hw.c revision 75e03512455827eb2c09e057578ae23178a93cf8
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	if (!ah->curchan) /* should really check for CCK instead */
91		clockrate = ATH9K_CLOCK_RATE_CCK;
92	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96	else
97		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98
99	if (conf_is_ht40(conf))
100		clockrate *= 2;
101
102	common->clockrate = clockrate;
103}
104
105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106{
107	struct ath_common *common = ath9k_hw_common(ah);
108
109	return usecs * common->clockrate;
110}
111
112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113{
114	int i;
115
116	BUG_ON(timeout < AH_TIME_QUANTUM);
117
118	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119		if ((REG_READ(ah, reg) & mask) == val)
120			return true;
121
122		udelay(AH_TIME_QUANTUM);
123	}
124
125	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127		timeout, reg, REG_READ(ah, reg), mask, val);
128
129	return false;
130}
131EXPORT_SYMBOL(ath9k_hw_wait);
132
133u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134{
135	u32 retval;
136	int i;
137
138	for (i = 0, retval = 0; i < n; i++) {
139		retval = (retval << 1) | (val & 1);
140		val >>= 1;
141	}
142	return retval;
143}
144
145bool ath9k_get_channel_edges(struct ath_hw *ah,
146			     u16 flags, u16 *low,
147			     u16 *high)
148{
149	struct ath9k_hw_capabilities *pCap = &ah->caps;
150
151	if (flags & CHANNEL_5GHZ) {
152		*low = pCap->low_5ghz_chan;
153		*high = pCap->high_5ghz_chan;
154		return true;
155	}
156	if ((flags & CHANNEL_2GHZ)) {
157		*low = pCap->low_2ghz_chan;
158		*high = pCap->high_2ghz_chan;
159		return true;
160	}
161	return false;
162}
163
164u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165			   u8 phy, int kbps,
166			   u32 frameLen, u16 rateix,
167			   bool shortPreamble)
168{
169	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170
171	if (kbps == 0)
172		return 0;
173
174	switch (phy) {
175	case WLAN_RC_PHY_CCK:
176		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177		if (shortPreamble)
178			phyTime >>= 1;
179		numBits = frameLen << 3;
180		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181		break;
182	case WLAN_RC_PHY_OFDM:
183		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185			numBits = OFDM_PLCP_BITS + (frameLen << 3);
186			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187			txTime = OFDM_SIFS_TIME_QUARTER
188				+ OFDM_PREAMBLE_TIME_QUARTER
189				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190		} else if (ah->curchan &&
191			   IS_CHAN_HALF_RATE(ah->curchan)) {
192			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193			numBits = OFDM_PLCP_BITS + (frameLen << 3);
194			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195			txTime = OFDM_SIFS_TIME_HALF +
196				OFDM_PREAMBLE_TIME_HALF
197				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
198		} else {
199			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203				+ (numSymbols * OFDM_SYMBOL_TIME);
204		}
205		break;
206	default:
207		ath_err(ath9k_hw_common(ah),
208			"Unknown phy %u (rate ix %u)\n", phy, rateix);
209		txTime = 0;
210		break;
211	}
212
213	return txTime;
214}
215EXPORT_SYMBOL(ath9k_hw_computetxtime);
216
217void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218				  struct ath9k_channel *chan,
219				  struct chan_centers *centers)
220{
221	int8_t extoff;
222
223	if (!IS_CHAN_HT40(chan)) {
224		centers->ctl_center = centers->ext_center =
225			centers->synth_center = chan->channel;
226		return;
227	}
228
229	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231		centers->synth_center =
232			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233		extoff = 1;
234	} else {
235		centers->synth_center =
236			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237		extoff = -1;
238	}
239
240	centers->ctl_center =
241		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242	/* 25 MHz spacing is supported by hw but not on upper layers */
243	centers->ext_center =
244		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245}
246
247/******************/
248/* Chip Revisions */
249/******************/
250
251static void ath9k_hw_read_revisions(struct ath_hw *ah)
252{
253	u32 val;
254
255	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256
257	if (val == 0xFF) {
258		val = REG_READ(ah, AR_SREV);
259		ah->hw_version.macVersion =
260			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263	} else {
264		if (!AR_SREV_9100(ah))
265			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266
267		ah->hw_version.macRev = val & AR_SREV_REVISION;
268
269		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270			ah->is_pciexpress = true;
271	}
272}
273
274/************************************/
275/* HW Attach, Detach, Init Routines */
276/************************************/
277
278static void ath9k_hw_disablepcie(struct ath_hw *ah)
279{
280	if (!AR_SREV_5416(ah))
281		return;
282
283	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292
293	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294}
295
296/* This should work for all families including legacy */
297static bool ath9k_hw_chip_test(struct ath_hw *ah)
298{
299	struct ath_common *common = ath9k_hw_common(ah);
300	u32 regAddr[2] = { AR_STA_ID0 };
301	u32 regHold[2];
302	static const u32 patternData[4] = {
303		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304	};
305	int i, j, loop_max;
306
307	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308		loop_max = 2;
309		regAddr[1] = AR_PHY_BASE + (8 << 2);
310	} else
311		loop_max = 1;
312
313	for (i = 0; i < loop_max; i++) {
314		u32 addr = regAddr[i];
315		u32 wrData, rdData;
316
317		regHold[i] = REG_READ(ah, addr);
318		for (j = 0; j < 0x100; j++) {
319			wrData = (j << 16) | j;
320			REG_WRITE(ah, addr, wrData);
321			rdData = REG_READ(ah, addr);
322			if (rdData != wrData) {
323				ath_err(common,
324					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325					addr, wrData, rdData);
326				return false;
327			}
328		}
329		for (j = 0; j < 4; j++) {
330			wrData = patternData[j];
331			REG_WRITE(ah, addr, wrData);
332			rdData = REG_READ(ah, addr);
333			if (wrData != rdData) {
334				ath_err(common,
335					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336					addr, wrData, rdData);
337				return false;
338			}
339		}
340		REG_WRITE(ah, regAddr[i], regHold[i]);
341	}
342	udelay(100);
343
344	return true;
345}
346
347static void ath9k_hw_init_config(struct ath_hw *ah)
348{
349	int i;
350
351	ah->config.dma_beacon_response_time = 2;
352	ah->config.sw_beacon_response_time = 10;
353	ah->config.additional_swba_backoff = 0;
354	ah->config.ack_6mb = 0x0;
355	ah->config.cwm_ignore_extcca = 0;
356	ah->config.pcie_powersave_enable = 0;
357	ah->config.pcie_clock_req = 0;
358	ah->config.pcie_waen = 0;
359	ah->config.analog_shiftreg = 1;
360	ah->config.enable_ani = true;
361
362	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363		ah->config.spurchans[i][0] = AR_NO_SPUR;
364		ah->config.spurchans[i][1] = AR_NO_SPUR;
365	}
366
367	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368		ah->config.ht_enable = 1;
369	else
370		ah->config.ht_enable = 0;
371
372	/* PAPRD needs some more work to be enabled */
373	ah->config.paprd_disable = 1;
374
375	ah->config.rx_intr_mitigation = true;
376	ah->config.pcieSerDesWrite = true;
377
378	/*
379	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
380	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
381	 * This means we use it for all AR5416 devices, and the few
382	 * minor PCI AR9280 devices out there.
383	 *
384	 * Serialization is required because these devices do not handle
385	 * well the case of two concurrent reads/writes due to the latency
386	 * involved. During one read/write another read/write can be issued
387	 * on another CPU while the previous read/write may still be working
388	 * on our hardware, if we hit this case the hardware poops in a loop.
389	 * We prevent this by serializing reads and writes.
390	 *
391	 * This issue is not present on PCI-Express devices or pre-AR5416
392	 * devices (legacy, 802.11abg).
