hw.c revision 9cc3271faa3967754ca1d6ac982e91e347c55489
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58{
59	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61	return priv_ops->macversion_supported(ah->hw_version.macVersion);
62}
63
64static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65					struct ath9k_channel *chan)
66{
67	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68}
69
70static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71{
72	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73		return;
74
75	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76}
77
78static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79{
80	/* You will not have this callback if using the old ANI */
81	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82		return;
83
84	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85}
86
87/********************/
88/* Helper Functions */
89/********************/
90
91static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
92{
93	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95	if (!ah->curchan) /* should really check for CCK instead */
96		return usecs *ATH9K_CLOCK_RATE_CCK;
97	if (conf->channel->band == IEEE80211_BAND_2GHZ)
98		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
99
100	if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101		return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102	else
103		return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
104}
105
106static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
107{
108	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
109
110	if (conf_is_ht40(conf))
111		return ath9k_hw_mac_clks(ah, usecs) * 2;
112	else
113		return ath9k_hw_mac_clks(ah, usecs);
114}
115
116bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117{
118	int i;
119
120	BUG_ON(timeout < AH_TIME_QUANTUM);
121
122	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123		if ((REG_READ(ah, reg) & mask) == val)
124			return true;
125
126		udelay(AH_TIME_QUANTUM);
127	}
128
129	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131		  timeout, reg, REG_READ(ah, reg), mask, val);
132
133	return false;
134}
135EXPORT_SYMBOL(ath9k_hw_wait);
136
137u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138{
139	u32 retval;
140	int i;
141
142	for (i = 0, retval = 0; i < n; i++) {
143		retval = (retval << 1) | (val & 1);
144		val >>= 1;
145	}
146	return retval;
147}
148
149bool ath9k_get_channel_edges(struct ath_hw *ah,
150			     u16 flags, u16 *low,
151			     u16 *high)
152{
153	struct ath9k_hw_capabilities *pCap = &ah->caps;
154
155	if (flags & CHANNEL_5GHZ) {
156		*low = pCap->low_5ghz_chan;
157		*high = pCap->high_5ghz_chan;
158		return true;
159	}
160	if ((flags & CHANNEL_2GHZ)) {
161		*low = pCap->low_2ghz_chan;
162		*high = pCap->high_2ghz_chan;
163		return true;
164	}
165	return false;
166}
167
168u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169			   u8 phy, int kbps,
170			   u32 frameLen, u16 rateix,
171			   bool shortPreamble)
172{
173	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174
175	if (kbps == 0)
176		return 0;
177
178	switch (phy) {
179	case WLAN_RC_PHY_CCK:
180		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181		if (shortPreamble)
182			phyTime >>= 1;
183		numBits = frameLen << 3;
184		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185		break;
186	case WLAN_RC_PHY_OFDM:
187		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189			numBits = OFDM_PLCP_BITS + (frameLen << 3);
190			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191			txTime = OFDM_SIFS_TIME_QUARTER
192				+ OFDM_PREAMBLE_TIME_QUARTER
193				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194		} else if (ah->curchan &&
195			   IS_CHAN_HALF_RATE(ah->curchan)) {
196			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197			numBits = OFDM_PLCP_BITS + (frameLen << 3);
198			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199			txTime = OFDM_SIFS_TIME_HALF +
200				OFDM_PREAMBLE_TIME_HALF
201				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
202		} else {
203			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204			numBits = OFDM_PLCP_BITS + (frameLen << 3);
205			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207				+ (numSymbols * OFDM_SYMBOL_TIME);
208		}
209		break;
210	default:
211		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
213		txTime = 0;
214		break;
215	}
216
217	return txTime;
218}
219EXPORT_SYMBOL(ath9k_hw_computetxtime);
220
221void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222				  struct ath9k_channel *chan,
223				  struct chan_centers *centers)
224{
225	int8_t extoff;
226
227	if (!IS_CHAN_HT40(chan)) {
228		centers->ctl_center = centers->ext_center =
229			centers->synth_center = chan->channel;
230		return;
231	}
232
233	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235		centers->synth_center =
236			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237		extoff = 1;
238	} else {
239		centers->synth_center =
240			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241		extoff = -1;
242	}
243
244	centers->ctl_center =
245		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246	/* 25 MHz spacing is supported by hw but not on upper layers */
247	centers->ext_center =
248		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249}
250
251/******************/
252/* Chip Revisions */
253/******************/
254
255static void ath9k_hw_read_revisions(struct ath_hw *ah)
256{
257	u32 val;
258
259	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
260
261	if (val == 0xFF) {
262		val = REG_READ(ah, AR_SREV);
263		ah->hw_version.macVersion =
264			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267	} else {
268		if (!AR_SREV_9100(ah))
269			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270
271		ah->hw_version.macRev = val & AR_SREV_REVISION;
272
273		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274			ah->is_pciexpress = true;
275	}
276}
277
278/************************************/
279/* HW Attach, Detach, Init Routines */
280/************************************/
281
282static void ath9k_hw_disablepcie(struct ath_hw *ah)
283{
284	if (AR_SREV_9100(ah))
285		return;
286
287	ENABLE_REGWRITE_BUFFER(ah);
288
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298
299	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300
301	REGWRITE_BUFFER_FLUSH(ah);
302	DISABLE_REGWRITE_BUFFER(ah);
303}
304
305/* This should work for all families including legacy */
306static bool ath9k_hw_chip_test(struct ath_hw *ah)
307{
308	struct ath_common *common = ath9k_hw_common(ah);
309	u32 regAddr[2] = { AR_STA_ID0 };
310	u32 regHold[2];
311	u32 patternData[4] = { 0x55555555,
312			       0xaaaaaaaa,
313			       0x66666666,
314			       0x99999999 };
315	int i, j, loop_max;
316
317	if (!AR_SREV_9300_20_OR_LATER(ah)) {
318		loop_max = 2;
319		regAddr[1] = AR_PHY_BASE + (8 << 2);
320	} else
321		loop_max = 1;
322
323	for (i = 0; i < loop_max; i++) {
324		u32 addr = regAddr[i];
325		u32 wrData, rdData;
326
327		regHold[i] = REG_READ(ah, addr);
328		for (j = 0; j < 0x100; j++) {
329			wrData = (j << 16) | j;
330			REG_WRITE(ah, addr, wrData);
331			rdData = REG_READ(ah, addr);
332			if (rdData != wrData) {
333				ath_print(common, ATH_DBG_FATAL,
334					  "address test failed "
335					  "addr: 0x%08x - wr:0x%08x != "
336					  "rd:0x%08x\n",
337					  addr, wrData, rdData);
338				return false;
339			}
340		}
341		for (j = 0; j < 4; j++) {
342			wrData = patternData[j];
343			REG_WRITE(ah, addr, wrData);
344			rdData = REG_READ(ah, addr);
345			if (wrData != rdData) {
346				ath_print(common, ATH_DBG_FATAL,
347					  "address test failed "
348					  "addr: 0x%08x - wr:0x%08x != "
349					  "rd:0x%08x\n",
350					  addr, wrData, rdData);
351				return false;
352			}
353		}
354		REG_WRITE(ah, regAddr[i], regHold[i]);
355	}
356	udelay(100);
357
358	return true;
359}
360
361static void ath9k_hw_init_config(struct ath_hw *ah)
362{
363	int i;
364
365	ah->config.dma_beacon_response_time = 2;
366	ah->config.sw_beacon_response_time = 10;
367	ah->config.additional_swba_backoff = 0;
368	ah->config.ack_6mb = 0x0;
369	ah->config.cwm_ignore_extcca = 0;
370	ah->config.pcie_powersave_enable = 0;
371	ah->config.pcie_clock_req = 0;
372	ah->config.pcie_waen = 0;
373	ah->config.analog_shiftreg = 1;
374	ah->config.ofdm_trig_low = 200;
375	ah->config.ofdm_trig_high = 500;
376	ah->config.cck_trig_high = 200;
377	ah->config.cck_trig_low = 100;
378	ah->config.enable_ani = true;
379
380	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381		ah->config.spurchans[i][0] = AR_NO_SPUR;
382		ah->config.spurchans[i][1] = AR_NO_SPUR;
383	}
384
385	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386		ah->config.ht_enable = 1;
387	else
388		ah->config.ht_enable = 0;
389
390	ah->config.rx_intr_mitigation = true;
391
392	/*
393	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
394	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
395	 * This means we use it for all AR5416 devices, and the few
396	 * minor PCI AR9280 devices out there.
397	 *
398	 * Serialization is required because these devices do not handle
399	 * well the case of two concurrent reads/writes due to the latency
400	 * involved. During one read/write another read/write can be issued
401	 * on another CPU while the previous read/write may still be working
402	 * on our hardware, if we hit this case the hardware poops in a loop.
403	 * We prevent this by serializing reads and writes.
404	 *
405	 * This issue is not present on PCI-Express devices or pre-AR5416
406	 * devices (legacy, 802.11abg).
