFF; 533 } 534 } 535 536 ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n", 537 ah->config.serialize_regmode); 538 539 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 540 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 541 else 542 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 543 544 switch (ah->hw_version.macVersion) { 545 case AR_SREV_VERSION_5416_PCI: 546 case AR_SREV_VERSION_5416_PCIE: 547 case AR_SREV_VERSION_9160: 548 case AR_SREV_VERSION_9100: 549 case AR_SREV_VERSION_9280: 550 case AR_SREV_VERSION_9285: 551 case AR_SREV_VERSION_9287: 552 case AR_SREV_VERSION_9271: 553 case AR_SREV_VERSION_9300: 554 case AR_SREV_VERSION_9485: 555 break; 556 default: 557 ath_err(common, 558 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 559 ah->hw_version.macVersion, ah->hw_version.macRev); 560 return -EOPNOTSUPP; 561 } 562 563 if (AR_SREV_9271(ah) || AR_SREV_9100(ah)) 564 ah->is_pciexpress = false; 565 566 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 567 ath9k_hw_init_cal_settings(ah); 568 569 ah->ani_function = ATH9K_ANI_ALL; 570 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 571 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; 572 if (!AR_SREV_9300_20_OR_LATER(ah)) 573 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 574 575 ath9k_hw_init_mode_regs(ah); 576 577 578 if (ah->is_pciexpress) 579 ath9k_hw_configpcipowersave(ah, 0, 0); 580 else 581 ath9k_hw_disablepcie(ah); 582 583 if (!AR_SREV_9300_20_OR_LATER(ah)) 584 ar9002_hw_cck_chan14_spread(ah); 585 586 r = ath9k_hw_post_init(ah); 587 if (r) 588 return r; 589 590 ath9k_hw_init_mode_gain_regs(ah); 591 r = ath9k_hw_fill_cap_info(ah); 592 if (r) 593 return r; 594 595 r = ath9k_hw_init_macaddr(ah); 596 if (r) { 597 ath_err(common, "Failed to initialize MAC address\n"); 598 return r; 599 } 600 601 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 602 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 603 else 604 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 605 606 ah->bb_watchdog_timeout_ms = 25; 607 608 common->state = ATH_HW_INITIALIZED; 609 610 return 0; 611} 612 613int ath9k_hw_init(struct ath_hw *ah) 614{ 615 int ret; 616 struct ath_common *common = ath9k_hw_common(ah); 617 618 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */ 619 switch (ah->hw_version.devid) { 620 case AR5416_DEVID_PCI: 621 case AR5416_DEVID_PCIE: 622 case AR5416_AR9100_DEVID: 623 case AR9160_DEVID_PCI: 624 case AR9280_DEVID_PCI: 625 case AR9280_DEVID_PCIE: 626 case AR9285_DEVID_PCIE: 627 case AR9287_DEVID_PCI: 628 case AR9287_DEVID_PCIE: 629 case AR2427_DEVID_PCIE: 630 case AR9300_DEVID_PCIE: 631 case AR9300_DEVID_AR9485_PCIE: 632 break; 633 default: 634 if (common->bus_ops->ath_bus_type == ATH_USB) 635 break; 636 ath_err(common, "Hardware device ID 0x%04x not supported\n", 637 ah->hw_version.devid); 638 return -EOPNOTSUPP; 639 } 640 641 ret = __ath9k_hw_init(ah); 642 if (ret) { 643 ath_err(common, 644 "Unable to initialize hardware; initialization status: %d\n", 645 ret); 646 return ret; 647 } 648 649 return 0; 650} 651EXPORT_SYMBOL(ath9k_hw_init); 652 653static void ath9k_hw_init_qos(struct ath_hw *ah) 654{ 655 ENABLE_REGWRITE_BUFFER(ah); 656 657 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 658 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 659 660 REG_WRITE(ah, AR_QOS_NO_ACK, 661 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 662 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 663 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 664 665 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 666 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 667 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 668 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 669 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 670 671 REGWRITE_BUFFER_FLUSH(ah); 672} 673 674unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 675{ 676 REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK))); 677 udelay(100); 678 REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK)); 679 680 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) 681 udelay(100); 682 683 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 684} 685EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 686 687#define DPLL2_KD_VAL 0x3D 688#define DPLL2_KI_VAL 0x06 689#define DPLL3_PHASE_SHIFT_VAL 0x1 690 691static void ath9k_hw_init_pll(struct ath_hw *ah, 692 struct ath9k_channel *chan) 693{ 694 u32 pll; 695 696 if (AR_SREV_9485(ah)) { 697 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666); 698 REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01); 699 700 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 701 AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL); 702 703 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 704 udelay(1000); 705 706 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666); 707 708 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 709 AR_CH0_DPLL2_KD, DPLL2_KD_VAL); 710 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 711 AR_CH0_DPLL2_KI, DPLL2_KI_VAL); 712 713 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 714 AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL); 715 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c); 716 udelay(1000); 717 } 718 719 pll = ath9k_hw_compute_pll_control(ah, chan); 720 721 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 722 723 /* Switch the core clock for ar9271 to 117Mhz */ 724 if (AR_SREV_9271(ah)) { 725 udelay(500); 726 REG_WRITE(ah, 0x50040, 0x304); 727 } 728 729 udelay(RTC_PLL_SETTLE_DELAY); 730 731 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 732} 733 734static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 735 enum nl80211_iftype opmode) 736{ 737 u32 imr_reg = AR_IMR_TXERR | 738 AR_IMR_TXURN | 739 AR_IMR_RXERR | 740 AR_IMR_RXORN | 741 AR_IMR_BCNMISC; 742 743 if (AR_SREV_9300_20_OR_LATER(ah)) { 744 imr_reg |= AR_IMR_RXOK_HP; 745 if (ah->config.rx_intr_mitigation) 746 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 747 else 748 imr_reg |= AR_IMR_RXOK_LP; 749 750 } else { 751 if (ah->config.rx_intr_mitigation) 752 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 753 else 754 imr_reg |= AR_IMR_RXOK; 755 } 756 757 if (ah->config.tx_intr_mitigation) 758 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 759 else 760 imr_reg |= AR_IMR_TXOK; 761 762 if (opmode == NL80211_IFTYPE_AP) 763 imr_reg |= AR_IMR_MIB; 764 765 ENABLE_REGWRITE_BUFFER(ah); 766 767 REG_WRITE(ah, AR_IMR, imr_reg); 768 ah->imrs2_reg |= AR_IMR_S2_GTT; 769 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 770 771 if (!AR_SREV_9100(ah)) { 772 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 773 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 774 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 775 } 776 777 REGWRITE_BUFFER_FLUSH(ah); 778 779 if (AR_SREV_9300_20_OR_LATER(ah)) { 780 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 781 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 782 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 783 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 784 } 785} 786 787static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 788{ 789 u32 val = ath9k_hw_mac_to_clks(ah, us); 790 val = min(val, (u32) 0xFFFF); 791 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 792} 793 794static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 795{ 796 u32 val = ath9k_hw_mac_to_clks(ah, us); 797 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 798 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 799} 800 801static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 802{ 803 u32 val = ath9k_hw_mac_to_clks(ah, us); 804 