hw.c revision bde748a40d4d5a9915def6772e208848c105e616
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <asm/unaligned.h>
19
20#include "hw.h"
21#include "rc.h"
22#include "initvals.h"
23
24#define ATH9K_CLOCK_RATE_CCK		22
25#define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26#define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27
28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31			      struct ar5416_eeprom_def *pEepData,
32			      u32 reg, u32 value);
33
34MODULE_AUTHOR("Atheros Communications");
35MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37MODULE_LICENSE("Dual BSD/GPL");
38
39static int __init ath9k_init(void)
40{
41	return 0;
42}
43module_init(ath9k_init);
44
45static void __exit ath9k_exit(void)
46{
47	return;
48}
49module_exit(ath9k_exit);
50
51/********************/
52/* Helper Functions */
53/********************/
54
55static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56{
57	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59	if (!ah->curchan) /* should really check for CCK instead */
60		return usecs *ATH9K_CLOCK_RATE_CCK;
61	if (conf->channel->band == IEEE80211_BAND_2GHZ)
62		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64}
65
66static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67{
68	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70	if (conf_is_ht40(conf))
71		return ath9k_hw_mac_clks(ah, usecs) * 2;
72	else
73		return ath9k_hw_mac_clks(ah, usecs);
74}
75
76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77{
78	int i;
79
80	BUG_ON(timeout < AH_TIME_QUANTUM);
81
82	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83		if ((REG_READ(ah, reg) & mask) == val)
84			return true;
85
86		udelay(AH_TIME_QUANTUM);
87	}
88
89	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91		  timeout, reg, REG_READ(ah, reg), mask, val);
92
93	return false;
94}
95EXPORT_SYMBOL(ath9k_hw_wait);
96
97u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98{
99	u32 retval;
100	int i;
101
102	for (i = 0, retval = 0; i < n; i++) {
103		retval = (retval << 1) | (val & 1);
104		val >>= 1;
105	}
106	return retval;
107}
108
109bool ath9k_get_channel_edges(struct ath_hw *ah,
110			     u16 flags, u16 *low,
111			     u16 *high)
112{
113	struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115	if (flags & CHANNEL_5GHZ) {
116		*low = pCap->low_5ghz_chan;
117		*high = pCap->high_5ghz_chan;
118		return true;
119	}
120	if ((flags & CHANNEL_2GHZ)) {
121		*low = pCap->low_2ghz_chan;
122		*high = pCap->high_2ghz_chan;
123		return true;
124	}
125	return false;
126}
127
128u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129			   u8 phy, int kbps,
130			   u32 frameLen, u16 rateix,
131			   bool shortPreamble)
132{
133	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135	if (kbps == 0)
136		return 0;
137
138	switch (phy) {
139	case WLAN_RC_PHY_CCK:
140		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141		if (shortPreamble)
142			phyTime >>= 1;
143		numBits = frameLen << 3;
144		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145		break;
146	case WLAN_RC_PHY_OFDM:
147		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149			numBits = OFDM_PLCP_BITS + (frameLen << 3);
150			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151			txTime = OFDM_SIFS_TIME_QUARTER
152				+ OFDM_PREAMBLE_TIME_QUARTER
153				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154		} else if (ah->curchan &&
155			   IS_CHAN_HALF_RATE(ah->curchan)) {
156			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157			numBits = OFDM_PLCP_BITS + (frameLen << 3);
158			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159			txTime = OFDM_SIFS_TIME_HALF +
160				OFDM_PREAMBLE_TIME_HALF
161				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
162		} else {
163			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164			numBits = OFDM_PLCP_BITS + (frameLen << 3);
165			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167				+ (numSymbols * OFDM_SYMBOL_TIME);
168		}
169		break;
170	default:
171		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
173		txTime = 0;
174		break;
175	}
176
177	return txTime;
178}
179EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182				  struct ath9k_channel *chan,
183				  struct chan_centers *centers)
184{
185	int8_t extoff;
186
187	if (!IS_CHAN_HT40(chan)) {
188		centers->ctl_center = centers->ext_center =
189			centers->synth_center = chan->channel;
190		return;
191	}
192
193	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195		centers->synth_center =
196			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197		extoff = 1;
198	} else {
199		centers->synth_center =
200			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201		extoff = -1;
202	}
203
204	centers->ctl_center =
205		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206	/* 25 MHz spacing is supported by hw but not on upper layers */
207	centers->ext_center =
208		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209}
210
211/******************/
212/* Chip Revisions */
213/******************/
214
215static void ath9k_hw_read_revisions(struct ath_hw *ah)
216{
217	u32 val;
218
219	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221	if (val == 0xFF) {
222		val = REG_READ(ah, AR_SREV);
223		ah->hw_version.macVersion =
224			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227	} else {
228		if (!AR_SREV_9100(ah))
229			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231		ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234			ah->is_pciexpress = true;
235	}
236}
237
238static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239{
240	u32 val;
241	int i;
242
243	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245	for (i = 0; i < 8; i++)
246		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250	return ath9k_hw_reverse_bits(val, 8);
251}
252
253/************************************/
254/* HW Attach, Detach, Init Routines */
255/************************************/
256
257static void ath9k_hw_disablepcie(struct ath_hw *ah)
258{
259	if (AR_SREV_9100(ah))
260		return;
261
262	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273}
274
275static bool ath9k_hw_chip_test(struct ath_hw *ah)
276{
277	struct ath_common *common = ath9k_hw_common(ah);
278	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279	u32 regHold[2];
280	u32 patternData[4] = { 0x55555555,
281			       0xaaaaaaaa,
282			       0x66666666,
283			       0x99999999 };
284	int i, j;
285
286	for (i = 0; i < 2; i++) {
287		u32 addr = regAddr[i];
288		u32 wrData, rdData;
289
290		regHold[i] = REG_READ(ah, addr);
291		for (j = 0; j < 0x100; j++) {
292			wrData = (j << 16) | j;
293			REG_WRITE(ah, addr, wrData);
294			rdData = REG_READ(ah, addr);
295			if (rdData != wrData) {
296				ath_print(common, ATH_DBG_FATAL,
297					  "address test failed "
298					  "addr: 0x%08x - wr:0x%08x != "
299					  "rd:0x%08x\n",
300					  addr, wrData, rdData);
301				return false;
302			}
303		}
304		for (j = 0; j < 4; j++) {
305			wrData = patternData[j];
306			REG_WRITE(ah, addr, wrData);
307			rdData = REG_READ(ah, addr);
308			if (wrData != rdData) {
309				ath_print(common, ATH_DBG_FATAL,
310					  "address test failed "
311					  "addr: 0x%08x - wr:0x%08x != "
312					  "rd:0x%08x\n",
313					  addr, wrData, rdData);
314				return false;
315			}
316		}
317		REG_WRITE(ah, regAddr[i], regHold[i]);
318	}
319	udelay(100);
320
321	return true;
322}
323
324static void ath9k_hw_init_config(struct ath_hw *ah)
325{
326	int i;
327
328	ah->config.dma_beacon_response_time = 2;
329	ah->config.sw_beacon_response_time = 10;
330	ah->config.additional_swba_backoff = 0;
331	ah->config.ack_6mb = 0x0;
332	ah->config.cwm_ignore_extcca = 0;
333	ah->config.pcie_powersave_enable = 0;
334	ah->config.pcie_clock_req = 0;
335	ah->config.pcie_waen = 0;
336	ah->config.analog_shiftreg = 1;
337	ah->config.ofdm_trig_low = 200;
338	ah->config.ofdm_trig_high = 500;
339	ah->config.cck_trig_high = 200;
340	ah->config.cck_trig_low = 100;
341	ah->config.enable_ani = 1;
342
343	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344		ah->config.spurchans[i][0] = AR_NO_SPUR;
345		ah->config.spurchans[i][1] = AR_NO_SPUR;
346	}
347
348	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349		ah->config.ht_enable = 1;
350	else
351		ah->config.ht_enable = 0;
352
353	ah->config.rx_intr_mitigation = true;
354
355	/*
356	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358	 * This means we use it for all AR5416 devices, and the few
359	 * minor PCI AR9280 devices out there.