407	 */
408	if (num_possible_cpus() > 1)
409		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
410}
411
412static void ath9k_hw_init_defaults(struct ath_hw *ah)
413{
414	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
415
416	regulatory->country_code = CTRY_DEFAULT;
417	regulatory->power_limit = MAX_RATE_POWER;
418	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
419
420	ah->hw_version.magic = AR5416_MAGIC;
421	ah->hw_version.subvendorid = 0;
422
423	ah->ah_flags = 0;
424	if (!AR_SREV_9100(ah))
425		ah->ah_flags = AH_USE_EEPROM;
426
427	ah->atim_window = 0;
428	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
429	ah->beacon_interval = 100;
430	ah->enable_32kHz_clock = DONT_USE_32KHZ;
431	ah->slottime = (u32) -1;
432	ah->globaltxtimeout = (u32) -1;
433	ah->power_mode = ATH9K_PM_UNDEFINED;
434}
435
436static int ath9k_hw_init_macaddr(struct ath_hw *ah)
437{
438	struct ath_common *common = ath9k_hw_common(ah);
439	u32 sum;
440	int i;
441	u16 eeval;
442	u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
443
444	sum = 0;
445	for (i = 0; i < 3; i++) {
446		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
447		sum += eeval;
448		common->macaddr[2 * i] = eeval >> 8;
449		common->macaddr[2 * i + 1] = eeval & 0xff;
450	}
451	if (sum == 0 || sum == 0xffff * 3)
452		return -EADDRNOTAVAIL;
453
454	return 0;
455}
456
457static int ath9k_hw_post_init(struct ath_hw *ah)
458{
459	int ecode;
460
461	if (!AR_SREV_9271(ah)) {
462		if (!ath9k_hw_chip_test(ah))
463			return -ENODEV;
464	}
465
466	if (!AR_SREV_9300_20_OR_LATER(ah)) {
467		ecode = ar9002_hw_rf_claim(ah);
468		if (ecode != 0)
469			return ecode;
470	}
471
472	ecode = ath9k_hw_eeprom_init(ah);
473	if (ecode != 0)
474		return ecode;
475
476	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
477		  "Eeprom VER: %d, REV: %d\n",
478		  ah->eep_ops->get_eeprom_ver(ah),
479		  ah->eep_ops->get_eeprom_rev(ah));
480
481	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
482	if (ecode) {
483		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
484			  "Failed allocating banks for "
485			  "external radio\n");
486		return ecode;
487	}
488
489	if (!AR_SREV_9100(ah)) {
490		ath9k_hw_ani_setup(ah);
491		ath9k_hw_ani_init(ah);
492	}
493
494	return 0;
495}
496
497static void ath9k_hw_attach_ops(struct ath_hw *ah)
498{
499	if (AR_SREV_9300_20_OR_LATER(ah))
500		ar9003_hw_attach_ops(ah);
501	else
502		ar9002_hw_attach_ops(ah);
503}
504
505/* Called for all hardware families */
506static int __ath9k_hw_init(struct ath_hw *ah)
507{
508	struct ath_common *common = ath9k_hw_common(ah);
509	int r = 0;
510
511	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
512		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
513
514	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
515		ath_print(common, ATH_DBG_FATAL,
516			  "Couldn't reset chip\n");
517		return -EIO;
518	}
519
520	ath9k_hw_init_defaults(ah);
521	ath9k_hw_init_config(ah);
522
523	ath9k_hw_attach_ops(ah);
524
525	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
526		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
527		return -EIO;
528	}
529
530	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
531		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
532		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
533			ah->config.serialize_regmode =
534				SER_REG_MODE_ON;
535		} else {
536			ah->config.serialize_regmode =
537				SER_REG_MODE_OFF;
538		}
539	}
540
541	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
542		ah->config.serialize_regmode);
543
544	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
545		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
546	else
547		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
548
549	if (!ath9k_hw_macversion_supported(ah)) {
550		ath_print(common, ATH_DBG_FATAL,
551			  "Mac Chip Rev 0x%02x.%x is not supported by "
552			  "this driver\n", ah->hw_version.macVersion,
553			  ah->hw_version.macRev);
554		return -EOPNOTSUPP;
555	}
556
557	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
558		ah->is_pciexpress = false;
559
560	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
561	ath9k_hw_init_cal_settings(ah);
562
563	ah->ani_function = ATH9K_ANI_ALL;
564	if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
565		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
566	if (!AR_SREV_9300_20_OR_LATER(ah))
567		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
568
569	ath9k_hw_init_mode_regs(ah);
570
571	/*
572	 * Configire PCIE after Ini init. SERDES values now come from ini file
573	 * This enables PCIe low power mode.
574	 */
575	if (AR_SREV_9300_20_OR_LATER(ah)) {
576		u32 regval;
577		unsigned int i;
578
579		/* Set Bits 16 and 17 in the AR_WA register. */
580		regval = REG_READ(ah, AR_WA);
581		regval |= 0x00030000;
582		REG_WRITE(ah, AR_WA, regval);
583
584		for (i = 0; i < ah->iniPcieSerdesLowPower.ia_rows; i++) {
585			REG_WRITE(ah,
586				  INI_RA(&ah->iniPcieSerdesLowPower, i, 0),
587				  INI_RA(&ah->iniPcieSerdesLowPower, i, 1));
588		}
589	}
590
591	if (ah->is_pciexpress)
592		ath9k_hw_configpcipowersave(ah, 0, 0);
593	else
594		ath9k_hw_disablepcie(ah);
595
596	if (!AR_SREV_9300_20_OR_LATER(ah))
597		ar9002_hw_cck_chan14_spread(ah);
598
599	r = ath9k_hw_post_init(ah);
600	if (r)
601		return r;
602
603	ath9k_hw_init_mode_gain_regs(ah);
604	r = ath9k_hw_fill_cap_info(ah);
605	if (r)
606		return r;
607
608	r = ath9k_hw_init_macaddr(ah);
609	if (r) {
610		ath_print(common, ATH_DBG_FATAL,
611			  "Failed to initialize MAC address\n");
612		return r;
613	}
614
615	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
616		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
617	else
618		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
619
620	if (AR_SREV_9300_20_OR_LATER(ah))
621		ar9003_hw_set_nf_limits(ah);
622
623	ath9k_init_nfcal_hist_buffer(ah);
624	ah->bb_watchdog_timeout_ms = 25;
625
626	common->state = ATH_HW_INITIALIZED;
627
628	return 0;
629}
630
631int ath9k_hw_init(struct ath_hw *ah)
632{
633	int ret;
634	struct ath_common *common = ath9k_hw_common(ah);
635
636	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
637	switch (ah->hw_version.devid) {
638	case AR5416_DEVID_PCI:
639	case AR5416_DEVID_PCIE:
640	case AR5416_AR9100_DEVID:
641	case AR9160_DEVID_PCI:
642	case AR9280_DEVID_PCI:
643	case AR9280_DEVID_PCIE:
644	case AR9285_DEVID_PCIE:
645	case AR9287_DEVID_PCI:
646	case AR9287_DEVID_PCIE:
647	case AR2427_DEVID_PCIE:
648	case AR9300_DEVID_PCIE:
649		break;
650	default:
651		if (common->bus_ops->ath_bus_type == ATH_USB)
652			break;
653		ath_print(common, ATH_DBG_FATAL,
654			  "Hardware device ID 0x%04x not supported\n",
655			  ah->hw_version.devid);
656		return -EOPNOTSUPP;
657	}
658
659	ret = __ath9k_hw_init(ah);
660	if (ret) {
661		ath_print(common, ATH_DBG_FATAL,
662			  "Unable to initialize hardware; "
663			  "initialization status: %d\n", ret);
664		return ret;
665	}
666
667	return 0;
668}
669EXPORT_SYMBOL(ath9k_hw_init);
670
671static void ath9k_hw_init_qos(struct ath_hw *ah)
672{
673	ENABLE_REGWRITE_BUFFER(ah);
674
675	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
676	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
677
678	REG_WRITE(ah, AR_QOS_NO_ACK,
679		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
680		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
681		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
682
683	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
684	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
685	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
686	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
687	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
688
689	REGWRITE_BUFFER_FLUSH(ah);
690	DISABLE_REGWRITE_BUFFER(ah);
691}
692
693static void ath9k_hw_init_pll(struct ath_hw *ah,
694			      struct ath9k_channel *chan)
695{
696	u32 pll = ath9k_hw_compute_pll_control(ah, chan);
697
698	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
699
700	/* Switch the core clock for ar9271 to 117Mhz */
701	if (AR_SREV_9271(ah)) {
702		udelay(500);
703		REG_WRITE(ah, 0x50040, 0x304);
704	}
705
706	udelay(RTC_PLL_SETTLE_DELAY);
707
708	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
709}
710
711static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
712					  enum nl80211_iftype opmode)
713{
714	u32 imr_reg = AR_IMR_TXERR |
715		AR_IMR_TXURN |
716		AR_IMR_RXERR |
717		AR_IMR_RXORN |
718		AR_IMR_BCNMISC;
719
720	if (AR_SREV_9300_20_OR_LATER(ah)) {
721		imr_reg |= AR_IMR_RXOK_HP;
722		if (ah->config.rx_intr_mitigation)
723			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
724		else
725			imr_reg |= AR_IMR_RXOK_LP;
726
727	} else {
728		if (ah->config.rx_intr_mitigation)
729			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
730		else
731			imr_reg |= AR_IMR_RXOK;
732	}
733
734	if (ah->config.tx_intr_mitigation)
735		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
736	else
737		imr_reg |= AR_IMR_TXOK;
738
739	if (opmode == NL80211_IFTYPE_AP)
740		imr_reg |= AR_IMR_MIB;
741
742	ENABLE_REGWRITE_BUFFER(ah);
743
744	REG_WRITE(ah, AR_IMR, imr_reg);
745	ah->imrs2_reg |= AR_IMR_S2_GTT;
746	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
747
748	if (!AR_SREV_9100(ah)) {
749		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
750		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
751		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
752	}
753
754	REGWRITE_BUFFER_FLUSH(ah);
755	DISABLE_REGWRITE_BUFFER(ah);
756
757	if (AR_SREV_9300_20_OR_LATER(ah)) {
758		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
759		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
760		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
761		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
762	}
763}
764
765static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
766{
767	u32 val = ath9k_hw_mac_to_clks(ah, us);
768	val = min(val, (u32) 0xFFFF);
769	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
770}
771
772static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
773{
774	u32 val = ath9k_hw_mac_to_clks(ah, us);
775	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
776	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
777}
778
779static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
780{
781	u32 val = ath9k_hw_mac_to_clks(ah, us);
782	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
783	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
784}
785
786static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
787{
788	if (tu > 0xFFFF) {
789		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
790			  "bad global tx timeout %u\n", tu);
791		ah->globaltxtimeout = (u32) -1;
792		return false;
793	} else {
794		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
795		ah->globaltxtimeout = tu;
796		return true;
797	}
798}
799
800void ath9k_hw_init_global_settings(struct ath_hw *ah)
801{
802	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
803	int acktimeout;
804	int slottime;
805	int sifstime;
806
807	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
808		  ah->misc_mode);
809
810	if (ah->misc_mode != 0)
811		REG_WRITE(ah, AR_PCU_MISC,
812			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
813
814	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
815		sifstime = 16;
816	else
817		sifstime = 10;
818
819	/* As defined by IEEE 802.11-2007 17.3.8.6 */
820	slottime = ah->slottime + 3 * ah->coverage_class;
821	acktimeout = slottime + sifstime;
822
823	/*
824	 * Workaround for early ACK timeouts, add an offset to match the
825	 * initval's 64us ack timeout value.
