hw.c revision 99ac8cd6ff44e733acdff0d36475dce2d3fe6a6b
1/* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17#include <linux/io.h> 18#include <linux/slab.h> 19#include <linux/module.h> 20#include <asm/unaligned.h> 21 22#include "hw.h" 23#include "hw-ops.h" 24#include "rc.h" 25#include "ar9003_mac.h" 26#include "ar9003_mci.h" 27 28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 29 30MODULE_AUTHOR("Atheros Communications"); 31MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 32MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 33MODULE_LICENSE("Dual BSD/GPL"); 34 35static int __init ath9k_init(void) 36{ 37 return 0; 38} 39module_init(ath9k_init); 40 41static void __exit ath9k_exit(void) 42{ 43 return; 44} 45module_exit(ath9k_exit); 46 47/* Private hardware callbacks */ 48 49static void ath9k_hw_init_cal_settings(struct ath_hw *ah) 50{ 51 ath9k_hw_private_ops(ah)->init_cal_settings(ah); 52} 53 54static void ath9k_hw_init_mode_regs(struct ath_hw *ah) 55{ 56 ath9k_hw_private_ops(ah)->init_mode_regs(ah); 57} 58 59static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, 60 struct ath9k_channel *chan) 61{ 62 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); 63} 64 65static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) 66{ 67 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) 68 return; 69 70 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); 71} 72 73static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) 74{ 75 /* You will not have this callback if using the old ANI */ 76 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) 77 return; 78 79 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); 80} 81 82/********************/ 83/* Helper Functions */ 84/********************/ 85 86static void ath9k_hw_set_clockrate(struct ath_hw *ah) 87{ 88 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 89 struct ath_common *common = ath9k_hw_common(ah); 90 unsigned int clockrate; 91 92 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 93 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 94 clockrate = 117; 95 else if (!ah->curchan) /* should really check for CCK instead */ 96 clockrate = ATH9K_CLOCK_RATE_CCK; 97 else if (conf->channel->band == IEEE80211_BAND_2GHZ) 98 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 99 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 100 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 101 else 102 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 103 104 if (conf_is_ht40(conf)) 105 clockrate *= 2; 106 107 if (ah->curchan) { 108 if (IS_CHAN_HALF_RATE(ah->curchan)) 109 clockrate /= 2; 110 if (IS_CHAN_QUARTER_RATE(ah->curchan)) 111 clockrate /= 4; 112 } 113 114 common->clockrate = clockrate; 115} 116 117static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 118{ 119 struct ath_common *common = ath9k_hw_common(ah); 120 121 return usecs * common->clockrate; 122} 123 124bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 125{ 126 int i; 127 128 BUG_ON(timeout < AH_TIME_QUANTUM); 129 130 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 131 if ((REG_READ(ah, reg) & mask) == val) 132 return true; 133 134 udelay(AH_TIME_QUANTUM); 135 } 136 137 ath_dbg(ath9k_hw_common(ah), ANY, 138 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 139 timeout, reg, REG_READ(ah, reg), mask, val); 140 141 return false; 142} 143EXPORT_SYMBOL(ath9k_hw_wait); 144 145void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array, 146 int column, unsigned int *writecnt) 147{ 148 int r; 149 150 ENABLE_REGWRITE_BUFFER(ah); 151 for (r = 0; r < array->ia_rows; r++) { 152 REG_WRITE(ah, INI_RA(array, r, 0), 153 INI_RA(array, r, column)); 154 DO_DELAY(*writecnt); 155 } 156 REGWRITE_BUFFER_FLUSH(ah); 157} 158 159u32 ath9k_hw_reverse_bits(u32 val, u32 n) 160{ 161 u32 retval; 162 int i; 163 164 for (i = 0, retval = 0; i < n; i++) { 165 retval = (retval << 1) | (val & 1); 166 val >>= 1; 167 } 168 return retval; 169} 170 171u16 ath9k_hw_computetxtime(struct ath_hw *ah, 172 u8 phy, int kbps, 173 u32 frameLen, u16 rateix, 174 bool shortPreamble) 175{ 176 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 177 178 if (kbps == 0) 179 return 0; 180 181 switch (phy) { 182 case WLAN_RC_PHY_CCK: 183 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 184 if (shortPreamble) 185 phyTime >>= 1; 186 numBits = frameLen << 3; 187 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 188 break; 189 case WLAN_RC_PHY_OFDM: 190 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 191 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 192 numBits = OFDM_PLCP_BITS + (frameLen << 3); 193 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 194 txTime = OFDM_SIFS_TIME_QUARTER 195 + OFDM_PREAMBLE_TIME_QUARTER 196 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 197 } else if (ah->curchan && 198 IS_CHAN_HALF_RATE(ah->curchan)) { 199 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 200 numBits = OFDM_PLCP_BITS + (frameLen << 3); 201 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 202 txTime = OFDM_SIFS_TIME_HALF + 203 OFDM_PREAMBLE_TIME_HALF 204 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 205 } else { 206 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 207 numBits = OFDM_PLCP_BITS + (frameLen << 3); 208 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 209 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 210 + (numSymbols * OFDM_SYMBOL_TIME); 211 } 212 break; 213 default: 214 ath_err(ath9k_hw_common(ah), 215 "Unknown phy %u (rate ix %u)\n", phy, rateix); 216 txTime = 0; 217 break; 218 } 219 220 return txTime; 221} 222EXPORT_SYMBOL(ath9k_hw_computetxtime); 223 224void ath9k_hw_get_channel_centers(struct ath_hw *ah, 225 struct ath9k_channel *chan, 226 struct chan_centers *centers) 227{ 228 int8_t extoff; 229 230 if (!IS_CHAN_HT40(chan)) { 231 centers->ctl_center = centers->ext_center = 232 centers->synth_center = chan->channel; 233 return; 234 } 235 236 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 237 (chan->chanmode == CHANNEL_G_HT40PLUS)) { 238 centers->synth_center = 239 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 240 extoff = 1; 241 } else { 242 centers->synth_center = 243 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 244 extoff = -1; 245 } 246 247 centers->ctl_center = 248 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 249 /* 25 MHz spacing is supported by hw but not on upper layers */ 250 centers->ext_center = 251 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 252} 253 254/******************/ 255/* Chip Revisions */ 256/******************/ 257 258static void ath9k_hw_read_revisions(struct ath_hw *ah) 259{ 260 u32 val; 261 262 switch (ah->hw_version.devid) { 263 case AR5416_AR9100_DEVID: 264 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 265 break; 266 case AR9300_DEVID_AR9330: 267 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 268 if (ah->get_mac_revision) { 269 ah->hw_version.macRev = ah->get_mac_revision(); 270 } else { 271 val = REG_READ(ah, AR_SREV); 272 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 273 } 274 return; 275 case AR9300_DEVID_AR9340: 276 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 277 val = REG_READ(ah, AR_SREV); 278 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 279 return; 280 } 281 282 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 283 284 if (val == 0xFF) { 285 val = REG_READ(ah, AR_SREV); 286 ah->hw_version.macVersion = 287 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 288 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 289 290 if (AR_SREV_9462(ah)) 291 ah->is_pciexpress = true; 292 else 293 ah->is_pciexpress = (val & 294 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 295 } else { 296 if (!AR_SREV_9100(ah)) 297 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 298 299 ah->hw_version.macRev = val & AR_SREV_REVISION; 300 301 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 302 ah->is_pciexpress = true; 303 } 304} 305 306/************************************/ 307/* HW Attach, Detach, Init Routines */ 308/************************************/ 309 310static void ath9k_hw_disablepcie(struct ath_hw *ah) 311{ 312 if (!AR_SREV_5416(ah)) 313 return; 314 315 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 316 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 317 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 318 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 319 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 320 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 321 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 322 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 323 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 324 325 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 326} 327 328static void ath9k_hw_aspm_init(struct ath_hw *ah) 329{ 330 struct ath_common *common = ath9k_hw_common(ah); 331 332 if (common->bus_ops->aspm_init) 333 common->bus_ops->aspm_init(common); 334} 335 336/* This should work for all families including legacy */ 337static bool ath9k_hw_chip_test(struct ath_hw *ah) 338{ 339 struct ath_common *common = ath9k_hw_common(ah); 340 u32 regAddr[2] = { AR_STA_ID0 }; 341 u32 regHold[2]; 342 static const u32 patternData[4] = { 343 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 344 }; 345 int i, j, loop_max; 346 347 if (!AR_SREV_9300_20_OR_LATER(ah)) { 348 loop_max = 2; 349 regAddr[1] = AR_PHY_BASE + (8 << 2); 350 } else 351 loop_max = 1; 352 353 for (i = 0; i < loop_max; i++) { 354 u32 addr = regAddr[i]; 355 u32 wrData, rdData; 356 357 regHold[i] = REG_READ(ah, addr); 358 for (j = 0; j < 0x100; j++) { 359 wrData = (j << 16) | j; 360 REG_WRITE(ah, addr, wrData); 361 rdData = REG_READ(ah, addr); 362 if (rdData != wrData) { 363 ath_err(common, 364 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 365 addr, wrData, rdData); 366 return false; 367 } 368 } 369 for (j = 0; j < 4; j++) { 370 wrData = patternData[j]; 371 REG_WRITE(ah, addr, wrData); 372 rdData = REG_READ(ah, addr); 373 if (wrData != rdData) { 374 ath_err(common, 375 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 376 addr, wrData, rdData); 377 return false; 378 } 379 } 380 REG_WRITE(ah, regAddr[i], regHold[i]); 381 } 382 udelay(100); 383 384 return true; 385} 386 387static void ath9k_hw_init_config(struct ath_hw *ah) 388{ 389 int i; 390 391 ah->config.dma_beacon_response_time = 2; 392 ah->config.sw_beacon_response_time = 10; 393 ah->config.additional_swba_backoff = 0; 394 ah->config.ack_6mb = 0x0; 395 ah->config.cwm_ignore_extcca = 0; 396 ah->config.pcie_clock_req = 0; 397 ah->config.pcie_waen = 0; 398 ah->config.analog_shiftreg = 1; 399 ah->config.enable_ani = true; 400 401 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 402 ah->config.spurchans[i][0] = AR_NO_SPUR; 403 ah->config.spurchans[i][1] = AR_NO_SPUR; 404 } 405 406 /* PAPRD needs some more work to be enabled */ 407 ah->config.paprd_disable = 1; 408 409 ah->config.rx_intr_mitigation = true; 410 ah->config.pcieSerDesWrite = true; 411 412 /* 413 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 414 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 415 * This means we use it for all AR5416 devices, and the few 416 * minor PCI AR9280 devices out there. 