hw.c revision 9c204b46c7af93e334114bea1f5eeaa6fea9ba07
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
92		clockrate = 117;
93	else if (!ah->curchan) /* should really check for CCK instead */
94		clockrate = ATH9K_CLOCK_RATE_CCK;
95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
99	else
100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
101
102	if (conf_is_ht40(conf))
103		clockrate *= 2;
104
105	if (ah->curchan) {
106		if (IS_CHAN_HALF_RATE(ah->curchan))
107			clockrate /= 2;
108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
109			clockrate /= 4;
110	}
111
112	common->clockrate = clockrate;
113}
114
115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
116{
117	struct ath_common *common = ath9k_hw_common(ah);
118
119	return usecs * common->clockrate;
120}
121
122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123{
124	int i;
125
126	BUG_ON(timeout < AH_TIME_QUANTUM);
127
128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
129		if ((REG_READ(ah, reg) & mask) == val)
130			return true;
131
132		udelay(AH_TIME_QUANTUM);
133	}
134
135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137		timeout, reg, REG_READ(ah, reg), mask, val);
138
139	return false;
140}
141EXPORT_SYMBOL(ath9k_hw_wait);
142
143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
144			  int column, unsigned int *writecnt)
145{
146	int r;
147
148	ENABLE_REGWRITE_BUFFER(ah);
149	for (r = 0; r < array->ia_rows; r++) {
150		REG_WRITE(ah, INI_RA(array, r, 0),
151			  INI_RA(array, r, column));
152		DO_DELAY(*writecnt);
153	}
154	REGWRITE_BUFFER_FLUSH(ah);
155}
156
157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
158{
159	u32 retval;
160	int i;
161
162	for (i = 0, retval = 0; i < n; i++) {
163		retval = (retval << 1) | (val & 1);
164		val >>= 1;
165	}
166	return retval;
167}
168
169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
170			   u8 phy, int kbps,
171			   u32 frameLen, u16 rateix,
172			   bool shortPreamble)
173{
174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175
176	if (kbps == 0)
177		return 0;
178
179	switch (phy) {
180	case WLAN_RC_PHY_CCK:
181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
182		if (shortPreamble)
183			phyTime >>= 1;
184		numBits = frameLen << 3;
185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
186		break;
187	case WLAN_RC_PHY_OFDM:
188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192			txTime = OFDM_SIFS_TIME_QUARTER
193				+ OFDM_PREAMBLE_TIME_QUARTER
194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195		} else if (ah->curchan &&
196			   IS_CHAN_HALF_RATE(ah->curchan)) {
197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200			txTime = OFDM_SIFS_TIME_HALF +
201				OFDM_PREAMBLE_TIME_HALF
202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203		} else {
204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208				+ (numSymbols * OFDM_SYMBOL_TIME);
209		}
210		break;
211	default:
212		ath_err(ath9k_hw_common(ah),
213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214		txTime = 0;
215		break;
216	}
217
218	return txTime;
219}
220EXPORT_SYMBOL(ath9k_hw_computetxtime);
221
222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223				  struct ath9k_channel *chan,
224				  struct chan_centers *centers)
225{
226	int8_t extoff;
227
228	if (!IS_CHAN_HT40(chan)) {
229		centers->ctl_center = centers->ext_center =
230			centers->synth_center = chan->channel;
231		return;
232	}
233
234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
236		centers->synth_center =
237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
238		extoff = 1;
239	} else {
240		centers->synth_center =
241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
242		extoff = -1;
243	}
244
245	centers->ctl_center =
246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247	/* 25 MHz spacing is supported by hw but not on upper layers */
248	centers->ext_center =
249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
250}
251
252/******************/
253/* Chip Revisions */
254/******************/
255
256static void ath9k_hw_read_revisions(struct ath_hw *ah)
257{
258	u32 val;
259
260	switch (ah->hw_version.devid) {
261	case AR5416_AR9100_DEVID:
262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263		break;
264	case AR9300_DEVID_AR9330:
265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266		if (ah->get_mac_revision) {
267			ah->hw_version.macRev = ah->get_mac_revision();
268		} else {
269			val = REG_READ(ah, AR_SREV);
270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271		}
272		return;
273	case AR9300_DEVID_AR9340:
274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275		val = REG_READ(ah, AR_SREV);
276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
277		return;
278	}
279
280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
281
282	if (val == 0xFF) {
283		val = REG_READ(ah, AR_SREV);
284		ah->hw_version.macVersion =
285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
287		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
288	} else {
289		if (!AR_SREV_9100(ah))
290			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
291
292		ah->hw_version.macRev = val & AR_SREV_REVISION;
293
294		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
295			ah->is_pciexpress = true;
296	}
297}
298
299/************************************/
300/* HW Attach, Detach, Init Routines */
301/************************************/
302
303static void ath9k_hw_disablepcie(struct ath_hw *ah)
304{
305	if (!AR_SREV_5416(ah))
306		return;
307
308	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319}
320
321static void ath9k_hw_aspm_init(struct ath_hw *ah)
322{
323	struct ath_common *common = ath9k_hw_common(ah);
324
325	if (common->bus_ops->aspm_init)
326		common->bus_ops->aspm_init(common);
327}
328
329/* This should work for all families including legacy */
330static bool ath9k_hw_chip_test(struct ath_hw *ah)
331{
332	struct ath_common *common = ath9k_hw_common(ah);
333	u32 regAddr[2] = { AR_STA_ID0 };
334	u32 regHold[2];
335	static const u32 patternData[4] = {
336		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
337	};
338	int i, j, loop_max;
339
340	if (!AR_SREV_9300_20_OR_LATER(ah)) {
341		loop_max = 2;
342		regAddr[1] = AR_PHY_BASE + (8 << 2);
343	} else
344		loop_max = 1;
345
346	for (i = 0; i < loop_max; i++) {
347		u32 addr = regAddr[i];
348		u32 wrData, rdData;
349
350		regHold[i] = REG_READ(ah, addr);
351		for (j = 0; j < 0x100; j++) {
352			wrData = (j << 16) | j;
353			REG_WRITE(ah, addr, wrData);
354			rdData = REG_READ(ah, addr);
355			if (rdData != wrData) {
356				ath_err(common,
357					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
358					addr, wrData, rdData);
359				return false;
360			}
361		}
362		for (j = 0; j < 4; j++) {
363			wrData = patternData[j];
364			REG_WRITE(ah, addr, wrData);
365			rdData = REG_READ(ah, addr);
366			if (wrData != rdData) {
367				ath_err(common,
368					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
369					addr, wrData, rdData);
370				return false;
371			}
372		}
373		REG_WRITE(ah, regAddr[i], regHold[i]);
374	}
375	udelay(100);
376
377	return true;
378}
379
380static void ath9k_hw_init_config(struct ath_hw *ah)
381{
382	int i;
383
384	ah->config.dma_beacon_response_time = 2;
385	ah->config.sw_beacon_response_time = 10;
386	ah->config.additional_swba_backoff = 0;
387	ah->config.ack_6mb = 0x0;
388	ah->config.cwm_ignore_extcca = 0;
389	ah->config.pcie_clock_req = 0;
390	ah->config.pcie_waen = 0;
391	ah->config.analog_shiftreg = 1;
392	ah->config.enable_ani = true;
393
394	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
395		ah->config.spurchans[i][0] = AR_NO_SPUR;
396		ah->config.spurchans[i][1] = AR_NO_SPUR;
397	}
398
399	/* PAPRD needs some more work to be enabled */
400	ah->config.paprd_disable = 1;
401
402	ah->config.rx_intr_mitigation = true;
403	ah->config.pcieSerDesWrite = true;
404
405	/*
406	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
407	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
408	 * This means we use it for all AR5416 devices, and the few
409	 * minor PCI AR9280 devices out there.
410	 *
411	 * Serialization is required because these devices do not handle
412	 * well the case of two concurrent reads/writes due to the latency
413	 * involved. During one read/write another read/write can be issued
414	 * on another CPU while the previous read/write may still be working
415	 * on our hardware, if we hit this case the hardware poops in a loop.
416	 * We prevent this by serializing reads and writes.
417	 *
418	 * This issue is not present on PCI-Express devices or pre-AR5416
419	 * devices (legacy, 802.11abg).