393	 */
394	if (num_possible_cpus() > 1)
395		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
396}
397
398static void ath9k_hw_init_defaults(struct ath_hw *ah)
399{
400	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
401
402	regulatory->country_code = CTRY_DEFAULT;
403	regulatory->power_limit = MAX_RATE_POWER;
404	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
405
406	ah->hw_version.magic = AR5416_MAGIC;
407	ah->hw_version.subvendorid = 0;
408
409	ah->atim_window = 0;
410	ah->sta_id1_defaults =
411		AR_STA_ID1_CRPT_MIC_ENABLE |
412		AR_STA_ID1_MCAST_KSRCH;
413	ah->enable_32kHz_clock = DONT_USE_32KHZ;
414	ah->slottime = 20;
415	ah->globaltxtimeout = (u32) -1;
416	ah->power_mode = ATH9K_PM_UNDEFINED;
417}
418
419static int ath9k_hw_init_macaddr(struct ath_hw *ah)
420{
421	struct ath_common *common = ath9k_hw_common(ah);
422	u32 sum;
423	int i;
424	u16 eeval;
425	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
426
427	sum = 0;
428	for (i = 0; i < 3; i++) {
429		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
430		sum += eeval;
431		common->macaddr[2 * i] = eeval >> 8;
432		common->macaddr[2 * i + 1] = eeval & 0xff;
433	}
434	if (sum == 0 || sum == 0xffff * 3)
435		return -EADDRNOTAVAIL;
436
437	return 0;
438}
439
440static int ath9k_hw_post_init(struct ath_hw *ah)
441{
442	struct ath_common *common = ath9k_hw_common(ah);
443	int ecode;
444
445	if (common->bus_ops->ath_bus_type != ATH_USB) {
446		if (!ath9k_hw_chip_test(ah))
447			return -ENODEV;
448	}
449
450	if (!AR_SREV_9300_20_OR_LATER(ah)) {
451		ecode = ar9002_hw_rf_claim(ah);
452		if (ecode != 0)
453			return ecode;
454	}
455
456	ecode = ath9k_hw_eeprom_init(ah);
457	if (ecode != 0)
458		return ecode;
459
460	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
461		"Eeprom VER: %d, REV: %d\n",
462		ah->eep_ops->get_eeprom_ver(ah),
463		ah->eep_ops->get_eeprom_rev(ah));
464
465	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
466	if (ecode) {
467		ath_err(ath9k_hw_common(ah),
468			"Failed allocating banks for external radio\n");
469		ath9k_hw_rf_free_ext_banks(ah);
470		return ecode;
471	}
472
473	if (!AR_SREV_9100(ah)) {
474		ath9k_hw_ani_setup(ah);
475		ath9k_hw_ani_init(ah);
476	}
477
478	return 0;
479}
480
481static void ath9k_hw_attach_ops(struct ath_hw *ah)
482{
483	if (AR_SREV_9300_20_OR_LATER(ah))
484		ar9003_hw_attach_ops(ah);
485	else
486		ar9002_hw_attach_ops(ah);
487}
488
489/* Called for all hardware families */
490static int __ath9k_hw_init(struct ath_hw *ah)
491{
492	struct ath_common *common = ath9k_hw_common(ah);
493	int r = 0;
494
495	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
496		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
497
498	ath9k_hw_read_revisions(ah);
499
500	/*
501	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
502	 * We need to do this to avoid RMW of this register. We cannot
503	 * read the reg when chip is asleep.
504	 */
505	ah->WARegVal = REG_READ(ah, AR_WA);
506	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
507			 AR_WA_ASPM_TIMER_BASED_DISABLE);
508
509	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
510		ath_err(common, "Couldn't reset chip\n");
511		return -EIO;
512	}
513
514	ath9k_hw_init_defaults(ah);
515	ath9k_hw_init_config(ah);
516
517	ath9k_hw_attach_ops(ah);
518
519	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
520		ath_err(common, "Couldn't wakeup chip\n");
521		return -EIO;
522	}
523
524	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
525		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
526		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
527		     !ah->is_pciexpress)) {
528			ah->config.serialize_regmode =
529				SER_REG_MODE_ON;
530		} else {
531			ah->config.serialize_regmode =
532				SER_REG_MODE_OFF;
533		}
534	}
535
536	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
537		ah->config.serialize_regmode);
538
539	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
540		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
541	else
542		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
543
544	switch (ah->hw_version.macVersion) {
545	case AR_SREV_VERSION_5416_PCI:
546	case AR_SREV_VERSION_5416_PCIE:
547	case AR_SREV_VERSION_9160:
548	case AR_SREV_VERSION_9100:
549	case AR_SREV_VERSION_9280:
550	case AR_SREV_VERSION_9285:
551	case AR_SREV_VERSION_9287:
552	case AR_SREV_VERSION_9271:
553	case AR_SREV_VERSION_9300:
554	case AR_SREV_VERSION_9485:
555		break;
556	default:
557		ath_err(common,
558			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
559			ah->hw_version.macVersion, ah->hw_version.macRev);
560		return -EOPNOTSUPP;
561	}
562
563	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
564		ah->is_pciexpress = false;
565
566	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
567	ath9k_hw_init_cal_settings(ah);
568
569	ah->ani_function = ATH9K_ANI_ALL;
570	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
571		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
572	if (!AR_SREV_9300_20_OR_LATER(ah))
573		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
574
575	ath9k_hw_init_mode_regs(ah);
576
577
578	if (ah->is_pciexpress)
579		ath9k_hw_configpcipowersave(ah, 0, 0);
580	else
581		ath9k_hw_disablepcie(ah);
582
583	if (!AR_SREV_9300_20_OR_LATER(ah))
584		ar9002_hw_cck_chan14_spread(ah);
585
586	r = ath9k_hw_post_init(ah);
587	if (r)
588		return r;
589
590	ath9k_hw_init_mode_gain_regs(ah);
591	r = ath9k_hw_fill_cap_info(ah);
592	if (r)
593		return r;
594
595	r = ath9k_hw_init_macaddr(ah);
596	if (r) {
597		ath_err(common, "Failed to initialize MAC address\n");
598		return r;
599	}
600
601	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
602		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
603	else
604		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
605
606	ah->bb_watchdog_timeout_ms = 25;
607
608	common->state = ATH_HW_INITIALIZED;
609
610	return 0;
611}
612
613int ath9k_hw_init(struct ath_hw *ah)
614{
615	int ret;
616	struct ath_common *common = ath9k_hw_common(ah);
617
618	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
619	switch (ah->hw_version.devid) {
620	case AR5416_DEVID_PCI:
621	case AR5416_DEVID_PCIE:
622	case AR5416_AR9100_DEVID:
623	case AR9160_DEVID_PCI:
624	case AR9280_DEVID_PCI:
625	case AR9280_DEVID_PCIE:
626	case AR9285_DEVID_PCIE:
627	case AR9287_DEVID_PCI:
628	case AR9287_DEVID_PCIE:
629	case AR2427_DEVID_PCIE:
630	case AR9300_DEVID_PCIE:
631	case AR9300_DEVID_AR9485_PCIE:
632		break;
633	default:
634		if (common->bus_ops->ath_bus_type == ATH_USB)
635			break;
636		ath_err(common, "Hardware device ID 0x%04x not supported\n",
637			ah->hw_version.devid);
638		return -EOPNOTSUPP;
639	}
640
641	ret = __ath9k_hw_init(ah);
642	if (ret) {
643		ath_err(common,
644			"Unable to initialize hardware; initialization status: %d\n",
645			ret);
646		return ret;
647	}
648
649	return 0;
650}
651EXPORT_SYMBOL(ath9k_hw_init);
652
653static void ath9k_hw_init_qos(struct ath_hw *ah)
654{
655	ENABLE_REGWRITE_BUFFER(ah);
656
657	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
658	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
659
660	REG_WRITE(ah, AR_QOS_NO_ACK,
661		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
662		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
663		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
664
665	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
666	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
667	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
668	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
669	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
670
671	REGWRITE_BUFFER_FLUSH(ah);
672}
673
674unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
675{
676		REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK)));
677		udelay(100);
678		REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK));
679
680		while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
681			udelay(100);
682
683		return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
684}
685EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
686
687#define DPLL2_KD_VAL            0x3D
688#define DPLL2_KI_VAL            0x06
689#define DPLL3_PHASE_SHIFT_VAL   0x1
690
691static void ath9k_hw_init_pll(struct ath_hw *ah,
692			      struct ath9k_channel *chan)
693{
694	u32 pll;
695
696	if (AR_SREV_9485(ah)) {
697		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
698		REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
699
700		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
701			      AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
702
703		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
704		udelay(1000);
705
706		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
707
708		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709			      AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
710		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711			      AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
712
713		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
714			      AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
715		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
716		udelay(1000);
717	}
718
719	pll = ath9k_hw_compute_pll_control(ah, chan);
720
721	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
722
723	/* Switch the core clock for ar9271 to 117Mhz */
724	if (AR_SREV_9271(ah)) {
725		udelay(500);
726		REG_WRITE(ah, 0x50040, 0x304);
727	}
728
729	udelay(RTC_PLL_SETTLE_DELAY);
730
731	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
732}
733