417 * 418 * Serialization is required because these devices do not handle 419 * well the case of two concurrent reads/writes due to the latency 420 * involved. During one read/write another read/write can be issued 421 * on another CPU while the previous read/write may still be working 422 * on our hardware, if we hit this case the hardware poops in a loop. 423 * We prevent this by serializing reads and writes. 424 * 425 * This issue is not present on PCI-Express devices or pre-AR5416 426 * devices (legacy, 802.11abg). 427 */ 428 if (num_possible_cpus() > 1) 429 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 430} 431 432static void ath9k_hw_init_defaults(struct ath_hw *ah) 433{ 434 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 435 436 regulatory->country_code = CTRY_DEFAULT; 437 regulatory->power_limit = MAX_RATE_POWER; 438 439 ah->hw_version.magic = AR5416_MAGIC; 440 ah->hw_version.subvendorid = 0; 441 442 ah->atim_window = 0; 443 ah->sta_id1_defaults = 444 AR_STA_ID1_CRPT_MIC_ENABLE | 445 AR_STA_ID1_MCAST_KSRCH; 446 if (AR_SREV_9100(ah)) 447 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 448 ah->enable_32kHz_clock = DONT_USE_32KHZ; 449 ah->slottime = ATH9K_SLOT_TIME_9; 450 ah->globaltxtimeout = (u32) -1; 451 ah->power_mode = ATH9K_PM_UNDEFINED; 452 ah->htc_reset_init = true; 453} 454 455static int ath9k_hw_init_macaddr(struct ath_hw *ah) 456{ 457 struct ath_common *common = ath9k_hw_common(ah); 458 u32 sum; 459 int i; 460 u16 eeval; 461 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 462 463 sum = 0; 464 for (i = 0; i < 3; i++) { 465 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 466 sum += eeval; 467 common->macaddr[2 * i] = eeval >> 8; 468 common->macaddr[2 * i + 1] = eeval & 0xff; 469 } 470 if (sum == 0 || sum == 0xffff * 3) 471 return -EADDRNOTAVAIL; 472 473 return 0; 474} 475 476static int ath9k_hw_post_init(struct ath_hw *ah) 477{ 478 struct ath_common *common = ath9k_hw_common(ah); 479 int ecode; 480 481 if (common->bus_ops->ath_bus_type != ATH_USB) { 482 if (!ath9k_hw_chip_test(ah)) 483 return -ENODEV; 484 } 485 486 if (!AR_SREV_9300_20_OR_LATER(ah)) { 487 ecode = ar9002_hw_rf_claim(ah); 488 if (ecode != 0) 489 return ecode; 490 } 491 492 ecode = ath9k_hw_eeprom_init(ah); 493 if (ecode != 0) 494 return ecode; 495 496 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 497 ah->eep_ops->get_eeprom_ver(ah), 498 ah->eep_ops->get_eeprom_rev(ah)); 499 500 ecode = ath9k_hw_rf_alloc_ext_banks(ah); 501 if (ecode) { 502 ath_err(ath9k_hw_common(ah), 503 "Failed allocating banks for external radio\n"); 504 ath9k_hw_rf_free_ext_banks(ah); 505 return ecode; 506 } 507 508 if (ah->config.enable_ani) { 509 ath9k_hw_ani_setup(ah); 510 ath9k_hw_ani_init(ah); 511 } 512 513 return 0; 514} 515 516static void ath9k_hw_attach_ops(struct ath_hw *ah) 517{ 518 if (AR_SREV_9300_20_OR_LATER(ah)) 519 ar9003_hw_attach_ops(ah); 520 else 521 ar9002_hw_attach_ops(ah); 522} 523 524/* Called for all hardware families */ 525static int __ath9k_hw_init(struct ath_hw *ah) 526{ 527 struct ath_common *common = ath9k_hw_common(ah); 528 int r = 0; 529 530 ath9k_hw_read_revisions(ah); 531 532 /* 533 * Read back AR_WA into a permanent copy and set bits 14 and 17. 534 * We need to do this to avoid RMW of this register. We cannot 535 * read the reg when chip is asleep. 536 */ 537 ah->WARegVal = REG_READ(ah, AR_WA); 538 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 539 AR_WA_ASPM_TIMER_BASED_DISABLE); 540 541 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 542 ath_err(common, "Couldn't reset chip\n"); 543 return -EIO; 544 } 545 546 if (AR_SREV_9462(ah)) 547 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE; 548 549 ath9k_hw_init_defaults(ah); 550 ath9k_hw_init_config(ah); 551 552 ath9k_hw_attach_ops(ah); 553 554 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 555 ath_err(common, "Couldn't wakeup chip\n"); 556 return -EIO; 557 } 558 559 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 560 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 561 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) && 562 !ah->is_pciexpress)) { 563 ah->config.serialize_regmode = 564 SER_REG_MODE_ON; 565 } else { 566 ah->config.serialize_regmode = 567 SER_REG_MODE_OFF; 568 } 569 } 570 571 ath_dbg(common, RESET, "serialize_regmode is %d\n", 572 ah->config.serialize_regmode); 573 574 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 575 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 576 else 577 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 578 579 switch (ah->hw_version.macVersion) { 580 case AR_SREV_VERSION_5416_PCI: 581 case AR_SREV_VERSION_5416_PCIE: 582 case AR_SREV_VERSION_9160: 583 case AR_SREV_VERSION_9100: 584 case AR_SREV_VERSION_9280: 585 case AR_SREV_VERSION_9285: 586 case AR_SREV_VERSION_9287: 587 case AR_SREV_VERSION_9271: 588 case AR_SREV_VERSION_9300: 589 case AR_SREV_VERSION_9330: 590 case AR_SREV_VERSION_9485: 591 case AR_SREV_VERSION_9340: 592 case AR_SREV_VERSION_9462: 593 break; 594 default: 595 ath_err(common, 596 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 597 ah->hw_version.macVersion, ah->hw_version.macRev); 598 return -EOPNOTSUPP; 599 } 600 601 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 602 AR_SREV_9330(ah)) 603 ah->is_pciexpress = false; 604 605 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 606 ath9k_hw_init_cal_settings(ah); 607 608 ah->ani_function = ATH9K_ANI_ALL; 609 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 610 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; 611 if (!AR_SREV_9300_20_OR_LATER(ah)) 612 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 613 614 /* disable ANI for 9340 */ 615 if (AR_SREV_9340(ah)) 616 ah->config.enable_ani = false; 617 618 ath9k_hw_init_mode_regs(ah); 619 620 if (!ah->is_pciexpress) 621 ath9k_hw_disablepcie(ah); 622 623 if (!AR_SREV_9300_20_OR_LATER(ah)) 624 ar9002_hw_cck_chan14_spread(ah); 625 626 r = ath9k_hw_post_init(ah); 627 if (r) 628 return r; 629 630 ath9k_hw_init_mode_gain_regs(ah); 631 r = ath9k_hw_fill_cap_info(ah); 632 if (r) 633 return r; 634 635 if (ah->is_pciexpress) 636 ath9k_hw_aspm_init(ah); 637 638 r = ath9k_hw_init_macaddr(ah); 639 if (r) { 640 ath_err(common, "Failed to initialize MAC address\n"); 641 return r; 642 } 643 644 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 645 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 646 else 647 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 648 649 if (AR_SREV_9330(ah)) 650 ah->bb_watchdog_timeout_ms = 85; 651 else 652 ah->bb_watchdog_timeout_ms = 25; 653 654 common->state = ATH_HW_INITIALIZED; 655 656 return 0; 657} 658 659int ath9k_hw_init(struct ath_hw *ah) 660{ 661 int ret; 662 struct ath_common *common = ath9k_hw_common(ah); 663 664 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */ 665 switch (ah->hw_version.devid) { 666 case AR5416_DEVID_PCI: 667 case AR5416_DEVID_PCIE: 668 case AR5416_AR9100_DEVID: 669 case AR9160_DEVID_PCI: 670 case AR9280_DEVID_PCI: 671 case AR9280_DEVID_PCIE: 672 case AR9285_DEVID_PCIE: 673 case AR9287_DEVID_PCI: 674 case AR9287_DEVID_PCIE: 675 case AR2427_DEVID_PCIE: 676 case AR9300_DEVID_PCIE: 677 case AR9300_DEVID_AR9485_PCIE: 678 case AR9300_DEVID_AR9330: 679 case AR9300_DEVID_AR9340: 680 case AR9300_DEVID_AR9580: 681 case AR9300_DEVID_AR9462: 682 break; 683 default: 684 if (common->bus_ops->ath_bus_type == ATH_USB) 685 break; 686 ath_err(common, "Hardware device ID 0x%04x not supported\n", 687 ah->hw_version.devid); 688 return -EOPNOTSUPP; 689 } 690 691 ret = __ath9k_hw_init(ah); 692 if (ret) { 693 ath_err(common, 694 "Unable to initialize hardware; initialization status: %d\n", 695 ret); 696 return ret; 697 } 698 699 return 0; 700} 701EXPORT_SYMBOL(ath9k_hw_init); 702 703static void ath9k_hw_init_qos(struct ath_hw *ah) 704{ 705 ENABLE_REGWRITE_BUFFER(ah); 706 707 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 708 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 709 710 REG_WRITE(ah, AR_QOS_NO_ACK, 711 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 712 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 713 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 714 715 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 716 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 717 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 718 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 719 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 720 721 REGWRITE_BUFFER_FLUSH(ah); 722} 723 724u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 725{ 726 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 727 udelay(100); 728 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 729 730 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) 731 udelay(100); 732 733 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 734} 735EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 736 737static void ath9k_hw_init_pll(struct ath_hw *ah, 738 struct ath9k_channel *chan) 739{ 740 u32 pll; 741 742 if (AR_SREV_9485(ah)) { 743 744 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 745 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 746 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 747 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 748 AR_CH0_DPLL2_KD, 0x40); 749 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 750 AR_CH0_DPLL2_KI, 0x4); 751 752 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 753 AR_CH0_BB_DPLL1_REFDIV, 0x5); 754 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 755 AR_CH0_BB_DPLL1_NINI, 0x58); 756 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 757 AR_CH0_BB_DPLL1_NFRAC, 0x0); 758 759 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 760 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 761 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 762 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 763 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 764 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 765 766 /* program BB PLL phase_shift to 0x6 */ 767 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 768 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 769 770 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 771 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 772 udelay(1000); 773 } else if (AR_SREV_9330(ah)) { 774 u32 ddr_dpll2, pll_control2, kd; 775 776 if (ah->is_clk_25mhz) { 777 ddr_dpll2 = 0x18e82f01; 778 pll_control2 = 0xe04a3d; 779 kd = 0x1d; 780 } else { 781 ddr_dpll2 = 0x19e82f01; 782 pll_control2 = 0x886666; 783 kd = 0x3d; 784 } 785 786 /* program DDR PLL ki and kd value */ 787 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 788 789 /* program DDR PLL phase_shift */ 790 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 791 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 792 793 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 794 udelay(1000); 795 796 /* program refdiv, nint, frac to RTC register */ 797 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 798 799 /* program BB PLL kd and ki