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 805 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 806} 807 808static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 809{ 810 if (tu > 0xFFFF) { 811 ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT, 812 "bad global tx timeout %u\n", tu); 813 ah->globaltxtimeout = (u32) -1; 814 return false; 815 } else { 816 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 817 ah->globaltxtimeout = tu; 818 return true; 819 } 820} 821 822void ath9k_hw_init_global_settings(struct ath_hw *ah) 823{ 824 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 825 int acktimeout; 826 int slottime; 827 int sifstime; 828 829 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n", 830 ah->misc_mode); 831 832 if (ah->misc_mode != 0) 833 REG_WRITE(ah, AR_PCU_MISC, 834 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); 835 836 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ) 837 sifstime = 16; 838 else 839 sifstime = 10; 840 841 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 842 slottime = ah->slottime + 3 * ah->coverage_class; 843 acktimeout = slottime + sifstime; 844 845 /* 846 * Workaround for early ACK timeouts, add an offset to match the 847 * initval's 64us ack timeout value. 848 * This was initially only meant to work around an issue with delayed 849 * BA frames in some implementations, but it has been found to fix ACK 850 * timeout issues in other cases as well. 851 */ 852 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) 853 acktimeout += 64 - sifstime - ah->slottime; 854 855 ath9k_hw_setslottime(ah, ah->slottime); 856 ath9k_hw_set_ack_timeout(ah, acktimeout); 857 ath9k_hw_set_cts_timeout(ah, acktimeout); 858 if (ah->globaltxtimeout != (u32) -1) 859 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 860} 861EXPORT_SYMBOL(ath9k_hw_init_global_settings); 862 863void ath9k_hw_deinit(struct ath_hw *ah) 864{ 865 struct ath_common *common = ath9k_hw_common(ah); 866 867 if (common->state < ATH_HW_INITIALIZED) 868 goto free_hw; 869 870 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 871 872free_hw: 873 ath9k_hw_rf_free_ext_banks(ah); 874} 875EXPORT_SYMBOL(ath9k_hw_deinit); 876 877/*******/ 878/* INI */ 879/*******/ 880 881u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 882{ 883 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 884 885 if (IS_CHAN_B(chan)) 886 ctl |= CTL_11B; 887 else if (IS_CHAN_G(chan)) 888 ctl |= CTL_11G; 889 else 890 ctl |= CTL_11A; 891 892 return ctl; 893} 894 895/****************************************/ 896/* Reset and Channel Switching Routines */ 897/****************************************/ 898 899static inline void ath9k_hw_set_dma(struct ath_hw *ah) 900{ 901 struct ath_common *common = ath9k_hw_common(ah); 902 u32 regval; 903 904 ENABLE_REGWRITE_BUFFER(ah); 905 906 /* 907 * set AHB_MODE not to do cacheline prefetches 908 */ 909 if (!AR_SREV_9300_20_OR_LATER(ah)) { 910 regval = REG_READ(ah, AR_AHB_MODE); 911 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); 912 } 913 914 /* 915 * let mac dma reads be in 128 byte chunks 916 */ 917 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; 918 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); 919 920 REGWRITE_BUFFER_FLUSH(ah); 921 922 /* 923 * Restore TX Trigger Level to its pre-reset value. 924 * The initial value depends on whether aggregation is enabled, and is 925 * adjusted whenever underruns are detected. 926 */ 927 if (!AR_SREV_9300_20_OR_LATER(ah)) 928 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 929 930 ENABLE_REGWRITE_BUFFER(ah); 931 932 /* 933 * let mac dma writes be in 128 byte chunks 934 */ 935 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; 936 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); 937 938 /* 939 * Setup receive FIFO threshold to hold off TX activities 940 */ 941 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 942 943 if (AR_SREV_9300_20_OR_LATER(ah)) { 944 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 945 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 946 947 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 948 ah->caps.rx_status_len); 949 } 950 951 /* 952 * reduce the number of usable entries in PCU TXBUF to avoid 953 * wrap around issues. 954 */ 955 if (AR_SREV_9285(ah)) { 956 /* For AR9285 the number of Fifos are reduced to half. 957 * So set the usable tx buf size also to half to 958 * avoid data/delimiter underruns 959 */ 960 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 961 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 962 } else if (!AR_SREV_9271(ah)) { 963 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 964 AR_PCU_TXBUF_CTRL_USABLE_SIZE); 965 } 966 967 REGWRITE_BUFFER_FLUSH(ah); 968 969 if (AR_SREV_9300_20_OR_LATER(ah)) 970 ath9k_hw_reset_txstatus_ring(ah); 971} 972 973static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 974{ 975 u32 val; 976 977 val = REG_READ(ah, AR_STA_ID1); 978 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); 979 switch (opmode) { 980 case NL80211_IFTYPE_AP: 981 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP 982 | AR_STA_ID1_KSRCH_MODE); 983 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 984 break; 985 case NL80211_IFTYPE_ADHOC: 986 case NL80211_IFTYPE_MESH_POINT: 987 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC 988 | AR_STA_ID1_KSRCH_MODE); 989 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 990 break; 991 case NL80211_IFTYPE_STATION: 992 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); 993 break; 994 default: 995 if (ah->is_monitoring) 996 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); 997 break; 998 } 999} 1000 1001void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1002 u32 *coef_mantissa, u32 *coef_exponent) 1003{ 1004 u32 coef_exp, coef_man; 1005 1006 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1007 if ((coef_scaled >> coef_exp) & 0x1) 1008 break; 1009 1010 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1011 1012 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1013 1014 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1015 *coef_exponent = coef_exp - 16; 1016} 1017 1018static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1019{ 1020 u32 rst_flags; 1021 u32 tmpReg; 1022 1023 if (AR_SREV_9100(ah)) { 1024 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); 1025 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1026 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1027 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1028 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1029 } 1030 1031 ENABLE_REGWRITE_BUFFER(ah); 1032 1033 if (AR_SREV_9300_20_OR_LATER(ah)) { 1034 REG_WRITE(ah, AR_WA, ah->WARegVal); 1035 udelay(10); 1036 } 1037 1038 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1039 AR_RTC_FORCE_WAKE_ON_INT); 1040 1041 if (AR_SREV_9100(ah)) { 1042 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1043 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1044 } else { 1045 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1046 if (tmpReg & 1047 (AR_INTR_SYNC_LOCAL_TIMEOUT | 1048 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1049 u32 val; 1050 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1051 1052 val = AR_RC_HOSTIF; 1053 if (!AR_SREV_9300_20_OR_LATER(ah)) 1054 val |= AR_RC_AHB; 1055 REG_WRITE(ah, AR_RC, val); 1056 1057 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1058 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1059 1060 rst_flags = AR_RTC_RC_MAC_WARM; 1061 if (type == ATH9K_RESET_COLD) 1062 rst_flags |= AR_RTC_RC_MAC_COLD; 1063 } 1064 1065 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1066 1067 REGWRITE_BUFFER_FLUSH(ah); 1068 1069 udelay(50); 1070 1071 REG_WRITE(ah, AR_RTC_RC, 