hw.c revision 9cc3271faa3967754ca1d6ac982e91e347c55489
1/* 2 * Copyright (c) 2008-2010 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17#include <linux/io.h> 18#include <linux/slab.h> 19#include <asm/unaligned.h> 20 21#include "hw.h" 22#include "hw-ops.h" 23#include "rc.h" 24#include "ar9003_mac.h" 25 26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 27 28MODULE_AUTHOR("Atheros Communications"); 29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 31MODULE_LICENSE("Dual BSD/GPL"); 32 33static int __init ath9k_init(void) 34{ 35 return 0; 36} 37module_init(ath9k_init); 38 39static void __exit ath9k_exit(void) 40{ 41 return; 42} 43module_exit(ath9k_exit); 44 45/* Private hardware callbacks */ 46 47static void ath9k_hw_init_cal_settings(struct ath_hw *ah) 48{ 49 ath9k_hw_private_ops(ah)->init_cal_settings(ah); 50} 51 52static void ath9k_hw_init_mode_regs(struct ath_hw *ah) 53{ 54 ath9k_hw_private_ops(ah)->init_mode_regs(ah); 55} 56 57static bool ath9k_hw_macversion_supported(struct ath_hw *ah) 58{ 59 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); 60 61 return priv_ops->macversion_supported(ah->hw_version.macVersion); 62} 63 64static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, 65 struct ath9k_channel *chan) 66{ 67 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); 68} 69 70static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) 71{ 72 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) 73 return; 74 75 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); 76} 77 78static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) 79{ 80 /* You will not have this callback if using the old ANI */ 81 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) 82 return; 83 84 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); 85} 86 87/********************/ 88/* Helper Functions */ 89/********************/ 90 91static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs) 92{ 93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 94 95 if (!ah->curchan) /* should really check for CCK instead */ 96 return usecs *ATH9K_CLOCK_RATE_CCK; 97 if (conf->channel->band == IEEE80211_BAND_2GHZ) 98 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM; 99 100 if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 101 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 102 else 103 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM; 104} 105 106static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 107{ 108 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 109 110 if (conf_is_ht40(conf)) 111 return ath9k_hw_mac_clks(ah, usecs) * 2; 112 else 113 return ath9k_hw_mac_clks(ah, usecs); 114} 115 116bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 117{ 118 int i; 119 120 BUG_ON(timeout < AH_TIME_QUANTUM); 121 122 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 123 if ((REG_READ(ah, reg) & mask) == val) 124 return true; 125 126 udelay(AH_TIME_QUANTUM); 127 } 128 129 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY, 130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 131 timeout, reg, REG_READ(ah, reg), mask, val); 132 133 return false; 134} 135EXPORT_SYMBOL(ath9k_hw_wait); 136 137u32 ath9k_hw_reverse_bits(u32 val, u32 n) 138{ 139 u32 retval; 140 int i; 141 142 for (i = 0, retval = 0; i < n; i++) { 143 retval = (retval << 1) | (val & 1); 144 val >>= 1; 145 } 146 return retval; 147} 148 149bool ath9k_get_channel_edges(struct ath_hw *ah, 150 u16 flags, u16 *low, 151 u16 *high) 152{ 153 struct ath9k_hw_capabilities *pCap = &ah->caps; 154 155 if (flags & CHANNEL_5GHZ) { 156 *low = pCap->low_5ghz_chan; 157 *high = pCap->high_5ghz_chan; 158 return true; 159 } 160 if ((flags & CHANNEL_2GHZ)) { 161 *low = pCap->low_2ghz_chan; 162 *high = pCap->high_2ghz_chan; 163 return true; 164 } 165 return false; 166} 167 168u16 ath9k_hw_computetxtime(struct ath_hw *ah, 169 u8 phy, int kbps, 170 u32 frameLen, u16 rateix, 171 bool shortPreamble) 172{ 173 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 174 175 if (kbps == 0) 176 return 0; 177 178 switch (phy) { 179 case WLAN_RC_PHY_CCK: 180 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 181 if (shortPreamble) 182 phyTime >>= 1; 183 numBits = frameLen << 3; 184 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 185 break; 186 case WLAN_RC_PHY_OFDM: 187 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 188 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 189 numBits = OFDM_PLCP_BITS + (frameLen << 3); 190 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 191 txTime = OFDM_SIFS_TIME_QUARTER 192 + OFDM_PREAMBLE_TIME_QUARTER 193 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 194 } else if (ah->curchan && 195 IS_CHAN_HALF_RATE(ah->curchan)) { 196 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 197 numBits = OFDM_PLCP_BITS + (frameLen << 3); 198 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 199 txTime = OFDM_SIFS_TIME_HALF + 200 OFDM_PREAMBLE_TIME_HALF 201 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 202 } else { 203 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 204 numBits = OFDM_PLCP_BITS + (frameLen << 3); 205 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 206 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 207 + (numSymbols * OFDM_SYMBOL_TIME); 208 } 209 break; 210 default: 211 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, 212 "Unknown phy %u (rate ix %u)\n", phy, rateix); 213 txTime = 0; 214 break; 215 } 216 217 return txTime; 218} 219EXPORT_SYMBOL(ath9k_hw_computetxtime); 220 221void ath9k_hw_get_channel_centers(struct ath_hw *ah, 222 struct ath9k_channel *chan, 223 struct chan_centers *centers) 224{ 225 int8_t extoff; 226 227 if (!IS_CHAN_HT40(chan)) { 228 centers->ctl_center = centers->ext_center = 229 centers->synth_center = chan->channel; 230 return; 231 } 232 233 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 234 (chan->chanmode == CHANNEL_G_HT40PLUS)) { 235 centers->synth_center = 236 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 237 extoff = 1; 238 } else { 239 centers->synth_center = 240 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 241 extoff = -1; 242 } 243 244 centers->ctl_center = 245 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 246 /* 25 MHz spacing is supported by hw but not on upper layers */ 247 centers->ext_center = 248 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 249} 250 251/******************/ 252/* Chip Revisions */ 253/******************/ 254 255static void ath9k_hw_read_revisions(struct ath_hw *ah) 256{ 257 u32 val; 258 259 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 260 261 if (val == 0xFF) { 262 val = REG_READ(ah, AR_SREV); 263 ah->hw_version.macVersion = 264 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 265 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 266 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 267 } else { 268 if (!AR_SREV_9100(ah)) 269 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 270 271 ah->hw_version.macRev = val & AR_SREV_REVISION; 272 273 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 274 ah->is_pciexpress = true; 275 } 276} 277 278/************************************/ 279/* HW Attach, Detach, Init Routines */ 280/************************************/ 281 282static void ath9k_hw_disablepcie(struct ath_hw *ah) 283{ 284 if (AR_SREV_9100(ah)) 285 return; 286 287 ENABLE_REGWRITE_BUFFER(ah); 288 289 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 290 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 291 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 292 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 293 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 294 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 295 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 296 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 297 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 298 299 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 300 301 REGWRITE_BUFFER_FLUSH(ah); 302 DISABLE_REGWRITE_BUFFER(ah); 303} 304 305/* This should work for all families including legacy */ 306static bool ath9k_hw_chip_test(struct ath_hw *ah) 307{ 308 struct ath_common *common = ath9k_hw_common(ah); 309 u32 regAddr[2] = { AR_STA_ID0 }; 310 u32 regHold[2]; 311 u32 patternData[4] = { 0x55555555, 312 0xaaaaaaaa, 313 0x66666666, 314 0x99999999 }; 315 int i, j, loop_max; 316 317 if (!AR_SREV_9300_20_OR_LATER(ah)) { 318 loop_max = 2; 319 regAddr[1] = AR_PHY_BASE + (8 << 2); 320 } else 321 loop_max = 1; 322 323 for (i = 0; i < loop_max; i++) { 324 u32 addr = regAddr[i]; 325 u32 wrData, rdData; 326 327 regHold[i] = REG_READ(ah, addr); 328 for (j = 0; j < 0x100; j++) { 329 wrData = (j << 16) | j; 330 REG_WRITE(ah, addr, wrData); 331 rdData = REG_READ(ah, addr); 332 if (rdData != wrData) { 333 ath_print(common, ATH_DBG_FATAL, 334 "address test failed " 335 "addr: 0x%08x - wr:0x%08x != " 336 "rd:0x%08x\n", 337 addr, wrData, rdData); 338 return false; 339 } 340 } 341 for (j = 0; j < 4; j++) { 342 wrData = patternData[j]; 343 REG_WRITE(ah, addr, wrData); 344 rdData = REG_READ(ah, addr); 345 if (wrData != rdData) { 346 ath_print(common, ATH_DBG_FATAL, 347 "address test failed " 348 "addr: 0x%08x - wr:0x%08x != " 349 "rd:0x%08x\n", 350 addr, wrData, rdData); 351 return false; 352 } 353 } 354 REG_WRITE(ah, regAddr[i], regHold[i]); 355 } 356 udelay(100); 357 358 return true; 359} 360 361static void ath9k_hw_init_config(struct ath_hw *ah) 362{ 363 int i; 364 365 ah->config.dma_beacon_response_time = 2; 366 ah->config.sw_beacon_response_time = 10; 367 ah->config.additional_swba_backoff = 0; 368 ah->config.ack_6mb = 0x0; 369 ah->config.cwm_ignore_extcca = 0; 370 ah->config.pcie_powersave_enable = 0; 371 ah->config.pcie_clock_req = 0; 372 ah->config.pcie_waen = 0; 373 ah->config.analog_shiftreg = 1; 374 ah->config.ofdm_trig_low = 200; 375 ah->config.ofdm_trig_high = 500; 376 ah->config.cck_trig_high = 200; 377 ah->config.cck_trig_low = 100; 378 ah->config.enable_ani = true; 379 380 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 381 ah->config.spurchans[i][0] = AR_NO_SPUR; 382 ah->config.spurchans[i][1] = AR_NO_SPUR; 383 } 384 385 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 386 ah->config.ht_enable = 1; 387 else 388 ah->config.ht_enable = 0; 389 390 ah->config.rx_intr_mitigation = true; 391 392 /* 393 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 394 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 395 * This means we use it for all AR5416 devices, and the few 396 * minor PCI AR9280 devices out there. 