hw.c revision a3ca95fbe488b9cc6edd4903c609b19ba0365efc
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <asm/unaligned.h>
19#include <linux/pci.h>
20
21#include "ath9k.h"
22#include "initvals.h"
23
24#define ATH9K_CLOCK_RATE_CCK		22
25#define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26#define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27
28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
30			      enum ath9k_ht_macmode macmode);
31static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
32			      struct ar5416_eeprom_def *pEepData,
33			      u32 reg, u32 value);
34static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
36
37/********************/
38/* Helper Functions */
39/********************/
40
41static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
42{
43	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
44
45	if (!ah->curchan) /* should really check for CCK instead */
46		return clks / ATH9K_CLOCK_RATE_CCK;
47	if (conf->channel->band == IEEE80211_BAND_2GHZ)
48		return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
49
50	return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
51}
52
53static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
54{
55	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
56
57	if (conf_is_ht40(conf))
58		return ath9k_hw_mac_usec(ah, clks) / 2;
59	else
60		return ath9k_hw_mac_usec(ah, clks);
61}
62
63static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
64{
65	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
66
67	if (!ah->curchan) /* should really check for CCK instead */
68		return usecs *ATH9K_CLOCK_RATE_CCK;
69	if (conf->channel->band == IEEE80211_BAND_2GHZ)
70		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
71	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
72}
73
74static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
75{
76	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
77
78	if (conf_is_ht40(conf))
79		return ath9k_hw_mac_clks(ah, usecs) * 2;
80	else
81		return ath9k_hw_mac_clks(ah, usecs);
82}
83
84/*
85 * Read and write, they both share the same lock. We do this to serialize
86 * reads and writes on Atheros 802.11n PCI devices only. This is required
87 * as the FIFO on these devices can only accept sanely 2 requests. After
88 * that the device goes bananas. Serializing the reads/writes prevents this
89 * from happening.
90 */
91
92void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
93{
94	if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
95		unsigned long flags;
96		spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
97		iowrite32(val, ah->ah_sc->mem + reg_offset);
98		spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
99	} else
100		iowrite32(val, ah->ah_sc->mem + reg_offset);
101}
102
103unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
104{
105	u32 val;
106	if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
107		unsigned long flags;
108		spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
109		val = ioread32(ah->ah_sc->mem + reg_offset);
110		spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
111	} else
112		val = ioread32(ah->ah_sc->mem + reg_offset);
113	return val;
114}
115
116bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117{
118	int i;
119
120	BUG_ON(timeout < AH_TIME_QUANTUM);
121
122	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123		if ((REG_READ(ah, reg) & mask) == val)
124			return true;
125
126		udelay(AH_TIME_QUANTUM);
127	}
128
129	DPRINTF(ah->ah_sc, ATH_DBG_ANY,
130		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131		timeout, reg, REG_READ(ah, reg), mask, val);
132
133	return false;
134}
135
136u32 ath9k_hw_reverse_bits(u32 val, u32 n)
137{
138	u32 retval;
139	int i;
140
141	for (i = 0, retval = 0; i < n; i++) {
142		retval = (retval << 1) | (val & 1);
143		val >>= 1;
144	}
145	return retval;
146}
147
148bool ath9k_get_channel_edges(struct ath_hw *ah,
149			     u16 flags, u16 *low,
150			     u16 *high)
151{
152	struct ath9k_hw_capabilities *pCap = &ah->caps;
153
154	if (flags & CHANNEL_5GHZ) {
155		*low = pCap->low_5ghz_chan;
156		*high = pCap->high_5ghz_chan;
157		return true;
158	}
159	if ((flags & CHANNEL_2GHZ)) {
160		*low = pCap->low_2ghz_chan;
161		*high = pCap->high_2ghz_chan;
162		return true;
163	}
164	return false;
165}
166
167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168			   const struct ath_rate_table *rates,
169			   u32 frameLen, u16 rateix,
170			   bool shortPreamble)
171{
172	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173	u32 kbps;
174
175	kbps = rates->info[rateix].ratekbps;
176
177	if (kbps == 0)
178		return 0;
179
180	switch (rates->info[rateix].phy) {
181	case WLAN_RC_PHY_CCK:
182		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183		if (shortPreamble && rates->info[rateix].short_preamble)
184			phyTime >>= 1;
185		numBits = frameLen << 3;
186		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187		break;
188	case WLAN_RC_PHY_OFDM:
189		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193			txTime = OFDM_SIFS_TIME_QUARTER
194				+ OFDM_PREAMBLE_TIME_QUARTER
195				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196		} else if (ah->curchan &&
197			   IS_CHAN_HALF_RATE(ah->curchan)) {
198			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199			numBits = OFDM_PLCP_BITS + (frameLen << 3);
200			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201			txTime = OFDM_SIFS_TIME_HALF +
202				OFDM_PREAMBLE_TIME_HALF
203				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
204		} else {
205			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206			numBits = OFDM_PLCP_BITS + (frameLen << 3);
207			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209				+ (numSymbols * OFDM_SYMBOL_TIME);
210		}
211		break;
212	default:
213		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
214			"Unknown phy %u (rate ix %u)\n",
215			rates->info[rateix].phy, rateix);
216		txTime = 0;
217		break;
218	}
219
220	return txTime;
221}
222
223void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224				  struct ath9k_channel *chan,
225				  struct chan_centers *centers)
226{
227	int8_t extoff;
228
229	if (!IS_CHAN_HT40(chan)) {
230		centers->ctl_center = centers->ext_center =
231			centers->synth_center = chan->channel;
232		return;
233	}
234
235	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237		centers->synth_center =
238			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239		extoff = 1;
240	} else {
241		centers->synth_center =
242			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243		extoff = -1;
244	}
245
246	centers->ctl_center =
247		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248	centers->ext_center =
249		centers->synth_center + (extoff *
250			 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
251			  HT40_CHANNEL_CENTER_SHIFT : 15));
252}
253
254/******************/
255/* Chip Revisions */
256/******************/
257
258static void ath9k_hw_read_revisions(struct ath_hw *ah)
259{
260	u32 val;
261
262	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
263
264	if (val == 0xFF) {
265		val = REG_READ(ah, AR_SREV);
266		ah->hw_version.macVersion =
267			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
270	} else {
271		if (!AR_SREV_9100(ah))
272			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
273
274		ah->hw_version.macRev = val & AR_SREV_REVISION;
275
276		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277			ah->is_pciexpress = true;
278	}
279}
280
281static int ath9k_hw_get_radiorev(struct ath_hw *ah)
282{
283	u32 val;
284	int i;
285
286	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
287
288	for (i = 0; i < 8; i++)
289		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
290	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
291	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
292
293	return ath9k_hw_reverse_bits(val, 8);
294}
295
296/************************************/
297/* HW Attach, Detach, Init Routines */
298/************************************/
299
300static void ath9k_hw_disablepcie(struct ath_hw *ah)
301{
302	if (AR_SREV_9100(ah))
303		return;
304
305	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
306	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
307	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
308	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
309	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
310	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
311	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
312	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
313	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
314
315	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
316}
317
318static bool ath9k_hw_chip_test(struct ath_hw *ah)
319{
320	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
321	u32 regHold[2];
322	u32 patternData[4] = { 0x55555555,
323			       0xaaaaaaaa,
324			       0x66666666,
325			       0x99999999 };
326	int i, j;
327
328	for (i = 0; i < 2; i++) {
329		u32 addr = regAddr[i];
330		u32 wrData, rdData;
331
332		regHold[i] = REG_READ(ah, addr);
333		for (j = 0; j < 0x100; j++) {
334			wrData = (j << 16) | j;
335			REG_WRITE(ah, addr, wrData);
336			rdData = REG_READ(ah, addr);
337			if (rdData != wrData) {
338				DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
339					"address test failed "
340					"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
341					addr, wrData, rdData);
342				return false;
343			}
344		}
345		for (j = 0; j < 4; j++) {
346			wrData = patternData[j];
347			REG_WRITE(ah, addr, wrData);
348			rdData = REG_READ(ah, addr);
349			if (wrData != rdData) {
350				DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
351					"address test failed "
352					"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
353					addr, wrData, rdData);
354				return false;
355			}
356		}
357		REG_WRITE(ah, regAddr[i], regHold[i]);
358	}
359	udelay(100);
360
361	return true;
362}
363
364static const char *ath9k_hw_devname(u16 devid)
365{
366	switch (devid) {
367	case AR5416_DEVID_PCI:
368		return "Atheros 5416";
369	case AR5416_DEVID_PCIE:
370		return "Atheros 5418";
371	case AR9160_DEVID_PCI:
372		return "Atheros 9160";
373	case AR5416_AR9100_DEVID:
374		return "Atheros 9100";
375	case AR9280_DEVID_PCI:
376	case AR9280_DEVID_PCIE:
377		return "Atheros 9280";
378	case AR9285_DEVID_PCIE:
379		return "Atheros 9285";
380	case AR5416_DEVID_AR9287_PCI:
381	case AR5416_DEVID_AR9287_PCIE:
382		return "Atheros 9287";
383	}
384
385	return NULL;
386}
387
388static void ath9k_hw_init_config(struct ath_hw *ah)
389{
390	int i;
391
392	ah->config.dma_beacon_response_time = 2;
393	ah->config.sw_beacon_response_time = 10;
394	ah->config.additional_swba_backoff = 0;
395	ah->config.ack_6mb = 0x0;
396	ah->config.cwm_ignore_extcca = 0;
397	ah->config.pcie_powersave_enable = 0;
398	ah->config.pcie_clock_req = 0;
399	ah->config.pcie_waen = 0;
400	ah->config.analog_shiftreg = 1;
401	ah->config.ht_enable = 1;
402	ah->config.ofdm_trig_low = 200;
403	ah->config.ofdm_trig_high = 500;
404	ah->config.cck_trig_high = 200;
405	ah->config.cck_trig_low = 100;
406	ah->config.enable_ani = 1;
407	ah->config.diversity_control = ATH9K_ANT_VARIABLE;
408	ah->config.antenna_switch_swap = 0;
409
410	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
411		ah->config.spurchans[i][0] = AR_NO_SPUR;
412		ah->config.spurchans[i][1] = AR_NO_SPUR;
413	}
414
415	ah->config.intr_mitigation = true;
416
417	/*
418	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420	 * This means we use it for all AR5416 devices, and the few
421	 * minor PCI AR9280 devices out there.
422	 *
423	 * Serialization is required because these devices do not handle
424	 * well the case of two concurrent reads/writes due to the latency
425	 * involved. During one read/write another read/write can be issued
426	 * on another CPU while the previous read/write may still be working
427	 * on our hardware, if we hit this case the hardware poops in a loop.
428	 * We prevent this by serializing reads and writes.
429	 *
430	 * This issue is not present on PCI-Express devices or pre-AR5416
431	 * devices (legacy, 802.11abg).