0); 1072 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1073 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 1074 "RTC stuck in MAC reset\n"); 1075 return false; 1076 } 1077 1078 if (!AR_SREV_9100(ah)) 1079 REG_WRITE(ah, AR_RC, 0); 1080 1081 if (AR_SREV_9100(ah)) 1082 udelay(50); 1083 1084 return true; 1085} 1086 1087static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1088{ 1089 ENABLE_REGWRITE_BUFFER(ah); 1090 1091 if (AR_SREV_9300_20_OR_LATER(ah)) { 1092 REG_WRITE(ah, AR_WA, ah->WARegVal); 1093 udelay(10); 1094 } 1095 1096 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1097 AR_RTC_FORCE_WAKE_ON_INT); 1098 1099 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1100 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1101 1102 REG_WRITE(ah, AR_RTC_RESET, 0); 1103 1104 REGWRITE_BUFFER_FLUSH(ah); 1105 1106 if (!AR_SREV_9300_20_OR_LATER(ah)) 1107 udelay(2); 1108 1109 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1110 REG_WRITE(ah, AR_RC, 0); 1111 1112 REG_WRITE(ah, AR_RTC_RESET, 1); 1113 1114 if (!ath9k_hw_wait(ah, 1115 AR_RTC_STATUS, 1116 AR_RTC_STATUS_M, 1117 AR_RTC_STATUS_ON, 1118 AH_WAIT_TIMEOUT)) { 1119 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 1120 "RTC not waking up\n"); 1121 return false; 1122 } 1123 1124 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1125} 1126 1127static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1128{ 1129 if (AR_SREV_9300_20_OR_LATER(ah)) { 1130 REG_WRITE(ah, AR_WA, ah->WARegVal); 1131 udelay(10); 1132 } 1133 1134 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1135 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1136 1137 switch (type) { 1138 case ATH9K_RESET_POWER_ON: 1139 return ath9k_hw_set_reset_power_on(ah); 1140 case ATH9K_RESET_WARM: 1141 case ATH9K_RESET_COLD: 1142 return ath9k_hw_set_reset(ah, type); 1143 default: 1144 return false; 1145 } 1146} 1147 1148static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1149 struct ath9k_channel *chan) 1150{ 1151 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) { 1152 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) 1153 return false; 1154 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 1155 return false; 1156 1157 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1158 return false; 1159 1160 ah->chip_fullsleep = false; 1161 ath9k_hw_init_pll(ah, chan); 1162 ath9k_hw_set_rfmode(ah, chan); 1163 1164 return true; 1165} 1166 1167static bool ath9k_hw_channel_change(struct ath_hw *ah, 1168 struct ath9k_channel *chan) 1169{ 1170 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 1171 struct ath_common *common = ath9k_hw_common(ah); 1172 struct ieee80211_channel *channel = chan->chan; 1173 u32 qnum; 1174 int r; 1175 1176 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1177 if (ath9k_hw_numtxpending(ah, qnum)) { 1178 ath_dbg(common, ATH_DBG_QUEUE, 1179 "Transmit frames pending on queue %d\n", qnum); 1180 return false; 1181 } 1182 } 1183 1184 if (!ath9k_hw_rfbus_req(ah)) { 1185 ath_err(common, "Could not kill baseband RX\n"); 1186 return false; 1187 } 1188 1189 ath9k_hw_set_channel_regs(ah, chan); 1190 1191 r = ath9k_hw_rf_set_freq(ah, chan); 1192 if (r) { 1193 ath_err(common, "Failed to set channel\n"); 1194 return false; 1195 } 1196 ath9k_hw_set_clockrate(ah); 1197 1198 ah->eep_ops->set_txpower(ah, chan, 1199 ath9k_regd_get_ctl(regulatory, chan), 1200 channel->max_antenna_gain * 2, 1201 channel->max_power * 2, 1202 min((u32) MAX_RATE_POWER, 1203 (u32) regulatory->power_limit), false); 1204 1205 ath9k_hw_rfbus_done(ah); 1206 1207 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1208 ath9k_hw_set_delta_slope(ah, chan); 1209 1210 ath9k_hw_spur_mitigate_freq(ah, chan); 1211 1212 return true; 1213} 1214 1215bool ath9k_hw_check_alive(struct ath_hw *ah) 1216{ 1217 int count = 50; 1218 u32 reg; 1219 1220 if (AR_SREV_9285_12_OR_LATER(ah)) 1221 return true; 1222 1223 do { 1224 reg = REG_READ(ah, AR_OBS_BUS_1); 1225 1226 if ((reg & 0x7E7FFFEF) == 0x00702400) 1227 continue; 1228 1229 switch (reg & 0x7E000B00) { 1230 case 0x1E000000: 1231 case 0x52000B00: 1232 case 0x18000B00: 1233 continue; 1234 default: 1235 return true; 1236 } 1237 } while (count-- > 0); 1238 1239 return false; 1240} 1241EXPORT_SYMBOL(ath9k_hw_check_alive); 1242 1243int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1244 struct ath9k_hw_cal_data *caldata, bool bChannelChange) 1245{ 1246 struct ath_common *common = ath9k_hw_common(ah); 1247 u32 saveLedState; 1248 struct ath9k_channel *curchan = ah->curchan; 1249 u32 saveDefAntenna; 1250 u32 macStaId1; 1251 u64 tsf = 0; 1252 int i, r; 1253 1254 ah->txchainmask = common->tx_chainmask; 1255 ah->rxchainmask = common->rx_chainmask; 1256 1257 if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) { 1258 ath9k_hw_abortpcurecv(ah); 1259 if (!ath9k_hw_stopdmarecv(ah)) { 1260 ath_dbg(common, ATH_DBG_XMIT, 1261 "Failed to stop receive dma\n"); 1262 bChannelChange = false; 1263 } 1264 } 1265 1266 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1267 return -EIO; 1268 1269 if (curchan && !ah->chip_fullsleep) 1270 ath9k_hw_getnf(ah, curchan); 1271 1272 ah->caldata = caldata; 1273 if (caldata && 1274 (chan->channel != caldata->channel || 1275 (chan->channelFlags & ~CHANNEL_CW_INT) != 1276 (caldata->channelFlags & ~CHANNEL_CW_INT))) { 1277 /* Operating channel changed, reset channel calibration data */ 1278 memset(caldata, 0, sizeof(*caldata)); 1279 ath9k_init_nfcal_hist_buffer(ah, chan); 1280 } 1281 1282 if (bChannelChange && 1283 (ah->chip_fullsleep != true) && 1284 (ah->curchan != NULL) && 1285 (chan->channel != ah->curchan->channel) && 1286 ((chan->channelFlags & CHANNEL_ALL) == 1287 (ah->curchan->channelFlags & CHANNEL_ALL)) && 1288 (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) { 1289 1290 if (ath9k_hw_channel_change(ah, chan)) { 1291 ath9k_hw_loadnf(ah, ah->curchan); 1292 ath9k_hw_start_nfcal(ah, true); 1293 if (AR_SREV_9271(ah)) 1294 ar9002_hw_load_ani_reg(ah, chan); 1295 return 0; 1296 } 1297 } 1298 1299 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1300 if (saveDefAntenna == 0) 1301 saveDefAntenna = 1; 1302 1303 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1304 1305 /* For chips on which RTC reset is done, save TSF before it gets cleared */ 1306 if (AR_SREV_9100(ah) || 1307 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) 1308 tsf = ath9k_hw_gettsf64(ah); 1309 1310 saveLedState = REG_READ(ah, AR_CFG_LED) & 1311 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1312 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1313 1314 ath9k_hw_mark_phy_inactive(ah); 1315 1316 ah->paprd_table_write_done = false; 1317 1318 /* Only required on the first reset */ 1319 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1320 REG_WRITE(ah, 1321 AR9271_RESET_POWER_DOWN_CONTROL, 1322 AR9271_RADIO_RF_RST); 1323 udelay(50); 1324 } 1325 1326 if (!ath9k_hw_chip_reset(ah, chan)) { 1327 ath_err(common, "Chip reset failed\n"); 1328 return -EINVAL; 1329 } 1330 1331 /* Only required on the first reset */ 1332 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1333 ah->htc_reset_init = false; 1334 REG_WRITE(ah, 1335 AR9271_RESET_POWER_DOWN_CONTROL, 1336 AR9271_GATE_MAC_CTL); 1337 udelay(50); 1338 } 1339 1340 /* Restore TSF */ 1341 if (tsf) 1342 ath9k_hw_settsf64(ah, tsf); 1343 1344 if (AR_SREV_9280_20_OR_LATER(ah)) 1345 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1346 1347 if (!AR_SREV_9300_20_OR_LATER(ah)) 1348 ar9002_hw_enable_async_fifo(ah); 1349 1350 r = ath9k_hw_process_ini(ah, chan); 1351 if (r) 1352 return r; 1353 1354 /* 1355 * Some AR91xx SoC devices frequently fail to accept TSF writes 1356 * right after the chip reset. When that happens, write a new 1357 * value after the initvals