397 * 398 * Serialization is required because these devices do not handle 399 * well the case of two concurrent reads/writes due to the latency 400 * involved. During one read/write another read/write can be issued 401 * on another CPU while the previous read/write may still be working 402 * on our hardware, if we hit this case the hardware poops in a loop. 403 * We prevent this by serializing reads and writes. 404 * 405 * This issue is not present on PCI-Express devices or pre-AR5416 406 * devices (legacy, 802.11abg). 407 */ 408 if (num_possible_cpus() > 1) 409 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 410} 411 412static void ath9k_hw_init_defaults(struct ath_hw *ah) 413{ 414 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 415 416 regulatory->country_code = CTRY_DEFAULT; 417 regulatory->power_limit = MAX_RATE_POWER; 418 regulatory->tp_scale = ATH9K_TP_SCALE_MAX; 419 420 ah->hw_version.magic = AR5416_MAGIC; 421 ah->hw_version.subvendorid = 0; 422 423 ah->ah_flags = 0; 424 if (!AR_SREV_9100(ah)) 425 ah->ah_flags = AH_USE_EEPROM; 426 427 ah->atim_window = 0; 428 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE; 429 ah->beacon_interval = 100; 430 ah->enable_32kHz_clock = DONT_USE_32KHZ; 431 ah->slottime = (u32) -1; 432 ah->globaltxtimeout = (u32) -1; 433 ah->power_mode = ATH9K_PM_UNDEFINED; 434} 435 436static int ath9k_hw_init_macaddr(struct ath_hw *ah) 437{ 438 struct ath_common *common = ath9k_hw_common(ah); 439 u32 sum; 440 int i; 441 u16 eeval; 442 u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 443 444 sum = 0; 445 for (i = 0; i < 3; i++) { 446 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 447 sum += eeval; 448 common->macaddr[2 * i] = eeval >> 8; 449 common->macaddr[2 * i + 1] = eeval & 0xff; 450 } 451 if (sum == 0 || sum == 0xffff * 3) 452 return -EADDRNOTAVAIL; 453 454 return 0; 455} 456 457static int ath9k_hw_post_init(struct ath_hw *ah) 458{ 459 int ecode; 460 461 if (!AR_SREV_9271(ah)) { 462 if (!ath9k_hw_chip_test(ah)) 463 return -ENODEV; 464 } 465 466 if (!AR_SREV_9300_20_OR_LATER(ah)) { 467 ecode = ar9002_hw_rf_claim(ah); 468 if (ecode != 0) 469 return ecode; 470 } 471 472 ecode = ath9k_hw_eeprom_init(ah); 473 if (ecode != 0) 474 return ecode; 475 476 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG, 477 "Eeprom VER: %d, REV: %d\n", 478 ah->eep_ops->get_eeprom_ver(ah), 479 ah->eep_ops->get_eeprom_rev(ah)); 480 481 ecode = ath9k_hw_rf_alloc_ext_banks(ah); 482 if (ecode) { 483 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, 484 "Failed allocating banks for " 485 "external radio\n"); 486 return ecode; 487 } 488 489 if (!AR_SREV_9100(ah)) { 490 ath9k_hw_ani_setup(ah); 491 ath9k_hw_ani_init(ah); 492 } 493 494 return 0; 495} 496 497static void ath9k_hw_attach_ops(struct ath_hw *ah) 498{ 499 if (AR_SREV_9300_20_OR_LATER(ah)) 500 ar9003_hw_attach_ops(ah); 501 else 502 ar9002_hw_attach_ops(ah); 503} 504 505/* Called for all hardware families */ 506static int __ath9k_hw_init(struct ath_hw *ah) 507{ 508 struct ath_common *common = ath9k_hw_common(ah); 509 int r = 0; 510 511 if (ah->hw_version.devid == AR5416_AR9100_DEVID) 512 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 513 514 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 515 ath_print(common, ATH_DBG_FATAL, 516 "Couldn't reset chip\n"); 517 return -EIO; 518 } 519 520 ath9k_hw_init_defaults(ah); 521 ath9k_hw_init_config(ah); 522 523 ath9k_hw_attach_ops(ah); 524 525 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 526 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n"); 527 return -EIO; 528 } 529 530 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 531 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 532 (AR_SREV_9280(ah) && !ah->is_pciexpress)) { 533 ah->config.serialize_regmode = 534 SER_REG_MODE_ON; 535 } else { 536 ah->config.serialize_regmode = 537 SER_REG_MODE_OFF; 538 } 539 } 540 541 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n", 542 ah->config.serialize_regmode); 543 544 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 545 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 546 else 547 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 548 549 if (!ath9k_hw_macversion_supported(ah)) { 550 ath_print(common, ATH_DBG_FATAL, 551 "Mac Chip Rev 0x%02x.%x is not supported by " 552 "this driver\n", ah->hw_version.macVersion, 553 ah->hw_version.macRev); 554 return -EOPNOTSUPP; 555 } 556 557 if (AR_SREV_9271(ah) || AR_SREV_9100(ah)) 558 ah->is_pciexpress = false; 559 560 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 561 ath9k_hw_init_cal_settings(ah); 562 563 ah->ani_function = ATH9K_ANI_ALL; 564 if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 565 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; 566 if (!AR_SREV_9300_20_OR_LATER(ah)) 567 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 568 569 ath9k_hw_init_mode_regs(ah); 570 571 /* 572 * Configire PCIE after Ini init. SERDES values now come from ini file 573 * This enables PCIe low power mode. 574 */ 575 if (AR_SREV_9300_20_OR_LATER(ah)) { 576 u32 regval; 577 unsigned int i; 578 579 /* Set Bits 16 and 17 in the AR_WA register. */ 580 regval = REG_READ(ah, AR_WA); 581 regval |= 0x00030000; 582 REG_WRITE(ah, AR_WA, regval); 583 584 for (i = 0; i < ah->iniPcieSerdesLowPower.ia_rows; i++) { 585 REG_WRITE(ah, 586 INI_RA(&ah->iniPcieSerdesLowPower, i, 0), 587 INI_RA(&ah->iniPcieSerdesLowPower, i, 1)); 588 } 589 } 590 591 if (ah->is_pciexpress) 592 ath9k_hw_configpcipowersave(ah, 0, 0); 593 else 594 ath9k_hw_disablepcie(ah); 595 596 if (!AR_SREV_9300_20_OR_LATER(ah)) 597 ar9002_hw_cck_chan14_spread(ah); 598 599 r = ath9k_hw_post_init(ah); 600 if (r) 601 return r; 602 603 ath9k_hw_init_mode_gain_regs(ah); 604 r = ath9k_hw_fill_cap_info(ah); 605 if (r) 606 return r; 607 608 r = ath9k_hw_init_macaddr(ah); 609 if (r) { 610 ath_print(common, ATH_DBG_FATAL, 611 "Failed to initialize MAC address\n"); 612 return r; 613 } 614 615 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 616 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 617 else 618 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 619 620 if (AR_SREV_9300_20_OR_LATER(ah)) 621 ar9003_hw_set_nf_limits(ah); 622 623 ath9k_init_nfcal_hist_buffer(ah); 624 ah->bb_watchdog_timeout_ms = 25; 625 626 common->state = ATH_HW_INITIALIZED; 627 628 return 0; 629} 630 631int ath9k_hw_init(struct ath_hw *ah) 632{ 633 int ret; 634 struct ath_common *common = ath9k_hw_common(ah); 635 636 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */ 637 switch (ah->hw_version.devid) { 638 case AR5416_DEVID_PCI: 639 case AR5416_DEVID_PCIE: 640 case AR5416_AR9100_DEVID: 641 case AR9160_DEVID_PCI: 642 case AR9280_DEVID_PCI: 643 case AR9280_DEVID_PCIE: 644 case AR9285_DEVID_PCIE: 645 case AR9287_DEVID_PCI: 646 case AR9287_DEVID_PCIE: 647 case AR2427_DEVID_PCIE: 648 case AR9300_DEVID_PCIE: 649 break; 650 default: 651 if (common->bus_ops->ath_bus_type == ATH_USB) 652 break; 653 ath_print(common, ATH_DBG_FATAL, 654 "Hardware device ID 0x%04x not supported\n", 655 ah->hw_version.devid); 656 return -EOPNOTSUPP; 657 } 658 659 ret = __ath9k_hw_init(ah); 660 if (ret) { 661 ath_print(common, ATH_DBG_FATAL, 662 "Unable to initialize hardware; " 663 "initialization status: %d\n", ret); 664 return ret; 665 } 666 667 return 0; 668} 669EXPORT_SYMBOL(ath9k_hw_init); 670 671static void ath9k_hw_init_qos(struct ath_hw *ah) 672{ 673 ENABLE_REGWRITE_BUFFER(ah); 674 675 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 676 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 677 678 REG_WRITE(ah, AR_QOS_NO_ACK, 679 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 680 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 681 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 682 683 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 684 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 685 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 686 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 687 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 688 689 REGWRITE_BUFFER_FLUSH(ah); 690 DISABLE_REGWRITE_BUFFER(ah); 691} 692 693static void ath9k_hw_init_pll(struct ath_hw *ah, 694 struct ath9k_channel *chan) 695{ 696 u32 pll = ath9k_hw_compute_pll_control(ah, chan); 697 698 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 699 700 /* Switch the core clock for ar9271 to 117Mhz */ 701 if (AR_SREV_9271(ah)) { 702 udelay(500); 703 REG_WRITE(ah, 0x50040, 0x304); 704 } 705 706 udelay(RTC_PLL_SETTLE_DELAY); 707 708 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 709} 710 711static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 712 enum nl80211_iftype opmode) 713{ 714 u32 imr_reg = AR_IMR_TXERR | 715 AR_IMR_TXURN | 716 AR_IMR_RXERR | 717 AR_IMR_RXORN | 718 AR_IMR_BCNMISC; 719 720 if (AR_SREV_9300_20_OR_LATER(ah)) { 721 imr_reg |= AR_IMR_RXOK_HP; 722 if (ah->config.rx_intr_mitigation) 723 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 724 else 725 imr_reg |= AR_IMR_RXOK_LP; 726 727 } else { 728 if (ah->config.rx_intr_mitigation) 729 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 730 else 731 imr_reg |= AR_IMR_RXOK; 732 } 733 734 if (ah->config.tx_intr_mitigation) 735 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 736 else 737 imr_reg |= AR_IMR_TXOK; 738 739 if (opmode == NL80211_IFTYPE_AP) 740 imr_reg |= AR_IMR_MIB; 741 742 ENABLE_REGWRITE_BUFFER(ah); 743 744 REG_WRITE(ah, AR_IMR, imr_reg); 745 ah->imrs2_reg |= AR_IMR_S2_GTT; 746 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 747 748 if (!AR_SREV_9100(ah)) { 749 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 750 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 751 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 752 } 753 754 REGWRITE_BUFFER_FLUSH(ah); 755 DISABLE_REGWRITE_BUFFER(ah); 756 757 if (AR_SREV_9300_20_OR_LATER(ah)) { 758 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 759 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 760 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 761 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 762 } 763} 764 765static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 766{ 767 u32 val = ath9k_hw_mac_to_clks(ah, us); 768 val = min(val, (u32) 0xFFFF); 769 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 770} 771 772static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 773{ 774 u32 val = ath9k_hw_mac_to_clks(ah, us); 775 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 776 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 777} 778 779static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 780{ 781 u32 val = ath9k_hw_mac_to_clks(ah, us); 782 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 783 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 784} 785 786static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 787{ 788 if (tu > 0xFFFF) { 789 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT, 790 "bad global tx timeout %u\n", tu); 791 ah->globaltxtimeout = (u32) -1; 792 return false; 793 } else { 794 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 795 ah->globaltxtimeout = tu; 796 return true; 797 } 798} 799 800void ath9k_hw_init_global_settings(struct ath_hw *ah) 801{ 802 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 803 int acktimeout; 804 int slottime; 805 int sifstime; 806 807 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n", 808 ah->misc_mode); 809 810 if (ah->misc_mode != 0) 811 REG_WRITE(ah, AR_PCU_MISC, 812 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); 813 814 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ) 815 sifstime = 16; 816 else 817 sifstime = 10; 818 819 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 820 slottime = ah->slottime + 3 * ah->coverage_class; 821 acktimeout = slottime + sifstime; 822 823 /* 824 * Workaround for early ACK timeouts, add an offset to match the 825 * initval's 64us ack timeout value. 