826	 * This was initially only meant to work around an issue with delayed
827	 * BA frames in some implementations, but it has been found to fix ACK
828	 * timeout issues in other cases as well.
829	 */
830	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
831		acktimeout += 64 - sifstime - ah->slottime;
832
833	ath9k_hw_setslottime(ah, slottime);
834	ath9k_hw_set_ack_timeout(ah, acktimeout);
835	ath9k_hw_set_cts_timeout(ah, acktimeout);
836	if (ah->globaltxtimeout != (u32) -1)
837		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
838}
839EXPORT_SYMBOL(ath9k_hw_init_global_settings);
840
841void ath9k_hw_deinit(struct ath_hw *ah)
842{
843	struct ath_common *common = ath9k_hw_common(ah);
844
845	if (common->state < ATH_HW_INITIALIZED)
846		goto free_hw;
847
848	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
849
850free_hw:
851	ath9k_hw_rf_free_ext_banks(ah);
852}
853EXPORT_SYMBOL(ath9k_hw_deinit);
854
855/*******/
856/* INI */
857/*******/
858
859u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
860{
861	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
862
863	if (IS_CHAN_B(chan))
864		ctl |= CTL_11B;
865	else if (IS_CHAN_G(chan))
866		ctl |= CTL_11G;
867	else
868		ctl |= CTL_11A;
869
870	return ctl;
871}
872
873/****************************************/
874/* Reset and Channel Switching Routines */
875/****************************************/
876
877static inline void ath9k_hw_set_dma(struct ath_hw *ah)
878{
879	struct ath_common *common = ath9k_hw_common(ah);
880	u32 regval;
881
882	ENABLE_REGWRITE_BUFFER(ah);
883
884	/*
885	 * set AHB_MODE not to do cacheline prefetches
886	*/
887	if (!AR_SREV_9300_20_OR_LATER(ah)) {
888		regval = REG_READ(ah, AR_AHB_MODE);
889		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
890	}
891
892	/*
893	 * let mac dma reads be in 128 byte chunks
894	 */
895	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
896	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
897
898	REGWRITE_BUFFER_FLUSH(ah);
899	DISABLE_REGWRITE_BUFFER(ah);
900
901	/*
902	 * Restore TX Trigger Level to its pre-reset value.
903	 * The initial value depends on whether aggregation is enabled, and is
904	 * adjusted whenever underruns are detected.
905	 */
906	if (!AR_SREV_9300_20_OR_LATER(ah))
907		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
908
909	ENABLE_REGWRITE_BUFFER(ah);
910
911	/*
912	 * let mac dma writes be in 128 byte chunks
913	 */
914	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
915	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
916
917	/*
918	 * Setup receive FIFO threshold to hold off TX activities
919	 */
920	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
921
922	if (AR_SREV_9300_20_OR_LATER(ah)) {
923		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
924		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
925
926		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
927			ah->caps.rx_status_len);
928	}
929
930	/*
931	 * reduce the number of usable entries in PCU TXBUF to avoid
932	 * wrap around issues.
933	 */
934	if (AR_SREV_9285(ah)) {
935		/* For AR9285 the number of Fifos are reduced to half.
936		 * So set the usable tx buf size also to half to
937		 * avoid data/delimiter underruns
938		 */
939		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
940			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
941	} else if (!AR_SREV_9271(ah)) {
942		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
943			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
944	}
945
946	REGWRITE_BUFFER_FLUSH(ah);
947	DISABLE_REGWRITE_BUFFER(ah);
948
949	if (AR_SREV_9300_20_OR_LATER(ah))
950		ath9k_hw_reset_txstatus_ring(ah);
951}
952
953static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
954{
955	u32 val;
956
957	val = REG_READ(ah, AR_STA_ID1);
958	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
959	switch (opmode) {
960	case NL80211_IFTYPE_AP:
961		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
962			  | AR_STA_ID1_KSRCH_MODE);
963		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
964		break;
965	case NL80211_IFTYPE_ADHOC:
966	case NL80211_IFTYPE_MESH_POINT:
967		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
968			  | AR_STA_ID1_KSRCH_MODE);
969		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
970		break;
971	case NL80211_IFTYPE_STATION:
972	case NL80211_IFTYPE_MONITOR:
973		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
974		break;
975	}
976}
977
978void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
979				   u32 *coef_mantissa, u32 *coef_exponent)
980{
981	u32 coef_exp, coef_man;
982
983	for (coef_exp = 31; coef_exp > 0; coef_exp--)
984		if ((coef_scaled >> coef_exp) & 0x1)
985			break;
986
987	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
988
989	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
990
991	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
992	*coef_exponent = coef_exp - 16;
993}
994
995static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
996{
997	u32 rst_flags;
998	u32 tmpReg;
999
1000	if (AR_SREV_9100(ah)) {
1001		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1002		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1003		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1004		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1005		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1006	}
1007
1008	ENABLE_REGWRITE_BUFFER(ah);
1009
1010	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1011		  AR_RTC_FORCE_WAKE_ON_INT);
1012
1013	if (AR_SREV_9100(ah)) {
1014		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1015			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1016	} else {
1017		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1018		if (tmpReg &
1019		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1020		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1021			u32 val;
1022			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1023
1024			val = AR_RC_HOSTIF;
1025			if (!AR_SREV_9300_20_OR_LATER(ah))
1026				val |= AR_RC_AHB;
1027			REG_WRITE(ah, AR_RC, val);
1028
1029		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1030			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1031
1032		rst_flags = AR_RTC_RC_MAC_WARM;
1033		if (type == ATH9K_RESET_COLD)
1034			rst_flags |= AR_RTC_RC_MAC_COLD;
1035	}
1036
1037	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1038
1039	REGWRITE_BUFFER_FLUSH(ah);
1040	DISABLE_REGWRITE_BUFFER(ah);
1041
1042	udelay(50);
1043
1044	REG_WRITE(ah, AR_RTC_RC, 0);
1045	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1046		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1047			  "RTC stuck in MAC reset\n");
1048		return false;
1049	}
1050
1051	if (!AR_SREV_9100(ah))
1052		REG_WRITE(ah, AR_RC, 0);
1053
1054	if (AR_SREV_9100(ah))
1055		udelay(50);
1056
1057	return true;
1058}
1059
1060static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1061{
1062	ENABLE_REGWRITE_BUFFER(ah);
1063
1064	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1065		  AR_RTC_FORCE_WAKE_ON_INT);
1066
1067	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1068		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1069
1070	REG_WRITE(ah, AR_RTC_RESET, 0);
1071
1072	REGWRITE_BUFFER_FLUSH(ah);
1073	DISABLE_REGWRITE_BUFFER(ah);
1074
1075	if (!AR_SREV_9300_20_OR_LATER(ah))
1076		udelay(2);
1077
1078	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1079		REG_WRITE(ah, AR_RC, 0);
1080
1081	REG_WRITE(ah, AR_RTC_RESET, 1);
1082
1083	if (!ath9k_hw_wait(ah,
1084			   AR_RTC_STATUS,
1085			   AR_RTC_STATUS_M,
1086			   AR_RTC_STATUS_ON,
1087			   AH_WAIT_TIMEOUT)) {
1088		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1089			  "RTC not waking up\n");
1090		return false;
1091	}
1092
1093	ath9k_hw_read_revisions(ah);
1094
1095	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1096}
1097
1098static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1099{
1100	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1101		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1102
1103	switch (type) {
1104	case ATH9K_RESET_POWER_ON:
1105		return ath9k_hw_set_reset_power_on(ah);
1106	case ATH9K_RESET_WARM:
1107	case ATH9K_RESET_COLD:
1108		return ath9k_hw_set_reset(ah, type);
1109	default:
1110		return false;
1111	}
1112}
1113
1114static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1115				struct ath9k_channel *chan)
1116{
1117	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1118		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1119			return false;
1120	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1121		return false;
1122
1123	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1124		return false;
1125
1126	ah->chip_fullsleep = false;
1127	ath9k_hw_init_pll(ah, chan);
1128	ath9k_hw_set_rfmode(ah, chan);
1129
1130	return true;
1131}
1132
1133static bool ath9k_hw_channel_change(struct ath_hw *ah,
1134				    struct ath9k_channel *chan)
1135{
1136	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1137	struct ath_common *common = ath9k_hw_common(ah);
1138	struct ieee80211_channel *channel = chan->chan;
1139	u32 qnum;
1140	int r;
1141
1142	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1143		if (ath9k_hw_numtxpending(ah, qnum)) {
1144			ath_print(common, ATH_DBG_QUEUE,
1145				  "Transmit frames pending on "
1146				  "queue %d\n", qnum);
1147			return false;
1148		}
1149	}
1150
1151	if (!ath9k_hw_rfbus_req(ah)) {
1152		ath_print(common, ATH_DBG_FATAL,
1153			  "Could not kill baseband RX\n");
1154		return false;
1155	}
1156
1157	ath9k_hw_set_channel_regs(ah, chan);
1158
1159	r = ath9k_hw_rf_set_freq(ah, chan);
1160	if (r) {
1161		ath_print(common, ATH_DBG_FATAL,
1162			  "Failed to set channel\n");
1163		return false;
1164	}
1165
1166	ah->eep_ops->set_txpower(ah, chan,
1167			     ath9k_regd_get_ctl(regulatory, chan),
1168			     channel->max_antenna_gain * 2,
1169			     channel->max_power * 2,
1170			     min((u32) MAX_RATE_POWER,