420	 */
421	if (num_possible_cpus() > 1)
422		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
423}
424
425static void ath9k_hw_init_defaults(struct ath_hw *ah)
426{
427	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
428
429	regulatory->country_code = CTRY_DEFAULT;
430	regulatory->power_limit = MAX_RATE_POWER;
431	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
432
433	ah->hw_version.magic = AR5416_MAGIC;
434	ah->hw_version.subvendorid = 0;
435
436	ah->atim_window = 0;
437	ah->sta_id1_defaults =
438		AR_STA_ID1_CRPT_MIC_ENABLE |
439		AR_STA_ID1_MCAST_KSRCH;
440	if (AR_SREV_9100(ah))
441		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
442	ah->enable_32kHz_clock = DONT_USE_32KHZ;
443	ah->slottime = 20;
444	ah->globaltxtimeout = (u32) -1;
445	ah->power_mode = ATH9K_PM_UNDEFINED;
446}
447
448static int ath9k_hw_init_macaddr(struct ath_hw *ah)
449{
450	struct ath_common *common = ath9k_hw_common(ah);
451	u32 sum;
452	int i;
453	u16 eeval;
454	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
455
456	sum = 0;
457	for (i = 0; i < 3; i++) {
458		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
459		sum += eeval;
460		common->macaddr[2 * i] = eeval >> 8;
461		common->macaddr[2 * i + 1] = eeval & 0xff;
462	}
463	if (sum == 0 || sum == 0xffff * 3)
464		return -EADDRNOTAVAIL;
465
466	return 0;
467}
468
469static int ath9k_hw_post_init(struct ath_hw *ah)
470{
471	struct ath_common *common = ath9k_hw_common(ah);
472	int ecode;
473
474	if (common->bus_ops->ath_bus_type != ATH_USB) {
475		if (!ath9k_hw_chip_test(ah))
476			return -ENODEV;
477	}
478
479	if (!AR_SREV_9300_20_OR_LATER(ah)) {
480		ecode = ar9002_hw_rf_claim(ah);
481		if (ecode != 0)
482			return ecode;
483	}
484
485	ecode = ath9k_hw_eeprom_init(ah);
486	if (ecode != 0)
487		return ecode;
488
489	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
490		"Eeprom VER: %d, REV: %d\n",
491		ah->eep_ops->get_eeprom_ver(ah),
492		ah->eep_ops->get_eeprom_rev(ah));
493
494	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
495	if (ecode) {
496		ath_err(ath9k_hw_common(ah),
497			"Failed allocating banks for external radio\n");
498		ath9k_hw_rf_free_ext_banks(ah);
499		return ecode;
500	}
501
502	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
503		ath9k_hw_ani_setup(ah);
504		ath9k_hw_ani_init(ah);
505	}
506
507	return 0;
508}
509
510static void ath9k_hw_attach_ops(struct ath_hw *ah)
511{
512	if (AR_SREV_9300_20_OR_LATER(ah))
513		ar9003_hw_attach_ops(ah);
514	else
515		ar9002_hw_attach_ops(ah);
516}
517
518/* Called for all hardware families */
519static int __ath9k_hw_init(struct ath_hw *ah)
520{
521	struct ath_common *common = ath9k_hw_common(ah);
522	int r = 0;
523
524	ath9k_hw_read_revisions(ah);
525
526	/*
527	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
528	 * We need to do this to avoid RMW of this register. We cannot
529	 * read the reg when chip is asleep.
530	 */
531	ah->WARegVal = REG_READ(ah, AR_WA);
532	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
533			 AR_WA_ASPM_TIMER_BASED_DISABLE);
534
535	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
536		ath_err(common, "Couldn't reset chip\n");
537		return -EIO;
538	}
539
540	ath9k_hw_init_defaults(ah);
541	ath9k_hw_init_config(ah);
542
543	ath9k_hw_attach_ops(ah);
544
545	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
546		ath_err(common, "Couldn't wakeup chip\n");
547		return -EIO;
548	}
549
550	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
551		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
552		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
553		     !ah->is_pciexpress)) {
554			ah->config.serialize_regmode =
555				SER_REG_MODE_ON;
556		} else {
557			ah->config.serialize_regmode =
558				SER_REG_MODE_OFF;
559		}
560	}
561
562	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
563		ah->config.serialize_regmode);
564
565	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
566		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
567	else
568		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
569
570	switch (ah->hw_version.macVersion) {
571	case AR_SREV_VERSION_5416_PCI:
572	case AR_SREV_VERSION_5416_PCIE:
573	case AR_SREV_VERSION_9160:
574	case AR_SREV_VERSION_9100:
575	case AR_SREV_VERSION_9280:
576	case AR_SREV_VERSION_9285:
577	case AR_SREV_VERSION_9287:
578	case AR_SREV_VERSION_9271:
579	case AR_SREV_VERSION_9300:
580	case AR_SREV_VERSION_9330:
581	case AR_SREV_VERSION_9485:
582	case AR_SREV_VERSION_9340:
583		break;
584	default:
585		ath_err(common,
586			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
587			ah->hw_version.macVersion, ah->hw_version.macRev);
588		return -EOPNOTSUPP;
589	}
590
591	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
592	    AR_SREV_9330(ah))
593		ah->is_pciexpress = false;
594
595	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
596	ath9k_hw_init_cal_settings(ah);
597
598	ah->ani_function = ATH9K_ANI_ALL;
599	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
600		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
601	if (!AR_SREV_9300_20_OR_LATER(ah))
602		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
603
604	ath9k_hw_init_mode_regs(ah);
605
606
607	if (ah->is_pciexpress)
608		ath9k_hw_aspm_init(ah);
609	else
610		ath9k_hw_disablepcie(ah);
611
612	if (!AR_SREV_9300_20_OR_LATER(ah))
613		ar9002_hw_cck_chan14_spread(ah);
614
615	r = ath9k_hw_post_init(ah);
616	if (r)
617		return r;
618
619	ath9k_hw_init_mode_gain_regs(ah);
620	r = ath9k_hw_fill_cap_info(ah);
621	if (r)
622		return r;
623
624	r = ath9k_hw_init_macaddr(ah);
625	if (r) {
626		ath_err(common, "Failed to initialize MAC address\n");
627		return r;
628	}
629
630	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
631		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
632	else
633		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
634
635	if (AR_SREV_9330(ah))
636		ah->bb_watchdog_timeout_ms = 85;
637	else
638		ah->bb_watchdog_timeout_ms = 25;
639
640	common->state = ATH_HW_INITIALIZED;
641
642	return 0;
643}
644
645int ath9k_hw_init(struct ath_hw *ah)
646{
647	int ret;
648	struct ath_common *common = ath9k_hw_common(ah);
649
650	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
651	switch (ah->hw_version.devid) {
652	case AR5416_DEVID_PCI:
653	case AR5416_DEVID_PCIE:
654	case AR5416_AR9100_DEVID:
655	case AR9160_DEVID_PCI:
656	case AR9280_DEVID_PCI:
657	case AR9280_DEVID_PCIE:
658	case AR9285_DEVID_PCIE:
659	case AR9287_DEVID_PCI:
660	case AR9287_DEVID_PCIE:
661	case AR2427_DEVID_PCIE:
662	case AR9300_DEVID_PCIE:
663	case AR9300_DEVID_AR9485_PCIE:
664	case AR9300_DEVID_AR9330:
665	case AR9300_DEVID_AR9340:
666		break;
667	default:
668		if (common->bus_ops->ath_bus_type == ATH_USB)
669			break;
670		ath_err(common, "Hardware device ID 0x%04x not supported\n",
671			ah->hw_version.devid);
672		return -EOPNOTSUPP;
673	}
674
675	ret = __ath9k_hw_init(ah);
676	if (ret) {
677		ath_err(common,
678			"Unable to initialize hardware; initialization status: %d\n",
679			ret);
680		return ret;
681	}
682
683	return 0;
684}
685EXPORT_SYMBOL(ath9k_hw_init);
686
687static void ath9k_hw_init_qos(struct ath_hw *ah)
688{
689	ENABLE_REGWRITE_BUFFER(ah);
690
691	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
692	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
693
694	REG_WRITE(ah, AR_QOS_NO_ACK,
695		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
696		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
697		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
698
699	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
700	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
701	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
702	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
703	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
704
705	REGWRITE_BUFFER_FLUSH(ah);
706}
707
708u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
709{
710	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
711	udelay(100);
712	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
713
714	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
715		udelay(100);
716
717	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
718}
719EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
720
721static void ath9k_hw_init_pll(struct ath_hw *ah,
722			      struct ath9k_channel *chan)
723{
724	u32 pll;
725
726	if (AR_SREV_9485(ah)) {
727
728		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
729		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
730			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
731		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
732			      AR_CH0_DPLL2_KD, 0x40);
733		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734			      AR_CH0_DPLL2_KI, 0x4);
735
736		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
737			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
738		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
739			      AR_CH0_BB_DPLL1_NINI, 0x58);
740		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
741			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
742
743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
749
750		/* program BB PLL phase_shift to 0x6 */
751		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
752			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
753
754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
756		udelay(1000);
757	} else if (AR_SREV_9330(ah)) {
758		u32 ddr_dpll2, pll_control2, kd;
759
760		if (ah->is_clk_25mhz) {
761			ddr_dpll2 = 0x18e82f01;
762			pll_control2 = 0xe04a3d;
763			kd = 0x1d;
764		} else {
765			ddr_dpll2 = 0x19e82f01;
766			pll_control2 = 0x886666;
767			kd = 0x3d;
768		}
769
770		/* program DDR PLL ki and kd value */
771		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
772
773		/* program DDR PLL phase_shift */
774		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
775			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
776
777		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
778		udelay(1000);
779
780		/* program refdiv, nint, frac to RTC register */