value */ 800 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 801 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 802 803 /* program BB PLL phase_shift */ 804 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 805 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 806 } else if (AR_SREV_9340(ah)) { 807 u32 regval, pll2_divint, pll2_divfrac, refdiv; 808 809 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 810 udelay(1000); 811 812 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 813 udelay(100); 814 815 if (ah->is_clk_25mhz) { 816 pll2_divint = 0x54; 817 pll2_divfrac = 0x1eb85; 818 refdiv = 3; 819 } else { 820 pll2_divint = 88; 821 pll2_divfrac = 0; 822 refdiv = 5; 823 } 824 825 regval = REG_READ(ah, AR_PHY_PLL_MODE); 826 regval |= (0x1 << 16); 827 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 828 udelay(100); 829 830 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 831 (pll2_divint << 18) | pll2_divfrac); 832 udelay(100); 833 834 regval = REG_READ(ah, AR_PHY_PLL_MODE); 835 regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) | 836 (0x4 << 26) | (0x18 << 19); 837 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 838 REG_WRITE(ah, AR_PHY_PLL_MODE, 839 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 840 udelay(1000); 841 } 842 843 pll = ath9k_hw_compute_pll_control(ah, chan); 844 845 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 846 847 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) 848 udelay(1000); 849 850 /* Switch the core clock for ar9271 to 117Mhz */ 851 if (AR_SREV_9271(ah)) { 852 udelay(500); 853 REG_WRITE(ah, 0x50040, 0x304); 854 } 855 856 udelay(RTC_PLL_SETTLE_DELAY); 857 858 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 859 860 if (AR_SREV_9340(ah)) { 861 if (ah->is_clk_25mhz) { 862 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); 863 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 864 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 865 } else { 866 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); 867 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 868 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 869 } 870 udelay(100); 871 } 872} 873 874static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 875 enum nl80211_iftype opmode) 876{ 877 u32 sync_default = AR_INTR_SYNC_DEFAULT; 878 u32 imr_reg = AR_IMR_TXERR | 879 AR_IMR_TXURN | 880 AR_IMR_RXERR | 881 AR_IMR_RXORN | 882 AR_IMR_BCNMISC; 883 884 if (AR_SREV_9340(ah)) 885 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 886 887 if (AR_SREV_9300_20_OR_LATER(ah)) { 888 imr_reg |= AR_IMR_RXOK_HP; 889 if (ah->config.rx_intr_mitigation) 890 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 891 else 892 imr_reg |= AR_IMR_RXOK_LP; 893 894 } else { 895 if (ah->config.rx_intr_mitigation) 896 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 897 else 898 imr_reg |= AR_IMR_RXOK; 899 } 900 901 if (ah->config.tx_intr_mitigation) 902 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 903 else 904 imr_reg |= AR_IMR_TXOK; 905 906 if (opmode == NL80211_IFTYPE_AP) 907 imr_reg |= AR_IMR_MIB; 908 909 ENABLE_REGWRITE_BUFFER(ah); 910 911 REG_WRITE(ah, AR_IMR, imr_reg); 912 ah->imrs2_reg |= AR_IMR_S2_GTT; 913 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 914 915 if (!AR_SREV_9100(ah)) { 916 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 917 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 918 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 919 } 920 921 REGWRITE_BUFFER_FLUSH(ah); 922 923 if (AR_SREV_9300_20_OR_LATER(ah)) { 924 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 925 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 926 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 927 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 928 } 929} 930 931static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 932{ 933 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 934 val = min(val, (u32) 0xFFFF); 935 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 936} 937 938static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 939{ 940 u32 val = ath9k_hw_mac_to_clks(ah, us); 941 val = min(val, (u32) 0xFFFF); 942 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 943} 944 945static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 946{ 947 u32 val = ath9k_hw_mac_to_clks(ah, us); 948 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 949 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 950} 951 952static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 953{ 954 u32 val = ath9k_hw_mac_to_clks(ah, us); 955 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 956 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 957} 958 959static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 960{ 961 if (tu > 0xFFFF) { 962 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 963 tu); 964 ah->globaltxtimeout = (u32) -1; 965 return false; 966 } else { 967 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 968 ah->globaltxtimeout = tu; 969 return true; 970 } 971} 972 973void ath9k_hw_init_global_settings(struct ath_hw *ah) 974{ 975 struct ath_common *common = ath9k_hw_common(ah); 976 struct ieee80211_conf *conf = &common->hw->conf; 977 const struct ath9k_channel *chan = ah->curchan; 978 int acktimeout, ctstimeout; 979 int slottime; 980 int sifstime; 981 int rx_lat = 0, tx_lat = 0, eifs = 0; 982 u32 reg; 983 984 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 985 ah->misc_mode); 986 987 if (!chan) 988 return; 989 990 if (ah->misc_mode != 0) 991 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 992 993 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 994 rx_lat = 41; 995 else 996 rx_lat = 37; 997 tx_lat = 54; 998 999 if (IS_CHAN_HALF_RATE(chan)) { 1000 eifs = 175; 1001 rx_lat *= 2; 1002 tx_lat *= 2; 1003 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1004 tx_lat += 11; 1005 1006 slottime = 13; 1007 sifstime = 32; 1008 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1009 eifs = 340; 1010 rx_lat = (rx_lat * 4) - 1; 1011 tx_lat *= 4; 1012 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1013 tx_lat += 22; 1014 1015 slottime = 21; 1016 sifstime = 64; 1017 } else { 1018 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1019 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1020 reg = AR_USEC_ASYNC_FIFO; 1021 } else { 1022 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1023 common->clockrate; 1024 reg = REG_READ(ah, AR_USEC); 1025 } 1026 rx_lat = MS(reg, AR_USEC_RX_LAT); 1027 tx_lat = MS(reg, AR_USEC_TX_LAT); 1028 1029 slottime = ah->slottime; 1030 if (IS_CHAN_5GHZ(chan)) 1031 sifstime = 16; 1032 else 1033 sifstime = 10; 1034 } 1035 1036 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1037 acktimeout = slottime + sifstime + 3 * ah->coverage_class; 1038 ctstimeout = acktimeout; 1039 1040 /* 1041 * Workaround for early ACK timeouts, add an offset to match the 1042 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1043 * This was initially only meant to work around an issue with delayed 1044 * BA frames in some implementations, but it has been found to fix ACK 1045 * timeout issues in other cases as well. 1046 */ 1047 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) { 1048 acktimeout += 64 - sifstime - ah->slottime; 1049 ctstimeout += 48 - sifstime - ah->slottime; 1050 } 1051 1052 1053 ath9k_hw_set_sifs_time(ah, sifstime); 1054 ath9k_hw_setslottime(ah, slottime); 1055 ath9k_hw_set_ack_timeout(ah, acktimeout); 1056 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1057 if (ah->globaltxtimeout != (u32) -1) 1058 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1059 1060 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1061 REG_RMW(ah, AR_USEC, 1062 (common->clockrate - 1) | 1063 SM(rx_lat, AR_USEC_RX_LAT) | 1064 SM(tx_lat, AR_USEC_TX_LAT), 1065 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1066 1067} 1068EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1069 1070void ath9k_hw_deinit(struct ath_hw *ah) 1071{ 1072 struct ath_common *common = ath9k_hw_common(ah); 1073 1074 if (common->state < ATH_HW_INITIALIZED) 1075 goto free_hw; 1076 1077 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1078 1079free_hw: 1080 ath9k_hw_rf_free_ext_banks(ah); 1081} 1082EXPORT_SYMBOL(ath9k_hw_deinit); 1083 1084/*******/ 1085/* INI */ 1086/*******/ 1087 1088u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1089{ 1090 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1091 1092 if (IS_CHAN_B(chan)) 1093 ctl |= CTL_11B; 1094 else if (IS_CHAN_G(chan)) 1095 ctl |= CTL_11G; 1096 else 1097 ctl |= CTL_11A; 1098 1099 return ctl; 1100} 1101 1102/****************************************/ 1103/* Reset and Channel Switching Routines */ 1104/****************************************/ 1105 1106static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1107{ 1108 struct ath_common *common = ath9k_hw_common(ah); 1109 1110 ENABLE_REGWRITE_BUFFER(ah); 1111 1112 /* 1113 * set AHB_MODE not to do cacheline prefetches 1114 */ 1115 if (!AR_SREV_9300_20_OR_LATER(ah)) 1116 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1117 1118 /* 1119 * let mac dma reads be in 128 byte chunks 1120 */ 1121 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1122 1123 REGWRITE_BUFFER_FLUSH(ah); 1124 1125 /* 1126 * Restore TX Trigger Level to its pre-reset value. 1127 * The initial value depends on whether aggregation is enabled, and is 1128 * adjusted whenever underruns are detected. 1129 */ 1130 if (!AR_SREV_9300_20_OR_LATER(ah)) 1131 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1132 1133 ENABLE_REGWRITE_BUFFER(ah); 1134 1135 /* 1136 * let mac dma writes be in 128 byte chunks 1137 */ 1138 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1139 1140 /* 1141 * Setup receive FIFO threshold to hold off TX activities 1142 */ 1143 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1144 1145 if (AR_SREV_9300_20_OR_LATER(ah)) { 1146 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1147 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1148 1149 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1150 ah->caps.rx_status_len); 1151 } 1152 1153 /* 1154 * reduce the number of usable entries in PCU TXBUF to avoid 1155 * wrap around issues. 