360	 *
361	 * Serialization is required because these devices do not handle
362	 * well the case of two concurrent reads/writes due to the latency
363	 * involved. During one read/write another read/write can be issued
364	 * on another CPU while the previous read/write may still be working
365	 * on our hardware, if we hit this case the hardware poops in a loop.
366	 * We prevent this by serializing reads and writes.
367	 *
368	 * This issue is not present on PCI-Express devices or pre-AR5416
369	 * devices (legacy, 802.11abg).
370	 */
371	if (num_possible_cpus() > 1)
372		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373}
374EXPORT_SYMBOL(ath9k_hw_init);
375
376static void ath9k_hw_init_defaults(struct ath_hw *ah)
377{
378	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380	regulatory->country_code = CTRY_DEFAULT;
381	regulatory->power_limit = MAX_RATE_POWER;
382	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384	ah->hw_version.magic = AR5416_MAGIC;
385	ah->hw_version.subvendorid = 0;
386
387	ah->ah_flags = 0;
388	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390	if (!AR_SREV_9100(ah))
391		ah->ah_flags = AH_USE_EEPROM;
392
393	ah->atim_window = 0;
394	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395	ah->beacon_interval = 100;
396	ah->enable_32kHz_clock = DONT_USE_32KHZ;
397	ah->slottime = (u32) -1;
398	ah->globaltxtimeout = (u32) -1;
399	ah->power_mode = ATH9K_PM_UNDEFINED;
400}
401
402static int ath9k_hw_rf_claim(struct ath_hw *ah)
403{
404	u32 val;
405
406	REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408	val = ath9k_hw_get_radiorev(ah);
409	switch (val & AR_RADIO_SREV_MAJOR) {
410	case 0:
411		val = AR_RAD5133_SREV_MAJOR;
412		break;
413	case AR_RAD5133_SREV_MAJOR:
414	case AR_RAD5122_SREV_MAJOR:
415	case AR_RAD2133_SREV_MAJOR:
416	case AR_RAD2122_SREV_MAJOR:
417		break;
418	default:
419		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420			  "Radio Chip Rev 0x%02X not supported\n",
421			  val & AR_RADIO_SREV_MAJOR);
422		return -EOPNOTSUPP;
423	}
424
425	ah->hw_version.analog5GhzRev = val;
426
427	return 0;
428}
429
430static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431{
432	struct ath_common *common = ath9k_hw_common(ah);
433	u32 sum;
434	int i;
435	u16 eeval;
436
437	sum = 0;
438	for (i = 0; i < 3; i++) {
439		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440		sum += eeval;
441		common->macaddr[2 * i] = eeval >> 8;
442		common->macaddr[2 * i + 1] = eeval & 0xff;
443	}
444	if (sum == 0 || sum == 0xffff * 3)
445		return -EADDRNOTAVAIL;
446
447	return 0;
448}
449
450static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451{
452	u32 rxgain_type;
453
454	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458			INIT_INI_ARRAY(&ah->iniModesRxGain,
459			ar9280Modes_backoff_13db_rxgain_9280_2,
460			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462			INIT_INI_ARRAY(&ah->iniModesRxGain,
463			ar9280Modes_backoff_23db_rxgain_9280_2,
464			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465		else
466			INIT_INI_ARRAY(&ah->iniModesRxGain,
467			ar9280Modes_original_rxgain_9280_2,
468			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469	} else {
470		INIT_INI_ARRAY(&ah->iniModesRxGain,
471			ar9280Modes_original_rxgain_9280_2,
472			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473	}
474}
475
476static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477{
478	u32 txgain_type;
479
480	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484			INIT_INI_ARRAY(&ah->iniModesTxGain,
485			ar9280Modes_high_power_tx_gain_9280_2,
486			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487		else
488			INIT_INI_ARRAY(&ah->iniModesTxGain,
489			ar9280Modes_original_tx_gain_9280_2,
490			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491	} else {
492		INIT_INI_ARRAY(&ah->iniModesTxGain,
493		ar9280Modes_original_tx_gain_9280_2,
494		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495	}
496}
497
498static int ath9k_hw_post_init(struct ath_hw *ah)
499{
500	int ecode;
501
502	if (!AR_SREV_9271(ah)) {
503		if (!ath9k_hw_chip_test(ah))
504			return -ENODEV;
505	}
506
507	ecode = ath9k_hw_rf_claim(ah);
508	if (ecode != 0)
509		return ecode;
510
511	ecode = ath9k_hw_eeprom_init(ah);
512	if (ecode != 0)
513		return ecode;
514
515	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
516		  "Eeprom VER: %d, REV: %d\n",
517		  ah->eep_ops->get_eeprom_ver(ah),
518		  ah->eep_ops->get_eeprom_rev(ah));
519
520        if (!AR_SREV_9280_10_OR_LATER(ah)) {
521		ecode = ath9k_hw_rf_alloc_ext_banks(ah);
522		if (ecode) {
523			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
524				  "Failed allocating banks for "
525				  "external radio\n");
526			return ecode;
527		}
528	}
529
530	if (!AR_SREV_9100(ah)) {
531		ath9k_hw_ani_setup(ah);
532		ath9k_hw_ani_init(ah);
533	}
534
535	return 0;
536}
537
538static bool ath9k_hw_devid_supported(u16 devid)
539{
540	switch (devid) {
541	case AR5416_DEVID_PCI:
542	case AR5416_DEVID_PCIE:
543	case AR5416_AR9100_DEVID:
544	case AR9160_DEVID_PCI:
545	case AR9280_DEVID_PCI:
546	case AR9280_DEVID_PCIE:
547	case AR9285_DEVID_PCIE:
548	case AR5416_DEVID_AR9287_PCI:
549	case AR5416_DEVID_AR9287_PCIE:
550	case AR2427_DEVID_PCIE:
551		return true;
552	default:
553		break;
554	}
555	return false;
556}
557
558static bool ath9k_hw_macversion_supported(u32 macversion)
559{
560	switch (macversion) {
561	case AR_SREV_VERSION_5416_PCI:
562	case AR_SREV_VERSION_5416_PCIE:
563	case AR_SREV_VERSION_9160:
564	case AR_SREV_VERSION_9100:
565	case AR_SREV_VERSION_9280:
566	case AR_SREV_VERSION_9285:
567	case AR_SREV_VERSION_9287:
568	case AR_SREV_VERSION_9271:
569		return true;
570	default:
571		break;
572	}
573	return false;
574}
575
576static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
577{
578	if (AR_SREV_9160_10_OR_LATER(ah)) {
579		if (AR_SREV_9280_10_OR_LATER(ah)) {
580			ah->iq_caldata.calData = &iq_cal_single_sample;
581			ah->adcgain_caldata.calData =
582				&adc_gain_cal_single_sample;
583			ah->adcdc_caldata.calData =
584				&adc_dc_cal_single_sample;
585			ah->adcdc_calinitdata.calData =
586				&adc_init_dc_cal;
587		} else {
588			ah->iq_caldata.calData = &iq_cal_multi_sample;
589			ah->adcgain_caldata.calData =
590				&adc_gain_cal_multi_sample;
591			ah->adcdc_caldata.calData =
592				&adc_dc_cal_multi_sample;
593			ah->adcdc_calinitdata.calData =
594				&adc_init_dc_cal;
595		}
596		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
597	}
598}
599
600static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
601{
602	if (AR_SREV_9271(ah)) {
603		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
604			       ARRAY_SIZE(ar9271Modes_9271), 6);
605		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
606			       ARRAY_SIZE(ar9271Common_9271), 2);
607		INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
608			       ar9271Common_normal_cck_fir_coeff_9271,
609			       ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
610		INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
611			       ar9271Common_japan_2484_cck_fir_coeff_9271,
612			       ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
613		INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
614			       ar9271Modes_9271_1_0_only,
615			       ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
616		INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
617			       ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
618		INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