1171			     (u32) regulatory->power_limit));
1172
1173	ath9k_hw_rfbus_done(ah);
1174
1175	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1176		ath9k_hw_set_delta_slope(ah, chan);
1177
1178	ath9k_hw_spur_mitigate_freq(ah, chan);
1179
1180	if (!chan->oneTimeCalsDone)
1181		chan->oneTimeCalsDone = true;
1182
1183	return true;
1184}
1185
1186bool ath9k_hw_check_alive(struct ath_hw *ah)
1187{
1188	int count = 50;
1189	u32 reg;
1190
1191	if (AR_SREV_9285_10_OR_LATER(ah))
1192		return true;
1193
1194	do {
1195		reg = REG_READ(ah, AR_OBS_BUS_1);
1196
1197		if ((reg & 0x7E7FFFEF) == 0x00702400)
1198			continue;
1199
1200		switch (reg & 0x7E000B00) {
1201		case 0x1E000000:
1202		case 0x52000B00:
1203		case 0x18000B00:
1204			continue;
1205		default:
1206			return true;
1207		}
1208	} while (count-- > 0);
1209
1210	return false;
1211}
1212EXPORT_SYMBOL(ath9k_hw_check_alive);
1213
1214int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1215		    bool bChannelChange)
1216{
1217	struct ath_common *common = ath9k_hw_common(ah);
1218	u32 saveLedState;
1219	struct ath9k_channel *curchan = ah->curchan;
1220	u32 saveDefAntenna;
1221	u32 macStaId1;
1222	u64 tsf = 0;
1223	int i, r;
1224
1225	ah->txchainmask = common->tx_chainmask;
1226	ah->rxchainmask = common->rx_chainmask;
1227
1228	if (!ah->chip_fullsleep) {
1229		ath9k_hw_abortpcurecv(ah);
1230		if (!ath9k_hw_stopdmarecv(ah))
1231			ath_print(common, ATH_DBG_XMIT,
1232				"Failed to stop receive dma\n");
1233	}
1234
1235	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1236		return -EIO;
1237
1238	if (curchan && !ah->chip_fullsleep)
1239		ath9k_hw_getnf(ah, curchan);
1240
1241	if (bChannelChange &&
1242	    (ah->chip_fullsleep != true) &&
1243	    (ah->curchan != NULL) &&
1244	    (chan->channel != ah->curchan->channel) &&
1245	    ((chan->channelFlags & CHANNEL_ALL) ==
1246	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1247	    !AR_SREV_9280(ah)) {
1248
1249		if (ath9k_hw_channel_change(ah, chan)) {
1250			ath9k_hw_loadnf(ah, ah->curchan);
1251			ath9k_hw_start_nfcal(ah);
1252			return 0;
1253		}
1254	}
1255
1256	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1257	if (saveDefAntenna == 0)
1258		saveDefAntenna = 1;
1259
1260	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1261
1262	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1263	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1264		tsf = ath9k_hw_gettsf64(ah);
1265
1266	saveLedState = REG_READ(ah, AR_CFG_LED) &
1267		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1268		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1269
1270	ath9k_hw_mark_phy_inactive(ah);
1271
1272	/* Only required on the first reset */
1273	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1274		REG_WRITE(ah,
1275			  AR9271_RESET_POWER_DOWN_CONTROL,
1276			  AR9271_RADIO_RF_RST);
1277		udelay(50);
1278	}
1279
1280	if (!ath9k_hw_chip_reset(ah, chan)) {
1281		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1282		return -EINVAL;
1283	}
1284
1285	/* Only required on the first reset */
1286	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1287		ah->htc_reset_init = false;
1288		REG_WRITE(ah,
1289			  AR9271_RESET_POWER_DOWN_CONTROL,
1290			  AR9271_GATE_MAC_CTL);
1291		udelay(50);
1292	}
1293
1294	/* Restore TSF */
1295	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1296		ath9k_hw_settsf64(ah, tsf);
1297
1298	if (AR_SREV_9280_10_OR_LATER(ah))
1299		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1300
1301	if (!AR_SREV_9300_20_OR_LATER(ah))
1302		ar9002_hw_enable_async_fifo(ah);
1303
1304	r = ath9k_hw_process_ini(ah, chan);
1305	if (r)
1306		return r;
1307
1308	/* Setup MFP options for CCMP */
1309	if (AR_SREV_9280_20_OR_LATER(ah)) {
1310		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1311		 * frames when constructing CCMP AAD. */
1312		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1313			      0xc7ff);
1314		ah->sw_mgmt_crypto = false;
1315	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1316		/* Disable hardware crypto for management frames */
1317		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1318			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1319		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1320			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1321		ah->sw_mgmt_crypto = true;
1322	} else
1323		ah->sw_mgmt_crypto = true;
1324
1325	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1326		ath9k_hw_set_delta_slope(ah, chan);
1327
1328	ath9k_hw_spur_mitigate_freq(ah, chan);
1329	ah->eep_ops->set_board_values(ah, chan);
1330
1331	ath9k_hw_set_operating_mode(ah, ah->opmode);
1332
1333	ENABLE_REGWRITE_BUFFER(ah);
1334
1335	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1336	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1337		  | macStaId1
1338		  | AR_STA_ID1_RTS_USE_DEF
1339		  | (ah->config.
1340		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1341		  | ah->sta_id1_defaults);
1342	ath_hw_setbssidmask(common);
1343	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1344	ath9k_hw_write_associd(ah);
1345	REG_WRITE(ah, AR_ISR, ~0);
1346	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1347
1348	REGWRITE_BUFFER_FLUSH(ah);
1349	DISABLE_REGWRITE_BUFFER(ah);
1350
1351	r = ath9k_hw_rf_set_freq(ah, chan);
1352	if (r)
1353		return r;
1354
1355	ENABLE_REGWRITE_BUFFER(ah);
1356
1357	for (i = 0; i < AR_NUM_DCU; i++)
1358		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1359
1360	REGWRITE_BUFFER_FLUSH(ah);
1361	DISABLE_REGWRITE_BUFFER(ah);
1362
1363	ah->intr_txqs = 0;
1364	for (i = 0; i < ah->caps.total_queues; i++)
1365		ath9k_hw_resettxqueue(ah, i);
1366
1367	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1368	ath9k_hw_ani_cache_ini_regs(ah);
1369	ath9k_hw_init_qos(ah);
1370
1371	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1372		ath9k_enable_rfkill(ah);
1373
1374	ath9k_hw_init_global_settings(ah);
1375
1376	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1377		ar9002_hw_update_async_fifo(ah);
1378		ar9002_hw_enable_wep_aggregation(ah);
1379	}
1380
1381	REG_WRITE(ah, AR_STA_ID1,
1382		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1383
1384	ath9k_hw_set_dma(ah);
1385
1386	REG_WRITE(ah, AR_OBS, 8);
1387
1388	if (ah->config.rx_intr_mitigation) {
1389		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1390		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1391	}
1392
1393	if (ah->config.tx_intr_mitigation) {
1394		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1395		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1396	}
1397
1398	ath9k_hw_init_bb(ah, chan);
1399
1400	if (!ath9k_hw_init_cal(ah, chan))
1401		return -EIO;
1402
1403	ENABLE_REGWRITE_BUFFER(ah);
1404
1405	ath9k_hw_restore_chainmask(ah);
1406	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1407
1408	REGWRITE_BUFFER_FLUSH(ah);
1409	DISABLE_REGWRITE_BUFFER(ah);
1410
1411	/*
1412	 * For big endian systems turn on swapping for descriptors
1413	 */
1414	if (AR_SREV_9100(ah)) {
1415		u32 mask;
1416		mask = REG_READ(ah, AR_CFG);
1417		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1418			ath_print(common, ATH_DBG_RESET,
1419				"CFG Byte Swap Set 0x%x\n", mask);
1420		} else {
1421			mask =
1422				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1423			REG_WRITE(ah, AR_CFG, mask);
1424			ath_print(common, ATH_DBG_RESET,
1425				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1426		}
1427	} else {
1428		if (common->bus_ops->ath_bus_type == ATH_USB) {
1429			/* Configure AR9271 target WLAN */
1430			if (AR_SREV_9271(ah))
1431				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1432			else
1433				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1434		}
1435#ifdef __BIG_ENDIAN
1436                else
1437			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1438#endif
1439	}
1440
1441	if (ah->btcoex_hw.enabled)
1442		ath9k_hw_btcoex_enable(ah);
1443
1444	if (AR_SREV_9300_20_OR_LATER(ah)) {
1445		ath9k_hw_loadnf(ah, curchan);
1446		ath9k_hw_start_nfcal(ah);
1447		ar9003_hw_bb_watchdog_config(ah);
1448	}
1449
1450	return 0;
1451}
1452EXPORT_SYMBOL(ath9k_hw_reset);
1453
1454/************************/
1455/* Key Cache Management */
1456/************************/
1457
1458bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1459{
1460	u32 keyType;
1461
1462	if (entry >= ah->caps.keycache_size) {
1463		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1464			  "keychache entry %u out of range\n", entry);
1465		return false;
1466	}
1467
1468	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1469
1470	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1471	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1472	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1473	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1474	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1475	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1476	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1477	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1478
1479	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1480		u16 micentry = entry + 64;
1481
1482		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1483		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1484		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1485		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1486
1487	}
1488
1489	return true;
1490}
1491EXPORT_SYMBOL(ath9k_hw_keyreset);
1492
1493bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1494{
1495	u32 macHi, macLo;
1496	u32 unicast_flag = AR_KEYTABLE_VALID;
1497
1498	if (entry >= ah->caps.keycache_size) {
1499		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1500			  "keychache entry %u out of range\n", entry);
1501		return false;
1502	}
1503
1504	if (mac != NULL) {
1505		/*
1506		 * AR_KEYTABLE_VALID indicates that the address is a unicast
1507		 * address, which must match the transmitter address for
1508		 * decrypting frames.
