hw.c revision 99ac8cd6ff44e733acdff0d36475dce2d3fe6a6b
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <asm/unaligned.h>
21
22#include "hw.h"
23#include "hw-ops.h"
24#include "rc.h"
25#include "ar9003_mac.h"
26#include "ar9003_mci.h"
27
28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29
30MODULE_AUTHOR("Atheros Communications");
31MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
32MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
33MODULE_LICENSE("Dual BSD/GPL");
34
35static int __init ath9k_init(void)
36{
37	return 0;
38}
39module_init(ath9k_init);
40
41static void __exit ath9k_exit(void)
42{
43	return;
44}
45module_exit(ath9k_exit);
46
47/* Private hardware callbacks */
48
49static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
50{
51	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52}
53
54static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
55{
56	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57}
58
59static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
60					struct ath9k_channel *chan)
61{
62	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
63}
64
65static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
66{
67	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
68		return;
69
70	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
71}
72
73static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
74{
75	/* You will not have this callback if using the old ANI */
76	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
77		return;
78
79	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
80}
81
82/********************/
83/* Helper Functions */
84/********************/
85
86static void ath9k_hw_set_clockrate(struct ath_hw *ah)
87{
88	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
89	struct ath_common *common = ath9k_hw_common(ah);
90	unsigned int clockrate;
91
92	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
93	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
94		clockrate = 117;
95	else if (!ah->curchan) /* should really check for CCK instead */
96		clockrate = ATH9K_CLOCK_RATE_CCK;
97	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
98		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
99	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
100		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
101	else
102		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
103
104	if (conf_is_ht40(conf))
105		clockrate *= 2;
106
107	if (ah->curchan) {
108		if (IS_CHAN_HALF_RATE(ah->curchan))
109			clockrate /= 2;
110		if (IS_CHAN_QUARTER_RATE(ah->curchan))
111			clockrate /= 4;
112	}
113
114	common->clockrate = clockrate;
115}
116
117static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
118{
119	struct ath_common *common = ath9k_hw_common(ah);
120
121	return usecs * common->clockrate;
122}
123
124bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
125{
126	int i;
127
128	BUG_ON(timeout < AH_TIME_QUANTUM);
129
130	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
131		if ((REG_READ(ah, reg) & mask) == val)
132			return true;
133
134		udelay(AH_TIME_QUANTUM);
135	}
136
137	ath_dbg(ath9k_hw_common(ah), ANY,
138		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
139		timeout, reg, REG_READ(ah, reg), mask, val);
140
141	return false;
142}
143EXPORT_SYMBOL(ath9k_hw_wait);
144
145void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
146			  int column, unsigned int *writecnt)
147{
148	int r;
149
150	ENABLE_REGWRITE_BUFFER(ah);
151	for (r = 0; r < array->ia_rows; r++) {
152		REG_WRITE(ah, INI_RA(array, r, 0),
153			  INI_RA(array, r, column));
154		DO_DELAY(*writecnt);
155	}
156	REGWRITE_BUFFER_FLUSH(ah);
157}
158
159u32 ath9k_hw_reverse_bits(u32 val, u32 n)
160{
161	u32 retval;
162	int i;
163
164	for (i = 0, retval = 0; i < n; i++) {
165		retval = (retval << 1) | (val & 1);
166		val >>= 1;
167	}
168	return retval;
169}
170
171u16 ath9k_hw_computetxtime(struct ath_hw *ah,
172			   u8 phy, int kbps,
173			   u32 frameLen, u16 rateix,
174			   bool shortPreamble)
175{
176	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
177
178	if (kbps == 0)
179		return 0;
180
181	switch (phy) {
182	case WLAN_RC_PHY_CCK:
183		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
184		if (shortPreamble)
185			phyTime >>= 1;
186		numBits = frameLen << 3;
187		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
188		break;
189	case WLAN_RC_PHY_OFDM:
190		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192			numBits = OFDM_PLCP_BITS + (frameLen << 3);
193			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194			txTime = OFDM_SIFS_TIME_QUARTER
195				+ OFDM_PREAMBLE_TIME_QUARTER
196				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197		} else if (ah->curchan &&
198			   IS_CHAN_HALF_RATE(ah->curchan)) {
199			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202			txTime = OFDM_SIFS_TIME_HALF +
203				OFDM_PREAMBLE_TIME_HALF
204				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
205		} else {
206			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207			numBits = OFDM_PLCP_BITS + (frameLen << 3);
208			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210				+ (numSymbols * OFDM_SYMBOL_TIME);
211		}
212		break;
213	default:
214		ath_err(ath9k_hw_common(ah),
215			"Unknown phy %u (rate ix %u)\n", phy, rateix);
216		txTime = 0;
217		break;
218	}
219
220	return txTime;
221}
222EXPORT_SYMBOL(ath9k_hw_computetxtime);
223
224void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225				  struct ath9k_channel *chan,
226				  struct chan_centers *centers)
227{
228	int8_t extoff;
229
230	if (!IS_CHAN_HT40(chan)) {
231		centers->ctl_center = centers->ext_center =
232			centers->synth_center = chan->channel;
233		return;
234	}
235
236	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238		centers->synth_center =
239			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
240		extoff = 1;
241	} else {
242		centers->synth_center =
243			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
244		extoff = -1;
245	}
246
247	centers->ctl_center =
248		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249	/* 25 MHz spacing is supported by hw but not on upper layers */
250	centers->ext_center =
251		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
252}
253
254/******************/
255/* Chip Revisions */
256/******************/
257
258static void ath9k_hw_read_revisions(struct ath_hw *ah)
259{
260	u32 val;
261
262	switch (ah->hw_version.devid) {
263	case AR5416_AR9100_DEVID:
264		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
265		break;
266	case AR9300_DEVID_AR9330:
267		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
268		if (ah->get_mac_revision) {
269			ah->hw_version.macRev = ah->get_mac_revision();
270		} else {
271			val = REG_READ(ah, AR_SREV);
272			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
273		}
274		return;
275	case AR9300_DEVID_AR9340:
276		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
277		val = REG_READ(ah, AR_SREV);
278		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
279		return;
280	}
281
282	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
283
284	if (val == 0xFF) {
285		val = REG_READ(ah, AR_SREV);
286		ah->hw_version.macVersion =
287			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
288		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
289
290		if (AR_SREV_9462(ah))
291			ah->is_pciexpress = true;
292		else
293			ah->is_pciexpress = (val &
294					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
295	} else {
296		if (!AR_SREV_9100(ah))
297			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
298
299		ah->hw_version.macRev = val & AR_SREV_REVISION;
300
301		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
302			ah->is_pciexpress = true;
303	}
304}
305
306/************************************/
307/* HW Attach, Detach, Init Routines */
308/************************************/
309
310static void ath9k_hw_disablepcie(struct ath_hw *ah)
311{
312	if (!AR_SREV_5416(ah))
313		return;
314
315	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
317	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
318	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
319	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
320	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
321	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
322	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
323	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
324
325	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
326}
327
328static void ath9k_hw_aspm_init(struct ath_hw *ah)
329{
330	struct ath_common *common = ath9k_hw_common(ah);
331
332	if (common->bus_ops->aspm_init)
333		common->bus_ops->aspm_init(common);
334}
335
336/* This should work for all families including legacy */
337static bool ath9k_hw_chip_test(struct ath_hw *ah)
338{
339	struct ath_common *common = ath9k_hw_common(ah);
340	u32 regAddr[2] = { AR_STA_ID0 };
341	u32 regHold[2];
342	static const u32 patternData[4] = {
343		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
344	};
345	int i, j, loop_max;
346
347	if (!AR_SREV_9300_20_OR_LATER(ah)) {
348		loop_max = 2;
349		regAddr[1] = AR_PHY_BASE + (8 << 2);
350	} else
351		loop_max = 1;
352
353	for (i = 0; i < loop_max; i++) {
354		u32 addr = regAddr[i];
355		u32 wrData, rdData;
356
357		regHold[i] = REG_READ(ah, addr);
358		for (j = 0; j < 0x100; j++) {
359			wrData = (j << 16) | j;
360			REG_WRITE(ah, addr, wrData);
361			rdData = REG_READ(ah, addr);
362			if (rdData != wrData) {
363				ath_err(common,
364					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
365					addr, wrData, rdData);
366				return false;
367			}
368		}
369		for (j = 0; j < 4; j++) {
370			wrData = patternData[j];
371			REG_WRITE(ah, addr, wrData);
372			rdData = REG_READ(ah, addr);
373			if (wrData != rdData) {
374				ath_err(common,
375					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
376					addr, wrData, rdData);
377				return false;
378			}
379		}
380		REG_WRITE(ah, regAddr[i], regHold[i]);
381	}
382	udelay(100);
383
384	return true;
385}
386
387static void ath9k_hw_init_config(struct ath_hw *ah)
388{
389	int i;
390
391	ah->config.dma_beacon_response_time = 2;
392	ah->config.sw_beacon_response_time = 10;
393	ah->config.additional_swba_backoff = 0;
394	ah->config.ack_6mb = 0x0;
395	ah->config.cwm_ignore_extcca = 0;
396	ah->config.pcie_clock_req = 0;
397	ah->config.pcie_waen = 0;
398	ah->config.analog_shiftreg = 1;
399	ah->config.enable_ani = true;
400
401	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
402		ah->config.spurchans[i][0] = AR_NO_SPUR;
403		ah->config.spurchans[i][1] = AR_NO_SPUR;
404	}
405
406	/* PAPRD needs some more work to be enabled */
407	ah->config.paprd_disable = 1;
408
409	ah->config.rx_intr_mitigation = true;
410	ah->config.pcieSerDesWrite = true;
411
412	/*
413	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
414	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
415	 * This means we use it for all AR5416 devices, and the few
416	 * minor PCI AR9280 devices out there.
417	 *
418	 * Serialization is required because these devices do not handle
419	 * well the case of two concurrent reads/writes due to the latency
420	 * involved. During one read/write another read/write can be issued
421	 * on another CPU while the previous read/write may still be working
422	 * on our hardware, if we hit this case the hardware poops in a loop.
423	 * We prevent this by serializing reads and writes.
424	 *
425	 * This issue is not present on PCI-Express devices or pre-AR5416
426	 * devices (legacy, 802.11abg).