734static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
735					  enum nl80211_iftype opmode)
736{
737	u32 imr_reg = AR_IMR_TXERR |
738		AR_IMR_TXURN |
739		AR_IMR_RXERR |
740		AR_IMR_RXORN |
741		AR_IMR_BCNMISC;
742
743	if (AR_SREV_9300_20_OR_LATER(ah)) {
744		imr_reg |= AR_IMR_RXOK_HP;
745		if (ah->config.rx_intr_mitigation)
746			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
747		else
748			imr_reg |= AR_IMR_RXOK_LP;
749
750	} else {
751		if (ah->config.rx_intr_mitigation)
752			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
753		else
754			imr_reg |= AR_IMR_RXOK;
755	}
756
757	if (ah->config.tx_intr_mitigation)
758		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
759	else
760		imr_reg |= AR_IMR_TXOK;
761
762	if (opmode == NL80211_IFTYPE_AP)
763		imr_reg |= AR_IMR_MIB;
764
765	ENABLE_REGWRITE_BUFFER(ah);
766
767	REG_WRITE(ah, AR_IMR, imr_reg);
768	ah->imrs2_reg |= AR_IMR_S2_GTT;
769	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
770
771	if (!AR_SREV_9100(ah)) {
772		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
773		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
774		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
775	}
776
777	REGWRITE_BUFFER_FLUSH(ah);
778
779	if (AR_SREV_9300_20_OR_LATER(ah)) {
780		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
781		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
782		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
783		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
784	}
785}
786
787static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
788{
789	u32 val = ath9k_hw_mac_to_clks(ah, us);
790	val = min(val, (u32) 0xFFFF);
791	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
792}
793
794static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
795{
796	u32 val = ath9k_hw_mac_to_clks(ah, us);
797	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
798	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
799}
800
801static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
802{
803	u32 val = ath9k_hw_mac_to_clks(ah, us);
804	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
805	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
806}
807
808static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
809{
810	if (tu > 0xFFFF) {
811		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
812			"bad global tx timeout %u\n", tu);
813		ah->globaltxtimeout = (u32) -1;
814		return false;
815	} else {
816		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
817		ah->globaltxtimeout = tu;
818		return true;
819	}
820}
821
822void ath9k_hw_init_global_settings(struct ath_hw *ah)
823{
824	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
825	int acktimeout;
826	int slottime;
827	int sifstime;
828
829	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
830		ah->misc_mode);
831
832	if (ah->misc_mode != 0)
833		REG_WRITE(ah, AR_PCU_MISC,
834			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
835
836	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
837		sifstime = 16;
838	else
839		sifstime = 10;
840
841	/* As defined by IEEE 802.11-2007 17.3.8.6 */
842	slottime = ah->slottime + 3 * ah->coverage_class;
843	acktimeout = slottime + sifstime;
844
845	/*
846	 * Workaround for early ACK timeouts, add an offset to match the
847	 * initval's 64us ack timeout value.
848	 * This was initially only meant to work around an issue with delayed
849	 * BA frames in some implementations, but it has been found to fix ACK
850	 * timeout issues in other cases as well.
851	 */
852	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
853		acktimeout += 64 - sifstime - ah->slottime;
854
855	ath9k_hw_setslottime(ah, ah->slottime);
856	ath9k_hw_set_ack_timeout(ah, acktimeout);
857	ath9k_hw_set_cts_timeout(ah, acktimeout);
858	if (ah->globaltxtimeout != (u32) -1)
859		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
860}
861EXPORT_SYMBOL(ath9k_hw_init_global_settings);
862
863void ath9k_hw_deinit(struct ath_hw *ah)
864{
865	struct ath_common *common = ath9k_hw_common(ah);
866
867	if (common->state < ATH_HW_INITIALIZED)
868		goto free_hw;
869
870	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
871
872free_hw:
873	ath9k_hw_rf_free_ext_banks(ah);
874}
875EXPORT_SYMBOL(ath9k_hw_deinit);
876
877/*******/
878/* INI */
879/*******/
880
881u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
882{
883	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
884
885	if (IS_CHAN_B(chan))
886		ctl |= CTL_11B;
887	else if (IS_CHAN_G(chan))
888		ctl |= CTL_11G;
889	else
890		ctl |= CTL_11A;
891
892	return ctl;
893}
894
895/****************************************/
896/* Reset and Channel Switching Routines */
897/****************************************/
898
899static inline void ath9k_hw_set_dma(struct ath_hw *ah)
900{
901	struct ath_common *common = ath9k_hw_common(ah);
902	u32 regval;
903
904	ENABLE_REGWRITE_BUFFER(ah);
905
906	/*
907	 * set AHB_MODE not to do cacheline prefetches
908	*/
909	if (!AR_SREV_9300_20_OR_LATER(ah)) {
910		regval = REG_READ(ah, AR_AHB_MODE);
911		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
912	}
913
914	/*
915	 * let mac dma reads be in 128 byte chunks
916	 */
917	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
918	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
919
920	REGWRITE_BUFFER_FLUSH(ah);
921
922	/*
923	 * Restore TX Trigger Level to its pre-reset value.
924	 * The initial value depends on whether aggregation is enabled, and is
925	 * adjusted whenever underruns are detected.
926	 */
927	if (!AR_SREV_9300_20_OR_LATER(ah))
928		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
929
930	ENABLE_REGWRITE_BUFFER(ah);
931
932	/*
933	 * let mac dma writes be in 128 byte chunks
934	 */
935	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
936	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
937
938	/*
939	 * Setup receive FIFO threshold to hold off TX activities
940	 */
941	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
942
943	if (AR_SREV_9300_20_OR_LATER(ah)) {
944		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
945		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
946
947		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
948			ah->caps.rx_status_len);
949	}
950
951	/*
952	 * reduce the number of usable entries in PCU TXBUF to avoid
953	 * wrap around issues.
954	 */
955	if (AR_SREV_9285(ah)) {
956		/* For AR9285 the number of Fifos are reduced to half.
957		 * So set the usable tx buf size also to half to
958		 * avoid data/delimiter underruns
959		 */
960		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
961			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
962	} else if (!AR_SREV_9271(ah)) {
963		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
964			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
965	}
966
967	REGWRITE_BUFFER_FLUSH(ah);
968
969	if (AR_SREV_9300_20_OR_LATER(ah))
970		ath9k_hw_reset_txstatus_ring(ah);
971}
972
973static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
974{
975	u32 val;
976
977	val = REG_READ(ah, AR_STA_ID1);
978	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
979	switch (opmode) {
980	case NL80211_IFTYPE_AP:
981		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
982			  | AR_STA_ID1_KSRCH_MODE);
983		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
984		break;
985	case NL80211_IFTYPE_ADHOC:
986	case NL80211_IFTYPE_MESH_POINT:
987		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
988			  | AR_STA_ID1_KSRCH_MODE);
989		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
990		break;
991	case NL80211_IFTYPE_STATION:
992		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
993		break;
994	default:
995		if (ah->is_monitoring)
996			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
997		break;
998	}
999}
1000
1001void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1002				   u32 *coef_mantissa, u32 *coef_exponent)
1003{
1004	u32 coef_exp, coef_man;
1005
1006	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1007		if ((coef_scaled >> coef_exp) & 0x1)
1008			break;
1009
1010	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1011
1012	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1013
1014	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1015	*coef_exponent = coef_exp - 16;
1016}
1017
1018static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1019{
1020	u32 rst_flags;
1021	u32 tmpReg;
1022
1023	if (AR_SREV_9100(ah)) {
1024		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1025		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1026		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1027		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1028		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1029	}
1030
1031	ENABLE_REGWRITE_BUFFER(ah);
1032
1033	if (AR_SREV_9300_20_OR_LATER(ah)) {
1034		REG_WRITE(ah, AR_WA, ah->WARegVal);
1035		udelay(10);
1036	}
1037
1038	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1039		  AR_RTC_FORCE_WAKE_ON_INT);
1040
1041	if (AR_SREV_9100(ah)) {
1042		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1043			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1044	} else {
1045		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1046		if (tmpReg &
1047		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1048		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1049			u32 val;
1050			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1051
1052			val = AR_RC_HOSTIF;
1053			if (!AR_SREV_9300_20_OR_LATER(ah))
1054				val |= AR_RC_AHB;
1055			REG_WRITE(ah, AR_RC, val);
1056