1509		 * Not setting this bit allows the hardware to use the key
1510		 * for multicast frame decryption.
1511		 */
1512		if (mac[0] & 0x01)
1513			unicast_flag = 0;
1514
1515		macHi = (mac[5] << 8) | mac[4];
1516		macLo = (mac[3] << 24) |
1517			(mac[2] << 16) |
1518			(mac[1] << 8) |
1519			mac[0];
1520		macLo >>= 1;
1521		macLo |= (macHi & 1) << 31;
1522		macHi >>= 1;
1523	} else {
1524		macLo = macHi = 0;
1525	}
1526	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1527	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1528
1529	return true;
1530}
1531EXPORT_SYMBOL(ath9k_hw_keysetmac);
1532
1533bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1534				 const struct ath9k_keyval *k,
1535				 const u8 *mac)
1536{
1537	const struct ath9k_hw_capabilities *pCap = &ah->caps;
1538	struct ath_common *common = ath9k_hw_common(ah);
1539	u32 key0, key1, key2, key3, key4;
1540	u32 keyType;
1541
1542	if (entry >= pCap->keycache_size) {
1543		ath_print(common, ATH_DBG_FATAL,
1544			  "keycache entry %u out of range\n", entry);
1545		return false;
1546	}
1547
1548	switch (k->kv_type) {
1549	case ATH9K_CIPHER_AES_OCB:
1550		keyType = AR_KEYTABLE_TYPE_AES;
1551		break;
1552	case ATH9K_CIPHER_AES_CCM:
1553		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1554			ath_print(common, ATH_DBG_ANY,
1555				  "AES-CCM not supported by mac rev 0x%x\n",
1556				  ah->hw_version.macRev);
1557			return false;
1558		}
1559		keyType = AR_KEYTABLE_TYPE_CCM;
1560		break;
1561	case ATH9K_CIPHER_TKIP:
1562		keyType = AR_KEYTABLE_TYPE_TKIP;
1563		if (ATH9K_IS_MIC_ENABLED(ah)
1564		    && entry + 64 >= pCap->keycache_size) {
1565			ath_print(common, ATH_DBG_ANY,
1566				  "entry %u inappropriate for TKIP\n", entry);
1567			return false;
1568		}
1569		break;
1570	case ATH9K_CIPHER_WEP:
1571		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1572			ath_print(common, ATH_DBG_ANY,
1573				  "WEP key length %u too small\n", k->kv_len);
1574			return false;
1575		}
1576		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1577			keyType = AR_KEYTABLE_TYPE_40;
1578		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1579			keyType = AR_KEYTABLE_TYPE_104;
1580		else
1581			keyType = AR_KEYTABLE_TYPE_128;
1582		break;
1583	case ATH9K_CIPHER_CLR:
1584		keyType = AR_KEYTABLE_TYPE_CLR;
1585		break;
1586	default:
1587		ath_print(common, ATH_DBG_FATAL,
1588			  "cipher %u not supported\n", k->kv_type);
1589		return false;
1590	}
1591
1592	key0 = get_unaligned_le32(k->kv_val + 0);
1593	key1 = get_unaligned_le16(k->kv_val + 4);
1594	key2 = get_unaligned_le32(k->kv_val + 6);
1595	key3 = get_unaligned_le16(k->kv_val + 10);
1596	key4 = get_unaligned_le32(k->kv_val + 12);
1597	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1598		key4 &= 0xff;
1599
1600	/*
1601	 * Note: Key cache registers access special memory area that requires
1602	 * two 32-bit writes to actually update the values in the internal
1603	 * memory. Consequently, the exact order and pairs used here must be
1604	 * maintained.
1605	 */
1606
1607	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1608		u16 micentry = entry + 64;
1609
1610		/*
1611		 * Write inverted key[47:0] first to avoid Michael MIC errors
1612		 * on frames that could be sent or received at the same time.
1613		 * The correct key will be written in the end once everything
1614		 * else is ready.
1615		 */
1616		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1617		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1618
1619		/* Write key[95:48] */
1620		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1621		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1622
1623		/* Write key[127:96] and key type */
1624		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1625		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1626
1627		/* Write MAC address for the entry */
1628		(void) ath9k_hw_keysetmac(ah, entry, mac);
1629
1630		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1631			/*
1632			 * TKIP uses two key cache entries:
1633			 * Michael MIC TX/RX keys in the same key cache entry
1634			 * (idx = main index + 64):
1635			 * key0 [31:0] = RX key [31:0]
1636			 * key1 [15:0] = TX key [31:16]
1637			 * key1 [31:16] = reserved
1638			 * key2 [31:0] = RX key [63:32]
1639			 * key3 [15:0] = TX key [15:0]
1640			 * key3 [31:16] = reserved
1641			 * key4 [31:0] = TX key [63:32]
1642			 */
1643			u32 mic0, mic1, mic2, mic3, mic4;
1644
1645			mic0 = get_unaligned_le32(k->kv_mic + 0);
1646			mic2 = get_unaligned_le32(k->kv_mic + 4);
1647			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1648			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1649			mic4 = get_unaligned_le32(k->kv_txmic + 4);
1650
1651			/* Write RX[31:0] and TX[31:16] */
1652			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1653			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1654
1655			/* Write RX[63:32] and TX[15:0] */
1656			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1657			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1658
1659			/* Write TX[63:32] and keyType(reserved) */
1660			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1661			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1662				  AR_KEYTABLE_TYPE_CLR);
1663
1664		} else {
1665			/*
1666			 * TKIP uses four key cache entries (two for group
1667			 * keys):
1668			 * Michael MIC TX/RX keys are in different key cache
1669			 * entries (idx = main index + 64 for TX and
1670			 * main index + 32 + 96 for RX):
1671			 * key0 [31:0] = TX/RX MIC key [31:0]
1672			 * key1 [31:0] = reserved
1673			 * key2 [31:0] = TX/RX MIC key [63:32]
1674			 * key3 [31:0] = reserved
1675			 * key4 [31:0] = reserved
1676			 *
1677			 * Upper layer code will call this function separately
1678			 * for TX and RX keys when these registers offsets are
1679			 * used.
1680			 */
1681			u32 mic0, mic2;
1682
1683			mic0 = get_unaligned_le32(k->kv_mic + 0);
1684			mic2 = get_unaligned_le32(k->kv_mic + 4);
1685
1686			/* Write MIC key[31:0] */
1687			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1688			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1689
1690			/* Write MIC key[63:32] */
1691			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1692			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1693
1694			/* Write TX[63:32] and keyType(reserved) */
1695			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1696			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1697				  AR_KEYTABLE_TYPE_CLR);
1698		}
1699
1700		/* MAC address registers are reserved for the MIC entry */
1701		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1702		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1703
1704		/*
1705		 * Write the correct (un-inverted) key[47:0] last to enable
1706		 * TKIP now that all other registers are set with correct
1707		 * values.
1708		 */
1709		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1710		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1711	} else {
1712		/* Write key[47:0] */
1713		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1714		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1715
1716		/* Write key[95:48] */
1717		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1718		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1719
1720		/* Write key[127:96] and key type */
1721		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1722		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1723
1724		/* Write MAC address for the entry */
1725		(void) ath9k_hw_keysetmac(ah, entry, mac);
1726	}
1727
1728	return true;
1729}
1730EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1731
1732bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1733{
1734	if (entry < ah->caps.keycache_size) {
1735		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1736		if (val & AR_KEYTABLE_VALID)
1737			return true;
1738	}
1739	return false;
1740}
1741EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1742
1743/******************************/
1744/* Power Management (Chipset) */
1745/******************************/
1746
1747/*
1748 * Notify Power Mgt is disabled in self-generated frames.
1749 * If requested, force chip to sleep.
1750 */
1751static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1752{
1753	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1754	if (setChip) {
1755		/*
1756		 * Clear the RTC force wake bit to allow the
1757		 * mac to go to sleep.
1758		 */
1759		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1760			    AR_RTC_FORCE_WAKE_EN);
1761		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1762			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1763
1764		/* Shutdown chip. Active low */
1765		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1766			REG_CLR_BIT(ah, (AR_RTC_RESET),
1767				    AR_RTC_RESET_EN);
1768	}
1769}
1770
1771/*
1772 * Notify Power Management is enabled in self-generating
1773 * frames. If request, set power mode of chip to
1774 * auto/normal.  Duration in units of 128us (1/8 TU).
1775 */
1776static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1777{
1778	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1779	if (setChip) {
1780		struct ath9k_hw_capabilities *pCap = &ah->caps;
1781
1782		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1783			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1784			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1785				  AR_RTC_FORCE_WAKE_ON_INT);
1786		} else {
1787			/*
1788			 * Clear the RTC force wake bit to allow the
1789			 * mac to go to sleep.