781		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
782
783		/* program BB PLL kd and ki value */
784		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
786
787		/* program BB PLL phase_shift */
788		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
789			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
790	} else if (AR_SREV_9340(ah)) {
791		u32 regval, pll2_divint, pll2_divfrac, refdiv;
792
793		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
794		udelay(1000);
795
796		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
797		udelay(100);
798
799		if (ah->is_clk_25mhz) {
800			pll2_divint = 0x54;
801			pll2_divfrac = 0x1eb85;
802			refdiv = 3;
803		} else {
804			pll2_divint = 88;
805			pll2_divfrac = 0;
806			refdiv = 5;
807		}
808
809		regval = REG_READ(ah, AR_PHY_PLL_MODE);
810		regval |= (0x1 << 16);
811		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
812		udelay(100);
813
814		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
815			  (pll2_divint << 18) | pll2_divfrac);
816		udelay(100);
817
818		regval = REG_READ(ah, AR_PHY_PLL_MODE);
819		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
820			 (0x4 << 26) | (0x18 << 19);
821		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
822		REG_WRITE(ah, AR_PHY_PLL_MODE,
823			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
824		udelay(1000);
825	}
826
827	pll = ath9k_hw_compute_pll_control(ah, chan);
828
829	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
830
831	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
832		udelay(1000);
833
834	/* Switch the core clock for ar9271 to 117Mhz */
835	if (AR_SREV_9271(ah)) {
836		udelay(500);
837		REG_WRITE(ah, 0x50040, 0x304);
838	}
839
840	udelay(RTC_PLL_SETTLE_DELAY);
841
842	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
843
844	if (AR_SREV_9340(ah)) {
845		if (ah->is_clk_25mhz) {
846			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
847			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
848			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
849		} else {
850			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
851			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
852			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
853		}
854		udelay(100);
855	}
856}
857
858static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
859					  enum nl80211_iftype opmode)
860{
861	u32 sync_default = AR_INTR_SYNC_DEFAULT;
862	u32 imr_reg = AR_IMR_TXERR |
863		AR_IMR_TXURN |
864		AR_IMR_RXERR |
865		AR_IMR_RXORN |
866		AR_IMR_BCNMISC;
867
868	if (AR_SREV_9340(ah))
869		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
870
871	if (AR_SREV_9300_20_OR_LATER(ah)) {
872		imr_reg |= AR_IMR_RXOK_HP;
873		if (ah->config.rx_intr_mitigation)
874			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
875		else
876			imr_reg |= AR_IMR_RXOK_LP;
877
878	} else {
879		if (ah->config.rx_intr_mitigation)
880			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
881		else
882			imr_reg |= AR_IMR_RXOK;
883	}
884
885	if (ah->config.tx_intr_mitigation)
886		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
887	else
888		imr_reg |= AR_IMR_TXOK;
889
890	if (opmode == NL80211_IFTYPE_AP)
891		imr_reg |= AR_IMR_MIB;
892
893	ENABLE_REGWRITE_BUFFER(ah);
894
895	REG_WRITE(ah, AR_IMR, imr_reg);
896	ah->imrs2_reg |= AR_IMR_S2_GTT;
897	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
898
899	if (!AR_SREV_9100(ah)) {
900		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
901		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
902		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
903	}
904
905	REGWRITE_BUFFER_FLUSH(ah);
906
907	if (AR_SREV_9300_20_OR_LATER(ah)) {
908		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
909		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
910		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
911		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
912	}
913}
914
915static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
916{
917	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
918	val = min(val, (u32) 0xFFFF);
919	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
920}
921
922static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
923{
924	u32 val = ath9k_hw_mac_to_clks(ah, us);
925	val = min(val, (u32) 0xFFFF);
926	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
927}
928
929static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
930{
931	u32 val = ath9k_hw_mac_to_clks(ah, us);
932	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
933	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
934}
935
936static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
937{
938	u32 val = ath9k_hw_mac_to_clks(ah, us);
939	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
940	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
941}
942
943static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
944{
945	if (tu > 0xFFFF) {
946		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
947			"bad global tx timeout %u\n", tu);
948		ah->globaltxtimeout = (u32) -1;
949		return false;
950	} else {
951		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
952		ah->globaltxtimeout = tu;
953		return true;
954	}
955}
956
957void ath9k_hw_init_global_settings(struct ath_hw *ah)
958{
959	struct ath_common *common = ath9k_hw_common(ah);
960	struct ieee80211_conf *conf = &common->hw->conf;
961	const struct ath9k_channel *chan = ah->curchan;
962	int acktimeout;
963	int slottime;
964	int sifstime;
965	int rx_lat = 0, tx_lat = 0, eifs = 0;
966	u32 reg;
967
968	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
969		ah->misc_mode);
970
971	if (!chan)
972		return;
973
974	if (ah->misc_mode != 0)
975		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
976
977	rx_lat = 37;
978	tx_lat = 54;
979
980	if (IS_CHAN_HALF_RATE(chan)) {
981		eifs = 175;
982		rx_lat *= 2;
983		tx_lat *= 2;
984		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
985		    tx_lat += 11;
986
987		slottime = 13;
988		sifstime = 32;
989	} else if (IS_CHAN_QUARTER_RATE(chan)) {
990		eifs = 340;
991		rx_lat *= 4;
992		tx_lat *= 4;
993		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
994		    tx_lat += 22;
995
996		slottime = 21;
997		sifstime = 64;
998	} else {
999		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS);
1000		reg = REG_READ(ah, AR_USEC);
1001		rx_lat = MS(reg, AR_USEC_RX_LAT);
1002		tx_lat = MS(reg, AR_USEC_TX_LAT);
1003
1004		slottime = ah->slottime;
1005		if (IS_CHAN_5GHZ(chan))
1006			sifstime = 16;
1007		else
1008			sifstime = 10;
1009	}
1010
1011	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1012	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1013
1014	/*
1015	 * Workaround for early ACK timeouts, add an offset to match the
1016	 * initval's 64us ack timeout value.
1017	 * This was initially only meant to work around an issue with delayed
1018	 * BA frames in some implementations, but it has been found to fix ACK
1019	 * timeout issues in other cases as well.
1020	 */
1021	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1022		acktimeout += 64 - sifstime - ah->slottime;
1023
1024	ath9k_hw_set_sifs_time(ah, sifstime);
1025	ath9k_hw_setslottime(ah, slottime);
1026	ath9k_hw_set_ack_timeout(ah, acktimeout);
1027	ath9k_hw_set_cts_timeout(ah, acktimeout);
1028	if (ah->globaltxtimeout != (u32) -1)
1029		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1030
1031	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1032	REG_RMW(ah, AR_USEC,
1033		(common->clockrate - 1) |
1034		SM(rx_lat, AR_USEC_RX_LAT) |
1035		SM(tx_lat, AR_USEC_TX_LAT),
1036		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1037
1038}
1039EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1040
1041void ath9k_hw_deinit(struct ath_hw *ah)
1042{
1043	struct ath_common *common = ath9k_hw_common(ah);
1044
1045	if (common->state < ATH_HW_INITIALIZED)
1046		goto free_hw;
1047
1048	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1049
1050free_hw:
1051	ath9k_hw_rf_free_ext_banks(ah);
1052}
1053EXPORT_SYMBOL(ath9k_hw_deinit);
1054
1055/*******/
1056/* INI */
1057/*******/
1058
1059u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1060{
1061	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1062
1063	if (IS_CHAN_B(chan))
1064		ctl |= CTL_11B;
1065	else if (IS_CHAN_G(chan))
1066		ctl |= CTL_11G;
1067	else
1068		ctl |= CTL_11A;
1069
1070	return ctl;
1071}
1072
1073/****************************************/
1074/* Reset and Channel Switching Routines */
1075/****************************************/
1076
1077static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1078{
1079	struct ath_common *common = ath9k_hw_common(ah);
1080
1081	ENABLE_REGWRITE_BUFFER(ah);
1082
1083	/*
1084	 * set AHB_MODE not to do cacheline prefetches
1085	*/
1086	if (!AR_SREV_9300_20_OR_LATER(ah))
1087		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1088
1089	/*
1090	 * let mac dma reads be in 128 byte chunks
1091	 */
1092	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1093
1094	REGWRITE_BUFFER_FLUSH(ah);
1095
1096	/*
1097	 * Restore TX Trigger Level to its pre-reset value.
1098	 * The initial value depends on whether aggregation is enabled, and is
1099	 * adjusted whenever underruns are detected.
1100	 */
1101	if (!AR_SREV_9300_20_OR_LATER(ah))
1102		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1103
1104	ENABLE_REGWRITE_BUFFER(ah);
1105
1106	/*
1107	 * let mac dma writes be in 128 byte chunks
1108	 */
1109	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1110
1111	/*
1112	 * Setup receive FIFO threshold to hold off TX activities
1113	 */
1114	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1115
1116	if (AR_SREV_9300_20_OR_LATER(ah)) {
1117		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1118		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1119
1120		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1121			ah->caps.rx_status_len);
1122	}
1123
1124	/*
1125	 * reduce the number of usable entries in PCU TXBUF to avoid
1126	 * wrap around issues.
1127	 */
1128	if (AR_SREV_9285(ah)) {
1129		/* For AR9285 the number of Fifos are reduced to half.