1057		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1058			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1059
1060		rst_flags = AR_RTC_RC_MAC_WARM;
1061		if (type == ATH9K_RESET_COLD)
1062			rst_flags |= AR_RTC_RC_MAC_COLD;
1063	}
1064
1065	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1066
1067	REGWRITE_BUFFER_FLUSH(ah);
1068
1069	udelay(50);
1070
1071	REG_WRITE(ah, AR_RTC_RC, 0);
1072	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1073		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1074			"RTC stuck in MAC reset\n");
1075		return false;
1076	}
1077
1078	if (!AR_SREV_9100(ah))
1079		REG_WRITE(ah, AR_RC, 0);
1080
1081	if (AR_SREV_9100(ah))
1082		udelay(50);
1083
1084	return true;
1085}
1086
1087static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1088{
1089	ENABLE_REGWRITE_BUFFER(ah);
1090
1091	if (AR_SREV_9300_20_OR_LATER(ah)) {
1092		REG_WRITE(ah, AR_WA, ah->WARegVal);
1093		udelay(10);
1094	}
1095
1096	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1097		  AR_RTC_FORCE_WAKE_ON_INT);
1098
1099	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1100		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1101
1102	REG_WRITE(ah, AR_RTC_RESET, 0);
1103
1104	REGWRITE_BUFFER_FLUSH(ah);
1105
1106	if (!AR_SREV_9300_20_OR_LATER(ah))
1107		udelay(2);
1108
1109	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1110		REG_WRITE(ah, AR_RC, 0);
1111
1112	REG_WRITE(ah, AR_RTC_RESET, 1);
1113
1114	if (!ath9k_hw_wait(ah,
1115			   AR_RTC_STATUS,
1116			   AR_RTC_STATUS_M,
1117			   AR_RTC_STATUS_ON,
1118			   AH_WAIT_TIMEOUT)) {
1119		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1120			"RTC not waking up\n");
1121		return false;
1122	}
1123
1124	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1125}
1126
1127static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1128{
1129	if (AR_SREV_9300_20_OR_LATER(ah)) {
1130		REG_WRITE(ah, AR_WA, ah->WARegVal);
1131		udelay(10);
1132	}
1133
1134	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1135		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1136
1137	switch (type) {
1138	case ATH9K_RESET_POWER_ON:
1139		return ath9k_hw_set_reset_power_on(ah);
1140	case ATH9K_RESET_WARM:
1141	case ATH9K_RESET_COLD:
1142		return ath9k_hw_set_reset(ah, type);
1143	default:
1144		return false;
1145	}
1146}
1147
1148static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1149				struct ath9k_channel *chan)
1150{
1151	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1152		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1153			return false;
1154	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1155		return false;
1156
1157	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1158		return false;
1159
1160	ah->chip_fullsleep = false;
1161	ath9k_hw_init_pll(ah, chan);
1162	ath9k_hw_set_rfmode(ah, chan);
1163
1164	return true;
1165}
1166
1167static bool ath9k_hw_channel_change(struct ath_hw *ah,
1168				    struct ath9k_channel *chan)
1169{
1170	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1171	struct ath_common *common = ath9k_hw_common(ah);
1172	struct ieee80211_channel *channel = chan->chan;
1173	u32 qnum;
1174	int r;
1175
1176	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1177		if (ath9k_hw_numtxpending(ah, qnum)) {
1178			ath_dbg(common, ATH_DBG_QUEUE,
1179				"Transmit frames pending on queue %d\n", qnum);
1180			return false;
1181		}
1182	}
1183
1184	if (!ath9k_hw_rfbus_req(ah)) {
1185		ath_err(common, "Could not kill baseband RX\n");
1186		return false;
1187	}
1188
1189	ath9k_hw_set_channel_regs(ah, chan);
1190
1191	r = ath9k_hw_rf_set_freq(ah, chan);
1192	if (r) {
1193		ath_err(common, "Failed to set channel\n");
1194		return false;
1195	}
1196	ath9k_hw_set_clockrate(ah);
1197
1198	ah->eep_ops->set_txpower(ah, chan,
1199			     ath9k_regd_get_ctl(regulatory, chan),
1200			     channel->max_antenna_gain * 2,
1201			     channel->max_power * 2,
1202			     min((u32) MAX_RATE_POWER,
1203			     (u32) regulatory->power_limit), false);
1204
1205	ath9k_hw_rfbus_done(ah);
1206
1207	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1208		ath9k_hw_set_delta_slope(ah, chan);
1209
1210	ath9k_hw_spur_mitigate_freq(ah, chan);
1211
1212	return true;
1213}
1214
1215bool ath9k_hw_check_alive(struct ath_hw *ah)
1216{
1217	int count = 50;
1218	u32 reg;
1219
1220	if (AR_SREV_9285_12_OR_LATER(ah))
1221		return true;
1222
1223	do {
1224		reg = REG_READ(ah, AR_OBS_BUS_1);
1225
1226		if ((reg & 0x7E7FFFEF) == 0x00702400)
1227			continue;
1228
1229		switch (reg & 0x7E000B00) {
1230		case 0x1E000000:
1231		case 0x52000B00:
1232		case 0x18000B00:
1233			continue;
1234		default:
1235			return true;
1236		}
1237	} while (count-- > 0);
1238
1239	return false;
1240}
1241EXPORT_SYMBOL(ath9k_hw_check_alive);
1242
1243int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1244		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1245{
1246	struct ath_common *common = ath9k_hw_common(ah);
1247	u32 saveLedState;
1248	struct ath9k_channel *curchan = ah->curchan;
1249	u32 saveDefAntenna;
1250	u32 macStaId1;
1251	u64 tsf = 0;
1252	int i, r;
1253
1254	ah->txchainmask = common->tx_chainmask;
1255	ah->rxchainmask = common->rx_chainmask;
1256
1257	if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1258		ath9k_hw_abortpcurecv(ah);
1259		if (!ath9k_hw_stopdmarecv(ah)) {
1260			ath_dbg(common, ATH_DBG_XMIT,
1261				"Failed to stop receive dma\n");
1262			bChannelChange = false;
1263		}
1264	}
1265
1266	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1267		return -EIO;
1268
1269	if (curchan && !ah->chip_fullsleep)
1270		ath9k_hw_getnf(ah, curchan);
1271
1272	ah->caldata = caldata;
1273	if (caldata &&
1274	    (chan->channel != caldata->channel ||
1275	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1276	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1277		/* Operating channel changed, reset channel calibration data */
1278		memset(caldata, 0, sizeof(*caldata));
1279		ath9k_init_nfcal_hist_buffer(ah, chan);
1280	}
1281
1282	if (bChannelChange &&
1283	    (ah->chip_fullsleep != true) &&
1284	    (ah->curchan != NULL) &&
1285	    (chan->channel != ah->curchan->channel) &&
1286	    ((chan->channelFlags & CHANNEL_ALL) ==
1287	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1288	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1289
1290		if (ath9k_hw_channel_change(ah, chan)) {
1291			ath9k_hw_loadnf(ah, ah->curchan);
1292			ath9k_hw_start_nfcal(ah, true);
1293			if (AR_SREV_9271(ah))
1294				ar9002_hw_load_ani_reg(ah, chan);
1295			return 0;
1296		}
1297	}
1298
1299	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1300	if (saveDefAntenna == 0)
1301		saveDefAntenna = 1;
1302
1303	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1304
1305	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1306	if (AR_SREV_9100(ah) ||
1307	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1308		tsf = ath9k_hw_gettsf64(ah);
1309
1310	saveLedState = REG_READ(ah, AR_CFG_LED) &
1311		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1312		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1313
1314	ath9k_hw_mark_phy_inactive(ah);
1315
1316	ah->paprd_table_write_done = false;
1317
1318	/* Only required on the first reset */
1319	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1320		REG_WRITE(ah,
1321			  AR9271_RESET_POWER_DOWN_CONTROL,
1322			  AR9271_RADIO_RF_RST);
1323		udelay(50);
1324	}
1325
1326	if (!ath9k_hw_chip_reset(ah, chan)) {
1327		ath_err(common, "Chip reset failed\n");
1328		return -EINVAL;
1329	}
1330
1331	/* Only required on the first reset */
1332	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1333		ah->htc_reset_init = false;
1334		REG_WRITE(ah,
1335			  AR9271_RESET_POWER_DOWN_CONTROL,
1336			  AR9271_GATE_MAC_CTL);
1337		udelay(50);
1338	}
1339
1340	/* Restore TSF */
1341	if (tsf)
1342		ath9k_hw_settsf64(ah, tsf);
1343
1344	if (AR_SREV_9280_20_OR_LATER(ah))
1345		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1346
1347	if (!AR_SREV_9300_20_OR_LATER(ah))
1348		ar9002_hw_enable_async_fifo(ah);
1349
1350	r = ath9k_hw_process_ini(ah, chan);
1351	if (r)
1352		return r;
1353
1354	/*
1355	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1356	 * right after the chip reset. When that happens, write a new
1357	 * value after the initvals have been applied, with an offset
1358	 * based on measured time difference
1359	 */
1360	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1361		tsf += 1500;
1362		ath9k_hw_settsf64(ah, tsf);
1363	}
1364
1365	/* Setup MFP options for CCMP */
1366	if (AR_SREV_9280_20_OR_LATER(ah)) {
1367		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1368		 * frames when constructing CCMP AAD. */
1369		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1370			      0xc7ff);
1371		ah->sw_mgmt_crypto = false;
1372	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1373		/* Disable hardware crypto for management frames */
1374		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1375			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1376		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1377			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1378		ah->sw_mgmt_crypto = true;
1379	} else
1380		ah->sw_mgmt_crypto = true;
1381
1382	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1383		ath9k_hw_set_delta_slope(ah, chan);
1384
1385	ath9k_hw_spur_mitigate_freq(ah, chan);
1386	ah->eep_ops->set_board_values(ah, chan);
1387
1388	ENABLE_REGWRITE_BUFFER(ah);
1389
1390	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1391	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1392		  | macStaId1
1393		  | AR_STA_ID1_RTS_USE_DEF
1394		  | (ah->config.