427	 */
428	if (num_possible_cpus() > 1)
429		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
430}
431
432static void ath9k_hw_init_defaults(struct ath_hw *ah)
433{
434	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
435
436	regulatory->country_code = CTRY_DEFAULT;
437	regulatory->power_limit = MAX_RATE_POWER;
438
439	ah->hw_version.magic = AR5416_MAGIC;
440	ah->hw_version.subvendorid = 0;
441
442	ah->atim_window = 0;
443	ah->sta_id1_defaults =
444		AR_STA_ID1_CRPT_MIC_ENABLE |
445		AR_STA_ID1_MCAST_KSRCH;
446	if (AR_SREV_9100(ah))
447		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
448	ah->enable_32kHz_clock = DONT_USE_32KHZ;
449	ah->slottime = ATH9K_SLOT_TIME_9;
450	ah->globaltxtimeout = (u32) -1;
451	ah->power_mode = ATH9K_PM_UNDEFINED;
452	ah->htc_reset_init = true;
453}
454
455static int ath9k_hw_init_macaddr(struct ath_hw *ah)
456{
457	struct ath_common *common = ath9k_hw_common(ah);
458	u32 sum;
459	int i;
460	u16 eeval;
461	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
462
463	sum = 0;
464	for (i = 0; i < 3; i++) {
465		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
466		sum += eeval;
467		common->macaddr[2 * i] = eeval >> 8;
468		common->macaddr[2 * i + 1] = eeval & 0xff;
469	}
470	if (sum == 0 || sum == 0xffff * 3)
471		return -EADDRNOTAVAIL;
472
473	return 0;
474}
475
476static int ath9k_hw_post_init(struct ath_hw *ah)
477{
478	struct ath_common *common = ath9k_hw_common(ah);
479	int ecode;
480
481	if (common->bus_ops->ath_bus_type != ATH_USB) {
482		if (!ath9k_hw_chip_test(ah))
483			return -ENODEV;
484	}
485
486	if (!AR_SREV_9300_20_OR_LATER(ah)) {
487		ecode = ar9002_hw_rf_claim(ah);
488		if (ecode != 0)
489			return ecode;
490	}
491
492	ecode = ath9k_hw_eeprom_init(ah);
493	if (ecode != 0)
494		return ecode;
495
496	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
497		ah->eep_ops->get_eeprom_ver(ah),
498		ah->eep_ops->get_eeprom_rev(ah));
499
500	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
501	if (ecode) {
502		ath_err(ath9k_hw_common(ah),
503			"Failed allocating banks for external radio\n");
504		ath9k_hw_rf_free_ext_banks(ah);
505		return ecode;
506	}
507
508	if (ah->config.enable_ani) {
509		ath9k_hw_ani_setup(ah);
510		ath9k_hw_ani_init(ah);
511	}
512
513	return 0;
514}
515
516static void ath9k_hw_attach_ops(struct ath_hw *ah)
517{
518	if (AR_SREV_9300_20_OR_LATER(ah))
519		ar9003_hw_attach_ops(ah);
520	else
521		ar9002_hw_attach_ops(ah);
522}
523
524/* Called for all hardware families */
525static int __ath9k_hw_init(struct ath_hw *ah)
526{
527	struct ath_common *common = ath9k_hw_common(ah);
528	int r = 0;
529
530	ath9k_hw_read_revisions(ah);
531
532	/*
533	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
534	 * We need to do this to avoid RMW of this register. We cannot
535	 * read the reg when chip is asleep.
536	 */
537	ah->WARegVal = REG_READ(ah, AR_WA);
538	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
539			 AR_WA_ASPM_TIMER_BASED_DISABLE);
540
541	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
542		ath_err(common, "Couldn't reset chip\n");
543		return -EIO;
544	}
545
546	if (AR_SREV_9462(ah))
547		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
548
549	ath9k_hw_init_defaults(ah);
550	ath9k_hw_init_config(ah);
551
552	ath9k_hw_attach_ops(ah);
553
554	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
555		ath_err(common, "Couldn't wakeup chip\n");
556		return -EIO;
557	}
558
559	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
560		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
561		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
562		     !ah->is_pciexpress)) {
563			ah->config.serialize_regmode =
564				SER_REG_MODE_ON;
565		} else {
566			ah->config.serialize_regmode =
567				SER_REG_MODE_OFF;
568		}
569	}
570
571	ath_dbg(common, RESET, "serialize_regmode is %d\n",
572		ah->config.serialize_regmode);
573
574	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
575		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
576	else
577		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
578
579	switch (ah->hw_version.macVersion) {
580	case AR_SREV_VERSION_5416_PCI:
581	case AR_SREV_VERSION_5416_PCIE:
582	case AR_SREV_VERSION_9160:
583	case AR_SREV_VERSION_9100:
584	case AR_SREV_VERSION_9280:
585	case AR_SREV_VERSION_9285:
586	case AR_SREV_VERSION_9287:
587	case AR_SREV_VERSION_9271:
588	case AR_SREV_VERSION_9300:
589	case AR_SREV_VERSION_9330:
590	case AR_SREV_VERSION_9485:
591	case AR_SREV_VERSION_9340:
592	case AR_SREV_VERSION_9462:
593		break;
594	default:
595		ath_err(common,
596			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
597			ah->hw_version.macVersion, ah->hw_version.macRev);
598		return -EOPNOTSUPP;
599	}
600
601	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
602	    AR_SREV_9330(ah))
603		ah->is_pciexpress = false;
604
605	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
606	ath9k_hw_init_cal_settings(ah);
607
608	ah->ani_function = ATH9K_ANI_ALL;
609	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
610		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
611	if (!AR_SREV_9300_20_OR_LATER(ah))
612		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
613
614	/* disable ANI for 9340 */
615	if (AR_SREV_9340(ah))
616		ah->config.enable_ani = false;
617
618	ath9k_hw_init_mode_regs(ah);
619
620	if (!ah->is_pciexpress)
621		ath9k_hw_disablepcie(ah);
622
623	if (!AR_SREV_9300_20_OR_LATER(ah))
624		ar9002_hw_cck_chan14_spread(ah);
625
626	r = ath9k_hw_post_init(ah);
627	if (r)
628		return r;
629
630	ath9k_hw_init_mode_gain_regs(ah);
631	r = ath9k_hw_fill_cap_info(ah);
632	if (r)
633		return r;
634
635	if (ah->is_pciexpress)
636		ath9k_hw_aspm_init(ah);
637
638	r = ath9k_hw_init_macaddr(ah);
639	if (r) {
640		ath_err(common, "Failed to initialize MAC address\n");
641		return r;
642	}
643
644	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
645		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
646	else
647		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
648
649	if (AR_SREV_9330(ah))
650		ah->bb_watchdog_timeout_ms = 85;
651	else
652		ah->bb_watchdog_timeout_ms = 25;
653
654	common->state = ATH_HW_INITIALIZED;
655
656	return 0;
657}
658
659int ath9k_hw_init(struct ath_hw *ah)
660{
661	int ret;
662	struct ath_common *common = ath9k_hw_common(ah);
663
664	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
665	switch (ah->hw_version.devid) {
666	case AR5416_DEVID_PCI:
667	case AR5416_DEVID_PCIE:
668	case AR5416_AR9100_DEVID:
669	case AR9160_DEVID_PCI:
670	case AR9280_DEVID_PCI:
671	case AR9280_DEVID_PCIE:
672	case AR9285_DEVID_PCIE:
673	case AR9287_DEVID_PCI:
674	case AR9287_DEVID_PCIE:
675	case AR2427_DEVID_PCIE:
676	case AR9300_DEVID_PCIE:
677	case AR9300_DEVID_AR9485_PCIE:
678	case AR9300_DEVID_AR9330:
679	case AR9300_DEVID_AR9340:
680	case AR9300_DEVID_AR9580:
681	case AR9300_DEVID_AR9462:
682		break;
683	default:
684		if (common->bus_ops->ath_bus_type == ATH_USB)
685			break;
686		ath_err(common, "Hardware device ID 0x%04x not supported\n",
687			ah->hw_version.devid);
688		return -EOPNOTSUPP;
689	}
690
691	ret = __ath9k_hw_init(ah);
692	if (ret) {
693		ath_err(common,
694			"Unable to initialize hardware; initialization status: %d\n",
695			ret);
696		return ret;
697	}
698
699	return 0;
700}
701EXPORT_SYMBOL(ath9k_hw_init);
702
703static void ath9k_hw_init_qos(struct ath_hw *ah)
704{
705	ENABLE_REGWRITE_BUFFER(ah);
706
707	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
708	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
709
710	REG_WRITE(ah, AR_QOS_NO_ACK,
711		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
712		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
713		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
714
715	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
716	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
717	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
718	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
719	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
720
721	REGWRITE_BUFFER_FLUSH(ah);
722}
723
724u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
725{
726	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
727	udelay(100);
728	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
729
730	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
731		udelay(100);
732
733	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
734}
735EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
736
737static void ath9k_hw_init_pll(struct ath_hw *ah,
738			      struct ath9k_channel *chan)
739{
740	u32 pll;
741
742	if (AR_SREV_9485(ah)) {
743
744		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748			      AR_CH0_DPLL2_KD, 0x40);
749		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
750			      AR_CH0_DPLL2_KI, 0x4);
751
752		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
753			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
755			      AR_CH0_BB_DPLL1_NINI, 0x58);
756		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
757			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
758
759		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
761		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
763		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
764			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
765
766		/* program BB PLL phase_shift to 0x6 */
767		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
768			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
769
770		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
772		udelay(1000);
773	} else if (AR_SREV_9330(ah)) {
774		u32 ddr_dpll2, pll_control2, kd;
775
776		if (ah->is_clk_25mhz) {
777			ddr_dpll2 = 0x18e82f01;
778			pll_control2 = 0xe04a3d;
779			kd = 0x1d;
780		} else {
781			ddr_dpll2 = 0x19e82f01;
782			pll_control2 = 0x886666;
783			kd = 0x3d;
784		}
785
786		/* program DDR PLL ki and kd value */
787		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
788
789		/* program DDR PLL phase_shift */
790		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
791			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
792
793		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
794		udelay(1000);
795
796		/* program refdiv, nint, frac to RTC register */
797		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
798
799		/* program BB PLL kd and ki value */
800		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