1156 */ 1157 if (AR_SREV_9285(ah)) { 1158 /* For AR9285 the number of Fifos are reduced to half. 1159 * So set the usable tx buf size also to half to 1160 * avoid data/delimiter underruns 1161 */ 1162 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1163 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 1164 } else if (!AR_SREV_9271(ah)) { 1165 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1166 AR_PCU_TXBUF_CTRL_USABLE_SIZE); 1167 } 1168 1169 REGWRITE_BUFFER_FLUSH(ah); 1170 1171 if (AR_SREV_9300_20_OR_LATER(ah)) 1172 ath9k_hw_reset_txstatus_ring(ah); 1173} 1174 1175static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1176{ 1177 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1178 u32 set = AR_STA_ID1_KSRCH_MODE; 1179 1180 switch (opmode) { 1181 case NL80211_IFTYPE_ADHOC: 1182 case NL80211_IFTYPE_MESH_POINT: 1183 set |= AR_STA_ID1_ADHOC; 1184 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1185 break; 1186 case NL80211_IFTYPE_AP: 1187 set |= AR_STA_ID1_STA_AP; 1188 /* fall through */ 1189 case NL80211_IFTYPE_STATION: 1190 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1191 break; 1192 default: 1193 if (!ah->is_monitoring) 1194 set = 0; 1195 break; 1196 } 1197 REG_RMW(ah, AR_STA_ID1, set, mask); 1198} 1199 1200void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1201 u32 *coef_mantissa, u32 *coef_exponent) 1202{ 1203 u32 coef_exp, coef_man; 1204 1205 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1206 if ((coef_scaled >> coef_exp) & 0x1) 1207 break; 1208 1209 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1210 1211 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1212 1213 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1214 *coef_exponent = coef_exp - 16; 1215} 1216 1217static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1218{ 1219 u32 rst_flags; 1220 u32 tmpReg; 1221 1222 if (AR_SREV_9100(ah)) { 1223 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1224 AR_RTC_DERIVED_CLK_PERIOD, 1); 1225 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1226 } 1227 1228 ENABLE_REGWRITE_BUFFER(ah); 1229 1230 if (AR_SREV_9300_20_OR_LATER(ah)) { 1231 REG_WRITE(ah, AR_WA, ah->WARegVal); 1232 udelay(10); 1233 } 1234 1235 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1236 AR_RTC_FORCE_WAKE_ON_INT); 1237 1238 if (AR_SREV_9100(ah)) { 1239 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1240 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1241 } else { 1242 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1243 if (tmpReg & 1244 (AR_INTR_SYNC_LOCAL_TIMEOUT | 1245 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1246 u32 val; 1247 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1248 1249 val = AR_RC_HOSTIF; 1250 if (!AR_SREV_9300_20_OR_LATER(ah)) 1251 val |= AR_RC_AHB; 1252 REG_WRITE(ah, AR_RC, val); 1253 1254 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1255 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1256 1257 rst_flags = AR_RTC_RC_MAC_WARM; 1258 if (type == ATH9K_RESET_COLD) 1259 rst_flags |= AR_RTC_RC_MAC_COLD; 1260 } 1261 1262 if (AR_SREV_9330(ah)) { 1263 int npend = 0; 1264 int i; 1265 1266 /* AR9330 WAR: 1267 * call external reset function to reset WMAC if: 1268 * - doing a cold reset 1269 * - we have pending frames in the TX queues 1270 */ 1271 1272 for (i = 0; i < AR_NUM_QCU; i++) { 1273 npend = ath9k_hw_numtxpending(ah, i); 1274 if (npend) 1275 break; 1276 } 1277 1278 if (ah->external_reset && 1279 (npend || type == ATH9K_RESET_COLD)) { 1280 int reset_err = 0; 1281 1282 ath_dbg(ath9k_hw_common(ah), RESET, 1283 "reset MAC via external reset\n"); 1284 1285 reset_err = ah->external_reset(); 1286 if (reset_err) { 1287 ath_err(ath9k_hw_common(ah), 1288 "External reset failed, err=%d\n", 1289 reset_err); 1290 return false; 1291 } 1292 1293 REG_WRITE(ah, AR_RTC_RESET, 1); 1294 } 1295 } 1296 1297 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1298 1299 REGWRITE_BUFFER_FLUSH(ah); 1300 1301 udelay(50); 1302 1303 REG_WRITE(ah, AR_RTC_RC, 0); 1304 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1305 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1306 return false; 1307 } 1308 1309 if (!AR_SREV_9100(ah)) 1310 REG_WRITE(ah, AR_RC, 0); 1311 1312 if (AR_SREV_9100(ah)) 1313 udelay(50); 1314 1315 return true; 1316} 1317 1318static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1319{ 1320 ENABLE_REGWRITE_BUFFER(ah); 1321 1322 if (AR_SREV_9300_20_OR_LATER(ah)) { 1323 REG_WRITE(ah, AR_WA, ah->WARegVal); 1324 udelay(10); 1325 } 1326 1327 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1328 AR_RTC_FORCE_WAKE_ON_INT); 1329 1330 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1331 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1332 1333 REG_WRITE(ah, AR_RTC_RESET, 0); 1334 1335 REGWRITE_BUFFER_FLUSH(ah); 1336 1337 if (!AR_SREV_9300_20_OR_LATER(ah)) 1338 udelay(2); 1339 1340 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1341 REG_WRITE(ah, AR_RC, 0); 1342 1343 REG_WRITE(ah, AR_RTC_RESET, 1); 1344 1345 if (!ath9k_hw_wait(ah, 1346 AR_RTC_STATUS, 1347 AR_RTC_STATUS_M, 1348 AR_RTC_STATUS_ON, 1349 AH_WAIT_TIMEOUT)) { 1350 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1351 return false; 1352 } 1353 1354 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1355} 1356 1357static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1358{ 1359 bool ret = false; 1360 1361 if (AR_SREV_9300_20_OR_LATER(ah)) { 1362 REG_WRITE(ah, AR_WA, ah->WARegVal); 1363 udelay(10); 1364 } 1365 1366 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1367 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1368 1369 switch (type) { 1370 case ATH9K_RESET_POWER_ON: 1371 ret = ath9k_hw_set_reset_power_on(ah); 1372 break; 1373 case ATH9K_RESET_WARM: 1374 case ATH9K_RESET_COLD: 1375 ret = ath9k_hw_set_reset(ah, type); 1376 break; 1377 default: 1378 break; 1379 } 1380 1381 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) 1382 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2); 1383 1384 return ret; 1385} 1386 1387static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1388 struct ath9k_channel *chan) 1389{ 1390 int reset_type = ATH9K_RESET_WARM; 1391 1392 if (AR_SREV_9280(ah)) { 1393 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1394 reset_type = ATH9K_RESET_POWER_ON; 1395 else 1396 reset_type = ATH9K_RESET_COLD; 1397 } 1398 1399 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1400 return false; 1401 1402 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1403 return false; 1404 1405 ah->chip_fullsleep = false; 1406 ath9k_hw_init_pll(ah, chan); 1407 ath9k_hw_set_rfmode(ah, chan); 1408 1409 return true; 1410} 1411 1412static bool ath9k_hw_channel_change(struct ath_hw *ah, 1413 struct ath9k_channel *chan) 1414{ 1415 struct ath_common *common = ath9k_hw_common(ah); 1416 u32 qnum; 1417 int r; 1418 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1419 bool band_switch, mode_diff; 1420 u8 ini_reloaded; 1421 1422 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) != 1423 (ah->curchan->channelFlags & (CHANNEL_2GHZ | 1424 CHANNEL_5GHZ)); 1425 mode_diff = (chan->chanmode != ah->curchan->chanmode); 1426 1427 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1428 if (ath9k_hw_numtxpending(ah, qnum)) { 1429 ath_dbg(common, QUEUE, 1430 "Transmit frames pending on queue %d\n", qnum); 1431 return false; 1432 } 1433 } 1434 1435 if (!ath9k_hw_rfbus_req(ah)) { 1436 ath_err(common, "Could not kill baseband RX\n"); 1437 return false; 1438 } 1439 1440 if (edma && (band_switch || mode_diff)) { 1441 ath9k_hw_mark_phy_inactive(ah); 1442 udelay(5); 1443 1444 ath9k_hw_init_pll(ah, NULL); 1445 1446 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1447 ath_err(common, "Failed to do fast channel change\n"); 1448 return false; 1449 } 1450 } 1451 1452 ath9k_hw_set_channel_regs(ah, chan); 1453 1454 r = ath9k_hw_rf_set_freq(ah, chan); 1455 if (r) { 1456 ath_err(common, "Failed to set channel\n"); 1457 return false; 1458 } 1459 ath9k_hw_set_clockrate(ah); 1460 ath9k_hw_apply_txpower(ah, chan); 1461 ath9k_hw_rfbus_done(ah); 1462 1463 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1464 ath9k_hw_set_delta_slope(ah, chan); 1465 1466 ath9k_hw_spur_mitigate_freq(ah, chan); 1467 1468 if (edma && (band_switch || mode_diff)) { 1469 ah->ah_flags |= AH_FASTCC; 1470 if (band_switch || ini_reloaded) 1471 ah->eep_ops->set_board_values(ah, chan); 1472 1473 ath9k_hw_init_bb(ah, chan); 1474 1475 if (band_switch || ini_reloaded) 1476 ath9k_hw_init_cal(ah, chan); 1477 ah->ah_flags &= ~AH_FASTCC; 1478 } 1479 1480 return true; 1481} 1482 1483static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1484{ 1485 u32 gpio_mask = ah->gpio_mask; 1486 int i; 1487 1488 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1489 if (!(gpio_mask & 1)) 1490 continue; 1491 1492 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1493 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1494 } 1495} 1496 1497bool ath9k_hw_check_alive(struct ath_hw *ah) 1498{ 1499 int count = 50; 1500 u32 reg; 1501 1502 if (AR_SREV_9285_12_OR_LATER(ah)) 1503 return true; 1504 1505 do { 1506 reg = REG_READ(ah, AR_OBS_BUS_1); 1507 1508 if ((reg & 0x7E7FFFEF) == 0x00702400) 1509 continue; 1510 1511 switch (reg & 0x7E000B00) { 1512 case 0x1E000000: 1513 case 0x52000B00: 1514 case 0x18000B00: 1515 continue; 1516 default: 1517 return true; 1518 } 1519 } while (count-- > 0); 1520 1521 return false; 1522} 1523EXPORT_SYMBOL(ath9k_hw_check_alive); 1524 1525/* 1526 * Fast channel change: 1527 * (Change synthesizer based on channel freq without resetting chip) 1528 * 1529 * Don't do FCC when 1530 * - Flag is not set 1531 * - Chip is just coming out of full sleep 1532 * - Channel to be set is same as current channel 1533 * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel) 1534 */ 1535static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1536{ 1537 struct ath_common *common = ath9k_hw_common(ah); 1538 int ret; 1539 1540 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1541 goto fail; 1542 1543 if (ah->chip_fullsleep) 1544 goto fail; 1545 1546 if (!ah->curchan) 1547 goto fail; 1548 1549 if (chan->channel == ah->curchan->channel) 1550 goto fail; 1551 1552 if ((chan->channelFlags & CHANNEL_ALL) != 1553 (ah->curchan->channelFlags & CHANNEL_ALL)) 1554 goto fail; 1555 1556 if (!ath9k_hw_check_alive(ah)) 1557 goto fail; 1558 1559 /* 1560 * For AR9462, make sure that calibration data for 1561 * re-using are present. 