1395		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1396		  | ah->sta_id1_defaults);
1397	ath_hw_setbssidmask(common);
1398	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1399	ath9k_hw_write_associd(ah);
1400	REG_WRITE(ah, AR_ISR, ~0);
1401	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1402
1403	REGWRITE_BUFFER_FLUSH(ah);
1404
1405	ath9k_hw_set_operating_mode(ah, ah->opmode);
1406
1407	r = ath9k_hw_rf_set_freq(ah, chan);
1408	if (r)
1409		return r;
1410
1411	ath9k_hw_set_clockrate(ah);
1412
1413	ENABLE_REGWRITE_BUFFER(ah);
1414
1415	for (i = 0; i < AR_NUM_DCU; i++)
1416		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1417
1418	REGWRITE_BUFFER_FLUSH(ah);
1419
1420	ah->intr_txqs = 0;
1421	for (i = 0; i < ah->caps.total_queues; i++)
1422		ath9k_hw_resettxqueue(ah, i);
1423
1424	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1425	ath9k_hw_ani_cache_ini_regs(ah);
1426	ath9k_hw_init_qos(ah);
1427
1428	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1429		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1430
1431	ath9k_hw_init_global_settings(ah);
1432
1433	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1434		ar9002_hw_update_async_fifo(ah);
1435		ar9002_hw_enable_wep_aggregation(ah);
1436	}
1437
1438	REG_WRITE(ah, AR_STA_ID1,
1439		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1440
1441	ath9k_hw_set_dma(ah);
1442
1443	REG_WRITE(ah, AR_OBS, 8);
1444
1445	if (ah->config.rx_intr_mitigation) {
1446		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1447		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1448	}
1449
1450	if (ah->config.tx_intr_mitigation) {
1451		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1452		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1453	}
1454
1455	ath9k_hw_init_bb(ah, chan);
1456
1457	if (!ath9k_hw_init_cal(ah, chan))
1458		return -EIO;
1459
1460	ENABLE_REGWRITE_BUFFER(ah);
1461
1462	ath9k_hw_restore_chainmask(ah);
1463	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1464
1465	REGWRITE_BUFFER_FLUSH(ah);
1466
1467	/*
1468	 * For big endian systems turn on swapping for descriptors
1469	 */
1470	if (AR_SREV_9100(ah)) {
1471		u32 mask;
1472		mask = REG_READ(ah, AR_CFG);
1473		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1474			ath_dbg(common, ATH_DBG_RESET,
1475				"CFG Byte Swap Set 0x%x\n", mask);
1476		} else {
1477			mask =
1478				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1479			REG_WRITE(ah, AR_CFG, mask);
1480			ath_dbg(common, ATH_DBG_RESET,
1481				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1482		}
1483	} else {
1484		if (common->bus_ops->ath_bus_type == ATH_USB) {
1485			/* Configure AR9271 target WLAN */
1486			if (AR_SREV_9271(ah))
1487				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1488			else
1489				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1490		}
1491#ifdef __BIG_ENDIAN
1492                else
1493			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1494#endif
1495	}
1496
1497	if (ah->btcoex_hw.enabled)
1498		ath9k_hw_btcoex_enable(ah);
1499
1500	if (AR_SREV_9300_20_OR_LATER(ah))
1501		ar9003_hw_bb_watchdog_config(ah);
1502
1503	return 0;
1504}
1505EXPORT_SYMBOL(ath9k_hw_reset);
1506
1507/******************************/
1508/* Power Management (Chipset) */
1509/******************************/
1510
1511/*
1512 * Notify Power Mgt is disabled in self-generated frames.
1513 * If requested, force chip to sleep.
1514 */
1515static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1516{
1517	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1518	if (setChip) {
1519		/*
1520		 * Clear the RTC force wake bit to allow the
1521		 * mac to go to sleep.
1522		 */
1523		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1524			    AR_RTC_FORCE_WAKE_EN);
1525		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1526			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1527
1528		/* Shutdown chip. Active low */
1529		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1530			REG_CLR_BIT(ah, (AR_RTC_RESET),
1531				    AR_RTC_RESET_EN);
1532	}
1533
1534	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1535	if (AR_SREV_9300_20_OR_LATER(ah))
1536		REG_WRITE(ah, AR_WA,
1537			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1538}
1539
1540/*
1541 * Notify Power Management is enabled in self-generating
1542 * frames. If request, set power mode of chip to
1543 * auto/normal.  Duration in units of 128us (1/8 TU).
1544 */
1545static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1546{
1547	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1548	if (setChip) {
1549		struct ath9k_hw_capabilities *pCap = &ah->caps;
1550
1551		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1552			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1553			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1554				  AR_RTC_FORCE_WAKE_ON_INT);
1555		} else {
1556			/*
1557			 * Clear the RTC force wake bit to allow the
1558			 * mac to go to sleep.
1559			 */
1560			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1561				    AR_RTC_FORCE_WAKE_EN);
1562		}
1563	}
1564
1565	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1566	if (AR_SREV_9300_20_OR_LATER(ah))
1567		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1568}
1569
1570static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1571{
1572	u32 val;
1573	int i;
1574
1575	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1576	if (AR_SREV_9300_20_OR_LATER(ah)) {
1577		REG_WRITE(ah, AR_WA, ah->WARegVal);
1578		udelay(10);
1579	}
1580
1581	if (setChip) {
1582		if ((REG_READ(ah, AR_RTC_STATUS) &
1583		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1584			if (ath9k_hw_set_reset_reg(ah,
1585					   ATH9K_RESET_POWER_ON) != true) {
1586				return false;
1587			}
1588			if (!AR_SREV_9300_20_OR_LATER(ah))
1589				ath9k_hw_init_pll(ah, NULL);
1590		}
1591		if (AR_SREV_9100(ah))
1592			REG_SET_BIT(ah, AR_RTC_RESET,
1593				    AR_RTC_RESET_EN);
1594
1595		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1596			    AR_RTC_FORCE_WAKE_EN);
1597		udelay(50);
1598
1599		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1600			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1601			if (val == AR_RTC_STATUS_ON)
1602				break;
1603			udelay(50);
1604			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1605				    AR_RTC_FORCE_WAKE_EN);
1606		}
1607		if (i == 0) {
1608			ath_err(ath9k_hw_common(ah),
1609				"Failed to wakeup in %uus\n",
1610				POWER_UP_TIME / 20);
1611			return false;
1612		}
1613	}
1614
1615	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1616
1617	return true;
1618}
1619
1620bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1621{
1622	struct ath_common *common = ath9k_hw_common(ah);
1623	int status = true, setChip = true;
1624	static const char *modes[] = {
1625		"AWAKE",
1626		"FULL-SLEEP",
1627		"NETWORK SLEEP",
1628		"UNDEFINED"
1629	};
1630
1631	if (ah->power_mode == mode)
1632		return status;
1633
1634	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1635		modes[ah->power_mode], modes[mode]);
1636
1637	switch (mode) {
1638	case ATH9K_PM_AWAKE:
1639		status = ath9k_hw_set_power_awake(ah, setChip);
1640		break;
1641	case ATH9K_PM_FULL_SLEEP:
1642		ath9k_set_power_sleep(ah, setChip);
1643		ah->chip_fullsleep = true;
1644		break;
1645	case ATH9K_PM_NETWORK_SLEEP:
1646		ath9k_set_power_network_sleep(ah, setChip);
1647		break;
1648	default:
1649		ath_err(common, "Unknown power mode %u\n", mode);
1650		return false;
1651	}
1652	ah->power_mode = mode;
1653
1654	/*
1655	 * XXX: If this warning never comes up after a while then
1656	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1657	 * ath9k_hw_setpower() return type void.