1130		 * So set the usable tx buf size also to half to
1131		 * avoid data/delimiter underruns
1132		 */
1133		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1134			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1135	} else if (!AR_SREV_9271(ah)) {
1136		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1137			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1138	}
1139
1140	REGWRITE_BUFFER_FLUSH(ah);
1141
1142	if (AR_SREV_9300_20_OR_LATER(ah))
1143		ath9k_hw_reset_txstatus_ring(ah);
1144}
1145
1146static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1147{
1148	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1149	u32 set = AR_STA_ID1_KSRCH_MODE;
1150
1151	switch (opmode) {
1152	case NL80211_IFTYPE_ADHOC:
1153	case NL80211_IFTYPE_MESH_POINT:
1154		set |= AR_STA_ID1_ADHOC;
1155		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1156		break;
1157	case NL80211_IFTYPE_AP:
1158		set |= AR_STA_ID1_STA_AP;
1159		/* fall through */
1160	case NL80211_IFTYPE_STATION:
1161		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1162		break;
1163	default:
1164		if (!ah->is_monitoring)
1165			set = 0;
1166		break;
1167	}
1168	REG_RMW(ah, AR_STA_ID1, set, mask);
1169}
1170
1171void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1172				   u32 *coef_mantissa, u32 *coef_exponent)
1173{
1174	u32 coef_exp, coef_man;
1175
1176	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1177		if ((coef_scaled >> coef_exp) & 0x1)
1178			break;
1179
1180	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1181
1182	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1183
1184	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1185	*coef_exponent = coef_exp - 16;
1186}
1187
1188static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1189{
1190	u32 rst_flags;
1191	u32 tmpReg;
1192
1193	if (AR_SREV_9100(ah)) {
1194		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1195			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1196		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1197	}
1198
1199	ENABLE_REGWRITE_BUFFER(ah);
1200
1201	if (AR_SREV_9300_20_OR_LATER(ah)) {
1202		REG_WRITE(ah, AR_WA, ah->WARegVal);
1203		udelay(10);
1204	}
1205
1206	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1207		  AR_RTC_FORCE_WAKE_ON_INT);
1208
1209	if (AR_SREV_9100(ah)) {
1210		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1211			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1212	} else {
1213		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1214		if (tmpReg &
1215		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1216		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1217			u32 val;
1218			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1219
1220			val = AR_RC_HOSTIF;
1221			if (!AR_SREV_9300_20_OR_LATER(ah))
1222				val |= AR_RC_AHB;
1223			REG_WRITE(ah, AR_RC, val);
1224
1225		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1226			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1227
1228		rst_flags = AR_RTC_RC_MAC_WARM;
1229		if (type == ATH9K_RESET_COLD)
1230			rst_flags |= AR_RTC_RC_MAC_COLD;
1231	}
1232
1233	if (AR_SREV_9330(ah)) {
1234		int npend = 0;
1235		int i;
1236
1237		/* AR9330 WAR:
1238		 * call external reset function to reset WMAC if:
1239		 * - doing a cold reset
1240		 * - we have pending frames in the TX queues
1241		 */
1242
1243		for (i = 0; i < AR_NUM_QCU; i++) {
1244			npend = ath9k_hw_numtxpending(ah, i);
1245			if (npend)
1246				break;
1247		}
1248
1249		if (ah->external_reset &&
1250		    (npend || type == ATH9K_RESET_COLD)) {
1251			int reset_err = 0;
1252
1253			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1254				"reset MAC via external reset\n");
1255
1256			reset_err = ah->external_reset();
1257			if (reset_err) {
1258				ath_err(ath9k_hw_common(ah),
1259					"External reset failed, err=%d\n",
1260					reset_err);
1261				return false;
1262			}
1263
1264			REG_WRITE(ah, AR_RTC_RESET, 1);
1265		}
1266	}
1267
1268	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1269
1270	REGWRITE_BUFFER_FLUSH(ah);
1271
1272	udelay(50);
1273
1274	REG_WRITE(ah, AR_RTC_RC, 0);
1275	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1276		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1277			"RTC stuck in MAC reset\n");
1278		return false;
1279	}
1280
1281	if (!AR_SREV_9100(ah))
1282		REG_WRITE(ah, AR_RC, 0);
1283
1284	if (AR_SREV_9100(ah))
1285		udelay(50);
1286
1287	return true;
1288}
1289
1290static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1291{
1292	ENABLE_REGWRITE_BUFFER(ah);
1293
1294	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296		udelay(10);
1297	}
1298
1299	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300		  AR_RTC_FORCE_WAKE_ON_INT);
1301
1302	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1303		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1304
1305	REG_WRITE(ah, AR_RTC_RESET, 0);
1306
1307	REGWRITE_BUFFER_FLUSH(ah);
1308
1309	if (!AR_SREV_9300_20_OR_LATER(ah))
1310		udelay(2);
1311
1312	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1313		REG_WRITE(ah, AR_RC, 0);
1314
1315	REG_WRITE(ah, AR_RTC_RESET, 1);
1316
1317	if (!ath9k_hw_wait(ah,
1318			   AR_RTC_STATUS,
1319			   AR_RTC_STATUS_M,
1320			   AR_RTC_STATUS_ON,
1321			   AH_WAIT_TIMEOUT)) {
1322		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1323			"RTC not waking up\n");
1324		return false;
1325	}
1326
1327	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1328}
1329
1330static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1331{
1332	if (AR_SREV_9300_20_OR_LATER(ah)) {
1333		REG_WRITE(ah, AR_WA, ah->WARegVal);
1334		udelay(10);
1335	}
1336
1337	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1338		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1339
1340	switch (type) {
1341	case ATH9K_RESET_POWER_ON:
1342		return ath9k_hw_set_reset_power_on(ah);
1343	case ATH9K_RESET_WARM:
1344	case ATH9K_RESET_COLD:
1345		return ath9k_hw_set_reset(ah, type);
1346	default:
1347		return false;
1348	}
1349}
1350
1351static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1352				struct ath9k_channel *chan)
1353{
1354	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1355		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1356			return false;
1357	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1358		return false;
1359
1360	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1361		return false;
1362
1363	ah->chip_fullsleep = false;
1364	ath9k_hw_init_pll(ah, chan);
1365	ath9k_hw_set_rfmode(ah, chan);
1366
1367	return true;
1368}
1369
1370static bool ath9k_hw_channel_change(struct ath_hw *ah,
1371				    struct ath9k_channel *chan)
1372{
1373	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1374	struct ath_common *common = ath9k_hw_common(ah);
1375	struct ieee80211_channel *channel = chan->chan;
1376	u32 qnum;
1377	int r;
1378
1379	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1380		if (ath9k_hw_numtxpending(ah, qnum)) {
1381			ath_dbg(common, ATH_DBG_QUEUE,
1382				"Transmit frames pending on queue %d\n", qnum);
1383			return false;
1384		}
1385	}
1386
1387	if (!ath9k_hw_rfbus_req(ah)) {
1388		ath_err(common, "Could not kill baseband RX\n");
1389		return false;
1390	}
1391
1392	ath9k_hw_set_channel_regs(ah, chan);
1393
1394	r = ath9k_hw_rf_set_freq(ah, chan);
1395	if (r) {
1396		ath_err(common, "Failed to set channel\n");
1397		return false;
1398	}
1399	ath9k_hw_set_clockrate(ah);
1400
1401	ah->eep_ops->set_txpower(ah, chan,
1402			     ath9k_regd_get_ctl(regulatory, chan),
1403			     channel->max_antenna_gain * 2,
1404			     channel->max_power * 2,
1405			     min((u32) MAX_RATE_POWER,
1406			     (u32) regulatory->power_limit), false);
1407
1408	ath9k_hw_rfbus_done(ah);
1409
1410	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1411		ath9k_hw_set_delta_slope(ah, chan);
1412
1413	ath9k_hw_spur_mitigate_freq(ah, chan);
1414
1415	return true;
1416}
1417
1418static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1419{
1420	u32 gpio_mask = ah->gpio_mask;
1421	int i;
1422
1423	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1424		if (!(gpio_mask & 1))
1425			continue;
1426
1427		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1428		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1429	}
1430}
1431
1432bool ath9k_hw_check_alive(struct ath_hw *ah)
1433{
1434	int count = 50;
1435	u32 reg;
1436
1437	if (AR_SREV_9285_12_OR_LATER(ah))
1438		return true;
1439
1440	do {
1441		reg = REG_READ(ah, AR_OBS_BUS_1);
1442
1443		if ((reg & 0x7E7FFFEF) == 0x00702400)
1444			continue;
1445
1446		switch (reg & 0x7E000B00) {
1447		case 0x1E000000:
1448		case 0x52000B00:
1449		case 0x18000B00:
1450			continue;
1451		default:
1452			return true;
1453		}
1454	} while (count-- > 0);
1455
1456	return false;
1457}
1458EXPORT_SYMBOL(ath9k_hw_check_alive);
1459
1460int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1461		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1462{
1463	struct ath_common *common = ath9k_hw_common(ah);
1464	u32 saveLedState;
1465	struct ath9k_channel *curchan = ah->curchan;
1466	u32 saveDefAntenna;
1467	u32 macStaId1;
1468	u64 tsf = 0;
1469	int i, r;
1470
1471	ah->txchainmask = common->tx_chainmask;
1472	ah->rxchainmask = common->rx_chainmask;
1473
1474	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1475		return -EIO;