801		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
802
803		/* program BB PLL phase_shift */
804		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
805			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
806	} else if (AR_SREV_9340(ah)) {
807		u32 regval, pll2_divint, pll2_divfrac, refdiv;
808
809		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
810		udelay(1000);
811
812		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
813		udelay(100);
814
815		if (ah->is_clk_25mhz) {
816			pll2_divint = 0x54;
817			pll2_divfrac = 0x1eb85;
818			refdiv = 3;
819		} else {
820			pll2_divint = 88;
821			pll2_divfrac = 0;
822			refdiv = 5;
823		}
824
825		regval = REG_READ(ah, AR_PHY_PLL_MODE);
826		regval |= (0x1 << 16);
827		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
828		udelay(100);
829
830		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
831			  (pll2_divint << 18) | pll2_divfrac);
832		udelay(100);
833
834		regval = REG_READ(ah, AR_PHY_PLL_MODE);
835		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
836			 (0x4 << 26) | (0x18 << 19);
837		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
838		REG_WRITE(ah, AR_PHY_PLL_MODE,
839			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
840		udelay(1000);
841	}
842
843	pll = ath9k_hw_compute_pll_control(ah, chan);
844
845	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
846
847	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
848		udelay(1000);
849
850	/* Switch the core clock for ar9271 to 117Mhz */
851	if (AR_SREV_9271(ah)) {
852		udelay(500);
853		REG_WRITE(ah, 0x50040, 0x304);
854	}
855
856	udelay(RTC_PLL_SETTLE_DELAY);
857
858	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
859
860	if (AR_SREV_9340(ah)) {
861		if (ah->is_clk_25mhz) {
862			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
863			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
864			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
865		} else {
866			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
867			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
868			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
869		}
870		udelay(100);
871	}
872}
873
874static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
875					  enum nl80211_iftype opmode)
876{
877	u32 sync_default = AR_INTR_SYNC_DEFAULT;
878	u32 imr_reg = AR_IMR_TXERR |
879		AR_IMR_TXURN |
880		AR_IMR_RXERR |
881		AR_IMR_RXORN |
882		AR_IMR_BCNMISC;
883
884	if (AR_SREV_9340(ah))
885		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
886
887	if (AR_SREV_9300_20_OR_LATER(ah)) {
888		imr_reg |= AR_IMR_RXOK_HP;
889		if (ah->config.rx_intr_mitigation)
890			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
891		else
892			imr_reg |= AR_IMR_RXOK_LP;
893
894	} else {
895		if (ah->config.rx_intr_mitigation)
896			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
897		else
898			imr_reg |= AR_IMR_RXOK;
899	}
900
901	if (ah->config.tx_intr_mitigation)
902		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
903	else
904		imr_reg |= AR_IMR_TXOK;
905
906	if (opmode == NL80211_IFTYPE_AP)
907		imr_reg |= AR_IMR_MIB;
908
909	ENABLE_REGWRITE_BUFFER(ah);
910
911	REG_WRITE(ah, AR_IMR, imr_reg);
912	ah->imrs2_reg |= AR_IMR_S2_GTT;
913	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
914
915	if (!AR_SREV_9100(ah)) {
916		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
917		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
918		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
919	}
920
921	REGWRITE_BUFFER_FLUSH(ah);
922
923	if (AR_SREV_9300_20_OR_LATER(ah)) {
924		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
925		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
926		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
927		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
928	}
929}
930
931static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
932{
933	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
934	val = min(val, (u32) 0xFFFF);
935	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
936}
937
938static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
939{
940	u32 val = ath9k_hw_mac_to_clks(ah, us);
941	val = min(val, (u32) 0xFFFF);
942	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
943}
944
945static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
946{
947	u32 val = ath9k_hw_mac_to_clks(ah, us);
948	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
949	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
950}
951
952static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
953{
954	u32 val = ath9k_hw_mac_to_clks(ah, us);
955	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
956	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
957}
958
959static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
960{
961	if (tu > 0xFFFF) {
962		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
963			tu);
964		ah->globaltxtimeout = (u32) -1;
965		return false;
966	} else {
967		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
968		ah->globaltxtimeout = tu;
969		return true;
970	}
971}
972
973void ath9k_hw_init_global_settings(struct ath_hw *ah)
974{
975	struct ath_common *common = ath9k_hw_common(ah);
976	struct ieee80211_conf *conf = &common->hw->conf;
977	const struct ath9k_channel *chan = ah->curchan;
978	int acktimeout, ctstimeout;
979	int slottime;
980	int sifstime;
981	int rx_lat = 0, tx_lat = 0, eifs = 0;
982	u32 reg;
983
984	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
985		ah->misc_mode);
986
987	if (!chan)
988		return;
989
990	if (ah->misc_mode != 0)
991		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
992
993	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
994		rx_lat = 41;
995	else
996		rx_lat = 37;
997	tx_lat = 54;
998
999	if (IS_CHAN_HALF_RATE(chan)) {
1000		eifs = 175;
1001		rx_lat *= 2;
1002		tx_lat *= 2;
1003		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1004		    tx_lat += 11;
1005
1006		slottime = 13;
1007		sifstime = 32;
1008	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1009		eifs = 340;
1010		rx_lat = (rx_lat * 4) - 1;
1011		tx_lat *= 4;
1012		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1013		    tx_lat += 22;
1014
1015		slottime = 21;
1016		sifstime = 64;
1017	} else {
1018		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1019			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1020			reg = AR_USEC_ASYNC_FIFO;
1021		} else {
1022			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1023				common->clockrate;
1024			reg = REG_READ(ah, AR_USEC);
1025		}
1026		rx_lat = MS(reg, AR_USEC_RX_LAT);
1027		tx_lat = MS(reg, AR_USEC_TX_LAT);
1028
1029		slottime = ah->slottime;
1030		if (IS_CHAN_5GHZ(chan))
1031			sifstime = 16;
1032		else
1033			sifstime = 10;
1034	}
1035
1036	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1037	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1038	ctstimeout = acktimeout;
1039
1040	/*
1041	 * Workaround for early ACK timeouts, add an offset to match the
1042	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1043	 * This was initially only meant to work around an issue with delayed
1044	 * BA frames in some implementations, but it has been found to fix ACK
1045	 * timeout issues in other cases as well.
1046	 */
1047	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
1048		acktimeout += 64 - sifstime - ah->slottime;
1049		ctstimeout += 48 - sifstime - ah->slottime;
1050	}
1051
1052
1053	ath9k_hw_set_sifs_time(ah, sifstime);
1054	ath9k_hw_setslottime(ah, slottime);
1055	ath9k_hw_set_ack_timeout(ah, acktimeout);
1056	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1057	if (ah->globaltxtimeout != (u32) -1)
1058		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1059
1060	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1061	REG_RMW(ah, AR_USEC,
1062		(common->clockrate - 1) |
1063		SM(rx_lat, AR_USEC_RX_LAT) |
1064		SM(tx_lat, AR_USEC_TX_LAT),
1065		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1066
1067}
1068EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1069
1070void ath9k_hw_deinit(struct ath_hw *ah)
1071{
1072	struct ath_common *common = ath9k_hw_common(ah);
1073
1074	if (common->state < ATH_HW_INITIALIZED)
1075		goto free_hw;
1076
1077	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1078
1079free_hw:
1080	ath9k_hw_rf_free_ext_banks(ah);
1081}
1082EXPORT_SYMBOL(ath9k_hw_deinit);
1083
1084/*******/
1085/* INI */
1086/*******/
1087
1088u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1089{
1090	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1091
1092	if (IS_CHAN_B(chan))
1093		ctl |= CTL_11B;
1094	else if (IS_CHAN_G(chan))
1095		ctl |= CTL_11G;
1096	else
1097		ctl |= CTL_11A;
1098
1099	return ctl;
1100}
1101
1102/****************************************/
1103/* Reset and Channel Switching Routines */
1104/****************************************/
1105
1106static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1107{
1108	struct ath_common *common = ath9k_hw_common(ah);
1109
1110	ENABLE_REGWRITE_BUFFER(ah);
1111
1112	/*
1113	 * set AHB_MODE not to do cacheline prefetches
1114	*/
1115	if (!AR_SREV_9300_20_OR_LATER(ah))
1116		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1117
1118	/*
1119	 * let mac dma reads be in 128 byte chunks
1120	 */
1121	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1122
1123	REGWRITE_BUFFER_FLUSH(ah);
1124
1125	/*
1126	 * Restore TX Trigger Level to its pre-reset value.
1127	 * The initial value depends on whether aggregation is enabled, and is
1128	 * adjusted whenever underruns are detected.
1129	 */
1130	if (!AR_SREV_9300_20_OR_LATER(ah))
1131		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1132
1133	ENABLE_REGWRITE_BUFFER(ah);
1134
1135	/*
1136	 * let mac dma writes be in 128 byte chunks
1137	 */
1138	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1139
1140	/*
1141	 * Setup receive FIFO threshold to hold off TX activities
1142	 */
1143	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1144
1145	if (AR_SREV_9300_20_OR_LATER(ah)) {
1146		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1147		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1148
1149		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1150			ah->caps.rx_status_len);
1151	}
1152
1153	/*
1154	 * reduce the number of usable entries in PCU TXBUF to avoid
1155	 * wrap around issues.
1156	 */
1157	if (AR_SREV_9285(ah)) {
1158		/* For AR9285 the number of Fifos are reduced to half.