619			       ar9271Modes_high_power_tx_gain_9271,
620			       ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
621		INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
622			       ar9271Modes_normal_power_tx_gain_9271,
623			       ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
624		return;
625	}
626
627	if (AR_SREV_9287_11_OR_LATER(ah)) {
628		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
629				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
630		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
631				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
632		if (ah->config.pcie_clock_req)
633			INIT_INI_ARRAY(&ah->iniPcieSerdes,
634			ar9287PciePhy_clkreq_off_L1_9287_1_1,
635			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
636		else
637			INIT_INI_ARRAY(&ah->iniPcieSerdes,
638			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
639			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
640					2);
641	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
642		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
643				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
644		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
645				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
646
647		if (ah->config.pcie_clock_req)
648			INIT_INI_ARRAY(&ah->iniPcieSerdes,
649			ar9287PciePhy_clkreq_off_L1_9287_1_0,
650			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
651		else
652			INIT_INI_ARRAY(&ah->iniPcieSerdes,
653			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
654			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
655				  2);
656	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
657
658
659		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
660			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
661		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
662			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
663
664		if (ah->config.pcie_clock_req) {
665			INIT_INI_ARRAY(&ah->iniPcieSerdes,
666			ar9285PciePhy_clkreq_off_L1_9285_1_2,
667			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
668		} else {
669			INIT_INI_ARRAY(&ah->iniPcieSerdes,
670			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
671			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
672				  2);
673		}
674	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
675		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
676			       ARRAY_SIZE(ar9285Modes_9285), 6);
677		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
678			       ARRAY_SIZE(ar9285Common_9285), 2);
679
680		if (ah->config.pcie_clock_req) {
681			INIT_INI_ARRAY(&ah->iniPcieSerdes,
682			ar9285PciePhy_clkreq_off_L1_9285,
683			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
684		} else {
685			INIT_INI_ARRAY(&ah->iniPcieSerdes,
686			ar9285PciePhy_clkreq_always_on_L1_9285,
687			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
688		}
689	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
690		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
691			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
692		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
693			       ARRAY_SIZE(ar9280Common_9280_2), 2);
694
695		if (ah->config.pcie_clock_req) {
696			INIT_INI_ARRAY(&ah->iniPcieSerdes,
697			       ar9280PciePhy_clkreq_off_L1_9280,
698			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
699		} else {
700			INIT_INI_ARRAY(&ah->iniPcieSerdes,
701			       ar9280PciePhy_clkreq_always_on_L1_9280,
702			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
703		}
704		INIT_INI_ARRAY(&ah->iniModesAdditional,
705			       ar9280Modes_fast_clock_9280_2,
706			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
707	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
708		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
709			       ARRAY_SIZE(ar9280Modes_9280), 6);
710		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
711			       ARRAY_SIZE(ar9280Common_9280), 2);
712	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
713		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
714			       ARRAY_SIZE(ar5416Modes_9160), 6);
715		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
716			       ARRAY_SIZE(ar5416Common_9160), 2);
717		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
718			       ARRAY_SIZE(ar5416Bank0_9160), 2);
719		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
720			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
721		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
722			       ARRAY_SIZE(ar5416Bank1_9160), 2);
723		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
724			       ARRAY_SIZE(ar5416Bank2_9160), 2);
725		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
726			       ARRAY_SIZE(ar5416Bank3_9160), 3);
727		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
728			       ARRAY_SIZE(ar5416Bank6_9160), 3);
729		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
730			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
731		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
732			       ARRAY_SIZE(ar5416Bank7_9160), 2);
733		if (AR_SREV_9160_11(ah)) {
734			INIT_INI_ARRAY(&ah->iniAddac,
735				       ar5416Addac_91601_1,
736				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
737		} else {
738			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
739				       ARRAY_SIZE(ar5416Addac_9160), 2);
740		}
741	} else if (AR_SREV_9100_OR_LATER(ah)) {
742		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
743			       ARRAY_SIZE(ar5416Modes_9100), 6);
744		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
745			       ARRAY_SIZE(ar5416Common_9100), 2);
746		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
747			       ARRAY_SIZE(ar5416Bank0_9100), 2);
748		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
749			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
750		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
751			       ARRAY_SIZE(ar5416Bank1_9100), 2);
752		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
753			       ARRAY_SIZE(ar5416Bank2_9100), 2);
754		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
755			       ARRAY_SIZE(ar5416Bank3_9100), 3);
756		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
757			       ARRAY_SIZE(ar5416Bank6_9100), 3);
758		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
759			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
760		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
761			       ARRAY_SIZE(ar5416Bank7_9100), 2);
762		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
763			       ARRAY_SIZE(ar5416Addac_9100), 2);
764	} else {
765		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
766			       ARRAY_SIZE(ar5416Modes), 6);
767		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
768			       ARRAY_SIZE(ar5416Common), 2);
769		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
770			       ARRAY_SIZE(ar5416Bank0), 2);
771		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
772			       ARRAY_SIZE(ar5416BB_RfGain), 3);
773		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
774			       ARRAY_SIZE(ar5416Bank1), 2);
775		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
776			       ARRAY_SIZE(ar5416Bank2), 2);
777		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
778			       ARRAY_SIZE(ar5416Bank3), 3);
779		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