1476
1477	if (curchan && !ah->chip_fullsleep)
1478		ath9k_hw_getnf(ah, curchan);
1479
1480	ah->caldata = caldata;
1481	if (caldata &&
1482	    (chan->channel != caldata->channel ||
1483	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1484	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1485		/* Operating channel changed, reset channel calibration data */
1486		memset(caldata, 0, sizeof(*caldata));
1487		ath9k_init_nfcal_hist_buffer(ah, chan);
1488	}
1489
1490	if (bChannelChange &&
1491	    (ah->chip_fullsleep != true) &&
1492	    (ah->curchan != NULL) &&
1493	    (chan->channel != ah->curchan->channel) &&
1494	    ((chan->channelFlags & CHANNEL_ALL) ==
1495	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1496	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1497
1498		if (ath9k_hw_channel_change(ah, chan)) {
1499			ath9k_hw_loadnf(ah, ah->curchan);
1500			ath9k_hw_start_nfcal(ah, true);
1501			if (AR_SREV_9271(ah))
1502				ar9002_hw_load_ani_reg(ah, chan);
1503			return 0;
1504		}
1505	}
1506
1507	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1508	if (saveDefAntenna == 0)
1509		saveDefAntenna = 1;
1510
1511	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1512
1513	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1514	if (AR_SREV_9100(ah) ||
1515	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1516		tsf = ath9k_hw_gettsf64(ah);
1517
1518	saveLedState = REG_READ(ah, AR_CFG_LED) &
1519		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1520		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1521
1522	ath9k_hw_mark_phy_inactive(ah);
1523
1524	ah->paprd_table_write_done = false;
1525
1526	/* Only required on the first reset */
1527	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1528		REG_WRITE(ah,
1529			  AR9271_RESET_POWER_DOWN_CONTROL,
1530			  AR9271_RADIO_RF_RST);
1531		udelay(50);
1532	}
1533
1534	if (!ath9k_hw_chip_reset(ah, chan)) {
1535		ath_err(common, "Chip reset failed\n");
1536		return -EINVAL;
1537	}
1538
1539	/* Only required on the first reset */
1540	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1541		ah->htc_reset_init = false;
1542		REG_WRITE(ah,
1543			  AR9271_RESET_POWER_DOWN_CONTROL,
1544			  AR9271_GATE_MAC_CTL);
1545		udelay(50);
1546	}
1547
1548	/* Restore TSF */
1549	if (tsf)
1550		ath9k_hw_settsf64(ah, tsf);
1551
1552	if (AR_SREV_9280_20_OR_LATER(ah))
1553		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1554
1555	if (!AR_SREV_9300_20_OR_LATER(ah))
1556		ar9002_hw_enable_async_fifo(ah);
1557
1558	r = ath9k_hw_process_ini(ah, chan);
1559	if (r)
1560		return r;
1561
1562	/*
1563	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1564	 * right after the chip reset. When that happens, write a new
1565	 * value after the initvals have been applied, with an offset
1566	 * based on measured time difference
1567	 */
1568	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1569		tsf += 1500;
1570		ath9k_hw_settsf64(ah, tsf);
1571	}
1572
1573	/* Setup MFP options for CCMP */
1574	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576		 * frames when constructing CCMP AAD. */
1577		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578			      0xc7ff);
1579		ah->sw_mgmt_crypto = false;
1580	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581		/* Disable hardware crypto for management frames */
1582		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586		ah->sw_mgmt_crypto = true;
1587	} else
1588		ah->sw_mgmt_crypto = true;
1589
1590	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1591		ath9k_hw_set_delta_slope(ah, chan);
1592
1593	ath9k_hw_spur_mitigate_freq(ah, chan);
1594	ah->eep_ops->set_board_values(ah, chan);
1595
1596	ENABLE_REGWRITE_BUFFER(ah);
1597
1598	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1599	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1600		  | macStaId1
1601		  | AR_STA_ID1_RTS_USE_DEF
1602		  | (ah->config.
1603		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1604		  | ah->sta_id1_defaults);
1605	ath_hw_setbssidmask(common);
1606	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1607	ath9k_hw_write_associd(ah);
1608	REG_WRITE(ah, AR_ISR, ~0);
1609	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1610
1611	REGWRITE_BUFFER_FLUSH(ah);
1612
1613	ath9k_hw_set_operating_mode(ah, ah->opmode);
1614
1615	r = ath9k_hw_rf_set_freq(ah, chan);
1616	if (r)
1617		return r;
1618
1619	ath9k_hw_set_clockrate(ah);
1620
1621	ENABLE_REGWRITE_BUFFER(ah);
1622
1623	for (i = 0; i < AR_NUM_DCU; i++)
1624		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1625
1626	REGWRITE_BUFFER_FLUSH(ah);
1627
1628	ah->intr_txqs = 0;
1629	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1630		ath9k_hw_resettxqueue(ah, i);
1631
1632	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1633	ath9k_hw_ani_cache_ini_regs(ah);
1634	ath9k_hw_init_qos(ah);
1635
1636	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1637		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1638
1639	ath9k_hw_init_global_settings(ah);
1640
1641	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1642		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1643			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1644		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1645			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1646		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1647			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1648	}
1649
1650	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1651
1652	ath9k_hw_set_dma(ah);
1653
1654	REG_WRITE(ah, AR_OBS, 8);
1655
1656	if (ah->config.rx_intr_mitigation) {
1657		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1658		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1659	}
1660
1661	if (ah->config.tx_intr_mitigation) {
1662		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1663		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1664	}
1665
1666	ath9k_hw_init_bb(ah, chan);
1667
1668	if (!ath9k_hw_init_cal(ah, chan))
1669		return -EIO;
1670
1671	ENABLE_REGWRITE_BUFFER(ah);
1672
1673	ath9k_hw_restore_chainmask(ah);
1674	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1675
1676	REGWRITE_BUFFER_FLUSH(ah);
1677
1678	/*
1679	 * For big endian systems turn on swapping for descriptors
1680	 */
1681	if (AR_SREV_9100(ah)) {
1682		u32 mask;
1683		mask = REG_READ(ah, AR_CFG);
1684		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1685			ath_dbg(common, ATH_DBG_RESET,
1686				"CFG Byte Swap Set 0x%x\n", mask);
1687		} else {
1688			mask =
1689				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1690			REG_WRITE(ah, AR_CFG, mask);
1691			ath_dbg(common, ATH_DBG_RESET,
1692				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1693		}
1694	} else {
1695		if (common->bus_ops->ath_bus_type == ATH_USB) {
1696			/* Configure AR9271 target WLAN */
1697			if (AR_SREV_9271(ah))
1698				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1699			else
1700				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1701		}
1702#ifdef __BIG_ENDIAN
1703		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1704			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1705		else
1706			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1707#endif
1708	}
1709
1710	if (ah->btcoex_hw.enabled)
1711		ath9k_hw_btcoex_enable(ah);
1712
1713	if (AR_SREV_9300_20_OR_LATER(ah)) {
1714		ar9003_hw_bb_watchdog_config(ah);
1715
1716		ar9003_hw_disable_phy_restart(ah);
1717	}
1718
1719	ath9k_hw_apply_gpio_override(ah);
1720
1721	return 0;
1722}
1723EXPORT_SYMBOL(ath9k_hw_reset);
1724
1725/******************************/
1726/* Power Management (Chipset) */
1727/******************************/
1728
1729/*
1730 * Notify Power Mgt is disabled in self-generated frames.
1731 * If requested, force chip to sleep.
1732 */
1733static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1734{
1735	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1736	if (setChip) {
1737		/*
1738		 * Clear the RTC force wake bit to allow the
1739		 * mac to go to sleep.
1740		 */
1741		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1742			    AR_RTC_FORCE_WAKE_EN);
1743		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1744			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745
1746		/* Shutdown chip. Active low */
1747		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1748			REG_CLR_BIT(ah, (AR_RTC_RESET),
1749				    AR_RTC_RESET_EN);
1750	}
1751
1752	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1753	if (AR_SREV_9300_20_OR_LATER(ah))
1754		REG_WRITE(ah, AR_WA,
1755			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1756}
1757
1758/*
1759 * Notify Power Management is enabled in self-generating
1760 * frames. If request, set power mode of chip to
1761 * auto/normal.  Duration in units of 128us (1/8 TU).
1762 */
1763static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1764{
1765	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1766	if (setChip) {
1767		struct ath9k_hw_capabilities *pCap = &ah->caps;
1768
1769		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1770			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1771			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1772				  AR_RTC_FORCE_WAKE_ON_INT);
1773		} else {
1774			/*
1775			 * Clear the RTC force wake bit to allow the
1776			 * mac to go to sleep.