1159		 * So set the usable tx buf size also to half to
1160		 * avoid data/delimiter underruns
1161		 */
1162		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1163			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1164	} else if (!AR_SREV_9271(ah)) {
1165		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1166			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1167	}
1168
1169	REGWRITE_BUFFER_FLUSH(ah);
1170
1171	if (AR_SREV_9300_20_OR_LATER(ah))
1172		ath9k_hw_reset_txstatus_ring(ah);
1173}
1174
1175static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1176{
1177	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1178	u32 set = AR_STA_ID1_KSRCH_MODE;
1179
1180	switch (opmode) {
1181	case NL80211_IFTYPE_ADHOC:
1182	case NL80211_IFTYPE_MESH_POINT:
1183		set |= AR_STA_ID1_ADHOC;
1184		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1185		break;
1186	case NL80211_IFTYPE_AP:
1187		set |= AR_STA_ID1_STA_AP;
1188		/* fall through */
1189	case NL80211_IFTYPE_STATION:
1190		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1191		break;
1192	default:
1193		if (!ah->is_monitoring)
1194			set = 0;
1195		break;
1196	}
1197	REG_RMW(ah, AR_STA_ID1, set, mask);
1198}
1199
1200void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1201				   u32 *coef_mantissa, u32 *coef_exponent)
1202{
1203	u32 coef_exp, coef_man;
1204
1205	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1206		if ((coef_scaled >> coef_exp) & 0x1)
1207			break;
1208
1209	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1210
1211	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1212
1213	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1214	*coef_exponent = coef_exp - 16;
1215}
1216
1217static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1218{
1219	u32 rst_flags;
1220	u32 tmpReg;
1221
1222	if (AR_SREV_9100(ah)) {
1223		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1224			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1225		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1226	}
1227
1228	ENABLE_REGWRITE_BUFFER(ah);
1229
1230	if (AR_SREV_9300_20_OR_LATER(ah)) {
1231		REG_WRITE(ah, AR_WA, ah->WARegVal);
1232		udelay(10);
1233	}
1234
1235	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1236		  AR_RTC_FORCE_WAKE_ON_INT);
1237
1238	if (AR_SREV_9100(ah)) {
1239		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1240			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1241	} else {
1242		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1243		if (tmpReg &
1244		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1245		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1246			u32 val;
1247			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1248
1249			val = AR_RC_HOSTIF;
1250			if (!AR_SREV_9300_20_OR_LATER(ah))
1251				val |= AR_RC_AHB;
1252			REG_WRITE(ah, AR_RC, val);
1253
1254		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1255			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1256
1257		rst_flags = AR_RTC_RC_MAC_WARM;
1258		if (type == ATH9K_RESET_COLD)
1259			rst_flags |= AR_RTC_RC_MAC_COLD;
1260	}
1261
1262	if (AR_SREV_9330(ah)) {
1263		int npend = 0;
1264		int i;
1265
1266		/* AR9330 WAR:
1267		 * call external reset function to reset WMAC if:
1268		 * - doing a cold reset
1269		 * - we have pending frames in the TX queues
1270		 */
1271
1272		for (i = 0; i < AR_NUM_QCU; i++) {
1273			npend = ath9k_hw_numtxpending(ah, i);
1274			if (npend)
1275				break;
1276		}
1277
1278		if (ah->external_reset &&
1279		    (npend || type == ATH9K_RESET_COLD)) {
1280			int reset_err = 0;
1281
1282			ath_dbg(ath9k_hw_common(ah), RESET,
1283				"reset MAC via external reset\n");
1284
1285			reset_err = ah->external_reset();
1286			if (reset_err) {
1287				ath_err(ath9k_hw_common(ah),
1288					"External reset failed, err=%d\n",
1289					reset_err);
1290				return false;
1291			}
1292
1293			REG_WRITE(ah, AR_RTC_RESET, 1);
1294		}
1295	}
1296
1297	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1298
1299	REGWRITE_BUFFER_FLUSH(ah);
1300
1301	udelay(50);
1302
1303	REG_WRITE(ah, AR_RTC_RC, 0);
1304	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1305		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1306		return false;
1307	}
1308
1309	if (!AR_SREV_9100(ah))
1310		REG_WRITE(ah, AR_RC, 0);
1311
1312	if (AR_SREV_9100(ah))
1313		udelay(50);
1314
1315	return true;
1316}
1317
1318static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1319{
1320	ENABLE_REGWRITE_BUFFER(ah);
1321
1322	if (AR_SREV_9300_20_OR_LATER(ah)) {
1323		REG_WRITE(ah, AR_WA, ah->WARegVal);
1324		udelay(10);
1325	}
1326
1327	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1328		  AR_RTC_FORCE_WAKE_ON_INT);
1329
1330	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1331		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1332
1333	REG_WRITE(ah, AR_RTC_RESET, 0);
1334
1335	REGWRITE_BUFFER_FLUSH(ah);
1336
1337	if (!AR_SREV_9300_20_OR_LATER(ah))
1338		udelay(2);
1339
1340	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1341		REG_WRITE(ah, AR_RC, 0);
1342
1343	REG_WRITE(ah, AR_RTC_RESET, 1);
1344
1345	if (!ath9k_hw_wait(ah,
1346			   AR_RTC_STATUS,
1347			   AR_RTC_STATUS_M,
1348			   AR_RTC_STATUS_ON,
1349			   AH_WAIT_TIMEOUT)) {
1350		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1351		return false;
1352	}
1353
1354	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1355}
1356
1357static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1358{
1359	bool ret = false;
1360
1361	if (AR_SREV_9300_20_OR_LATER(ah)) {
1362		REG_WRITE(ah, AR_WA, ah->WARegVal);
1363		udelay(10);
1364	}
1365
1366	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1367		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1368
1369	switch (type) {
1370	case ATH9K_RESET_POWER_ON:
1371		ret = ath9k_hw_set_reset_power_on(ah);
1372		break;
1373	case ATH9K_RESET_WARM:
1374	case ATH9K_RESET_COLD:
1375		ret = ath9k_hw_set_reset(ah, type);
1376		break;
1377	default:
1378		break;
1379	}
1380
1381	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1382		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1383
1384	return ret;
1385}
1386
1387static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1388				struct ath9k_channel *chan)
1389{
1390	int reset_type = ATH9K_RESET_WARM;
1391
1392	if (AR_SREV_9280(ah)) {
1393		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1394			reset_type = ATH9K_RESET_POWER_ON;
1395		else
1396			reset_type = ATH9K_RESET_COLD;
1397	}
1398
1399	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1400		return false;
1401
1402	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1403		return false;
1404
1405	ah->chip_fullsleep = false;
1406	ath9k_hw_init_pll(ah, chan);
1407	ath9k_hw_set_rfmode(ah, chan);
1408
1409	return true;
1410}
1411
1412static bool ath9k_hw_channel_change(struct ath_hw *ah,
1413				    struct ath9k_channel *chan)
1414{
1415	struct ath_common *common = ath9k_hw_common(ah);
1416	u32 qnum;
1417	int r;
1418	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1419	bool band_switch, mode_diff;
1420	u8 ini_reloaded;
1421
1422	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1423		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1424						    CHANNEL_5GHZ));
1425	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1426
1427	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1428		if (ath9k_hw_numtxpending(ah, qnum)) {
1429			ath_dbg(common, QUEUE,
1430				"Transmit frames pending on queue %d\n", qnum);
1431			return false;
1432		}
1433	}
1434
1435	if (!ath9k_hw_rfbus_req(ah)) {
1436		ath_err(common, "Could not kill baseband RX\n");
1437		return false;
1438	}
1439
1440	if (edma && (band_switch || mode_diff)) {
1441		ath9k_hw_mark_phy_inactive(ah);
1442		udelay(5);
1443
1444		ath9k_hw_init_pll(ah, NULL);
1445
1446		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1447			ath_err(common, "Failed to do fast channel change\n");
1448			return false;
1449		}
1450	}
1451
1452	ath9k_hw_set_channel_regs(ah, chan);
1453
1454	r = ath9k_hw_rf_set_freq(ah, chan);
1455	if (r) {
1456		ath_err(common, "Failed to set channel\n");
1457		return false;
1458	}
1459	ath9k_hw_set_clockrate(ah);
1460	ath9k_hw_apply_txpower(ah, chan);
1461	ath9k_hw_rfbus_done(ah);
1462
1463	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1464		ath9k_hw_set_delta_slope(ah, chan);
1465
1466	ath9k_hw_spur_mitigate_freq(ah, chan);
1467
1468	if (edma && (band_switch || mode_diff)) {
1469		ah->ah_flags |= AH_FASTCC;
1470		if (band_switch || ini_reloaded)
1471			ah->eep_ops->set_board_values(ah, chan);
1472
1473		ath9k_hw_init_bb(ah, chan);
1474
1475		if (band_switch || ini_reloaded)
1476			ath9k_hw_init_cal(ah, chan);
1477		ah->ah_flags &= ~AH_FASTCC;
1478	}
1479
1480	return true;
1481}
1482
1483static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1484{
1485	u32 gpio_mask = ah->gpio_mask;
1486	int i;
1487
1488	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1489		if (!(gpio_mask & 1))
1490			continue;
1491
1492		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1493		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1494	}
1495}
1496
1497bool ath9k_hw_check_alive(struct ath_hw *ah)
1498{
1499	int count = 50;
1500	u32 reg;
1501
1502	if (AR_SREV_9285_12_OR_LATER(ah))
1503		return true;
1504
1505	do {
1506		reg = REG_READ(ah, AR_OBS_BUS_1);
1507
1508		if ((reg & 0x7E7FFFEF) == 0x00702400)
1509			continue;
1510
1511		switch (reg & 0x7E000B00) {
1512		case 0x1E000000:
1513		case 0x52000B00:
1514		case 0x18000B00:
1515			continue;
1516		default:
1517			return true;
1518		}
1519	} while (count-- > 0);
1520
1521	return false;
1522}
1523EXPORT_SYMBOL(ath9k_hw_check_alive);
1524
1525/*
1526 * Fast channel change:
1527 * (Change synthesizer based on channel freq without resetting chip)
1528 *
1529 * Don't do FCC when
1530 *   - Flag is not set
1531 *   - Chip is just coming out of full sleep
1532 *   - Channel to be set is same as current channel
1533 *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1534 */
1535static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1536{
1537	struct ath_common *common = ath9k_hw_common(ah);
1538	int ret;
1539
1540	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1541		goto fail;
1542
1543	if (ah->chip_fullsleep)
1544		goto fail;
1545
1546	if (!ah->curchan)
1547		goto fail;
1548
1549	if (chan->channel == ah->curchan->channel)
1550		goto fail;
1551
1552	if ((chan->channelFlags & CHANNEL_ALL) !=
1553	    (ah->curchan->channelFlags & CHANNEL_ALL))
1554		goto fail;
1555
1556	if (!ath9k_hw_check_alive(ah))
1557		goto fail;
1558
1559	/*
1560	 * For AR9462, make sure that calibration data for
1561	 * re-using are present.