have been applied, with an offset 1358 * based on measured time difference 1359 */ 1360 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1361 tsf += 1500; 1362 ath9k_hw_settsf64(ah, tsf); 1363 } 1364 1365 /* Setup MFP options for CCMP */ 1366 if (AR_SREV_9280_20_OR_LATER(ah)) { 1367 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1368 * frames when constructing CCMP AAD. */ 1369 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1370 0xc7ff); 1371 ah->sw_mgmt_crypto = false; 1372 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1373 /* Disable hardware crypto for management frames */ 1374 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1375 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1376 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1377 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1378 ah->sw_mgmt_crypto = true; 1379 } else 1380 ah->sw_mgmt_crypto = true; 1381 1382 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1383 ath9k_hw_set_delta_slope(ah, chan); 1384 1385 ath9k_hw_spur_mitigate_freq(ah, chan); 1386 ah->eep_ops->set_board_values(ah, chan); 1387 1388 ENABLE_REGWRITE_BUFFER(ah); 1389 1390 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); 1391 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) 1392 | macStaId1 1393 | AR_STA_ID1_RTS_USE_DEF 1394 | (ah->config. 1395 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 1396 | ah->sta_id1_defaults); 1397 ath_hw_setbssidmask(common); 1398 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1399 ath9k_hw_write_associd(ah); 1400 REG_WRITE(ah, AR_ISR, ~0); 1401 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1402 1403 REGWRITE_BUFFER_FLUSH(ah); 1404 1405 ath9k_hw_set_operating_mode(ah, ah->opmode); 1406 1407 r = ath9k_hw_rf_set_freq(ah, chan); 1408 if (r) 1409 return r; 1410 1411 ath9k_hw_set_clockrate(ah); 1412 1413 ENABLE_REGWRITE_BUFFER(ah); 1414 1415 for (i = 0; i < AR_NUM_DCU; i++) 1416 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1417 1418 REGWRITE_BUFFER_FLUSH(ah); 1419 1420 ah->intr_txqs = 0; 1421 for (i = 0; i < ah->caps.total_queues; i++) 1422 ath9k_hw_resettxqueue(ah, i); 1423 1424 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1425 ath9k_hw_ani_cache_ini_regs(ah); 1426 ath9k_hw_init_qos(ah); 1427 1428 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1429 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1430 1431 ath9k_hw_init_global_settings(ah); 1432 1433 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1434 ar9002_hw_update_async_fifo(ah); 1435 ar9002_hw_enable_wep_aggregation(ah); 1436 } 1437 1438 REG_WRITE(ah, AR_STA_ID1, 1439 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 1440 1441 ath9k_hw_set_dma(ah); 1442 1443 REG_WRITE(ah, AR_OBS, 8); 1444 1445 if (ah->config.rx_intr_mitigation) { 1446 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 1447 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 1448 } 1449 1450 if (ah->config.tx_intr_mitigation) { 1451 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1452 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1453 } 1454 1455 ath9k_hw_init_bb(ah, chan); 1456 1457 if (!ath9k_hw_init_cal(ah, chan)) 1458 return -EIO; 1459 1460 ENABLE_REGWRITE_BUFFER(ah); 1461 1462 ath9k_hw_restore_chainmask(ah); 1463 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 1464 1465 REGWRITE_BUFFER_FLUSH(ah); 1466 1467 /* 1468 * For big endian systems turn on swapping for descriptors 1469 */ 1470 if (AR_SREV_9100(ah)) { 1471 u32 mask; 1472 mask = REG_READ(ah, AR_CFG); 1473 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1474 ath_dbg(common, ATH_DBG_RESET, 1475 "CFG Byte Swap Set 0x%x\n", mask); 1476 } else { 1477 mask = 1478 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1479 REG_WRITE(ah, AR_CFG, mask); 1480 ath_dbg(common, ATH_DBG_RESET, 1481 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); 1482 } 1483 } else { 1484 if (common->bus_ops->ath_bus_type == ATH_USB) { 1485 /* Configure AR9271 target WLAN */ 1486 if (AR_SREV_9271(ah)) 1487 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1488 else 1489 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1490 } 1491#ifdef __BIG_ENDIAN 1492 else 1493 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1494#endif 1495 } 1496 1497 if (ah->btcoex_hw.enabled) 1498 ath9k_hw_btcoex_enable(ah); 1499 1500 if (AR_SREV_9300_20_OR_LATER(ah)) 1501 ar9003_hw_bb_watchdog_config(ah); 1502 1503 return 0; 1504} 1505EXPORT_SYMBOL(ath9k_hw_reset); 1506 1507/******************************/ 1508/* Power Management (Chipset) */ 1509/******************************/ 1510 1511/* 1512 * Notify Power Mgt is disabled in self-generated frames. 1513 * If requested, force chip to sleep. 1514 */ 1515static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) 1516{ 1517 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1518 if (setChip) { 1519 /* 1520 * Clear the RTC force wake bit to allow the 1521 * mac to go to sleep. 1522 */ 1523 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1524 AR_RTC_FORCE_WAKE_EN); 1525 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1526 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 1527 1528 /* Shutdown chip. Active low */ 1529 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) 1530 REG_CLR_BIT(ah, (AR_RTC_RESET), 1531 AR_RTC_RESET_EN); 1532 } 1533 1534 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 1535 if (AR_SREV_9300_20_OR_LATER(ah)) 1536 REG_WRITE(ah, AR_WA, 1537 ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1538} 1539 1540/* 1541 * Notify Power Management is enabled in self-generating 1542 * frames. If request, set power mode of chip to 1543 * auto/normal. Duration in units of 128us (1/8 TU). 1544 */ 1545static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) 1546{ 1547 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1548 if (setChip) { 1549 struct ath9k_hw_capabilities *pCap = &ah->caps; 1550 1551 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 1552 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 1553 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1554 AR_RTC_FORCE_WAKE_ON_INT); 1555 } else { 1556 /* 1557 * Clear the RTC force wake bit to allow the 1558 * mac to go to sleep. 1559 */ 1560 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1561 AR_RTC_FORCE_WAKE_EN); 1562 } 1563 } 1564 1565 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 1566 if (AR_SREV_9300_20_OR_LATER(ah)) 1567 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1568} 1569 1570static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) 1571{ 1572 u32 val; 1573 int i; 1574 1575 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 1576 if (AR_SREV_9300_20_OR_LATER(ah)) { 1577 REG_WRITE(ah, AR_WA, ah->WARegVal); 1578 udelay(10); 1579 } 1580 1581 if (setChip) { 1582 if ((REG_READ(ah, AR_RTC_STATUS) & 1583 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 1584 if (ath9k_hw_set_reset_reg(ah, 1585 ATH9K_RESET_POWER_ON) != true) { 1586 return false; 1587 } 1588 if (!AR_SREV_9300_20_OR_LATER(ah)) 1589 ath9k_hw_init_pll(ah, NULL); 1590 } 1591 if (AR_SREV_9100(ah)) 1592 REG_SET_BIT(ah, AR_RTC_RESET, 1593 AR_RTC_RESET_EN); 1594 1595 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1596 AR_RTC_FORCE_WAKE_EN); 1597 udelay(50); 1598 1599 for (i = POWER_UP_TIME / 50; i > 0; i--) { 1600 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 1601 if (val == AR_RTC_STATUS_ON) 1602 break; 1603 udelay(50); 1604 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1605 AR_RTC_FORCE_WAKE_EN); 1606 } 1607 if (i == 0) { 1608 ath_err(ath9k_hw_common(ah), 1609 "Failed to wakeup in %uus\n", 1610 POWER_UP_TIME / 20); 1611 return false; 1612 } 1613 } 1614 1615 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1616 1617 return true; 1618} 1619 1620bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 1621{ 1622 struct ath_common *common = ath9k_hw_common(ah); 1623 int status = true, setChip = true; 1624 static const char *modes[] = { 1625 "AWAKE", 1626 "FULL-SLEEP", 1627 "NETWORK SLEEP", 1628 "UNDEFINED" 1629 }; 1630 1631 if (ah->power_mode == mode) 1632 return status; 1633 1634 ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n", 1635 modes[ah->power_mode], modes[mode]); 1636 1637 switch (mode) { 1638 case ATH9K_PM_AWAKE: 1639 status = ath9k_hw_set_power_awake(ah, setChip); 1640 break; 1641 case ATH9K_PM_FULL_SLEEP: 1642 ath9k_set_power_sleep(ah, setChip); 1643 ah->chip_fullsleep = true; 1644 break; 1645 case ATH9K_PM_NETWORK_SLEEP: 1646 ath9k_set_power_network_sleep(ah, setChip); 1647 break; 1648 default: 1649 ath_err(common, "Unknown power mode %u\n", mode); 1650 return false; 1651 } 1652 ah->power_mode = mode; 1653 1654 /* 1655 * XXX: If this warning never comes up after a while then 1656 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 1657 * ath9k_hw_setpower() return type void. 1658 */ 1659 1660 if (!