826 * This was initially only meant to work around an issue with delayed 827 * BA frames in some implementations, but it has been found to fix ACK 828 * timeout issues in other cases as well. 829 */ 830 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) 831 acktimeout += 64 - sifstime - ah->slottime; 832 833 ath9k_hw_setslottime(ah, slottime); 834 ath9k_hw_set_ack_timeout(ah, acktimeout); 835 ath9k_hw_set_cts_timeout(ah, acktimeout); 836 if (ah->globaltxtimeout != (u32) -1) 837 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 838} 839EXPORT_SYMBOL(ath9k_hw_init_global_settings); 840 841void ath9k_hw_deinit(struct ath_hw *ah) 842{ 843 struct ath_common *common = ath9k_hw_common(ah); 844 845 if (common->state < ATH_HW_INITIALIZED) 846 goto free_hw; 847 848 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 849 850free_hw: 851 ath9k_hw_rf_free_ext_banks(ah); 852} 853EXPORT_SYMBOL(ath9k_hw_deinit); 854 855/*******/ 856/* INI */ 857/*******/ 858 859u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 860{ 861 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 862 863 if (IS_CHAN_B(chan)) 864 ctl |= CTL_11B; 865 else if (IS_CHAN_G(chan)) 866 ctl |= CTL_11G; 867 else 868 ctl |= CTL_11A; 869 870 return ctl; 871} 872 873/****************************************/ 874/* Reset and Channel Switching Routines */ 875/****************************************/ 876 877static inline void ath9k_hw_set_dma(struct ath_hw *ah) 878{ 879 struct ath_common *common = ath9k_hw_common(ah); 880 u32 regval; 881 882 ENABLE_REGWRITE_BUFFER(ah); 883 884 /* 885 * set AHB_MODE not to do cacheline prefetches 886 */ 887 if (!AR_SREV_9300_20_OR_LATER(ah)) { 888 regval = REG_READ(ah, AR_AHB_MODE); 889 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); 890 } 891 892 /* 893 * let mac dma reads be in 128 byte chunks 894 */ 895 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; 896 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); 897 898 REGWRITE_BUFFER_FLUSH(ah); 899 DISABLE_REGWRITE_BUFFER(ah); 900 901 /* 902 * Restore TX Trigger Level to its pre-reset value. 903 * The initial value depends on whether aggregation is enabled, and is 904 * adjusted whenever underruns are detected. 905 */ 906 if (!AR_SREV_9300_20_OR_LATER(ah)) 907 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 908 909 ENABLE_REGWRITE_BUFFER(ah); 910 911 /* 912 * let mac dma writes be in 128 byte chunks 913 */ 914 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; 915 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); 916 917 /* 918 * Setup receive FIFO threshold to hold off TX activities 919 */ 920 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 921 922 if (AR_SREV_9300_20_OR_LATER(ah)) { 923 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 924 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 925 926 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 927 ah->caps.rx_status_len); 928 } 929 930 /* 931 * reduce the number of usable entries in PCU TXBUF to avoid 932 * wrap around issues. 933 */ 934 if (AR_SREV_9285(ah)) { 935 /* For AR9285 the number of Fifos are reduced to half. 936 * So set the usable tx buf size also to half to 937 * avoid data/delimiter underruns 938 */ 939 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 940 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 941 } else if (!AR_SREV_9271(ah)) { 942 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 943 AR_PCU_TXBUF_CTRL_USABLE_SIZE); 944 } 945 946 REGWRITE_BUFFER_FLUSH(ah); 947 DISABLE_REGWRITE_BUFFER(ah); 948 949 if (AR_SREV_9300_20_OR_LATER(ah)) 950 ath9k_hw_reset_txstatus_ring(ah); 951} 952 953static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 954{ 955 u32 val; 956 957 val = REG_READ(ah, AR_STA_ID1); 958 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); 959 switch (opmode) { 960 case NL80211_IFTYPE_AP: 961 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP 962 | AR_STA_ID1_KSRCH_MODE); 963 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 964 break; 965 case NL80211_IFTYPE_ADHOC: 966 case NL80211_IFTYPE_MESH_POINT: 967 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC 968 | AR_STA_ID1_KSRCH_MODE); 969 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 970 break; 971 case NL80211_IFTYPE_STATION: 972 case NL80211_IFTYPE_MONITOR: 973 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); 974 break; 975 } 976} 977 978void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 979 u32 *coef_mantissa, u32 *coef_exponent) 980{ 981 u32 coef_exp, coef_man; 982 983 for (coef_exp = 31; coef_exp > 0; coef_exp--) 984 if ((coef_scaled >> coef_exp) & 0x1) 985 break; 986 987 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 988 989 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 990 991 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 992 *coef_exponent = coef_exp - 16; 993} 994 995static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 996{ 997 u32 rst_flags; 998 u32 tmpReg; 999 1000 if (AR_SREV_9100(ah)) { 1001 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); 1002 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1003 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1004 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1005 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1006 } 1007 1008 ENABLE_REGWRITE_BUFFER(ah); 1009 1010 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1011 AR_RTC_FORCE_WAKE_ON_INT); 1012 1013 if (AR_SREV_9100(ah)) { 1014 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1015 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1016 } else { 1017 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1018 if (tmpReg & 1019 (AR_INTR_SYNC_LOCAL_TIMEOUT | 1020 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1021 u32 val; 1022 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1023 1024 val = AR_RC_HOSTIF; 1025 if (!AR_SREV_9300_20_OR_LATER(ah)) 1026 val |= AR_RC_AHB; 1027 REG_WRITE(ah, AR_RC, val); 1028 1029 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1030 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1031 1032 rst_flags = AR_RTC_RC_MAC_WARM; 1033 if (type == ATH9K_RESET_COLD) 1034 rst_flags |= AR_RTC_RC_MAC_COLD; 1035 } 1036 1037 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1038 1039 REGWRITE_BUFFER_FLUSH(ah); 1040 DISABLE_REGWRITE_BUFFER(ah); 1041 1042 udelay(50); 1043 1044 REG_WRITE(ah, AR_RTC_RC, 0); 1045 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1046 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, 1047 "RTC stuck in MAC reset\n"); 1048 return false; 1049 } 1050 1051 if (!AR_SREV_9100(ah)) 1052 REG_WRITE(ah, AR_RC, 0); 1053 1054 if (AR_SREV_9100(ah)) 1055 udelay(50); 1056 1057 return true; 1058} 1059 1060static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1061{ 1062 ENABLE_REGWRITE_BUFFER(ah); 1063 1064 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1065 AR_RTC_FORCE_WAKE_ON_INT); 1066 1067 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1068 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1069 1070 REG_WRITE(ah, AR_RTC_RESET, 0); 1071 1072 REGWRITE_BUFFER_FLUSH(ah); 1073 DISABLE_REGWRITE_BUFFER(ah); 1074 1075 if (!AR_SREV_9300_20_OR_LATER(ah)) 1076 udelay(2); 1077 1078 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1079 REG_WRITE(ah, AR_RC, 0); 1080 1081 REG_WRITE(ah, AR_RTC_RESET, 1); 1082 1083 if (!ath9k_hw_wait(ah, 1084 AR_RTC_STATUS, 1085 AR_RTC_STATUS_M, 1086 AR_RTC_STATUS_ON, 1087 AH_WAIT_TIMEOUT)) { 1088 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, 1089 "RTC not waking up\n"); 1090 return false; 1091 } 1092 1093 ath9k_hw_read_revisions(ah); 1094 1095 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1096} 1097 1098static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1099{ 1100 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1101 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1102 1103 switch (type) { 1104 case ATH9K_RESET_POWER_ON: 1105 return ath9k_hw_set_reset_power_on(ah); 1106 case ATH9K_RESET_WARM: 1107 case ATH9K_RESET_COLD: 1108 return ath9k_hw_set_reset(ah, type); 1109 default: 1110 return false; 1111 } 1112} 1113 1114static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1115 struct ath9k_channel *chan) 1116{ 1117 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) { 1118 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) 1119 return false; 1120 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 1121 return false; 1122 1123 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1124 return false; 1125 1126 ah->chip_fullsleep = false; 1127 ath9k_hw_init_pll(ah, chan); 1128 ath9k_hw_set_rfmode(ah, chan); 1129 1130 return true; 1131} 1132 1133static bool ath9k_hw_channel_change(struct ath_hw *ah, 1134 struct ath9k_channel *chan) 1135{ 1136 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 1137 struct ath_common *common = ath9k_hw_common(ah); 1138 struct ieee80211_channel *channel = chan->chan; 1139 u32 qnum; 1140 int r; 1141 1142 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1143 if (ath9k_hw_numtxpending(ah, qnum)) { 1144 ath_print(common, ATH_DBG_QUEUE, 1145 "Transmit frames pending on " 1146 "queue %d\n", qnum); 1147 return false; 1148 } 1149 } 1150 1151 if (!ath9k_hw_rfbus_req(ah)) { 1152 ath_print(common, ATH_DBG_FATAL, 1153 "Could not kill baseband RX\n"); 1154 return false; 1155 } 1156 1157 ath9k_hw_set_channel_regs(ah, chan); 1158 1159 r = ath9k_hw_rf_set_freq(ah, chan); 1160 if (r) { 1161 ath_print(common, ATH_DBG_FATAL, 1162 "Failed to set channel\n"); 1163 return false; 1164 } 1165 1166 ah->eep_ops->set_txpower(ah, chan, 1167 ath9k_regd_get_ctl(regulatory, chan), 1168 channel->max_antenna_gain * 2, 1169 channel->max_power * 2, 1170 min((u32) MAX_RATE_POWER, 1171 (u32) regulatory->power_limit)); 1172 1173 ath9k_hw_rfbus_done(ah); 1174 1175 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1176 ath9k_hw_set_delta_slope(ah, chan); 1177 1178 ath9k_hw_spur_mitigate_freq(ah, chan); 1179 1180 if (!chan->oneTimeCalsDone) 1181 chan->oneTimeCalsDone = true; 1182 1183 return true; 1184} 1185 1186bool ath9k_hw_check_alive(struct ath_hw *ah) 1187{ 1188 int count = 50; 1189 u32 reg; 1190 1191 if (AR_SREV_9285_10_OR_LATER(ah)) 1192 return true; 1193 1194 do { 1195 reg = REG_READ(ah, AR_OBS_BUS_1); 1196 1197 if ((reg & 0x7E7FFFEF) == 0x00702400) 1198 continue; 1199 1200 switch (reg & 0x7E000B00) { 1201 case 0x1E000000: 1202 case 0x52000B00: 1203 case 0x18000B00: 1204 continue; 1205 default: 1206 return true; 1207 } 1208 } while (count-- > 0); 1209 1210 return false; 1211} 1212EXPORT_SYMBOL(ath9k_hw_check_alive); 1213 1214int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1215 bool bChannelChange) 1216{ 1217 struct ath_common *common = ath9k_hw_common(ah); 1218 u32 saveLedState; 1219 struct ath9k_channel *curchan = ah->curchan; 1220 u32 saveDefAntenna; 1221 u32 macStaId1; 1222 u64 tsf = 0; 1223 int i, r; 1224 1225 ah->txchainmask = common->tx_chainmask; 1226 ah->rxchainmask = common->rx_chainmask; 1227 1228 if (!ah->chip_fullsleep) { 1229 ath9k_hw_abortpcurecv(ah); 1230 if (!ath9k_hw_stopdmarecv(ah)) 1231 ath_print(common, ATH_DBG_XMIT, 1232 "Failed to stop receive dma\n"); 1233 } 1234 1235 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1236 return -EIO; 1237 1238 if (curchan && !ah->chip_fullsleep) 1239 ath9k_hw_getnf(ah, curchan); 1240 1241 if (bChannelChange && 1242 (ah->chip_fullsleep != true) && 1243 (ah->curchan != NULL) && 1244 (chan->channel != ah->curchan->channel) && 1245 ((chan->channelFlags & CHANNEL_ALL) == 1246 (ah->curchan->channelFlags & CHANNEL_ALL)) && 1247 !AR_SREV_9280(ah)) { 1248 1249 if (ath9k_hw_channel_change(ah, chan)) { 1250 ath9k_hw_loadnf(ah, ah->curchan); 1251 ath9k_hw_start_nfcal(ah); 1252 return 0; 1253 } 1254 } 1255 1256 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1257 if (saveDefAntenna == 0) 1258 saveDefAntenna = 1; 1259 1260 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1261 1262 /* For chips on which RTC reset is done, save TSF before it gets cleared */ 1263 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1264 tsf = ath9k_hw_gettsf64(ah); 1265 1266 saveLedState = REG_READ(ah, AR_CFG_LED) & 1267 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1268 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1269 1270 ath9k_hw_mark_phy_inactive(ah); 1271 1272 /* Only required on the first reset */ 1273 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1274 REG_WRITE(ah, 1275 AR9271_RESET_POWER_DOWN_CONTROL, 1276 AR9271_RADIO_RF_RST); 1277 udelay(50); 1278 } 1279 1280 if (!ath9k_hw_chip_reset(ah, chan)) { 1281 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n"); 1282 return -EINVAL; 1283 } 1284 1285 /* Only required on the first reset */ 1286 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1287 ah->htc_reset_init = false; 1288 REG_WRITE(ah, 1289 AR9271_RESET_POWER_DOWN_CONTROL, 1290 AR9271_GATE_MAC_CTL); 1291 udelay(50); 1292 } 1293 1294 /* Restore TSF */ 1295 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1296 ath9k_hw_settsf64(ah, tsf); 1297 1298 if (AR_SREV_9280_10_OR_LATER(ah)) 1299 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1300 1301 if (!AR_SREV_9300_20_OR_LATER(ah)) 1302 ar9002_hw_enable_async_fifo(ah); 1303 1304 r = ath9k_hw_process_ini(ah, chan); 1305 if (r) 1306 return r; 1307 1308 /* Setup MFP options for CCMP */ 1309 if (AR_SREV_9280_20_OR_LATER(ah)) { 1310 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1311 * frames when constructing CCMP AAD. */ 1312 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1313 0xc7ff); 1314 ah->sw_mgmt_crypto = false; 1315 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1316 /* Disable hardware crypto for management frames */ 1317 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1318 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1319 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1320 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1321 ah->sw_mgmt_crypto = true; 1322 } else 1323 ah->sw_mgmt_crypto = true; 1324 1325 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1326 ath9k_hw_set_delta_slope(ah, chan); 1327 1328 ath9k_hw_spur_mitigate_freq(ah, chan); 1329 ah->eep_ops->set_board_values(ah, chan); 1330 1331 ath9k_hw_set_operating_mode(ah, ah->opmode); 1332 1333 ENABLE_REGWRITE_BUFFER(ah); 1334 1335 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); 1336 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) 1337 | macStaId1 1338 | AR_STA_ID1_RTS_USE_DEF 1339 | (ah->config. 1340 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 1341 | ah->sta_id1_defaults); 1342 ath_hw_setbssidmask(common); 1343 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1344 ath9k_hw_write_associd(ah); 1345 REG_WRITE(ah, AR_ISR, ~0); 1346 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1347 1348 REGWRITE_BUFFER_FLUSH(ah); 1349 DISABLE_REGWRITE_BUFFER(ah); 1350 1351 r = ath9k_hw_rf_set_freq(ah, chan); 1352 if (r) 1353 return r; 1354 1355 ENABLE_REGWRITE_BUFFER(ah); 1356 1357 for (i = 0; i < AR_NUM_DCU; i++) 1358 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1359 1360 REGWRITE_BUFFER_FLUSH(ah); 1361 DISABLE_REGWRITE_BUFFER(ah); 1362 1363 ah->intr_txqs = 0; 1364 for (i = 0; i < ah->caps.total_queues; i++) 1365 ath9k_hw_resettxqueue(ah, i); 1366 1367 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1368 ath9k_hw_ani_cache_ini_regs(ah); 1369 ath9k_hw_init_qos(ah); 1370 1371 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1372 ath9k_enable_rfkill(ah); 1373 1374 ath9k_hw_init_global_settings(ah); 1375 1376 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1377 ar9002_hw_update_async_fifo(ah); 1378 ar9002_hw_enable_wep_aggregation(ah); 1379 } 1380 1381 REG_WRITE(ah, AR_STA_ID1, 1382 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 1383 1384 ath9k_hw_set_dma(ah); 1385 1386 REG_WRITE(ah, AR_OBS, 8); 1387 1388 if (ah->config.rx_intr_mitigation) { 1389 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 1390 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 1391 } 1392 1393 if (ah->config.tx_intr_mitigation) { 1394 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1395 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1396 } 1397 1398 ath9k_hw_init_bb(ah, chan); 1399 1400 if (!ath9k_hw_init_cal(ah, chan)) 1401 return -EIO; 1402 1403 ENABLE_REGWRITE_BUFFER(ah); 1404 1405 ath9k_hw_restore_chainmask(ah); 1406 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 1407 1408 REGWRITE_BUFFER_FLUSH(ah); 1409 DISABLE_REGWRITE_BUFFER(ah); 1410 1411 /* 1412 * For big endian systems turn on swapping for descriptors 1413 */ 1414 if (AR_SREV_9100(ah)) { 1415 u32 mask; 1416 mask = REG_READ(ah, AR_CFG); 1417 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1418 ath_print(common, ATH_DBG_RESET, 1419 "CFG Byte Swap Set 0x%x\n", mask); 1420 } else { 1421 mask = 1422 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1423 REG_WRITE(ah, AR_CFG, mask); 1424 ath_print(common, ATH_DBG_RESET, 1425 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); 1426 } 1427 } else { 1428 if (common->bus_ops->ath_bus_type == ATH_USB) { 1429 /* Configure AR9271 target WLAN */ 1430 if (AR_SREV_9271(ah)) 1431 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1432 else 1433 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1434 } 1435#ifdef __BIG_ENDIAN 1436 else 1437 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1438#endif 1439 } 1440 1441 if (ah->btcoex_hw.enabled) 1442 ath9k_hw_btcoex_enable(ah); 1443 1444 if (AR_SREV_9300_20_OR_LATER(ah)) { 1445 ath9k_hw_loadnf(ah, curchan); 1446 ath9k_hw_start_nfcal(ah); 1447 ar9003_hw_bb_watchdog_config(ah); 1448 } 1449 1450 return 0; 1451} 1452EXPORT_SYMBOL(ath9k_hw_reset); 1453 1454/************************/ 1455/* Key Cache Management */ 1456/************************/ 1457 1458bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry) 1459{ 1460 u32 keyType; 1461 1462 if (entry >= ah->caps.keycache_size) { 1463 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, 1464 "keychache entry %u out of range\n", entry); 1465 return false; 1466 } 1467 1468 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); 1469 1470 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); 1471 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); 1472 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); 1473 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); 1474 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); 1475 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); 1476 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); 1477 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); 1478 1479 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { 1480 u16 micentry = entry + 64; 1481 1482 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); 1483 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); 1484 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); 1485 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); 1486 1487 } 1488 1489 return true; 1490} 1491EXPORT_SYMBOL(ath9k_hw_keyreset); 1492 1493bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac) 1494{ 1495 u32 macHi, macLo; 1496 u32 unicast_flag = AR_KEYTABLE_VALID; 1497 1498 if (entry >= ah->caps.keycache_size) { 1499 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, 1500 "keychache entry %u out of range\n", entry); 1501 return false; 1502 } 1503 1504 if (mac != NULL) { 1505 /* 1506 * AR_KEYTABLE_VALID indicates that the address is a unicast 1507 * address, which must match the transmitter address for 1508 * decrypting frames. 1509 * Not setting this bit allows the hardware to use the key 1510 * for multicast frame decryption. 