1562	 */
1563	if (AR_SREV_9462(ah) && (!ah->caldata ||
1564				 !ah->caldata->done_txiqcal_once ||
1565				 !ah->caldata->done_txclcal_once ||
1566				 !ah->caldata->rtt_hist.num_readings))
1567		goto fail;
1568
1569	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1570		ah->curchan->channel, chan->channel);
1571
1572	ret = ath9k_hw_channel_change(ah, chan);
1573	if (!ret)
1574		goto fail;
1575
1576	ath9k_hw_loadnf(ah, ah->curchan);
1577	ath9k_hw_start_nfcal(ah, true);
1578
1579	if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
1580		ar9003_mci_2g5g_switch(ah, true);
1581
1582	if (AR_SREV_9271(ah))
1583		ar9002_hw_load_ani_reg(ah, chan);
1584
1585	return 0;
1586fail:
1587	return -EINVAL;
1588}
1589
1590int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1591		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1592{
1593	struct ath_common *common = ath9k_hw_common(ah);
1594	u32 saveLedState;
1595	u32 saveDefAntenna;
1596	u32 macStaId1;
1597	u64 tsf = 0;
1598	int i, r;
1599	bool start_mci_reset = false;
1600	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1601	bool save_fullsleep = ah->chip_fullsleep;
1602
1603	if (mci) {
1604		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1605		if (start_mci_reset)
1606			return 0;
1607	}
1608
1609	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1610		return -EIO;
1611
1612	if (ah->curchan && !ah->chip_fullsleep)
1613		ath9k_hw_getnf(ah, ah->curchan);
1614
1615	ah->caldata = caldata;
1616	if (caldata &&
1617	    (chan->channel != caldata->channel ||
1618	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1619	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1620		/* Operating channel changed, reset channel calibration data */
1621		memset(caldata, 0, sizeof(*caldata));
1622		ath9k_init_nfcal_hist_buffer(ah, chan);
1623	}
1624	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1625
1626	if (fastcc) {
1627		r = ath9k_hw_do_fastcc(ah, chan);
1628		if (!r)
1629			return r;
1630	}
1631
1632	if (mci)
1633		ar9003_mci_stop_bt(ah, save_fullsleep);
1634
1635	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1636	if (saveDefAntenna == 0)
1637		saveDefAntenna = 1;
1638
1639	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1640
1641	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1642	if (AR_SREV_9100(ah) ||
1643	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1644		tsf = ath9k_hw_gettsf64(ah);
1645
1646	saveLedState = REG_READ(ah, AR_CFG_LED) &
1647		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1648		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1649
1650	ath9k_hw_mark_phy_inactive(ah);
1651
1652	ah->paprd_table_write_done = false;
1653
1654	/* Only required on the first reset */
1655	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1656		REG_WRITE(ah,
1657			  AR9271_RESET_POWER_DOWN_CONTROL,
1658			  AR9271_RADIO_RF_RST);
1659		udelay(50);
1660	}
1661
1662	if (!ath9k_hw_chip_reset(ah, chan)) {
1663		ath_err(common, "Chip reset failed\n");
1664		return -EINVAL;
1665	}
1666
1667	/* Only required on the first reset */
1668	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1669		ah->htc_reset_init = false;
1670		REG_WRITE(ah,
1671			  AR9271_RESET_POWER_DOWN_CONTROL,
1672			  AR9271_GATE_MAC_CTL);
1673		udelay(50);
1674	}
1675
1676	/* Restore TSF */
1677	if (tsf)
1678		ath9k_hw_settsf64(ah, tsf);
1679
1680	if (AR_SREV_9280_20_OR_LATER(ah))
1681		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1682
1683	if (!AR_SREV_9300_20_OR_LATER(ah))
1684		ar9002_hw_enable_async_fifo(ah);
1685
1686	r = ath9k_hw_process_ini(ah, chan);
1687	if (r)
1688		return r;
1689
1690	if (mci)
1691		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1692
1693	/*
1694	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1695	 * right after the chip reset. When that happens, write a new
1696	 * value after the initvals have been applied, with an offset
1697	 * based on measured time difference
1698	 */
1699	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1700		tsf += 1500;
1701		ath9k_hw_settsf64(ah, tsf);
1702	}
1703
1704	/* Setup MFP options for CCMP */
1705	if (AR_SREV_9280_20_OR_LATER(ah)) {
1706		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1707		 * frames when constructing CCMP AAD. */
1708		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1709			      0xc7ff);
1710		ah->sw_mgmt_crypto = false;
1711	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1712		/* Disable hardware crypto for management frames */
1713		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1714			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1715		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1716			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1717		ah->sw_mgmt_crypto = true;
1718	} else
1719		ah->sw_mgmt_crypto = true;
1720
1721	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1722		ath9k_hw_set_delta_slope(ah, chan);
1723
1724	ath9k_hw_spur_mitigate_freq(ah, chan);
1725	ah->eep_ops->set_board_values(ah, chan);
1726
1727	ENABLE_REGWRITE_BUFFER(ah);
1728
1729	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1730	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1731		  | macStaId1
1732		  | AR_STA_ID1_RTS_USE_DEF
1733		  | (ah->config.
1734		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1735		  | ah->sta_id1_defaults);
1736	ath_hw_setbssidmask(common);
1737	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1738	ath9k_hw_write_associd(ah);
1739	REG_WRITE(ah, AR_ISR, ~0);
1740	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1741
1742	REGWRITE_BUFFER_FLUSH(ah);
1743
1744	ath9k_hw_set_operating_mode(ah, ah->opmode);
1745
1746	r = ath9k_hw_rf_set_freq(ah, chan);
1747	if (r)
1748		return r;
1749
1750	ath9k_hw_set_clockrate(ah);
1751
1752	ENABLE_REGWRITE_BUFFER(ah);
1753
1754	for (i = 0; i < AR_NUM_DCU; i++)
1755		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1756
1757	REGWRITE_BUFFER_FLUSH(ah);
1758
1759	ah->intr_txqs = 0;
1760	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1761		ath9k_hw_resettxqueue(ah, i);
1762
1763	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1764	ath9k_hw_ani_cache_ini_regs(ah);
1765	ath9k_hw_init_qos(ah);
1766
1767	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1768		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1769
1770	ath9k_hw_init_global_settings(ah);
1771
1772	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1773		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1774			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1775		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1776			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1777		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1778			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1779	}
1780
1781	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1782
1783	ath9k_hw_set_dma(ah);
1784
1785	REG_WRITE(ah, AR_OBS, 8);
1786
1787	if (ah->config.rx_intr_mitigation) {
1788		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1789		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1790	}
1791
1792	if (ah->config.tx_intr_mitigation) {
1793		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1794		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1795	}
1796
1797	ath9k_hw_init_bb(ah, chan);
1798
1799	if (caldata) {
1800		caldata->done_txiqcal_once = false;
1801		caldata->done_txclcal_once = false;
1802		caldata->rtt_hist.num_readings = 0;
1803	}
1804	if (!ath9k_hw_init_cal(ah, chan))
1805		return -EIO;
1806
1807	ath9k_hw_loadnf(ah, chan);
1808	ath9k_hw_start_nfcal(ah, true);
1809
1810	if (mci && ar9003_mci_end_reset(ah, chan, caldata))
1811		return -EIO;
1812
1813	ENABLE_REGWRITE_BUFFER(ah);
1814
1815	ath9k_hw_restore_chainmask(ah);
1816	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1817
1818	REGWRITE_BUFFER_FLUSH(ah);
1819
1820	/*
1821	 * For big endian systems turn on swapping for descriptors
1822	 */
1823	if (AR_SREV_9100(ah)) {
1824		u32 mask;
1825		mask = REG_READ(ah, AR_CFG);
1826		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1827			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1828				mask);
1829		} else {
1830			mask =
1831				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1832			REG_WRITE(ah, AR_CFG, mask);
1833			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1834				REG_READ(ah, AR_CFG));
1835		}
1836	} else {
1837		if (common->bus_ops->ath_bus_type == ATH_USB) {
1838			/* Configure AR9271 target WLAN */
1839			if (AR_SREV_9271(ah))
1840				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1841			else
1842				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1843		}
1844#ifdef __BIG_ENDIAN
1845		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1846			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1847		else
1848			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1849#endif
1850	}
1851
1852	if (ath9k_hw_btcoex_is_enabled(ah))
1853		ath9k_hw_btcoex_enable(ah);
1854
1855	if (mci)
1856		ar9003_mci_check_bt(ah);
1857
1858	if (AR_SREV_9300_20_OR_LATER(ah)) {
1859		ar9003_hw_bb_watchdog_config(ah);
1860
1861		ar9003_hw_disable_phy_restart(ah);
1862	}
1863
1864	ath9k_hw_apply_gpio_override(ah);
1865
1866	return 0;
1867}
1868EXPORT_SYMBOL(ath9k_hw_reset);
1869
1870/******************************/
1871/* Power Management (Chipset) */
1872/******************************/
1873
1874/*
1875 * Notify Power Mgt is disabled in self-generated frames.
1876 * If requested, force chip to sleep.
1877 */
1878static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1879{
1880	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1881	if (setChip) {
1882		if (AR_SREV_9462(ah)) {
1883			REG_WRITE(ah, AR_TIMER_MODE,
1884				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1885			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1886				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1887			REG_WRITE(ah, AR_SLP32_INC,
1888				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1889			/* xxx Required for WLAN only case ? */
1890			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1891			udelay(100);
1892		}
1893
1894		/*
1895		 * Clear the RTC force wake bit to allow the
1896		 * mac to go to sleep.
1897		 */
1898		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1899
1900		if (AR_SREV_9462(ah))
1901			udelay(100);
1902
1903		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1904			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1905
1906		/* Shutdown chip. Active low */
1907		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1908			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1909			udelay(2);
1910		}
1911	}
1912
1913	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1914	if (AR_SREV_9300_20_OR_LATER(ah))
1915		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1916}
1917
1918/*
1919 * Notify Power Management is enabled in self-generating
1920 * frames. If request, set power mode of chip to
1921 * auto/normal.  Duration in units of 128us (1/8 TU).
1922 */
1923static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1924{
1925	u32 val;
1926
1927	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1928	if (setChip) {
1929		struct ath9k_hw_capabilities *pCap = &ah->caps;
1930
1931		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1932			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1933			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1934				  AR_RTC_FORCE_WAKE_ON_INT);
1935		} else {
1936
1937			/* When chip goes into network sleep, it could be waken
1938			 * up by MCI_INT interrupt caused by BT's HW messages
1939			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1940			 * rate (~100us). This will cause chip to leave and
1941			 * re-enter network sleep mode frequently, which in
1942			 * consequence will have WLAN MCI HW to generate lots of
1943			 * SYS_WAKING and SYS_SLEEPING messages which will make
1944			 * BT CPU to busy to process.