1562 */ 1563 if (AR_SREV_9462(ah) && (!ah->caldata || 1564 !ah->caldata->done_txiqcal_once || 1565 !ah->caldata->done_txclcal_once || 1566 !ah->caldata->rtt_hist.num_readings)) 1567 goto fail; 1568 1569 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1570 ah->curchan->channel, chan->channel); 1571 1572 ret = ath9k_hw_channel_change(ah, chan); 1573 if (!ret) 1574 goto fail; 1575 1576 ath9k_hw_loadnf(ah, ah->curchan); 1577 ath9k_hw_start_nfcal(ah, true); 1578 1579 if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah)) 1580 ar9003_mci_2g5g_switch(ah, true); 1581 1582 if (AR_SREV_9271(ah)) 1583 ar9002_hw_load_ani_reg(ah, chan); 1584 1585 return 0; 1586fail: 1587 return -EINVAL; 1588} 1589 1590int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1591 struct ath9k_hw_cal_data *caldata, bool fastcc) 1592{ 1593 struct ath_common *common = ath9k_hw_common(ah); 1594 u32 saveLedState; 1595 u32 saveDefAntenna; 1596 u32 macStaId1; 1597 u64 tsf = 0; 1598 int i, r; 1599 bool start_mci_reset = false; 1600 bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI); 1601 bool save_fullsleep = ah->chip_fullsleep; 1602 1603 if (mci) { 1604 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1605 if (start_mci_reset) 1606 return 0; 1607 } 1608 1609 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1610 return -EIO; 1611 1612 if (ah->curchan && !ah->chip_fullsleep) 1613 ath9k_hw_getnf(ah, ah->curchan); 1614 1615 ah->caldata = caldata; 1616 if (caldata && 1617 (chan->channel != caldata->channel || 1618 (chan->channelFlags & ~CHANNEL_CW_INT) != 1619 (caldata->channelFlags & ~CHANNEL_CW_INT))) { 1620 /* Operating channel changed, reset channel calibration data */ 1621 memset(caldata, 0, sizeof(*caldata)); 1622 ath9k_init_nfcal_hist_buffer(ah, chan); 1623 } 1624 ah->noise = ath9k_hw_getchan_noise(ah, chan); 1625 1626 if (fastcc) { 1627 r = ath9k_hw_do_fastcc(ah, chan); 1628 if (!r) 1629 return r; 1630 } 1631 1632 if (mci) 1633 ar9003_mci_stop_bt(ah, save_fullsleep); 1634 1635 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1636 if (saveDefAntenna == 0) 1637 saveDefAntenna = 1; 1638 1639 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1640 1641 /* For chips on which RTC reset is done, save TSF before it gets cleared */ 1642 if (AR_SREV_9100(ah) || 1643 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) 1644 tsf = ath9k_hw_gettsf64(ah); 1645 1646 saveLedState = REG_READ(ah, AR_CFG_LED) & 1647 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1648 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1649 1650 ath9k_hw_mark_phy_inactive(ah); 1651 1652 ah->paprd_table_write_done = false; 1653 1654 /* Only required on the first reset */ 1655 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1656 REG_WRITE(ah, 1657 AR9271_RESET_POWER_DOWN_CONTROL, 1658 AR9271_RADIO_RF_RST); 1659 udelay(50); 1660 } 1661 1662 if (!ath9k_hw_chip_reset(ah, chan)) { 1663 ath_err(common, "Chip reset failed\n"); 1664 return -EINVAL; 1665 } 1666 1667 /* Only required on the first reset */ 1668 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1669 ah->htc_reset_init = false; 1670 REG_WRITE(ah, 1671 AR9271_RESET_POWER_DOWN_CONTROL, 1672 AR9271_GATE_MAC_CTL); 1673 udelay(50); 1674 } 1675 1676 /* Restore TSF */ 1677 if (tsf) 1678 ath9k_hw_settsf64(ah, tsf); 1679 1680 if (AR_SREV_9280_20_OR_LATER(ah)) 1681 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1682 1683 if (!AR_SREV_9300_20_OR_LATER(ah)) 1684 ar9002_hw_enable_async_fifo(ah); 1685 1686 r = ath9k_hw_process_ini(ah, chan); 1687 if (r) 1688 return r; 1689 1690 if (mci) 1691 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1692 1693 /* 1694 * Some AR91xx SoC devices frequently fail to accept TSF writes 1695 * right after the chip reset. When that happens, write a new 1696 * value after the initvals have been applied, with an offset 1697 * based on measured time difference 1698 */ 1699 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1700 tsf += 1500; 1701 ath9k_hw_settsf64(ah, tsf); 1702 } 1703 1704 /* Setup MFP options for CCMP */ 1705 if (AR_SREV_9280_20_OR_LATER(ah)) { 1706 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1707 * frames when constructing CCMP AAD. */ 1708 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1709 0xc7ff); 1710 ah->sw_mgmt_crypto = false; 1711 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1712 /* Disable hardware crypto for management frames */ 1713 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1714 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1715 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1716 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1717 ah->sw_mgmt_crypto = true; 1718 } else 1719 ah->sw_mgmt_crypto = true; 1720 1721 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1722 ath9k_hw_set_delta_slope(ah, chan); 1723 1724 ath9k_hw_spur_mitigate_freq(ah, chan); 1725 ah->eep_ops->set_board_values(ah, chan); 1726 1727 ENABLE_REGWRITE_BUFFER(ah); 1728 1729 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); 1730 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) 1731 | macStaId1 1732 | AR_STA_ID1_RTS_USE_DEF 1733 | (ah->config. 1734 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 1735 | ah->sta_id1_defaults); 1736 ath_hw_setbssidmask(common); 1737 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1738 ath9k_hw_write_associd(ah); 1739 REG_WRITE(ah, AR_ISR, ~0); 1740 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1741 1742 REGWRITE_BUFFER_FLUSH(ah); 1743 1744 ath9k_hw_set_operating_mode(ah, ah->opmode); 1745 1746 r = ath9k_hw_rf_set_freq(ah, chan); 1747 if (r) 1748 return r; 1749 1750 ath9k_hw_set_clockrate(ah); 1751 1752 ENABLE_REGWRITE_BUFFER(ah); 1753 1754 for (i = 0; i < AR_NUM_DCU; i++) 1755 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1756 1757 REGWRITE_BUFFER_FLUSH(ah); 1758 1759 ah->intr_txqs = 0; 1760 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1761 ath9k_hw_resettxqueue(ah, i); 1762 1763 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1764 ath9k_hw_ani_cache_ini_regs(ah); 1765 ath9k_hw_init_qos(ah); 1766 1767 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1768 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1769 1770 ath9k_hw_init_global_settings(ah); 1771 1772 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1773 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1774 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1775 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1776 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1777 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1778 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1779 } 1780 1781 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 1782 1783 ath9k_hw_set_dma(ah); 1784 1785 REG_WRITE(ah, AR_OBS, 8); 1786 1787 if (ah->config.rx_intr_mitigation) { 1788 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 1789 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 1790 } 1791 1792 if (ah->config.tx_intr_mitigation) { 1793 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1794 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1795 } 1796 1797 ath9k_hw_init_bb(ah, chan); 1798 1799 if (caldata) { 1800 caldata->done_txiqcal_once = false; 1801 caldata->done_txclcal_once = false; 1802 caldata->rtt_hist.num_readings = 0; 1803 } 1804 if (!ath9k_hw_init_cal(ah, chan)) 1805 return -EIO; 1806 1807 ath9k_hw_loadnf(ah, chan); 1808 ath9k_hw_start_nfcal(ah, true); 1809 1810 if (mci && ar9003_mci_end_reset(ah, chan, caldata)) 1811 return -EIO; 1812 1813 ENABLE_REGWRITE_BUFFER(ah); 1814 1815 ath9k_hw_restore_chainmask(ah); 1816 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 1817 1818 REGWRITE_BUFFER_FLUSH(ah); 1819 1820 /* 1821 * For big endian systems turn on swapping for descriptors 1822 */ 1823 if (AR_SREV_9100(ah)) { 1824 u32 mask; 1825 mask = REG_READ(ah, AR_CFG); 1826 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1827 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1828 mask); 1829 } else { 1830 mask = 1831 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1832 REG_WRITE(ah, AR_CFG, mask); 1833 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1834 REG_READ(ah, AR_CFG)); 1835 } 1836 } else { 1837 if (common->bus_ops->ath_bus_type == ATH_USB) { 1838 /* Configure AR9271 target WLAN */ 1839 if (AR_SREV_9271(ah)) 1840 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1841 else 1842 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1843 } 1844#ifdef __BIG_ENDIAN 1845 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah)) 1846 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1847 else 1848 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1849#endif 1850 } 1851 1852 if (ath9k_hw_btcoex_is_enabled(ah)) 1853 ath9k_hw_btcoex_enable(ah); 1854 1855 if (mci) 1856 ar9003_mci_check_bt(ah); 1857 1858 if (AR_SREV_9300_20_OR_LATER(ah)) { 1859 ar9003_hw_bb_watchdog_config(ah); 1860 1861 ar9003_hw_disable_phy_restart(ah); 1862 } 1863 1864 ath9k_hw_apply_gpio_override(ah); 1865 1866 return 0; 1867} 1868EXPORT_SYMBOL(ath9k_hw_reset); 1869 1870/******************************/ 1871/* Power Management (Chipset) */ 1872/******************************/ 1873 1874/* 1875 * Notify Power Mgt is disabled in self-generated frames. 1876 * If requested, force chip to sleep. 1877 */ 1878static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) 1879{ 1880 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1881 if (setChip) { 1882 if (AR_SREV_9462(ah)) { 1883 REG_WRITE(ah, AR_TIMER_MODE, 1884 REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00); 1885 REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah, 1886 AR_NDP2_TIMER_MODE) & 0xFFFFFF00); 1887 REG_WRITE(ah, AR_SLP32_INC, 1888 REG_READ(ah, AR_SLP32_INC) & 0xFFF00000); 1889 /* xxx Required for WLAN only case ? */ 1890 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 1891 udelay(100); 1892 } 1893 1894 /* 1895 * Clear the RTC force wake bit to allow the 1896 * mac to go to sleep. 1897 */ 1898 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 1899 1900 if (AR_SREV_9462(ah)) 1901 udelay(100); 1902 1903 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1904 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 1905 1906 /* Shutdown chip. Active low */ 1907 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 1908 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 1909 udelay(2); 1910 } 1911 } 1912 1913 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 1914 if (AR_SREV_9300_20_OR_LATER(ah)) 1915 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1916} 1917 1918/* 1919 * Notify Power Management is enabled in self-generating 1920 * frames. If request, set power mode of chip to 1921 * auto/normal. Duration in units of 128us (1/8 TU). 1922 */ 1923static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) 1924{ 1925 u32 val; 1926 1927 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1928 if (setChip) { 1929 struct ath9k_hw_capabilities *pCap = &ah->caps; 1930 1931 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 1932 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 1933 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1934 AR_RTC_FORCE_WAKE_ON_INT); 1935 } else { 1936 1937 /* When chip goes into network sleep, it could be waken 1938 * up by MCI_INT interrupt caused by BT's HW messages 1939 * (LNA_xxx, CONT_xxx) which chould be in a very fast 1940 * rate (~100us). This will cause chip to leave and 1941 * re-enter network sleep mode frequently, which in 1942 * consequence will have WLAN MCI HW to generate lots of 1943 * SYS_WAKING and SYS_SLEEPING messages which will make 1944 * BT CPU to busy to process. 1945 */ 1946 if (AR_SREV_9462(ah)) { 1947 val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) & 1948 ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK; 1949 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val); 1950 } 1951 /* 1952 * Clear the RTC force wake bit to allow the 1953 * mac to go to sleep. 