780			       ARRAY_SIZE(ar5416Bank6), 3);
781		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
782			       ARRAY_SIZE(ar5416Bank6TPC), 3);
783		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
784			       ARRAY_SIZE(ar5416Bank7), 2);
785		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
786			       ARRAY_SIZE(ar5416Addac), 2);
787	}
788}
789
790static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
791{
792	if (AR_SREV_9287_11_OR_LATER(ah))
793		INIT_INI_ARRAY(&ah->iniModesRxGain,
794		ar9287Modes_rx_gain_9287_1_1,
795		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
796	else if (AR_SREV_9287_10(ah))
797		INIT_INI_ARRAY(&ah->iniModesRxGain,
798		ar9287Modes_rx_gain_9287_1_0,
799		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
800	else if (AR_SREV_9280_20(ah))
801		ath9k_hw_init_rxgain_ini(ah);
802
803	if (AR_SREV_9287_11_OR_LATER(ah)) {
804		INIT_INI_ARRAY(&ah->iniModesTxGain,
805		ar9287Modes_tx_gain_9287_1_1,
806		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
807	} else if (AR_SREV_9287_10(ah)) {
808		INIT_INI_ARRAY(&ah->iniModesTxGain,
809		ar9287Modes_tx_gain_9287_1_0,
810		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
811	} else if (AR_SREV_9280_20(ah)) {
812		ath9k_hw_init_txgain_ini(ah);
813	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
814		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
815
816		/* txgain table */
817		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
818			if (AR_SREV_9285E_20(ah)) {
819				INIT_INI_ARRAY(&ah->iniModesTxGain,
820				ar9285Modes_XE2_0_high_power,
821				ARRAY_SIZE(
822				  ar9285Modes_XE2_0_high_power), 6);
823			} else {
824				INIT_INI_ARRAY(&ah->iniModesTxGain,
825				ar9285Modes_high_power_tx_gain_9285_1_2,
826				ARRAY_SIZE(
827				  ar9285Modes_high_power_tx_gain_9285_1_2), 6);
828			}
829		} else {
830			if (AR_SREV_9285E_20(ah)) {
831				INIT_INI_ARRAY(&ah->iniModesTxGain,
832				ar9285Modes_XE2_0_normal_power,
833				ARRAY_SIZE(
834				  ar9285Modes_XE2_0_normal_power), 6);
835			} else {
836				INIT_INI_ARRAY(&ah->iniModesTxGain,
837				ar9285Modes_original_tx_gain_9285_1_2,
838				ARRAY_SIZE(
839				  ar9285Modes_original_tx_gain_9285_1_2), 6);
840			}
841		}
842	}
843}
844
845static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
846{
847	u32 i, j;
848
849	if (ah->hw_version.devid == AR9280_DEVID_PCI) {
850
851		/* EEPROM Fixup */
852		for (i = 0; i < ah->iniModes.ia_rows; i++) {
853			u32 reg = INI_RA(&ah->iniModes, i, 0);
854
855			for (j = 1; j < ah->iniModes.ia_columns; j++) {
856				u32 val = INI_RA(&ah->iniModes, i, j);
857
858				INI_RA(&ah->iniModes, i, j) =
859					ath9k_hw_ini_fixup(ah,
860							   &ah->eeprom.def,
861							   reg, val);
862			}
863		}
864	}
865}
866
867int ath9k_hw_init(struct ath_hw *ah)
868{
869	struct ath_common *common = ath9k_hw_common(ah);
870	int r = 0;
871
872	if (common->bus_ops->ath_bus_type != ATH_USB) {
873		if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
874			ath_print(common, ATH_DBG_FATAL,
875				  "Unsupported device ID: 0x%0x\n",
876				  ah->hw_version.devid);
877			return -EOPNOTSUPP;
878		}
879	}
880
881	ath9k_hw_init_defaults(ah);
882	ath9k_hw_init_config(ah);
883
884	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
885		ath_print(common, ATH_DBG_FATAL,
886			  "Couldn't reset chip\n");
887		return -EIO;
888	}
889
890	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
891		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
892		return -EIO;
893	}
894
895	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
896		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
897		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
898			ah->config.serialize_regmode =
899				SER_REG_MODE_ON;
900		} else {
901			ah->config.serialize_regmode =
902				SER_REG_MODE_OFF;
903		}
904	}
905
906	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
907		ah->config.serialize_regmode);
908
909	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
910		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
911	else
912		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
913
914	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
915		ath_print(common, ATH_DBG_FATAL,
916			  "Mac Chip Rev 0x%02x.%x is not supported by "
917			  "this driver\n", ah->hw_version.macVersion,
918			  ah->hw_version.macRev);
919		return -EOPNOTSUPP;
920	}
921
922	if (AR_SREV_9100(ah)) {
923		ah->iq_caldata.calData = &iq_cal_multi_sample;
924		ah->supp_cals = IQ_MISMATCH_CAL;
925		ah->is_pciexpress = false;
926	}
927
928	if (AR_SREV_9271(ah))
929		ah->is_pciexpress = false;
930
931	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
932
933	ath9k_hw_init_cal_settings(ah);
934
935	ah->ani_function = ATH9K_ANI_ALL;
936	if (AR_SREV_9280_10_OR_LATER(ah)) {
937		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
938		ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
939		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
940	} else {
941		ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
942		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
943	}
944
945	ath9k_hw_init_mode_regs(ah);
946
947	if (ah->is_pciexpress)
948		ath9k_hw_configpcipowersave(ah, 0, 0);
949	else
950		ath9k_hw_disablepcie(ah);
951
952	/* Support for Japan ch.14 (2484) spread */
953	if (AR_SREV_9287_11_OR_LATER(ah)) {
954		INIT_INI_ARRAY(&ah->iniCckfirNormal,
955		       ar9287Common_normal_cck_fir_coeff_92871_1,
956		       ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
957		INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
958		       ar9287Common_japan_2484_cck_fir_coeff_92871_1,
959		       ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
960	}
961
962	r = ath9k_hw_post_init(ah);
963	if (r)
964		return r;
965
966	ath9k_hw_init_mode_gain_regs(ah);
967	r = ath9k_hw_fill_cap_info(ah);
968	if (r)
969		return r;
970
971	ath9k_hw_init_eeprom_fix(ah);
972
973	r = ath9k_hw_init_macaddr(ah);
974	if (r) {
975		ath_print(common, ATH_DBG_FATAL,
976			  "Failed to initialize MAC address\n");
977		return r;
978	}
979
980	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
981		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
982	else
983		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
984
985	ath9k_init_nfcal_hist_buffer(ah);
986
987	common->state = ATH_HW_INITIALIZED;
988
989	return 0;
990}
991
992static void ath9k_hw_init_bb(struct ath_hw *ah,
993			     struct ath9k_channel *chan)
994{
995	u32 synthDelay;
996
997	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
998	if (IS_CHAN_B(chan))
999		synthDelay = (4 * synthDelay) / 22;
1000	else
1001		synthDelay /= 10;
1002
1003	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1004
1005	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1006}
1007
1008static void ath9k_hw_init_qos(struct ath_hw *ah)
1009{
1010	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1011	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1012
1013	REG_WRITE(ah, AR_QOS_NO_ACK,
1014		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1015		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1016		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1017
1018	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1019	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1020	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1021	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1022	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1023}
1024
1025static void ath9k_hw_init_pll(struct ath_hw *ah,