1945			 */
1946			if (AR_SREV_9462(ah)) {
1947				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
1948					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
1949				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
1950			}
1951			/*
1952			 * Clear the RTC force wake bit to allow the
1953			 * mac to go to sleep.
1954			 */
1955			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1956				    AR_RTC_FORCE_WAKE_EN);
1957
1958			if (AR_SREV_9462(ah))
1959				udelay(30);
1960		}
1961	}
1962
1963	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1964	if (AR_SREV_9300_20_OR_LATER(ah))
1965		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1966}
1967
1968static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1969{
1970	u32 val;
1971	int i;
1972
1973	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1974	if (AR_SREV_9300_20_OR_LATER(ah)) {
1975		REG_WRITE(ah, AR_WA, ah->WARegVal);
1976		udelay(10);
1977	}
1978
1979	if (setChip) {
1980		if ((REG_READ(ah, AR_RTC_STATUS) &
1981		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1982			if (ath9k_hw_set_reset_reg(ah,
1983					   ATH9K_RESET_POWER_ON) != true) {
1984				return false;
1985			}
1986			if (!AR_SREV_9300_20_OR_LATER(ah))
1987				ath9k_hw_init_pll(ah, NULL);
1988		}
1989		if (AR_SREV_9100(ah))
1990			REG_SET_BIT(ah, AR_RTC_RESET,
1991				    AR_RTC_RESET_EN);
1992
1993		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1994			    AR_RTC_FORCE_WAKE_EN);
1995		udelay(50);
1996
1997		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1998			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1999			if (val == AR_RTC_STATUS_ON)
2000				break;
2001			udelay(50);
2002			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2003				    AR_RTC_FORCE_WAKE_EN);
2004		}
2005		if (i == 0) {
2006			ath_err(ath9k_hw_common(ah),
2007				"Failed to wakeup in %uus\n",
2008				POWER_UP_TIME / 20);
2009			return false;
2010		}
2011	}
2012
2013	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2014
2015	return true;
2016}
2017
2018bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2019{
2020	struct ath_common *common = ath9k_hw_common(ah);
2021	int status = true, setChip = true;
2022	static const char *modes[] = {
2023		"AWAKE",
2024		"FULL-SLEEP",
2025		"NETWORK SLEEP",
2026		"UNDEFINED"
2027	};
2028
2029	if (ah->power_mode == mode)
2030		return status;
2031
2032	ath_dbg(common, RESET, "%s -> %s\n",
2033		modes[ah->power_mode], modes[mode]);
2034
2035	switch (mode) {
2036	case ATH9K_PM_AWAKE:
2037		status = ath9k_hw_set_power_awake(ah, setChip);
2038
2039		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2040			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2041
2042		break;
2043	case ATH9K_PM_FULL_SLEEP:
2044		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2045			ar9003_mci_set_full_sleep(ah);
2046
2047		ath9k_set_power_sleep(ah, setChip);
2048		ah->chip_fullsleep = true;
2049		break;
2050	case ATH9K_PM_NETWORK_SLEEP:
2051
2052		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2053			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2054
2055		ath9k_set_power_network_sleep(ah, setChip);
2056		break;
2057	default:
2058		ath_err(common, "Unknown power mode %u\n", mode);
2059		return false;
2060	}
2061	ah->power_mode = mode;
2062
2063	/*
2064	 * XXX: If this warning never comes up after a while then
2065	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2066	 * ath9k_hw_setpower() return type void.
2067	 */
2068
2069	if (!(ah->ah_flags & AH_UNPLUGGED))
2070		ATH_DBG_WARN_ON_ONCE(!status);
2071
2072	return status;
2073}
2074EXPORT_SYMBOL(ath9k_hw_setpower);
2075
2076/*******************/
2077/* Beacon Handling */
2078/*******************/
2079
2080void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2081{
2082	int flags = 0;
2083
2084	ENABLE_REGWRITE_BUFFER(ah);
2085
2086	switch (ah->opmode) {
2087	case NL80211_IFTYPE_ADHOC:
2088	case NL80211_IFTYPE_MESH_POINT:
2089		REG_SET_BIT(ah, AR_TXCFG,
2090			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2091		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2092			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2093		flags |= AR_NDP_TIMER_EN;
2094	case NL80211_IFTYPE_AP:
2095		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2096		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2097			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2098		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2099			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2100		flags |=
2101			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2102		break;
2103	default:
2104		ath_dbg(ath9k_hw_common(ah), BEACON,
2105			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2106		return;
2107		break;
2108	}
2109
2110	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2111	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2112	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2113	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2114
2115	REGWRITE_BUFFER_FLUSH(ah);
2116
2117	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2118}
2119EXPORT_SYMBOL(ath9k_hw_beaconinit);
2120
2121void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2122				    const struct ath9k_beacon_state *bs)
2123{
2124	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2125	struct ath9k_hw_capabilities *pCap = &ah->caps;
2126	struct ath_common *common = ath9k_hw_common(ah);
2127
2128	ENABLE_REGWRITE_BUFFER(ah);
2129
2130	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2131
2132	REG_WRITE(ah, AR_BEACON_PERIOD,
2133		  TU_TO_USEC(bs->bs_intval));
2134	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2135		  TU_TO_USEC(bs->bs_intval));
2136
2137	REGWRITE_BUFFER_FLUSH(ah);
2138
2139	REG_RMW_FIELD(ah, AR_RSSI_THR,
2140		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2141
2142	beaconintval = bs->bs_intval;
2143
2144	if (bs->bs_sleepduration > beaconintval)
2145		beaconintval = bs->bs_sleepduration;
2146
2147	dtimperiod = bs->bs_dtimperiod;
2148	if (bs->bs_sleepduration > dtimperiod)
2149		dtimperiod = bs->bs_sleepduration;
2150
2151	if (beaconintval == dtimperiod)
2152		nextTbtt = bs->bs_nextdtim;
2153	else
2154		nextTbtt = bs->bs_nexttbtt;
2155
2156	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2157	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2158	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2159	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2160
2161	ENABLE_REGWRITE_BUFFER(ah);
2162
2163	REG_WRITE(ah, AR_NEXT_DTIM,
2164		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2165	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2166
2167	REG_WRITE(ah, AR_SLEEP1,
2168		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2169		  | AR_SLEEP1_ASSUME_DTIM);
2170
2171	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2172		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2173	else
2174		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2175
2176	REG_WRITE(ah, AR_SLEEP2,
2177		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2178
2179	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2180	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2181
2182	REGWRITE_BUFFER_FLUSH(ah);
2183
2184	REG_SET_BIT(ah, AR_TIMER_MODE,
2185		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2186		    AR_DTIM_TIMER_EN);
2187
2188	/* TSF Out of Range Threshold */
2189	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2190}
2191EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2192
2193/*******************/
2194/* HW Capabilities */
2195/*******************/
2196
2197static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2198{
2199	eeprom_chainmask &= chip_chainmask;
2200	if (eeprom_chainmask)
2201		return eeprom_chainmask;
2202	else
2203		return chip_chainmask;
2204}
2205
2206/**
2207 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2208 * @ah: the atheros hardware data structure
2209 *
2210 * We enable DFS support upstream on chipsets which have passed a series
2211 * of tests. The testing requirements are going to be documented. Desired
2212 * test requirements are documented at:
2213 *
2214 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2215 *
2216 * Once a new chipset gets properly tested an individual commit can be used
2217 * to document the testing for DFS for that chipset.
2218 */
2219static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2220{
2221
2222	switch (ah->hw_version.macVersion) {
2223	/* AR9580 will likely be our first target to get testing on */
2224	case AR_SREV_VERSION_9580:
2225	default:
2226		return false;
2227	}
2228}
2229
2230int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2231{
2232	struct ath9k_hw_capabilities *pCap = &ah->caps;
2233	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2234	struct ath_common *common = ath9k_hw_common(ah);
2235	unsigned int chip_chainmask;
2236
2237	u16 eeval;
2238	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2239
2240	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2241	regulatory->current_rd = eeval;
2242
2243	if (ah->opmode != NL80211_IFTYPE_AP &&
2244	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2245		if (regulatory->current_rd == 0x64 ||
2246		    regulatory->current_rd == 0x65)
2247			regulatory->current_rd += 5;
2248		else if (regulatory->current_rd == 0x41)
2249			regulatory->current_rd = 0x43;
2250		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2251			regulatory->current_rd);
2252	}
2253
2254	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2255	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2256		ath_err(common,
2257			"no band has been marked as supported in EEPROM\n");
2258		return -EINVAL;
2259	}
2260
2261	if (eeval & AR5416_OPFLAGS_11A)
2262		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2263
2264	if (eeval & AR5416_OPFLAGS_11G)
2265		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2266
2267	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2268		chip_chainmask = 1;
2269	else if (AR_SREV_9462(ah))
2270		chip_chainmask = 3;
2271	else if (!AR_SREV_9280_20_OR_LATER(ah))
2272		chip_chainmask = 7;
2273	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2274		chip_chainmask = 3;
2275	else
2276		chip_chainmask = 7;
2277
2278	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2279	/*
2280	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2281	 * the EEPROM.