1954 */ 1955 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1956 AR_RTC_FORCE_WAKE_EN); 1957 1958 if (AR_SREV_9462(ah)) 1959 udelay(30); 1960 } 1961 } 1962 1963 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 1964 if (AR_SREV_9300_20_OR_LATER(ah)) 1965 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1966} 1967 1968static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) 1969{ 1970 u32 val; 1971 int i; 1972 1973 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 1974 if (AR_SREV_9300_20_OR_LATER(ah)) { 1975 REG_WRITE(ah, AR_WA, ah->WARegVal); 1976 udelay(10); 1977 } 1978 1979 if (setChip) { 1980 if ((REG_READ(ah, AR_RTC_STATUS) & 1981 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 1982 if (ath9k_hw_set_reset_reg(ah, 1983 ATH9K_RESET_POWER_ON) != true) { 1984 return false; 1985 } 1986 if (!AR_SREV_9300_20_OR_LATER(ah)) 1987 ath9k_hw_init_pll(ah, NULL); 1988 } 1989 if (AR_SREV_9100(ah)) 1990 REG_SET_BIT(ah, AR_RTC_RESET, 1991 AR_RTC_RESET_EN); 1992 1993 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1994 AR_RTC_FORCE_WAKE_EN); 1995 udelay(50); 1996 1997 for (i = POWER_UP_TIME / 50; i > 0; i--) { 1998 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 1999 if (val == AR_RTC_STATUS_ON) 2000 break; 2001 udelay(50); 2002 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2003 AR_RTC_FORCE_WAKE_EN); 2004 } 2005 if (i == 0) { 2006 ath_err(ath9k_hw_common(ah), 2007 "Failed to wakeup in %uus\n", 2008 POWER_UP_TIME / 20); 2009 return false; 2010 } 2011 } 2012 2013 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2014 2015 return true; 2016} 2017 2018bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2019{ 2020 struct ath_common *common = ath9k_hw_common(ah); 2021 int status = true, setChip = true; 2022 static const char *modes[] = { 2023 "AWAKE", 2024 "FULL-SLEEP", 2025 "NETWORK SLEEP", 2026 "UNDEFINED" 2027 }; 2028 2029 if (ah->power_mode == mode) 2030 return status; 2031 2032 ath_dbg(common, RESET, "%s -> %s\n", 2033 modes[ah->power_mode], modes[mode]); 2034 2035 switch (mode) { 2036 case ATH9K_PM_AWAKE: 2037 status = ath9k_hw_set_power_awake(ah, setChip); 2038 2039 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) 2040 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2); 2041 2042 break; 2043 case ATH9K_PM_FULL_SLEEP: 2044 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) 2045 ar9003_mci_set_full_sleep(ah); 2046 2047 ath9k_set_power_sleep(ah, setChip); 2048 ah->chip_fullsleep = true; 2049 break; 2050 case ATH9K_PM_NETWORK_SLEEP: 2051 2052 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) 2053 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2); 2054 2055 ath9k_set_power_network_sleep(ah, setChip); 2056 break; 2057 default: 2058 ath_err(common, "Unknown power mode %u\n", mode); 2059 return false; 2060 } 2061 ah->power_mode = mode; 2062 2063 /* 2064 * XXX: If this warning never comes up after a while then 2065 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2066 * ath9k_hw_setpower() return type void. 2067 */ 2068 2069 if (!(ah->ah_flags & AH_UNPLUGGED)) 2070 ATH_DBG_WARN_ON_ONCE(!status); 2071 2072 return status; 2073} 2074EXPORT_SYMBOL(ath9k_hw_setpower); 2075 2076/*******************/ 2077/* Beacon Handling */ 2078/*******************/ 2079 2080void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2081{ 2082 int flags = 0; 2083 2084 ENABLE_REGWRITE_BUFFER(ah); 2085 2086 switch (ah->opmode) { 2087 case NL80211_IFTYPE_ADHOC: 2088 case NL80211_IFTYPE_MESH_POINT: 2089 REG_SET_BIT(ah, AR_TXCFG, 2090 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2091 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon + 2092 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1)); 2093 flags |= AR_NDP_TIMER_EN; 2094 case NL80211_IFTYPE_AP: 2095 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2096 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2097 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2098 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2099 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2100 flags |= 2101 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2102 break; 2103 default: 2104 ath_dbg(ath9k_hw_common(ah), BEACON, 2105 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2106 return; 2107 break; 2108 } 2109 2110 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2111 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2112 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2113 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period); 2114 2115 REGWRITE_BUFFER_FLUSH(ah); 2116 2117 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2118} 2119EXPORT_SYMBOL(ath9k_hw_beaconinit); 2120 2121void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2122 const struct ath9k_beacon_state *bs) 2123{ 2124 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2125 struct ath9k_hw_capabilities *pCap = &ah->caps; 2126 struct ath_common *common = ath9k_hw_common(ah); 2127 2128 ENABLE_REGWRITE_BUFFER(ah); 2129 2130 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 2131 2132 REG_WRITE(ah, AR_BEACON_PERIOD, 2133 TU_TO_USEC(bs->bs_intval)); 2134 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 2135 TU_TO_USEC(bs->bs_intval)); 2136 2137 REGWRITE_BUFFER_FLUSH(ah); 2138 2139 REG_RMW_FIELD(ah, AR_RSSI_THR, 2140 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2141 2142 beaconintval = bs->bs_intval; 2143 2144 if (bs->bs_sleepduration > beaconintval) 2145 beaconintval = bs->bs_sleepduration; 2146 2147 dtimperiod = bs->bs_dtimperiod; 2148 if (bs->bs_sleepduration > dtimperiod) 2149 dtimperiod = bs->bs_sleepduration; 2150 2151 if (beaconintval == dtimperiod) 2152 nextTbtt = bs->bs_nextdtim; 2153 else 2154 nextTbtt = bs->bs_nexttbtt; 2155 2156 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim); 2157 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt); 2158 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval); 2159 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod); 2160 2161 ENABLE_REGWRITE_BUFFER(ah); 2162 2163 REG_WRITE(ah, AR_NEXT_DTIM, 2164 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 2165 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 2166 2167 REG_WRITE(ah, AR_SLEEP1, 2168 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2169 | AR_SLEEP1_ASSUME_DTIM); 2170 2171 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2172 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2173 else 2174 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2175 2176 REG_WRITE(ah, AR_SLEEP2, 2177 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2178 2179 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 2180 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 2181 2182 REGWRITE_BUFFER_FLUSH(ah); 2183 2184 REG_SET_BIT(ah, AR_TIMER_MODE, 2185 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2186 AR_DTIM_TIMER_EN); 2187 2188 /* TSF Out of Range Threshold */ 2189 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2190} 2191EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2192 2193/*******************/ 2194/* HW Capabilities */ 2195/*******************/ 2196 2197static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2198{ 2199 eeprom_chainmask &= chip_chainmask; 2200 if (eeprom_chainmask) 2201 return eeprom_chainmask; 2202 else 2203 return chip_chainmask; 2204} 2205 2206/** 2207 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2208 * @ah: the atheros hardware data structure 2209 * 2210 * We enable DFS support upstream on chipsets which have passed a series 2211 * of tests. The testing requirements are going to be documented. Desired 2212 * test requirements are documented at: 2213 * 2214 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs 2215 * 2216 * Once a new chipset gets properly tested an individual commit can be used 2217 * to document the testing for DFS for that chipset. 2218 */ 2219static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2220{ 2221 2222 switch (ah->hw_version.macVersion) { 2223 /* AR9580 will likely be our first target to get testing on */ 2224 case AR_SREV_VERSION_9580: 2225 default: 2226 return false; 2227 } 2228} 2229 2230int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2231{ 2232 struct ath9k_hw_capabilities *pCap = &ah->caps; 2233 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2234 struct ath_common *common = ath9k_hw_common(ah); 2235 unsigned int chip_chainmask; 2236 2237 u16 eeval; 2238 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2239 2240 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2241 regulatory->current_rd = eeval; 2242 2243 if (ah->opmode != NL80211_IFTYPE_AP && 2244 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2245 if (regulatory->current_rd == 0x64 || 2246 regulatory->current_rd == 0x65) 2247 regulatory->current_rd += 5; 2248 else if (regulatory->current_rd == 0x41) 2249 regulatory->current_rd = 0x43; 2250 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2251 regulatory->current_rd); 2252 } 2253 2254 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2255 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 2256 ath_err(common, 2257 "no band has been marked as supported in EEPROM\n"); 2258 return -EINVAL; 2259 } 2260 2261 if (eeval & AR5416_OPFLAGS_11A) 2262 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2263 2264 if (eeval & AR5416_OPFLAGS_11G) 2265 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2266 2267 if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah)) 2268 chip_chainmask = 1; 2269 else if (AR_SREV_9462(ah)) 2270 chip_chainmask = 3; 2271 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2272 chip_chainmask = 7; 2273 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah)) 2274 chip_chainmask = 3; 2275 else 2276 chip_chainmask = 7; 2277 2278 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2279 /* 2280 * For AR9271 we will temporarilly uses the rx chainmax as read from 2281 * the EEPROM. 2282 */ 2283 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2284 !(eeval & AR5416_OPFLAGS_11A) && 2285 !(AR_SREV_9271(ah))) 2286 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2287 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2288 else if (AR_SREV_9100(ah)) 2289 pCap->rx_chainmask = 0x7; 2290 else 2291 /* Use rx_chainmask from EEPROM. */ 2292 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2293 2294 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask); 2295 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask); 2296 ah->txchainmask = pCap->tx_chainmask; 2297 ah->rxchainmask = pCap->rx_chainmask; 2298 2299 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2300 2301 /* enable key search for every frame in an aggregate */ 2302 if (AR_SREV_9300_20_OR_LATER(ah)) 2303 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2304 2305 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2306 2307 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2308 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2309 else 2310 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2311 2312 if (AR_SREV_9271(ah)) 2313 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2314 else if (AR_DEVID_7010(ah)) 2315 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2316 else if (AR_SREV_9300_20_OR_LATER(ah)) 2317 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2318 else if (AR_SREV_9287_11_OR_LATER(ah)) 2319 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2320 else if (AR_SREV_9285_12_OR_LATER(ah)) 2321 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2322 else if (AR_SREV_9280_20_OR_LATER(ah)) 2323 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2324 else 2325 pCap->num_gpio_pins = AR_NUM_GPIO; 2326 2327 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2328 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2329 else 2330 pCap->rts_aggr_limit = (8 * 1024); 2331 2332#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 2333 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2334 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2335 