1026			      struct ath9k_channel *chan)
1027{
1028	u32 pll;
1029
1030	if (AR_SREV_9100(ah)) {
1031		if (chan && IS_CHAN_5GHZ(chan))
1032			pll = 0x1450;
1033		else
1034			pll = 0x1458;
1035	} else {
1036		if (AR_SREV_9280_10_OR_LATER(ah)) {
1037			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1038
1039			if (chan && IS_CHAN_HALF_RATE(chan))
1040				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1041			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1042				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1043
1044			if (chan && IS_CHAN_5GHZ(chan)) {
1045				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1046
1047
1048				if (AR_SREV_9280_20(ah)) {
1049					if (((chan->channel % 20) == 0)
1050					    || ((chan->channel % 10) == 0))
1051						pll = 0x2850;
1052					else
1053						pll = 0x142c;
1054				}
1055			} else {
1056				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1057			}
1058
1059		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1060
1061			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1062
1063			if (chan && IS_CHAN_HALF_RATE(chan))
1064				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1065			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1066				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1067
1068			if (chan && IS_CHAN_5GHZ(chan))
1069				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1070			else
1071				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1072		} else {
1073			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1074
1075			if (chan && IS_CHAN_HALF_RATE(chan))
1076				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1077			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1078				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1079
1080			if (chan && IS_CHAN_5GHZ(chan))
1081				pll |= SM(0xa, AR_RTC_PLL_DIV);
1082			else
1083				pll |= SM(0xb, AR_RTC_PLL_DIV);
1084		}
1085	}
1086	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1087
1088	/* Switch the core clock for ar9271 to 117Mhz */
1089	if (AR_SREV_9271(ah)) {
1090		udelay(500);
1091		REG_WRITE(ah, 0x50040, 0x304);
1092	}
1093
1094	udelay(RTC_PLL_SETTLE_DELAY);
1095
1096	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1097}
1098
1099static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1100{
1101	int rx_chainmask, tx_chainmask;
1102
1103	rx_chainmask = ah->rxchainmask;
1104	tx_chainmask = ah->txchainmask;
1105
1106	switch (rx_chainmask) {
1107	case 0x5:
1108		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1109			    AR_PHY_SWAP_ALT_CHAIN);
1110	case 0x3:
1111		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1112			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1113			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1114			break;
1115		}
1116	case 0x1:
1117	case 0x2:
1118	case 0x7:
1119		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1120		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1121		break;
1122	default:
1123		break;
1124	}
1125
1126	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1127	if (tx_chainmask == 0x5) {
1128		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1129			    AR_PHY_SWAP_ALT_CHAIN);
1130	}
1131	if (AR_SREV_9100(ah))
1132		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1133			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1134}
1135
1136static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1137					  enum nl80211_iftype opmode)
1138{
1139	u32 imr_reg = AR_IMR_TXERR |
1140		AR_IMR_TXURN |
1141		AR_IMR_RXERR |
1142		AR_IMR_RXORN |
1143		AR_IMR_BCNMISC;
1144
1145	if (ah->config.rx_intr_mitigation)
1146		imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1147	else
1148		imr_reg |= AR_IMR_RXOK;
1149
1150	imr_reg |= AR_IMR_TXOK;
1151
1152	if (opmode == NL80211_IFTYPE_AP)
1153		imr_reg |= AR_IMR_MIB;
1154
1155	REG_WRITE(ah, AR_IMR, imr_reg);
1156	ah->imrs2_reg |= AR_IMR_S2_GTT;
1157	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1158
1159	if (!AR_SREV_9100(ah)) {
1160		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1161		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1162		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1163	}
1164}
1165
1166static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1167{
1168	u32 val = ath9k_hw_mac_to_clks(ah, us);
1169	val = min(val, (u32) 0xFFFF);
1170	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1171}
1172
1173static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1174{
1175	u32 val = ath9k_hw_mac_to_clks(ah, us);
1176	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1177	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1178}
1179
1180static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1181{
1182	u32 val = ath9k_hw_mac_to_clks(ah, us);
1183	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1184	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1185}
1186
1187static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1188{
1189	if (tu > 0xFFFF) {
1190		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1191			  "bad global tx timeout %u\n", tu);
1192		ah->globaltxtimeout = (u32) -1;
1193		return false;
1194	} else {
1195		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1196		ah->globaltxtimeout = tu;
1197		return true;
1198	}
1199}
1200
1201void ath9k_hw_init_global_settings(struct ath_hw *ah)
1202{
1203	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1204	int acktimeout;
1205	int slottime;
1206	int sifstime;
1207
1208	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1209		  ah->misc_mode);
1210
1211	if (ah->misc_mode != 0)
1212		REG_WRITE(ah, AR_PCU_MISC,
1213			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1214
1215	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1216		sifstime = 16;
1217	else
1218		sifstime = 10;
1219
1220	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1221	slottime = ah->slottime + 3 * ah->coverage_class;
1222	acktimeout = slottime + sifstime;
1223
1224	/*
1225	 * Workaround for early ACK timeouts, add an offset to match the
1226	 * initval's 64us ack timeout value.
1227	 * This was initially only meant to work around an issue with delayed
1228	 * BA frames in some implementations, but it has been found to fix ACK
1229	 * timeout issues in other cases as well.
1230	 */
1231	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1232		acktimeout += 64 - sifstime - ah->slottime;
1233
1234	ath9k_hw_setslottime(ah, slottime);
1235	ath9k_hw_set_ack_timeout(ah, acktimeout);
1236	ath9k_hw_set_cts_timeout(ah, acktimeout);
1237	if (ah->globaltxtimeout != (u32) -1)
1238		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1239}
1240EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1241
1242void ath9k_hw_deinit(struct ath_hw *ah)
1243{
1244	struct ath_common *common = ath9k_hw_common(ah);
1245
1246	if (common->state < ATH_HW_INITIALIZED)
1247		goto free_hw;
1248
1249	if (!AR_SREV_9100(ah))
1250		ath9k_hw_ani_disable(ah);
1251
1252	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1253
1254free_hw:
1255	if (!AR_SREV_9280_10_OR_LATER(ah))
1256		ath9k_hw_rf_free_ext_banks(ah);
1257}
1258EXPORT_SYMBOL(ath9k_hw_deinit);
1259
1260/*******/
1261/* INI */
1262/*******/
1263
1264static void ath9k_hw_override_ini(struct ath_hw *ah,
1265				  struct ath9k_channel *chan)
1266{
1267	u32 val;
1268
1269	/*
1270	 * Set the RX_ABORT and RX_DIS and clear if off only after
1271	 * RXE is set for MAC. This prevents frames with corrupted
1272	 * descriptor status.