432	 */
433	if (num_possible_cpus() > 1)
434		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435}
436
437static void ath9k_hw_init_defaults(struct ath_hw *ah)
438{
439	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
440
441	regulatory->country_code = CTRY_DEFAULT;
442	regulatory->power_limit = MAX_RATE_POWER;
443	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
444
445	ah->hw_version.magic = AR5416_MAGIC;
446	ah->hw_version.subvendorid = 0;
447
448	ah->ah_flags = 0;
449	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
450		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
451	if (!AR_SREV_9100(ah))
452		ah->ah_flags = AH_USE_EEPROM;
453
454	ah->atim_window = 0;
455	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
456	ah->beacon_interval = 100;
457	ah->enable_32kHz_clock = DONT_USE_32KHZ;
458	ah->slottime = (u32) -1;
459	ah->acktimeout = (u32) -1;
460	ah->ctstimeout = (u32) -1;
461	ah->globaltxtimeout = (u32) -1;
462
463	ah->gbeacon_rate = 0;
464
465	ah->power_mode = ATH9K_PM_UNDEFINED;
466}
467
468static int ath9k_hw_rfattach(struct ath_hw *ah)
469{
470	bool rfStatus = false;
471	int ecode = 0;
472
473	rfStatus = ath9k_hw_init_rf(ah, &ecode);
474	if (!rfStatus) {
475		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
476			"RF setup failed, status: %u\n", ecode);
477		return ecode;
478	}
479
480	return 0;
481}
482
483static int ath9k_hw_rf_claim(struct ath_hw *ah)
484{
485	u32 val;
486
487	REG_WRITE(ah, AR_PHY(0), 0x00000007);
488
489	val = ath9k_hw_get_radiorev(ah);
490	switch (val & AR_RADIO_SREV_MAJOR) {
491	case 0:
492		val = AR_RAD5133_SREV_MAJOR;
493		break;
494	case AR_RAD5133_SREV_MAJOR:
495	case AR_RAD5122_SREV_MAJOR:
496	case AR_RAD2133_SREV_MAJOR:
497	case AR_RAD2122_SREV_MAJOR:
498		break;
499	default:
500		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
501			"Radio Chip Rev 0x%02X not supported\n",
502			val & AR_RADIO_SREV_MAJOR);
503		return -EOPNOTSUPP;
504	}
505
506	ah->hw_version.analog5GhzRev = val;
507
508	return 0;
509}
510
511static int ath9k_hw_init_macaddr(struct ath_hw *ah)
512{
513	u32 sum;
514	int i;
515	u16 eeval;
516
517	sum = 0;
518	for (i = 0; i < 3; i++) {
519		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
520		sum += eeval;
521		ah->macaddr[2 * i] = eeval >> 8;
522		ah->macaddr[2 * i + 1] = eeval & 0xff;
523	}
524	if (sum == 0 || sum == 0xffff * 3)
525		return -EADDRNOTAVAIL;
526
527	return 0;
528}
529
530static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
531{
532	u32 rxgain_type;
533
534	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
535		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
536
537		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
538			INIT_INI_ARRAY(&ah->iniModesRxGain,
539			ar9280Modes_backoff_13db_rxgain_9280_2,
540			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
541		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
542			INIT_INI_ARRAY(&ah->iniModesRxGain,
543			ar9280Modes_backoff_23db_rxgain_9280_2,
544			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
545		else
546			INIT_INI_ARRAY(&ah->iniModesRxGain,
547			ar9280Modes_original_rxgain_9280_2,
548			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
549	} else {
550		INIT_INI_ARRAY(&ah->iniModesRxGain,
551			ar9280Modes_original_rxgain_9280_2,
552			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
553	}
554}
555
556static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
557{
558	u32 txgain_type;
559
560	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
561		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
562
563		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
564			INIT_INI_ARRAY(&ah->iniModesTxGain,
565			ar9280Modes_high_power_tx_gain_9280_2,
566			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
567		else
568			INIT_INI_ARRAY(&ah->iniModesTxGain,
569			ar9280Modes_original_tx_gain_9280_2,
570			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
571	} else {
572		INIT_INI_ARRAY(&ah->iniModesTxGain,
573		ar9280Modes_original_tx_gain_9280_2,
574		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
575	}
576}
577
578static int ath9k_hw_post_init(struct ath_hw *ah)
579{
580	int ecode;
581
582	if (!ath9k_hw_chip_test(ah))
583		return -ENODEV;
584
585	ecode = ath9k_hw_rf_claim(ah);
586	if (ecode != 0)
587		return ecode;
588
589	ecode = ath9k_hw_eeprom_init(ah);
590	if (ecode != 0)
591		return ecode;
592
593	DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
594		ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
595
596	ecode = ath9k_hw_rfattach(ah);
597	if (ecode != 0)
598		return ecode;
599
600	if (!AR_SREV_9100(ah)) {
601		ath9k_hw_ani_setup(ah);
602		ath9k_hw_ani_init(ah);
603	}
604
605	return 0;
606}
607
608static bool ath9k_hw_devid_supported(u16 devid)
609{
610	switch (devid) {
611	case AR5416_DEVID_PCI:
612	case AR5416_DEVID_PCIE:
613	case AR5416_AR9100_DEVID:
614	case AR9160_DEVID_PCI:
615	case AR9280_DEVID_PCI:
616	case AR9280_DEVID_PCIE:
617	case AR9285_DEVID_PCIE:
618	case AR5416_DEVID_AR9287_PCI:
619	case AR5416_DEVID_AR9287_PCIE:
620		return true;
621	default:
622		break;
623	}
624	return false;
625}
626
627static bool ath9k_hw_macversion_supported(u32 macversion)
628{
629	switch (macversion) {
630	case AR_SREV_VERSION_5416_PCI:
631	case AR_SREV_VERSION_5416_PCIE:
632	case AR_SREV_VERSION_9160:
633	case AR_SREV_VERSION_9100:
634	case AR_SREV_VERSION_9280:
635	case AR_SREV_VERSION_9285:
636	case AR_SREV_VERSION_9287:
637		return true;
638	/* Not yet */
639	case AR_SREV_VERSION_9271:
640	default:
641		break;
642	}
643	return false;
644}
645
646static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
647{
648	if (AR_SREV_9160_10_OR_LATER(ah)) {
649		if (AR_SREV_9280_10_OR_LATER(ah)) {
650			ah->iq_caldata.calData = &iq_cal_single_sample;
651			ah->adcgain_caldata.calData =
652				&adc_gain_cal_single_sample;
653			ah->adcdc_caldata.calData =
654				&adc_dc_cal_single_sample;
655			ah->adcdc_calinitdata.calData =
656				&adc_init_dc_cal;
657		} else {
658			ah->iq_caldata.calData = &iq_cal_multi_sample;
659			ah->adcgain_caldata.calData =
660				&adc_gain_cal_multi_sample;
661			ah->adcdc_caldata.calData =
662				&adc_dc_cal_multi_sample;
663			ah->adcdc_calinitdata.calData =
664				&adc_init_dc_cal;
665		}
666		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
667	}
668}
669
670static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
671{
672	if (AR_SREV_9271(ah)) {
673		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
674			       ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
675		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
676			       ARRAY_SIZE(ar9271Common_9271_1_0), 2);
677		return;
678	}
679
680	if (AR_SREV_9287_11_OR_LATER(ah)) {
681		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
682				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
683		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
684				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
685		if (ah->config.pcie_clock_req)
686			INIT_INI_ARRAY(&ah->iniPcieSerdes,
687			ar9287PciePhy_clkreq_off_L1_9287_1_1,
688			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
689		else
690			INIT_INI_ARRAY(&ah->iniPcieSerdes,
691			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
692			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
693					2);
694	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
695		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
696				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
697		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
698				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
699
700		if (ah->config.pcie_clock_req)
701			INIT_INI_ARRAY(&ah->iniPcieSerdes,
702			ar9287PciePhy_clkreq_off_L1_9287_1_0,
703			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
704		else
705			INIT_INI_ARRAY(&ah->iniPcieSerdes,
706			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
707			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
708				  2);
709	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
710
711
712		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
713			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
714		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
715			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
716
717		if (ah->config.pcie_clock_req) {
718			INIT_INI_ARRAY(&ah->iniPcieSerdes,
719			ar9285PciePhy_clkreq_off_L1_9285_1_2,
720			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
721		} else {
722			INIT_INI_ARRAY(&ah->iniPcieSerdes,
723			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
724			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
725				  2);
726		}
727	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
728		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
729			       ARRAY_SIZE(ar9285Modes_9285), 6);
730		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
731			       ARRAY_SIZE(ar9285Common_9285), 2);
732
733		if (ah->config.pcie_clock_req) {
734			INIT_INI_ARRAY(&ah->iniPcieSerdes,
735			ar9285PciePhy_clkreq_off_L1_9285,
736			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
737		} else {
738			INIT_INI_ARRAY(&ah->iniPcieSerdes,
739			ar9285PciePhy_clkreq_always_on_L1_9285,
740			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
741		}
742	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
743		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
744			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
745		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
746			       ARRAY_SIZE(ar9280Common_9280_2), 2);
747
748		if (ah->config.pcie_clock_req) {
749			INIT_INI_ARRAY(&ah->iniPcieSerdes,
750			       ar9280PciePhy_clkreq_off_L1_9280,
751			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
752		} else {
753			INIT_INI_ARRAY(&ah->iniPcieSerdes,
754			       ar9280PciePhy_clkreq_always_on_L1_9280,
755			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
756		}
757		INIT_INI_ARRAY(&ah->iniModesAdditional,
758			       ar9280Modes_fast_clock_9280_2,
759			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
760	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
761		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
762			       ARRAY_SIZE(ar9280Modes_9280), 6);
763		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
764			       ARRAY_SIZE(ar9280Common_9280), 2);
765	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
766		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
767			       ARRAY_SIZE(ar5416Modes_9160), 6);
768		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
769			       ARRAY_SIZE(ar5416Common_9160), 2);
770		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
771			       ARRAY_SIZE(ar5416Bank0_9160), 2);
772		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
773			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
774		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
775			       ARRAY_SIZE(ar5416Bank1_9160), 2);
776		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
777			       ARRAY_SIZE(ar5416Bank2_9160), 2);
778		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
779			       ARRAY_SIZE(ar5416Bank3_9160), 3);
780		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
781			       ARRAY_SIZE(ar5416Bank6_9160), 3);
782		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
783			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
784		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
785			       ARRAY_SIZE(ar5416Bank7_9160), 2);
786		if (AR_SREV_9160_11(ah)) {
787			INIT_INI_ARRAY(&ah->iniAddac,
788				       ar5416Addac_91601_1,
789				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
790		} else {
791			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
792				       ARRAY_SIZE(ar5416Addac_9160), 2);
793		}
794	} else if (AR_SREV_9100_OR_LATER(ah)) {
795		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
796			       ARRAY_SIZE(ar5416Modes_9100), 6);
797		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
798			       ARRAY_SIZE(ar5416Common_9100), 2);
799		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
800			       ARRAY_SIZE(ar5416Bank0_9100), 2);
801		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
802			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
803		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
804			       ARRAY_SIZE(ar5416Bank1_9100), 2);
805		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
806			       ARRAY_SIZE(ar5416Bank2_9100), 2);
807		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
808			       ARRAY_SIZE(ar5416Bank3_9100), 3);
809		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
810			       ARRAY_SIZE(ar5416Bank6_9100), 3);
811		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
812			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
813		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
814			       ARRAY_SIZE(ar5416Bank7_9100), 2);
815		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
816			       ARRAY_SIZE(ar5416Addac_9100), 2);
817	} else {
818		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
819			       ARRAY_SIZE(ar5416Modes), 6);
820		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
821			       ARRAY_SIZE(ar5416Common), 2);
822		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
823			       ARRAY_SIZE(ar5416Bank0), 2);
824		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
825			       ARRAY_SIZE(ar5416BB_RfGain), 3);
826		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
827			       ARRAY_SIZE(ar5416Bank1), 2);
828		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
829			       ARRAY_SIZE(ar5416Bank2), 2);
830		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
831			       ARRAY_SIZE(ar5416Bank3), 3);
832		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
833			       ARRAY_SIZE(ar5416Bank6), 3);
834		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
835			       ARRAY_SIZE(ar5416Bank6TPC), 3);
836		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
837			       ARRAY_SIZE(ar5416Bank7), 2);
838		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
839			       ARRAY_SIZE(ar5416Addac), 2);
840	}
841}
842
843static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
844{
845	if (AR_SREV_9287_11(ah))
846		INIT_INI_ARRAY(&ah->iniModesRxGain,
847		ar9287Modes_rx_gain_9287_1_1,
848		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
849	else if (AR_SREV_9287_10(ah))
850		INIT_INI_ARRAY(&ah->iniModesRxGain,
851		ar9287Modes_rx_gain_9287_1_0,
852		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
853	else if (AR_SREV_9280_20(ah))
854		ath9k_hw_init_rxgain_ini(ah);
855
856	if (AR_SREV_9287_11(ah)) {
857		INIT_INI_ARRAY(&ah->iniModesTxGain,
858		ar9287Modes_tx_gain_9287_1_1,
859		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
860	} else if (AR_SREV_9287_10(ah)) {
861		INIT_INI_ARRAY(&ah->iniModesTxGain,
862		ar9287Modes_tx_gain_9287_1_0,
863		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
864	} else if (AR_SREV_9280_20(ah)) {
865		ath9k_hw_init_txgain_ini(ah);
866	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
867		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
868
869		/* txgain table */
870		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
871			INIT_INI_ARRAY(&ah->iniModesTxGain,
872			ar9285Modes_high_power_tx_gain_9285_1_2,
873			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
874		} else {
875			INIT_INI_ARRAY(&ah->iniModesTxGain,
876			ar9285Modes_original_tx_gain_9285_1_2,
877			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
878		}
879
880	}
881}
882
883static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
884{
885	u32 i, j;
886
887	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
888	    test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
889
890		/* EEPROM Fixup */
891		for (i = 0; i < ah->iniModes.ia_rows; i++) {
892			u32 reg = INI_RA(&ah->iniModes, i, 0);
893
894			for (j = 1; j < ah->iniModes.ia_columns; j++) {
895				u32 val = INI_RA(&ah->iniModes, i, j);
896
897				INI_RA(&ah->iniModes, i, j) =
898					ath9k_hw_ini_fixup(ah,
899							   &ah->eeprom.def,
900							   reg, val);
901			}
902		}
903	}
904}
905
906int ath9k_hw_init(struct ath_hw *ah)
907{
908	int r = 0;
909
910	if (!ath9k_hw_devid_supported(ah->hw_version.devid))
911		return -EOPNOTSUPP;
912
913	ath9k_hw_init_defaults(ah);
914	ath9k_hw_init_config(ah);
915
916	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
917		DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
918		return -EIO;
919	}
920
921	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
922		DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
923		return -EIO;
924	}
925
926	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
927		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
928		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
929			ah->config.serialize_regmode =
930				SER_REG_MODE_ON;
931		} else {
932			ah->config.serialize_regmode =
933				SER_REG_MODE_OFF;
934		}
935	}
936
937	DPRINTF(ah->ah_sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
938		ah->config.serialize_regmode);
939
940	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
941		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
942			"Mac Chip Rev 0x%02x.%x is not supported by "
943			"this driver\n", ah->hw_version.macVersion,
944			ah->hw_version.macRev);
945		return -EOPNOTSUPP;
946	}
947
948	if (AR_SREV_9100(ah)) {
949		ah->iq_caldata.calData = &iq_cal_multi_sample;
950		ah->supp_cals = IQ_MISMATCH_CAL;
951		ah->is_pciexpress = false;
952	}
953
954	if (AR_SREV_9271(ah))
955		ah->is_pciexpress = false;
956
957	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
958
959	ath9k_hw_init_cal_settings(ah);
960
961	ah->ani_function = ATH9K_ANI_ALL;
962	if (AR_SREV_9280_10_OR_LATER(ah))
963		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
964
965	ath9k_hw_init_mode_regs(ah);
966
967	if (ah->is_pciexpress)
968		ath9k_hw_configpcipowersave(ah, 0, 0);
969	else
970		ath9k_hw_disablepcie(ah);
971
972	r = ath9k_hw_post_init(ah);
973	if (r)
974		return r;
975
976	ath9k_hw_init_mode_gain_regs(ah);
977	ath9k_hw_fill_cap_info(ah);
978	ath9k_hw_init_11a_eeprom_fix(ah);
979
980	r = ath9k_hw_init_macaddr(ah);
981	if (r) {
982		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
983			"Failed to initialize MAC address\n");
984		return r;
985	}
986
987	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
988		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
989	else
990		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
991
992	ath9k_init_nfcal_hist_buffer(ah);
993
994	return 0;
995}
996
997static void ath9k_hw_init_bb(struct ath_hw *ah,
998			     struct ath9k_channel *chan)
999{
1000	u32 synthDelay;
1001
1002	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1003	if (IS_CHAN_B(chan))
1004		synthDelay = (4 * synthDelay) / 22;
1005	else
1006		synthDelay /= 10;
1007
1008	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1009
1010	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1011}
1012
1013static void ath9k_hw_init_qos(struct ath_hw *ah)
1014{
1015	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1016	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1017
1018	REG_WRITE(ah, AR_QOS_NO_ACK,
1019		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1020		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1021		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1022
1023	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1024	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1025	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1026	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1027	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1028}
1029
1030static void ath9k_hw_init_pll(struct ath_hw *ah,
1031			      struct ath9k_channel *chan)
1032{
1033	u32 pll;
1034
1035	if (AR_SREV_9100(ah)) {
1036		if (chan && IS_CHAN_5GHZ(chan))
1037			pll = 0x1450;
1038		else
1039			pll = 0x1458;
1040	} else {
1041		if (AR_SREV_9280_10_OR_LATER(ah)) {
1042			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1043
1044			if (chan && IS_CHAN_HALF_RATE(chan))
1045				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1046			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1047				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1048
1049			if (chan && IS_CHAN_5GHZ(chan)) {
1050				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1051
1052
1053				if (AR_SREV_9280_20(ah)) {
1054					if (((chan->channel % 20) == 0)
1055					    || ((chan->channel % 10) == 0))
1056						pll = 0x2850;
1057					else
1058						pll = 0x142c;
1059				}
1060			} else {
1061				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1062			}
1063
1064		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1065
1066			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1067
1068			if (chan && IS_CHAN_HALF_RATE(chan))
1069				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1070			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1071				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1072
1073			if (chan && IS_CHAN_5GHZ(chan))
1074				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1075			else
1076				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1077		} else {
1078			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1079
1080			if (chan && IS_CHAN_HALF_RATE(chan))
1081				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1082			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1083				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1084
1085			if (chan && IS_CHAN_5GHZ(chan))
1086				pll |= SM(0xa, AR_RTC_PLL_DIV);
1087			else
1088				pll |= SM(0xb, AR_RTC_PLL_DIV);
1089		}
1090	}
1091	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1092
1093	udelay(RTC_PLL_SETTLE_DELAY);
1094
1095	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1096}
1097
1098static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1099{
1100	int rx_chainmask, tx_chainmask;
1101
1102	rx_chainmask = ah->rxchainmask;
1103	tx_chainmask = ah->txchainmask;
1104
1105	switch (rx_chainmask) {
1106	case 0x5:
1107		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1108			    AR_PHY_SWAP_ALT_CHAIN);
1109	case 0x3:
1110		if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1111			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1112			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1113			break;
1114		}
1115	case 0x1:
1116	case 0x2:
1117	case 0x7:
1118		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1119		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1120		break;
1121	default:
1122		break;
1123	}
1124
1125	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1126	if (tx_chainmask == 0x5) {
1127		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1128			    AR_PHY_SWAP_ALT_CHAIN);
1129	}
1130	if (AR_SREV_9100(ah))
1131		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1132			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1133}
1134
1135static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1136					  enum nl80211_iftype opmode)
1137{
1138	ah->mask_reg = AR_IMR_TXERR |
1139		AR_IMR_TXURN |
1140		AR_IMR_RXERR |
1141		AR_IMR_RXORN |
1142		AR_IMR_BCNMISC;
1143
1144	if (ah->config.intr_mitigation)
1145		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1146	else
1147		ah->mask_reg |= AR_IMR_RXOK;
1148
1149	ah->mask_reg |= AR_IMR_TXOK;
1150
1151	if (opmode == NL80211_IFTYPE_AP)
1152		ah->mask_reg |= AR_IMR_MIB;
1153
1154	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1155	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1156
1157	if (!AR_SREV_9100(ah)) {
1158		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1159		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1160		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1161	}
1162}
1163
1164static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1165{
1166	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1167		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1168		ah->acktimeout = (u32) -1;
1169		return false;
1170	} else {
1171		REG_RMW_FIELD(ah, AR_TIME_OUT,
1172			      AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1173		ah->acktimeout = us;
1174		return true;
1175	}
1176}
1177
1178static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1179{
1180	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1181		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1182		ah->ctstimeout = (u32) -1;
1183		return false;
1184	} else {
1185		REG_RMW_FIELD(ah, AR_TIME_OUT,
1186			      AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1187		ah->ctstimeout = us;
1188		return true;
1189	}
1190}
1191
1192static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1193{
1194	if (tu > 0xFFFF) {
1195		DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1196			"bad global tx timeout %u\n", tu);
1197		ah->globaltxtimeout = (u32) -1;
1198		return false;
1199	} else {
1200		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1201		ah->globaltxtimeout = tu;
1202		return true;
1203	}
1204}
1205
1206static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1207{
1208	DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1209		ah->misc_mode);
1210
1211	if (ah->misc_mode != 0)
1212		REG_WRITE(ah, AR_PCU_MISC,
1213			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1214	if (ah->slottime != (u32) -1)
1215		ath9k_hw_setslottime(ah, ah->slottime);
1216	if (ah->acktimeout != (u32) -1)
1217		ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1218	if (ah->ctstimeout != (u32) -1)
1219		ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1220	if (ah->globaltxtimeout != (u32) -1)
1221		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1222}
1223
1224const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1225{
1226	return vendorid == ATHEROS_VENDOR_ID ?