(ah->ah_flags & AH_UNPLUGGED)) 1661 ATH_DBG_WARN_ON_ONCE(!status); 1662 1663 return status; 1664} 1665EXPORT_SYMBOL(ath9k_hw_setpower); 1666 1667/*******************/ 1668/* Beacon Handling */ 1669/*******************/ 1670 1671void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 1672{ 1673 int flags = 0; 1674 1675 ENABLE_REGWRITE_BUFFER(ah); 1676 1677 switch (ah->opmode) { 1678 case NL80211_IFTYPE_ADHOC: 1679 case NL80211_IFTYPE_MESH_POINT: 1680 REG_SET_BIT(ah, AR_TXCFG, 1681 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 1682 REG_WRITE(ah, AR_NEXT_NDP_TIMER, 1683 TU_TO_USEC(next_beacon + 1684 (ah->atim_window ? ah-> 1685 atim_window : 1))); 1686 flags |= AR_NDP_TIMER_EN; 1687 case NL80211_IFTYPE_AP: 1688 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); 1689 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 1690 TU_TO_USEC(next_beacon - 1691 ah->config. 1692 dma_beacon_response_time)); 1693 REG_WRITE(ah, AR_NEXT_SWBA, 1694 TU_TO_USEC(next_beacon - 1695 ah->config. 1696 sw_beacon_response_time)); 1697 flags |= 1698 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 1699 break; 1700 default: 1701 ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON, 1702 "%s: unsupported opmode: %d\n", 1703 __func__, ah->opmode); 1704 return; 1705 break; 1706 } 1707 1708 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); 1709 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); 1710 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); 1711 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); 1712 1713 REGWRITE_BUFFER_FLUSH(ah); 1714 1715 beacon_period &= ~ATH9K_BEACON_ENA; 1716 if (beacon_period & ATH9K_BEACON_RESET_TSF) { 1717 ath9k_hw_reset_tsf(ah); 1718 } 1719 1720 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 1721} 1722EXPORT_SYMBOL(ath9k_hw_beaconinit); 1723 1724void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 1725 const struct ath9k_beacon_state *bs) 1726{ 1727 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 1728 struct ath9k_hw_capabilities *pCap = &ah->caps; 1729 struct ath_common *common = ath9k_hw_common(ah); 1730 1731 ENABLE_REGWRITE_BUFFER(ah); 1732 1733 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 1734 1735 REG_WRITE(ah, AR_BEACON_PERIOD, 1736 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); 1737 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 1738 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); 1739 1740 REGWRITE_BUFFER_FLUSH(ah); 1741 1742 REG_RMW_FIELD(ah, AR_RSSI_THR, 1743 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 1744 1745 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; 1746 1747 if (bs->bs_sleepduration > beaconintval) 1748 beaconintval = bs->bs_sleepduration; 1749 1750 dtimperiod = bs->bs_dtimperiod; 1751 if (bs->bs_sleepduration > dtimperiod) 1752 dtimperiod = bs->bs_sleepduration; 1753 1754 if (beaconintval == dtimperiod) 1755 nextTbtt = bs->bs_nextdtim; 1756 else 1757 nextTbtt = bs->bs_nexttbtt; 1758 1759 ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); 1760 ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); 1761 ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); 1762 ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); 1763 1764 ENABLE_REGWRITE_BUFFER(ah); 1765 1766 REG_WRITE(ah, AR_NEXT_DTIM, 1767 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 1768 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 1769 1770 REG_WRITE(ah, AR_SLEEP1, 1771 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 1772 | AR_SLEEP1_ASSUME_DTIM); 1773 1774 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 1775 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 1776 else 1777 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 1778 1779 REG_WRITE(ah, AR_SLEEP2, 1780 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 1781 1782 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 1783 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 1784 1785 REGWRITE_BUFFER_FLUSH(ah); 1786 1787 REG_SET_BIT(ah, AR_TIMER_MODE, 1788 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 1789 AR_DTIM_TIMER_EN); 1790 1791 /* TSF Out of Range Threshold */ 1792 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 1793} 1794EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 1795 1796/*******************/ 1797/* HW Capabilities */ 1798/*******************/ 1799 1800int ath9k_hw_fill_cap_info(struct ath_hw *ah) 1801{ 1802 struct ath9k_hw_capabilities *pCap = &ah->caps; 1803 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 1804 struct ath_common *common = ath9k_hw_common(ah); 1805 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw; 1806 1807 u16 capField = 0, eeval; 1808 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 1809 1810 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 1811 regulatory->current_rd = eeval; 1812 1813 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); 1814 if (AR_SREV_9285_12_OR_LATER(ah)) 1815 eeval |= AR9285_RDEXT_DEFAULT; 1816 regulatory->current_rd_ext = eeval; 1817 1818 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); 1819 1820 if (ah->opmode != NL80211_IFTYPE_AP && 1821 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 1822 if (regulatory->current_rd == 0x64 || 1823 regulatory->current_rd == 0x65) 1824 regulatory->current_rd += 5; 1825 else if (regulatory->current_rd == 0x41) 1826 regulatory->current_rd = 0x43; 1827 ath_dbg(common, ATH_DBG_REGULATORY, 1828 "regdomain mapped to 0x%x\n", regulatory->current_rd); 1829 } 1830 1831 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 1832 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 1833 ath_err(common, 1834 "no band has been marked as supported in EEPROM\n"); 1835 return -EINVAL; 1836 } 1837 1838 if (eeval & AR5416_OPFLAGS_11A) 1839 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 1840 1841 if (eeval & AR5416_OPFLAGS_11G) 1842 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 1843 1844 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 1845 /* 1846 * For AR9271 we will temporarilly uses the rx chainmax as read from 1847 * the EEPROM. 1848 */ 1849 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 1850 !(eeval & AR5416_OPFLAGS_11A) && 1851 !