hw.c revision 7a42e4e74b71576d06d59c0937225e37471dc2fd
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/time.h>
21#include <linux/bitops.h>
22#include <asm/unaligned.h>
23
24#include "hw.h"
25#include "hw-ops.h"
26#include "ar9003_mac.h"
27#include "ar9003_mci.h"
28#include "ar9003_phy.h"
29#include "debug.h"
30#include "ath9k.h"
31
32static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33
34MODULE_AUTHOR("Atheros Communications");
35MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37MODULE_LICENSE("Dual BSD/GPL");
38
39static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40{
41	struct ath_common *common = ath9k_hw_common(ah);
42	struct ath9k_channel *chan = ah->curchan;
43	unsigned int clockrate;
44
45	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47		clockrate = 117;
48	else if (!chan) /* should really check for CCK instead */
49		clockrate = ATH9K_CLOCK_RATE_CCK;
50	else if (IS_CHAN_2GHZ(chan))
51		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54	else
55		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56
57	if (chan) {
58		if (IS_CHAN_HT40(chan))
59			clockrate *= 2;
60		if (IS_CHAN_HALF_RATE(chan))
61			clockrate /= 2;
62		if (IS_CHAN_QUARTER_RATE(chan))
63			clockrate /= 4;
64	}
65
66	common->clockrate = clockrate;
67}
68
69static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70{
71	struct ath_common *common = ath9k_hw_common(ah);
72
73	return usecs * common->clockrate;
74}
75
76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77{
78	int i;
79
80	BUG_ON(timeout < AH_TIME_QUANTUM);
81
82	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83		if ((REG_READ(ah, reg) & mask) == val)
84			return true;
85
86		udelay(AH_TIME_QUANTUM);
87	}
88
89	ath_dbg(ath9k_hw_common(ah), ANY,
90		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91		timeout, reg, REG_READ(ah, reg), mask, val);
92
93	return false;
94}
95EXPORT_SYMBOL(ath9k_hw_wait);
96
97void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98			  int hw_delay)
99{
100	hw_delay /= 10;
101
102	if (IS_CHAN_HALF_RATE(chan))
103		hw_delay *= 2;
104	else if (IS_CHAN_QUARTER_RATE(chan))
105		hw_delay *= 4;
106
107	udelay(hw_delay + BASE_ACTIVATE_DELAY);
108}
109
110void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111			  int column, unsigned int *writecnt)
112{
113	int r;
114
115	ENABLE_REGWRITE_BUFFER(ah);
116	for (r = 0; r < array->ia_rows; r++) {
117		REG_WRITE(ah, INI_RA(array, r, 0),
118			  INI_RA(array, r, column));
119		DO_DELAY(*writecnt);
120	}
121	REGWRITE_BUFFER_FLUSH(ah);
122}
123
124u32 ath9k_hw_reverse_bits(u32 val, u32 n)
125{
126	u32 retval;
127	int i;
128
129	for (i = 0, retval = 0; i < n; i++) {
130		retval = (retval << 1) | (val & 1);
131		val >>= 1;
132	}
133	return retval;
134}
135
136u16 ath9k_hw_computetxtime(struct ath_hw *ah,
137			   u8 phy, int kbps,
138			   u32 frameLen, u16 rateix,
139			   bool shortPreamble)
140{
141	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
142
143	if (kbps == 0)
144		return 0;
145
146	switch (phy) {
147	case WLAN_RC_PHY_CCK:
148		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
149		if (shortPreamble)
150			phyTime >>= 1;
151		numBits = frameLen << 3;
152		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
153		break;
154	case WLAN_RC_PHY_OFDM:
155		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
156			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
157			numBits = OFDM_PLCP_BITS + (frameLen << 3);
158			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159			txTime = OFDM_SIFS_TIME_QUARTER
160				+ OFDM_PREAMBLE_TIME_QUARTER
161				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
162		} else if (ah->curchan &&
163			   IS_CHAN_HALF_RATE(ah->curchan)) {
164			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
165			numBits = OFDM_PLCP_BITS + (frameLen << 3);
166			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167			txTime = OFDM_SIFS_TIME_HALF +
168				OFDM_PREAMBLE_TIME_HALF
169				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
170		} else {
171			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
172			numBits = OFDM_PLCP_BITS + (frameLen << 3);
173			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
174			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
175				+ (numSymbols * OFDM_SYMBOL_TIME);
176		}
177		break;
178	default:
179		ath_err(ath9k_hw_common(ah),
180			"Unknown phy %u (rate ix %u)\n", phy, rateix);
181		txTime = 0;
182		break;
183	}
184
185	return txTime;
186}
187EXPORT_SYMBOL(ath9k_hw_computetxtime);
188
189void ath9k_hw_get_channel_centers(struct ath_hw *ah,
190				  struct ath9k_channel *chan,
191				  struct chan_centers *centers)
192{
193	int8_t extoff;
194
195	if (!IS_CHAN_HT40(chan)) {
196		centers->ctl_center = centers->ext_center =
197			centers->synth_center = chan->channel;
198		return;
199	}
200
201	if (IS_CHAN_HT40PLUS(chan)) {
202		centers->synth_center =
203			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
204		extoff = 1;
205	} else {
206		centers->synth_center =
207			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
208		extoff = -1;
209	}
210
211	centers->ctl_center =
212		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
213	/* 25 MHz spacing is supported by hw but not on upper layers */
214	centers->ext_center =
215		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
216}
217
218/******************/
219/* Chip Revisions */
220/******************/
221
222static void ath9k_hw_read_revisions(struct ath_hw *ah)
223{
224	u32 val;
225
226	switch (ah->hw_version.devid) {
227	case AR5416_AR9100_DEVID:
228		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
229		break;
230	case AR9300_DEVID_AR9330:
231		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
232		if (ah->get_mac_revision) {
233			ah->hw_version.macRev = ah->get_mac_revision();
234		} else {
235			val = REG_READ(ah, AR_SREV);
236			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
237		}
238		return;
239	case AR9300_DEVID_AR9340:
240		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
241		val = REG_READ(ah, AR_SREV);
242		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
243		return;
244	case AR9300_DEVID_QCA955X:
245		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
246		return;
247	case AR9300_DEVID_AR953X:
248		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
249		if (ah->get_mac_revision)
250			ah->hw_version.macRev = ah->get_mac_revision();
251		return;
252	}
253
254	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
255
256	if (val == 0xFF) {
257		val = REG_READ(ah, AR_SREV);
258		ah->hw_version.macVersion =
259			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
260		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
261
262		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
263			ah->is_pciexpress = true;
264		else
265			ah->is_pciexpress = (val &
266					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267	} else {
268		if (!AR_SREV_9100(ah))
269			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270
271		ah->hw_version.macRev = val & AR_SREV_REVISION;
272
273		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274			ah->is_pciexpress = true;
275	}
276}
277
278/************************************/
279/* HW Attach, Detach, Init Routines */
280/************************************/
281
282static void ath9k_hw_disablepcie(struct ath_hw *ah)
283{
284	if (!AR_SREV_5416(ah))
285		return;
286
287	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
288	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
296
297	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
298}
299
300/* This should work for all families including legacy */
301static bool ath9k_hw_chip_test(struct ath_hw *ah)
302{
303	struct ath_common *common = ath9k_hw_common(ah);
304	u32 regAddr[2] = { AR_STA_ID0 };
305	u32 regHold[2];
306	static const u32 patternData[4] = {
307		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
308	};
309	int i, j, loop_max;
310
311	if (!AR_SREV_9300_20_OR_LATER(ah)) {
312		loop_max = 2;
313		regAddr[1] = AR_PHY_BASE + (8 << 2);
314	} else
315		loop_max = 1;
316
317	for (i = 0; i < loop_max; i++) {
318		u32 addr = regAddr[i];
319		u32 wrData, rdData;
320
321		regHold[i] = REG_READ(ah, addr);
322		for (j = 0; j < 0x100; j++) {
323			wrData = (j << 16) | j;
324			REG_WRITE(ah, addr, wrData);
325			rdData = REG_READ(ah, addr);
326			if (rdData != wrData) {
327				ath_err(common,
328					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
329					addr, wrData, rdData);
330				return false;
331			}
332		}
333		for (j = 0; j < 4; j++) {
334			wrData = patternData[j];
335			REG_WRITE(ah, addr, wrData);
336			rdData = REG_READ(ah, addr);
337			if (wrData != rdData) {
338				ath_err(common,
339					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
340					addr, wrData, rdData);
341				return false;
342			}
343		}
344		REG_WRITE(ah, regAddr[i], regHold[i]);
345	}
346	udelay(100);
347
348	return true;
349}
350
351static void ath9k_hw_init_config(struct ath_hw *ah)
352{
353	struct ath_common *common = ath9k_hw_common(ah);
354
355	ah->config.dma_beacon_response_time = 1;
356	ah->config.sw_beacon_response_time = 6;
357	ah->config.cwm_ignore_extcca = 0;
358	ah->config.analog_shiftreg = 1;
359
360	ah->config.rx_intr_mitigation = true;
361
362	if (AR_SREV_9300_20_OR_LATER(ah)) {
363		ah->config.rimt_last = 500;
364		ah->config.rimt_first = 2000;
365	} else {
366		ah->config.rimt_last = 250;
367		ah->config.rimt_first = 700;
368	}
369
370	/*
371	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
372	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
373	 * This means we use it for all AR5416 devices, and the few
374	 * minor PCI AR9280 devices out there.
375	 *
376	 * Serialization is required because these devices do not handle
377	 * well the case of two concurrent reads/writes due to the latency
378	 * involved. During one read/write another read/write can be issued
379	 * on another CPU while the previous read/write may still be working
380	 * on our hardware, if we hit this case the hardware poops in a loop.
381	 * We prevent this by serializing reads and writes.
382	 *
383	 * This issue is not present on PCI-Express devices or pre-AR5416
384	 * devices (legacy, 802.11abg).