ah->rfkill_gpio = 2336 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2337 ah->rfkill_polarity = 2338 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2339 2340 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2341 } 2342#endif 2343 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2344 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2345 else 2346 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2347 2348 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2349 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2350 else 2351 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2352 2353 if (AR_SREV_9300_20_OR_LATER(ah)) { 2354 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2355 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah)) 2356 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2357 2358 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2359 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2360 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2361 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2362 pCap->txs_len = sizeof(struct ar9003_txs); 2363 if (!ah->config.paprd_disable && 2364 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2365 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2366 } else { 2367 pCap->tx_desc_len = sizeof(struct ath_desc); 2368 if (AR_SREV_9280_20(ah)) 2369 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2370 } 2371 2372 if (AR_SREV_9300_20_OR_LATER(ah)) 2373 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2374 2375 if (AR_SREV_9300_20_OR_LATER(ah)) 2376 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2377 2378 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2379 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2380 2381 if (AR_SREV_9285(ah)) 2382 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2383 ant_div_ctl1 = 2384 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2385 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) 2386 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2387 } 2388 if (AR_SREV_9300_20_OR_LATER(ah)) { 2389 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2390 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2391 } 2392 2393 2394 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) { 2395 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2396 /* 2397 * enable the diversity-combining algorithm only when 2398 * both enable_lna_div and enable_fast_div are set 2399 * Table for Diversity 2400 * ant_div_alt_lnaconf bit 0-1 2401 * ant_div_main_lnaconf bit 2-3 2402 * ant_div_alt_gaintb bit 4 2403 * ant_div_main_gaintb bit 5 2404 * enable_ant_div_lnadiv bit 6 2405 * enable_ant_fast_div bit 7 2406 */ 2407 if ((ant_div_ctl1 >> 0x6) == 0x3) 2408 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2409 } 2410 2411 if (AR_SREV_9485_10(ah)) { 2412 pCap->pcie_lcr_extsync_en = true; 2413 pCap->pcie_lcr_offset = 0x80; 2414 } 2415 2416 if (ath9k_hw_dfs_tested(ah)) 2417 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2418 2419 tx_chainmask = pCap->tx_chainmask; 2420 rx_chainmask = pCap->rx_chainmask; 2421 while (tx_chainmask || rx_chainmask) { 2422 if (tx_chainmask & BIT(0)) 2423 pCap->max_txchains++; 2424 if (rx_chainmask & BIT(0)) 2425 pCap->max_rxchains++; 2426 2427 tx_chainmask >>= 1; 2428 rx_chainmask >>= 1; 2429 } 2430 2431 if (AR_SREV_9300_20_OR_LATER(ah)) { 2432 ah->enabled_cals |= TX_IQ_CAL; 2433 if (AR_SREV_9485_OR_LATER(ah)) 2434 ah->enabled_cals |= TX_IQ_ON_AGC_CAL; 2435 } 2436 2437 if (AR_SREV_9462(ah)) { 2438 2439 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2440 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2441 2442 if (AR_SREV_9462_20(ah)) 2443 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2444 2445 } 2446 2447 2448 return 0; 2449} 2450 2451/****************************/ 2452/* GPIO / RFKILL / Antennae */ 2453/****************************/ 2454 2455static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2456 u32 gpio, u32 type) 2457{ 2458 int addr; 2459 u32 gpio_shift, tmp; 2460 2461 if (gpio > 11) 2462 addr = AR_GPIO_OUTPUT_MUX3; 2463 else if (gpio > 5) 2464 addr = AR_GPIO_OUTPUT_MUX2; 2465 else 2466 addr = AR_GPIO_OUTPUT_MUX1; 2467 2468 gpio_shift = (gpio % 6) * 5; 2469 2470 if (AR_SREV_9280_20_OR_LATER(ah) 2471 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2472 REG_RMW(ah, addr, (type << gpio_shift), 2473 (0x1f << gpio_shift)); 2474 } else { 2475 tmp = REG_READ(ah, addr); 2476 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2477 tmp &= ~(0x1f << gpio_shift); 2478 tmp |= (type << gpio_shift); 2479 REG_WRITE(ah, addr, tmp); 2480 } 2481} 2482 2483void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2484{ 2485 u32 gpio_shift; 2486 2487 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2488 2489 if (AR_DEVID_7010(ah)) { 2490 gpio_shift = gpio; 2491 REG_RMW(ah, AR7010_GPIO_OE, 2492 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2493 (AR7010_GPIO_OE_MASK << gpio_shift)); 2494 return; 2495 } 2496 2497 gpio_shift = gpio << 1; 2498 REG_RMW(ah, 2499 AR_GPIO_OE_OUT, 2500 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2501 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2502} 2503EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2504 2505u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2506{ 2507#define MS_REG_READ(x, y) \ 2508 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2509 2510 if (gpio >= ah->caps.num_gpio_pins) 2511 return 0xffffffff; 2512 2513 if (AR_DEVID_7010(ah)) { 2514 u32 val; 2515 val = REG_READ(ah, AR7010_GPIO_IN); 2516 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2517 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2518 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2519 AR_GPIO_BIT(gpio)) != 0; 2520 else if (AR_SREV_9271(ah)) 2521 return MS_REG_READ(AR9271, gpio) != 0; 2522 else if (AR_SREV_9287_11_OR_LATER(ah)) 2523 return MS_REG_READ(AR9287, gpio) != 0; 2524 else if (AR_SREV_9285_12_OR_LATER(ah)) 2525 return MS_REG_READ(AR9285, gpio) != 0; 2526 else if (AR_SREV_9280_20_OR_LATER(ah)) 2527 return MS_REG_READ(AR928X, gpio) != 0; 2528 else 2529 return MS_REG_READ(AR, gpio) != 0; 2530} 2531EXPORT_SYMBOL(ath9k_hw_gpio_get); 2532 2533void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2534 u32 ah_signal_type) 2535{ 2536 u32 gpio_shift; 2537 2538 if (AR_DEVID_7010(ah)) { 2539 gpio_shift = gpio; 2540 REG_RMW(ah, AR7010_GPIO_OE, 2541 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2542 (AR7010_GPIO_OE_MASK << gpio_shift)); 2543 return; 2544 } 2545 2546 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2547 gpio_shift = 2 * gpio; 2548 REG_RMW(ah, 2549 AR_GPIO_OE_OUT, 2550 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2551 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2552} 2553EXPORT_SYMBOL(ath9k_hw_cfg_output); 2554 2555void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2556{ 2557 if (AR_DEVID_7010(ah)) { 2558 val = val ? 0 : 1; 2559 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2560 AR_GPIO_BIT(gpio)); 2561 return; 2562 } 2563 2564 if (AR_SREV_9271(ah)) 2565 val = ~val; 2566 2567 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2568 AR_GPIO_BIT(gpio)); 2569} 2570EXPORT_SYMBOL(ath9k_hw_set_gpio); 2571 2572void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2573{ 2574 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2575} 2576EXPORT_SYMBOL(ath9k_hw_setantenna); 2577 2578/*********************/ 2579/* General Operation */ 2580/*********************/ 2581 2582u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2583{ 2584 u32 bits = REG_READ(ah, AR_RX_FILTER); 2585 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2586 2587 if (phybits & AR_PHY_ERR_RADAR) 2588 bits |= ATH9K_RX_FILTER_PHYRADAR; 2589 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2590 bits |= ATH9K_RX_FILTER_PHYERR; 2591 2592 return bits; 2593} 2594EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2595 2596void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2597{ 2598 u32 phybits; 2599 2600 ENABLE_REGWRITE_BUFFER(ah); 2601 2602 if (AR_SREV_9462(ah)) 2603 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER; 2604 2605 REG_WRITE(ah, AR_RX_FILTER, bits); 2606 2607 phybits = 0; 2608 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2609 phybits |= AR_PHY_ERR_RADAR; 2610 if (bits & ATH9K_RX_FILTER_PHYERR) 2611 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2612 REG_WRITE(ah, AR_PHY_ERR, phybits); 2613 2614 if (phybits) 2615 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2616 else 2617 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2618 2619 REGWRITE_BUFFER_FLUSH(ah); 2620} 2621EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2622 2623bool ath9k_hw_phy_disable(struct ath_hw *ah) 2624{ 2625 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2626 return false; 2627 2628 ath9k_hw_init_pll(ah, NULL); 2629 ah->htc_reset_init = true; 2630 return true; 2631} 2632EXPORT_SYMBOL(ath9k_hw_phy_disable); 2633 2634bool ath9k_hw_disable(struct ath_hw *ah) 2635{ 2636 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2637 return false; 2638 2639 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2640 return false; 2641 2642 ath9k_hw_init_pll(ah, NULL); 2643 return true; 2644} 2645EXPORT_SYMBOL(ath9k_hw_disable); 2646 2647static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2648{ 2649 enum eeprom_param gain_param; 2650 2651 if (IS_CHAN_2GHZ(chan)) 2652 gain_param = EEP_ANTENNA_GAIN_2G; 2653 else 2654 gain_param = EEP_ANTENNA_GAIN_5G; 2655 2656 return ah->eep_ops->get_eeprom(ah, gain_param); 2657} 2658 2659void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan) 2660{ 2661 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2662 struct ieee80211_channel *channel; 2663 int chan_pwr, new_pwr, max_gain; 2664 int ant_gain, ant_reduction = 0; 2665 2666 if (!chan) 2667 return; 2668 2669 channel = chan->chan; 2670 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); 2671 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2672 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2; 2673 2674 ant_gain = get_antenna_gain(ah, chan); 2675 if (ant_gain > max_gain) 2676 ant_reduction = ant_gain - max_gain; 2677 2678 ah->eep_ops->set_txpower(ah, chan, 2679 ath9k_regd_get_ctl(reg, chan), 2680 ant_reduction, new_pwr, false); 2681} 2682 2683void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2684{ 2685 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2686 struct ath9k_channel *chan = ah->curchan; 2687 struct ieee80211_channel *channel = chan->chan; 2688 2689 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); 2690 if (test) 2691 channel->max_power = MAX_RATE_POWER / 2; 2692 2693 ath9k_hw_apply_txpower(ah, chan); 2694 2695 if (test) 2696 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2697} 2698EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2699 2700void ath9k_hw_setopmode(struct ath_hw *ah) 2701{ 2702 ath9k_hw_set_operating_mode(ah, ah->opmode); 2703} 2704EXPORT_SYMBOL(ath9k_hw_setopmode); 2705 2706void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2707{ 2708 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2709 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2710} 