1777			 */
1778			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1779				    AR_RTC_FORCE_WAKE_EN);
1780		}
1781	}
1782
1783	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1784	if (AR_SREV_9300_20_OR_LATER(ah))
1785		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1786}
1787
1788static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1789{
1790	u32 val;
1791	int i;
1792
1793	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1794	if (AR_SREV_9300_20_OR_LATER(ah)) {
1795		REG_WRITE(ah, AR_WA, ah->WARegVal);
1796		udelay(10);
1797	}
1798
1799	if (setChip) {
1800		if ((REG_READ(ah, AR_RTC_STATUS) &
1801		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1802			if (ath9k_hw_set_reset_reg(ah,
1803					   ATH9K_RESET_POWER_ON) != true) {
1804				return false;
1805			}
1806			if (!AR_SREV_9300_20_OR_LATER(ah))
1807				ath9k_hw_init_pll(ah, NULL);
1808		}
1809		if (AR_SREV_9100(ah))
1810			REG_SET_BIT(ah, AR_RTC_RESET,
1811				    AR_RTC_RESET_EN);
1812
1813		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1814			    AR_RTC_FORCE_WAKE_EN);
1815		udelay(50);
1816
1817		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1818			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1819			if (val == AR_RTC_STATUS_ON)
1820				break;
1821			udelay(50);
1822			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1823				    AR_RTC_FORCE_WAKE_EN);
1824		}
1825		if (i == 0) {
1826			ath_err(ath9k_hw_common(ah),
1827				"Failed to wakeup in %uus\n",
1828				POWER_UP_TIME / 20);
1829			return false;
1830		}
1831	}
1832
1833	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1834
1835	return true;
1836}
1837
1838bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1839{
1840	struct ath_common *common = ath9k_hw_common(ah);
1841	int status = true, setChip = true;
1842	static const char *modes[] = {
1843		"AWAKE",
1844		"FULL-SLEEP",
1845		"NETWORK SLEEP",
1846		"UNDEFINED"
1847	};
1848
1849	if (ah->power_mode == mode)
1850		return status;
1851
1852	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1853		modes[ah->power_mode], modes[mode]);
1854
1855	switch (mode) {
1856	case ATH9K_PM_AWAKE:
1857		status = ath9k_hw_set_power_awake(ah, setChip);
1858		break;
1859	case ATH9K_PM_FULL_SLEEP:
1860		ath9k_set_power_sleep(ah, setChip);
1861		ah->chip_fullsleep = true;
1862		break;
1863	case ATH9K_PM_NETWORK_SLEEP:
1864		ath9k_set_power_network_sleep(ah, setChip);
1865		break;
1866	default:
1867		ath_err(common, "Unknown power mode %u\n", mode);
1868		return false;
1869	}
1870	ah->power_mode = mode;
1871
1872	/*
1873	 * XXX: If this warning never comes up after a while then
1874	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1875	 * ath9k_hw_setpower() return type void.
1876	 */
1877
1878	if (!(ah->ah_flags & AH_UNPLUGGED))
1879		ATH_DBG_WARN_ON_ONCE(!status);
1880
1881	return status;
1882}
1883EXPORT_SYMBOL(ath9k_hw_setpower);
1884
1885/*******************/
1886/* Beacon Handling */
1887/*******************/
1888
1889void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1890{
1891	int flags = 0;
1892
1893	ENABLE_REGWRITE_BUFFER(ah);
1894
1895	switch (ah->opmode) {
1896	case NL80211_IFTYPE_ADHOC:
1897	case NL80211_IFTYPE_MESH_POINT:
1898		REG_SET_BIT(ah, AR_TXCFG,
1899			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1900		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1901			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1902		flags |= AR_NDP_TIMER_EN;
1903	case NL80211_IFTYPE_AP:
1904		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1905		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1906			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1907		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1908			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1909		flags |=
1910			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1911		break;
1912	default:
1913		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1914			"%s: unsupported opmode: %d\n",
1915			__func__, ah->opmode);
1916		return;
1917		break;
1918	}
1919
1920	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1921	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1922	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1923	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1924
1925	REGWRITE_BUFFER_FLUSH(ah);
1926
1927	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1928}
1929EXPORT_SYMBOL(ath9k_hw_beaconinit);
1930
1931void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1932				    const struct ath9k_beacon_state *bs)
1933{
1934	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1935	struct ath9k_hw_capabilities *pCap = &ah->caps;
1936	struct ath_common *common = ath9k_hw_common(ah);
1937
1938	ENABLE_REGWRITE_BUFFER(ah);
1939
1940	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1941
1942	REG_WRITE(ah, AR_BEACON_PERIOD,
1943		  TU_TO_USEC(bs->bs_intval));
1944	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1945		  TU_TO_USEC(bs->bs_intval));
1946
1947	REGWRITE_BUFFER_FLUSH(ah);
1948
1949	REG_RMW_FIELD(ah, AR_RSSI_THR,
1950		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1951
1952	beaconintval = bs->bs_intval;
1953
1954	if (bs->bs_sleepduration > beaconintval)
1955		beaconintval = bs->bs_sleepduration;
1956
1957	dtimperiod = bs->bs_dtimperiod;
1958	if (bs->bs_sleepduration > dtimperiod)
1959		dtimperiod = bs->bs_sleepduration;
1960
1961	if (beaconintval == dtimperiod)
1962		nextTbtt = bs->bs_nextdtim;
1963	else
1964		nextTbtt = bs->bs_nexttbtt;
1965
1966	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1967	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1968	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1969	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1970
1971	ENABLE_REGWRITE_BUFFER(ah);
1972
1973	REG_WRITE(ah, AR_NEXT_DTIM,
1974		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1975	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1976
1977	REG_WRITE(ah, AR_SLEEP1,
1978		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1979		  | AR_SLEEP1_ASSUME_DTIM);
1980
1981	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1982		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1983	else
1984		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1985
1986	REG_WRITE(ah, AR_SLEEP2,
1987		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1988
1989	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1990	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1991
1992	REGWRITE_BUFFER_FLUSH(ah);
1993
1994	REG_SET_BIT(ah, AR_TIMER_MODE,
1995		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1996		    AR_DTIM_TIMER_EN);
1997
1998	/* TSF Out of Range Threshold */
1999	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2000}
2001EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2002
2003/*******************/
2004/* HW Capabilities */
2005/*******************/
2006
2007static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2008{
2009	eeprom_chainmask &= chip_chainmask;
2010	if (eeprom_chainmask)
2011		return eeprom_chainmask;
2012	else
2013		return chip_chainmask;
2014}
2015
2016int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2017{
2018	struct ath9k_hw_capabilities *pCap = &ah->caps;
2019	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2020	struct ath_common *common = ath9k_hw_common(ah);
2021	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2022	unsigned int chip_chainmask;
2023
2024	u16 eeval;
2025	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2026
2027	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2028	regulatory->current_rd = eeval;
2029
2030	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2031	if (AR_SREV_9285_12_OR_LATER(ah))
2032		eeval |= AR9285_RDEXT_DEFAULT;
2033	regulatory->current_rd_ext = eeval;
2034
2035	if (ah->opmode != NL80211_IFTYPE_AP &&
2036	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2037		if (regulatory->current_rd == 0x64 ||
2038		    regulatory->current_rd == 0x65)
2039			regulatory->current_rd += 5;
2040		else if (regulatory->current_rd == 0x41)
2041			regulatory->current_rd = 0x43;
2042		ath_dbg(common, ATH_DBG_REGULATORY,
2043			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2044	}
2045
2046	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2047	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2048		ath_err(common,
2049			"no band has been marked as supported in EEPROM\n");
2050		return -EINVAL;
2051	}
2052
2053	if (eeval & AR5416_OPFLAGS_11A)
2054		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2055
2056	if (eeval & AR5416_OPFLAGS_11G)
2057		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2058
2059	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2060		chip_chainmask = 1;
2061	else if (!AR_SREV_9280_20_OR_LATER(ah))
2062		chip_chainmask = 7;
2063	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2064		chip_chainmask = 3;
2065	else
2066		chip_chainmask = 7;
2067
2068	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2069	/*
2070	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2071	 * the EEPROM.