385	 */
386	if (num_possible_cpus() > 1)
387		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
388
389	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
390		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
391		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
392		     !ah->is_pciexpress)) {
393			ah->config.serialize_regmode = SER_REG_MODE_ON;
394		} else {
395			ah->config.serialize_regmode = SER_REG_MODE_OFF;
396		}
397	}
398
399	ath_dbg(common, RESET, "serialize_regmode is %d\n",
400		ah->config.serialize_regmode);
401
402	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
403		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
404	else
405		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
406}
407
408static void ath9k_hw_init_defaults(struct ath_hw *ah)
409{
410	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411
412	regulatory->country_code = CTRY_DEFAULT;
413	regulatory->power_limit = MAX_RATE_POWER;
414
415	ah->hw_version.magic = AR5416_MAGIC;
416	ah->hw_version.subvendorid = 0;
417
418	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
419			       AR_STA_ID1_MCAST_KSRCH;
420	if (AR_SREV_9100(ah))
421		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
422
423	ah->slottime = ATH9K_SLOT_TIME_9;
424	ah->globaltxtimeout = (u32) -1;
425	ah->power_mode = ATH9K_PM_UNDEFINED;
426	ah->htc_reset_init = true;
427
428	ah->ani_function = ATH9K_ANI_ALL;
429	if (!AR_SREV_9300_20_OR_LATER(ah))
430		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
431
432	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
433		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
434	else
435		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
436}
437
438static int ath9k_hw_init_macaddr(struct ath_hw *ah)
439{
440	struct ath_common *common = ath9k_hw_common(ah);
441	u32 sum;
442	int i;
443	u16 eeval;
444	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
445
446	sum = 0;
447	for (i = 0; i < 3; i++) {
448		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
449		sum += eeval;
450		common->macaddr[2 * i] = eeval >> 8;
451		common->macaddr[2 * i + 1] = eeval & 0xff;
452	}
453	if (sum == 0 || sum == 0xffff * 3)
454		return -EADDRNOTAVAIL;
455
456	return 0;
457}
458
459static int ath9k_hw_post_init(struct ath_hw *ah)
460{
461	struct ath_common *common = ath9k_hw_common(ah);
462	int ecode;
463
464	if (common->bus_ops->ath_bus_type != ATH_USB) {
465		if (!ath9k_hw_chip_test(ah))
466			return -ENODEV;
467	}
468
469	if (!AR_SREV_9300_20_OR_LATER(ah)) {
470		ecode = ar9002_hw_rf_claim(ah);
471		if (ecode != 0)
472			return ecode;
473	}
474
475	ecode = ath9k_hw_eeprom_init(ah);
476	if (ecode != 0)
477		return ecode;
478
479	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
480		ah->eep_ops->get_eeprom_ver(ah),
481		ah->eep_ops->get_eeprom_rev(ah));
482
483	ath9k_hw_ani_init(ah);
484
485	/*
486	 * EEPROM needs to be initialized before we do this.
487	 * This is required for regulatory compliance.
488	 */
489	if (AR_SREV_9300_20_OR_LATER(ah)) {
490		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
491		if ((regdmn & 0xF0) == CTL_FCC) {
492			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
493			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
494		}
495	}
496
497	return 0;
498}
499
500static int ath9k_hw_attach_ops(struct ath_hw *ah)
501{
502	if (!AR_SREV_9300_20_OR_LATER(ah))
503		return ar9002_hw_attach_ops(ah);
504
505	ar9003_hw_attach_ops(ah);
506	return 0;
507}
508
509/* Called for all hardware families */
510static int __ath9k_hw_init(struct ath_hw *ah)
511{
512	struct ath_common *common = ath9k_hw_common(ah);
513	int r = 0;
514
515	ath9k_hw_read_revisions(ah);
516
517	switch (ah->hw_version.macVersion) {
518	case AR_SREV_VERSION_5416_PCI:
519	case AR_SREV_VERSION_5416_PCIE:
520	case AR_SREV_VERSION_9160:
521	case AR_SREV_VERSION_9100:
522	case AR_SREV_VERSION_9280:
523	case AR_SREV_VERSION_9285:
524	case AR_SREV_VERSION_9287:
525	case AR_SREV_VERSION_9271:
526	case AR_SREV_VERSION_9300:
527	case AR_SREV_VERSION_9330:
528	case AR_SREV_VERSION_9485:
529	case AR_SREV_VERSION_9340:
530	case AR_SREV_VERSION_9462:
531	case AR_SREV_VERSION_9550:
532	case AR_SREV_VERSION_9565:
533	case AR_SREV_VERSION_9531:
534		break;
535	default:
536		ath_err(common,
537			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
538			ah->hw_version.macVersion, ah->hw_version.macRev);
539		return -EOPNOTSUPP;
540	}
541
542	/*
543	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
544	 * We need to do this to avoid RMW of this register. We cannot
545	 * read the reg when chip is asleep.
546	 */
547	if (AR_SREV_9300_20_OR_LATER(ah)) {
548		ah->WARegVal = REG_READ(ah, AR_WA);
549		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
550				 AR_WA_ASPM_TIMER_BASED_DISABLE);
551	}
552
553	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
554		ath_err(common, "Couldn't reset chip\n");
555		return -EIO;
556	}
557
558	if (AR_SREV_9565(ah)) {
559		ah->WARegVal |= AR_WA_BIT22;
560		REG_WRITE(ah, AR_WA, ah->WARegVal);
561	}
562
563	ath9k_hw_init_defaults(ah);
564	ath9k_hw_init_config(ah);
565
566	r = ath9k_hw_attach_ops(ah);
567	if (r)
568		return r;
569
570	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
571		ath_err(common, "Couldn't wakeup chip\n");
572		return -EIO;
573	}
574
575	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
576	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
577		ah->is_pciexpress = false;
578
579	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
580	ath9k_hw_init_cal_settings(ah);
581
582	if (!ah->is_pciexpress)
583		ath9k_hw_disablepcie(ah);
584
585	r = ath9k_hw_post_init(ah);
586	if (r)
587		return r;
588
589	ath9k_hw_init_mode_gain_regs(ah);
590	r = ath9k_hw_fill_cap_info(ah);
591	if (r)
592		return r;
593
594	r = ath9k_hw_init_macaddr(ah);
595	if (r) {
596		ath_err(common, "Failed to initialize MAC address\n");
597		return r;
598	}
599
600	ath9k_hw_init_hang_checks(ah);
601
602	common->state = ATH_HW_INITIALIZED;
603
604	return 0;
605}
606
607int ath9k_hw_init(struct ath_hw *ah)
608{
609	int ret;
610	struct ath_common *common = ath9k_hw_common(ah);
611
612	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
613	switch (ah->hw_version.devid) {
614	case AR5416_DEVID_PCI:
615	case AR5416_DEVID_PCIE:
616	case AR5416_AR9100_DEVID:
617	case AR9160_DEVID_PCI:
618	case AR9280_DEVID_PCI:
619	case AR9280_DEVID_PCIE:
620	case AR9285_DEVID_PCIE:
621	case AR9287_DEVID_PCI:
622	case AR9287_DEVID_PCIE:
623	case AR2427_DEVID_PCIE:
624	case AR9300_DEVID_PCIE:
625	case AR9300_DEVID_AR9485_PCIE:
626	case AR9300_DEVID_AR9330:
627	case AR9300_DEVID_AR9340:
628	case AR9300_DEVID_QCA955X:
629	case AR9300_DEVID_AR9580:
630	case AR9300_DEVID_AR9462:
631	case AR9485_DEVID_AR1111:
632	case AR9300_DEVID_AR9565:
633	case AR9300_DEVID_AR953X:
634		break;
635	default:
636		if (common->bus_ops->ath_bus_type == ATH_USB)
637			break;
638		ath_err(common, "Hardware device ID 0x%04x not supported\n",
639			ah->hw_version.devid);
640		return -EOPNOTSUPP;
641	}
642
643	ret = __ath9k_hw_init(ah);
644	if (ret) {
645		ath_err(common,
646			"Unable to initialize hardware; initialization status: %d\n",
647			ret);
648		return ret;
649	}
650
651	return 0;
652}
653EXPORT_SYMBOL(ath9k_hw_init);
654
655static void ath9k_hw_init_qos(struct ath_hw *ah)
656{
657	ENABLE_REGWRITE_BUFFER(ah);
658
659	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
660	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
661
662	REG_WRITE(ah, AR_QOS_NO_ACK,
663		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
664		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
665		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
666
667	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
668	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
669	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
670	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
671	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
672
673	REGWRITE_BUFFER_FLUSH(ah);
674}
675
676u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
677{
678	struct ath_common *common = ath9k_hw_common(ah);
679	int i = 0;
680
681	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
682	udelay(100);
683	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
684
685	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
686
687		udelay(100);
688
689		if (WARN_ON_ONCE(i >= 100)) {
690			ath_err(common, "PLL4 meaurement not done\n");
691			break;
692		}
693
694		i++;
695	}
696
697	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
698}
699EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
700
701static void ath9k_hw_init_pll(struct ath_hw *ah,
702			      struct ath9k_channel *chan)
703{
704	u32 pll;
705
706	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
707		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
708		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
710		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711			      AR_CH0_DPLL2_KD, 0x40);
712		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
713			      AR_CH0_DPLL2_KI, 0x4);
714
715		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
716			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
717		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
718			      AR_CH0_BB_DPLL1_NINI, 0x58);
719		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
720			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
721
722		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
724		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
725			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
726		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
727			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
728
729		/* program BB PLL phase_shift to 0x6 */
730		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
731			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
732
733		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
735		udelay(1000);
736	} else if (AR_SREV_9330(ah)) {
737		u32 ddr_dpll2, pll_control2, kd;
738
739		if (ah->is_clk_25mhz) {
740			ddr_dpll2 = 0x18e82f01;
741			pll_control2 = 0xe04a3d;
742			kd = 0x1d;
743		} else {
744			ddr_dpll2 = 0x19e82f01;
745			pll_control2 = 0x886666;
746			kd = 0x3d;
747		}
748
749		/* program DDR PLL ki and kd value */
750		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
751
752		/* program DDR PLL phase_shift */
753		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
754			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
755
756		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
757		udelay(1000);
758
759		/* program refdiv, nint, frac to RTC register */
760		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
761
762		/* program BB PLL kd and ki value */
763		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
764		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
765
766		/* program BB PLL phase_shift */
767		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
768			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
769	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
770		u32 regval, pll2_divint, pll2_divfrac, refdiv;
771
772		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
773		udelay(1000);
774
775		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
776		udelay(100);
777
778		if (ah->is_clk_25mhz) {
779			if (AR_SREV_9531(ah)) {
780				pll2_divint = 0x1c;
781				pll2_divfrac = 0xa3d2;
782				refdiv = 1;
783			} else {
784				pll2_divint = 0x54;
785				pll2_divfrac = 0x1eb85;
786				refdiv = 3;
787			}
788		} else {
789			if (AR_SREV_9340(ah)) {
790				pll2_divint = 88;
791				pll2_divfrac = 0;
792				refdiv = 5;
793			} else {
794				pll2_divint = 0x11;
795				pll2_divfrac = 0x26666;
796				refdiv = 1;
797			}
798		}
799
800		regval = REG_READ(ah, AR_PHY_PLL_MODE);
801		if (AR_SREV_9531(ah))
802			regval |= (0x1 << 22);
803		else
804			regval |= (0x1 << 16);
805		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
806		udelay(100);
807
808		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