1658	 */
1659
1660	if (!(ah->ah_flags & AH_UNPLUGGED))
1661		ATH_DBG_WARN_ON_ONCE(!status);
1662
1663	return status;
1664}
1665EXPORT_SYMBOL(ath9k_hw_setpower);
1666
1667/*******************/
1668/* Beacon Handling */
1669/*******************/
1670
1671void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1672{
1673	int flags = 0;
1674
1675	ENABLE_REGWRITE_BUFFER(ah);
1676
1677	switch (ah->opmode) {
1678	case NL80211_IFTYPE_ADHOC:
1679	case NL80211_IFTYPE_MESH_POINT:
1680		REG_SET_BIT(ah, AR_TXCFG,
1681			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1682		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1683			  TU_TO_USEC(next_beacon +
1684				     (ah->atim_window ? ah->
1685				      atim_window : 1)));
1686		flags |= AR_NDP_TIMER_EN;
1687	case NL80211_IFTYPE_AP:
1688		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1689		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1690			  TU_TO_USEC(next_beacon -
1691				     ah->config.
1692				     dma_beacon_response_time));
1693		REG_WRITE(ah, AR_NEXT_SWBA,
1694			  TU_TO_USEC(next_beacon -
1695				     ah->config.
1696				     sw_beacon_response_time));
1697		flags |=
1698			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1699		break;
1700	default:
1701		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1702			"%s: unsupported opmode: %d\n",
1703			__func__, ah->opmode);
1704		return;
1705		break;
1706	}
1707
1708	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1709	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1710	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1711	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1712
1713	REGWRITE_BUFFER_FLUSH(ah);
1714
1715	beacon_period &= ~ATH9K_BEACON_ENA;
1716	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1717		ath9k_hw_reset_tsf(ah);
1718	}
1719
1720	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1721}
1722EXPORT_SYMBOL(ath9k_hw_beaconinit);
1723
1724void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1725				    const struct ath9k_beacon_state *bs)
1726{
1727	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1728	struct ath9k_hw_capabilities *pCap = &ah->caps;
1729	struct ath_common *common = ath9k_hw_common(ah);
1730
1731	ENABLE_REGWRITE_BUFFER(ah);
1732
1733	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1734
1735	REG_WRITE(ah, AR_BEACON_PERIOD,
1736		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1737	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1738		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1739
1740	REGWRITE_BUFFER_FLUSH(ah);
1741
1742	REG_RMW_FIELD(ah, AR_RSSI_THR,
1743		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1744
1745	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1746
1747	if (bs->bs_sleepduration > beaconintval)
1748		beaconintval = bs->bs_sleepduration;
1749
1750	dtimperiod = bs->bs_dtimperiod;
1751	if (bs->bs_sleepduration > dtimperiod)
1752		dtimperiod = bs->bs_sleepduration;
1753
1754	if (beaconintval == dtimperiod)
1755		nextTbtt = bs->bs_nextdtim;
1756	else
1757		nextTbtt = bs->bs_nexttbtt;
1758
1759	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1760	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1761	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1762	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1763
1764	ENABLE_REGWRITE_BUFFER(ah);
1765
1766	REG_WRITE(ah, AR_NEXT_DTIM,
1767		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1768	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1769
1770	REG_WRITE(ah, AR_SLEEP1,
1771		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1772		  | AR_SLEEP1_ASSUME_DTIM);
1773
1774	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1775		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1776	else
1777		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1778
1779	REG_WRITE(ah, AR_SLEEP2,
1780		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1781
1782	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1783	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1784
1785	REGWRITE_BUFFER_FLUSH(ah);
1786
1787	REG_SET_BIT(ah, AR_TIMER_MODE,
1788		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1789		    AR_DTIM_TIMER_EN);
1790
1791	/* TSF Out of Range Threshold */
1792	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1793}
1794EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1795
1796/*******************/
1797/* HW Capabilities */
1798/*******************/
1799
1800int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1801{
1802	struct ath9k_hw_capabilities *pCap = &ah->caps;
1803	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1804	struct ath_common *common = ath9k_hw_common(ah);
1805	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1806
1807	u16 capField = 0, eeval;
1808	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1809
1810	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1811	regulatory->current_rd = eeval;
1812
1813	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1814	if (AR_SREV_9285_12_OR_LATER(ah))
1815		eeval |= AR9285_RDEXT_DEFAULT;
1816	regulatory->current_rd_ext = eeval;
1817
1818	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1819
1820	if (ah->opmode != NL80211_IFTYPE_AP &&
1821	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1822		if (regulatory->current_rd == 0x64 ||
1823		    regulatory->current_rd == 0x65)
1824			regulatory->current_rd += 5;
1825		else if (regulatory->current_rd == 0x41)
1826			regulatory->current_rd = 0x43;
1827		ath_dbg(common, ATH_DBG_REGULATORY,
1828			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1829	}
1830
1831	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1832	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1833		ath_err(common,
1834			"no band has been marked as supported in EEPROM\n");
1835		return -EINVAL;
1836	}
1837
1838	if (eeval & AR5416_OPFLAGS_11A)
1839		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1840
1841	if (eeval & AR5416_OPFLAGS_11G)
1842		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1843
1844	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1845	/*
1846	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1847	 * the EEPROM.
1848	 */
1849	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1850	    !(eeval & AR5416_OPFLAGS_11A) &&
1851	    !(AR_SREV_9271(ah)))
1852		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1853		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1854	else
1855		/* Use rx_chainmask from EEPROM. */
1856		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1857
1858	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1859
1860	/* enable key search for every frame in an aggregate */
1861	if (AR_SREV_9300_20_OR_LATER(ah))
1862		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1863
1864	pCap->low_2ghz_chan = 2312;
1865	pCap->high_2ghz_chan = 2732;
1866
1867	pCap->low_5ghz_chan = 4920;
1868	pCap->high_5ghz_chan = 6100;
1869
1870	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1871
1872	if (ah->config.ht_enable)
1873		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1874	else
1875		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1876
1877	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1878		pCap->total_queues =
1879			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1880	else
1881		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1882
1883	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1884		pCap->keycache_size =
1885			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1886	else
1887		pCap->keycache_size = AR_KEYTABLE_SIZE;
1888
1889	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1890		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1891	else
1892		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1893
1894	if (AR_SREV_9271(ah))
1895		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1896	else if (AR_DEVID_7010(ah))
1897		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1898	else if (AR_SREV_9285_12_OR_LATER(ah))
1899		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1900	else if (AR_SREV_9280_20_OR_LATER(ah))
1901		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1902	else
1903		pCap->num_gpio_pins = AR_NUM_GPIO;
1904
1905	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1906		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1907		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1908	} else {
1909		pCap->rts_aggr_limit = (8 * 1024);
1910	}
1911
1912	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1913
1914#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1915	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1916	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1917		ah->rfkill_gpio =
1918			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1919		ah->rfkill_polarity =
1920			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1921
1922		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1923	}
1924#endif
1925	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1926		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1927	else
1928		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1929
1930	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1931		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1932	else
1933		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1934
1935	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1936		pCap->reg_cap =
1937			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1938			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1939			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1940			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1941	} else {
1942		pCap->reg_cap =
1943			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1944			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1945	}
1946
1947	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1948	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1949	    AR_SREV_5416(ah))
1950		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1951
1952	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1953		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1954		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1955