1273	 */
1274	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1275
1276	if (AR_SREV_9280_10_OR_LATER(ah)) {
1277		val = REG_READ(ah, AR_PCU_MISC_MODE2);
1278
1279		if (!AR_SREV_9271(ah))
1280			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
1281
1282		if (AR_SREV_9287_10_OR_LATER(ah))
1283			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1284
1285		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1286	}
1287
1288	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1289	    AR_SREV_9280_10_OR_LATER(ah))
1290		return;
1291	/*
1292	 * Disable BB clock gating
1293	 * Necessary to avoid issues on AR5416 2.0
1294	 */
1295	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1296
1297	/*
1298	 * Disable RIFS search on some chips to avoid baseband
1299	 * hang issues.
1300	 */
1301	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1302		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1303		val &= ~AR_PHY_RIFS_INIT_DELAY;
1304		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1305	}
1306}
1307
1308static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1309			      struct ar5416_eeprom_def *pEepData,
1310			      u32 reg, u32 value)
1311{
1312	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1313	struct ath_common *common = ath9k_hw_common(ah);
1314
1315	switch (ah->hw_version.devid) {
1316	case AR9280_DEVID_PCI:
1317		if (reg == 0x7894) {
1318			ath_print(common, ATH_DBG_EEPROM,
1319				"ini VAL: %x  EEPROM: %x\n", value,
1320				(pBase->version & 0xff));
1321
1322			if ((pBase->version & 0xff) > 0x0a) {
1323				ath_print(common, ATH_DBG_EEPROM,
1324					  "PWDCLKIND: %d\n",
1325					  pBase->pwdclkind);
1326				value &= ~AR_AN_TOP2_PWDCLKIND;
1327				value |= AR_AN_TOP2_PWDCLKIND &
1328					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1329			} else {
1330				ath_print(common, ATH_DBG_EEPROM,
1331					  "PWDCLKIND Earlier Rev\n");
1332			}
1333
1334			ath_print(common, ATH_DBG_EEPROM,
1335				  "final ini VAL: %x\n", value);
1336		}
1337		break;
1338	}
1339
1340	return value;
1341}
1342
1343static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1344			      struct ar5416_eeprom_def *pEepData,
1345			      u32 reg, u32 value)
1346{
1347	if (ah->eep_map == EEP_MAP_4KBITS)
1348		return value;
1349	else
1350		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1351}
1352
1353static void ath9k_olc_init(struct ath_hw *ah)
1354{
1355	u32 i;
1356
1357	if (OLC_FOR_AR9287_10_LATER) {
1358		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1359				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1360		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1361				AR9287_AN_TXPC0_TXPCMODE,
1362				AR9287_AN_TXPC0_TXPCMODE_S,
1363				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1364		udelay(100);
1365	} else {
1366		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1367			ah->originalGain[i] =
1368				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1369						AR_PHY_TX_GAIN);
1370		ah->PDADCdelta = 0;
1371	}
1372}
1373
1374static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1375			      struct ath9k_channel *chan)
1376{
1377	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1378
1379	if (IS_CHAN_B(chan))
1380		ctl |= CTL_11B;
1381	else if (IS_CHAN_G(chan))
1382		ctl |= CTL_11G;
1383	else
1384		ctl |= CTL_11A;
1385
1386	return ctl;
1387}
1388
1389static int ath9k_hw_process_ini(struct ath_hw *ah,
1390				struct ath9k_channel *chan)
1391{
1392	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1393	int i, regWrites = 0;
1394	struct ieee80211_channel *channel = chan->chan;
1395	u32 modesIndex, freqIndex;
1396
1397	switch (chan->chanmode) {
1398	case CHANNEL_A:
1399	case CHANNEL_A_HT20:
1400		modesIndex = 1;
1401		freqIndex = 1;
1402		break;
1403	case CHANNEL_A_HT40PLUS:
1404	case CHANNEL_A_HT40MINUS:
1405		modesIndex = 2;
1406		freqIndex = 1;
1407		break;
1408	case CHANNEL_G:
1409	case CHANNEL_G_HT20:
1410	case CHANNEL_B:
1411		modesIndex = 4;
1412		freqIndex = 2;
1413		break;
1414	case CHANNEL_G_HT40PLUS:
1415	case CHANNEL_G_HT40MINUS:
1416		modesIndex = 3;
1417		freqIndex = 2;
1418		break;
1419
1420	default:
1421		return -EINVAL;
1422	}
1423
1424	/* Set correct baseband to analog shift setting to access analog chips */
1425	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1426
1427	/* Write ADDAC shifts */
1428	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1429	ah->eep_ops->set_addac(ah, chan);
1430
1431	if (AR_SREV_5416_22_OR_LATER(ah)) {
1432		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1433	} else {
1434		struct ar5416IniArray temp;
1435		u32 addacSize =
1436			sizeof(u32) * ah->iniAddac.ia_rows *
1437			ah->iniAddac.ia_columns;
1438
1439		/* For AR5416 2.0/2.1 */
1440		memcpy(ah->addac5416_21,
1441		       ah->iniAddac.ia_array, addacSize);
1442
1443		/* override CLKDRV value at [row, column] = [31, 1] */
1444		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1445
1446		temp.ia_array = ah->addac5416_21;
1447		temp.ia_columns = ah->iniAddac.ia_columns;
1448		temp.ia_rows = ah->iniAddac.ia_rows;
1449		REG_WRITE_ARRAY(&temp, 1, regWrites);
1450	}
1451
1452	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1453
1454	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1455		u32 reg = INI_RA(&ah->iniModes, i, 0);
1456		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1457
1458		REG_WRITE(ah, reg, val);
1459
1460		if (reg >= 0x7800 && reg < 0x78a0
1461		    && ah->config.analog_shiftreg) {
1462			udelay(100);
1463		}
1464
1465		DO_DELAY(regWrites);
1466	}
1467
1468	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1469		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1470
1471	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1472	    AR_SREV_9287_10_OR_LATER(ah))
1473		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1474
1475	if (AR_SREV_9271_10(ah))
1476		REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1477				modesIndex, regWrites);
1478
1479	/* Write common array parameters */
1480	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1481		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1482		u32 val = INI_RA(&ah->iniCommon, i, 1);
1483
1484		REG_WRITE(ah, reg, val);
1485
1486		if (reg >= 0x7800 && reg < 0x78a0
1487		    && ah->config.analog_shiftreg) {
1488			udelay(100);
1489		}
1490
1491		DO_DELAY(regWrites);
1492	}
1493
1494	if (AR_SREV_9271(ah)) {
1495		if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
1496			REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
1497					modesIndex, regWrites);
1498		else
1499			REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
1500					modesIndex, regWrites);
1501	}
1502
1503	ath9k_hw_write_regs(ah, freqIndex, regWrites);
1504
1505	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1506		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1507				regWrites);
1508	}
1509
1510	ath9k_hw_override_ini(ah, chan);
1511	ath9k_hw_set_regs(ah, chan);
1512	ath9k_hw_init_chain_masks(ah);
1513
1514	if (OLC_FOR_AR9280_20_LATER)
1515		ath9k_olc_init(ah);
1516
1517	/* Set TX power */
1518	ah->eep_ops->set_txpower(ah, chan,
1519				 ath9k_regd_get_ctl(regulatory, chan),
1520				 channel->max_antenna_gain * 2,
1521				 channel->max_power * 2,
1522				 min((u32) MAX_RATE_POWER,
1523				 (u32) regulatory->power_limit));
1524
1525	/* Write analog registers */
1526	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1527		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1528			  "ar5416SetRfRegs failed\n");
1529		return -EIO;
1530	}
1531
1532	return 0;
1533}
1534
1535/****************************************/
1536/* Reset and Channel Switching Routines */
1537/****************************************/
1538
1539static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1540{
1541	u32 rfMode = 0;
1542
1543	if (chan == NULL)
1544		return;
1545
1546	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1547		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1548
1549	if (!AR_SREV_9280_10_OR_LATER(ah))
1550		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1551			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1552
1553	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1554		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1555
1556	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1557}
1558
1559static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1560{
1561	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1562}
1563
1564static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1565{
1566	u32 regval;
1567
1568	/*
1569	 * set AHB_MODE not to do cacheline prefetches
1570	*/
1571	regval = REG_READ(ah, AR_AHB_MODE);
1572	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1573
1574	/*
1575	 * let mac dma reads be in 128 byte chunks
1576	 */
1577	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1578	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1579
1580	/*
1581	 * Restore TX Trigger Level to its pre-reset value.