809			  (pll2_divint << 18) | pll2_divfrac);
810		udelay(100);
811
812		regval = REG_READ(ah, AR_PHY_PLL_MODE);
813		if (AR_SREV_9340(ah))
814			regval = (regval & 0x80071fff) |
815				(0x1 << 30) |
816				(0x1 << 13) |
817				(0x4 << 26) |
818				(0x18 << 19);
819		else if (AR_SREV_9531(ah))
820			regval = (regval & 0x01c00fff) |
821				(0x1 << 31) |
822				(0x2 << 29) |
823				(0xa << 25) |
824				(0x1 << 19) |
825				(0x6 << 12);
826		else
827			regval = (regval & 0x80071fff) |
828				(0x3 << 30) |
829				(0x1 << 13) |
830				(0x4 << 26) |
831				(0x60 << 19);
832		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
833
834		if (AR_SREV_9531(ah))
835			REG_WRITE(ah, AR_PHY_PLL_MODE,
836				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
837		else
838			REG_WRITE(ah, AR_PHY_PLL_MODE,
839				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
840
841		udelay(1000);
842	}
843
844	pll = ath9k_hw_compute_pll_control(ah, chan);
845	if (AR_SREV_9565(ah))
846		pll |= 0x40000;
847	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
848
849	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
850	    AR_SREV_9550(ah))
851		udelay(1000);
852
853	/* Switch the core clock for ar9271 to 117Mhz */
854	if (AR_SREV_9271(ah)) {
855		udelay(500);
856		REG_WRITE(ah, 0x50040, 0x304);
857	}
858
859	udelay(RTC_PLL_SETTLE_DELAY);
860
861	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
862
863	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
864		if (ah->is_clk_25mhz) {
865			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
866			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
867			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
868		} else {
869			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
870			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
871			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
872		}
873		udelay(100);
874	}
875}
876
877static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
878					  enum nl80211_iftype opmode)
879{
880	u32 sync_default = AR_INTR_SYNC_DEFAULT;
881	u32 imr_reg = AR_IMR_TXERR |
882		AR_IMR_TXURN |
883		AR_IMR_RXERR |
884		AR_IMR_RXORN |
885		AR_IMR_BCNMISC;
886
887	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
888		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
889
890	if (AR_SREV_9300_20_OR_LATER(ah)) {
891		imr_reg |= AR_IMR_RXOK_HP;
892		if (ah->config.rx_intr_mitigation)
893			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
894		else
895			imr_reg |= AR_IMR_RXOK_LP;
896
897	} else {
898		if (ah->config.rx_intr_mitigation)
899			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
900		else
901			imr_reg |= AR_IMR_RXOK;
902	}
903
904	if (ah->config.tx_intr_mitigation)
905		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
906	else
907		imr_reg |= AR_IMR_TXOK;
908
909	ENABLE_REGWRITE_BUFFER(ah);
910
911	REG_WRITE(ah, AR_IMR, imr_reg);
912	ah->imrs2_reg |= AR_IMR_S2_GTT;
913	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
914
915	if (!AR_SREV_9100(ah)) {
916		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
917		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
918		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
919	}
920
921	REGWRITE_BUFFER_FLUSH(ah);
922
923	if (AR_SREV_9300_20_OR_LATER(ah)) {
924		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
925		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
926		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
927		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
928	}
929}
930
931static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
932{
933	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
934	val = min(val, (u32) 0xFFFF);
935	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
936}
937
938static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
939{
940	u32 val = ath9k_hw_mac_to_clks(ah, us);
941	val = min(val, (u32) 0xFFFF);
942	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
943}
944
945static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
946{
947	u32 val = ath9k_hw_mac_to_clks(ah, us);
948	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
949	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
950}
951
952static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
953{
954	u32 val = ath9k_hw_mac_to_clks(ah, us);
955	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
956	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
957}
958
959static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
960{
961	if (tu > 0xFFFF) {
962		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
963			tu);
964		ah->globaltxtimeout = (u32) -1;
965		return false;
966	} else {
967		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
968		ah->globaltxtimeout = tu;
969		return true;
970	}
971}
972
973void ath9k_hw_init_global_settings(struct ath_hw *ah)
974{
975	struct ath_common *common = ath9k_hw_common(ah);
976	const struct ath9k_channel *chan = ah->curchan;
977	int acktimeout, ctstimeout, ack_offset = 0;
978	int slottime;
979	int sifstime;
980	int rx_lat = 0, tx_lat = 0, eifs = 0;
981	u32 reg;
982
983	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
984		ah->misc_mode);
985
986	if (!chan)
987		return;
988
989	if (ah->misc_mode != 0)
990		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
991
992	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
993		rx_lat = 41;
994	else
995		rx_lat = 37;
996	tx_lat = 54;
997
998	if (IS_CHAN_5GHZ(chan))
999		sifstime = 16;
1000	else
1001		sifstime = 10;
1002
1003	if (IS_CHAN_HALF_RATE(chan)) {
1004		eifs = 175;
1005		rx_lat *= 2;
1006		tx_lat *= 2;
1007		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1008		    tx_lat += 11;
1009
1010		sifstime = 32;
1011		ack_offset = 16;
1012		slottime = 13;
1013	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1014		eifs = 340;
1015		rx_lat = (rx_lat * 4) - 1;
1016		tx_lat *= 4;
1017		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1018		    tx_lat += 22;
1019
1020		sifstime = 64;
1021		ack_offset = 32;
1022		slottime = 21;
1023	} else {
1024		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1025			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1026			reg = AR_USEC_ASYNC_FIFO;
1027		} else {
1028			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1029				common->clockrate;
1030			reg = REG_READ(ah, AR_USEC);
1031		}
1032		rx_lat = MS(reg, AR_USEC_RX_LAT);
1033		tx_lat = MS(reg, AR_USEC_TX_LAT);
1034
1035		slottime = ah->slottime;
1036	}
1037
1038	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1039	slottime += 3 * ah->coverage_class;
1040	acktimeout = slottime + sifstime + ack_offset;
1041	ctstimeout = acktimeout;
1042
1043	/*
1044	 * Workaround for early ACK timeouts, add an offset to match the
1045	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1046	 * This was initially only meant to work around an issue with delayed
1047	 * BA frames in some implementations, but it has been found to fix ACK
1048	 * timeout issues in other cases as well.
1049	 */
1050	if (IS_CHAN_2GHZ(chan) &&
1051	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1052		acktimeout += 64 - sifstime - ah->slottime;
1053		ctstimeout += 48 - sifstime - ah->slottime;
1054	}
1055
1056	ath9k_hw_set_sifs_time(ah, sifstime);
1057	ath9k_hw_setslottime(ah, slottime);
1058	ath9k_hw_set_ack_timeout(ah, acktimeout);
1059	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1060	if (ah->globaltxtimeout != (u32) -1)
1061		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1062
1063	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1064	REG_RMW(ah, AR_USEC,
1065		(common->clockrate - 1) |
1066		SM(rx_lat, AR_USEC_RX_LAT) |
1067		SM(tx_lat, AR_USEC_TX_LAT),
1068		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1069
1070}
1071EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1072
1073void ath9k_hw_deinit(struct ath_hw *ah)
1074{
1075	struct ath_common *common = ath9k_hw_common(ah);
1076
1077	if (common->state < ATH_HW_INITIALIZED)
1078		return;
1079
1080	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1081}
1082EXPORT_SYMBOL(ath9k_hw_deinit);
1083
1084/*******/
1085/* INI */
1086/*******/
1087
1088u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1089{
1090	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1091
1092	if (IS_CHAN_2GHZ(chan))
1093		ctl |= CTL_11G;
1094	else
1095		ctl |= CTL_11A;
1096
1097	return ctl;
1098}
1099
1100/****************************************/
1101/* Reset and Channel Switching Routines */
1102/****************************************/
1103
1104static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1105{
1106	struct ath_common *common = ath9k_hw_common(ah);
1107	int txbuf_size;
1108
1109	ENABLE_REGWRITE_BUFFER(ah);
1110
1111	/*
1112	 * set AHB_MODE not to do cacheline prefetches
1113	*/
1114	if (!AR_SREV_9300_20_OR_LATER(ah))
1115		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1116
1117	/*
1118	 * let mac dma reads be in 128 byte chunks
1119	 */
1120	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1121
1122	REGWRITE_BUFFER_FLUSH(ah);
1123
1124	/*
1125	 * Restore TX Trigger Level to its pre-reset value.
1126	 * The initial value depends on whether aggregation is enabled, and is
1127	 * adjusted whenever underruns are detected.
1128	 */
1129	if (!AR_SREV_9300_20_OR_LATER(ah))
1130		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1131
1132	ENABLE_REGWRITE_BUFFER(ah);
1133
1134	/*
1135	 * let mac dma writes be in 128 byte chunks
1136	 */
1137	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1138
1139	/*
1140	 * Setup receive FIFO threshold to hold off TX activities
1141	 */
1142	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1143
1144	if (AR_SREV_9300_20_OR_LATER(ah)) {
1145		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1146		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1147
1148		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1149			ah->caps.rx_status_len);
1150	}
1151
1152	/*
1153	 * reduce the number of usable entries in PCU TXBUF to avoid
1154	 * wrap around issues.
1155	 */
1156	if (AR_SREV_9285(ah)) {
1157		/* For AR9285 the number of Fifos are reduced to half.
1158		 * So set the usable tx buf size also to half to
1159		 * avoid data/delimiter underruns
1160		 */
1161		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1162	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1163		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1164		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1165	} else {
1166		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1167	}
1168
1169	if (!AR_SREV_9271(ah))
1170		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1171
1172	REGWRITE_BUFFER_FLUSH(ah);
1173
1174	if (AR_SREV_9300_20_OR_LATER(ah))
1175		ath9k_hw_reset_txstatus_ring(ah);
1176}
1177
1178static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1179{
1180	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1181	u32 set = AR_STA_ID1_KSRCH_MODE;
1182
1183	switch (opmode) {
1184	case NL80211_IFTYPE_ADHOC:
1185		set |= AR_STA_ID1_ADHOC;
1186		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1187		break;
1188	case NL80211_IFTYPE_MESH_POINT:
1189	case NL80211_IFTYPE_AP:
1190		set |= AR_STA_ID1_STA_AP;
1191		/* fall through */
1192	case NL80211_IFTYPE_STATION:
1193		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1194		break;
1195	default:
1196		if (!ah->is_monitoring)
1197			set = 0;
1198		break;
1199	}
1200	REG_RMW(ah, AR_STA_ID1, set, mask);
1201}
1202
1203void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1204				   u32 *coef_mantissa, u32 *coef_exponent)
1205{
1206	u32 coef_exp, coef_man;
1207
1208	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1209		if ((coef_scaled >> coef_exp) & 0x1)
1210			break;
1211
1212	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1213
1214	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1215
1216	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1217	*coef_exponent = coef_exp - 16;
1218}
1219
1220/* AR9330 WAR:
1221 * call external reset function to reset WMAC if:
1222 * - doing a cold reset
1223 * - we have pending frames in the TX queues.