1227		ath9k_hw_devname(devid) : NULL;
1228}
1229
1230void ath9k_hw_detach(struct ath_hw *ah)
1231{
1232	if (!AR_SREV_9100(ah))
1233		ath9k_hw_ani_disable(ah);
1234
1235	ath9k_hw_rf_free(ah);
1236	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1237	kfree(ah);
1238	ah = NULL;
1239}
1240
1241/*******/
1242/* INI */
1243/*******/
1244
1245static void ath9k_hw_override_ini(struct ath_hw *ah,
1246				  struct ath9k_channel *chan)
1247{
1248	u32 val;
1249
1250	if (AR_SREV_9271(ah)) {
1251		/*
1252		 * Enable spectral scan to solution for issues with stuck
1253		 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1254		 * AR9271 1.1
1255		 */
1256		if (AR_SREV_9271_10(ah)) {
1257			val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1258			REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1259		}
1260		else if (AR_SREV_9271_11(ah))
1261			/*
1262			 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1263			 * present on AR9271 1.1
1264			 */
1265			REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1266		return;
1267	}
1268
1269	/*
1270	 * Set the RX_ABORT and RX_DIS and clear if off only after
1271	 * RXE is set for MAC. This prevents frames with corrupted
1272	 * descriptor status.
1273	 */
1274	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1275
1276	if (AR_SREV_9280_10_OR_LATER(ah)) {
1277		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1278			       (~AR_PCU_MISC_MODE2_HWWAR1);
1279
1280		if (AR_SREV_9287_10_OR_LATER(ah))
1281			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1282
1283		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1284	}
1285
1286	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1287	    AR_SREV_9280_10_OR_LATER(ah))
1288		return;
1289	/*
1290	 * Disable BB clock gating
1291	 * Necessary to avoid issues on AR5416 2.0
1292	 */
1293	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1294}
1295
1296static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1297			      struct ar5416_eeprom_def *pEepData,
1298			      u32 reg, u32 value)
1299{
1300	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1301
1302	switch (ah->hw_version.devid) {
1303	case AR9280_DEVID_PCI:
1304		if (reg == 0x7894) {
1305			DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1306				"ini VAL: %x  EEPROM: %x\n", value,
1307				(pBase->version & 0xff));
1308
1309			if ((pBase->version & 0xff) > 0x0a) {
1310				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1311					"PWDCLKIND: %d\n",
1312					pBase->pwdclkind);
1313				value &= ~AR_AN_TOP2_PWDCLKIND;
1314				value |= AR_AN_TOP2_PWDCLKIND &
1315					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1316			} else {
1317				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1318					"PWDCLKIND Earlier Rev\n");
1319			}
1320
1321			DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1322				"final ini VAL: %x\n", value);
1323		}
1324		break;
1325	}
1326
1327	return value;
1328}
1329
1330static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1331			      struct ar5416_eeprom_def *pEepData,
1332			      u32 reg, u32 value)
1333{
1334	if (ah->eep_map == EEP_MAP_4KBITS)
1335		return value;
1336	else
1337		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1338}
1339
1340static void ath9k_olc_init(struct ath_hw *ah)
1341{
1342	u32 i;
1343
1344	if (OLC_FOR_AR9287_10_LATER) {
1345		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1346				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1347		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1348				AR9287_AN_TXPC0_TXPCMODE,
1349				AR9287_AN_TXPC0_TXPCMODE_S,
1350				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1351		udelay(100);
1352	} else {
1353		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1354			ah->originalGain[i] =
1355				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1356						AR_PHY_TX_GAIN);
1357		ah->PDADCdelta = 0;
1358	}
1359}
1360
1361static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1362			      struct ath9k_channel *chan)
1363{
1364	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1365
1366	if (IS_CHAN_B(chan))
1367		ctl |= CTL_11B;
1368	else if (IS_CHAN_G(chan))
1369		ctl |= CTL_11G;
1370	else
1371		ctl |= CTL_11A;
1372
1373	return ctl;
1374}
1375
1376static int ath9k_hw_process_ini(struct ath_hw *ah,
1377				struct ath9k_channel *chan,
1378				enum ath9k_ht_macmode macmode)
1379{
1380	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1381	int i, regWrites = 0;
1382	struct ieee80211_channel *channel = chan->chan;
1383	u32 modesIndex, freqIndex;
1384
1385	switch (chan->chanmode) {
1386	case CHANNEL_A:
1387	case CHANNEL_A_HT20:
1388		modesIndex = 1;
1389		freqIndex = 1;
1390		break;
1391	case CHANNEL_A_HT40PLUS:
1392	case CHANNEL_A_HT40MINUS:
1393		modesIndex = 2;
1394		freqIndex = 1;
1395		break;
1396	case CHANNEL_G:
1397	case CHANNEL_G_HT20:
1398	case CHANNEL_B:
1399		modesIndex = 4;
1400		freqIndex = 2;
1401		break;
1402	case CHANNEL_G_HT40PLUS:
1403	case CHANNEL_G_HT40MINUS:
1404		modesIndex = 3;
1405		freqIndex = 2;
1406		break;
1407
1408	default:
1409		return -EINVAL;
1410	}
1411
1412	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1413	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1414	ah->eep_ops->set_addac(ah, chan);
1415
1416	if (AR_SREV_5416_22_OR_LATER(ah)) {
1417		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1418	} else {
1419		struct ar5416IniArray temp;
1420		u32 addacSize =
1421			sizeof(u32) * ah->iniAddac.ia_rows *
1422			ah->iniAddac.ia_columns;
1423
1424		memcpy(ah->addac5416_21,
1425		       ah->iniAddac.ia_array, addacSize);
1426
1427		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1428
1429		temp.ia_array = ah->addac5416_21;
1430		temp.ia_columns = ah->iniAddac.ia_columns;
1431		temp.ia_rows = ah->iniAddac.ia_rows;
1432		REG_WRITE_ARRAY(&temp, 1, regWrites);
1433	}
1434
1435	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1436
1437	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1438		u32 reg = INI_RA(&ah->iniModes, i, 0);
1439		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1440
1441		REG_WRITE(ah, reg, val);
1442
1443		if (reg >= 0x7800 && reg < 0x78a0
1444		    && ah->config.analog_shiftreg) {
1445			udelay(100);
1446		}
1447
1448		DO_DELAY(regWrites);
1449	}
1450
1451	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1452		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1453
1454	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1455	    AR_SREV_9287_10_OR_LATER(ah))
1456		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1457
1458	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1459		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1460		u32 val = INI_RA(&ah->iniCommon, i, 1);
1461
1462		REG_WRITE(ah, reg, val);
1463
1464		if (reg >= 0x7800 && reg < 0x78a0
1465		    && ah->config.analog_shiftreg) {
1466			udelay(100);
1467		}
1468
1469		DO_DELAY(regWrites);
1470	}
1471
1472	ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1473
1474	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1475		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1476				regWrites);
1477	}
1478
1479	ath9k_hw_override_ini(ah, chan);
1480	ath9k_hw_set_regs(ah, chan, macmode);
1481	ath9k_hw_init_chain_masks(ah);
1482
1483	if (OLC_FOR_AR9280_20_LATER)
1484		ath9k_olc_init(ah);
1485
1486	ah->eep_ops->set_txpower(ah, chan,
1487				 ath9k_regd_get_ctl(regulatory, chan),
1488				 channel->max_antenna_gain * 2,
1489				 channel->max_power * 2,
1490				 min((u32) MAX_RATE_POWER,
1491				 (u32) regulatory->power_limit));
1492
1493	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1494		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1495			"ar5416SetRfRegs failed\n");
1496		return -EIO;
1497	}
1498
1499	return 0;
1500}
1501
1502/****************************************/
1503/* Reset and Channel Switching Routines */
1504/****************************************/
1505
1506static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1507{
1508	u32 rfMode = 0;
1509
1510	if (chan == NULL)
1511		return;
1512
1513	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1514		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1515
1516	if (!AR_SREV_9280_10_OR_LATER(ah))
1517		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1518			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1519
1520	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1521		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1522
1523	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1524}
1525
1526static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1527{
1528	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1529}
1530
1531static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1532{
1533	u32 regval;
1534
1535	/*
1536	 * set AHB_MODE not to do cacheline prefetches
1537	*/
1538	regval = REG_READ(ah, AR_AHB_MODE);
1539	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1540
1541	/*
1542	 * let mac dma reads be in 128 byte chunks
1543	 */
1544	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1545	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1546
1547	/*
1548	 * Restore TX Trigger Level to its pre-reset value.
1549	 * The initial value depends on whether aggregation is enabled, and is
1550	 * adjusted whenever underruns are detected.
1551	 */
1552	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1553
1554	/*
1555	 * let mac dma writes be in 128 byte chunks
1556	 */
1557	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1558	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1559
1560	/*
1561	 * Setup receive FIFO threshold to hold off TX activities
1562	 */
1563	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1564
1565	/*
1566	 * reduce the number of usable entries in PCU TXBUF to avoid
1567	 * wrap around issues.
1568	 */
1569	if (AR_SREV_9285(ah)) {
1570		/* For AR9285 the number of Fifos are reduced to half.