1956		if (AR_SREV_9285(ah)) {
1957			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1958			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1959		} else {
1960			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1961		}
1962	} else {
1963		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1964	}
1965
1966	if (AR_SREV_9300_20_OR_LATER(ah)) {
1967		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1968		if (!AR_SREV_9485(ah))
1969			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1970
1971		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1972		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1973		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1974		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1975		pCap->txs_len = sizeof(struct ar9003_txs);
1976		if (!ah->config.paprd_disable &&
1977		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1978			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1979	} else {
1980		pCap->tx_desc_len = sizeof(struct ath_desc);
1981		if (AR_SREV_9280_20(ah) &&
1982		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1983		      AR5416_EEP_MINOR_VER_16) ||
1984		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1985			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1986	}
1987
1988	if (AR_SREV_9300_20_OR_LATER(ah))
1989		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1990
1991	if (AR_SREV_9300_20_OR_LATER(ah))
1992		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1993
1994	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1995		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1996
1997	if (AR_SREV_9285(ah))
1998		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1999			ant_div_ctl1 =
2000				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2001			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2002				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2003		}
2004	if (AR_SREV_9300_20_OR_LATER(ah)) {
2005		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2006			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2007	}
2008
2009
2010
2011	if (AR_SREV_9485_10(ah)) {
2012		pCap->pcie_lcr_extsync_en = true;
2013		pCap->pcie_lcr_offset = 0x80;
2014	}
2015
2016	tx_chainmask = pCap->tx_chainmask;
2017	rx_chainmask = pCap->rx_chainmask;
2018	while (tx_chainmask || rx_chainmask) {
2019		if (tx_chainmask & BIT(0))
2020			pCap->max_txchains++;
2021		if (rx_chainmask & BIT(0))
2022			pCap->max_rxchains++;
2023
2024		tx_chainmask >>= 1;
2025		rx_chainmask >>= 1;
2026	}
2027
2028	return 0;
2029}
2030
2031/****************************/
2032/* GPIO / RFKILL / Antennae */
2033/****************************/
2034
2035static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2036					 u32 gpio, u32 type)
2037{
2038	int addr;
2039	u32 gpio_shift, tmp;
2040
2041	if (gpio > 11)
2042		addr = AR_GPIO_OUTPUT_MUX3;
2043	else if (gpio > 5)
2044		addr = AR_GPIO_OUTPUT_MUX2;
2045	else
2046		addr = AR_GPIO_OUTPUT_MUX1;
2047
2048	gpio_shift = (gpio % 6) * 5;
2049
2050	if (AR_SREV_9280_20_OR_LATER(ah)
2051	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2052		REG_RMW(ah, addr, (type << gpio_shift),
2053			(0x1f << gpio_shift));
2054	} else {
2055		tmp = REG_READ(ah, addr);
2056		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2057		tmp &= ~(0x1f << gpio_shift);
2058		tmp |= (type << gpio_shift);
2059		REG_WRITE(ah, addr, tmp);
2060	}
2061}
2062
2063void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2064{
2065	u32 gpio_shift;
2066
2067	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2068
2069	if (AR_DEVID_7010(ah)) {
2070		gpio_shift = gpio;
2071		REG_RMW(ah, AR7010_GPIO_OE,
2072			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2073			(AR7010_GPIO_OE_MASK << gpio_shift));
2074		return;
2075	}
2076
2077	gpio_shift = gpio << 1;
2078	REG_RMW(ah,
2079		AR_GPIO_OE_OUT,
2080		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2081		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2082}
2083EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2084
2085u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2086{
2087#define MS_REG_READ(x, y) \
2088	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2089
2090	if (gpio >= ah->caps.num_gpio_pins)
2091		return 0xffffffff;
2092
2093	if (AR_DEVID_7010(ah)) {
2094		u32 val;
2095		val = REG_READ(ah, AR7010_GPIO_IN);
2096		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2097	} else if (AR_SREV_9300_20_OR_LATER(ah))
2098		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2099			AR_GPIO_BIT(gpio)) != 0;
2100	else if (AR_SREV_9271(ah))
2101		return MS_REG_READ(AR9271, gpio) != 0;
2102	else if (AR_SREV_9287_11_OR_LATER(ah))
2103		return MS_REG_READ(AR9287, gpio) != 0;
2104	else if (AR_SREV_9285_12_OR_LATER(ah))
2105		return MS_REG_READ(AR9285, gpio) != 0;
2106	else if (AR_SREV_9280_20_OR_LATER(ah))
2107		return MS_REG_READ(AR928X, gpio) != 0;
2108	else
2109		return MS_REG_READ(AR, gpio) != 0;
2110}
2111EXPORT_SYMBOL(ath9k_hw_gpio_get);
2112
2113void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2114			 u32 ah_signal_type)
2115{
2116	u32 gpio_shift;
2117
2118	if (AR_DEVID_7010(ah)) {
2119		gpio_shift = gpio;
2120		REG_RMW(ah, AR7010_GPIO_OE,
2121			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2122			(AR7010_GPIO_OE_MASK << gpio_shift));
2123		return;
2124	}
2125
2126	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2127	gpio_shift = 2 * gpio;
2128	REG_RMW(ah,
2129		AR_GPIO_OE_OUT,
2130		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2131		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2132}
2133EXPORT_SYMBOL(ath9k_hw_cfg_output);
2134
2135void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2136{
2137	if (AR_DEVID_7010(ah)) {
2138		val = val ? 0 : 1;
2139		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2140			AR_GPIO_BIT(gpio));
2141		return;
2142	}
2143
2144	if (AR_SREV_9271(ah))
2145		val = ~val;
2146
2147	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2148		AR_GPIO_BIT(gpio));
2149}
2150EXPORT_SYMBOL(ath9k_hw_set_gpio);
2151
2152u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2153{
2154	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2155}
2156EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2157
2158void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2159{
2160	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2161}
2162EXPORT_SYMBOL(ath9k_hw_setantenna);
2163
2164/*********************/
2165/* General Operation */
2166/*********************/
2167
2168u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2169{
2170	u32 bits = REG_READ(ah, AR_RX_FILTER);
2171	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2172
2173	if (phybits & AR_PHY_ERR_RADAR)
2174		bits |= ATH9K_RX_FILTER_PHYRADAR;
2175	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2176		bits |= ATH9K_RX_FILTER_PHYERR;
2177
2178	return bits;
2179}
2180EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2181
2182void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2183{
2184	u32 phybits;
2185
2186	ENABLE_REGWRITE_BUFFER(ah);
2187
2188	REG_WRITE(ah, AR_RX_FILTER, bits);
2189
2190	phybits = 0;
2191	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2192		phybits |= AR_PHY_ERR_RADAR;
2193	if (bits & ATH9K_RX_FILTER_PHYERR)
2194		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2195	REG_WRITE(ah, AR_PHY_ERR, phybits);
2196
2197	if (phybits)
2198		REG_WRITE(ah, AR_RXCFG,
2199			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2200	else
2201		REG_WRITE(ah, AR_RXCFG,
2202			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2203
2204	REGWRITE_BUFFER_FLUSH(ah);
2205}
2206EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2207
2208bool ath9k_hw_phy_disable(struct ath_hw *ah)
2209{
2210	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2211		return false;
2212
2213	ath9k_hw_init_pll(ah, NULL);
2214	return true;
2215}
2216EXPORT_SYMBOL(ath9k_hw_phy_disable);
2217
2218bool ath9k_hw_disable(struct ath_hw *ah)
2219{
2220	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2221		return false;
2222
2223	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2224		return false;
2225
2226	ath9k_hw_init_pll(ah, NULL);
2227	return true;
2228}
2229EXPORT_SYMBOL(ath9k_hw_disable);
2230
2231void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2232{
2233	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2234	struct ath9k_channel *chan = ah->curchan;
2235	struct ieee80211_channel *channel = chan->chan;
2236
2237	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2238
2239	ah->eep_ops->set_txpower(ah, chan,
2240				 ath9k_regd_get_ctl(regulatory, chan),
2241				 channel->max_antenna_gain * 2,
2242				 channel->max_power * 2,
2243				 min((u32) MAX_RATE_POWER,
2244				 (u32) regulatory->power_limit), test);
2245}
2246EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2247
2248void ath9k_hw_setopmode(struct ath_hw *ah)
2249{
2250	ath9k_hw_set_operating_mode(ah, ah->opmode);
2251}
2252EXPORT_SYMBOL(ath9k_hw_setopmode);
2253
2254void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2255{
2256	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2257	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2258}
2259EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2260
2261void ath9k_hw_write_associd(struct ath_hw *ah)
2262{
2263	struct ath_common *common = ath9k_hw_common(ah);
2264
2265	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2266	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2267		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2268}
2269EXPORT_SYMBOL(ath9k_hw_write_associd);
2270
2271#define ATH9K_MAX_TSF_READ 10
2272
2273u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2274{
2275	u32 tsf_lower, tsf_upper1, tsf_upper2;
2276	int i;
2277
2278	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2279	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2280		tsf_lower = REG_READ(ah, AR_TSF_L32);
2281		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2282		if (tsf_upper2 == tsf_upper1)
2283			break;
2284		tsf_upper1 = tsf_upper2;
2285	}
2286
2287	WARN_ON( i == ATH9K_MAX_TSF_READ );
2288
2289	return (((u64)tsf_upper1 << 32) | tsf_lower);
2290}