1224 */
1225static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1226{
1227	int i, npend = 0;
1228
1229	for (i = 0; i < AR_NUM_QCU; i++) {
1230		npend = ath9k_hw_numtxpending(ah, i);
1231		if (npend)
1232			break;
1233	}
1234
1235	if (ah->external_reset &&
1236	    (npend || type == ATH9K_RESET_COLD)) {
1237		int reset_err = 0;
1238
1239		ath_dbg(ath9k_hw_common(ah), RESET,
1240			"reset MAC via external reset\n");
1241
1242		reset_err = ah->external_reset();
1243		if (reset_err) {
1244			ath_err(ath9k_hw_common(ah),
1245				"External reset failed, err=%d\n",
1246				reset_err);
1247			return false;
1248		}
1249
1250		REG_WRITE(ah, AR_RTC_RESET, 1);
1251	}
1252
1253	return true;
1254}
1255
1256static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1257{
1258	u32 rst_flags;
1259	u32 tmpReg;
1260
1261	if (AR_SREV_9100(ah)) {
1262		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1263			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1264		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1265	}
1266
1267	ENABLE_REGWRITE_BUFFER(ah);
1268
1269	if (AR_SREV_9300_20_OR_LATER(ah)) {
1270		REG_WRITE(ah, AR_WA, ah->WARegVal);
1271		udelay(10);
1272	}
1273
1274	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1275		  AR_RTC_FORCE_WAKE_ON_INT);
1276
1277	if (AR_SREV_9100(ah)) {
1278		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1279			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1280	} else {
1281		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1282		if (AR_SREV_9340(ah))
1283			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1284		else
1285			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1286				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1287
1288		if (tmpReg) {
1289			u32 val;
1290			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1291
1292			val = AR_RC_HOSTIF;
1293			if (!AR_SREV_9300_20_OR_LATER(ah))
1294				val |= AR_RC_AHB;
1295			REG_WRITE(ah, AR_RC, val);
1296
1297		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1298			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1299
1300		rst_flags = AR_RTC_RC_MAC_WARM;
1301		if (type == ATH9K_RESET_COLD)
1302			rst_flags |= AR_RTC_RC_MAC_COLD;
1303	}
1304
1305	if (AR_SREV_9330(ah)) {
1306		if (!ath9k_hw_ar9330_reset_war(ah, type))
1307			return false;
1308	}
1309
1310	if (ath9k_hw_mci_is_enabled(ah))
1311		ar9003_mci_check_gpm_offset(ah);
1312
1313	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1314
1315	REGWRITE_BUFFER_FLUSH(ah);
1316
1317	if (AR_SREV_9300_20_OR_LATER(ah))
1318		udelay(50);
1319	else if (AR_SREV_9100(ah))
1320		mdelay(10);
1321	else
1322		udelay(100);
1323
1324	REG_WRITE(ah, AR_RTC_RC, 0);
1325	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1326		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1327		return false;
1328	}
1329
1330	if (!AR_SREV_9100(ah))
1331		REG_WRITE(ah, AR_RC, 0);
1332
1333	if (AR_SREV_9100(ah))
1334		udelay(50);
1335
1336	return true;
1337}
1338
1339static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1340{
1341	ENABLE_REGWRITE_BUFFER(ah);
1342
1343	if (AR_SREV_9300_20_OR_LATER(ah)) {
1344		REG_WRITE(ah, AR_WA, ah->WARegVal);
1345		udelay(10);
1346	}
1347
1348	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1349		  AR_RTC_FORCE_WAKE_ON_INT);
1350
1351	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1352		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353
1354	REG_WRITE(ah, AR_RTC_RESET, 0);
1355
1356	REGWRITE_BUFFER_FLUSH(ah);
1357
1358	udelay(2);
1359
1360	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1361		REG_WRITE(ah, AR_RC, 0);
1362
1363	REG_WRITE(ah, AR_RTC_RESET, 1);
1364
1365	if (!ath9k_hw_wait(ah,
1366			   AR_RTC_STATUS,
1367			   AR_RTC_STATUS_M,
1368			   AR_RTC_STATUS_ON,
1369			   AH_WAIT_TIMEOUT)) {
1370		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1371		return false;
1372	}
1373
1374	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1375}
1376
1377static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1378{
1379	bool ret = false;
1380
1381	if (AR_SREV_9300_20_OR_LATER(ah)) {
1382		REG_WRITE(ah, AR_WA, ah->WARegVal);
1383		udelay(10);
1384	}
1385
1386	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1387		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1388
1389	if (!ah->reset_power_on)
1390		type = ATH9K_RESET_POWER_ON;
1391
1392	switch (type) {
1393	case ATH9K_RESET_POWER_ON:
1394		ret = ath9k_hw_set_reset_power_on(ah);
1395		if (ret)
1396			ah->reset_power_on = true;
1397		break;
1398	case ATH9K_RESET_WARM:
1399	case ATH9K_RESET_COLD:
1400		ret = ath9k_hw_set_reset(ah, type);
1401		break;
1402	default:
1403		break;
1404	}
1405
1406	return ret;
1407}
1408
1409static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1410				struct ath9k_channel *chan)
1411{
1412	int reset_type = ATH9K_RESET_WARM;
1413
1414	if (AR_SREV_9280(ah)) {
1415		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1416			reset_type = ATH9K_RESET_POWER_ON;
1417		else
1418			reset_type = ATH9K_RESET_COLD;
1419	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1420		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1421		reset_type = ATH9K_RESET_COLD;
1422
1423	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1424		return false;
1425
1426	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1427		return false;
1428
1429	ah->chip_fullsleep = false;
1430
1431	if (AR_SREV_9330(ah))
1432		ar9003_hw_internal_regulator_apply(ah);
1433	ath9k_hw_init_pll(ah, chan);
1434
1435	return true;
1436}
1437
1438static bool ath9k_hw_channel_change(struct ath_hw *ah,
1439				    struct ath9k_channel *chan)
1440{
1441	struct ath_common *common = ath9k_hw_common(ah);
1442	struct ath9k_hw_capabilities *pCap = &ah->caps;
1443	bool band_switch = false, mode_diff = false;
1444	u8 ini_reloaded = 0;
1445	u32 qnum;
1446	int r;
1447
1448	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1449		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1450		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1451		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1452	}
1453
1454	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1455		if (ath9k_hw_numtxpending(ah, qnum)) {
1456			ath_dbg(common, QUEUE,
1457				"Transmit frames pending on queue %d\n", qnum);
1458			return false;
1459		}
1460	}
1461
1462	if (!ath9k_hw_rfbus_req(ah)) {
1463		ath_err(common, "Could not kill baseband RX\n");
1464		return false;
1465	}
1466
1467	if (band_switch || mode_diff) {
1468		ath9k_hw_mark_phy_inactive(ah);
1469		udelay(5);
1470
1471		if (band_switch)
1472			ath9k_hw_init_pll(ah, chan);
1473
1474		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1475			ath_err(common, "Failed to do fast channel change\n");
1476			return false;
1477		}
1478	}
1479
1480	ath9k_hw_set_channel_regs(ah, chan);
1481
1482	r = ath9k_hw_rf_set_freq(ah, chan);
1483	if (r) {
1484		ath_err(common, "Failed to set channel\n");
1485		return false;
1486	}
1487	ath9k_hw_set_clockrate(ah);
1488	ath9k_hw_apply_txpower(ah, chan, false);
1489
1490	ath9k_hw_set_delta_slope(ah, chan);
1491	ath9k_hw_spur_mitigate_freq(ah, chan);
1492
1493	if (band_switch || ini_reloaded)
1494		ah->eep_ops->set_board_values(ah, chan);
1495
1496	ath9k_hw_init_bb(ah, chan);
1497	ath9k_hw_rfbus_done(ah);
1498
1499	if (band_switch || ini_reloaded) {
1500		ah->ah_flags |= AH_FASTCC;
1501		ath9k_hw_init_cal(ah, chan);
1502		ah->ah_flags &= ~AH_FASTCC;
1503	}
1504
1505	return true;
1506}
1507
1508static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1509{
1510	u32 gpio_mask = ah->gpio_mask;
1511	int i;
1512
1513	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1514		if (!(gpio_mask & 1))
1515			continue;
1516
1517		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1518		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1519	}
1520}
1521
1522void ath9k_hw_check_nav(struct ath_hw *ah)
1523{
1524	struct ath_common *common = ath9k_hw_common(ah);
1525	u32 val;
1526
1527	val = REG_READ(ah, AR_NAV);
1528	if (val != 0xdeadbeef && val > 0x7fff) {
1529		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1530		REG_WRITE(ah, AR_NAV, 0);
1531	}
1532}
1533EXPORT_SYMBOL(ath9k_hw_check_nav);
1534
1535bool ath9k_hw_check_alive(struct ath_hw *ah)
1536{
1537	int count = 50;
1538	u32 reg, last_val;
1539
1540	if (AR_SREV_9300(ah))
1541		return !ath9k_hw_detect_mac_hang(ah);
1542
1543	if (AR_SREV_9285_12_OR_LATER(ah))
1544		return true;
1545
1546	last_val = REG_READ(ah, AR_OBS_BUS_1);
1547	do {
1548		reg = REG_READ(ah, AR_OBS_BUS_1);
1549		if (reg != last_val)
1550			return true;
1551
1552		udelay(1);
1553		last_val = reg;
1554		if ((reg & 0x7E7FFFEF) == 0x00702400)
1555			continue;
1556
1557		switch (reg & 0x7E000B00) {
1558		case 0x1E000000:
1559		case 0x52000B00:
1560		case 0x18000B00:
1561			continue;
1562		default:
1563			return true;
1564		}
1565	} while (count-- > 0);
1566
1567	return false;
1568}
1569EXPORT_SYMBOL(ath9k_hw_check_alive);
1570
1571static void ath9k_hw_init_mfp(struct ath_hw *ah)
1572{
1573	/* Setup MFP options for CCMP */
1574	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576		 * frames when constructing CCMP AAD. */
1577		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578			      0xc7ff);
1579		ah->sw_mgmt_crypto = false;
1580	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581		/* Disable hardware crypto for management frames */
1582		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586		ah->sw_mgmt_crypto = true;
1587	} else {
1588		ah->sw_mgmt_crypto = true;
1589	}
1590}
1591
1592static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1593				  u32 macStaId1, u32 saveDefAntenna)
1594{
1595	struct ath_common *common = ath9k_hw_common(ah);
1596
1597	ENABLE_REGWRITE_BUFFER(ah);
1598
1599	REG_RMW(ah, AR_STA_ID1, macStaId1
1600		  | AR_STA_ID1_RTS_USE_DEF
1601		  | ah->sta_id1_defaults,
1602		  ~AR_STA_ID1_SADH_MASK);
1603	ath_hw_setbssidmask(common);
1604	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1605	ath9k_hw_write_associd(ah);
1606	REG_WRITE(ah, AR_ISR, ~0);