1571		 * So set the usable tx buf size also to half to
1572		 * avoid data/delimiter underruns
1573		 */
1574		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1575			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1576	} else if (!AR_SREV_9271(ah)) {
1577		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1578			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1579	}
1580}
1581
1582static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1583{
1584	u32 val;
1585
1586	val = REG_READ(ah, AR_STA_ID1);
1587	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1588	switch (opmode) {
1589	case NL80211_IFTYPE_AP:
1590		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1591			  | AR_STA_ID1_KSRCH_MODE);
1592		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1593		break;
1594	case NL80211_IFTYPE_ADHOC:
1595	case NL80211_IFTYPE_MESH_POINT:
1596		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1597			  | AR_STA_ID1_KSRCH_MODE);
1598		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1599		break;
1600	case NL80211_IFTYPE_STATION:
1601	case NL80211_IFTYPE_MONITOR:
1602		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1603		break;
1604	}
1605}
1606
1607static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1608						 u32 coef_scaled,
1609						 u32 *coef_mantissa,
1610						 u32 *coef_exponent)
1611{
1612	u32 coef_exp, coef_man;
1613
1614	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1615		if ((coef_scaled >> coef_exp) & 0x1)
1616			break;
1617
1618	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1619
1620	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1621
1622	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1623	*coef_exponent = coef_exp - 16;
1624}
1625
1626static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1627				     struct ath9k_channel *chan)
1628{
1629	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1630	u32 clockMhzScaled = 0x64000000;
1631	struct chan_centers centers;
1632
1633	if (IS_CHAN_HALF_RATE(chan))
1634		clockMhzScaled = clockMhzScaled >> 1;
1635	else if (IS_CHAN_QUARTER_RATE(chan))
1636		clockMhzScaled = clockMhzScaled >> 2;
1637
1638	ath9k_hw_get_channel_centers(ah, chan, &centers);
1639	coef_scaled = clockMhzScaled / centers.synth_center;
1640
1641	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1642				      &ds_coef_exp);
1643
1644	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1645		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1646	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1647		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1648
1649	coef_scaled = (9 * coef_scaled) / 10;
1650
1651	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1652				      &ds_coef_exp);
1653
1654	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1655		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1656	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1657		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1658}
1659
1660static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1661{
1662	u32 rst_flags;
1663	u32 tmpReg;
1664
1665	if (AR_SREV_9100(ah)) {
1666		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1667		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1668		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1669		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1670		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1671	}
1672
1673	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1674		  AR_RTC_FORCE_WAKE_ON_INT);
1675
1676	if (AR_SREV_9100(ah)) {
1677		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1678			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1679	} else {
1680		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1681		if (tmpReg &
1682		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1683		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1684			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1685			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1686		} else {
1687			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1688		}
1689
1690		rst_flags = AR_RTC_RC_MAC_WARM;
1691		if (type == ATH9K_RESET_COLD)
1692			rst_flags |= AR_RTC_RC_MAC_COLD;
1693	}
1694
1695	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1696	udelay(50);
1697
1698	REG_WRITE(ah, AR_RTC_RC, 0);
1699	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1700		DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1701			"RTC stuck in MAC reset\n");
1702		return false;
1703	}
1704
1705	if (!AR_SREV_9100(ah))
1706		REG_WRITE(ah, AR_RC, 0);
1707
1708	ath9k_hw_init_pll(ah, NULL);
1709
1710	if (AR_SREV_9100(ah))
1711		udelay(50);
1712
1713	return true;
1714}
1715
1716static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1717{
1718	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1719		  AR_RTC_FORCE_WAKE_ON_INT);
1720
1721	if (!AR_SREV_9100(ah))
1722		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1723
1724	REG_WRITE(ah, AR_RTC_RESET, 0);
1725	udelay(2);
1726
1727	if (!AR_SREV_9100(ah))
1728		REG_WRITE(ah, AR_RC, 0);
1729
1730	REG_WRITE(ah, AR_RTC_RESET, 1);
1731
1732	if (!ath9k_hw_wait(ah,
1733			   AR_RTC_STATUS,
1734			   AR_RTC_STATUS_M,
1735			   AR_RTC_STATUS_ON,
1736			   AH_WAIT_TIMEOUT)) {
1737		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1738		return false;
1739	}
1740
1741	ath9k_hw_read_revisions(ah);
1742
1743	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1744}
1745
1746static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1747{
1748	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1749		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1750
1751	switch (type) {
1752	case ATH9K_RESET_POWER_ON:
1753		return ath9k_hw_set_reset_power_on(ah);
1754	case ATH9K_RESET_WARM:
1755	case ATH9K_RESET_COLD:
1756		return ath9k_hw_set_reset(ah, type);
1757	default:
1758		return false;
1759	}
1760}
1761
1762static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1763			      enum ath9k_ht_macmode macmode)
1764{
1765	u32 phymode;
1766	u32 enableDacFifo = 0;
1767
1768	if (AR_SREV_9285_10_OR_LATER(ah))
1769		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1770					 AR_PHY_FC_ENABLE_DAC_FIFO);
1771
1772	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1773		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1774
1775	if (IS_CHAN_HT40(chan)) {
1776		phymode |= AR_PHY_FC_DYN2040_EN;
1777
1778		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1779		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1780			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1781
1782		if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1783			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1784	}
1785	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1786
1787	ath9k_hw_set11nmac2040(ah, macmode);
1788
1789	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1790	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1791}
1792
1793static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1794				struct ath9k_channel *chan)
1795{
1796	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1797		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1798			return false;
1799	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1800		return false;
1801
1802	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1803		return false;
1804
1805	ah->chip_fullsleep = false;
1806	ath9k_hw_init_pll(ah, chan);
1807	ath9k_hw_set_rfmode(ah, chan);
1808
1809	return true;
1810}
1811
1812static bool ath9k_hw_channel_change(struct ath_hw *ah,
1813				    struct ath9k_channel *chan,
1814				    enum ath9k_ht_macmode macmode)
1815{
1816	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1817	struct ieee80211_channel *channel = chan->chan;
1818	u32 synthDelay, qnum;
1819
1820	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1821		if (ath9k_hw_numtxpending(ah, qnum)) {
1822			DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1823				"Transmit frames pending on queue %d\n", qnum);
1824			return false;
1825		}
1826	}
1827
1828	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1829	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1830			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1831		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1832			"Could not kill baseband RX\n");
1833		return false;
1834	}
1835
1836	ath9k_hw_set_regs(ah, chan, macmode);
1837
1838	if (AR_SREV_9280_10_OR_LATER(ah)) {
1839		ath9k_hw_ar9280_set_channel(ah, chan);
1840	} else {
1841		if (!(ath9k_hw_set_channel(ah, chan))) {
1842			DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1843				"Failed to set channel\n");
1844			return false;
1845		}
1846	}
1847
1848	ah->eep_ops->set_txpower(ah, chan,
1849			     ath9k_regd_get_ctl(regulatory, chan),
1850			     channel->max_antenna_gain * 2,
1851			     channel->max_power * 2,
1852			     min((u32) MAX_RATE_POWER,
1853			     (u32) regulatory->power_limit));
1854
1855	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1856	if (IS_CHAN_B(chan))
1857		synthDelay = (4 * synthDelay) / 22;
1858	else
1859		synthDelay /= 10;
1860
1861	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1862
1863	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1864
1865	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1866		ath9k_hw_set_delta_slope(ah, chan);
1867
1868	if (AR_SREV_9280_10_OR_LATER(ah))
1869		ath9k_hw_9280_spur_mitigate(ah, chan);
1870	else
1871		ath9k_hw_spur_mitigate(ah, chan);
1872
1873	if (!chan->oneTimeCalsDone)
1874		chan->oneTimeCalsDone = true;
1875
1876	return true;
1877}
1878
1879static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1880{
1881	int bb_spur = AR_NO_SPUR;
1882	int freq;
1883	int bin, cur_bin;
1884	int bb_spur_off, spur_subchannel_sd;
1885	int spur_freq_sd;
1886	int spur_delta_phase;
1887	int denominator;
1888	int upper, lower, cur_vit_mask;
1889	int tmp, newVal;
1890	int i;
1891	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1892			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1893	};
1894	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1895			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1896	};
1897	int inc[4] = { 0, 100, 0, 0 };
1898	struct chan_centers centers;
1899
1900	int8_t mask_m[123];
1901	int8_t mask_p[123];
1902	int8_t mask_amt;
1903	int tmp_mask;
1904	int cur_bb_spur;
1905	bool is2GHz = IS_CHAN_2GHZ(chan);
1906
1907	memset(&mask_m, 0, sizeof(int8_t) * 123);
1908	memset(&mask_p, 0, sizeof(int8_t) * 123);
1909
1910	ath9k_hw_get_channel_centers(ah, chan, &centers);
1911	freq = centers.synth_center;
1912
1913	ah->config.spurmode = SPUR_ENABLE_EEPROM;
1914	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1915		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1916
1917		if (is2GHz)
1918			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1919		else
1920			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1921
1922		if (AR_NO_SPUR == cur_bb_spur)
1923			break;
1924		cur_bb_spur = cur_bb_spur - freq;
1925
1926		if (IS_CHAN_HT40(chan)) {
1927			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1928			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1929				bb_spur = cur_bb_spur;
1930				break;
1931			}
1932		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1933			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1934			bb_spur = cur_bb_spur;
1935			break;
1936		}
1937	}
1938
1939	if (AR_NO_SPUR == bb_spur) {
1940		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1941			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1942		return;
1943	} else {
1944		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1945			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1946	}
1947
1948	bin = bb_spur * 320;
1949
1950	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1951
1952	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1953			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1954			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1955			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1956	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1957
1958	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1959		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1960		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1961		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1962		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1963	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1964
1965	if (IS_CHAN_HT40(chan)) {
1966		if (bb_spur < 0) {
1967			spur_subchannel_sd = 1;
1968			bb_spur_off = bb_spur + 10;
1969		} else {
1970			spur_subchannel_sd = 0;
1971			bb_spur_off = bb_spur - 10;
1972		}
1973	} else {
1974		spur_subchannel_sd = 0;
1975		bb_spur_off = bb_spur;
1976	}
1977
1978	if (IS_CHAN_HT40(chan))
1979		spur_delta_phase =
1980			((bb_spur * 262144) /
1981			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1982	else
1983		spur_delta_phase =
1984			((bb_spur * 524288) /
1985			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1986
1987	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1988	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1989
1990	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1991		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1992		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1993	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1994
1995	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1996	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1997
1998	cur_bin = -6000;
1999	upper = bin + 100;
2000	lower = bin - 100;
2001
2002	for (i = 0; i < 4; i++) {
2003		int pilot_mask = 0;
2004		int chan_mask = 0;
2005		int bp = 0;
2006		for (bp = 0; bp < 30; bp++) {
2007			if ((cur_bin > lower) && (cur_bin < upper)) {
2008				pilot_mask = pilot_mask | 0x1 << bp;
2009				chan_mask = chan_mask | 0x1 << bp;
2010			}
2011			cur_bin += 100;
2012		}
2013		cur_bin += inc[i];
2014		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2015		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2016	}
2017
2018	cur_vit_mask = 6100;
2019	upper = bin + 120;
2020	lower = bin - 120;
2021
2022	for (i = 0; i < 123; i++) {
2023		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2024
2025			/* workaround for gcc bug #37014 */
2026			volatile int tmp_v = abs(cur_vit_mask - bin);
2027
2028			if (tmp_v < 75)
2029				mask_amt = 1;
2030			else
2031				mask_amt = 0;
2032			if (cur_vit_mask < 0)
2033				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2034			else
2035				mask_p[cur_vit_mask / 100] = mask_amt;
2036		}
2037		cur_vit_mask -= 100;
2038	}
2039
2040	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2041		| (mask_m[48] << 26) | (mask_m[49] << 24)
2042		| (mask_m[50] << 22) | (mask_m[51] << 20)
2043		| (mask_m[52] << 18) | (mask_m[53] << 16)
2044		| (mask_m[54] << 14) | (mask_m[55] << 12)
2045		| (mask_m[56] << 10) | (mask_m[57] << 8)
2046		| (mask_m[58] << 6) | (mask_m[59] << 4)
2047		| (mask_m[60] << 2) | (mask_m[61] << 0);
2048	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2049	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2050
2051	tmp_mask = (mask_m[31] << 28)
2052		| (mask_m[32] << 26) | (mask_m[33] << 24)
2053		| (mask_m[34] << 22) | (mask_m[35] << 20)
2054		| (mask_m[36] << 18) | (mask_m[37] << 16)
2055		| (mask_m[48] << 14) | (mask_m[39] << 12)
2056		| (mask_m[40] << 10) | (mask_m[41] << 8)
2057		| (mask_m[42] << 6) | (mask_m[43] << 4)
2058		| (mask_m[44] << 2) | (mask_m[45] << 0);
2059	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2060	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2061
2062	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2063		| (mask_m[18] << 26) | (mask_m[18] << 24)
2064		| (mask_m[20] << 22) | (mask_m[20] << 20)
2065		| (mask_m[22] << 18) | (mask_m[22] << 16)
2066		| (mask_m[24] << 14) | (mask_m[24] << 12)
2067		| (mask_m[25] << 10) | (mask_m[26] << 8)
2068		| (mask_m[27] << 6) | (mask_m[28] << 4)
2069		| (mask_m[29] << 2) | (mask_m[30] << 0);
2070	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2071	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2072
2073	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2074		| (mask_m[2] << 26) | (mask_m[3] << 24)
2075		| (mask_m[4] << 22) | (mask_m[5] << 20)
2076		| (mask_m[6] << 18) | (mask_m[7] << 16)
2077		| (mask_m[8] << 14) | (mask_m[9] << 12)
2078		| (mask_m[10] << 10) | (mask_m[11] << 8)
2079		| (mask_m[12] << 6) | (mask_m[13] << 4)
2080		| (mask_m[14] << 2) | (mask_m[15] << 0);
2081	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2082	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2083
2084	tmp_mask = (mask_p[15] << 28)
2085		| (mask_p[14] << 26) | (mask_p[13] << 24)
2086		| (mask_p[12] << 22) | (mask_p[11] << 20)
2087		| (mask_p[10] << 18) | (mask_p[9] << 16)
2088		| (mask_p[8] << 14) | (mask_p[7] << 12)
2089		| (mask_p[6] << 10) | (mask_p[5] << 8)
2090		| (mask_p[4] << 6) | (mask_p[3] << 4)
2091		| (mask_p[2] << 2) | (mask_p[1] << 0);
2092	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2093	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2094
2095	tmp_mask = (mask_p[30] << 28)
2096		| (mask_p[29] << 26) | (mask_p[28] << 24)
2097		| (mask_p[27] << 22) | (mask_p[26] << 20)
2098		| (mask_p[25] << 18) | (mask_p[24] << 16)
2099		| (mask_p[23] << 14) | (mask_p[22] << 12)
2100		| (mask_p[21] << 10) | (mask_p[20] << 8)
2101		| (mask_p[19] << 6) | (mask_p[18] << 4)
2102		| (mask_p[17] << 2) | (mask_p[16] << 0);
2103	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2104	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2105
2106	tmp_mask = (mask_p[45] << 28)
2107		| (mask_p[44] << 26) | (mask_p[43] << 24)
2108		| (mask_p[42] << 22) | (mask_p[41] << 20)
2109		| (mask_p[40] << 18) | (mask_p[39] << 16)
2110		| (mask_p[38] << 14) | (mask_p[37] << 12)
2111		| (mask_p[36] << 10) | (mask_p[35] << 8)
2112		| (mask_p[34] << 6) | (mask_p[33] << 4)
2113		| (mask_p[32] << 2) | (mask_p[31] << 0);
2114	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2115	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2116
2117	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2118		| (mask_p[59] << 26) | (mask_p[58] << 24)
2119		| (mask_p[57] << 22) | (mask_p[56] << 20)
2120		| (mask_p[55] << 18) | (mask_p[54] << 16)
2121		| (mask_p[53] << 14) | (mask_p[52] << 12)
2122		| (mask_p[51] << 10) | (mask_p[50] << 8)
2123		| (mask_p[49] << 6) | (mask_p[48] << 4)
2124		| (mask_p[47] << 2) | (mask_p[46] << 0);
2125	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2126	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2127}
2128
2129static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2130{
2131	int bb_spur = AR_NO_SPUR;
2132	int bin, cur_bin;
2133	int spur_freq_sd;
2134	int spur_delta_phase;
2135	int denominator;
2136	int upper, lower, cur_vit_mask;
2137	int tmp, new;
2138	int i;
2139	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2140			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2141	};
2142	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2143			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2144	};
2145	int inc[4] = { 0, 100, 0, 0 };
2146
2147	int8_t mask_m[123];
2148	int8_t mask_p[123];
2149	int8_t mask_amt;
2150	int tmp_mask;
2151	int cur_bb_spur;
2152	bool is2GHz = IS_CHAN_2GHZ(chan);
2153
2154	memset(&mask_m, 0, sizeof(int8_t) * 123);
2155	memset(&mask_p, 0, sizeof(int8_t) * 123);
2156
2157	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2158		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2159		if (AR_NO_SPUR == cur_bb_spur)
2160			break;