2711EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2712 2713void ath9k_hw_write_associd(struct ath_hw *ah) 2714{ 2715 struct ath_common *common = ath9k_hw_common(ah); 2716 2717 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2718 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2719 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2720} 2721EXPORT_SYMBOL(ath9k_hw_write_associd); 2722 2723#define ATH9K_MAX_TSF_READ 10 2724 2725u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2726{ 2727 u32 tsf_lower, tsf_upper1, tsf_upper2; 2728 int i; 2729 2730 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2731 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2732 tsf_lower = REG_READ(ah, AR_TSF_L32); 2733 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2734 if (tsf_upper2 == tsf_upper1) 2735 break; 2736 tsf_upper1 = tsf_upper2; 2737 } 2738 2739 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2740 2741 return (((u64)tsf_upper1 << 32) | tsf_lower); 2742} 2743EXPORT_SYMBOL(ath9k_hw_gettsf64); 2744 2745void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2746{ 2747 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2748 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2749} 2750EXPORT_SYMBOL(ath9k_hw_settsf64); 2751 2752void ath9k_hw_reset_tsf(struct ath_hw *ah) 2753{ 2754 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2755 AH_TSF_WRITE_TIMEOUT)) 2756 ath_dbg(ath9k_hw_common(ah), RESET, 2757 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2758 2759 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2760} 2761EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2762 2763void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) 2764{ 2765 if (setting) 2766 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2767 else 2768 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2769} 2770EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2771 2772void ath9k_hw_set11nmac2040(struct ath_hw *ah) 2773{ 2774 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 2775 u32 macmode; 2776 2777 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) 2778 macmode = AR_2040_JOINED_RX_CLEAR; 2779 else 2780 macmode = 0; 2781 2782 REG_WRITE(ah, AR_2040_MODE, macmode); 2783} 2784 2785/* HW Generic timers configuration */ 2786 2787static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2788{ 2789 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2790 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2791 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2792 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2793 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2794 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2795 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2796 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2797 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2798 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2799 AR_NDP2_TIMER_MODE, 0x0002}, 2800 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2801 AR_NDP2_TIMER_MODE, 0x0004}, 2802 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2803 AR_NDP2_TIMER_MODE, 0x0008}, 2804 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2805 AR_NDP2_TIMER_MODE, 0x0010}, 2806 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2807 AR_NDP2_TIMER_MODE, 0x0020}, 2808 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2809 AR_NDP2_TIMER_MODE, 0x0040}, 2810 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2811 AR_NDP2_TIMER_MODE, 0x0080} 2812}; 2813 2814/* HW generic timer primitives */ 2815 2816/* compute and clear index of rightmost 1 */ 2817static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) 2818{ 2819 u32 b; 2820 2821 b = *mask; 2822 b &= (0-b); 2823 *mask &= ~b; 2824 b *= debruijn32; 2825 b >>= 27; 2826 2827 return timer_table->gen_timer_index[b]; 2828} 2829 2830u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2831{ 2832 return REG_READ(ah, AR_TSF_L32); 2833} 2834EXPORT_SYMBOL(ath9k_hw_gettsf32); 2835 2836struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 2837 void (*trigger)(void *), 2838 void (*overflow)(void *), 2839 void *arg, 2840 u8 timer_index) 2841{ 2842 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2843 struct ath_gen_timer *timer; 2844 2845 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 2846 2847 if (timer == NULL) { 2848 ath_err(ath9k_hw_common(ah), 2849 "Failed to allocate memory for hw timer[%d]\n", 2850 timer_index); 2851 return NULL; 2852 } 2853 2854 /* allocate a hardware generic timer slot */ 2855 timer_table->timers[timer_index] = timer; 2856 timer->index = timer_index; 2857 timer->trigger = trigger; 2858 timer->overflow = overflow; 2859 timer->arg = arg; 2860 2861 return timer; 2862} 2863EXPORT_SYMBOL(ath_gen_timer_alloc); 2864 2865void ath9k_hw_gen_timer_start(struct ath_hw *ah, 2866 struct ath_gen_timer *timer, 2867 u32 trig_timeout, 2868 u32 timer_period) 2869{ 2870 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2871 u32 tsf, timer_next; 2872 2873 BUG_ON(!timer_period); 2874 2875 set_bit(timer->index, &timer_table->timer_mask.timer_bits); 2876 2877 tsf = ath9k_hw_gettsf32(ah); 2878 2879 timer_next = tsf + trig_timeout; 2880 2881 ath_dbg(ath9k_hw_common(ah), HWTIMER, 2882 "current tsf %x period %x timer_next %x\n", 2883 tsf, timer_period, timer_next); 2884 2885 /* 2886 * Program generic timer registers 2887 */ 2888 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 2889 timer_next); 2890 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 2891 timer_period); 2892 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2893 gen_tmr_configuration[timer->index].mode_mask); 2894 2895 if (AR_SREV_9462(ah)) { 2896 /* 2897 * Starting from AR9462, each generic timer can select which tsf 2898 * to use. But we still follow the old rule, 0 - 7 use tsf and 2899 * 8 - 15 use tsf2. 2900 */ 2901 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 2902 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 2903 (1 << timer->index)); 2904 else 2905 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 2906 (1 << timer->index)); 2907 } 2908 2909 /* Enable both trigger and thresh interrupt masks */ 2910 REG_SET_BIT(ah, AR_IMR_S5, 2911 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2912 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2913} 2914EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 2915 2916void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 2917{ 2918 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2919 2920 if ((timer->index < AR_FIRST_NDP_TIMER) || 2921 (timer->index >= ATH_MAX_GEN_TIMER)) { 2922 return; 2923 } 2924 2925 /* Clear generic timer enable bits. */ 2926 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2927 gen_tmr_configuration[timer->index].mode_mask); 2928 2929 /* Disable both trigger and thresh interrupt masks */ 2930 REG_CLR_BIT(ah, AR_IMR_S5, 2931 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2932 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2933 2934 clear_bit(timer->index, &timer_table->timer_mask.timer_bits); 2935} 2936EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 2937 2938void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 2939{ 2940 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2941 2942 /* free the hardware generic timer slot */ 2943 timer_table->timers[timer->index] = NULL; 2944 kfree(timer); 2945} 2946EXPORT_SYMBOL(ath_gen_timer_free); 2947 2948/* 2949 * Generic Timer Interrupts handling 2950 */ 2951void ath_gen_timer_isr(struct ath_hw *ah) 2952{ 2953 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2954 struct ath_gen_timer *timer; 2955 struct ath_common *common = ath9k_hw_common(ah); 2956 u32 trigger_mask, thresh_mask, index; 2957 2958 /* get hardware generic timer interrupt status */ 2959 trigger_mask = ah->intr_gen_timer_trigger; 2960 thresh_mask = ah->intr_gen_timer_thresh; 2961 trigger_mask &= timer_table->timer_mask.val; 2962 thresh_mask &= timer_table->timer_mask.val; 2963 2964 trigger_mask &= ~thresh_mask; 2965 2966 while (thresh_mask) { 2967 index = rightmost_index(timer_table, &thresh_mask); 2968 timer = timer_table->timers[index]; 2969 BUG_ON(!timer); 2970 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n", 2971 index); 2972 timer->overflow(timer->arg); 2973 } 2974 2975 while (trigger_mask) { 2976 index = rightmost_index(timer_table, &trigger_mask); 2977 timer = timer_table->timers[index]; 2978 BUG_ON(!timer); 2979 ath_dbg(common, HWTIMER, 2980 "Gen timer[%d] trigger\n", index); 2981 timer->trigger(timer->arg); 2982 } 2983} 2984EXPORT_SYMBOL(ath_gen_timer_isr); 2985 2986/********/ 2987/* HTC */ 2988/********/ 2989 2990static struct { 2991 u32 version; 2992 const char * name; 2993} ath_mac_bb_names[] = { 2994 /* Devices with external radios */ 2995 { AR_SREV_VERSION_5416_PCI, "5416" }, 2996 { AR_SREV_VERSION_5416_PCIE, "5418" }, 2997 { AR_SREV_VERSION_9100, "9100" }, 2998 { AR_SREV_VERSION_9160, "9160" }, 2999 /* Single-chip solutions */ 3000 { AR_SREV_VERSION_9280, "9280" }, 3001 { AR_SREV_VERSION_9285, "9285" }, 3002 { AR_SREV_VERSION_9287, "9287" }, 3003 { AR_SREV_VERSION_9271, "9271" }, 3004 { AR_SREV_VERSION_9300, "9300" }, 3005 { AR_SREV_VERSION_9330, "9330" }, 3006 { AR_SREV_VERSION_9340, "9340" }, 3007 { AR_SREV_VERSION_9485, "9485" }, 3008 { AR_SREV_VERSION_9462, "9462" }, 3009}; 3010 3011/* For devices with external radios */ 3012static struct { 3013 u16 version; 3014 const char * name; 3015} ath_rf_names[] = { 3016 { 0, "5133" }, 3017 { AR_RAD5133_SREV_MAJOR, "5133" }, 3018 { AR_RAD5122_SREV_MAJOR, "5122" }, 3019 { AR_RAD2133_SREV_MAJOR, "2133" }, 3020 { AR_RAD2122_SREV_MAJOR, "2122" } 3021}; 3022 3023/* 3024 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3025 */ 3026static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3027{ 3028 int i; 3029 3030 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3031 if (ath_mac_bb_names[i].version == mac_bb_version) { 3032 return ath_mac_bb_names[i].name; 3033 } 3034 } 3035 3036 return "????"; 3037} 3038 3039/* 3040 * Return the RF name. "????" is returned if the RF is unknown. 3041 * Used for devices with external radios. 3042 */ 3043static const char *ath9k_hw_rf_name(u16 rf_version) 3044{ 3045 int i; 3046 3047 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3048 if (ath_rf_names[i].version == rf_version) { 3049 return ath_rf_names[i].name; 3050 } 3051 } 3052 3053 return "????"; 3054} 3055 3056void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3057{ 3058 int used; 3059 3060 /* chipsets >= AR9280 are single-chip */ 3061 if (AR_SREV_9280_20_OR_LATER(ah)) { 3062 used = snprintf(hw_name, len, 3063 "Atheros AR%s Rev:%x", 3064 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3065 ah->hw_version.macRev); 3066 } 3067 else { 3068 used = snprintf(hw_name, len, 3069 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3070 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3071 ah->hw_version.macRev, 3072 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & 3073 AR_RADIO_SREV_MAJOR)), 3074 ah->hw_version.phyRev); 3075 } 3076 3077 hw_name[used] = '\0'; 3078} 3079EXPORT_SYMBOL(ath9k_hw_name); 3080