1607	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1608
1609	REGWRITE_BUFFER_FLUSH(ah);
1610
1611	ath9k_hw_set_operating_mode(ah, ah->opmode);
1612}
1613
1614static void ath9k_hw_init_queues(struct ath_hw *ah)
1615{
1616	int i;
1617
1618	ENABLE_REGWRITE_BUFFER(ah);
1619
1620	for (i = 0; i < AR_NUM_DCU; i++)
1621		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1622
1623	REGWRITE_BUFFER_FLUSH(ah);
1624
1625	ah->intr_txqs = 0;
1626	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1627		ath9k_hw_resettxqueue(ah, i);
1628}
1629
1630/*
1631 * For big endian systems turn on swapping for descriptors
1632 */
1633static void ath9k_hw_init_desc(struct ath_hw *ah)
1634{
1635	struct ath_common *common = ath9k_hw_common(ah);
1636
1637	if (AR_SREV_9100(ah)) {
1638		u32 mask;
1639		mask = REG_READ(ah, AR_CFG);
1640		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1641			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1642				mask);
1643		} else {
1644			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1645			REG_WRITE(ah, AR_CFG, mask);
1646			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1647				REG_READ(ah, AR_CFG));
1648		}
1649	} else {
1650		if (common->bus_ops->ath_bus_type == ATH_USB) {
1651			/* Configure AR9271 target WLAN */
1652			if (AR_SREV_9271(ah))
1653				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1654			else
1655				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1656		}
1657#ifdef __BIG_ENDIAN
1658		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1659			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1660			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1661		else
1662			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1663#endif
1664	}
1665}
1666
1667/*
1668 * Fast channel change:
1669 * (Change synthesizer based on channel freq without resetting chip)
1670 */
1671static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1672{
1673	struct ath_common *common = ath9k_hw_common(ah);
1674	struct ath9k_hw_capabilities *pCap = &ah->caps;
1675	int ret;
1676
1677	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1678		goto fail;
1679
1680	if (ah->chip_fullsleep)
1681		goto fail;
1682
1683	if (!ah->curchan)
1684		goto fail;
1685
1686	if (chan->channel == ah->curchan->channel)
1687		goto fail;
1688
1689	if ((ah->curchan->channelFlags | chan->channelFlags) &
1690	    (CHANNEL_HALF | CHANNEL_QUARTER))
1691		goto fail;
1692
1693	/*
1694	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1695	 */
1696	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1697	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1698		goto fail;
1699
1700	if (!ath9k_hw_check_alive(ah))
1701		goto fail;
1702
1703	/*
1704	 * For AR9462, make sure that calibration data for
1705	 * re-using are present.
1706	 */
1707	if (AR_SREV_9462(ah) && (ah->caldata &&
1708				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1709				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1710				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1711		goto fail;
1712
1713	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1714		ah->curchan->channel, chan->channel);
1715
1716	ret = ath9k_hw_channel_change(ah, chan);
1717	if (!ret)
1718		goto fail;
1719
1720	if (ath9k_hw_mci_is_enabled(ah))
1721		ar9003_mci_2g5g_switch(ah, false);
1722
1723	ath9k_hw_loadnf(ah, ah->curchan);
1724	ath9k_hw_start_nfcal(ah, true);
1725
1726	if (AR_SREV_9271(ah))
1727		ar9002_hw_load_ani_reg(ah, chan);
1728
1729	return 0;
1730fail:
1731	return -EINVAL;
1732}
1733
1734int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1735		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1736{
1737	struct ath_common *common = ath9k_hw_common(ah);
1738	struct timespec ts;
1739	u32 saveLedState;
1740	u32 saveDefAntenna;
1741	u32 macStaId1;
1742	u64 tsf = 0;
1743	s64 usec = 0;
1744	int r;
1745	bool start_mci_reset = false;
1746	bool save_fullsleep = ah->chip_fullsleep;
1747
1748	if (ath9k_hw_mci_is_enabled(ah)) {
1749		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1750		if (start_mci_reset)
1751			return 0;
1752	}
1753
1754	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1755		return -EIO;
1756
1757	if (ah->curchan && !ah->chip_fullsleep)
1758		ath9k_hw_getnf(ah, ah->curchan);
1759
1760	ah->caldata = caldata;
1761	if (caldata && (chan->channel != caldata->channel ||
1762			chan->channelFlags != caldata->channelFlags)) {
1763		/* Operating channel changed, reset channel calibration data */
1764		memset(caldata, 0, sizeof(*caldata));
1765		ath9k_init_nfcal_hist_buffer(ah, chan);
1766	} else if (caldata) {
1767		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1768	}
1769	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1770
1771	if (fastcc) {
1772		r = ath9k_hw_do_fastcc(ah, chan);
1773		if (!r)
1774			return r;
1775	}
1776
1777	if (ath9k_hw_mci_is_enabled(ah))
1778		ar9003_mci_stop_bt(ah, save_fullsleep);
1779
1780	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1781	if (saveDefAntenna == 0)
1782		saveDefAntenna = 1;
1783
1784	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1785
1786	/* Save TSF before chip reset, a cold reset clears it */
1787	tsf = ath9k_hw_gettsf64(ah);
1788	getrawmonotonic(&ts);
1789	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1790
1791	saveLedState = REG_READ(ah, AR_CFG_LED) &
1792		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1793		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1794
1795	ath9k_hw_mark_phy_inactive(ah);
1796
1797	ah->paprd_table_write_done = false;
1798
1799	/* Only required on the first reset */
1800	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1801		REG_WRITE(ah,
1802			  AR9271_RESET_POWER_DOWN_CONTROL,
1803			  AR9271_RADIO_RF_RST);
1804		udelay(50);
1805	}
1806
1807	if (!ath9k_hw_chip_reset(ah, chan)) {
1808		ath_err(common, "Chip reset failed\n");
1809		return -EINVAL;
1810	}
1811
1812	/* Only required on the first reset */
1813	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1814		ah->htc_reset_init = false;
1815		REG_WRITE(ah,
1816			  AR9271_RESET_POWER_DOWN_CONTROL,
1817			  AR9271_GATE_MAC_CTL);
1818		udelay(50);
1819	}
1820
1821	/* Restore TSF */
1822	getrawmonotonic(&ts);
1823	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1824	ath9k_hw_settsf64(ah, tsf + usec);
1825
1826	if (AR_SREV_9280_20_OR_LATER(ah))
1827		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1828
1829	if (!AR_SREV_9300_20_OR_LATER(ah))
1830		ar9002_hw_enable_async_fifo(ah);
1831
1832	r = ath9k_hw_process_ini(ah, chan);
1833	if (r)
1834		return r;
1835
1836	ath9k_hw_set_rfmode(ah, chan);
1837
1838	if (ath9k_hw_mci_is_enabled(ah))
1839		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1840
1841	/*
1842	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1843	 * right after the chip reset. When that happens, write a new
1844	 * value after the initvals have been applied, with an offset
1845	 * based on measured time difference
1846	 */
1847	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1848		tsf += 1500;
1849		ath9k_hw_settsf64(ah, tsf);
1850	}
1851
1852	ath9k_hw_init_mfp(ah);
1853
1854	ath9k_hw_set_delta_slope(ah, chan);
1855	ath9k_hw_spur_mitigate_freq(ah, chan);
1856	ah->eep_ops->set_board_values(ah, chan);
1857
1858	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1859
1860	r = ath9k_hw_rf_set_freq(ah, chan);
1861	if (r)
1862		return r;
1863
1864	ath9k_hw_set_clockrate(ah);
1865
1866	ath9k_hw_init_queues(ah);
1867	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1868	ath9k_hw_ani_cache_ini_regs(ah);
1869	ath9k_hw_init_qos(ah);
1870
1871	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1872		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1873
1874	ath9k_hw_init_global_settings(ah);
1875
1876	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1877		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1878			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1879		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1880			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1881		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1882			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1883	}
1884
1885	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1886
1887	ath9k_hw_set_dma(ah);
1888
1889	if (!ath9k_hw_mci_is_enabled(ah))
1890		REG_WRITE(ah, AR_OBS, 8);
1891
1892	if (ah->config.rx_intr_mitigation) {
1893		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1894		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1895	}
1896
1897	if (ah->config.tx_intr_mitigation) {
1898		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1899		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1900	}
1901
1902	ath9k_hw_init_bb(ah, chan);
1903
1904	if (caldata) {
1905		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1906		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1907	}
1908	if (!ath9k_hw_init_cal(ah, chan))
1909		return -EIO;
1910
1911	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1912		return -EIO;
1913
1914	ENABLE_REGWRITE_BUFFER(ah);
1915
1916	ath9k_hw_restore_chainmask(ah);
1917	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1918
1919	REGWRITE_BUFFER_FLUSH(ah);
1920
1921	ath9k_hw_init_desc(ah);
1922
1923	if (ath9k_hw_btcoex_is_enabled(ah))
1924		ath9k_hw_btcoex_enable(ah);
1925
1926	if (ath9k_hw_mci_is_enabled(ah))
1927		ar9003_mci_check_bt(ah);
1928
1929	ath9k_hw_loadnf(ah, chan);
1930	ath9k_hw_start_nfcal(ah, true);
1931
1932	if (AR_SREV_9300_20_OR_LATER(ah))
1933		ar9003_hw_bb_watchdog_config(ah);
1934
1935	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1936		ar9003_hw_disable_phy_restart(ah);
1937
1938	ath9k_hw_apply_gpio_override(ah);
1939
1940	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1941		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1942
1943	return 0;
1944}
1945EXPORT_SYMBOL(ath9k_hw_reset);
1946
1947/******************************/
1948/* Power Management (Chipset) */
1949/******************************/
1950
1951/*
1952 * Notify Power Mgt is disabled in self-generated frames.