2161		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2162		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2163			bb_spur = cur_bb_spur;
2164			break;
2165		}
2166	}
2167
2168	if (AR_NO_SPUR == bb_spur)
2169		return;
2170
2171	bin = bb_spur * 32;
2172
2173	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2174	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2175		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2176		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2177		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2178
2179	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2180
2181	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2182	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2183	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2184	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2185	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2186	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2187
2188	spur_delta_phase = ((bb_spur * 524288) / 100) &
2189		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2190
2191	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2192	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2193
2194	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2195	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2196	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2197	REG_WRITE(ah, AR_PHY_TIMING11, new);
2198
2199	cur_bin = -6000;
2200	upper = bin + 100;
2201	lower = bin - 100;
2202
2203	for (i = 0; i < 4; i++) {
2204		int pilot_mask = 0;
2205		int chan_mask = 0;
2206		int bp = 0;
2207		for (bp = 0; bp < 30; bp++) {
2208			if ((cur_bin > lower) && (cur_bin < upper)) {
2209				pilot_mask = pilot_mask | 0x1 << bp;
2210				chan_mask = chan_mask | 0x1 << bp;
2211			}
2212			cur_bin += 100;
2213		}
2214		cur_bin += inc[i];
2215		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2216		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2217	}
2218
2219	cur_vit_mask = 6100;
2220	upper = bin + 120;
2221	lower = bin - 120;
2222
2223	for (i = 0; i < 123; i++) {
2224		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2225
2226			/* workaround for gcc bug #37014 */
2227			volatile int tmp_v = abs(cur_vit_mask - bin);
2228
2229			if (tmp_v < 75)
2230				mask_amt = 1;
2231			else
2232				mask_amt = 0;
2233			if (cur_vit_mask < 0)
2234				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2235			else
2236				mask_p[cur_vit_mask / 100] = mask_amt;
2237		}
2238		cur_vit_mask -= 100;
2239	}
2240
2241	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2242		| (mask_m[48] << 26) | (mask_m[49] << 24)
2243		| (mask_m[50] << 22) | (mask_m[51] << 20)
2244		| (mask_m[52] << 18) | (mask_m[53] << 16)
2245		| (mask_m[54] << 14) | (mask_m[55] << 12)
2246		| (mask_m[56] << 10) | (mask_m[57] << 8)
2247		| (mask_m[58] << 6) | (mask_m[59] << 4)
2248		| (mask_m[60] << 2) | (mask_m[61] << 0);
2249	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2250	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2251
2252	tmp_mask = (mask_m[31] << 28)
2253		| (mask_m[32] << 26) | (mask_m[33] << 24)
2254		| (mask_m[34] << 22) | (mask_m[35] << 20)
2255		| (mask_m[36] << 18) | (mask_m[37] << 16)
2256		| (mask_m[48] << 14) | (mask_m[39] << 12)
2257		| (mask_m[40] << 10) | (mask_m[41] << 8)
2258		| (mask_m[42] << 6) | (mask_m[43] << 4)
2259		| (mask_m[44] << 2) | (mask_m[45] << 0);
2260	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2261	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2262
2263	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2264		| (mask_m[18] << 26) | (mask_m[18] << 24)
2265		| (mask_m[20] << 22) | (mask_m[20] << 20)
2266		| (mask_m[22] << 18) | (mask_m[22] << 16)
2267		| (mask_m[24] << 14) | (mask_m[24] << 12)
2268		| (mask_m[25] << 10) | (mask_m[26] << 8)
2269		| (mask_m[27] << 6) | (mask_m[28] << 4)
2270		| (mask_m[29] << 2) | (mask_m[30] << 0);
2271	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2272	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2273
2274	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2275		| (mask_m[2] << 26) | (mask_m[3] << 24)
2276		| (mask_m[4] << 22) | (mask_m[5] << 20)
2277		| (mask_m[6] << 18) | (mask_m[7] << 16)
2278		| (mask_m[8] << 14) | (mask_m[9] << 12)
2279		| (mask_m[10] << 10) | (mask_m[11] << 8)
2280		| (mask_m[12] << 6) | (mask_m[13] << 4)
2281		| (mask_m[14] << 2) | (mask_m[15] << 0);
2282	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2283	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2284
2285	tmp_mask = (mask_p[15] << 28)
2286		| (mask_p[14] << 26) | (mask_p[13] << 24)
2287		| (mask_p[12] << 22) | (mask_p[11] << 20)
2288		| (mask_p[10] << 18) | (mask_p[9] << 16)
2289		| (mask_p[8] << 14) | (mask_p[7] << 12)
2290		| (mask_p[6] << 10) | (mask_p[5] << 8)
2291		| (mask_p[4] << 6) | (mask_p[3] << 4)
2292		| (mask_p[2] << 2) | (mask_p[1] << 0);
2293	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2294	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2295
2296	tmp_mask = (mask_p[30] << 28)
2297		| (mask_p[29] << 26) | (mask_p[28] << 24)
2298		| (mask_p[27] << 22) | (mask_p[26] << 20)
2299		| (mask_p[25] << 18) | (mask_p[24] << 16)
2300		| (mask_p[23] << 14) | (mask_p[22] << 12)
2301		| (mask_p[21] << 10) | (mask_p[20] << 8)
2302		| (mask_p[19] << 6) | (mask_p[18] << 4)
2303		| (mask_p[17] << 2) | (mask_p[16] << 0);
2304	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2305	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2306
2307	tmp_mask = (mask_p[45] << 28)
2308		| (mask_p[44] << 26) | (mask_p[43] << 24)
2309		| (mask_p[42] << 22) | (mask_p[41] << 20)
2310		| (mask_p[40] << 18) | (mask_p[39] << 16)
2311		| (mask_p[38] << 14) | (mask_p[37] << 12)
2312		| (mask_p[36] << 10) | (mask_p[35] << 8)
2313		| (mask_p[34] << 6) | (mask_p[33] << 4)
2314		| (mask_p[32] << 2) | (mask_p[31] << 0);
2315	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2316	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2317
2318	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2319		| (mask_p[59] << 26) | (mask_p[58] << 24)
2320		| (mask_p[57] << 22) | (mask_p[56] << 20)
2321		| (mask_p[55] << 18) | (mask_p[54] << 16)
2322		| (mask_p[53] << 14) | (mask_p[52] << 12)
2323		| (mask_p[51] << 10) | (mask_p[50] << 8)
2324		| (mask_p[49] << 6) | (mask_p[48] << 4)
2325		| (mask_p[47] << 2) | (mask_p[46] << 0);
2326	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2327	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2328}
2329
2330static void ath9k_enable_rfkill(struct ath_hw *ah)
2331{
2332	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2333		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2334
2335	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2336		    AR_GPIO_INPUT_MUX2_RFSILENT);
2337
2338	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2339	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2340}
2341
2342int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2343		    bool bChannelChange)
2344{
2345	u32 saveLedState;
2346	struct ath_softc *sc = ah->ah_sc;
2347	struct ath9k_channel *curchan = ah->curchan;
2348	u32 saveDefAntenna;
2349	u32 macStaId1;
2350	u64 tsf = 0;
2351	int i, rx_chainmask, r;
2352
2353	ah->extprotspacing = sc->ht_extprotspacing;
2354	ah->txchainmask = sc->tx_chainmask;
2355	ah->rxchainmask = sc->rx_chainmask;
2356
2357	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2358		return -EIO;
2359
2360	if (curchan && !ah->chip_fullsleep)
2361		ath9k_hw_getnf(ah, curchan);
2362
2363	if (bChannelChange &&
2364	    (ah->chip_fullsleep != true) &&
2365	    (ah->curchan != NULL) &&
2366	    (chan->channel != ah->curchan->channel) &&
2367	    ((chan->channelFlags & CHANNEL_ALL) ==
2368	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2369	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2370	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2371
2372		if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2373			ath9k_hw_loadnf(ah, ah->curchan);
2374			ath9k_hw_start_nfcal(ah);
2375			return 0;
2376		}
2377	}
2378
2379	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2380	if (saveDefAntenna == 0)
2381		saveDefAntenna = 1;
2382
2383	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2384
2385	/* For chips on which RTC reset is done, save TSF before it gets cleared */
2386	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2387		tsf = ath9k_hw_gettsf64(ah);
2388
2389	saveLedState = REG_READ(ah, AR_CFG_LED) &
2390		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2391		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2392
2393	ath9k_hw_mark_phy_inactive(ah);
2394
2395	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2396		REG_WRITE(ah,
2397			  AR9271_RESET_POWER_DOWN_CONTROL,
2398			  AR9271_RADIO_RF_RST);
2399		udelay(50);
2400	}
2401
2402	if (!ath9k_hw_chip_reset(ah, chan)) {
2403		DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2404		return -EINVAL;
2405	}
2406
2407	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2408		ah->htc_reset_init = false;
2409		REG_WRITE(ah,
2410			  AR9271_RESET_POWER_DOWN_CONTROL,
2411			  AR9271_GATE_MAC_CTL);
2412		udelay(50);
2413	}
2414
2415	/* Restore TSF */
2416	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2417		ath9k_hw_settsf64(ah, tsf);
2418
2419	if (AR_SREV_9280_10_OR_LATER(ah))
2420		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2421
2422	if (AR_SREV_9287_12_OR_LATER(ah)) {
2423		/* Enable ASYNC FIFO */
2424		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2425				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2426		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2427		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2428				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2429		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2430				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2431	}
2432	r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2433	if (r)
2434		return r;
2435
2436	/* Setup MFP options for CCMP */
2437	if (AR_SREV_9280_20_OR_LATER(ah)) {
2438		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2439		 * frames when constructing CCMP AAD. */
2440		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2441			      0xc7ff);
2442		ah->sw_mgmt_crypto = false;
2443	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2444		/* Disable hardware crypto for management frames */
2445		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2446			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2447		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2448			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2449		ah->sw_mgmt_crypto = true;
2450	} else
2451		ah->sw_mgmt_crypto = true;
2452
2453	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2454		ath9k_hw_set_delta_slope(ah, chan);
2455
2456	if (AR_SREV_9280_10_OR_LATER(ah))
2457		ath9k_hw_9280_spur_mitigate(ah, chan);
2458	else
2459		ath9k_hw_spur_mitigate(ah, chan);
2460
2461	ah->eep_ops->set_board_values(ah, chan);
2462
2463	ath9k_hw_decrease_chain_power(ah, chan);
2464
2465	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2466	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2467		  | macStaId1
2468		  | AR_STA_ID1_RTS_USE_DEF
2469		  | (ah->config.
2470		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2471		  | ah->sta_id1_defaults);
2472	ath9k_hw_set_operating_mode(ah, ah->opmode);
2473
2474	REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2475	REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2476
2477	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2478
2479	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2480	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2481		  ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2482
2483	REG_WRITE(ah, AR_ISR, ~0);
2484
2485	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2486
2487	if (AR_SREV_9280_10_OR_LATER(ah))
2488		ath9k_hw_ar9280_set_channel(ah, chan);
2489	else
2490		if (!(ath9k_hw_set_channel(ah, chan)))
2491			return -EIO;
2492
2493	for (i = 0; i < AR_NUM_DCU; i++)
2494		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2495
2496	ah->intr_txqs = 0;
2497	for (i = 0; i < ah->caps.total_queues; i++)
2498		ath9k_hw_resettxqueue(ah, i);
2499
2500	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2501	ath9k_hw_init_qos(ah);
2502
2503	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2504		ath9k_enable_rfkill(ah);
2505
2506	ath9k_hw_init_user_settings(ah);
2507
2508	if (AR_SREV_9287_12_OR_LATER(ah)) {
2509		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2510			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2511		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2512			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2513		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2514			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2515
2516		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2517		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2518
2519		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2520			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2521		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2522			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2523	}
2524	if (AR_SREV_9287_12_OR_LATER(ah)) {
2525		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2526				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2527	}
2528
2529	REG_WRITE(ah, AR_STA_ID1,
2530		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2531
2532	ath9k_hw_set_dma(ah);
2533
2534	REG_WRITE(ah, AR_OBS, 8);
2535
2536	if (ah->config.intr_mitigation) {
2537		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2538		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2539	}
2540
2541	ath9k_hw_init_bb(ah, chan);
2542
2543	if (!ath9k_hw_init_cal(ah, chan))
2544		return -EIO;
2545
2546	rx_chainmask = ah->rxchainmask;
2547	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2548		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2549		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2550	}
2551
2552	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2553
2554	/*
2555	 * For big endian systems turn on swapping for descriptors
2556	 */
2557	if (AR_SREV_9100(ah)) {
2558		u32 mask;
2559		mask = REG_READ(ah, AR_CFG);
2560		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2561			DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2562				"CFG Byte Swap Set 0x%x\n", mask);
2563		} else {
2564			mask =
2565				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2566			REG_WRITE(ah, AR_CFG, mask);
2567			DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2568				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2569		}
2570	} else {
2571		/* Configure AR9271 target WLAN */
2572                if (AR_SREV_9271(ah))
2573			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2574#ifdef __BIG_ENDIAN
2575                else
2576			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2577#endif
2578	}
2579
2580	if (ah->ah_sc->sc_flags & SC_OP_BTCOEX_ENABLED)
2581		ath9k_hw_btcoex_enable(ah);
2582
2583	return 0;
2584}
2585
2586/************************/
2587/* Key Cache Management */
2588/************************/
2589
2590bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2591{
2592	u32 keyType;
2593
2594	if (entry >= ah->caps.keycache_size) {
2595		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2596			"keychache entry %u out of range\n", entry);
2597		return false;
2598	}
2599
2600	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2601
2602	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2603	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2604	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2605	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2606	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2607	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2608	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2609	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2610
2611	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2612		u16 micentry = entry + 64;
2613
2614		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2615		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2616		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2617		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2618
2619	}
2620
2621	return true;
2622}
2623
2624bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2625{
2626	u32 macHi, macLo;
2627
2628	if (entry >= ah->caps.keycache_size) {
2629		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2630			"keychache entry %u out of range\n", entry);
2631		return false;
2632	}
2633
2634	if (mac != NULL) {
2635		macHi = (mac[5] << 8) | mac[4];
2636		macLo = (mac[3] << 24) |
2637			(mac[2] << 16) |
2638			(mac[1] << 8) |
2639			mac[0];
2640		macLo >>= 1;
2641		macLo |= (macHi & 1) << 31;
2642		macHi >>= 1;
2643	} else {
2644		macLo = macHi = 0;
2645	}
2646	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2647	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2648
2649	return true;
2650}
2651
2652bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2653				 const struct ath9k_keyval *k,
2654				 const u8 *mac)
2655{
2656	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2657	u32 key0, key1, key2, key3, key4;
2658	u32 keyType;
2659
2660	if (entry >= pCap->keycache_size) {
2661		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2662			"keycache entry %u out of range\n", entry);
2663		return false;
2664	}
2665
2666	switch (k->kv_type) {
2667	case ATH9K_CIPHER_AES_OCB:
2668		keyType = AR_KEYTABLE_TYPE_AES;
2669		break;
2670	case ATH9K_CIPHER_AES_CCM:
2671		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2672			DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2673				"AES-CCM not supported by mac rev 0x%x\n",
2674				ah->hw_version.macRev);
2675			return false;
2676		}
2677		keyType = AR_KEYTABLE_TYPE_CCM;
2678		break;
2679	case ATH9K_CIPHER_TKIP:
2680		keyType = AR_KEYTABLE_TYPE_TKIP;
2681		if (ATH9K_IS_MIC_ENABLED(ah)
2682		    && entry + 64 >= pCap->keycache_size) {
2683			DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2684				"entry %u inappropriate for TKIP\n", entry);
2685			return false;
2686		}
2687		break;
2688	case ATH9K_CIPHER_WEP:
2689		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2690			DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2691				"WEP key length %u too small\n", k->kv_len);
2692			return false;
2693		}
2694		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2695			keyType = AR_KEYTABLE_TYPE_40;
2696		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2697			keyType = AR_KEYTABLE_TYPE_104;
2698		else
2699			keyType = AR_KEYTABLE_TYPE_128;
2700		break;
2701	case ATH9K_CIPHER_CLR:
2702		keyType = AR_KEYTABLE_TYPE_CLR;
2703		break;
2704	default:
2705		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2706			"cipher %u not supported\n", k->kv_type);
2707		return false;
2708	}
2709
2710	key0 = get_unaligned_le32(k->kv_val + 0);
2711	key1 = get_unaligned_le16(k->kv_val + 4);
2712	key2 = get_unaligned_le32(k->kv_val + 6);
2713	key3 = get_unaligned_le16(k->kv_val + 10);
2714	key4 = get_unaligned_le32(k->kv_val + 12);
2715	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2716		key4 &= 0xff;
2717
2718	/*
2719	 * Note: Key cache registers access special memory area that requires
2720	 * two 32-bit writes to actually update the values in the internal
2721	 * memory. Consequently, the exact order and pairs used here must be
2722	 * maintained.