(AR_SREV_9271(ah))) 1852 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 1853 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 1854 else 1855 /* Use rx_chainmask from EEPROM. */ 1856 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 1857 1858 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 1859 1860 /* enable key search for every frame in an aggregate */ 1861 if (AR_SREV_9300_20_OR_LATER(ah)) 1862 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 1863 1864 pCap->low_2ghz_chan = 2312; 1865 pCap->high_2ghz_chan = 2732; 1866 1867 pCap->low_5ghz_chan = 4920; 1868 pCap->high_5ghz_chan = 6100; 1869 1870 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 1871 1872 if (ah->config.ht_enable) 1873 pCap->hw_caps |= ATH9K_HW_CAP_HT; 1874 else 1875 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 1876 1877 if (capField & AR_EEPROM_EEPCAP_MAXQCU) 1878 pCap->total_queues = 1879 MS(capField, AR_EEPROM_EEPCAP_MAXQCU); 1880 else 1881 pCap->total_queues = ATH9K_NUM_TX_QUEUES; 1882 1883 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) 1884 pCap->keycache_size = 1885 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); 1886 else 1887 pCap->keycache_size = AR_KEYTABLE_SIZE; 1888 1889 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 1890 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1; 1891 else 1892 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; 1893 1894 if (AR_SREV_9271(ah)) 1895 pCap->num_gpio_pins = AR9271_NUM_GPIO; 1896 else if (AR_DEVID_7010(ah)) 1897 pCap->num_gpio_pins = AR7010_NUM_GPIO; 1898 else if (AR_SREV_9285_12_OR_LATER(ah)) 1899 pCap->num_gpio_pins = AR9285_NUM_GPIO; 1900 else if (AR_SREV_9280_20_OR_LATER(ah)) 1901 pCap->num_gpio_pins = AR928X_NUM_GPIO; 1902 else 1903 pCap->num_gpio_pins = AR_NUM_GPIO; 1904 1905 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { 1906 pCap->hw_caps |= ATH9K_HW_CAP_CST; 1907 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 1908 } else { 1909 pCap->rts_aggr_limit = (8 * 1024); 1910 } 1911 1912 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; 1913 1914#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 1915 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 1916 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 1917 ah->rfkill_gpio = 1918 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 1919 ah->rfkill_polarity = 1920 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 1921 1922 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 1923 } 1924#endif 1925 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 1926 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 1927 else 1928 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 1929 1930 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 1931 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 1932 else 1933 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 1934 1935 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { 1936 pCap->reg_cap = 1937 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | 1938 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | 1939 AR_EEPROM_EEREGCAP_EN_KK_U2 | 1940 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; 1941 } else { 1942 pCap->reg_cap = 1943 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | 1944 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; 1945 } 1946 1947 /* Advertise midband for AR5416 with FCC midband set in eeprom */ 1948 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) && 1949 AR_SREV_5416(ah)) 1950 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; 1951 1952 if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) { 1953 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO; 1954 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO; 1955 1956 if (AR_SREV_9285(ah)) { 1957 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; 1958 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO; 1959 } else { 1960 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE; 1961 } 1962 } else { 1963 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE; 1964 } 1965 1966 if (AR_SREV_9300_20_OR_LATER(ah)) { 1967 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 1968 if (!AR_SREV_9485(ah)) 1969 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 1970 1971 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 1972 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 1973 pCap->rx_status_len = sizeof(struct ar9003_rxs); 1974 pCap->tx_desc_len = sizeof(struct ar9003_txc); 1975 pCap->txs_len = sizeof(struct ar9003_txs); 1976 if (!ah->config.paprd_disable && 1977 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 1978 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 1979 } else { 1980 pCap->tx_desc_len = sizeof(struct ath_desc); 1981 if (AR_SREV_9280_20(ah) && 1982 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <= 1983 AR5416_EEP_MINOR_VER_16) || 1984 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G))) 1985 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 1986 } 1987 1988 if (AR_SREV_9300_20_OR_LATER(ah)) 1989 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 1990 1991 if (AR_SREV_9300_20_OR_LATER(ah)) 1992 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 1993 1994 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 1995 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 1996 1997 if (AR_SREV_9285(ah)) 1998 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 1999 ant_div_ctl1 = 2000 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2001 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) 2002 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2003 } 2004 if (AR_SREV_9300_20_OR_LATER(ah)) { 2005 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2006 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2007 } 2008 2009 2010 2011 if (AR_SREV_9485_10(ah)) { 2012 pCap->pcie_lcr_extsync_en = true; 2013 pCap->pcie_lcr_offset = 0x80; 2014 } 2015 2016 tx_chainmask = pCap->tx_chainmask; 2017 rx_chainmask = pCap->rx_chainmask; 2018 while (tx_chainmask || rx_chainmask) { 2019 if (tx_chainmask & BIT(0)) 2020 pCap->max_txchains++; 2021 if (rx_chainmask & BIT(0)) 2022 pCap->max_rxchains++; 2023 2024 tx_chainmask >>= 1; 2025 rx_chainmask >>= 1; 2026 } 2027 2028 return 0; 2029} 2030 2031/****************************/ 2032/* GPIO / RFKILL / Antennae */ 2033/****************************/ 2034 2035static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2036 u32 gpio, u32 type) 2037{ 2038 int addr; 2039 u32 gpio_shift, tmp; 2040 2041 if (gpio > 11) 2042 addr = AR_GPIO_OUTPUT_MUX3; 2043 else if (gpio > 5) 2044 addr = AR_GPIO_OUTPUT_MUX2; 2045 else 2046 addr = AR_GPIO_OUTPUT_MUX1; 2047 2048 gpio_shift = (gpio % 6) * 5; 2049 2050 if (AR_SREV_9280_20_OR_LATER(ah) 2051 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2052 REG_RMW(ah, addr, (type << gpio_shift), 2053 (0x1f << gpio_shift)); 2054 } else { 2055 tmp = REG_READ(ah, addr); 2056 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2057 tmp &= ~(0x1f << gpio_shift); 2058 tmp |= (type << gpio_shift); 2059 REG_WRITE(ah, addr, tmp); 2060 } 2061} 2062 2063void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2064{ 2065 u32 gpio_shift; 2066 2067 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2068 2069 if (AR_DEVID_7010(ah)) { 2070 gpio_shift = gpio; 2071 REG_RMW(ah, AR7010_GPIO_OE, 2072 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2073 (AR7010_GPIO_OE_MASK << gpio_shift)); 2074 return; 2075 } 2076 2077 gpio_shift = gpio << 1; 2078 REG_RMW(ah, 2079 AR_GPIO_OE_OUT, 2080 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2081 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2082} 2083EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2084 2085u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2086{ 2087#define MS_REG_READ(x, y) \ 2088 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2089 2090 if (gpio >= ah->caps.num_gpio_pins) 2091 return 0xffffffff; 2092 2093 if (AR_DEVID_7010(ah)) { 2094 u32 val; 2095 val = REG_READ(ah, AR7010_GPIO_IN); 2096 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2097 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2098 