1953 * If requested, force chip to sleep.
1954 */
1955static void ath9k_set_power_sleep(struct ath_hw *ah)
1956{
1957	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1958
1959	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1960		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1961		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1962		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1963		/* xxx Required for WLAN only case ? */
1964		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1965		udelay(100);
1966	}
1967
1968	/*
1969	 * Clear the RTC force wake bit to allow the
1970	 * mac to go to sleep.
1971	 */
1972	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1973
1974	if (ath9k_hw_mci_is_enabled(ah))
1975		udelay(100);
1976
1977	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1978		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1979
1980	/* Shutdown chip. Active low */
1981	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1982		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1983		udelay(2);
1984	}
1985
1986	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1987	if (AR_SREV_9300_20_OR_LATER(ah))
1988		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1989}
1990
1991/*
1992 * Notify Power Management is enabled in self-generating
1993 * frames. If request, set power mode of chip to
1994 * auto/normal.  Duration in units of 128us (1/8 TU).
1995 */
1996static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1997{
1998	struct ath9k_hw_capabilities *pCap = &ah->caps;
1999
2000	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2001
2002	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2003		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2004		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2005			  AR_RTC_FORCE_WAKE_ON_INT);
2006	} else {
2007
2008		/* When chip goes into network sleep, it could be waken
2009		 * up by MCI_INT interrupt caused by BT's HW messages
2010		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2011		 * rate (~100us). This will cause chip to leave and
2012		 * re-enter network sleep mode frequently, which in
2013		 * consequence will have WLAN MCI HW to generate lots of
2014		 * SYS_WAKING and SYS_SLEEPING messages which will make
2015		 * BT CPU to busy to process.
2016		 */
2017		if (ath9k_hw_mci_is_enabled(ah))
2018			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2019				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2020		/*
2021		 * Clear the RTC force wake bit to allow the
2022		 * mac to go to sleep.
2023		 */
2024		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2025
2026		if (ath9k_hw_mci_is_enabled(ah))
2027			udelay(30);
2028	}
2029
2030	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2031	if (AR_SREV_9300_20_OR_LATER(ah))
2032		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2033}
2034
2035static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2036{
2037	u32 val;
2038	int i;
2039
2040	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2041	if (AR_SREV_9300_20_OR_LATER(ah)) {
2042		REG_WRITE(ah, AR_WA, ah->WARegVal);
2043		udelay(10);
2044	}
2045
2046	if ((REG_READ(ah, AR_RTC_STATUS) &
2047	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2048		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2049			return false;
2050		}
2051		if (!AR_SREV_9300_20_OR_LATER(ah))
2052			ath9k_hw_init_pll(ah, NULL);
2053	}
2054	if (AR_SREV_9100(ah))
2055		REG_SET_BIT(ah, AR_RTC_RESET,
2056			    AR_RTC_RESET_EN);
2057
2058	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2059		    AR_RTC_FORCE_WAKE_EN);
2060	if (AR_SREV_9100(ah))
2061		mdelay(10);
2062	else
2063		udelay(50);
2064
2065	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2066		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2067		if (val == AR_RTC_STATUS_ON)
2068			break;
2069		udelay(50);
2070		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2071			    AR_RTC_FORCE_WAKE_EN);
2072	}
2073	if (i == 0) {
2074		ath_err(ath9k_hw_common(ah),
2075			"Failed to wakeup in %uus\n",
2076			POWER_UP_TIME / 20);
2077		return false;
2078	}
2079
2080	if (ath9k_hw_mci_is_enabled(ah))
2081		ar9003_mci_set_power_awake(ah);
2082
2083	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2084
2085	return true;
2086}
2087
2088bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2089{
2090	struct ath_common *common = ath9k_hw_common(ah);
2091	int status = true;
2092	static const char *modes[] = {
2093		"AWAKE",
2094		"FULL-SLEEP",
2095		"NETWORK SLEEP",
2096		"UNDEFINED"
2097	};
2098
2099	if (ah->power_mode == mode)
2100		return status;
2101
2102	ath_dbg(common, RESET, "%s -> %s\n",
2103		modes[ah->power_mode], modes[mode]);
2104
2105	switch (mode) {
2106	case ATH9K_PM_AWAKE:
2107		status = ath9k_hw_set_power_awake(ah);
2108		break;
2109	case ATH9K_PM_FULL_SLEEP:
2110		if (ath9k_hw_mci_is_enabled(ah))
2111			ar9003_mci_set_full_sleep(ah);
2112
2113		ath9k_set_power_sleep(ah);
2114		ah->chip_fullsleep = true;
2115		break;
2116	case ATH9K_PM_NETWORK_SLEEP:
2117		ath9k_set_power_network_sleep(ah);
2118		break;
2119	default:
2120		ath_err(common, "Unknown power mode %u\n", mode);
2121		return false;
2122	}
2123	ah->power_mode = mode;
2124
2125	/*
2126	 * XXX: If this warning never comes up after a while then
2127	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2128	 * ath9k_hw_setpower() return type void.
2129	 */
2130
2131	if (!(ah->ah_flags & AH_UNPLUGGED))
2132		ATH_DBG_WARN_ON_ONCE(!status);
2133
2134	return status;
2135}
2136EXPORT_SYMBOL(ath9k_hw_setpower);
2137
2138/*******************/
2139/* Beacon Handling */
2140/*******************/
2141
2142void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2143{
2144	int flags = 0;
2145
2146	ENABLE_REGWRITE_BUFFER(ah);
2147
2148	switch (ah->opmode) {
2149	case NL80211_IFTYPE_ADHOC:
2150		REG_SET_BIT(ah, AR_TXCFG,
2151			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2152	case NL80211_IFTYPE_MESH_POINT:
2153	case NL80211_IFTYPE_AP:
2154		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2155		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2156			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2157		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2158			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2159		flags |=
2160			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2161		break;
2162	default:
2163		ath_dbg(ath9k_hw_common(ah), BEACON,
2164			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2165		return;
2166		break;
2167	}
2168
2169	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2170	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2171	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2172
2173	REGWRITE_BUFFER_FLUSH(ah);
2174
2175	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2176}
2177EXPORT_SYMBOL(ath9k_hw_beaconinit);
2178
2179void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2180				    const struct ath9k_beacon_state *bs)
2181{
2182	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2183	struct ath9k_hw_capabilities *pCap = &ah->caps;
2184	struct ath_common *common = ath9k_hw_common(ah);
2185
2186	ENABLE_REGWRITE_BUFFER(ah);
2187
2188	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2189	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2190	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2191
2192	REGWRITE_BUFFER_FLUSH(ah);
2193
2194	REG_RMW_FIELD(ah, AR_RSSI_THR,
2195		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2196
2197	beaconintval = bs->bs_intval;
2198
2199	if (bs->bs_sleepduration > beaconintval)
2200		beaconintval = bs->bs_sleepduration;
2201
2202	dtimperiod = bs->bs_dtimperiod;
2203	if (bs->bs_sleepduration > dtimperiod)
2204		dtimperiod = bs->bs_sleepduration;
2205
2206	if (beaconintval == dtimperiod)
2207		nextTbtt = bs->bs_nextdtim;
2208	else
2209		nextTbtt = bs->bs_nexttbtt;
2210
2211	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2212	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2213	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2214	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2215
2216	ENABLE_REGWRITE_BUFFER(ah);
2217
2218	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2219	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2220
2221	REG_WRITE(ah, AR_SLEEP1,
2222		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2223		  | AR_SLEEP1_ASSUME_DTIM);
2224
2225	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2226		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2227	else
2228		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2229
2230	REG_WRITE(ah, AR_SLEEP2,
2231		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2232
2233	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2234	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2235
2236	REGWRITE_BUFFER_FLUSH(ah);
2237
2238	REG_SET_BIT(ah, AR_TIMER_MODE,
2239		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2240		    AR_DTIM_TIMER_EN);
2241
2242	/* TSF Out of Range Threshold */
2243	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2244}
2245EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2246
2247/*******************/
2248/* HW Capabilities */
2249/*******************/
2250
2251static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2252{
2253	eeprom_chainmask &= chip_chainmask;
2254	if (eeprom_chainmask)
2255		return eeprom_chainmask;
2256	else
2257		return chip_chainmask;
2258}
2259
2260/**
2261 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2262 * @ah: the atheros hardware data structure
2263 *
2264 * We enable DFS support upstream on chipsets which have passed a series
2265 * of tests. The testing requirements are going to be documented. Desired
2266 * test requirements are documented at:
2267 *
2268 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2269 *
2270 * Once a new chipset gets properly tested an individual commit can be used
2271 * to document the testing for DFS for that chipset.
2272 */
2273static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2274{
2275
2276	switch (ah->hw_version.macVersion) {
2277	/* for temporary testing DFS with 9280 */
2278	case AR_SREV_VERSION_9280:
2279	/* AR9580 will likely be our first target to get testing on */
2280	case AR_SREV_VERSION_9580:
2281		return true;
2282	default:
2283		return false;
2284	}
2285}
2286
2287int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2288{
2289	struct ath9k_hw_capabilities *pCap = &ah->caps;
2290	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2291	struct ath_common *common = ath9k_hw_common(ah);
2292	unsigned int chip_chainmask;
2293
2294	u16 eeval;
2295	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2296
2297	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2298	regulatory->current_rd = eeval;
2299
2300	if (ah->opmode != NL80211_IFTYPE_AP &&
2301	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2302		if (regulatory->current_rd == 0x64 ||
2303		    regulatory->current_rd == 0x65)
2304			regulatory->current_rd += 5;
2305		else if (regulatory->current_rd == 0x41)
2306			regulatory->current_rd = 0x43;
2307		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2308			regulatory->current_rd);
2309	}
2310
2311	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2312	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2313		ath_err(common,
2314			"no band has been marked as supported in EEPROM\n");
2315		return -EINVAL;
2316	}
2317
2318	if (eeval & AR5416_OPFLAGS_11A)
2319		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2320
2321	if (eeval & AR5416_OPFLAGS_11G)
2322		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2323
2324	if (AR_SREV_9485(ah) ||
2325	    AR_SREV_9285(ah) ||
2326	    AR_SREV_9330(ah) ||
2327	    AR_SREV_9565(ah))
2328		chip_chainmask = 1;
2329	else if (AR_SREV_9462(ah))
2330		chip_chainmask = 3;
2331	else if (!AR_SREV_9280_20_OR_LATER(ah))
2332		chip_chainmask = 7;
2333	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2334		chip_chainmask = 3;
2335	else
2336		chip_chainmask = 7;
2337
2338	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2339	/*
2340	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2341	 * the EEPROM.