2723	 */
2724
2725	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2726		u16 micentry = entry + 64;
2727
2728		/*
2729		 * Write inverted key[47:0] first to avoid Michael MIC errors
2730		 * on frames that could be sent or received at the same time.
2731		 * The correct key will be written in the end once everything
2732		 * else is ready.
2733		 */
2734		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2735		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2736
2737		/* Write key[95:48] */
2738		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2739		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2740
2741		/* Write key[127:96] and key type */
2742		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2743		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2744
2745		/* Write MAC address for the entry */
2746		(void) ath9k_hw_keysetmac(ah, entry, mac);
2747
2748		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2749			/*
2750			 * TKIP uses two key cache entries:
2751			 * Michael MIC TX/RX keys in the same key cache entry
2752			 * (idx = main index + 64):
2753			 * key0 [31:0] = RX key [31:0]
2754			 * key1 [15:0] = TX key [31:16]
2755			 * key1 [31:16] = reserved
2756			 * key2 [31:0] = RX key [63:32]
2757			 * key3 [15:0] = TX key [15:0]
2758			 * key3 [31:16] = reserved
2759			 * key4 [31:0] = TX key [63:32]
2760			 */
2761			u32 mic0, mic1, mic2, mic3, mic4;
2762
2763			mic0 = get_unaligned_le32(k->kv_mic + 0);
2764			mic2 = get_unaligned_le32(k->kv_mic + 4);
2765			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2766			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2767			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2768
2769			/* Write RX[31:0] and TX[31:16] */
2770			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2771			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2772
2773			/* Write RX[63:32] and TX[15:0] */
2774			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2775			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2776
2777			/* Write TX[63:32] and keyType(reserved) */
2778			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2779			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2780				  AR_KEYTABLE_TYPE_CLR);
2781
2782		} else {
2783			/*
2784			 * TKIP uses four key cache entries (two for group
2785			 * keys):
2786			 * Michael MIC TX/RX keys are in different key cache
2787			 * entries (idx = main index + 64 for TX and
2788			 * main index + 32 + 96 for RX):
2789			 * key0 [31:0] = TX/RX MIC key [31:0]
2790			 * key1 [31:0] = reserved
2791			 * key2 [31:0] = TX/RX MIC key [63:32]
2792			 * key3 [31:0] = reserved
2793			 * key4 [31:0] = reserved
2794			 *
2795			 * Upper layer code will call this function separately
2796			 * for TX and RX keys when these registers offsets are
2797			 * used.
2798			 */
2799			u32 mic0, mic2;
2800
2801			mic0 = get_unaligned_le32(k->kv_mic + 0);
2802			mic2 = get_unaligned_le32(k->kv_mic + 4);
2803
2804			/* Write MIC key[31:0] */
2805			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2806			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2807
2808			/* Write MIC key[63:32] */
2809			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2810			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2811
2812			/* Write TX[63:32] and keyType(reserved) */
2813			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2814			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2815				  AR_KEYTABLE_TYPE_CLR);
2816		}
2817
2818		/* MAC address registers are reserved for the MIC entry */
2819		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2820		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2821
2822		/*
2823		 * Write the correct (un-inverted) key[47:0] last to enable
2824		 * TKIP now that all other registers are set with correct
2825		 * values.
2826		 */
2827		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2828		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2829	} else {
2830		/* Write key[47:0] */
2831		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2832		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2833
2834		/* Write key[95:48] */
2835		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2836		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2837
2838		/* Write key[127:96] and key type */
2839		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2840		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2841
2842		/* Write MAC address for the entry */
2843		(void) ath9k_hw_keysetmac(ah, entry, mac);
2844	}
2845
2846	return true;
2847}
2848
2849bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2850{
2851	if (entry < ah->caps.keycache_size) {
2852		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2853		if (val & AR_KEYTABLE_VALID)
2854			return true;
2855	}
2856	return false;
2857}
2858
2859/******************************/
2860/* Power Management (Chipset) */
2861/******************************/
2862
2863static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2864{
2865	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2866	if (setChip) {
2867		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2868			    AR_RTC_FORCE_WAKE_EN);
2869		if (!AR_SREV_9100(ah))
2870			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2871
2872		REG_CLR_BIT(ah, (AR_RTC_RESET),
2873			    AR_RTC_RESET_EN);
2874	}
2875}
2876
2877static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2878{
2879	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2880	if (setChip) {
2881		struct ath9k_hw_capabilities *pCap = &ah->caps;
2882
2883		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2884			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2885				  AR_RTC_FORCE_WAKE_ON_INT);
2886		} else {
2887			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2888				    AR_RTC_FORCE_WAKE_EN);
2889		}
2890	}
2891}
2892
2893static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2894{
2895	u32 val;
2896	int i;
2897
2898	if (setChip) {
2899		if ((REG_READ(ah, AR_RTC_STATUS) &
2900		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2901			if (ath9k_hw_set_reset_reg(ah,
2902					   ATH9K_RESET_POWER_ON) != true) {
2903				return false;
2904			}
2905		}
2906		if (AR_SREV_9100(ah))
2907			REG_SET_BIT(ah, AR_RTC_RESET,
2908				    AR_RTC_RESET_EN);
2909
2910		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2911			    AR_RTC_FORCE_WAKE_EN);
2912		udelay(50);
2913
2914		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2915			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2916			if (val == AR_RTC_STATUS_ON)
2917				break;
2918			udelay(50);
2919			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2920				    AR_RTC_FORCE_WAKE_EN);
2921		}
2922		if (i == 0) {
2923			DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2924				"Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2925			return false;
2926		}
2927	}
2928
2929	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2930
2931	return true;
2932}
2933
2934static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2935				     enum ath9k_power_mode mode)
2936{
2937	int status = true, setChip = true;
2938	static const char *modes[] = {
2939		"AWAKE",
2940		"FULL-SLEEP",
2941		"NETWORK SLEEP",
2942		"UNDEFINED"
2943	};
2944
2945	if (ah->power_mode == mode)
2946		return status;
2947
2948	DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2949		modes[ah->power_mode], modes[mode]);
2950
2951	switch (mode) {
2952	case ATH9K_PM_AWAKE:
2953		status = ath9k_hw_set_power_awake(ah, setChip);
2954		break;
2955	case ATH9K_PM_FULL_SLEEP:
2956		ath9k_set_power_sleep(ah, setChip);
2957		ah->chip_fullsleep = true;
2958		break;
2959	case ATH9K_PM_NETWORK_SLEEP:
2960		ath9k_set_power_network_sleep(ah, setChip);
2961		break;
2962	default:
2963		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2964			"Unknown power mode %u\n", mode);
2965		return false;
2966	}
2967	ah->power_mode = mode;
2968
2969	return status;
2970}
2971
2972bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2973{
2974	unsigned long flags;
2975	bool ret;
2976
2977	spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2978	ret = ath9k_hw_setpower_nolock(ah, mode);
2979	spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2980
2981	return ret;
2982}
2983
2984void ath9k_ps_wakeup(struct ath_softc *sc)
2985{
2986	unsigned long flags;
2987
2988	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2989	if (++sc->ps_usecount != 1)
2990		goto unlock;
2991
2992	ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2993
2994 unlock:
2995	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2996}
2997
2998void ath9k_ps_restore(struct ath_softc *sc)
2999{
3000	unsigned long flags;
3001
3002	spin_lock_irqsave(&sc->sc_pm_lock, flags);
3003	if (--sc->ps_usecount != 0)
3004		goto unlock;
3005
3006	if (sc->ps_enabled &&
3007	    !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
3008			      SC_OP_WAIT_FOR_CAB |
3009			      SC_OP_WAIT_FOR_PSPOLL_DATA |
3010			      SC_OP_WAIT_FOR_TX_ACK)))
3011		ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
3012
3013 unlock:
3014	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
3015}
3016
3017/*
3018 * Helper for ASPM support.
3019 *
3020 * Disable PLL when in L0s as well as receiver clock when in L1.
3021 * This power saving option must be enabled through the SerDes.
3022 *
3023 * Programming the SerDes must go through the same 288 bit serial shift
3024 * register as the other analog registers.  Hence the 9 writes.
3025 */
3026void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
3027{
3028	u8 i;
3029	u32 val;
3030
3031	if (ah->is_pciexpress != true)
3032		return;
3033
3034	/* Do not touch SerDes registers */
3035	if (ah->config.pcie_powersave_enable == 2)
3036		return;
3037
3038	/* Nothing to do on restore for 11N */
3039	if (!restore) {
3040		if (AR_SREV_9280_20_OR_LATER(ah)) {
3041			/*
3042			 * AR9280 2.0 or later chips use SerDes values from the
3043			 * initvals.h initialized depending on chipset during
3044			 * ath9k_hw_init()
3045			 */
3046			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
3047				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
3048					  INI_RA(&ah->iniPcieSerdes, i, 1));
3049			}
3050		} else if (AR_SREV_9280(ah) &&
3051			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
3052			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3053			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3054
3055			/* RX shut off when elecidle is asserted */
3056			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3057			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3058			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3059
3060			/* Shut off CLKREQ active in L1 */
3061			if (ah->config.pcie_clock_req)
3062				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3063			else
3064				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3065
3066			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3067			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3068			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3069
3070			/* Load the new settings */
3071			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3072
3073		} else {
3074			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3075			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3076
3077			/* RX shut off when elecidle is asserted */
3078			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3079			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3080			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3081
3082			/*
3083			 * Ignore ah->ah_config.pcie_clock_req setting for
3084			 * pre-AR9280 11n
3085			 */
3086			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3087
3088			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3089			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3090			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3091
3092			/* Load the new settings */
3093			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3094		}
3095
3096		udelay(1000);
3097
3098		/* set bit 19 to allow forcing of pcie core into L1 state */
3099		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3100
3101		/* Several PCIe massages to ensure proper behaviour */
3102		if (ah->config.pcie_waen) {
3103			val = ah->config.pcie_waen;
3104			if (!power_off)
3105				val &= (~AR_WA_D3_L1_DISABLE);
3106		} else {
3107			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3108			    AR_SREV_9287(ah)) {
3109				val = AR9285_WA_DEFAULT;
3110				if (!power_off)
3111					val &= (~AR_WA_D3_L1_DISABLE);
3112			} else if (AR_SREV_9280(ah)) {
3113				/*
3114				 * On AR9280 chips bit 22 of 0x4004 needs to be
3115				 * set otherwise card may disappear.
3116				 */
3117				val = AR9280_WA_DEFAULT;
3118				if (!power_off)
3119					val &= (~AR_WA_D3_L1_DISABLE);
3120			} else
3121				val = AR_WA_DEFAULT;
3122		}
3123
3124		REG_WRITE(ah, AR_WA, val);
3125	}
3126
3127	if (power_off) {
3128		/*
3129		 * Set PCIe workaround bits
3130		 * bit 14 in WA register (disable L1) should only
3131		 * be set when device enters D3 and be cleared
3132		 * when device comes back to D0.