1511 */ 1512 if (mac[0] & 0x01) 1513 unicast_flag = 0; 1514 1515 macHi = (mac[5] << 8) | mac[4]; 1516 macLo = (mac[3] << 24) | 1517 (mac[2] << 16) | 1518 (mac[1] << 8) | 1519 mac[0]; 1520 macLo >>= 1; 1521 macLo |= (macHi & 1) << 31; 1522 macHi >>= 1; 1523 } else { 1524 macLo = macHi = 0; 1525 } 1526 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); 1527 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag); 1528 1529 return true; 1530} 1531EXPORT_SYMBOL(ath9k_hw_keysetmac); 1532 1533bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry, 1534 const struct ath9k_keyval *k, 1535 const u8 *mac) 1536{ 1537 const struct ath9k_hw_capabilities *pCap = &ah->caps; 1538 struct ath_common *common = ath9k_hw_common(ah); 1539 u32 key0, key1, key2, key3, key4; 1540 u32 keyType; 1541 1542 if (entry >= pCap->keycache_size) { 1543 ath_print(common, ATH_DBG_FATAL, 1544 "keycache entry %u out of range\n", entry); 1545 return false; 1546 } 1547 1548 switch (k->kv_type) { 1549 case ATH9K_CIPHER_AES_OCB: 1550 keyType = AR_KEYTABLE_TYPE_AES; 1551 break; 1552 case ATH9K_CIPHER_AES_CCM: 1553 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) { 1554 ath_print(common, ATH_DBG_ANY, 1555 "AES-CCM not supported by mac rev 0x%x\n", 1556 ah->hw_version.macRev); 1557 return false; 1558 } 1559 keyType = AR_KEYTABLE_TYPE_CCM; 1560 break; 1561 case ATH9K_CIPHER_TKIP: 1562 keyType = AR_KEYTABLE_TYPE_TKIP; 1563 if (ATH9K_IS_MIC_ENABLED(ah) 1564 && entry + 64 >= pCap->keycache_size) { 1565 ath_print(common, ATH_DBG_ANY, 1566 "entry %u inappropriate for TKIP\n", entry); 1567 return false; 1568 } 1569 break; 1570 case ATH9K_CIPHER_WEP: 1571 if (k->kv_len < WLAN_KEY_LEN_WEP40) { 1572 ath_print(common, ATH_DBG_ANY, 1573 "WEP key length %u too small\n", k->kv_len); 1574 return false; 1575 } 1576 if (k->kv_len <= WLAN_KEY_LEN_WEP40) 1577 keyType = AR_KEYTABLE_TYPE_40; 1578 else if (k->kv_len <= WLAN_KEY_LEN_WEP104) 1579 keyType = AR_KEYTABLE_TYPE_104; 1580 else 1581 keyType = AR_KEYTABLE_TYPE_128; 1582 break; 1583 case ATH9K_CIPHER_CLR: 1584 keyType = AR_KEYTABLE_TYPE_CLR; 1585 break; 1586 default: 1587 ath_print(common, ATH_DBG_FATAL, 1588 "cipher %u not supported\n", k->kv_type); 1589 return false; 1590 } 1591 1592 key0 = get_unaligned_le32(k->kv_val + 0); 1593 key1 = get_unaligned_le16(k->kv_val + 4); 1594 key2 = get_unaligned_le32(k->kv_val + 6); 1595 key3 = get_unaligned_le16(k->kv_val + 10); 1596 key4 = get_unaligned_le32(k->kv_val + 12); 1597 if (k->kv_len <= WLAN_KEY_LEN_WEP104) 1598 key4 &= 0xff; 1599 1600 /* 1601 * Note: Key cache registers access special memory area that requires 1602 * two 32-bit writes to actually update the values in the internal 1603 * memory. Consequently, the exact order and pairs used here must be 1604 * maintained. 1605 */ 1606 1607 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { 1608 u16 micentry = entry + 64; 1609 1610 /* 1611 * Write inverted key[47:0] first to avoid Michael MIC errors 1612 * on frames that could be sent or received at the same time. 1613 * The correct key will be written in the end once everything 1614 * else is ready. 1615 */ 1616 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); 1617 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); 1618 1619 /* Write key[95:48] */ 1620 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); 1621 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); 1622 1623 /* Write key[127:96] and key type */ 1624 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); 1625 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); 1626 1627 /* Write MAC address for the entry */ 1628 (void) ath9k_hw_keysetmac(ah, entry, mac); 1629 1630 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) { 1631 /* 1632 * TKIP uses two key cache entries: 1633 * Michael MIC TX/RX keys in the same key cache entry 1634 * (idx = main index + 64): 1635 * key0 [31:0] = RX key [31:0] 1636 * key1 [15:0] = TX key [31:16] 1637 * key1 [31:16] = reserved 1638 * key2 [31:0] = RX key [63:32] 1639 * key3 [15:0] = TX key [15:0] 1640 * key3 [31:16] = reserved 1641 * key4 [31:0] = TX key [63:32] 1642 */ 1643 u32 mic0, mic1, mic2, mic3, mic4; 1644 1645 mic0 = get_unaligned_le32(k->kv_mic + 0); 1646 mic2 = get_unaligned_le32(k->kv_mic + 4); 1647 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; 1648 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; 1649 mic4 = get_unaligned_le32(k->kv_txmic + 4); 1650 1651 /* Write RX[31:0] and TX[31:16] */ 1652 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); 1653 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); 1654 1655 /* Write RX[63:32] and TX[15:0] */ 1656 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); 1657 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); 1658 1659 /* Write TX[63:32] and keyType(reserved) */ 1660 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); 1661 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), 1662 AR_KEYTABLE_TYPE_CLR); 1663 1664 } else { 1665 /* 1666 * TKIP uses four key cache entries (two for group 1667 * keys): 1668 * Michael MIC TX/RX keys are in different key cache 1669 * entries (idx = main index + 64 for TX and 1670 * main index + 32 + 96 for RX): 1671 * key0 [31:0] = TX/RX MIC key [31:0] 1672 * key1 [31:0] = reserved 1673 * key2 [31:0] = TX/RX MIC key [63:32] 1674 * key3 [31:0] = reserved 1675 * key4 [31:0] = reserved 1676 * 1677 * Upper layer code will call this function separately 1678 * for TX and RX keys when these registers offsets are 1679 * used. 1680 */ 1681 u32 mic0, mic2; 1682 1683 mic0 = get_unaligned_le32(k->kv_mic + 0); 1684 mic2 = get_unaligned_le32(k->kv_mic + 4); 1685 1686 /* Write MIC key[31:0] */ 1687 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); 1688 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); 1689 1690 /* Write MIC key[63:32] */ 1691 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); 1692 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); 1693 1694 /* Write TX[63:32] and keyType(reserved) */ 1695 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); 1696 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), 1697 AR_KEYTABLE_TYPE_CLR); 1698 } 1699 1700 /* MAC address registers are reserved for the MIC entry */ 1701 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); 1702 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); 1703 1704 /* 1705 * Write the correct (un-inverted) key[47:0] last to enable 1706 * TKIP now that all other registers are set with correct 1707 * values. 1708 */ 1709 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); 1710 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); 1711 } else { 1712 /* Write key[47:0] */ 1713 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); 1714 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); 1715 1716 /* Write key[95:48] */ 1717 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); 1718 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); 1719 1720 /* Write key[127:96] and key type */ 1721 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); 1722 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); 1723 1724 /* Write MAC address for the entry */ 1725 (void) ath9k_hw_keysetmac(ah, entry, mac); 1726 } 1727 1728 return true; 1729} 1730EXPORT_SYMBOL(ath9k_hw_set_keycache_entry); 1731 1732bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry) 1733{ 1734 if (entry < ah->caps.keycache_size) { 1735 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry)); 1736 if (val & AR_KEYTABLE_VALID) 1737 return true; 1738 } 1739 return false; 1740} 1741EXPORT_SYMBOL(ath9k_hw_keyisvalid); 1742 1743/******************************/ 1744/* Power Management (Chipset) */ 1745/******************************/ 1746 1747/* 1748 * Notify Power Mgt is disabled in self-generated frames. 1749 * If requested, force chip to sleep. 1750 */ 1751static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) 1752{ 1753 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1754 if (setChip) { 1755 /* 1756 * Clear the RTC force wake bit to allow the 1757 * mac to go to sleep. 1758 */ 1759 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1760 AR_RTC_FORCE_WAKE_EN); 1761 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1762 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 1763 1764 /* Shutdown chip. Active low */ 1765 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) 1766 REG_CLR_BIT(ah, (AR_RTC_RESET), 1767 AR_RTC_RESET_EN); 1768 } 1769} 1770 1771/* 1772 * Notify Power Management is enabled in self-generating 1773 * frames. If request, set power mode of chip to 1774 * auto/normal. Duration in units of 128us (1/8 TU). 1775 */ 1776static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) 1777{ 1778 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1779 if (setChip) { 1780 struct ath9k_hw_capabilities *pCap = &ah->caps; 1781 1782 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 1783 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 1784 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1785 AR_RTC_FORCE_WAKE_ON_INT); 1786 } else { 1787 /* 1788 * Clear the RTC force wake bit to allow the 1789 * mac to go to sleep. 1790 */ 1791 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 1792 AR_RTC_FORCE_WAKE_EN); 1793 } 1794 } 1795} 1796 1797static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) 1798{ 1799 u32 val; 1800 int i; 1801 1802 if (setChip) { 1803 if ((REG_READ(ah, AR_RTC_STATUS) & 1804 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 1805 if (ath9k_hw_set_reset_reg(ah, 1806 ATH9K_RESET_POWER_ON) != true) { 1807 return false; 1808 } 1809 if (!AR_SREV_9300_20_OR_LATER(ah)) 1810 ath9k_hw_init_pll(ah, NULL); 1811 } 1812 if (AR_SREV_9100(ah)) 1813 REG_SET_BIT(ah, AR_RTC_RESET, 1814 AR_RTC_RESET_EN); 1815 1816 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1817 AR_RTC_FORCE_WAKE_EN); 1818 udelay(50); 1819 1820 for (i = POWER_UP_TIME / 50; i > 0; i--) { 1821 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 1822 if (val == AR_RTC_STATUS_ON) 1823 break; 1824 udelay(50); 1825 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 1826 AR_RTC_FORCE_WAKE_EN); 1827 } 1828 if (i == 0) { 1829 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, 1830 "Failed to wakeup in %uus\n", 1831 POWER_UP_TIME / 20); 1832 return false; 1833 } 1834 } 1835 1836 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1837 1838 return true; 1839} 1840 1841bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 1842{ 1843 struct ath_common *common = ath9k_hw_common(ah); 1844 int status = true, setChip = true; 1845 static const char *modes[] = { 1846 "AWAKE", 1847 "FULL-SLEEP", 1848 "NETWORK SLEEP", 1849 "UNDEFINED" 1850 }; 1851 1852 if (ah->power_mode == mode) 1853 return status; 1854 1855 ath_print(common, ATH_DBG_RESET, "%s -> %s\n", 1856 modes[ah->power_mode], modes[mode]); 1857 1858 switch (mode) { 1859 case ATH9K_PM_AWAKE: 1860 status = ath9k_hw_set_power_awake(ah, setChip); 1861 break; 1862 case ATH9K_PM_FULL_SLEEP: 1863 ath9k_set_power_sleep(ah, setChip); 1864 ah->chip_fullsleep = true; 1865 break; 1866 case ATH9K_PM_NETWORK_SLEEP: 1867 ath9k_set_power_network_sleep(ah, setChip); 1868 break; 1869 default: 1870 ath_print(common, ATH_DBG_FATAL, 1871 "Unknown power mode %u\n", mode); 1872 return false; 1873 } 1874 ah->power_mode = mode; 1875 1876 return status; 1877} 1878EXPORT_SYMBOL(ath9k_hw_setpower); 1879 1880/*******************/ 1881/* Beacon Handling */ 1882/*******************/ 1883 1884void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 1885{ 1886 int flags = 0; 1887 1888 ah->beacon_interval = beacon_period; 1889 1890 ENABLE_REGWRITE_BUFFER(ah); 1891 1892 switch (ah->opmode) { 1893 case NL80211_IFTYPE_STATION: 1894 case NL80211_IFTYPE_MONITOR: 1895 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); 1896 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); 1897 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); 1898 flags |= AR_TBTT_TIMER_EN; 1899 break; 1900 case NL80211_IFTYPE_ADHOC: 1901 case NL80211_IFTYPE_MESH_POINT: 1902 REG_SET_BIT(ah, AR_TXCFG, 1903 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 1904 REG_WRITE(ah, AR_NEXT_NDP_TIMER, 1905 TU_TO_USEC(next_beacon + 1906 (ah->atim_window ? ah-> 1907 atim_window : 1))); 1908 flags |= AR_NDP_TIMER_EN; 1909 case NL80211_IFTYPE_AP: 1910 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); 1911 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 1912 TU_TO_USEC(next_beacon - 1913 ah->config. 