2072	 */
2073	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2074	    !(eeval & AR5416_OPFLAGS_11A) &&
2075	    !(AR_SREV_9271(ah)))
2076		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2077		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2078	else if (AR_SREV_9100(ah))
2079		pCap->rx_chainmask = 0x7;
2080	else
2081		/* Use rx_chainmask from EEPROM. */
2082		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2083
2084	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2085	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2086
2087	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2088
2089	/* enable key search for every frame in an aggregate */
2090	if (AR_SREV_9300_20_OR_LATER(ah))
2091		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2092
2093	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2094
2095	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2096		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2097	else
2098		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2099
2100	if (AR_SREV_9271(ah))
2101		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2102	else if (AR_DEVID_7010(ah))
2103		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2104	else if (AR_SREV_9285_12_OR_LATER(ah))
2105		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2106	else if (AR_SREV_9280_20_OR_LATER(ah))
2107		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2108	else
2109		pCap->num_gpio_pins = AR_NUM_GPIO;
2110
2111	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2112		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2113		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2114	} else {
2115		pCap->rts_aggr_limit = (8 * 1024);
2116	}
2117
2118#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2119	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2120	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2121		ah->rfkill_gpio =
2122			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2123		ah->rfkill_polarity =
2124			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2125
2126		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2127	}
2128#endif
2129	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2130		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2131	else
2132		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2133
2134	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2135		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2136	else
2137		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2138
2139	if (common->btcoex_enabled) {
2140		if (AR_SREV_9300_20_OR_LATER(ah)) {
2141			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2142			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2143			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2144			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2145		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2146			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2147			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2148
2149			if (AR_SREV_9285(ah)) {
2150				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2151				btcoex_hw->btpriority_gpio =
2152						ATH_BTPRIORITY_GPIO_9285;
2153			} else {
2154				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2155			}
2156		}
2157	} else {
2158		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2159	}
2160
2161	if (AR_SREV_9300_20_OR_LATER(ah)) {
2162		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2163		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2164			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2165
2166		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2167		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2168		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2169		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2170		pCap->txs_len = sizeof(struct ar9003_txs);
2171		if (!ah->config.paprd_disable &&
2172		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2173			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2174	} else {
2175		pCap->tx_desc_len = sizeof(struct ath_desc);
2176		if (AR_SREV_9280_20(ah))
2177			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2178	}
2179
2180	if (AR_SREV_9300_20_OR_LATER(ah))
2181		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2182
2183	if (AR_SREV_9300_20_OR_LATER(ah))
2184		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2185
2186	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2187		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2188
2189	if (AR_SREV_9285(ah))
2190		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2191			ant_div_ctl1 =
2192				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2193			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2194				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2195		}
2196	if (AR_SREV_9300_20_OR_LATER(ah)) {
2197		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2198			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2199	}
2200
2201
2202	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2203		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2204		/*
2205		 * enable the diversity-combining algorithm only when
2206		 * both enable_lna_div and enable_fast_div are set
2207		 *		Table for Diversity
2208		 * ant_div_alt_lnaconf		bit 0-1
2209		 * ant_div_main_lnaconf		bit 2-3
2210		 * ant_div_alt_gaintb		bit 4
2211		 * ant_div_main_gaintb		bit 5
2212		 * enable_ant_div_lnadiv	bit 6
2213		 * enable_ant_fast_div		bit 7
2214		 */
2215		if ((ant_div_ctl1 >> 0x6) == 0x3)
2216			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2217	}
2218
2219	if (AR_SREV_9485_10(ah)) {
2220		pCap->pcie_lcr_extsync_en = true;
2221		pCap->pcie_lcr_offset = 0x80;
2222	}
2223
2224	tx_chainmask = pCap->tx_chainmask;
2225	rx_chainmask = pCap->rx_chainmask;
2226	while (tx_chainmask || rx_chainmask) {
2227		if (tx_chainmask & BIT(0))
2228			pCap->max_txchains++;
2229		if (rx_chainmask & BIT(0))
2230			pCap->max_rxchains++;
2231
2232		tx_chainmask >>= 1;
2233		rx_chainmask >>= 1;
2234	}
2235
2236	return 0;
2237}
2238
2239/****************************/
2240/* GPIO / RFKILL / Antennae */
2241/****************************/
2242
2243static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2244					 u32 gpio, u32 type)
2245{
2246	int addr;
2247	u32 gpio_shift, tmp;
2248
2249	if (gpio > 11)
2250		addr = AR_GPIO_OUTPUT_MUX3;
2251	else if (gpio > 5)
2252		addr = AR_GPIO_OUTPUT_MUX2;
2253	else
2254		addr = AR_GPIO_OUTPUT_MUX1;
2255
2256	gpio_shift = (gpio % 6) * 5;
2257
2258	if (AR_SREV_9280_20_OR_LATER(ah)
2259	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2260		REG_RMW(ah, addr, (type << gpio_shift),
2261			(0x1f << gpio_shift));
2262	} else {
2263		tmp = REG_READ(ah, addr);
2264		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2265		tmp &= ~(0x1f << gpio_shift);
2266		tmp |= (type << gpio_shift);
2267		REG_WRITE(ah, addr, tmp);
2268	}
2269}
2270
2271void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2272{
2273	u32 gpio_shift;
2274
2275	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2276
2277	if (AR_DEVID_7010(ah)) {
2278		gpio_shift = gpio;
2279		REG_RMW(ah, AR7010_GPIO_OE,
2280			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2281			(AR7010_GPIO_OE_MASK << gpio_shift));
2282		return;
2283	}
2284
2285	gpio_shift = gpio << 1;
2286	REG_RMW(ah,
2287		AR_GPIO_OE_OUT,
2288		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2289		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2290}
2291EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2292
2293u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2294{
2295#define MS_REG_READ(x, y) \
2296	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2297
2298	if (gpio >= ah->caps.num_gpio_pins)
2299		return 0xffffffff;
2300
2301	if (AR_DEVID_7010(ah)) {
2302		u32 val;
2303		val = REG_READ(ah, AR7010_GPIO_IN);
2304		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2305	} else if (AR_SREV_9300_20_OR_LATER(ah))
2306		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2307			AR_GPIO_BIT(gpio)) != 0;
2308	else if (AR_SREV_9271(ah))
2309		return MS_REG_READ(AR9271, gpio) != 0;
2310	else if (AR_SREV_9287_11_OR_LATER(ah))
2311		return MS_REG_READ(AR9287, gpio) != 0;
2312	else if (AR_SREV_9285_12_OR_LATER(ah))
2313		return MS_REG_READ(AR9285, gpio) != 0;
2314	else if (AR_SREV_9280_20_OR_LATER(ah))
2315		return MS_REG_READ(AR928X, gpio) != 0;
2316	else
2317		return MS_REG_READ(AR, gpio) != 0;
2318}
2319EXPORT_SYMBOL(ath9k_hw_gpio_get);
2320
2321void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2322			 u32 ah_signal_type)
2323{
2324	u32 gpio_shift;
2325
2326	if (AR_DEVID_7010(ah)) {
2327		gpio_shift = gpio;
2328		REG_RMW(ah, AR7010_GPIO_OE,
2329			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2330			(AR7010_GPIO_OE_MASK << gpio_shift));
2331		return;
2332	}
2333
2334	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2335	gpio_shift = 2 * gpio;
2336	REG_RMW(ah,
2337		AR_GPIO_OE_OUT,
2338		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2339		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2340}
2341EXPORT_SYMBOL(ath9k_hw_cfg_output);
2342
2343void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2344{
2345	if (AR_DEVID_7010(ah)) {
2346		val = val ? 0 : 1;
2347		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2348			AR_GPIO_BIT(gpio));
2349		return;
2350	}
2351
2352	if (AR_SREV_9271(ah))
2353		val = ~val;
2354
2355	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2356		AR_GPIO_BIT(gpio));
2357}
2358EXPORT_SYMBOL(ath9k_hw_set_gpio);
2359
2360u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2361{
2362	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2363}
2364EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2365
2366void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2367{
2368	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2369}
2370EXPORT_SYMBOL(ath9k_hw_setantenna);
2371
2372/*********************/
2373/* General Operation */
2374/*********************/
2375
2376u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2377{
2378	u32 bits = REG_READ(ah, AR_RX_FILTER);
2379	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2380
2381	if (phybits & AR_PHY_ERR_RADAR)
2382		bits |= ATH9K_RX_FILTER_PHYRADAR;
2383	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2384		bits |= ATH9K_RX_FILTER_PHYERR;
2385
2386	return bits;
2387}
2388EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2389
2390void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2391{
2392	u32 phybits;
2393
2394	ENABLE_REGWRITE_BUFFER(ah);
2395
2396	REG_WRITE(ah, AR_RX_FILTER, bits);
2397
2398	phybits = 0;
2399	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2400		phybits |= AR_PHY_ERR_RADAR;
2401	if (bits & ATH9K_RX_FILTER_PHYERR)
2402		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2403	REG_WRITE(ah, AR_PHY_ERR, phybits);
2404
2405	if (phybits)
2406		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2407	else
2408		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2409
2410	REGWRITE_BUFFER_FLUSH(ah);
2411}
2412EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2413
2414bool ath9k_hw_phy_disable(struct ath_hw *ah)
2415{
2416	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2417		return false;
2418
2419	ath9k_hw_init_pll(ah, NULL);
2420	return true;
2421}
2422EXPORT_SYMBOL(ath9k_hw_phy_disable);
2423
2424bool ath9k_hw_disable(struct ath_hw *ah)
2425{
2426	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2427		return false;
2428
2429	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2430		return false;
2431
2432	ath9k_hw_init_pll(ah, NULL);
2433	return true;
2434}
2435EXPORT_SYMBOL(ath9k_hw_disable);
2436
2437void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2438{
2439	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2440	struct ath9k_channel *chan = ah->curchan;
2441	struct ieee80211_channel *channel = chan->chan;