2282	 */
2283	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2284	    !(eeval & AR5416_OPFLAGS_11A) &&
2285	    !(AR_SREV_9271(ah)))
2286		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2287		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2288	else if (AR_SREV_9100(ah))
2289		pCap->rx_chainmask = 0x7;
2290	else
2291		/* Use rx_chainmask from EEPROM. */
2292		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2293
2294	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2295	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2296	ah->txchainmask = pCap->tx_chainmask;
2297	ah->rxchainmask = pCap->rx_chainmask;
2298
2299	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2300
2301	/* enable key search for every frame in an aggregate */
2302	if (AR_SREV_9300_20_OR_LATER(ah))
2303		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2304
2305	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2306
2307	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2308		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2309	else
2310		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2311
2312	if (AR_SREV_9271(ah))
2313		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2314	else if (AR_DEVID_7010(ah))
2315		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2316	else if (AR_SREV_9300_20_OR_LATER(ah))
2317		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2318	else if (AR_SREV_9287_11_OR_LATER(ah))
2319		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2320	else if (AR_SREV_9285_12_OR_LATER(ah))
2321		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2322	else if (AR_SREV_9280_20_OR_LATER(ah))
2323		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2324	else
2325		pCap->num_gpio_pins = AR_NUM_GPIO;
2326
2327	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2328		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2329	else
2330		pCap->rts_aggr_limit = (8 * 1024);
2331
2332#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2333	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2334	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2335		ah->rfkill_gpio =
2336			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2337		ah->rfkill_polarity =
2338			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2339
2340		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2341	}
2342#endif
2343	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2344		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2345	else
2346		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2347
2348	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2349		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2350	else
2351		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2352
2353	if (AR_SREV_9300_20_OR_LATER(ah)) {
2354		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2355		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2356			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2357
2358		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2359		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2360		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2361		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2362		pCap->txs_len = sizeof(struct ar9003_txs);
2363		if (!ah->config.paprd_disable &&
2364		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2365			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2366	} else {
2367		pCap->tx_desc_len = sizeof(struct ath_desc);
2368		if (AR_SREV_9280_20(ah))
2369			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2370	}
2371
2372	if (AR_SREV_9300_20_OR_LATER(ah))
2373		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2374
2375	if (AR_SREV_9300_20_OR_LATER(ah))
2376		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2377
2378	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2379		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2380
2381	if (AR_SREV_9285(ah))
2382		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2383			ant_div_ctl1 =
2384				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2385			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2386				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2387		}
2388	if (AR_SREV_9300_20_OR_LATER(ah)) {
2389		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2390			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2391	}
2392
2393
2394	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2395		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2396		/*
2397		 * enable the diversity-combining algorithm only when
2398		 * both enable_lna_div and enable_fast_div are set
2399		 *		Table for Diversity
2400		 * ant_div_alt_lnaconf		bit 0-1
2401		 * ant_div_main_lnaconf		bit 2-3
2402		 * ant_div_alt_gaintb		bit 4
2403		 * ant_div_main_gaintb		bit 5
2404		 * enable_ant_div_lnadiv	bit 6
2405		 * enable_ant_fast_div		bit 7
2406		 */
2407		if ((ant_div_ctl1 >> 0x6) == 0x3)
2408			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2409	}
2410
2411	if (AR_SREV_9485_10(ah)) {
2412		pCap->pcie_lcr_extsync_en = true;
2413		pCap->pcie_lcr_offset = 0x80;
2414	}
2415
2416	if (ath9k_hw_dfs_tested(ah))
2417		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2418
2419	tx_chainmask = pCap->tx_chainmask;
2420	rx_chainmask = pCap->rx_chainmask;
2421	while (tx_chainmask || rx_chainmask) {
2422		if (tx_chainmask & BIT(0))
2423			pCap->max_txchains++;
2424		if (rx_chainmask & BIT(0))
2425			pCap->max_rxchains++;
2426
2427		tx_chainmask >>= 1;
2428		rx_chainmask >>= 1;
2429	}
2430
2431	if (AR_SREV_9300_20_OR_LATER(ah)) {
2432		ah->enabled_cals |= TX_IQ_CAL;
2433		if (AR_SREV_9485_OR_LATER(ah))
2434			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2435	}
2436
2437	if (AR_SREV_9462(ah)) {
2438
2439		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2440			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2441
2442		if (AR_SREV_9462_20(ah))
2443			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2444
2445	}
2446
2447
2448	return 0;
2449}
2450
2451/****************************/
2452/* GPIO / RFKILL / Antennae */
2453/****************************/
2454
2455static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2456					 u32 gpio, u32 type)
2457{
2458	int addr;
2459	u32 gpio_shift, tmp;
2460
2461	if (gpio > 11)
2462		addr = AR_GPIO_OUTPUT_MUX3;
2463	else if (gpio > 5)
2464		addr = AR_GPIO_OUTPUT_MUX2;
2465	else
2466		addr = AR_GPIO_OUTPUT_MUX1;
2467
2468	gpio_shift = (gpio % 6) * 5;
2469
2470	if (AR_SREV_9280_20_OR_LATER(ah)
2471	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2472		REG_RMW(ah, addr, (type << gpio_shift),
2473			(0x1f << gpio_shift));
2474	} else {
2475		tmp = REG_READ(ah, addr);
2476		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2477		tmp &= ~(0x1f << gpio_shift);
2478		tmp |= (type << gpio_shift);
2479		REG_WRITE(ah, addr, tmp);
2480	}
2481}
2482
2483void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2484{
2485	u32 gpio_shift;
2486
2487	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2488
2489	if (AR_DEVID_7010(ah)) {
2490		gpio_shift = gpio;
2491		REG_RMW(ah, AR7010_GPIO_OE,
2492			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2493			(AR7010_GPIO_OE_MASK << gpio_shift));
2494		return;
2495	}
2496
2497	gpio_shift = gpio << 1;
2498	REG_RMW(ah,
2499		AR_GPIO_OE_OUT,
2500		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2501		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2502}
2503EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2504
2505u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2506{
2507#define MS_REG_READ(x, y) \
2508	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2509
2510	if (gpio >= ah->caps.num_gpio_pins)
2511		return 0xffffffff;
2512
2513	if (AR_DEVID_7010(ah)) {
2514		u32 val;
2515		val = REG_READ(ah, AR7010_GPIO_IN);
2516		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2517	} else if (AR_SREV_9300_20_OR_LATER(ah))
2518		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2519			AR_GPIO_BIT(gpio)) != 0;
2520	else if (AR_SREV_9271(ah))
2521		return MS_REG_READ(AR9271, gpio) != 0;
2522	else if (AR_SREV_9287_11_OR_LATER(ah))
2523		return MS_REG_READ(AR9287, gpio) != 0;
2524	else if (AR_SREV_9285_12_OR_LATER(ah))
2525		return MS_REG_READ(AR9285, gpio) != 0;
2526	else if (AR_SREV_9280_20_OR_LATER(ah))
2527		return MS_REG_READ(AR928X, gpio) != 0;
2528	else
2529		return MS_REG_READ(AR, gpio) != 0;
2530}
2531EXPORT_SYMBOL(ath9k_hw_gpio_get);
2532
2533void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2534			 u32 ah_signal_type)
2535{
2536	u32 gpio_shift;
2537
2538	if (AR_DEVID_7010(ah)) {
2539		gpio_shift = gpio;
2540		REG_RMW(ah, AR7010_GPIO_OE,
2541			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2542			(AR7010_GPIO_OE_MASK << gpio_shift));
2543		return;
2544	}
2545
2546	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2547	gpio_shift = 2 * gpio;
2548	REG_RMW(ah,
2549		AR_GPIO_OE_OUT,
2550		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2551		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2552}
2553EXPORT_SYMBOL(ath9k_hw_cfg_output);
2554
2555void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2556{
2557	if (AR_DEVID_7010(ah)) {
2558		val = val ? 0 : 1;
2559		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2560			AR_GPIO_BIT(gpio));
2561		return;
2562	}
2563
2564	if (AR_SREV_9271(ah))
2565		val = ~val;
2566
2567	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2568		AR_GPIO_BIT(gpio));
2569}
2570EXPORT_SYMBOL(ath9k_hw_set_gpio);
2571
2572void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2573{
2574	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2575}
2576EXPORT_SYMBOL(ath9k_hw_setantenna);
2577
2578/*********************/
2579/* General Operation */
2580/*********************/
2581
2582u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2583{
2584	u32 bits = REG_READ(ah, AR_RX_FILTER);
2585	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2586
2587	if (phybits & AR_PHY_ERR_RADAR)
2588		bits |= ATH9K_RX_FILTER_PHYRADAR;
2589	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2590		bits |= ATH9K_RX_FILTER_PHYERR;
2591
2592	return bits;
2593}
2594EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2595
2596void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2597{
2598	u32 phybits;
2599
2600	ENABLE_REGWRITE_BUFFER(ah);
2601
2602	if (AR_SREV_9462(ah))
2603		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2604
2605	REG_WRITE(ah, AR_RX_FILTER, bits);
2606
2607	phybits = 0;
2608	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2609		phybits |= AR_PHY_ERR_RADAR;
2610	if (bits & ATH9K_RX_FILTER_PHYERR)
2611		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2612	REG_WRITE(ah, AR_PHY_ERR, phybits);
2613
2614	if (phybits)
2615		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2616	else
2617		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2618
2619	REGWRITE_BUFFER_FLUSH(ah);
2620}
2621EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2622
2623bool ath9k_hw_phy_disable(struct ath_hw *ah)
2624{
2625	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2626		return false;
2627
2628	ath9k_hw_init_pll(ah, NULL);
2629	ah->htc_reset_init = true;
2630	return true;
2631}
2632EXPORT_SYMBOL(ath9k_hw_phy_disable);
2633
2634bool ath9k_hw_disable(struct ath_hw *ah)
2635{
2636	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2637		return false;
2638
2639	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2640		return false;
2641
2642	ath9k_hw_init_pll(ah, NULL);
2643	return true;
2644}
2645EXPORT_SYMBOL(ath9k_hw_disable);
2646
2647static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2648{
2649	enum eeprom_param gain_param;
2650
2651	if (IS_CHAN_2GHZ(chan))
2652		gain_param = EEP_ANTENNA_GAIN_2G;
2653	else
2654		gain_param = EEP_ANTENNA_GAIN_5G;
2655
2656	return ah->eep_ops->get_eeprom(ah, gain_param);
2657}
2658
2659void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2660{
2661	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2662	struct ieee80211_channel *channel;
2663	int chan_pwr, new_pwr, max_gain;
2664	int ant_gain, ant_reduction = 0;
2665
2666	if (!chan)
2667		return;
2668
2669	channel = chan->chan;
2670	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2671	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2672	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2673
2674	ant_gain = get_antenna_gain(ah, chan);
2675	if (ant_gain > max_gain)
2676		ant_reduction = ant_gain - max_gain;
2677
2678	ah->eep_ops->set_txpower(ah, chan,