3133		 */
3134		if (ah->config.pcie_waen) {
3135			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3136				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3137		} else {
3138			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3139			      AR_SREV_9287(ah)) &&
3140			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3141			    (AR_SREV_9280(ah) &&
3142			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3143				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3144			}
3145		}
3146	}
3147}
3148
3149/**********************/
3150/* Interrupt Handling */
3151/**********************/
3152
3153bool ath9k_hw_intrpend(struct ath_hw *ah)
3154{
3155	u32 host_isr;
3156
3157	if (AR_SREV_9100(ah))
3158		return true;
3159
3160	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3161	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3162		return true;
3163
3164	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3165	if ((host_isr & AR_INTR_SYNC_DEFAULT)
3166	    && (host_isr != AR_INTR_SPURIOUS))
3167		return true;
3168
3169	return false;
3170}
3171
3172bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3173{
3174	u32 isr = 0;
3175	u32 mask2 = 0;
3176	struct ath9k_hw_capabilities *pCap = &ah->caps;
3177	u32 sync_cause = 0;
3178	bool fatal_int = false;
3179
3180	if (!AR_SREV_9100(ah)) {
3181		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3182			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3183			    == AR_RTC_STATUS_ON) {
3184				isr = REG_READ(ah, AR_ISR);
3185			}
3186		}
3187
3188		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3189			AR_INTR_SYNC_DEFAULT;
3190
3191		*masked = 0;
3192
3193		if (!isr && !sync_cause)
3194			return false;
3195	} else {
3196		*masked = 0;
3197		isr = REG_READ(ah, AR_ISR);
3198	}
3199
3200	if (isr) {
3201		if (isr & AR_ISR_BCNMISC) {
3202			u32 isr2;
3203			isr2 = REG_READ(ah, AR_ISR_S2);
3204			if (isr2 & AR_ISR_S2_TIM)
3205				mask2 |= ATH9K_INT_TIM;
3206			if (isr2 & AR_ISR_S2_DTIM)
3207				mask2 |= ATH9K_INT_DTIM;
3208			if (isr2 & AR_ISR_S2_DTIMSYNC)
3209				mask2 |= ATH9K_INT_DTIMSYNC;
3210			if (isr2 & (AR_ISR_S2_CABEND))
3211				mask2 |= ATH9K_INT_CABEND;
3212			if (isr2 & AR_ISR_S2_GTT)
3213				mask2 |= ATH9K_INT_GTT;
3214			if (isr2 & AR_ISR_S2_CST)
3215				mask2 |= ATH9K_INT_CST;
3216			if (isr2 & AR_ISR_S2_TSFOOR)
3217				mask2 |= ATH9K_INT_TSFOOR;
3218		}
3219
3220		isr = REG_READ(ah, AR_ISR_RAC);
3221		if (isr == 0xffffffff) {
3222			*masked = 0;
3223			return false;
3224		}
3225
3226		*masked = isr & ATH9K_INT_COMMON;
3227
3228		if (ah->config.intr_mitigation) {
3229			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3230				*masked |= ATH9K_INT_RX;
3231		}
3232
3233		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3234			*masked |= ATH9K_INT_RX;
3235		if (isr &
3236		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3237		     AR_ISR_TXEOL)) {
3238			u32 s0_s, s1_s;
3239
3240			*masked |= ATH9K_INT_TX;
3241
3242			s0_s = REG_READ(ah, AR_ISR_S0_S);
3243			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3244			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3245
3246			s1_s = REG_READ(ah, AR_ISR_S1_S);
3247			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3248			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3249		}
3250
3251		if (isr & AR_ISR_RXORN) {
3252			DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3253				"receive FIFO overrun interrupt\n");
3254		}
3255
3256		if (!AR_SREV_9100(ah)) {
3257			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3258				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3259				if (isr5 & AR_ISR_S5_TIM_TIMER)
3260					*masked |= ATH9K_INT_TIM_TIMER;
3261			}
3262		}
3263
3264		*masked |= mask2;
3265	}
3266
3267	if (AR_SREV_9100(ah))
3268		return true;
3269
3270	if (isr & AR_ISR_GENTMR) {
3271		u32 s5_s;
3272
3273		s5_s = REG_READ(ah, AR_ISR_S5_S);
3274		if (isr & AR_ISR_GENTMR) {
3275			ah->intr_gen_timer_trigger =
3276				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3277
3278			ah->intr_gen_timer_thresh =
3279				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3280
3281			if (ah->intr_gen_timer_trigger)
3282				*masked |= ATH9K_INT_GENTIMER;
3283
3284		}
3285	}
3286
3287	if (sync_cause) {
3288		fatal_int =
3289			(sync_cause &
3290			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3291			? true : false;
3292
3293		if (fatal_int) {
3294			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3295				DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3296					"received PCI FATAL interrupt\n");
3297			}
3298			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3299				DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3300					"received PCI PERR interrupt\n");
3301			}
3302			*masked |= ATH9K_INT_FATAL;
3303		}
3304		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3305			DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3306				"AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3307			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3308			REG_WRITE(ah, AR_RC, 0);
3309			*masked |= ATH9K_INT_FATAL;
3310		}
3311		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3312			DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3313				"AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3314		}
3315
3316		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3317		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3318	}
3319
3320	return true;
3321}
3322
3323enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3324{
3325	u32 omask = ah->mask_reg;
3326	u32 mask, mask2;
3327	struct ath9k_hw_capabilities *pCap = &ah->caps;
3328
3329	DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3330
3331	if (omask & ATH9K_INT_GLOBAL) {
3332		DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3333		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3334		(void) REG_READ(ah, AR_IER);
3335		if (!AR_SREV_9100(ah)) {
3336			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3337			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3338
3339			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3340			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3341		}
3342	}
3343
3344	mask = ints & ATH9K_INT_COMMON;
3345	mask2 = 0;
3346
3347	if (ints & ATH9K_INT_TX) {
3348		if (ah->txok_interrupt_mask)
3349			mask |= AR_IMR_TXOK;
3350		if (ah->txdesc_interrupt_mask)
3351			mask |= AR_IMR_TXDESC;
3352		if (ah->txerr_interrupt_mask)
3353			mask |= AR_IMR_TXERR;
3354		if (ah->txeol_interrupt_mask)
3355			mask |= AR_IMR_TXEOL;
3356	}
3357	if (ints & ATH9K_INT_RX) {
3358		mask |= AR_IMR_RXERR;
3359		if (ah->config.intr_mitigation)
3360			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3361		else
3362			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3363		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3364			mask |= AR_IMR_GENTMR;
3365	}
3366
3367	if (ints & (ATH9K_INT_BMISC)) {
3368		mask |= AR_IMR_BCNMISC;
3369		if (ints & ATH9K_INT_TIM)
3370			mask2 |= AR_IMR_S2_TIM;
3371		if (ints & ATH9K_INT_DTIM)
3372			mask2 |= AR_IMR_S2_DTIM;
3373		if (ints & ATH9K_INT_DTIMSYNC)
3374			mask2 |= AR_IMR_S2_DTIMSYNC;
3375		if (ints & ATH9K_INT_CABEND)
3376			mask2 |= AR_IMR_S2_CABEND;
3377		if (ints & ATH9K_INT_TSFOOR)
3378			mask2 |= AR_IMR_S2_TSFOOR;
3379	}
3380
3381	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3382		mask |= AR_IMR_BCNMISC;
3383		if (ints & ATH9K_INT_GTT)
3384			mask2 |= AR_IMR_S2_GTT;
3385		if (ints & ATH9K_INT_CST)
3386			mask2 |= AR_IMR_S2_CST;
3387	}
3388
3389	DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3390	REG_WRITE(ah, AR_IMR, mask);
3391	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3392					   AR_IMR_S2_DTIM |
3393					   AR_IMR_S2_DTIMSYNC |
3394					   AR_IMR_S2_CABEND |
3395					   AR_IMR_S2_CABTO |
3396					   AR_IMR_S2_TSFOOR |
3397					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
3398	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3399	ah->mask_reg = ints;
3400
3401	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3402		if (ints & ATH9K_INT_TIM_TIMER)
3403			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3404		else
3405			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3406	}
3407
3408	if (ints & ATH9K_INT_GLOBAL) {
3409		DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3410		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3411		if (!AR_SREV_9100(ah)) {
3412			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3413				  AR_INTR_MAC_IRQ);
3414			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3415
3416
3417			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3418				  AR_INTR_SYNC_DEFAULT);
3419			REG_WRITE(ah, AR_INTR_SYNC_MASK,
3420				  AR_INTR_SYNC_DEFAULT);
3421		}
3422		DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3423			 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3424	}
3425
3426	return omask;
3427}
3428
3429/*******************/
3430/* Beacon Handling */
3431/*******************/
3432
3433void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3434{
3435	int flags = 0;
3436
3437	ah->beacon_interval = beacon_period;
3438
3439	switch (ah->opmode) {
3440	case NL80211_IFTYPE_STATION:
3441	case NL80211_IFTYPE_MONITOR:
3442		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3443		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3444		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3445		flags |= AR_TBTT_TIMER_EN;
3446		break;
3447	case NL80211_IFTYPE_ADHOC:
3448	case NL80211_IFTYPE_MESH_POINT:
3449		REG_SET_BIT(ah, AR_TXCFG,
3450			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3451		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3452			  TU_TO_USEC(next_beacon +
3453				     (ah->atim_window ? ah->
3454				      atim_window : 1)));
3455		flags |= AR_NDP_TIMER_EN;
3456	case NL80211_IFTYPE_AP:
3457		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3458		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3459			  TU_TO_USEC(next_beacon -
3460				     ah->config.
3461				     dma_beacon_response_time));
3462		REG_WRITE(ah, AR_NEXT_SWBA,
3463			  TU_TO_USEC(next_beacon -
3464				     ah->config.
3465				     sw_beacon_response_time));
3466		flags |=
3467			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3468		break;
3469	default:
3470		DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3471			"%s: unsupported opmode: %d\n",
3472			__func__, ah->opmode);
3473		return;
3474		break;
3475	}
3476
3477	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3478	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3479	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3480	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3481
3482	beacon_period &= ~ATH9K_BEACON_ENA;
3483	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3484		beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3485		ath9k_hw_reset_tsf(ah);
3486	}
3487
3488	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3489}
3490
3491void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3492				    const struct ath9k_beacon_state *bs)
3493{
3494	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3495	struct ath9k_hw_capabilities *pCap = &ah->caps;
3496
3497	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3498
3499	REG_WRITE(ah, AR_BEACON_PERIOD,
3500		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3501	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3502		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3503
3504	REG_RMW_FIELD(ah, AR_RSSI_THR,
3505		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3506
3507	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3508
3509	if (bs->bs_sleepduration > beaconintval)
3510		beaconintval = bs->bs_sleepduration;
3511
3512	dtimperiod = bs->bs_dtimperiod;
3513	if (bs->bs_sleepduration > dtimperiod)
3514		dtimperiod = bs->bs_sleepduration;
3515
3516	if (beaconintval == dtimperiod)
3517		nextTbtt = bs->bs_nextdtim;
3518	else
3519		nextTbtt = bs->bs_nexttbtt;
3520
3521	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3522	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3523	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3524	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3525
3526	REG_WRITE(ah, AR_NEXT_DTIM,
3527		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3528	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3529
3530	REG_WRITE(ah, AR_SLEEP1,
3531		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3532		  | AR_SLEEP1_ASSUME_DTIM);
3533
3534	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3535		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3536	else
3537		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3538
3539	REG_WRITE(ah, AR_SLEEP2,
3540		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3541
3542	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3543	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3544
3545	REG_SET_BIT(ah, AR_TIMER_MODE,
3546		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3547		    AR_DTIM_TIMER_EN);
3548
3549	/* TSF Out of Range Threshold */
3550	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3551}
3552
3553/*******************/
3554/* HW Capabilities */
3555/*******************/
3556
3557void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3558{
3559	struct ath9k_hw_capabilities *pCap = &ah->caps;
3560	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3561	struct ath_btcoex_info *btcoex_info = &ah->ah_sc->btcoex_info;
3562
3563	u16 capField = 0, eeval;
3564
3565	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3566	regulatory->current_rd = eeval;
3567
3568	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3569	if (AR_SREV_9285_10_OR_LATER(ah))
3570		eeval |= AR9285_RDEXT_DEFAULT;
3571	regulatory->current_rd_ext = eeval;
3572
3573	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3574
3575	if (ah->opmode != NL80211_IFTYPE_AP &&
3576	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3577		if (regulatory->current_rd == 0x64 ||
3578		    regulatory->current_rd == 0x65)
3579			regulatory->current_rd += 5;
3580		else if (regulatory->current_rd == 0x41)
3581			regulatory->current_rd = 0x43;
3582		DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3583			"regdomain mapped to 0x%x\n", regulatory->current_rd);
3584	}
3585
3586	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3587	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3588
3589	if (eeval & AR5416_OPFLAGS_11A) {
3590		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3591		if (ah->config.ht_enable) {
3592			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3593				set_bit(ATH9K_MODE_11NA_HT20,
3594					pCap->wireless_modes);
3595			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3596				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3597					pCap->wireless_modes);
3598				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3599					pCap->wireless_modes);
3600			}
3601		}
3602	}
3603
3604	if (eeval & AR5416_OPFLAGS_11G) {
3605		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3606		if (ah->config.ht_enable) {
3607			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3608				set_bit(ATH9K_MODE_11NG_HT20,
3609					pCap->wireless_modes);
3610			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3611				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3612					pCap->wireless_modes);
3613				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3614					pCap->wireless_modes);
3615			}
3616		}
3617	}
3618
3619	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3620	/*
3621	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3622	 * the EEPROM.