1582	 * The initial value depends on whether aggregation is enabled, and is
1583	 * adjusted whenever underruns are detected.
1584	 */
1585	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1586
1587	/*
1588	 * let mac dma writes be in 128 byte chunks
1589	 */
1590	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1591	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1592
1593	/*
1594	 * Setup receive FIFO threshold to hold off TX activities
1595	 */
1596	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1597
1598	/*
1599	 * reduce the number of usable entries in PCU TXBUF to avoid
1600	 * wrap around issues.
1601	 */
1602	if (AR_SREV_9285(ah)) {
1603		/* For AR9285 the number of Fifos are reduced to half.
1604		 * So set the usable tx buf size also to half to
1605		 * avoid data/delimiter underruns
1606		 */
1607		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1608			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1609	} else if (!AR_SREV_9271(ah)) {
1610		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1611			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1612	}
1613}
1614
1615static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1616{
1617	u32 val;
1618
1619	val = REG_READ(ah, AR_STA_ID1);
1620	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1621	switch (opmode) {
1622	case NL80211_IFTYPE_AP:
1623		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1624			  | AR_STA_ID1_KSRCH_MODE);
1625		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1626		break;
1627	case NL80211_IFTYPE_ADHOC:
1628	case NL80211_IFTYPE_MESH_POINT:
1629		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1630			  | AR_STA_ID1_KSRCH_MODE);
1631		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1632		break;
1633	case NL80211_IFTYPE_STATION:
1634	case NL80211_IFTYPE_MONITOR:
1635		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1636		break;
1637	}
1638}
1639
1640static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1641						 u32 coef_scaled,
1642						 u32 *coef_mantissa,
1643						 u32 *coef_exponent)
1644{
1645	u32 coef_exp, coef_man;
1646
1647	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1648		if ((coef_scaled >> coef_exp) & 0x1)
1649			break;
1650
1651	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1652
1653	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1654
1655	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1656	*coef_exponent = coef_exp - 16;
1657}
1658
1659static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1660				     struct ath9k_channel *chan)
1661{
1662	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1663	u32 clockMhzScaled = 0x64000000;
1664	struct chan_centers centers;
1665
1666	if (IS_CHAN_HALF_RATE(chan))
1667		clockMhzScaled = clockMhzScaled >> 1;
1668	else if (IS_CHAN_QUARTER_RATE(chan))
1669		clockMhzScaled = clockMhzScaled >> 2;
1670
1671	ath9k_hw_get_channel_centers(ah, chan, &centers);
1672	coef_scaled = clockMhzScaled / centers.synth_center;
1673
1674	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1675				      &ds_coef_exp);
1676
1677	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1678		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1679	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1680		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1681
1682	coef_scaled = (9 * coef_scaled) / 10;
1683
1684	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1685				      &ds_coef_exp);
1686
1687	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1688		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1689	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1690		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1691}
1692
1693static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1694{
1695	u32 rst_flags;
1696	u32 tmpReg;
1697
1698	if (AR_SREV_9100(ah)) {
1699		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1700		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1701		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1702		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1703		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1704	}
1705
1706	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1707		  AR_RTC_FORCE_WAKE_ON_INT);
1708
1709	if (AR_SREV_9100(ah)) {
1710		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1711			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1712	} else {
1713		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1714		if (tmpReg &
1715		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1716		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1717			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1718			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1719		} else {
1720			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1721		}
1722
1723		rst_flags = AR_RTC_RC_MAC_WARM;
1724		if (type == ATH9K_RESET_COLD)
1725			rst_flags |= AR_RTC_RC_MAC_COLD;
1726	}
1727
1728	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1729	udelay(50);
1730
1731	REG_WRITE(ah, AR_RTC_RC, 0);
1732	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1733		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1734			  "RTC stuck in MAC reset\n");
1735		return false;
1736	}
1737
1738	if (!AR_SREV_9100(ah))
1739		REG_WRITE(ah, AR_RC, 0);
1740
1741	if (AR_SREV_9100(ah))
1742		udelay(50);
1743
1744	return true;
1745}
1746
1747static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1748{
1749	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1750		  AR_RTC_FORCE_WAKE_ON_INT);
1751
1752	if (!AR_SREV_9100(ah))
1753		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1754
1755	REG_WRITE(ah, AR_RTC_RESET, 0);
1756	udelay(2);
1757
1758	if (!AR_SREV_9100(ah))
1759		REG_WRITE(ah, AR_RC, 0);
1760
1761	REG_WRITE(ah, AR_RTC_RESET, 1);
1762
1763	if (!ath9k_hw_wait(ah,
1764			   AR_RTC_STATUS,
1765			   AR_RTC_STATUS_M,
1766			   AR_RTC_STATUS_ON,
1767			   AH_WAIT_TIMEOUT)) {
1768		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1769			  "RTC not waking up\n");
1770		return false;
1771	}
1772
1773	ath9k_hw_read_revisions(ah);
1774
1775	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1776}
1777
1778static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1779{
1780	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1781		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1782
1783	switch (type) {
1784	case ATH9K_RESET_POWER_ON:
1785		return ath9k_hw_set_reset_power_on(ah);
1786	case ATH9K_RESET_WARM:
1787	case ATH9K_RESET_COLD:
1788		return ath9k_hw_set_reset(ah, type);
1789	default:
1790		return false;
1791	}
1792}
1793
1794static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1795{
1796	u32 phymode;
1797	u32 enableDacFifo = 0;
1798
1799	if (AR_SREV_9285_10_OR_LATER(ah))
1800		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1801					 AR_PHY_FC_ENABLE_DAC_FIFO);
1802
1803	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1804		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1805
1806	if (IS_CHAN_HT40(chan)) {
1807		phymode |= AR_PHY_FC_DYN2040_EN;
1808
1809		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1810		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1811			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1812
1813	}
1814	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1815
1816	ath9k_hw_set11nmac2040(ah);
1817
1818	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1819	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1820}
1821
1822static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1823				struct ath9k_channel *chan)
1824{