2291EXPORT_SYMBOL(ath9k_hw_gettsf64);
2292
2293void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2294{
2295	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2296	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2297}
2298EXPORT_SYMBOL(ath9k_hw_settsf64);
2299
2300void ath9k_hw_reset_tsf(struct ath_hw *ah)
2301{
2302	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2303			   AH_TSF_WRITE_TIMEOUT))
2304		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2305			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2306
2307	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2308}
2309EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2310
2311void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2312{
2313	if (setting)
2314		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2315	else
2316		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2317}
2318EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2319
2320void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2321{
2322	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2323	u32 macmode;
2324
2325	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2326		macmode = AR_2040_JOINED_RX_CLEAR;
2327	else
2328		macmode = 0;
2329
2330	REG_WRITE(ah, AR_2040_MODE, macmode);
2331}
2332
2333/* HW Generic timers configuration */
2334
2335static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2336{
2337	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2338	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2339	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2340	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2341	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2342	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2343	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2344	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2345	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2346	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2347				AR_NDP2_TIMER_MODE, 0x0002},
2348	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2349				AR_NDP2_TIMER_MODE, 0x0004},
2350	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2351				AR_NDP2_TIMER_MODE, 0x0008},
2352	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2353				AR_NDP2_TIMER_MODE, 0x0010},
2354	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2355				AR_NDP2_TIMER_MODE, 0x0020},
2356	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2357				AR_NDP2_TIMER_MODE, 0x0040},
2358	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2359				AR_NDP2_TIMER_MODE, 0x0080}
2360};
2361
2362/* HW generic timer primitives */
2363
2364/* compute and clear index of rightmost 1 */
2365static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2366{
2367	u32 b;
2368
2369	b = *mask;
2370	b &= (0-b);
2371	*mask &= ~b;
2372	b *= debruijn32;
2373	b >>= 27;
2374
2375	return timer_table->gen_timer_index[b];
2376}
2377
2378static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2379{
2380	return REG_READ(ah, AR_TSF_L32);
2381}
2382
2383struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2384					  void (*trigger)(void *),
2385					  void (*overflow)(void *),
2386					  void *arg,
2387					  u8 timer_index)
2388{
2389	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2390	struct ath_gen_timer *timer;
2391
2392	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2393
2394	if (timer == NULL) {
2395		ath_err(ath9k_hw_common(ah),
2396			"Failed to allocate memory for hw timer[%d]\n",
2397			timer_index);
2398		return NULL;
2399	}
2400
2401	/* allocate a hardware generic timer slot */
2402	timer_table->timers[timer_index] = timer;
2403	timer->index = timer_index;
2404	timer->trigger = trigger;
2405	timer->overflow = overflow;
2406	timer->arg = arg;
2407
2408	return timer;
2409}
2410EXPORT_SYMBOL(ath_gen_timer_alloc);
2411
2412void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2413			      struct ath_gen_timer *timer,
2414			      u32 timer_next,
2415			      u32 timer_period)
2416{
2417	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2418	u32 tsf;
2419
2420	BUG_ON(!timer_period);
2421
2422	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2423
2424	tsf = ath9k_hw_gettsf32(ah);
2425
2426	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2427		"current tsf %x period %x timer_next %x\n",
2428		tsf, timer_period, timer_next);
2429
2430	/*
2431	 * Pull timer_next forward if the current TSF already passed it
2432	 * because of software latency
2433	 */
2434	if (timer_next < tsf)
2435		timer_next = tsf + timer_period;
2436
2437	/*
2438	 * Program generic timer registers
2439	 */
2440	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2441		 timer_next);
2442	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2443		  timer_period);
2444	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2445		    gen_tmr_configuration[timer->index].mode_mask);
2446
2447	/* Enable both trigger and thresh interrupt masks */
2448	REG_SET_BIT(ah, AR_IMR_S5,
2449		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2450		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2451}
2452EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2453
2454void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2455{
2456	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2457
2458	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2459		(timer->index >= ATH_MAX_GEN_TIMER)) {
2460		return;
2461	}
2462
2463	/* Clear generic timer enable bits. */
2464	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2465			gen_tmr_configuration[timer->index].mode_mask);
2466
2467	/* Disable both trigger and thresh interrupt masks */
2468	REG_CLR_BIT(ah, AR_IMR_S5,
2469		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2470		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2471
2472	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2473}
2474EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2475
2476void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2477{
2478	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2479
2480	/* free the hardware generic timer slot */
2481	timer_table->timers[timer->index] = NULL;
2482	kfree(timer);
2483}
2484EXPORT_SYMBOL(ath_gen_timer_free);
2485
2486/*
2487 * Generic Timer Interrupts handling
2488 */
2489void ath_gen_timer_isr(struct ath_hw *ah)
2490{
2491	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2492	struct ath_gen_timer *timer;
2493	struct ath_common *common = ath9k_hw_common(ah);
2494	u32 trigger_mask, thresh_mask, index;
2495
2496	/* get hardware generic timer interrupt status */
2497	trigger_mask = ah->intr_gen_timer_trigger;
2498	thresh_mask = ah->intr_gen_timer_thresh;
2499	trigger_mask &= timer_table->timer_mask.val;
2500	thresh_mask &= timer_table->timer_mask.val;
2501
2502	trigger_mask &= ~thresh_mask;
2503
2504	while (thresh_mask) {
2505		index = rightmost_index(timer_table, &thresh_mask);
2506		timer = timer_table->timers[index];
2507		BUG_ON(!timer);
2508		ath_dbg(common, ATH_DBG_HWTIMER,
2509			"TSF overflow for Gen timer %d\n", index);
2510		timer->overflow(timer->arg);
2511	}
2512
2513	while (trigger_mask) {
2514		index = rightmost_index(timer_table, &trigger_mask);
2515		timer = timer_table->timers[index];
2516		BUG_ON(!timer);
2517		ath_dbg(common, ATH_DBG_HWTIMER,
2518			"Gen timer[%d] trigger\n", index);
2519		timer->trigger(timer->arg);
2520	}
2521}
2522EXPORT_SYMBOL(ath_gen_timer_isr);
2523
2524/********/
2525/* HTC  */
2526/********/
2527
2528void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2529{
2530	ah->htc_reset_init = true;
2531}
2532EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2533
2534static struct {
2535	u32 version;
2536	const char * name;
2537} ath_mac_bb_names[] = {
2538	/* Devices with external radios */
2539	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2540	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2541	{ AR_SREV_VERSION_9100,		"9100" },
2542	{ AR_SREV_VERSION_9160,		"9160" },
2543	/* Single-chip solutions */
2544	{ AR_SREV_VERSION_9280,		"9280" },
2545	{ AR_SREV_VERSION_9285,		"9285" },
2546	{ AR_SREV_VERSION_9287,         "9287" },
2547	{ AR_SREV_VERSION_9271,         "9271" },
2548	{ AR_SREV_VERSION_9300,         "9300" },
2549};
2550
2551/* For devices with external radios */
2552static struct {
2553	u16 version;
2554	const char * name;
2555} ath_rf_names[] = {
2556	{ 0,				"5133" },
2557	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2558	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2559	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2560	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2561};
2562
2563/*
2564 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2565 */
2566static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2567{
2568	int i;
2569
2570	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2571		if (ath_mac_bb_names[i].version == mac_bb_version) {
2572			return ath_mac_bb_names[i].name;
2573		}
2574	}
2575
2576	return "????";
2577}
2578
2579/*
2580 * Return the RF name. "????" is returned if the RF is unknown.
2581 * Used for devices with external radios.
2582 */
2583static const char *ath9k_hw_rf_name(u16 rf_version)
2584{
2585	int i;
2586
2587	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2588		if (ath_rf_names[i].version == rf_version) {
2589			return ath_rf_names[i].name;
2590		}
2591	}
2592
2593	return "????";
2594}
2595
2596void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2597{
2598	int used;
2599
2600	/* chipsets >= AR9280 are single-chip */
2601	if (AR_SREV_9280_20_OR_LATER(ah)) {
2602		used = snprintf(hw_name, len,
2603			       "Atheros AR%s Rev:%x",
2604			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2605			       ah->hw_version.macRev);
2606	}
2607	else {
2608		used = snprintf(hw_name, len,
2609			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2610			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2611			       ah->hw_version.macRev,
2612			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2613						AR_RADIO_SREV_MAJOR)),
2614			       ah->hw_version.phyRev);
2615	}
2616
2617	hw_name[used] = '\0';
2618}
2619EXPORT_SYMBOL(ath9k_hw_name);
2620