3623	 */
3624	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3625	    !(eeval & AR5416_OPFLAGS_11A) &&
3626	    !(AR_SREV_9271(ah)))
3627		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3628		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3629	else
3630		/* Use rx_chainmask from EEPROM. */
3631		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3632
3633	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3634		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3635
3636	pCap->low_2ghz_chan = 2312;
3637	pCap->high_2ghz_chan = 2732;
3638
3639	pCap->low_5ghz_chan = 4920;
3640	pCap->high_5ghz_chan = 6100;
3641
3642	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3643	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3644	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3645
3646	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3647	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3648	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3649
3650	if (ah->config.ht_enable)
3651		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3652	else
3653		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3654
3655	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3656	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3657	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3658	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3659
3660	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3661		pCap->total_queues =
3662			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3663	else
3664		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3665
3666	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3667		pCap->keycache_size =
3668			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3669	else
3670		pCap->keycache_size = AR_KEYTABLE_SIZE;
3671
3672	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3673	pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3674
3675	if (AR_SREV_9285_10_OR_LATER(ah))
3676		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3677	else if (AR_SREV_9280_10_OR_LATER(ah))
3678		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3679	else
3680		pCap->num_gpio_pins = AR_NUM_GPIO;
3681
3682	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3683		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3684		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3685	} else {
3686		pCap->rts_aggr_limit = (8 * 1024);
3687	}
3688
3689	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3690
3691#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3692	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3693	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3694		ah->rfkill_gpio =
3695			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3696		ah->rfkill_polarity =
3697			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3698
3699		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3700	}
3701#endif
3702
3703	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3704
3705	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3706		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3707	else
3708		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3709
3710	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3711		pCap->reg_cap =
3712			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3713			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3714			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3715			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3716	} else {
3717		pCap->reg_cap =
3718			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3719			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3720	}
3721
3722	pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3723
3724	pCap->num_antcfg_5ghz =
3725		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3726	pCap->num_antcfg_2ghz =
3727		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3728
3729	if (AR_SREV_9280_10_OR_LATER(ah) &&
3730	    ath_btcoex_supported(ah->hw_version.subsysid)) {
3731		btcoex_info->btactive_gpio = ATH_BTACTIVE_GPIO;
3732		btcoex_info->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3733
3734		if (AR_SREV_9285(ah)) {
3735			btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_3WIRE;
3736			btcoex_info->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3737		} else {
3738			btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_2WIRE;
3739		}
3740	} else {
3741		btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_NONE;
3742	}
3743}
3744
3745bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3746			    u32 capability, u32 *result)
3747{
3748	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3749	switch (type) {
3750	case ATH9K_CAP_CIPHER:
3751		switch (capability) {
3752		case ATH9K_CIPHER_AES_CCM:
3753		case ATH9K_CIPHER_AES_OCB:
3754		case ATH9K_CIPHER_TKIP:
3755		case ATH9K_CIPHER_WEP:
3756		case ATH9K_CIPHER_MIC:
3757		case ATH9K_CIPHER_CLR:
3758			return true;
3759		default:
3760			return false;
3761		}
3762	case ATH9K_CAP_TKIP_MIC:
3763		switch (capability) {
3764		case 0:
3765			return true;
3766		case 1:
3767			return (ah->sta_id1_defaults &
3768				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3769			false;
3770		}
3771	case ATH9K_CAP_TKIP_SPLIT:
3772		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3773			false : true;
3774	case ATH9K_CAP_DIVERSITY:
3775		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3776			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3777			true : false;
3778	case ATH9K_CAP_MCAST_KEYSRCH:
3779		switch (capability) {
3780		case 0:
3781			return true;
3782		case 1:
3783			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3784				return false;
3785			} else {
3786				return (ah->sta_id1_defaults &
3787					AR_STA_ID1_MCAST_KSRCH) ? true :
3788					false;
3789			}
3790		}
3791		return false;
3792	case ATH9K_CAP_TXPOW:
3793		switch (capability) {
3794		case 0:
3795			return 0;
3796		case 1:
3797			*result = regulatory->power_limit;
3798			return 0;
3799		case 2:
3800			*result = regulatory->max_power_level;
3801			return 0;
3802		case 3:
3803			*result = regulatory->tp_scale;
3804			return 0;
3805		}
3806		return false;
3807	case ATH9K_CAP_DS:
3808		return (AR_SREV_9280_20_OR_LATER(ah) &&
3809			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3810			? false : true;
3811	default:
3812		return false;
3813	}
3814}
3815
3816bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3817			    u32 capability, u32 setting, int *status)
3818{
3819	u32 v;
3820
3821	switch (type) {
3822	case ATH9K_CAP_TKIP_MIC:
3823		if (setting)
3824			ah->sta_id1_defaults |=
3825				AR_STA_ID1_CRPT_MIC_ENABLE;
3826		else
3827			ah->sta_id1_defaults &=
3828				~AR_STA_ID1_CRPT_MIC_ENABLE;
3829		return true;
3830	case ATH9K_CAP_DIVERSITY:
3831		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3832		if (setting)
3833			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3834		else
3835			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3836		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3837		return true;
3838	case ATH9K_CAP_MCAST_KEYSRCH:
3839		if (setting)
3840			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3841		else
3842			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3843		return true;
3844	default:
3845		return false;
3846	}
3847}
3848
3849/****************************/
3850/* GPIO / RFKILL / Antennae */
3851/****************************/
3852
3853static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3854					 u32 gpio, u32 type)
3855{
3856	int addr;
3857	u32 gpio_shift, tmp;
3858
3859	if (gpio > 11)
3860		addr = AR_GPIO_OUTPUT_MUX3;
3861	else if (gpio > 5)
3862		addr = AR_GPIO_OUTPUT_MUX2;
3863	else
3864		addr = AR_GPIO_OUTPUT_MUX1;
3865
3866	gpio_shift = (gpio % 6) * 5;
3867
3868	if (AR_SREV_9280_20_OR_LATER(ah)
3869	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3870		REG_RMW(ah, addr, (type << gpio_shift),
3871			(0x1f << gpio_shift));
3872	} else {
3873		tmp = REG_READ(ah, addr);
3874		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3875		tmp &= ~(0x1f << gpio_shift);
3876		tmp |= (type << gpio_shift);
3877		REG_WRITE(ah, addr, tmp);
3878	}
3879}
3880
3881void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3882{
3883	u32 gpio_shift;
3884
3885	ASSERT(gpio < ah->caps.num_gpio_pins);
3886
3887	gpio_shift = gpio << 1;
3888
3889	REG_RMW(ah,
3890		AR_GPIO_OE_OUT,
3891		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3892		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3893}
3894
3895u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3896{
3897#define MS_REG_READ(x, y) \
3898	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3899
3900	if (gpio >= ah->caps.num_gpio_pins)
3901		return 0xffffffff;
3902
3903	if (AR_SREV_9287_10_OR_LATER(ah))
3904		return MS_REG_READ(AR9287, gpio) != 0;
3905	else if (AR_SREV_9285_10_OR_LATER(ah))
3906		return MS_REG_READ(AR9285, gpio) != 0;
3907	else if (AR_SREV_9280_10_OR_LATER(ah))
3908		return MS_REG_READ(AR928X, gpio) != 0;
3909	else
3910		return MS_REG_READ(AR, gpio) != 0;
3911}
3912
3913void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3914			 u32 ah_signal_type)
3915{
3916	u32 gpio_shift;
3917
3918	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3919
3920	gpio_shift = 2 * gpio;
3921
3922	REG_RMW(ah,
3923		AR_GPIO_OE_OUT,
3924		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3925		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3926}
3927
3928void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3929{
3930	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3931		AR_GPIO_BIT(gpio));
3932}
3933
3934u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3935{
3936	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3937}
3938
3939void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3940{
3941	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3942}
3943
3944bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3945			       enum ath9k_ant_setting settings,
3946			       struct ath9k_channel *chan,
3947			       u8 *tx_chainmask,
3948			       u8 *rx_chainmask,
3949			       u8 *antenna_cfgd)
3950{
3951	static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3952
3953	if (AR_SREV_9280(ah)) {
3954		if (!tx_chainmask_cfg) {
3955
3956			tx_chainmask_cfg = *tx_chainmask;
3957			rx_chainmask_cfg = *rx_chainmask;
3958		}
3959
3960		switch (settings) {
3961		case ATH9K_ANT_FIXED_A:
3962			*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3963			*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3964			*antenna_cfgd = true;
3965			break;
3966		case ATH9K_ANT_FIXED_B:
3967			if (ah->caps.tx_chainmask >
3968			    ATH9K_ANTENNA1_CHAINMASK) {
3969				*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3970			}
3971			*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3972			*antenna_cfgd = true;
3973			break;
3974		case ATH9K_ANT_VARIABLE:
3975			*tx_chainmask = tx_chainmask_cfg;
3976			*rx_chainmask = rx_chainmask_cfg;
3977			*antenna_cfgd = true;
3978			break;
3979		default:
3980			break;
3981		}
3982	} else {
3983		ah->config.diversity_control = settings;
3984	}
3985
3986	return true;
3987}
3988
3989/*********************/
3990/* General Operation */
3991/*********************/
3992
3993u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3994{
3995	u32 bits = REG_READ(ah, AR_RX_FILTER);
3996	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3997
3998	if (phybits & AR_PHY_ERR_RADAR)
3999		bits |= ATH9K_RX_FILTER_PHYRADAR;
4000	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
4001		bits |= ATH9K_RX_FILTER_PHYERR;
4002
4003	return bits;
4004}
4005
4006void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
4007{
4008	u32 phybits;
4009
4010	REG_WRITE(ah, AR_RX_FILTER, bits);
4011
4012	phybits = 0;
4013	if (bits & ATH9K_RX_FILTER_PHYRADAR)
4014		phybits |= AR_PHY_ERR_RADAR;
4015	if (bits & ATH9K_RX_FILTER_PHYERR)
4016		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
4017	REG_WRITE(ah, AR_PHY_ERR, phybits);
4018
4019	if (phybits)
4020		REG_WRITE(ah, AR_RXCFG,
4021			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
4022	else
4023		REG_WRITE(ah, AR_RXCFG,
4024			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
4025}
4026
4027bool ath9k_hw_phy_disable(struct ath_hw *ah)
4028{
4029	return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
4030}
4031
4032bool ath9k_hw_disable(struct ath_hw *ah)
4033{
4034	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
4035		return false;
4036
4037	return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
4038}
4039
4040void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
4041{
4042	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4043	struct ath9k_channel *chan = ah->curchan;
4044	struct ieee80211_channel *channel = chan->chan;
4045
4046	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
4047
4048	ah->eep_ops->set_txpower(ah, chan,
4049				 ath9k_regd_get_ctl(regulatory, chan),
4050				 channel->max_antenna_gain * 2,
4051				 channel->max_power * 2,
4052				 min((u32) MAX_RATE_POWER,
4053				 (u32) regulatory->power_limit));
4054}
4055
4056void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
4057{
4058	memcpy(ah->macaddr, mac, ETH_ALEN);
4059}
4060
4061void ath9k_hw_setopmode(struct ath_hw *ah)
4062{
4063	ath9k_hw_set_operating_mode(ah, ah->opmode);
4064}
4065
4066void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
4067{
4068	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4069	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4070}
4071
4072void ath9k_hw_setbssidmask(struct ath_softc *sc)
4073{
4074	REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
4075	REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
4076}
4077
4078void ath9k_hw_write_associd(struct ath_softc *sc)
4079{
4080	REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
4081	REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
4082		  ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4083}
4084
4085u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4086{
4087	u64 tsf;
4088
4089	tsf = REG_READ(ah, AR_TSF_U32);
4090	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4091
4092	return tsf;
4093}
4094
4095void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4096{
4097	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4098	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4099}
4100
4101void ath9k_hw_reset_tsf(struct ath_hw *ah)
4102{
4103	ath9k_ps_wakeup(ah->ah_sc);
4104	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4105			   AH_TSF_WRITE_TIMEOUT))
4106		DPRINTF(ah->ah_sc, ATH_DBG_RESET,
4107			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4108
4109	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4110	ath9k_ps_restore(ah->ah_sc);
4111}
4112
4113void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4114{
4115	if (setting)
4116		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4117	else
4118		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4119}
4120
4121bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4122{
4123	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4124		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
4125		ah->slottime = (u32) -1;
4126		return false;
4127	} else {
4128		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4129		ah->slottime = us;
4130		return true;
4131	}
4132}
4133
4134void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
4135{
4136	u32 macmode;
4137
4138	if (mode == ATH9K_HT_MACMODE_2040 &&
4139	    !ah->config.cwm_ignore_extcca)
4140		macmode = AR_2040_JOINED_RX_CLEAR;
4141	else
4142		macmode = 0;
4143
4144	REG_WRITE(ah, AR_2040_MODE, macmode);
4145}
4146
4147/* HW Generic timers configuration */
4148
4149static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4150{
4151	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4152	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4153	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4154	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4155	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4156	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4157	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4158	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4159	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4160	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4161				AR_NDP2_TIMER_MODE, 0x0002},
4162	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4163				AR_NDP2_TIMER_MODE, 0x0004},
4164	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4165				AR_NDP2_TIMER_MODE, 0x0008},
4166	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4167				AR_NDP2_TIMER_MODE, 0x0010},
4168	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4169				AR_NDP2_TIMER_MODE, 0x0020},
4170	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4171				AR_NDP2_TIMER_MODE, 0x0040},
4172	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4173				AR_NDP2_TIMER_MODE, 0x0080}
4174};
4175
4176/* HW generic timer primitives */
4177
4178/* compute and clear index of rightmost 1 */
4179static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4180{
4181	u32 b;
4182
4183	b = *mask;
4184	b &= (0-b);
4185	*mask &= ~b;
4186	b *= debruijn32;
4187	b >>= 27;
4188
4189	return timer_table->gen_timer_index[b];
4190}
4191
4192u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4193{
4194	return REG_READ(ah, AR_TSF_L32);
4195}
4196
4197struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4198					  void (*trigger)(void *),
4199					  void (*overflow)(void *),
4200					  void *arg,
4201					  u8 timer_index)
4202{
4203	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4204	struct ath_gen_timer *timer;
4205
4206	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4207
4208	if (timer == NULL) {
4209		printk(KERN_DEBUG "Failed to allocate memory"
4210		       "for hw timer[%d]\n", timer_index);
4211		return NULL;
4212	}
4213
4214	/* allocate a hardware generic timer slot */
4215	timer_table->timers[timer_index] = timer;
4216	timer->index = timer_index;
4217	timer->trigger = trigger;
4218	timer->overflow = overflow;
4219	timer->arg = arg;
4220
4221	return timer;
4222}
4223
4224void ath_gen_timer_start(struct ath_hw *ah,
4225			 struct ath_gen_timer *timer,
4226			 u32 timer_next, u32 timer_period)
4227{
4228	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4229	u32 tsf;
4230
4231	BUG_ON(!timer_period);
4232
4233	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4234
4235	tsf = ath9k_hw_gettsf32(ah);
4236
4237	DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER, "curent tsf %x period %x"
4238		"timer_next %x\n", tsf, timer_period, timer_next);
4239
4240	/*
4241	 * Pull timer_next forward if the current TSF already passed it
4242	 * because of software latency
4243	 */
4244	if (timer_next < tsf)
4245		timer_next = tsf + timer_period;
4246
4247	/*
4248	 * Program generic timer registers
4249	 */
4250	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4251		 timer_next);
4252	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4253		  timer_period);
4254	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4255		    gen_tmr_configuration[timer->index].mode_mask);
4256
4257	/* Enable both trigger and thresh interrupt masks */
4258	REG_SET_BIT(ah, AR_IMR_S5,
4259		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4260		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4261
4262	if ((ah->ah_sc->imask & ATH9K_INT_GENTIMER) == 0) {
4263		ath9k_hw_set_interrupts(ah, 0);
4264		ah->ah_sc->imask |= ATH9K_INT_GENTIMER;
4265		ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4266	}
4267}
4268
4269void ath_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4270{
4271	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4272
4273	if ((timer->index < AR_FIRST_NDP_TIMER) ||
4274		(timer->index >= ATH_MAX_GEN_TIMER)) {
4275		return;
4276	}
4277
4278	/* Clear generic timer enable bits. */
4279	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4280			gen_tmr_configuration[timer->index].mode_mask);
4281
4282	/* Disable both trigger and thresh interrupt masks */
4283	REG_CLR_BIT(ah, AR_IMR_S5,
4284		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4285		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4286
4287	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4288
4289	/* if no timer is enabled, turn off interrupt mask */
4290	if (timer_table->timer_mask.val == 0) {
4291		ath9k_hw_set_interrupts(ah, 0);
4292		ah->ah_sc->imask &= ~ATH9K_INT_GENTIMER;
4293		ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4294	}
4295}
4296
4297void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4298{
4299	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4300
4301	/* free the hardware generic timer slot */
4302	timer_table->timers[timer->index] = NULL;
4303	kfree(timer);
4304}
4305
4306/*
4307 * Generic Timer Interrupts handling
4308 */
4309void ath_gen_timer_isr(struct ath_hw *ah)
4310{
4311	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4312	struct ath_gen_timer *timer;
4313	u32 trigger_mask, thresh_mask, index;
4314
4315	/* get hardware generic timer interrupt status */
4316	trigger_mask = ah->intr_gen_timer_trigger;
4317	thresh_mask = ah->intr_gen_timer_thresh;
4318	trigger_mask &= timer_table->timer_mask.val;
4319	thresh_mask &= timer_table->timer_mask.val;
4320
4321	trigger_mask &= ~thresh_mask;
4322
4323	while (thresh_mask) {
4324		index = rightmost_index(timer_table, &thresh_mask);
4325		timer = timer_table->timers[index];
4326		BUG_ON(!timer);
4327		DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER,
4328			"TSF overflow for Gen timer %d\n", index);
4329		timer->overflow(timer->arg);
4330	}
4331
4332	while (trigger_mask) {
4333		index = rightmost_index(timer_table, &trigger_mask);
4334		timer = timer_table->timers[index];
4335		BUG_ON(!timer);
4336		DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER,
4337			"Gen timer[%d] trigger\n", index);
4338		timer->trigger(timer->arg);
4339	}
4340}
4341
4342/*
4343 * Primitive to disable ASPM
4344 */
4345void ath_pcie_aspm_disable(struct ath_softc *sc)
4346{
4347	struct pci_dev *pdev = to_pci_dev(sc->dev);
4348	u8 aspm;
4349
4350	pci_read_config_byte(pdev, ATH_PCIE_CAP_LINK_CTRL, &aspm);
4351	aspm &= ~(ATH_PCIE_CAP_LINK_L0S | ATH_PCIE_CAP_LINK_L1);
4352	pci_write_config_byte(pdev, ATH_PCIE_CAP_LINK_CTRL, aspm);
4353}
4354