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2099 AR_GPIO_BIT(gpio)) != 0; 2100 else if (AR_SREV_9271(ah)) 2101 return MS_REG_READ(AR9271, gpio) != 0; 2102 else if (AR_SREV_9287_11_OR_LATER(ah)) 2103 return MS_REG_READ(AR9287, gpio) != 0; 2104 else if (AR_SREV_9285_12_OR_LATER(ah)) 2105 return MS_REG_READ(AR9285, gpio) != 0; 2106 else if (AR_SREV_9280_20_OR_LATER(ah)) 2107 return MS_REG_READ(AR928X, gpio) != 0; 2108 else 2109 return MS_REG_READ(AR, gpio) != 0; 2110} 2111EXPORT_SYMBOL(ath9k_hw_gpio_get); 2112 2113void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2114 u32 ah_signal_type) 2115{ 2116 u32 gpio_shift; 2117 2118 if (AR_DEVID_7010(ah)) { 2119 gpio_shift = gpio; 2120 REG_RMW(ah, AR7010_GPIO_OE, 2121 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2122 (AR7010_GPIO_OE_MASK << gpio_shift)); 2123 return; 2124 } 2125 2126 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2127 gpio_shift = 2 * gpio; 2128 REG_RMW(ah, 2129 AR_GPIO_OE_OUT, 2130 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2131 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2132} 2133EXPORT_SYMBOL(ath9k_hw_cfg_output); 2134 2135void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2136{ 2137 if (AR_DEVID_7010(ah)) { 2138 val = val ? 0 : 1; 2139 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2140 AR_GPIO_BIT(gpio)); 2141 return; 2142 } 2143 2144 if (AR_SREV_9271(ah)) 2145 val = ~val; 2146 2147 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2148 AR_GPIO_BIT(gpio)); 2149} 2150EXPORT_SYMBOL(ath9k_hw_set_gpio); 2151 2152u32 ath9k_hw_getdefantenna(struct ath_hw *ah) 2153{ 2154 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; 2155} 2156EXPORT_SYMBOL(ath9k_hw_getdefantenna); 2157 2158void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2159{ 2160 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2161} 2162EXPORT_SYMBOL(ath9k_hw_setantenna); 2163 2164/*********************/ 2165/* General Operation */ 2166/*********************/ 2167 2168u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2169{ 2170 u32 bits = REG_READ(ah, AR_RX_FILTER); 2171 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2172 2173 if (phybits & AR_PHY_ERR_RADAR) 2174 bits |= ATH9K_RX_FILTER_PHYRADAR; 2175 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2176 bits |= ATH9K_RX_FILTER_PHYERR; 2177 2178 return bits; 2179} 2180EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2181 2182void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2183{ 2184 u32 phybits; 2185 2186 ENABLE_REGWRITE_BUFFER(ah); 2187 2188 REG_WRITE(ah, AR_RX_FILTER, bits); 2189 2190 phybits = 0; 2191 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2192 phybits |= AR_PHY_ERR_RADAR; 2193 if (bits & ATH9K_RX_FILTER_PHYERR) 2194 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2195 REG_WRITE(ah, AR_PHY_ERR, phybits); 2196 2197 if (phybits) 2198 REG_WRITE(ah, AR_RXCFG, 2199 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); 2200 else 2201 REG_WRITE(ah, AR_RXCFG, 2202 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); 2203 2204 REGWRITE_BUFFER_FLUSH(ah); 2205} 2206EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2207 2208bool ath9k_hw_phy_disable(struct ath_hw *ah) 2209{ 2210 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2211 return false; 2212 2213 ath9k_hw_init_pll(ah, NULL); 2214 return true; 2215} 2216EXPORT_SYMBOL(ath9k_hw_phy_disable); 2217 2218bool ath9k_hw_disable(struct ath_hw *ah) 2219{ 2220 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2221 return false; 2222 2223 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2224 return false; 2225 2226 ath9k_hw_init_pll(ah, NULL); 2227 return true; 2228} 2229EXPORT_SYMBOL(ath9k_hw_disable); 2230 2231void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2232{ 2233 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2234 struct ath9k_channel *chan = ah->curchan; 2235 struct ieee80211_channel *channel = chan->chan; 2236 2237 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER); 2238 2239 ah->eep_ops->set_txpower(ah, chan, 2240 ath9k_regd_get_ctl(regulatory, chan), 2241 channel->max_antenna_gain * 2, 2242 channel->max_power * 2, 2243 min((u32) MAX_RATE_POWER, 2244 (u32) regulatory->power_limit), test); 2245} 2246EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2247 2248void ath9k_hw_setopmode(struct ath_hw *ah) 2249{ 2250 ath9k_hw_set_operating_mode(ah, ah->opmode); 2251} 2252EXPORT_SYMBOL(ath9k_hw_setopmode); 2253 2254void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2255{ 2256 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2257 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2258} 2259EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2260 2261void ath9k_hw_write_associd(struct ath_hw *ah) 2262{ 2263 struct ath_common *common = ath9k_hw_common(ah); 2264 2265 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2266 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2267 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2268} 2269EXPORT_SYMBOL(ath9k_hw_write_associd); 2270 2271#define ATH9K_MAX_TSF_READ 10 2272 2273u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2274{ 2275 u32 tsf_lower, tsf_upper1, tsf_upper2; 2276 int i; 2277 2278 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2279 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2280 tsf_lower = REG_READ(ah, AR_TSF_L32); 2281 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2282 if (tsf_upper2 == tsf_upper1) 2283 break; 2284 tsf_upper1 = tsf_upper2; 2285 } 2286 2287 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2288 2289 return (((u64)tsf_upper1 << 32) | tsf_lower); 2290} 2291EXPORT_SYMBOL(ath9k_hw_gettsf64); 2292 2293void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2294{ 2295 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2296 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2297} 2298EXPORT_SYMBOL(ath9k_hw_settsf64); 2299 2300void ath9k_hw_reset_tsf(struct ath_hw *ah) 2301{ 2302 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2303 AH_TSF_WRITE_TIMEOUT)) 2304 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, 2305 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2306 2307 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2308} 2309EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2310 2311void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) 2312{ 2313 if (setting) 2314 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2315 else 2316 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2317} 2318EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2319 2320void ath9k_hw_set11nmac2040(struct ath_hw *ah) 2321{ 2322 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 2323 u32 macmode; 2324 2325 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) 2326 macmode = AR_2040_JOINED_RX_CLEAR; 2327 else 2328 macmode = 0; 2329 2330 REG_WRITE(ah, AR_2040_MODE, macmode); 2331} 2332 2333/* HW Generic timers configuration */ 2334 2335static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2336{ 2337 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2338 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2339 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2340 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2341 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2342 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2343 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2344 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2345 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2346 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2347 AR_NDP2_TIMER_MODE, 0x0002}, 2348 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2349 AR_NDP2_TIMER_MODE, 0x0004}, 2350 