1790			 */
1791			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1792				    AR_RTC_FORCE_WAKE_EN);
1793		}
1794	}
1795}
1796
1797static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1798{
1799	u32 val;
1800	int i;
1801
1802	if (setChip) {
1803		if ((REG_READ(ah, AR_RTC_STATUS) &
1804		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1805			if (ath9k_hw_set_reset_reg(ah,
1806					   ATH9K_RESET_POWER_ON) != true) {
1807				return false;
1808			}
1809			if (!AR_SREV_9300_20_OR_LATER(ah))
1810				ath9k_hw_init_pll(ah, NULL);
1811		}
1812		if (AR_SREV_9100(ah))
1813			REG_SET_BIT(ah, AR_RTC_RESET,
1814				    AR_RTC_RESET_EN);
1815
1816		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1817			    AR_RTC_FORCE_WAKE_EN);
1818		udelay(50);
1819
1820		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1821			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1822			if (val == AR_RTC_STATUS_ON)
1823				break;
1824			udelay(50);
1825			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1826				    AR_RTC_FORCE_WAKE_EN);
1827		}
1828		if (i == 0) {
1829			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1830				  "Failed to wakeup in %uus\n",
1831				  POWER_UP_TIME / 20);
1832			return false;
1833		}
1834	}
1835
1836	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1837
1838	return true;
1839}
1840
1841bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1842{
1843	struct ath_common *common = ath9k_hw_common(ah);
1844	int status = true, setChip = true;
1845	static const char *modes[] = {
1846		"AWAKE",
1847		"FULL-SLEEP",
1848		"NETWORK SLEEP",
1849		"UNDEFINED"
1850	};
1851
1852	if (ah->power_mode == mode)
1853		return status;
1854
1855	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1856		  modes[ah->power_mode], modes[mode]);
1857
1858	switch (mode) {
1859	case ATH9K_PM_AWAKE:
1860		status = ath9k_hw_set_power_awake(ah, setChip);
1861		break;
1862	case ATH9K_PM_FULL_SLEEP:
1863		ath9k_set_power_sleep(ah, setChip);
1864		ah->chip_fullsleep = true;
1865		break;
1866	case ATH9K_PM_NETWORK_SLEEP:
1867		ath9k_set_power_network_sleep(ah, setChip);
1868		break;
1869	default:
1870		ath_print(common, ATH_DBG_FATAL,
1871			  "Unknown power mode %u\n", mode);
1872		return false;
1873	}
1874	ah->power_mode = mode;
1875
1876	return status;
1877}
1878EXPORT_SYMBOL(ath9k_hw_setpower);
1879
1880/*******************/
1881/* Beacon Handling */
1882/*******************/
1883
1884void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1885{
1886	int flags = 0;
1887
1888	ah->beacon_interval = beacon_period;
1889
1890	ENABLE_REGWRITE_BUFFER(ah);
1891
1892	switch (ah->opmode) {
1893	case NL80211_IFTYPE_STATION:
1894	case NL80211_IFTYPE_MONITOR:
1895		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1896		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1897		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1898		flags |= AR_TBTT_TIMER_EN;
1899		break;
1900	case NL80211_IFTYPE_ADHOC:
1901	case NL80211_IFTYPE_MESH_POINT:
1902		REG_SET_BIT(ah, AR_TXCFG,
1903			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1904		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1905			  TU_TO_USEC(next_beacon +
1906				     (ah->atim_window ? ah->
1907				      atim_window : 1)));
1908		flags |= AR_NDP_TIMER_EN;
1909	case NL80211_IFTYPE_AP:
1910		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1911		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1912			  TU_TO_USEC(next_beacon -
1913				     ah->config.
1914				     dma_beacon_response_time));
1915		REG_WRITE(ah, AR_NEXT_SWBA,
1916			  TU_TO_USEC(next_beacon -
1917				     ah->config.
1918				     sw_beacon_response_time));
1919		flags |=
1920			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1921		break;
1922	default:
1923		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1924			  "%s: unsupported opmode: %d\n",
1925			  __func__, ah->opmode);
1926		return;
1927		break;
1928	}
1929
1930	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1931	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1932	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1933	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1934
1935	REGWRITE_BUFFER_FLUSH(ah);
1936	DISABLE_REGWRITE_BUFFER(ah);
1937
1938	beacon_period &= ~ATH9K_BEACON_ENA;
1939	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1940		ath9k_hw_reset_tsf(ah);
1941	}
1942
1943	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1944}
1945EXPORT_SYMBOL(ath9k_hw_beaconinit);
1946
1947void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1948				    const struct ath9k_beacon_state *bs)
1949{
1950	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1951	struct ath9k_hw_capabilities *pCap = &ah->caps;
1952	struct ath_common *common = ath9k_hw_common(ah);
1953
1954	ENABLE_REGWRITE_BUFFER(ah);
1955
1956	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1957
1958	REG_WRITE(ah, AR_BEACON_PERIOD,
1959		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1960	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1961		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1962
1963	REGWRITE_BUFFER_FLUSH(ah);
1964	DISABLE_REGWRITE_BUFFER(ah);
1965
1966	REG_RMW_FIELD(ah, AR_RSSI_THR,
1967		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1968
1969	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1970
1971	if (bs->bs_sleepduration > beaconintval)
1972		beaconintval = bs->bs_sleepduration;
1973
1974	dtimperiod = bs->bs_dtimperiod;
1975	if (bs->bs_sleepduration > dtimperiod)
1976		dtimperiod = bs->bs_sleepduration;
1977
1978	if (beaconintval == dtimperiod)
1979		nextTbtt = bs->bs_nextdtim;
1980	else
1981		nextTbtt = bs->bs_nexttbtt;
1982
1983	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1984	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1985	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1986	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1987
1988	ENABLE_REGWRITE_BUFFER(ah);
1989
1990	REG_WRITE(ah, AR_NEXT_DTIM,
1991		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1992	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1993
1994	REG_WRITE(ah, AR_SLEEP1,
1995		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1996		  | AR_SLEEP1_ASSUME_DTIM);
1997
1998	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1999		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2000	else
2001		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2002
2003	REG_WRITE(ah, AR_SLEEP2,
2004		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2005
2006	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2007	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2008
2009	REGWRITE_BUFFER_FLUSH(ah);
2010	DISABLE_REGWRITE_BUFFER(ah);
2011
2012	REG_SET_BIT(ah, AR_TIMER_MODE,
2013		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2014		    AR_DTIM_TIMER_EN);
2015
2016	/* TSF Out of Range Threshold */
2017	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2018}
2019EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2020
2021/*******************/
2022/* HW Capabilities */
2023/*******************/
2024
2025int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2026{
2027	struct ath9k_hw_capabilities *pCap = &ah->caps;
2028	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2029	struct ath_common *common = ath9k_hw_common(ah);
2030	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2031
2032	u16 capField = 0, eeval;
2033
2034	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2035	regulatory->current_rd = eeval;
2036
2037	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2038	if (AR_SREV_9285_10_OR_LATER(ah))
2039		eeval |= AR9285_RDEXT_DEFAULT;
2040	regulatory->current_rd_ext = eeval;
2041
2042	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2043
2044	if (ah->opmode != NL80211_IFTYPE_AP &&
2045	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2046		if (regulatory->current_rd == 0x64 ||
2047		    regulatory->current_rd == 0x65)
2048			regulatory->current_rd += 5;
2049		else if (regulatory->current_rd == 0x41)
2050			regulatory->current_rd = 0x43;
2051		ath_print(common, ATH_DBG_REGULATORY,
2052			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
2053	}
2054
2055	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2056	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2057		ath_print(common, ATH_DBG_FATAL,
2058			  "no band has been marked as supported in EEPROM.\n");
2059		return -EINVAL;
2060	}
2061
2062	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2063
2064	if (eeval & AR5416_OPFLAGS_11A) {
2065		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2066		if (ah->config.ht_enable) {
2067			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2068				set_bit(ATH9K_MODE_11NA_HT20,
2069					pCap->wireless_modes);
2070			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2071				set_bit(ATH9K_MODE_11NA_HT40PLUS,
2072					pCap->wireless_modes);
2073				set_bit(ATH9K_MODE_11NA_HT40MINUS,
2074					pCap->wireless_modes);
2075			}
2076		}
2077	}
2078
2079	if (eeval & AR5416_OPFLAGS_11G) {
2080		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2081		if (ah->config.ht_enable) {
2082			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2083				set_bit(ATH9K_MODE_11NG_HT20,
2084					pCap->wireless_modes);
2085			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2086				set_bit(ATH9K_MODE_11NG_HT40PLUS,
2087					pCap->wireless_modes);
2088				set_bit(ATH9K_MODE_11NG_HT40MINUS,
2089					pCap->wireless_modes);
2090			}
2091		}
2092	}
2093
2094	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2095	/*
2096	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2097	 * the EEPROM.