2342	 */
2343	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2344	    !(eeval & AR5416_OPFLAGS_11A) &&
2345	    !(AR_SREV_9271(ah)))
2346		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2347		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2348	else if (AR_SREV_9100(ah))
2349		pCap->rx_chainmask = 0x7;
2350	else
2351		/* Use rx_chainmask from EEPROM. */
2352		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2353
2354	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2355	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2356	ah->txchainmask = pCap->tx_chainmask;
2357	ah->rxchainmask = pCap->rx_chainmask;
2358
2359	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2360
2361	/* enable key search for every frame in an aggregate */
2362	if (AR_SREV_9300_20_OR_LATER(ah))
2363		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2364
2365	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2366
2367	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2368		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2369	else
2370		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2371
2372	if (AR_SREV_9271(ah))
2373		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2374	else if (AR_DEVID_7010(ah))
2375		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2376	else if (AR_SREV_9300_20_OR_LATER(ah))
2377		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2378	else if (AR_SREV_9287_11_OR_LATER(ah))
2379		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2380	else if (AR_SREV_9285_12_OR_LATER(ah))
2381		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2382	else if (AR_SREV_9280_20_OR_LATER(ah))
2383		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2384	else
2385		pCap->num_gpio_pins = AR_NUM_GPIO;
2386
2387	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2388		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2389	else
2390		pCap->rts_aggr_limit = (8 * 1024);
2391
2392#ifdef CONFIG_ATH9K_RFKILL
2393	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2394	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2395		ah->rfkill_gpio =
2396			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2397		ah->rfkill_polarity =
2398			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2399
2400		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2401	}
2402#endif
2403	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2404		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2405	else
2406		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2407
2408	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2409		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2410	else
2411		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2412
2413	if (AR_SREV_9300_20_OR_LATER(ah)) {
2414		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2415		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2416			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2417
2418		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2419		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2420		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2421		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2422		pCap->txs_len = sizeof(struct ar9003_txs);
2423	} else {
2424		pCap->tx_desc_len = sizeof(struct ath_desc);
2425		if (AR_SREV_9280_20(ah))
2426			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2427	}
2428
2429	if (AR_SREV_9300_20_OR_LATER(ah))
2430		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2431
2432	if (AR_SREV_9300_20_OR_LATER(ah))
2433		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2434
2435	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2436		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2437
2438	if (AR_SREV_9285(ah)) {
2439		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2440			ant_div_ctl1 =
2441				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2442			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2443				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2444				ath_info(common, "Enable LNA combining\n");
2445			}
2446		}
2447	}
2448
2449	if (AR_SREV_9300_20_OR_LATER(ah)) {
2450		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2451			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2452	}
2453
2454	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2455		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2456		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2457			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2458			ath_info(common, "Enable LNA combining\n");
2459		}
2460	}
2461
2462	if (ath9k_hw_dfs_tested(ah))
2463		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2464
2465	tx_chainmask = pCap->tx_chainmask;
2466	rx_chainmask = pCap->rx_chainmask;
2467	while (tx_chainmask || rx_chainmask) {
2468		if (tx_chainmask & BIT(0))
2469			pCap->max_txchains++;
2470		if (rx_chainmask & BIT(0))
2471			pCap->max_rxchains++;
2472
2473		tx_chainmask >>= 1;
2474		rx_chainmask >>= 1;
2475	}
2476
2477	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2478		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2479			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2480
2481		if (AR_SREV_9462_20_OR_LATER(ah))
2482			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2483	}
2484
2485	if (AR_SREV_9462(ah))
2486		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2487
2488	if (AR_SREV_9300_20_OR_LATER(ah) &&
2489	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2490			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2491
2492	return 0;
2493}
2494
2495/****************************/
2496/* GPIO / RFKILL / Antennae */
2497/****************************/
2498
2499static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2500					 u32 gpio, u32 type)
2501{
2502	int addr;
2503	u32 gpio_shift, tmp;
2504
2505	if (gpio > 11)
2506		addr = AR_GPIO_OUTPUT_MUX3;
2507	else if (gpio > 5)
2508		addr = AR_GPIO_OUTPUT_MUX2;
2509	else
2510		addr = AR_GPIO_OUTPUT_MUX1;
2511
2512	gpio_shift = (gpio % 6) * 5;
2513
2514	if (AR_SREV_9280_20_OR_LATER(ah)
2515	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2516		REG_RMW(ah, addr, (type << gpio_shift),
2517			(0x1f << gpio_shift));
2518	} else {
2519		tmp = REG_READ(ah, addr);
2520		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2521		tmp &= ~(0x1f << gpio_shift);
2522		tmp |= (type << gpio_shift);
2523		REG_WRITE(ah, addr, tmp);
2524	}
2525}
2526
2527void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2528{
2529	u32 gpio_shift;
2530
2531	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2532
2533	if (AR_DEVID_7010(ah)) {
2534		gpio_shift = gpio;
2535		REG_RMW(ah, AR7010_GPIO_OE,
2536			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2537			(AR7010_GPIO_OE_MASK << gpio_shift));
2538		return;
2539	}
2540
2541	gpio_shift = gpio << 1;
2542	REG_RMW(ah,
2543		AR_GPIO_OE_OUT,
2544		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2545		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2546}
2547EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2548
2549u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2550{
2551#define MS_REG_READ(x, y) \
2552	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2553
2554	if (gpio >= ah->caps.num_gpio_pins)
2555		return 0xffffffff;
2556
2557	if (AR_DEVID_7010(ah)) {
2558		u32 val;
2559		val = REG_READ(ah, AR7010_GPIO_IN);
2560		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2561	} else if (AR_SREV_9300_20_OR_LATER(ah))
2562		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2563			AR_GPIO_BIT(gpio)) != 0;
2564	else if (AR_SREV_9271(ah))
2565		return MS_REG_READ(AR9271, gpio) != 0;
2566	else if (AR_SREV_9287_11_OR_LATER(ah))
2567		return MS_REG_READ(AR9287, gpio) != 0;
2568	else if (AR_SREV_9285_12_OR_LATER(ah))
2569		return MS_REG_READ(AR9285, gpio) != 0;
2570	else if (AR_SREV_9280_20_OR_LATER(ah))
2571		return MS_REG_READ(AR928X, gpio) != 0;
2572	else
2573		return MS_REG_READ(AR, gpio) != 0;
2574}
2575EXPORT_SYMBOL(ath9k_hw_gpio_get);
2576
2577void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2578			 u32 ah_signal_type)
2579{
2580	u32 gpio_shift;
2581
2582	if (AR_DEVID_7010(ah)) {
2583		gpio_shift = gpio;
2584		REG_RMW(ah, AR7010_GPIO_OE,
2585			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2586			(AR7010_GPIO_OE_MASK << gpio_shift));
2587		return;
2588	}
2589
2590	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2591	gpio_shift = 2 * gpio;
2592	REG_RMW(ah,
2593		AR_GPIO_OE_OUT,
2594		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2595		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2596}
2597EXPORT_SYMBOL(ath9k_hw_cfg_output);
2598
2599void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2600{
2601	if (AR_DEVID_7010(ah)) {
2602		val = val ? 0 : 1;
2603		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2604			AR_GPIO_BIT(gpio));
2605		return;
2606	}
2607
2608	if (AR_SREV_9271(ah))
2609		val = ~val;
2610
2611	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2612		AR_GPIO_BIT(gpio));
2613}
2614EXPORT_SYMBOL(ath9k_hw_set_gpio);
2615
2616void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2617{
2618	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2619}
2620EXPORT_SYMBOL(ath9k_hw_setantenna);
2621
2622/*********************/
2623/* General Operation */
2624/*********************/
2625
2626u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2627{
2628	u32 bits = REG_READ(ah, AR_RX_FILTER);
2629	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2630
2631	if (phybits & AR_PHY_ERR_RADAR)
2632		bits |= ATH9K_RX_FILTER_PHYRADAR;
2633	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2634		bits |= ATH9K_RX_FILTER_PHYERR;
2635
2636	return bits;
2637}
2638EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2639
2640void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2641{
2642	u32 phybits;
2643
2644	ENABLE_REGWRITE_BUFFER(ah);
2645
2646	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2647		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2648
2649	REG_WRITE(ah, AR_RX_FILTER, bits);
2650
2651	phybits = 0;
2652	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2653		phybits |= AR_PHY_ERR_RADAR;
2654	if (bits & ATH9K_RX_FILTER_PHYERR)
2655		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2656	REG_WRITE(ah, AR_PHY_ERR, phybits);
2657
2658	if (phybits)
2659		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2660	else
2661		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2662
2663	REGWRITE_BUFFER_FLUSH(ah);
2664}
2665EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2666
2667bool ath9k_hw_phy_disable(struct ath_hw *ah)
2668{
2669	if (ath9k_hw_mci_is_enabled(ah))
2670		ar9003_mci_bt_gain_ctrl(ah);
2671
2672	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2673		return false;
2674
2675	ath9k_hw_init_pll(ah, NULL);
2676	ah->htc_reset_init = true;
2677	return true;
2678}
2679EXPORT_SYMBOL(ath9k_hw_phy_disable);
2680
2681bool ath9k_hw_disable(struct ath_hw *ah)
2682{
2683	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2684		return false;
2685
2686	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2687		return false;
2688
2689	ath9k_hw_init_pll(ah, NULL);
2690	return true;
2691}
2692EXPORT_SYMBOL(ath9k_hw_disable);
2693
2694static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2695{
2696	enum eeprom_param gain_param;
2697
2698	if (IS_CHAN_2GHZ(chan))
2699		gain_param = EEP_ANTENNA_GAIN_2G;
2700	else
2701		gain_param = EEP_ANTENNA_GAIN_5G;
2702
2703	return ah->eep_ops->get_eeprom(ah, gain_param);
2704}
2705
2706void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2707			    bool test)
2708{
2709	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2710	struct ieee80211_channel *channel;
2711	int chan_pwr, new_pwr, max_gain;
2712	int ant_gain, ant_reduction = 0;
2713
2714	if (!chan)
2715		return;
2716
2717	channel = chan->chan;
2718	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2719	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2720	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2721
2722	ant_gain = get_antenna_gain(ah, chan);
2723	if (ant_gain > max_gain)
2724		ant_reduction = ant_gain - max_gain;
2725
2726	ah->eep_ops->set_txpower(ah, chan,
2727				 ath9k_regd_get_ctl(reg, chan),