2679				 ath9k_regd_get_ctl(reg, chan),
2680				 ant_reduction, new_pwr, false);
2681}
2682
2683void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2684{
2685	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2686	struct ath9k_channel *chan = ah->curchan;
2687	struct ieee80211_channel *channel = chan->chan;
2688
2689	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2690	if (test)
2691		channel->max_power = MAX_RATE_POWER / 2;
2692
2693	ath9k_hw_apply_txpower(ah, chan);
2694
2695	if (test)
2696		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2697}
2698EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2699
2700void ath9k_hw_setopmode(struct ath_hw *ah)
2701{
2702	ath9k_hw_set_operating_mode(ah, ah->opmode);
2703}
2704EXPORT_SYMBOL(ath9k_hw_setopmode);
2705
2706void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2707{
2708	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2709	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2710}
2711EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2712
2713void ath9k_hw_write_associd(struct ath_hw *ah)
2714{
2715	struct ath_common *common = ath9k_hw_common(ah);
2716
2717	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2718	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2719		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2720}
2721EXPORT_SYMBOL(ath9k_hw_write_associd);
2722
2723#define ATH9K_MAX_TSF_READ 10
2724
2725u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2726{
2727	u32 tsf_lower, tsf_upper1, tsf_upper2;
2728	int i;
2729
2730	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2731	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2732		tsf_lower = REG_READ(ah, AR_TSF_L32);
2733		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2734		if (tsf_upper2 == tsf_upper1)
2735			break;
2736		tsf_upper1 = tsf_upper2;
2737	}
2738
2739	WARN_ON( i == ATH9K_MAX_TSF_READ );
2740
2741	return (((u64)tsf_upper1 << 32) | tsf_lower);
2742}
2743EXPORT_SYMBOL(ath9k_hw_gettsf64);
2744
2745void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2746{
2747	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2748	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2749}
2750EXPORT_SYMBOL(ath9k_hw_settsf64);
2751
2752void ath9k_hw_reset_tsf(struct ath_hw *ah)
2753{
2754	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2755			   AH_TSF_WRITE_TIMEOUT))
2756		ath_dbg(ath9k_hw_common(ah), RESET,
2757			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2758
2759	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2760}
2761EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2762
2763void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2764{
2765	if (setting)
2766		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2767	else
2768		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2769}
2770EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2771
2772void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2773{
2774	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2775	u32 macmode;
2776
2777	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2778		macmode = AR_2040_JOINED_RX_CLEAR;
2779	else
2780		macmode = 0;
2781
2782	REG_WRITE(ah, AR_2040_MODE, macmode);
2783}
2784
2785/* HW Generic timers configuration */
2786
2787static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2788{
2789	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2790	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2791	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2792	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2793	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2794	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2795	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2796	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2797	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2798	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2799				AR_NDP2_TIMER_MODE, 0x0002},
2800	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2801				AR_NDP2_TIMER_MODE, 0x0004},
2802	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2803				AR_NDP2_TIMER_MODE, 0x0008},
2804	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2805				AR_NDP2_TIMER_MODE, 0x0010},
2806	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2807				AR_NDP2_TIMER_MODE, 0x0020},
2808	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2809				AR_NDP2_TIMER_MODE, 0x0040},
2810	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2811				AR_NDP2_TIMER_MODE, 0x0080}
2812};
2813
2814/* HW generic timer primitives */
2815
2816/* compute and clear index of rightmost 1 */
2817static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2818{
2819	u32 b;
2820
2821	b = *mask;
2822	b &= (0-b);
2823	*mask &= ~b;
2824	b *= debruijn32;
2825	b >>= 27;
2826
2827	return timer_table->gen_timer_index[b];
2828}
2829
2830u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2831{
2832	return REG_READ(ah, AR_TSF_L32);
2833}
2834EXPORT_SYMBOL(ath9k_hw_gettsf32);
2835
2836struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2837					  void (*trigger)(void *),
2838					  void (*overflow)(void *),
2839					  void *arg,
2840					  u8 timer_index)
2841{
2842	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2843	struct ath_gen_timer *timer;
2844
2845	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2846
2847	if (timer == NULL) {
2848		ath_err(ath9k_hw_common(ah),
2849			"Failed to allocate memory for hw timer[%d]\n",
2850			timer_index);
2851		return NULL;
2852	}
2853
2854	/* allocate a hardware generic timer slot */
2855	timer_table->timers[timer_index] = timer;
2856	timer->index = timer_index;
2857	timer->trigger = trigger;
2858	timer->overflow = overflow;
2859	timer->arg = arg;
2860
2861	return timer;
2862}
2863EXPORT_SYMBOL(ath_gen_timer_alloc);
2864
2865void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2866			      struct ath_gen_timer *timer,
2867			      u32 trig_timeout,
2868			      u32 timer_period)
2869{
2870	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2871	u32 tsf, timer_next;
2872
2873	BUG_ON(!timer_period);
2874
2875	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2876
2877	tsf = ath9k_hw_gettsf32(ah);
2878
2879	timer_next = tsf + trig_timeout;
2880
2881	ath_dbg(ath9k_hw_common(ah), HWTIMER,
2882		"current tsf %x period %x timer_next %x\n",
2883		tsf, timer_period, timer_next);
2884
2885	/*
2886	 * Program generic timer registers
2887	 */
2888	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2889		 timer_next);
2890	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2891		  timer_period);
2892	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2893		    gen_tmr_configuration[timer->index].mode_mask);
2894
2895	if (AR_SREV_9462(ah)) {
2896		/*
2897		 * Starting from AR9462, each generic timer can select which tsf
2898		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2899		 * 8 - 15  use tsf2.
2900		 */
2901		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2902			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2903				       (1 << timer->index));
2904		else
2905			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2906				       (1 << timer->index));
2907	}
2908
2909	/* Enable both trigger and thresh interrupt masks */
2910	REG_SET_BIT(ah, AR_IMR_S5,
2911		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2912		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2913}
2914EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2915
2916void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2917{
2918	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2919
2920	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2921		(timer->index >= ATH_MAX_GEN_TIMER)) {
2922		return;
2923	}
2924
2925	/* Clear generic timer enable bits. */
2926	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2927			gen_tmr_configuration[timer->index].mode_mask);
2928
2929	/* Disable both trigger and thresh interrupt masks */
2930	REG_CLR_BIT(ah, AR_IMR_S5,
2931		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2932		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2933
2934	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2935}
2936EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2937
2938void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2939{
2940	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2941
2942	/* free the hardware generic timer slot */
2943	timer_table->timers[timer->index] = NULL;
2944	kfree(timer);
2945}
2946EXPORT_SYMBOL(ath_gen_timer_free);
2947
2948/*
2949 * Generic Timer Interrupts handling
2950 */
2951void ath_gen_timer_isr(struct ath_hw *ah)
2952{
2953	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2954	struct ath_gen_timer *timer;
2955	struct ath_common *common = ath9k_hw_common(ah);
2956	u32 trigger_mask, thresh_mask, index;
2957
2958	/* get hardware generic timer interrupt status */
2959	trigger_mask = ah->intr_gen_timer_trigger;
2960	thresh_mask = ah->intr_gen_timer_thresh;
2961	trigger_mask &= timer_table->timer_mask.val;
2962	thresh_mask &= timer_table->timer_mask.val;
2963
2964	trigger_mask &= ~thresh_mask;
2965
2966	while (thresh_mask) {
2967		index = rightmost_index(timer_table, &thresh_mask);
2968		timer = timer_table->timers[index];
2969		BUG_ON(!timer);
2970		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
2971			index);
2972		timer->overflow(timer->arg);
2973	}
2974
2975	while (trigger_mask) {
2976		index = rightmost_index(timer_table, &trigger_mask);
2977		timer = timer_table->timers[index];
2978		BUG_ON(!timer);
2979		ath_dbg(common, HWTIMER,
2980			"Gen timer[%d] trigger\n", index);
2981		timer->trigger(timer->arg);
2982	}
2983}
2984EXPORT_SYMBOL(ath_gen_timer_isr);
2985
2986/********/
2987/* HTC  */
2988/********/
2989
2990static struct {
2991	u32 version;
2992	const char * name;
2993} ath_mac_bb_names[] = {
2994	/* Devices with external radios */
2995	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2996	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2997	{ AR_SREV_VERSION_9100,		"9100" },
2998	{ AR_SREV_VERSION_9160,		"9160" },
2999	/* Single-chip solutions */
3000	{ AR_SREV_VERSION_9280,		"9280" },
3001	{ AR_SREV_VERSION_9285,		"9285" },
3002	{ AR_SREV_VERSION_9287,         "9287" },
3003	{ AR_SREV_VERSION_9271,         "9271" },
3004	{ AR_SREV_VERSION_9300,         "9300" },
3005	{ AR_SREV_VERSION_9330,         "9330" },
3006	{ AR_SREV_VERSION_9340,		"9340" },
3007	{ AR_SREV_VERSION_9485,         "9485" },
3008	{ AR_SREV_VERSION_9462,         "9462" },
3009};
3010
3011/* For devices with external radios */
3012static struct {
3013	u16 version;
3014	const char * name;
3015} ath_rf_names[] = {
3016	{ 0,				"5133" },
3017	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3018	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3019	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3020	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3021};
3022
3023/*
3024 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3025 */
3026static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3027{
3028	int i;
3029
3030	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3031		if (ath_mac_bb_names[i].version == mac_bb_version) {
3032			return ath_mac_bb_names[i].name;
3033		}
3034	}
3035
3036	return "????";
3037}
3038
3039/*
3040 * Return the RF name. "????" is returned if the RF is unknown.
3041 * Used for devices with external radios.
3042 */
3043static const char *ath9k_hw_rf_name(u16 rf_version)
3044{
3045	int i;
3046
3047	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3048		if (ath_rf_names[i].version == rf_version) {
3049			return ath_rf_names[i].name;
3050		}
3051	}
3052
3053	return "????";
3054}
3055
3056void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3057{
3058	int used;
3059
3060	/* chipsets >= AR9280 are single-chip */
3061	if (AR_SREV_9280_20_OR_LATER(ah)) {
3062		used = snprintf(hw_name, len,
3063			       "Atheros AR%s Rev:%x",
3064			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3065			       ah->hw_version.macRev);
3066	}
3067	else {
3068		used = snprintf(hw_name, len,
3069			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3070			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3071			       ah->hw_version.macRev,
3072			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3073						AR_RADIO_SREV_MAJOR)),
3074			       ah->hw_version.phyRev);
3075	}
3076
3077	hw_name[used] = '\0';
3078}
3079EXPORT_SYMBOL(ath9k_hw_name);
3080