1914 dma_beacon_response_time)); 1915 REG_WRITE(ah, AR_NEXT_SWBA, 1916 TU_TO_USEC(next_beacon - 1917 ah->config. 1918 sw_beacon_response_time)); 1919 flags |= 1920 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 1921 break; 1922 default: 1923 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON, 1924 "%s: unsupported opmode: %d\n", 1925 __func__, ah->opmode); 1926 return; 1927 break; 1928 } 1929 1930 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); 1931 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); 1932 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); 1933 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); 1934 1935 REGWRITE_BUFFER_FLUSH(ah); 1936 DISABLE_REGWRITE_BUFFER(ah); 1937 1938 beacon_period &= ~ATH9K_BEACON_ENA; 1939 if (beacon_period & ATH9K_BEACON_RESET_TSF) { 1940 ath9k_hw_reset_tsf(ah); 1941 } 1942 1943 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 1944} 1945EXPORT_SYMBOL(ath9k_hw_beaconinit); 1946 1947void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 1948 const struct ath9k_beacon_state *bs) 1949{ 1950 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 1951 struct ath9k_hw_capabilities *pCap = &ah->caps; 1952 struct ath_common *common = ath9k_hw_common(ah); 1953 1954 ENABLE_REGWRITE_BUFFER(ah); 1955 1956 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 1957 1958 REG_WRITE(ah, AR_BEACON_PERIOD, 1959 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); 1960 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 1961 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); 1962 1963 REGWRITE_BUFFER_FLUSH(ah); 1964 DISABLE_REGWRITE_BUFFER(ah); 1965 1966 REG_RMW_FIELD(ah, AR_RSSI_THR, 1967 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 1968 1969 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; 1970 1971 if (bs->bs_sleepduration > beaconintval) 1972 beaconintval = bs->bs_sleepduration; 1973 1974 dtimperiod = bs->bs_dtimperiod; 1975 if (bs->bs_sleepduration > dtimperiod) 1976 dtimperiod = bs->bs_sleepduration; 1977 1978 if (beaconintval == dtimperiod) 1979 nextTbtt = bs->bs_nextdtim; 1980 else 1981 nextTbtt = bs->bs_nexttbtt; 1982 1983 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); 1984 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); 1985 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); 1986 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); 1987 1988 ENABLE_REGWRITE_BUFFER(ah); 1989 1990 REG_WRITE(ah, AR_NEXT_DTIM, 1991 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 1992 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 1993 1994 REG_WRITE(ah, AR_SLEEP1, 1995 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 1996 | AR_SLEEP1_ASSUME_DTIM); 1997 1998 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 1999 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2000 else 2001 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2002 2003 REG_WRITE(ah, AR_SLEEP2, 2004 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2005 2006 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 2007 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 2008 2009 REGWRITE_BUFFER_FLUSH(ah); 2010 DISABLE_REGWRITE_BUFFER(ah); 2011 2012 REG_SET_BIT(ah, AR_TIMER_MODE, 2013 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2014 AR_DTIM_TIMER_EN); 2015 2016 /* TSF Out of Range Threshold */ 2017 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2018} 2019EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2020 2021/*******************/ 2022/* HW Capabilities */ 2023/*******************/ 2024 2025int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2026{ 2027 struct ath9k_hw_capabilities *pCap = &ah->caps; 2028 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2029 struct ath_common *common = ath9k_hw_common(ah); 2030 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw; 2031 2032 u16 capField = 0, eeval; 2033 2034 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2035 regulatory->current_rd = eeval; 2036 2037 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); 2038 if (AR_SREV_9285_10_OR_LATER(ah)) 2039 eeval |= AR9285_RDEXT_DEFAULT; 2040 regulatory->current_rd_ext = eeval; 2041 2042 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); 2043 2044 if (ah->opmode != NL80211_IFTYPE_AP && 2045 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2046 if (regulatory->current_rd == 0x64 || 2047 regulatory->current_rd == 0x65) 2048 regulatory->current_rd += 5; 2049 else if (regulatory->current_rd == 0x41) 2050 regulatory->current_rd = 0x43; 2051 ath_print(common, ATH_DBG_REGULATORY, 2052 "regdomain mapped to 0x%x\n", regulatory->current_rd); 2053 } 2054 2055 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2056 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 2057 ath_print(common, ATH_DBG_FATAL, 2058 "no band has been marked as supported in EEPROM.\n"); 2059 return -EINVAL; 2060 } 2061 2062 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX); 2063 2064 if (eeval & AR5416_OPFLAGS_11A) { 2065 set_bit(ATH9K_MODE_11A, pCap->wireless_modes); 2066 if (ah->config.ht_enable) { 2067 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20)) 2068 set_bit(ATH9K_MODE_11NA_HT20, 2069 pCap->wireless_modes); 2070 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) { 2071 set_bit(ATH9K_MODE_11NA_HT40PLUS, 2072 pCap->wireless_modes); 2073 set_bit(ATH9K_MODE_11NA_HT40MINUS, 2074 pCap->wireless_modes); 2075 } 2076 } 2077 } 2078 2079 if (eeval & AR5416_OPFLAGS_11G) { 2080 set_bit(ATH9K_MODE_11G, pCap->wireless_modes); 2081 if (ah->config.ht_enable) { 2082 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20)) 2083 set_bit(ATH9K_MODE_11NG_HT20, 2084 pCap->wireless_modes); 2085 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) { 2086 set_bit(ATH9K_MODE_11NG_HT40PLUS, 2087 pCap->wireless_modes); 2088 set_bit(ATH9K_MODE_11NG_HT40MINUS, 2089 pCap->wireless_modes); 2090 } 2091 } 2092 } 2093 2094 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2095 /* 2096 * For AR9271 we will temporarilly uses the rx chainmax as read from 2097 * the EEPROM. 2098 */ 2099 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2100 !(eeval & AR5416_OPFLAGS_11A) && 2101 !(AR_SREV_9271(ah))) 2102 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2103 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2104 else 2105 /* Use rx_chainmask from EEPROM. */ 2106 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2107 2108 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0))) 2109 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2110 2111 pCap->low_2ghz_chan = 2312; 2112 pCap->high_2ghz_chan = 2732; 2113 2114 pCap->low_5ghz_chan = 4920; 2115 pCap->high_5ghz_chan = 6100; 2116 2117 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP; 2118 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP; 2119 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM; 2120 2121 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP; 2122 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP; 2123 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM; 2124 2125 if (ah->config.ht_enable) 2126 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2127 else 2128 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2129 2130 pCap->hw_caps |= ATH9K_HW_CAP_GTT; 2131 pCap->hw_caps |= ATH9K_HW_CAP_VEOL; 2132 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK; 2133 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH; 2134 2135 if (capField & AR_EEPROM_EEPCAP_MAXQCU) 2136 pCap->total_queues = 2137 MS(capField, AR_EEPROM_EEPCAP_MAXQCU); 2138 else 2139 pCap->total_queues = ATH9K_NUM_TX_QUEUES; 2140 2141 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) 2142 pCap->keycache_size = 2143 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); 2144 else 2145 pCap->keycache_size = AR_KEYTABLE_SIZE; 2146 2147 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC; 2148 2149 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 2150 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1; 2151 else 2152 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; 2153 2154 if (AR_SREV_9271(ah)) 2155 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2156 else if (AR_SREV_9285_10_OR_LATER(ah)) 2157 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2158 else if (AR_SREV_9280_10_OR_LATER(ah)) 2159 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2160 else 2161 pCap->num_gpio_pins = AR_NUM_GPIO; 2162 2163 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { 2164 pCap->hw_caps |= ATH9K_HW_CAP_CST; 2165 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2166 } else { 2167 pCap->rts_aggr_limit = (8 * 1024); 2168 } 2169 2170 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; 2171 2172#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 2173 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2174 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2175 ah->rfkill_gpio = 2176 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2177 ah->rfkill_polarity = 2178 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2179 2180 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2181 } 2182#endif 2183 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2184 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2185 else 2186 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2187 2188 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2189 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2190 else 2191 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2192 2193 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { 2194 pCap->reg_cap = 2195 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | 2196 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | 2197 AR_EEPROM_EEREGCAP_EN_KK_U2 | 2198 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; 2199 } else { 2200 pCap->reg_cap = 2201 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | 2202 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; 2203 } 2204 2205 /* Advertise midband for AR5416 with FCC midband set in eeprom */ 2206 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) && 2207 AR_SREV_5416(ah)) 2208 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; 2209 2210 pCap->num_antcfg_5ghz = 2211 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ); 2212 pCap->num_antcfg_2ghz = 2213 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ); 2214 2215 if (AR_SREV_9280_10_OR_LATER(ah) && 2216 ath9k_hw_btcoex_supported(ah)) { 2217 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO; 2218 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO; 2219 2220 if (AR_SREV_9285(ah)) { 2221 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; 2222 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO; 2223 } else { 2224 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE; 2225 } 2226 } else { 2227 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE; 2228 } 2229 2230 if (AR_SREV_9300_20_OR_LATER(ah)) { 2231 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC | 2232 ATH9K_HW_CAP_FASTCLOCK; 2233 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2234 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2235 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2236 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2237 pCap->txs_len = sizeof(struct ar9003_txs); 2238 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2239 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2240 } else { 2241 pCap->tx_desc_len = sizeof(struct ath_desc); 2242 if (AR_SREV_9280_20(ah) && 2243 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <= 2244 AR5416_EEP_MINOR_VER_16) || 2245 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G))) 2246 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2247 } 2248 2249 if (AR_SREV_9300_20_OR_LATER(ah)) 2250 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2251 2252 if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah)) 2253 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2254 2255 return 0; 2256} 2257 2258bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type, 2259 u32 capability, u32 *result) 2260{ 2261 switch (type) { 2262 case ATH9K_CAP_TKIP_MIC: 2263 switch (capability) { 2264 case 0: 2265 return true; 2266 case 1: 2267 return (ah->sta_id1_defaults & 2268 AR_STA_ID1_CRPT_MIC_ENABLE) ? true : 2269 false; 2270 } 2271 case ATH9K_CAP_TKIP_SPLIT: 2272 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ? 2273 false : true; 2274 case ATH9K_CAP_MCAST_KEYSRCH: 2275 switch (capability) { 2276 case 0: 2277 return true; 2278 case 1: 2279 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { 2280 return false; 2281 } else { 2282 return (ah->sta_id1_defaults & 2283 AR_STA_ID1_MCAST_KSRCH) ? true : 2284 false; 2285 } 2286 } 2287 return false; 2288 case ATH9K_CAP_DS: 2289 return (AR_SREV_9280_20_OR_LATER(ah) && 2290 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1)) 2291 ? false : true; 2292 default: 2293 return false; 2294 } 2295} 2296EXPORT_SYMBOL(ath9k_hw_getcapability); 2297 2298bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type, 2299 u32 capability, u32 setting, int *status) 2300{ 2301 switch (type) { 2302 case ATH9K_CAP_TKIP_MIC: 2303 if (setting) 2304 ah->sta_id1_defaults |= 2305 AR_STA_ID1_CRPT_MIC_ENABLE; 2306 else 2307 ah->sta_id1_defaults &= 2308 ~AR_STA_ID1_CRPT_MIC_ENABLE; 2309 return true; 2310 case ATH9K_CAP_MCAST_KEYSRCH: 2311 if (setting) 2312 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH; 2313 else 2314 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH; 2315 return true; 2316 default: 2317 return false; 2318 } 2319} 2320EXPORT_SYMBOL(ath9k_hw_setcapability); 2321 2322/****************************/ 2323/* GPIO / RFKILL / Antennae */ 2324/****************************/ 2325 2326static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2327 u32 gpio, u32 type) 2328{ 2329 int addr; 2330 u32 gpio_shift, tmp; 2331 2332 if (gpio > 11) 2333 addr = AR_GPIO_OUTPUT_MUX3; 2334 else if (gpio > 5) 2335 addr = AR_GPIO_OUTPUT_MUX2; 2336 else 2337 addr = AR_GPIO_OUTPUT_MUX1; 2338 2339 gpio_shift = (gpio % 6) * 5; 2340 2341 if (AR_SREV_9280_20_OR_LATER(ah) 2342 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2343 REG_RMW(ah, addr, (type << gpio_shift), 2344 (0x1f << gpio_shift)); 2345 } else { 2346 tmp = REG_READ(ah, addr); 2347 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2348 tmp &= ~(0x1f << gpio_shift); 2349 tmp |= (type << gpio_shift); 2350 REG_WRITE(ah, addr, tmp); 2351 } 2352} 2353 2354void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2355{ 2356 u32 gpio_shift; 2357 2358 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2359 2360 gpio_shift = gpio << 1; 2361 2362 REG_RMW(ah, 2363 AR_GPIO_OE_OUT, 2364 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2365 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2366} 2367EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2368 2369u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2370{ 2371#define MS_REG_READ(x, y) \ 2372 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2373 2374 if (gpio >= ah->caps.num_gpio_pins) 2375 return 0xffffffff; 2376 2377 if (AR_SREV_9300_20_OR_LATER(ah)) 2378 return MS_REG_READ(AR9300, gpio) != 0; 2379 else if (AR_SREV_9271(ah)) 2380 return MS_REG_READ(AR9271, gpio) != 0; 2381 else if (AR_SREV_9287_10_OR_LATER(ah)) 2382 return MS_REG_READ(AR9287, gpio) != 0; 2383 else if (AR_SREV_9285_10_OR_LATER(ah)) 2384 return MS_REG_READ(AR9285, gpio) != 0; 2385 else if (AR_SREV_9280_10_OR_LATER(ah)) 2386 return MS_REG_READ(AR928X, gpio) != 0; 2387 else 2388 return MS_REG_READ(AR, gpio) != 0; 2389} 2390EXPORT_SYMBOL(ath9k_hw_gpio_get); 2391 2392void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2393 u32 ah_signal_type) 2394{ 2395 u32 gpio_shift; 2396 2397 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2398 2399 gpio_shift = 2 * gpio; 2400 2401 REG_RMW(ah, 2402 AR_GPIO_OE_OUT, 2403 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2404 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2405} 2406EXPORT_SYMBOL(ath9k_hw_cfg_output); 2407 2408void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2409{ 2410 if (AR_SREV_9271(ah)) 2411 val = ~val; 2412 2413 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2414 AR_GPIO_BIT(gpio)); 2415} 2416EXPORT_SYMBOL(ath9k_hw_set_gpio); 2417 2418u32 ath9k_hw_getdefantenna(struct ath_hw *ah) 2419{ 2420 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; 2421} 2422EXPORT_SYMBOL(ath9k_hw_getdefantenna); 2423 2424void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2425{ 2426 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2427} 2428EXPORT_SYMBOL(ath9k_hw_setantenna); 2429 2430/*********************/ 2431/* General Operation */ 2432/*********************/ 2433 2434u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2435{ 2436 u32 bits = REG_READ(ah, AR_RX_FILTER); 2437 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2438 2439 if (phybits & AR_PHY_ERR_RADAR) 2440 bits |= ATH9K_RX_FILTER_PHYRADAR; 2441 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2442 bits |= ATH9K_RX_FILTER_PHYERR; 2443 2444 return bits; 2445} 2446EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2447 2448void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2449{ 2450 u32 phybits; 2451 2452 ENABLE_REGWRITE_BUFFER(ah); 2453 2454 REG_WRITE(ah, AR_RX_FILTER, bits); 2455 2456 phybits = 0; 2457 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2458 phybits |= AR_PHY_ERR_RADAR; 2459 if (bits & ATH9K_RX_FILTER_PHYERR) 2460 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2461 REG_WRITE(ah, AR_PHY_ERR, phybits); 2462 2463 if (phybits) 2464 REG_WRITE(ah, AR_RXCFG, 2465 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); 2466 else 2467 REG_WRITE(ah, AR_RXCFG, 2468 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); 2469 2470 REGWRITE_BUFFER_FLUSH(ah); 2471 DISABLE_REGWRITE_BUFFER(ah); 2472} 2473EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2474 2475bool ath9k_hw_phy_disable(struct ath_hw *ah) 2476{ 2477 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2478 return false; 2479 2480 ath9k_hw_init_pll(ah, NULL); 2481 return true; 2482} 2483EXPORT_SYMBOL(ath9k_hw_phy_disable); 2484 2485bool ath9k_hw_disable(struct ath_hw *ah) 2486{ 2487 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2488 return false; 2489 2490 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2491 return false; 2492 2493 ath9k_hw_init_pll(ah, NULL); 2494 return true; 2495} 2496EXPORT_SYMBOL(ath9k_hw_disable); 2497 2498void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit) 2499{ 2500 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2501 struct ath9k_channel *chan = ah->curchan; 2502 struct ieee80211_channel *channel = chan->chan; 2503 2504 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER); 2505 2506 ah->eep_ops->set_txpower(ah, chan, 2507 ath9k_regd_get_ctl(regulatory, chan), 2508 channel->max_antenna_gain * 2, 2509 channel->max_power * 2, 2510 min((u32) MAX_RATE_POWER, 2511 (u32) regulatory->power_limit)); 2512} 2513EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2514 2515void ath9k_hw_setopmode(struct ath_hw *ah) 2516{ 2517 ath9k_hw_set_operating_mode(ah, ah->opmode); 2518} 2519EXPORT_SYMBOL(ath9k_hw_setopmode); 2520 2521void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2522{ 2523 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2524 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2525} 2526EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2527 2528void ath9k_hw_write_associd(struct ath_hw *ah) 2529{ 2530 struct ath_common *common = ath9k_hw_common(ah); 2531 2532 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2533 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2534 