2442	int reg_pwr = min_t(int, MAX_RATE_POWER, regulatory->power_limit);
2443	int chan_pwr = channel->max_power * 2;
2444
2445	if (test)
2446		reg_pwr = chan_pwr = MAX_RATE_POWER;
2447
2448	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2449
2450	ah->eep_ops->set_txpower(ah, chan,
2451				 ath9k_regd_get_ctl(regulatory, chan),
2452				 channel->max_antenna_gain * 2,
2453				 chan_pwr, reg_pwr, test);
2454}
2455EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2456
2457void ath9k_hw_setopmode(struct ath_hw *ah)
2458{
2459	ath9k_hw_set_operating_mode(ah, ah->opmode);
2460}
2461EXPORT_SYMBOL(ath9k_hw_setopmode);
2462
2463void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2464{
2465	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2466	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2467}
2468EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2469
2470void ath9k_hw_write_associd(struct ath_hw *ah)
2471{
2472	struct ath_common *common = ath9k_hw_common(ah);
2473
2474	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2475	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2476		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2477}
2478EXPORT_SYMBOL(ath9k_hw_write_associd);
2479
2480#define ATH9K_MAX_TSF_READ 10
2481
2482u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2483{
2484	u32 tsf_lower, tsf_upper1, tsf_upper2;
2485	int i;
2486
2487	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2488	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2489		tsf_lower = REG_READ(ah, AR_TSF_L32);
2490		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2491		if (tsf_upper2 == tsf_upper1)
2492			break;
2493		tsf_upper1 = tsf_upper2;
2494	}
2495
2496	WARN_ON( i == ATH9K_MAX_TSF_READ );
2497
2498	return (((u64)tsf_upper1 << 32) | tsf_lower);
2499}
2500EXPORT_SYMBOL(ath9k_hw_gettsf64);
2501
2502void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2503{
2504	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2505	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2506}
2507EXPORT_SYMBOL(ath9k_hw_settsf64);
2508
2509void ath9k_hw_reset_tsf(struct ath_hw *ah)
2510{
2511	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2512			   AH_TSF_WRITE_TIMEOUT))
2513		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2514			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2515
2516	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2517}
2518EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2519
2520void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2521{
2522	if (setting)
2523		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2524	else
2525		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2526}
2527EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2528
2529void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2530{
2531	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2532	u32 macmode;
2533
2534	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2535		macmode = AR_2040_JOINED_RX_CLEAR;
2536	else
2537		macmode = 0;
2538
2539	REG_WRITE(ah, AR_2040_MODE, macmode);
2540}
2541
2542/* HW Generic timers configuration */
2543
2544static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2545{
2546	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2547	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2548	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2549	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2550	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2551	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2552	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2553	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2554	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2555	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2556				AR_NDP2_TIMER_MODE, 0x0002},
2557	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2558				AR_NDP2_TIMER_MODE, 0x0004},
2559	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2560				AR_NDP2_TIMER_MODE, 0x0008},
2561	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2562				AR_NDP2_TIMER_MODE, 0x0010},
2563	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2564				AR_NDP2_TIMER_MODE, 0x0020},
2565	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2566				AR_NDP2_TIMER_MODE, 0x0040},
2567	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2568				AR_NDP2_TIMER_MODE, 0x0080}
2569};
2570
2571/* HW generic timer primitives */
2572
2573/* compute and clear index of rightmost 1 */
2574static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2575{
2576	u32 b;
2577
2578	b = *mask;
2579	b &= (0-b);
2580	*mask &= ~b;
2581	b *= debruijn32;
2582	b >>= 27;
2583
2584	return timer_table->gen_timer_index[b];
2585}
2586
2587u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2588{
2589	return REG_READ(ah, AR_TSF_L32);
2590}
2591EXPORT_SYMBOL(ath9k_hw_gettsf32);
2592
2593struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2594					  void (*trigger)(void *),
2595					  void (*overflow)(void *),
2596					  void *arg,
2597					  u8 timer_index)
2598{
2599	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2600	struct ath_gen_timer *timer;
2601
2602	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2603
2604	if (timer == NULL) {
2605		ath_err(ath9k_hw_common(ah),
2606			"Failed to allocate memory for hw timer[%d]\n",
2607			timer_index);
2608		return NULL;
2609	}
2610
2611	/* allocate a hardware generic timer slot */
2612	timer_table->timers[timer_index] = timer;
2613	timer->index = timer_index;
2614	timer->trigger = trigger;
2615	timer->overflow = overflow;
2616	timer->arg = arg;
2617
2618	return timer;
2619}
2620EXPORT_SYMBOL(ath_gen_timer_alloc);
2621
2622void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2623			      struct ath_gen_timer *timer,
2624			      u32 trig_timeout,
2625			      u32 timer_period)
2626{
2627	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2628	u32 tsf, timer_next;
2629
2630	BUG_ON(!timer_period);
2631
2632	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2633
2634	tsf = ath9k_hw_gettsf32(ah);
2635
2636	timer_next = tsf + trig_timeout;
2637
2638	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2639		"current tsf %x period %x timer_next %x\n",
2640		tsf, timer_period, timer_next);
2641
2642	/*
2643	 * Program generic timer registers
2644	 */
2645	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2646		 timer_next);
2647	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2648		  timer_period);
2649	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2650		    gen_tmr_configuration[timer->index].mode_mask);
2651
2652	/* Enable both trigger and thresh interrupt masks */
2653	REG_SET_BIT(ah, AR_IMR_S5,
2654		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2655		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2656}
2657EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2658
2659void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2660{
2661	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2662
2663	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2664		(timer->index >= ATH_MAX_GEN_TIMER)) {
2665		return;
2666	}
2667
2668	/* Clear generic timer enable bits. */
2669	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2670			gen_tmr_configuration[timer->index].mode_mask);
2671
2672	/* Disable both trigger and thresh interrupt masks */
2673	REG_CLR_BIT(ah, AR_IMR_S5,
2674		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2675		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2676
2677	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2678}
2679EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2680
2681void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2682{
2683	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2684
2685	/* free the hardware generic timer slot */
2686	timer_table->timers[timer->index] = NULL;
2687	kfree(timer);
2688}
2689EXPORT_SYMBOL(ath_gen_timer_free);
2690
2691/*
2692 * Generic Timer Interrupts handling
2693 */
2694void ath_gen_timer_isr(struct ath_hw *ah)
2695{
2696	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2697	struct ath_gen_timer *timer;
2698	struct ath_common *common = ath9k_hw_common(ah);
2699	u32 trigger_mask, thresh_mask, index;
2700
2701	/* get hardware generic timer interrupt status */
2702	trigger_mask = ah->intr_gen_timer_trigger;
2703	thresh_mask = ah->intr_gen_timer_thresh;
2704	trigger_mask &= timer_table->timer_mask.val;
2705	thresh_mask &= timer_table->timer_mask.val;
2706
2707	trigger_mask &= ~thresh_mask;
2708
2709	while (thresh_mask) {
2710		index = rightmost_index(timer_table, &thresh_mask);
2711		timer = timer_table->timers[index];
2712		BUG_ON(!timer);
2713		ath_dbg(common, ATH_DBG_HWTIMER,
2714			"TSF overflow for Gen timer %d\n", index);
2715		timer->overflow(timer->arg);
2716	}
2717
2718	while (trigger_mask) {
2719		index = rightmost_index(timer_table, &trigger_mask);
2720		timer = timer_table->timers[index];
2721		BUG_ON(!timer);
2722		ath_dbg(common, ATH_DBG_HWTIMER,
2723			"Gen timer[%d] trigger\n", index);
2724		timer->trigger(timer->arg);
2725	}
2726}
2727EXPORT_SYMBOL(ath_gen_timer_isr);
2728
2729/********/
2730/* HTC  */
2731/********/
2732
2733void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2734{
2735	ah->htc_reset_init = true;
2736}
2737EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2738
2739static struct {
2740	u32 version;
2741	const char * name;
2742} ath_mac_bb_names[] = {
2743	/* Devices with external radios */
2744	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2745	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2746	{ AR_SREV_VERSION_9100,		"9100" },
2747	{ AR_SREV_VERSION_9160,		"9160" },
2748	/* Single-chip solutions */
2749	{ AR_SREV_VERSION_9280,		"9280" },
2750	{ AR_SREV_VERSION_9285,		"9285" },
2751	{ AR_SREV_VERSION_9287,         "9287" },
2752	{ AR_SREV_VERSION_9271,         "9271" },
2753	{ AR_SREV_VERSION_9300,         "9300" },
2754	{ AR_SREV_VERSION_9330,         "9330" },
2755	{ AR_SREV_VERSION_9485,         "9485" },
2756};
2757
2758/* For devices with external radios */
2759static struct {
2760	u16 version;
2761	const char * name;
2762} ath_rf_names[] = {
2763	{ 0,				"5133" },
2764	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2765	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2766	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2767	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2768};
2769
2770/*
2771 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2772 */
2773static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2774{
2775	int i;
2776
2777	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2778		if (ath_mac_bb_names[i].version == mac_bb_version) {
2779			return ath_mac_bb_names[i].name;
2780		}
2781	}
2782
2783	return "????";
2784}
2785
2786/*
2787 * Return the RF name. "????" is returned if the RF is unknown.
2788 * Used for devices with external radios.
2789 */
2790static const char *ath9k_hw_rf_name(u16 rf_version)
2791{
2792	int i;
2793
2794	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2795		if (ath_rf_names[i].version == rf_version) {
2796			return ath_rf_names[i].name;
2797		}
2798	}
2799
2800	return "????";
2801}
2802
2803void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2804{
2805	int used;
2806
2807	/* chipsets >= AR9280 are single-chip */
2808	if (AR_SREV_9280_20_OR_LATER(ah)) {
2809		used = snprintf(hw_name, len,
2810			       "Atheros AR%s Rev:%x",
2811			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2812			       ah->hw_version.macRev);
2813	}
2814	else {
2815		used = snprintf(hw_name, len,
2816			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2817			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2818			       ah->hw_version.macRev,
2819			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2820						AR_RADIO_SREV_MAJOR)),
2821			       ah->hw_version.phyRev);
2822	}
2823
2824	hw_name[used] = '\0';
2825}
2826EXPORT_SYMBOL(ath9k_hw_name);
2827