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2351 AR_NDP2_TIMER_MODE, 0x0008}, 2352 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2353 AR_NDP2_TIMER_MODE, 0x0010}, 2354 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2355 AR_NDP2_TIMER_MODE, 0x0020}, 2356 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2357 AR_NDP2_TIMER_MODE, 0x0040}, 2358 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2359 AR_NDP2_TIMER_MODE, 0x0080} 2360}; 2361 2362/* HW generic timer primitives */ 2363 2364/* compute and clear index of rightmost 1 */ 2365static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) 2366{ 2367 u32 b; 2368 2369 b = *mask; 2370 b &= (0-b); 2371 *mask &= ~b; 2372 b *= debruijn32; 2373 b >>= 27; 2374 2375 return timer_table->gen_timer_index[b]; 2376} 2377 2378static u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2379{ 2380 return REG_READ(ah, AR_TSF_L32); 2381} 2382 2383struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 2384 void (*trigger)(void *), 2385 void (*overflow)(void *), 2386 void *arg, 2387 u8 timer_index) 2388{ 2389 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2390 struct ath_gen_timer *timer; 2391 2392 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 2393 2394 if (timer == NULL) { 2395 ath_err(ath9k_hw_common(ah), 2396 "Failed to allocate memory for hw timer[%d]\n", 2397 timer_index); 2398 return NULL; 2399 } 2400 2401 /* allocate a hardware generic timer slot */ 2402 timer_table->timers[timer_index] = timer; 2403 timer->index = timer_index; 2404 timer->trigger = trigger; 2405 timer->overflow = overflow; 2406 timer->arg = arg; 2407 2408 return timer; 2409} 2410EXPORT_SYMBOL(ath_gen_timer_alloc); 2411 2412void ath9k_hw_gen_timer_start(struct ath_hw *ah, 2413 struct ath_gen_timer *timer, 2414 u32 timer_next, 2415 u32 timer_period) 2416{ 2417 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2418 u32 tsf; 2419 2420 BUG_ON(!timer_period); 2421 2422 set_bit(timer->index, &timer_table->timer_mask.timer_bits); 2423 2424 tsf = ath9k_hw_gettsf32(ah); 2425 2426 ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER, 2427 "current tsf %x period %x timer_next %x\n", 2428 tsf, timer_period, timer_next); 2429 2430 /* 2431 * Pull timer_next forward if the current TSF already passed it 2432 * because of software latency 2433 */ 2434 if (timer_next < tsf) 2435 timer_next = tsf + timer_period; 2436 2437 /* 2438 * Program generic timer registers 2439 */ 2440 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 2441 timer_next); 2442 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 2443 timer_period); 2444 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2445 gen_tmr_configuration[timer->index].mode_mask); 2446 2447 /* Enable both trigger and thresh interrupt masks */ 2448 REG_SET_BIT(ah, AR_IMR_S5, 2449 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2450 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2451} 2452EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 2453 2454void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 2455{ 2456 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2457 2458 if ((timer->index < AR_FIRST_NDP_TIMER) || 2459 (timer->index >= ATH_MAX_GEN_TIMER)) { 2460 return; 2461 } 2462 2463 /* Clear generic timer enable bits. */ 2464 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2465 gen_tmr_configuration[timer->index].mode_mask); 2466 2467 /* Disable both trigger and thresh interrupt masks */ 2468 REG_CLR_BIT(ah, AR_IMR_S5, 2469 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2470 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2471 2472 clear_bit(timer->index, &timer_table->timer_mask.timer_bits); 2473} 2474EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 2475 2476void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 2477{ 2478 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2479 2480 /* free the hardware generic timer slot */ 2481 timer_table->timers[timer->index] = NULL; 2482 kfree(timer); 2483} 2484EXPORT_SYMBOL(ath_gen_timer_free); 2485 2486/* 2487 * Generic Timer Interrupts handling 2488 */ 2489void ath_gen_timer_isr(struct ath_hw *ah) 2490{ 2491 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2492 struct ath_gen_timer *timer; 2493 struct ath_common *common = ath9k_hw_common(ah); 2494 u32 trigger_mask, thresh_mask, index; 2495 2496 /* get hardware generic timer interrupt status */ 2497 trigger_mask = ah->intr_gen_timer_trigger; 2498 thresh_mask = ah->intr_gen_timer_thresh; 2499 trigger_mask &= timer_table->timer_mask.val; 2500 thresh_mask &= timer_table->timer_mask.val; 2501 2502 trigger_mask &= ~thresh_mask; 2503 2504 while (thresh_mask) { 2505 index = rightmost_index(timer_table, &thresh_mask); 2506 timer = timer_table->timers[index]; 2507 BUG_ON(!timer); 2508 ath_dbg(common, ATH_DBG_HWTIMER, 2509 "TSF overflow for Gen timer %d\n", index); 2510 timer->overflow(timer->arg); 2511 } 2512 2513 while (trigger_mask) { 2514 index = rightmost_index(timer_table, &trigger_mask); 2515 timer = timer_table->timers[index]; 2516 BUG_ON(!timer); 2517 ath_dbg(common, ATH_DBG_HWTIMER, 2518 "Gen timer[%d] trigger\n", index); 2519 timer->trigger(timer->arg); 2520 } 2521} 2522EXPORT_SYMBOL(ath_gen_timer_isr); 2523 2524/********/ 2525/* HTC */ 2526/********/ 2527 2528void ath9k_hw_htc_resetinit(struct ath_hw *ah) 2529{ 2530 ah->htc_reset_init = true; 2531} 2532EXPORT_SYMBOL(ath9k_hw_htc_resetinit); 2533 2534static struct { 2535 u32 version; 2536 const char * name; 2537} ath_mac_bb_names[] = { 2538 /* Devices with external radios */ 2539 { AR_SREV_VERSION_5416_PCI, "5416" }, 2540 { AR_SREV_VERSION_5416_PCIE, "5418" }, 2541 { AR_SREV_VERSION_9100, "9100" }, 2542 { AR_SREV_VERSION_9160, "9160" }, 2543 /* Single-chip solutions */ 2544 { AR_SREV_VERSION_9280, "9280" }, 2545 { AR_SREV_VERSION_9285, "9285" }, 2546 { AR_SREV_VERSION_9287, "9287" }, 2547 { AR_SREV_VERSION_9271, "9271" }, 2548 { AR_SREV_VERSION_9300, "9300" }, 2549}; 2550 2551/* For devices with external radios */ 2552static struct { 2553 u16 version; 2554 const char * name; 2555} ath_rf_names[] = { 2556 { 0, "5133" }, 2557 { AR_RAD5133_SREV_MAJOR, "5133" }, 2558 { AR_RAD5122_SREV_MAJOR, "5122" }, 2559 { AR_RAD2133_SREV_MAJOR, "2133" }, 2560 { AR_RAD2122_SREV_MAJOR, "2122" } 2561}; 2562 2563/* 2564 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 2565 */ 2566static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 2567{ 2568 int i; 2569 2570 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 2571 if (ath_mac_bb_names[i].version == mac_bb_version) { 2572 return ath_mac_bb_names[i].name; 2573 } 2574 } 2575 2576 return "????"; 2577} 2578 2579/* 2580 * Return the RF name. "????" is returned if the RF is unknown. 2581 * Used for devices with external radios. 2582 */ 2583static const char *ath9k_hw_rf_name(u16 rf_version) 2584{ 2585 int i; 2586 2587 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 2588 if (ath_rf_names[i].version == rf_version) { 2589 return ath_rf_names[i].name; 2590 } 2591 } 2592 2593 return "????"; 2594} 2595 2596void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 2597{ 2598 int used; 2599 2600 /* chipsets >= AR9280 are single-chip */ 2601 if (AR_SREV_9280_20_OR_LATER(ah)) { 2602 used = snprintf(hw_name, len, 2603 "Atheros AR%s Rev:%x", 2604 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 2605 ah->hw_version.macRev); 2606 } 2607 else { 2608 used = snprintf(hw_name, len, 2609 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 2610 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 2611 ah->hw_version.macRev, 2612 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & 2613 AR_RADIO_SREV_MAJOR)), 2614 ah->hw_version.phyRev); 2615 } 2616 2617 hw_name[used] = '\0'; 2618} 2619EXPORT_SYMBOL(ath9k_hw_name); 2620