2728				 ant_reduction, new_pwr, test);
2729}
2730
2731void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2732{
2733	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2734	struct ath9k_channel *chan = ah->curchan;
2735	struct ieee80211_channel *channel = chan->chan;
2736
2737	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2738	if (test)
2739		channel->max_power = MAX_RATE_POWER / 2;
2740
2741	ath9k_hw_apply_txpower(ah, chan, test);
2742
2743	if (test)
2744		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2745}
2746EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2747
2748void ath9k_hw_setopmode(struct ath_hw *ah)
2749{
2750	ath9k_hw_set_operating_mode(ah, ah->opmode);
2751}
2752EXPORT_SYMBOL(ath9k_hw_setopmode);
2753
2754void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2755{
2756	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2757	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2758}
2759EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2760
2761void ath9k_hw_write_associd(struct ath_hw *ah)
2762{
2763	struct ath_common *common = ath9k_hw_common(ah);
2764
2765	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2766	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2767		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2768}
2769EXPORT_SYMBOL(ath9k_hw_write_associd);
2770
2771#define ATH9K_MAX_TSF_READ 10
2772
2773u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2774{
2775	u32 tsf_lower, tsf_upper1, tsf_upper2;
2776	int i;
2777
2778	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2779	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2780		tsf_lower = REG_READ(ah, AR_TSF_L32);
2781		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2782		if (tsf_upper2 == tsf_upper1)
2783			break;
2784		tsf_upper1 = tsf_upper2;
2785	}
2786
2787	WARN_ON( i == ATH9K_MAX_TSF_READ );
2788
2789	return (((u64)tsf_upper1 << 32) | tsf_lower);
2790}
2791EXPORT_SYMBOL(ath9k_hw_gettsf64);
2792
2793void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2794{
2795	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2796	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2797}
2798EXPORT_SYMBOL(ath9k_hw_settsf64);
2799
2800void ath9k_hw_reset_tsf(struct ath_hw *ah)
2801{
2802	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2803			   AH_TSF_WRITE_TIMEOUT))
2804		ath_dbg(ath9k_hw_common(ah), RESET,
2805			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2806
2807	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2808}
2809EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2810
2811void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2812{
2813	if (set)
2814		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2815	else
2816		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2817}
2818EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2819
2820void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2821{
2822	u32 macmode;
2823
2824	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2825		macmode = AR_2040_JOINED_RX_CLEAR;
2826	else
2827		macmode = 0;
2828
2829	REG_WRITE(ah, AR_2040_MODE, macmode);
2830}
2831
2832/* HW Generic timers configuration */
2833
2834static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2835{
2836	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2839	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2840	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2841	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2842	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2843	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2844	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2845	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2846				AR_NDP2_TIMER_MODE, 0x0002},
2847	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2848				AR_NDP2_TIMER_MODE, 0x0004},
2849	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2850				AR_NDP2_TIMER_MODE, 0x0008},
2851	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2852				AR_NDP2_TIMER_MODE, 0x0010},
2853	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2854				AR_NDP2_TIMER_MODE, 0x0020},
2855	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2856				AR_NDP2_TIMER_MODE, 0x0040},
2857	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2858				AR_NDP2_TIMER_MODE, 0x0080}
2859};
2860
2861/* HW generic timer primitives */
2862
2863u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2864{
2865	return REG_READ(ah, AR_TSF_L32);
2866}
2867EXPORT_SYMBOL(ath9k_hw_gettsf32);
2868
2869struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2870					  void (*trigger)(void *),
2871					  void (*overflow)(void *),
2872					  void *arg,
2873					  u8 timer_index)
2874{
2875	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2876	struct ath_gen_timer *timer;
2877
2878	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2879		(timer_index >= ATH_MAX_GEN_TIMER))
2880		return NULL;
2881
2882	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2883	if (timer == NULL)
2884		return NULL;
2885
2886	/* allocate a hardware generic timer slot */
2887	timer_table->timers[timer_index] = timer;
2888	timer->index = timer_index;
2889	timer->trigger = trigger;
2890	timer->overflow = overflow;
2891	timer->arg = arg;
2892
2893	return timer;
2894}
2895EXPORT_SYMBOL(ath_gen_timer_alloc);
2896
2897void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2898			      struct ath_gen_timer *timer,
2899			      u32 timer_next,
2900			      u32 timer_period)
2901{
2902	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2903	u32 mask = 0;
2904
2905	timer_table->timer_mask |= BIT(timer->index);
2906
2907	/*
2908	 * Program generic timer registers
2909	 */
2910	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2911		 timer_next);
2912	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2913		  timer_period);
2914	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2915		    gen_tmr_configuration[timer->index].mode_mask);
2916
2917	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2918		/*
2919		 * Starting from AR9462, each generic timer can select which tsf
2920		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2921		 * 8 - 15  use tsf2.
2922		 */
2923		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2924			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2925				       (1 << timer->index));
2926		else
2927			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2928				       (1 << timer->index));
2929	}
2930
2931	if (timer->trigger)
2932		mask |= SM(AR_GENTMR_BIT(timer->index),
2933			   AR_IMR_S5_GENTIMER_TRIG);
2934	if (timer->overflow)
2935		mask |= SM(AR_GENTMR_BIT(timer->index),
2936			   AR_IMR_S5_GENTIMER_THRESH);
2937
2938	REG_SET_BIT(ah, AR_IMR_S5, mask);
2939
2940	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2941		ah->imask |= ATH9K_INT_GENTIMER;
2942		ath9k_hw_set_interrupts(ah);
2943	}
2944}
2945EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2946
2947void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2948{
2949	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2950
2951	/* Clear generic timer enable bits. */
2952	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2953			gen_tmr_configuration[timer->index].mode_mask);
2954
2955	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2956		/*
2957		 * Need to switch back to TSF if it was using TSF2.
2958		 */
2959		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2960			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2961				    (1 << timer->index));
2962		}
2963	}
2964
2965	/* Disable both trigger and thresh interrupt masks */
2966	REG_CLR_BIT(ah, AR_IMR_S5,
2967		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2968		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2969
2970	timer_table->timer_mask &= ~BIT(timer->index);
2971
2972	if (timer_table->timer_mask == 0) {
2973		ah->imask &= ~ATH9K_INT_GENTIMER;
2974		ath9k_hw_set_interrupts(ah);
2975	}
2976}
2977EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2978
2979void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2980{
2981	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2982
2983	/* free the hardware generic timer slot */
2984	timer_table->timers[timer->index] = NULL;
2985	kfree(timer);
2986}
2987EXPORT_SYMBOL(ath_gen_timer_free);
2988
2989/*
2990 * Generic Timer Interrupts handling
2991 */
2992void ath_gen_timer_isr(struct ath_hw *ah)
2993{
2994	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2995	struct ath_gen_timer *timer;
2996	unsigned long trigger_mask, thresh_mask;
2997	unsigned int index;
2998
2999	/* get hardware generic timer interrupt status */
3000	trigger_mask = ah->intr_gen_timer_trigger;
3001	thresh_mask = ah->intr_gen_timer_thresh;
3002	trigger_mask &= timer_table->timer_mask;
3003	thresh_mask &= timer_table->timer_mask;
3004
3005	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3006		timer = timer_table->timers[index];
3007		if (!timer)
3008		    continue;
3009		if (!timer->overflow)
3010		    continue;
3011
3012		trigger_mask &= ~BIT(index);
3013		timer->overflow(timer->arg);
3014	}
3015
3016	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3017		timer = timer_table->timers[index];
3018		if (!timer)
3019		    continue;
3020		if (!timer->trigger)
3021		    continue;
3022		timer->trigger(timer->arg);
3023	}
3024}
3025EXPORT_SYMBOL(ath_gen_timer_isr);
3026
3027/********/
3028/* HTC  */
3029/********/
3030
3031static struct {
3032	u32 version;
3033	const char * name;
3034} ath_mac_bb_names[] = {
3035	/* Devices with external radios */
3036	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3037	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3038	{ AR_SREV_VERSION_9100,		"9100" },
3039	{ AR_SREV_VERSION_9160,		"9160" },
3040	/* Single-chip solutions */
3041	{ AR_SREV_VERSION_9280,		"9280" },
3042	{ AR_SREV_VERSION_9285,		"9285" },
3043	{ AR_SREV_VERSION_9287,         "9287" },
3044	{ AR_SREV_VERSION_9271,         "9271" },
3045	{ AR_SREV_VERSION_9300,         "9300" },
3046	{ AR_SREV_VERSION_9330,         "9330" },
3047	{ AR_SREV_VERSION_9340,		"9340" },
3048	{ AR_SREV_VERSION_9485,         "9485" },
3049	{ AR_SREV_VERSION_9462,         "9462" },
3050	{ AR_SREV_VERSION_9550,         "9550" },
3051	{ AR_SREV_VERSION_9565,         "9565" },
3052	{ AR_SREV_VERSION_9531,         "9531" },
3053};
3054
3055/* For devices with external radios */
3056static struct {
3057	u16 version;
3058	const char * name;
3059} ath_rf_names[] = {
3060	{ 0,				"5133" },
3061	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3062	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3063	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3064	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3065};
3066
3067/*
3068 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3069 */
3070static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3071{
3072	int i;
3073
3074	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3075		if (ath_mac_bb_names[i].version == mac_bb_version) {
3076			return ath_mac_bb_names[i].name;
3077		}
3078	}
3079
3080	return "????";
3081}
3082
3083/*
3084 * Return the RF name. "????" is returned if the RF is unknown.
3085 * Used for devices with external radios.
3086 */
3087static const char *ath9k_hw_rf_name(u16 rf_version)
3088{
3089	int i;
3090
3091	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3092		if (ath_rf_names[i].version == rf_version) {
3093			return ath_rf_names[i].name;
3094		}
3095	}
3096
3097	return "????";
3098}
3099
3100void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3101{
3102	int used;
3103
3104	/* chipsets >= AR9280 are single-chip */
3105	if (AR_SREV_9280_20_OR_LATER(ah)) {
3106		used = scnprintf(hw_name, len,
3107				 "Atheros AR%s Rev:%x",
3108				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3109				 ah->hw_version.macRev);
3110	}
3111	else {
3112		used = scnprintf(hw_name, len,
3113				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3114				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3115				 ah->hw_version.macRev,
3116				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3117						  & AR_RADIO_SREV_MAJOR)),
3118				 ah->hw_version.phyRev);
3119	}
3120
3121	hw_name[used] = '\0';
3122}
3123EXPORT_SYMBOL(ath9k_hw_name);
3124