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2535} 2536EXPORT_SYMBOL(ath9k_hw_write_associd); 2537 2538#define ATH9K_MAX_TSF_READ 10 2539 2540u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2541{ 2542 u32 tsf_lower, tsf_upper1, tsf_upper2; 2543 int i; 2544 2545 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2546 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2547 tsf_lower = REG_READ(ah, AR_TSF_L32); 2548 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2549 if (tsf_upper2 == tsf_upper1) 2550 break; 2551 tsf_upper1 = tsf_upper2; 2552 } 2553 2554 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2555 2556 return (((u64)tsf_upper1 << 32) | tsf_lower); 2557} 2558EXPORT_SYMBOL(ath9k_hw_gettsf64); 2559 2560void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2561{ 2562 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2563 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2564} 2565EXPORT_SYMBOL(ath9k_hw_settsf64); 2566 2567void ath9k_hw_reset_tsf(struct ath_hw *ah) 2568{ 2569 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2570 AH_TSF_WRITE_TIMEOUT)) 2571 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, 2572 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2573 2574 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2575} 2576EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2577 2578void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) 2579{ 2580 if (setting) 2581 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2582 else 2583 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2584} 2585EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2586 2587void ath9k_hw_set11nmac2040(struct ath_hw *ah) 2588{ 2589 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 2590 u32 macmode; 2591 2592 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) 2593 macmode = AR_2040_JOINED_RX_CLEAR; 2594 else 2595 macmode = 0; 2596 2597 REG_WRITE(ah, AR_2040_MODE, macmode); 2598} 2599 2600/* HW Generic timers configuration */ 2601 2602static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2603{ 2604 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2605 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2606 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2607 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2608 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2609 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2610 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2611 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2612 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2613 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2614 AR_NDP2_TIMER_MODE, 0x0002}, 2615 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2616 AR_NDP2_TIMER_MODE, 0x0004}, 2617 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2618 AR_NDP2_TIMER_MODE, 0x0008}, 2619 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2620 AR_NDP2_TIMER_MODE, 0x0010}, 2621 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2622 AR_NDP2_TIMER_MODE, 0x0020}, 2623 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2624 AR_NDP2_TIMER_MODE, 0x0040}, 2625 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2626 AR_NDP2_TIMER_MODE, 0x0080} 2627}; 2628 2629/* HW generic timer primitives */ 2630 2631/* compute and clear index of rightmost 1 */ 2632static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) 2633{ 2634 u32 b; 2635 2636 b = *mask; 2637 b &= (0-b); 2638 *mask &= ~b; 2639 b *= debruijn32; 2640 b >>= 27; 2641 2642 return timer_table->gen_timer_index[b]; 2643} 2644 2645u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2646{ 2647 return REG_READ(ah, AR_TSF_L32); 2648} 2649EXPORT_SYMBOL(ath9k_hw_gettsf32); 2650 2651struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 2652 void (*trigger)(void *), 2653 void (*overflow)(void *), 2654 void *arg, 2655 u8 timer_index) 2656{ 2657 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2658 struct ath_gen_timer *timer; 2659 2660 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 2661 2662 if (timer == NULL) { 2663 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, 2664 "Failed to allocate memory" 2665 "for hw timer[%d]\n", timer_index); 2666 return NULL; 2667 } 2668 2669 /* allocate a hardware generic timer slot */ 2670 timer_table->timers[timer_index] = timer; 2671 timer->index = timer_index; 2672 timer->trigger = trigger; 2673 timer->overflow = overflow; 2674 timer->arg = arg; 2675 2676 return timer; 2677} 2678EXPORT_SYMBOL(ath_gen_timer_alloc); 2679 2680void ath9k_hw_gen_timer_start(struct ath_hw *ah, 2681 struct ath_gen_timer *timer, 2682 u32 timer_next, 2683 u32 timer_period) 2684{ 2685 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2686 u32 tsf; 2687 2688 BUG_ON(!timer_period); 2689 2690 set_bit(timer->index, &timer_table->timer_mask.timer_bits); 2691 2692 tsf = ath9k_hw_gettsf32(ah); 2693 2694 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER, 2695 "curent tsf %x period %x" 2696 "timer_next %x\n", tsf, timer_period, timer_next); 2697 2698 /* 2699 * Pull timer_next forward if the current TSF already passed it 2700 * because of software latency 2701 */ 2702 if (timer_next < tsf) 2703 timer_next = tsf + timer_period; 2704 2705 /* 2706 * Program generic timer registers 2707 */ 2708 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 2709 timer_next); 2710 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 2711 timer_period); 2712 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2713 gen_tmr_configuration[timer->index].mode_mask); 2714 2715 /* Enable both trigger and thresh interrupt masks */ 2716 REG_SET_BIT(ah, AR_IMR_S5, 2717 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2718 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2719} 2720EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 2721 2722void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 2723{ 2724 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2725 2726 if ((timer->index < AR_FIRST_NDP_TIMER) || 2727 (timer->index >= ATH_MAX_GEN_TIMER)) { 2728 return; 2729 } 2730 2731 /* Clear generic timer enable bits. */ 2732 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2733 gen_tmr_configuration[timer->index].mode_mask); 2734 2735 /* Disable both trigger and thresh interrupt masks */ 2736 REG_CLR_BIT(ah, AR_IMR_S5, 2737 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2738 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2739 2740 clear_bit(timer->index, &timer_table->timer_mask.timer_bits); 2741} 2742EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 2743 2744void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 2745{ 2746 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2747 2748 /* free the hardware generic timer slot */ 2749 timer_table->timers[timer->index] = NULL; 2750 kfree(timer); 2751} 2752EXPORT_SYMBOL(ath_gen_timer_free); 2753 2754/* 2755 * Generic Timer Interrupts handling 2756 */ 2757void ath_gen_timer_isr(struct ath_hw *ah) 2758{ 2759 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2760 struct ath_gen_timer *timer; 2761 struct ath_common *common = ath9k_hw_common(ah); 2762 u32 trigger_mask, thresh_mask, index; 2763 2764 /* get hardware generic timer interrupt status */ 2765 trigger_mask = ah->intr_gen_timer_trigger; 2766 thresh_mask = ah->intr_gen_timer_thresh; 2767 trigger_mask &= timer_table->timer_mask.val; 2768 thresh_mask &= timer_table->timer_mask.val; 2769 2770 trigger_mask &= ~thresh_mask; 2771 2772 while (thresh_mask) { 2773 index = rightmost_index(timer_table, &thresh_mask); 2774 timer = timer_table->timers[index]; 2775 BUG_ON(!timer); 2776 ath_print(common, ATH_DBG_HWTIMER, 2777 "TSF overflow for Gen timer %d\n", index); 2778 timer->overflow(timer->arg); 2779 } 2780 2781 while (trigger_mask) { 2782 index = rightmost_index(timer_table, &trigger_mask); 2783 timer = timer_table->timers[index]; 2784 BUG_ON(!timer); 2785 ath_print(common, ATH_DBG_HWTIMER, 2786 "Gen timer[%d] trigger\n", index); 2787 timer->trigger(timer->arg); 2788 } 2789} 2790EXPORT_SYMBOL(ath_gen_timer_isr); 2791 2792/********/ 2793/* HTC */ 2794/********/ 2795 2796void ath9k_hw_htc_resetinit(struct ath_hw *ah) 2797{ 2798 ah->htc_reset_init = true; 2799} 2800EXPORT_SYMBOL(ath9k_hw_htc_resetinit); 2801 2802static struct { 2803 u32 version; 2804 const char * name; 2805} ath_mac_bb_names[] = { 2806 /* Devices with external radios */ 2807 { AR_SREV_VERSION_5416_PCI, "5416" }, 2808 { AR_SREV_VERSION_5416_PCIE, "5418" }, 2809 { AR_SREV_VERSION_9100, "9100" }, 2810 { AR_SREV_VERSION_9160, "9160" }, 2811 /* Single-chip solutions */ 2812 { AR_SREV_VERSION_9280, "9280" }, 2813 { AR_SREV_VERSION_9285, "9285" }, 2814 { AR_SREV_VERSION_9287, "9287" }, 2815 { AR_SREV_VERSION_9271, "9271" }, 2816 { AR_SREV_VERSION_9300, "9300" }, 2817}; 2818 2819/* For devices with external radios */ 2820static struct { 2821 u16 version; 2822 const char * name; 2823} ath_rf_names[] = { 2824 { 0, "5133" }, 2825 { AR_RAD5133_SREV_MAJOR, "5133" }, 2826 { AR_RAD5122_SREV_MAJOR, "5122" }, 2827 { AR_RAD2133_SREV_MAJOR, "2133" }, 2828 { AR_RAD2122_SREV_MAJOR, "2122" } 2829}; 2830 2831/* 2832 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 2833 */ 2834static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 2835{ 2836 int i; 2837 2838 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 2839 if (ath_mac_bb_names[i].version == mac_bb_version) { 2840 return ath_mac_bb_names[i].name; 2841 } 2842 } 2843 2844 return "????"; 2845} 2846 2847/* 2848 * Return the RF name. "????" is returned if the RF is unknown. 2849 * Used for devices with external radios. 2850 */ 2851static const char *ath9k_hw_rf_name(u16 rf_version) 2852{ 2853 int i; 2854 2855 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 2856 if (ath_rf_names[i].version == rf_version) { 2857 return ath_rf_names[i].name; 2858 } 2859 } 2860 2861 return "????"; 2862} 2863 2864void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 2865{ 2866 int used; 2867 2868 /* chipsets >= AR9280 are single-chip */ 2869 if (AR_SREV_9280_10_OR_LATER(ah)) { 2870 used = snprintf(hw_name, len, 2871 "Atheros AR%s Rev:%x", 2872 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 2873 ah->hw_version.macRev); 2874 } 2875 else { 2876 used = snprintf(hw_name, len, 2877 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 2878 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 2879 ah->hw_version.macRev, 2880 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & 2881 AR_RADIO_SREV_MAJOR)), 2882 ah->hw_version.phyRev); 2883 } 2884 2885 hw_name[used] = '\0'; 2886} 2887EXPORT_SYMBOL(ath9k_hw_name); 2888