2098	 */
2099	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2100	    !(eeval & AR5416_OPFLAGS_11A) &&
2101	    !(AR_SREV_9271(ah)))
2102		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2103		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2104	else
2105		/* Use rx_chainmask from EEPROM. */
2106		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2107
2108	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2109		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2110
2111	pCap->low_2ghz_chan = 2312;
2112	pCap->high_2ghz_chan = 2732;
2113
2114	pCap->low_5ghz_chan = 4920;
2115	pCap->high_5ghz_chan = 6100;
2116
2117	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2118	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2119	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2120
2121	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2122	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2123	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2124
2125	if (ah->config.ht_enable)
2126		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2127	else
2128		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2129
2130	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2131	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2132	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2133	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2134
2135	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2136		pCap->total_queues =
2137			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2138	else
2139		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2140
2141	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2142		pCap->keycache_size =
2143			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2144	else
2145		pCap->keycache_size = AR_KEYTABLE_SIZE;
2146
2147	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2148
2149	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2150		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2151	else
2152		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2153
2154	if (AR_SREV_9271(ah))
2155		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2156	else if (AR_SREV_9285_10_OR_LATER(ah))
2157		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2158	else if (AR_SREV_9280_10_OR_LATER(ah))
2159		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2160	else
2161		pCap->num_gpio_pins = AR_NUM_GPIO;
2162
2163	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2164		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2165		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2166	} else {
2167		pCap->rts_aggr_limit = (8 * 1024);
2168	}
2169
2170	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2171
2172#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2173	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2174	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2175		ah->rfkill_gpio =
2176			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2177		ah->rfkill_polarity =
2178			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2179
2180		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2181	}
2182#endif
2183	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2184		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2185	else
2186		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2187
2188	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2189		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2190	else
2191		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2192
2193	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2194		pCap->reg_cap =
2195			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2196			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2197			AR_EEPROM_EEREGCAP_EN_KK_U2 |
2198			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2199	} else {
2200		pCap->reg_cap =
2201			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2202			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2203	}
2204
2205	/* Advertise midband for AR5416 with FCC midband set in eeprom */
2206	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2207	    AR_SREV_5416(ah))
2208		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2209
2210	pCap->num_antcfg_5ghz =
2211		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2212	pCap->num_antcfg_2ghz =
2213		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2214
2215	if (AR_SREV_9280_10_OR_LATER(ah) &&
2216	    ath9k_hw_btcoex_supported(ah)) {
2217		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2218		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2219
2220		if (AR_SREV_9285(ah)) {
2221			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2222			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2223		} else {
2224			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2225		}
2226	} else {
2227		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2228	}
2229
2230	if (AR_SREV_9300_20_OR_LATER(ah)) {
2231		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2232				 ATH9K_HW_CAP_FASTCLOCK;
2233		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2234		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2235		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2236		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2237		pCap->txs_len = sizeof(struct ar9003_txs);
2238		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2239			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2240	} else {
2241		pCap->tx_desc_len = sizeof(struct ath_desc);
2242		if (AR_SREV_9280_20(ah) &&
2243		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2244		      AR5416_EEP_MINOR_VER_16) ||
2245		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2246			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2247	}
2248
2249	if (AR_SREV_9300_20_OR_LATER(ah))
2250		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2251
2252	if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2253		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2254
2255	return 0;
2256}
2257
2258bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2259			    u32 capability, u32 *result)
2260{
2261	switch (type) {
2262	case ATH9K_CAP_TKIP_MIC:
2263		switch (capability) {
2264		case 0:
2265			return true;
2266		case 1:
2267			return (ah->sta_id1_defaults &
2268				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2269			false;
2270		}
2271	case ATH9K_CAP_TKIP_SPLIT:
2272		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2273			false : true;
2274	case ATH9K_CAP_MCAST_KEYSRCH:
2275		switch (capability) {
2276		case 0:
2277			return true;
2278		case 1:
2279			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2280				return false;
2281			} else {
2282				return (ah->sta_id1_defaults &
2283					AR_STA_ID1_MCAST_KSRCH) ? true :
2284					false;
2285			}
2286		}
2287		return false;
2288	case ATH9K_CAP_DS:
2289		return (AR_SREV_9280_20_OR_LATER(ah) &&
2290			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2291			? false : true;
2292	default:
2293		return false;
2294	}
2295}
2296EXPORT_SYMBOL(ath9k_hw_getcapability);
2297
2298bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2299			    u32 capability, u32 setting, int *status)
2300{
2301	switch (type) {
2302	case ATH9K_CAP_TKIP_MIC:
2303		if (setting)
2304			ah->sta_id1_defaults |=
2305				AR_STA_ID1_CRPT_MIC_ENABLE;
2306		else
2307			ah->sta_id1_defaults &=
2308				~AR_STA_ID1_CRPT_MIC_ENABLE;
2309		return true;
2310	case ATH9K_CAP_MCAST_KEYSRCH:
2311		if (setting)
2312			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2313		else
2314			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2315		return true;
2316	default:
2317		return false;
2318	}
2319}
2320EXPORT_SYMBOL(ath9k_hw_setcapability);
2321
2322/****************************/
2323/* GPIO / RFKILL / Antennae */
2324/****************************/
2325
2326static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2327					 u32 gpio, u32 type)
2328{
2329	int addr;
2330	u32 gpio_shift, tmp;
2331
2332	if (gpio > 11)
2333		addr = AR_GPIO_OUTPUT_MUX3;
2334	else if (gpio > 5)
2335		addr = AR_GPIO_OUTPUT_MUX2;
2336	else
2337		addr = AR_GPIO_OUTPUT_MUX1;
2338
2339	gpio_shift = (gpio % 6) * 5;
2340
2341	if (AR_SREV_9280_20_OR_LATER(ah)
2342	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2343		REG_RMW(ah, addr, (type << gpio_shift),
2344			(0x1f << gpio_shift));
2345	} else {
2346		tmp = REG_READ(ah, addr);
2347		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2348		tmp &= ~(0x1f << gpio_shift);
2349		tmp |= (type << gpio_shift);
2350		REG_WRITE(ah, addr, tmp);
2351	}
2352}
2353
2354void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2355{
2356	u32 gpio_shift;
2357
2358	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2359
2360	gpio_shift = gpio << 1;
2361
2362	REG_RMW(ah,
2363		AR_GPIO_OE_OUT,
2364		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2365		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2366}
2367EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2368
2369u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2370{
2371#define MS_REG_READ(x, y) \
2372	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2373
2374	if (gpio >= ah->caps.num_gpio_pins)
2375		return 0xffffffff;
2376
2377	if (AR_SREV_9300_20_OR_LATER(ah))
2378		return MS_REG_READ(AR9300, gpio) != 0;
2379	else if (AR_SREV_9271(ah))
2380		return MS_REG_READ(AR9271, gpio) != 0;
2381	else if (AR_SREV_9287_10_OR_LATER(ah))
2382		return MS_REG_READ(AR9287, gpio) != 0;
2383	else if (AR_SREV_9285_10_OR_LATER(ah))
2384		return MS_REG_READ(AR9285, gpio) != 0;
2385	else if (AR_SREV_9280_10_OR_LATER(ah))
2386		return MS_REG_READ(AR928X, gpio) != 0;
2387	else
2388		return MS_REG_READ(AR, gpio) != 0;
2389}
2390EXPORT_SYMBOL(ath9k_hw_gpio_get);
2391
2392void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2393			 u32 ah_signal_type)
2394{
2395	u32 gpio_shift;
2396
2397	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2398
2399	gpio_shift = 2 * gpio;
2400
2401	REG_RMW(ah,
2402		AR_GPIO_OE_OUT,
2403		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2404		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2405}
2406EXPORT_SYMBOL(ath9k_hw_cfg_output);
2407
2408void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2409{
2410	if (AR_SREV_9271(ah))
2411		val = ~val;
2412
2413	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2414		AR_GPIO_BIT(gpio));
2415}
2416EXPORT_SYMBOL(ath9k_hw_set_gpio);
2417
2418u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2419{
2420	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2421}
2422EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2423
2424void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2425{
2426	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2427}
2428EXPORT_SYMBOL(ath9k_hw_setantenna);
2429
2430/*********************/
2431/* General Operation */
2432/*********************/
2433
2434u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2435{
2436	u32 bits = REG_READ(ah, AR_RX_FILTER);
2437	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2438
2439	if (phybits & AR_PHY_ERR_RADAR)
2440		bits |= ATH9K_RX_FILTER_PHYRADAR;
2441	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2442		bits |= ATH9K_RX_FILTER_PHYERR;
2443
2444	return bits;
2445}
2446EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2447
2448void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2449{
2450	u32 phybits;
2451
2452	ENABLE_REGWRITE_BUFFER(ah);
2453
2454	REG_WRITE(ah, AR_RX_FILTER, bits);
2455
2456	phybits = 0;
2457	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2458		phybits |= AR_PHY_ERR_RADAR;
2459	if (bits & ATH9K_RX_FILTER_PHYERR)
2460		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2461	REG_WRITE(ah, AR_PHY_ERR, phybits);
2462
2463	if (phybits)
2464		REG_WRITE(ah, AR_RXCFG,
2465			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2466	else
2467		REG_WRITE(ah, AR_RXCFG,
2468			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2469
2470	REGWRITE_BUFFER_FLUSH(ah);
2471	DISABLE_REGWRITE_BUFFER(ah);
2472}
2473EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2474
2475bool ath9k_hw_phy_disable(struct ath_hw *ah)
2476{
2477	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2478		return false;
2479
2480	ath9k_hw_init_pll(ah, NULL);
2481	return true;
2482}
2483EXPORT_SYMBOL(ath9k_hw_phy_disable);
2484
2485bool ath9k_hw_disable(struct ath_hw *ah)
2486{
2487	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2488		return false;
2489
2490	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2491		return false;
2492
2493	ath9k_hw_init_pll(ah, NULL);
2494	return true;
2495}
2496EXPORT_SYMBOL(ath9k_hw_disable);
2497
2498void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2499{
2500	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2501	struct ath9k_channel *chan = ah->curchan;
2502	struct ieee80211_channel *channel = chan->chan;
2503
2504	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2505
2506	ah->eep_ops->set_txpower(ah, chan,
2507				 ath9k_regd_get_ctl(regulatory, chan),
2508				 channel->max_antenna_gain * 2,
2509				 channel->max_power * 2,
2510				 min((u32) MAX_RATE_POWER,
2511				 (u32) regulatory->power_limit));
2512}
2513EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2514
2515void ath9k_hw_setopmode(struct ath_hw *ah)
2516{
2517	ath9k_hw_set_operating_mode(ah, ah->opmode);
2518}
2519EXPORT_SYMBOL(ath9k_hw_setopmode);
2520
2521void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2522{
2523	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2524	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2525}
2526EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2527
2528void ath9k_hw_write_associd(struct ath_hw *ah)
2529{
2530	struct ath_common *common = ath9k_hw_common(ah);
2531
2532	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2533	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2534		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2535}
2536EXPORT_SYMBOL(ath9k_hw_write_associd);
2537
2538#define ATH9K_MAX_TSF_READ 10
2539
2540u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2541{
2542	u32 tsf_lower, tsf_upper1, tsf_upper2;
2543	int i;
2544
2545	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2546	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2547		tsf_lower = REG_READ(ah, AR_TSF_L32);
2548		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2549		if (tsf_upper2 == tsf_upper1)
2550			break;
2551		tsf_upper1 = tsf_upper2;
2552	}
2553
2554	WARN_ON( i == ATH9K_MAX_TSF_READ );
2555
2556	return (((u64)tsf_upper1 << 32) | tsf_lower);
2557}
2558EXPORT_SYMBOL(ath9k_hw_gettsf64);
2559
2560void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2561{
2562	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2563	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2564}
2565EXPORT_SYMBOL(ath9k_hw_settsf64);
2566
2567void ath9k_hw_reset_tsf(struct ath_hw *ah)
2568{
2569	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2570			   AH_TSF_WRITE_TIMEOUT))
2571		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2572			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2573
2574	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2575}
2576EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2577
2578void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2579{
2580	if (setting)
2581		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2582	else
2583		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2584}
2585EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2586
2587void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2588{
2589	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2590	u32 macmode;
2591
2592	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2593		macmode = AR_2040_JOINED_RX_CLEAR;
2594	else
2595		macmode = 0;
2596
2597	REG_WRITE(ah, AR_2040_MODE, macmode);
2598}
2599
2600/* HW Generic timers configuration */
2601
2602static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2603{
2604	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2605	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2606	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2607	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2608	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2609	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2610	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2611	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2612	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2613	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2614				AR_NDP2_TIMER_MODE, 0x0002},
2615	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2616				AR_NDP2_TIMER_MODE, 0x0004},
2617	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2618				AR_NDP2_TIMER_MODE, 0x0008},
2619	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2620				AR_NDP2_TIMER_MODE, 0x0010},
2621	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2622				AR_NDP2_TIMER_MODE, 0x0020},
2623	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2624				AR_NDP2_TIMER_MODE, 0x0040},
2625	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2626				AR_NDP2_TIMER_MODE, 0x0080}
2627};
2628
2629/* HW generic timer primitives */
2630
2631/* compute and clear index of rightmost 1 */
2632static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2633{
2634	u32 b;
2635
2636	b = *mask;
2637	b &= (0-b);
2638	*mask &= ~b;
2639	b *= debruijn32;
2640	b >>= 27;
2641
2642	return timer_table->gen_timer_index[b];
2643}
2644
2645u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2646{
2647	return REG_READ(ah, AR_TSF_L32);
2648}
2649EXPORT_SYMBOL(ath9k_hw_gettsf32);
2650
2651struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2652					  void (*trigger)(void *),
2653					  void (*overflow)(void *),
2654					  void *arg,
2655					  u8 timer_index)
2656{
2657	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2658	struct ath_gen_timer *timer;
2659
2660	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2661
2662	if (timer == NULL) {
2663		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2664			  "Failed to allocate memory"
2665			  "for hw timer[%d]\n", timer_index);
2666		return NULL;
2667	}
2668
2669	/* allocate a hardware generic timer slot */
2670	timer_table->timers[timer_index] = timer;
2671	timer->index = timer_index;
2672	timer->trigger = trigger;
2673	timer->overflow = overflow;
2674	timer->arg = arg;
2675
2676	return timer;
2677}
2678EXPORT_SYMBOL(ath_gen_timer_alloc);
2679
2680void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2681			      struct ath_gen_timer *timer,
2682			      u32 timer_next,
2683			      u32 timer_period)
2684{
2685	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2686	u32 tsf;
2687
2688	BUG_ON(!timer_period);
2689
2690	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2691
2692	tsf = ath9k_hw_gettsf32(ah);
2693
2694	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2695		  "curent tsf %x period %x"
2696		  "timer_next %x\n", tsf, timer_period, timer_next);
2697
2698	/*
2699	 * Pull timer_next forward if the current TSF already passed it
2700	 * because of software latency
2701	 */
2702	if (timer_next < tsf)
2703		timer_next = tsf + timer_period;
2704
2705	/*
2706	 * Program generic timer registers
2707	 */
2708	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2709		 timer_next);
2710	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2711		  timer_period);
2712	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2713		    gen_tmr_configuration[timer->index].mode_mask);
2714
2715	/* Enable both trigger and thresh interrupt masks */
2716	REG_SET_BIT(ah, AR_IMR_S5,
2717		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2718		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2719}
2720EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2721
2722void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2723{
2724	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2725
2726	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2727		(timer->index >= ATH_MAX_GEN_TIMER)) {
2728		return;
2729	}
2730
2731	/* Clear generic timer enable bits. */
2732	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2733			gen_tmr_configuration[timer->index].mode_mask);
2734
2735	/* Disable both trigger and thresh interrupt masks */
2736	REG_CLR_BIT(ah, AR_IMR_S5,
2737		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2738		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2739
2740	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2741}
2742EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2743
2744void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2745{
2746	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2747
2748	/* free the hardware generic timer slot */
2749	timer_table->timers[timer->index] = NULL;
2750	kfree(timer);
2751}
2752EXPORT_SYMBOL(ath_gen_timer_free);
2753
2754/*
2755 * Generic Timer Interrupts handling
2756 */
2757void ath_gen_timer_isr(struct ath_hw *ah)
2758{
2759	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2760	struct ath_gen_timer *timer;
2761	struct ath_common *common = ath9k_hw_common(ah);
2762	u32 trigger_mask, thresh_mask, index;
2763
2764	/* get hardware generic timer interrupt status */
2765	trigger_mask = ah->intr_gen_timer_trigger;
2766	thresh_mask = ah->intr_gen_timer_thresh;
2767	trigger_mask &= timer_table->timer_mask.val;
2768	thresh_mask &= timer_table->timer_mask.val;
2769
2770	trigger_mask &= ~thresh_mask;
2771
2772	while (thresh_mask) {
2773		index = rightmost_index(timer_table, &thresh_mask);
2774		timer = timer_table->timers[index];
2775		BUG_ON(!timer);
2776		ath_print(common, ATH_DBG_HWTIMER,
2777			  "TSF overflow for Gen timer %d\n", index);
2778		timer->overflow(timer->arg);
2779	}
2780
2781	while (trigger_mask) {
2782		index = rightmost_index(timer_table, &trigger_mask);
2783		timer = timer_table->timers[index];
2784		BUG_ON(!timer);
2785		ath_print(common, ATH_DBG_HWTIMER,
2786			  "Gen timer[%d] trigger\n", index);
2787		timer->trigger(timer->arg);
2788	}
2789}
2790EXPORT_SYMBOL(ath_gen_timer_isr);
2791
2792/********/
2793/* HTC  */
2794/********/
2795
2796void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2797{
2798	ah->htc_reset_init = true;
2799}
2800EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2801
2802static struct {
2803	u32 version;
2804	const char * name;
2805} ath_mac_bb_names[] = {
2806	/* Devices with external radios */
2807	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2808	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2809	{ AR_SREV_VERSION_9100,		"9100" },
2810	{ AR_SREV_VERSION_9160,		"9160" },
2811	/* Single-chip solutions */
2812	{ AR_SREV_VERSION_9280,		"9280" },
2813	{ AR_SREV_VERSION_9285,		"9285" },
2814	{ AR_SREV_VERSION_9287,         "9287" },
2815	{ AR_SREV_VERSION_9271,         "9271" },
2816	{ AR_SREV_VERSION_9300,         "9300" },
2817};
2818
2819/* For devices with external radios */
2820static struct {
2821	u16 version;
2822	const char * name;
2823} ath_rf_names[] = {
2824	{ 0,				"5133" },
2825	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2826	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2827	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2828	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2829};
2830
2831/*
2832 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2833 */
2834static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2835{
2836	int i;
2837
2838	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2839		if (ath_mac_bb_names[i].version == mac_bb_version) {
2840			return ath_mac_bb_names[i].name;
2841		}
2842	}
2843
2844	return "????";
2845}
2846
2847/*
2848 * Return the RF name. "????" is returned if the RF is unknown.
2849 * Used for devices with external radios.
2850 */
2851static const char *ath9k_hw_rf_name(u16 rf_version)
2852{
2853	int i;
2854
2855	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2856		if (ath_rf_names[i].version == rf_version) {
2857			return ath_rf_names[i].name;
2858		}
2859	}
2860
2861	return "????";
2862}
2863
2864void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2865{
2866	int used;
2867
2868	/* chipsets >= AR9280 are single-chip */
2869	if (AR_SREV_9280_10_OR_LATER(ah)) {
2870		used = snprintf(hw_name, len,
2871			       "Atheros AR%s Rev:%x",
2872			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2873			       ah->hw_version.macRev);
2874	}
2875	else {
2876		used = snprintf(hw_name, len,
2877			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2878			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2879			       ah->hw_version.macRev,
2880			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2881						AR_RADIO_SREV_MAJOR)),
2882			       ah->hw_version.phyRev);
2883	}
2884
2885	hw_name[used] = '\0';
2886}
2887EXPORT_SYMBOL(ath9k_hw_name);
2888