1825	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1826		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1827			return false;
1828	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1829		return false;
1830
1831	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1832		return false;
1833
1834	ah->chip_fullsleep = false;
1835	ath9k_hw_init_pll(ah, chan);
1836	ath9k_hw_set_rfmode(ah, chan);
1837
1838	return true;
1839}
1840
1841static bool ath9k_hw_channel_change(struct ath_hw *ah,
1842				    struct ath9k_channel *chan)
1843{
1844	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1845	struct ath_common *common = ath9k_hw_common(ah);
1846	struct ieee80211_channel *channel = chan->chan;
1847	u32 synthDelay, qnum;
1848	int r;
1849
1850	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1851		if (ath9k_hw_numtxpending(ah, qnum)) {
1852			ath_print(common, ATH_DBG_QUEUE,
1853				  "Transmit frames pending on "
1854				  "queue %d\n", qnum);
1855			return false;
1856		}
1857	}
1858
1859	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1860	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1861			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1862		ath_print(common, ATH_DBG_FATAL,
1863			  "Could not kill baseband RX\n");
1864		return false;
1865	}
1866
1867	ath9k_hw_set_regs(ah, chan);
1868
1869	r = ah->ath9k_hw_rf_set_freq(ah, chan);
1870	if (r) {
1871		ath_print(common, ATH_DBG_FATAL,
1872			  "Failed to set channel\n");
1873		return false;
1874	}
1875
1876	ah->eep_ops->set_txpower(ah, chan,
1877			     ath9k_regd_get_ctl(regulatory, chan),
1878			     channel->max_antenna_gain * 2,
1879			     channel->max_power * 2,
1880			     min((u32) MAX_RATE_POWER,
1881			     (u32) regulatory->power_limit));
1882
1883	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1884	if (IS_CHAN_B(chan))
1885		synthDelay = (4 * synthDelay) / 22;
1886	else
1887		synthDelay /= 10;
1888
1889	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1890
1891	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1892
1893	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1894		ath9k_hw_set_delta_slope(ah, chan);
1895
1896	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1897
1898	if (!chan->oneTimeCalsDone)
1899		chan->oneTimeCalsDone = true;
1900
1901	return true;
1902}
1903
1904static void ath9k_enable_rfkill(struct ath_hw *ah)
1905{
1906	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1907		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1908
1909	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1910		    AR_GPIO_INPUT_MUX2_RFSILENT);
1911
1912	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1913	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1914}
1915
1916int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1917		    bool bChannelChange)
1918{
1919	struct ath_common *common = ath9k_hw_common(ah);
1920	u32 saveLedState;
1921	struct ath9k_channel *curchan = ah->curchan;
1922	u32 saveDefAntenna;
1923	u32 macStaId1;
1924	u64 tsf = 0;
1925	int i, rx_chainmask, r;
1926
1927	ah->txchainmask = common->tx_chainmask;
1928	ah->rxchainmask = common->rx_chainmask;
1929
1930	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1931		return -EIO;
1932
1933	if (curchan && !ah->chip_fullsleep)
1934		ath9k_hw_getnf(ah, curchan);
1935
1936	if (bChannelChange &&
1937	    (ah->chip_fullsleep != true) &&
1938	    (ah->curchan != NULL) &&
1939	    (chan->channel != ah->curchan->channel) &&
1940	    ((chan->channelFlags & CHANNEL_ALL) ==
1941	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1942	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1943	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1944
1945		if (ath9k_hw_channel_change(ah, chan)) {
1946			ath9k_hw_loadnf(ah, ah->curchan);
1947			ath9k_hw_start_nfcal(ah);
1948			return 0;
1949		}
1950	}
1951
1952	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1953	if (saveDefAntenna == 0)
1954		saveDefAntenna = 1;
1955
1956	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1957
1958	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1959	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1960		tsf = ath9k_hw_gettsf64(ah);
1961
1962	saveLedState = REG_READ(ah, AR_CFG_LED) &
1963		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1964		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1965
1966	ath9k_hw_mark_phy_inactive(ah);
1967
1968	/* Only required on the first reset */
1969	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1970		REG_WRITE(ah,
1971			  AR9271_RESET_POWER_DOWN_CONTROL,
1972			  AR9271_RADIO_RF_RST);
1973		udelay(50);
1974	}
1975
1976	if (!ath9k_hw_chip_reset(ah, chan)) {
1977		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1978		return -EINVAL;
1979	}
1980
1981	/* Only required on the first reset */
1982	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1983		ah->htc_reset_init = false;
1984		REG_WRITE(ah,
1985			  AR9271_RESET_POWER_DOWN_CONTROL,
1986			  AR9271_GATE_MAC_CTL);
1987		udelay(50);
1988	}
1989
1990	/* Restore TSF */
1991	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1992		ath9k_hw_settsf64(ah, tsf);
1993
1994	if (AR_SREV_9280_10_OR_LATER(ah))
1995		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1996
1997	if (AR_SREV_9287_12_OR_LATER(ah)) {
1998		/* Enable ASYNC FIFO */
1999		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2000				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2001		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2002		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2003				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2004		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2005				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2006	}
2007	r = ath9k_hw_process_ini(ah, chan);
2008	if (r)
2009		return r;
2010
2011	/* Setup MFP options for CCMP */
2012	if (AR_SREV_9280_20_OR_LATER(ah)) {
2013		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2014		 * frames when constructing CCMP AAD. */
2015		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2016			      0xc7ff);
2017		ah->sw_mgmt_crypto = false;
2018	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2019		/* Disable hardware crypto for management frames */
2020		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2021			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2022		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2023			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2024		ah->sw_mgmt_crypto = true;
2025	} else
2026		ah->sw_mgmt_crypto = true;
2027
2028	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2029		ath9k_hw_set_delta_slope(ah, chan);
2030
2031	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2032	ah->eep_ops->set_board_values(ah, chan);
2033
2034	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2035	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2036		  | macStaId1
2037		  | AR_STA_ID1_RTS_USE_DEF
2038		  | (ah->config.
2039		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2040		  | ah->sta_id1_defaults);
2041	ath9k_hw_set_operating_mode(ah, ah->opmode);
2042
2043	ath_hw_setbssidmask(common);
2044
2045	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2046
2047	ath9k_hw_write_associd(ah);
2048
2049	REG_WRITE(ah, AR_ISR, ~0);
2050
2051	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2052
2053	r = ah->ath9k_hw_rf_set_freq(ah, chan);
2054	if (r)
2055		return r;
2056
2057	for (i = 0; i < AR_NUM_DCU; i++)
2058		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2059
2060	ah->intr_txqs = 0;
2061	for (i = 0; i < ah->caps.total_queues; i++)
2062		ath9k_hw_resettxqueue(ah, i);
2063
2064	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2065	ath9k_hw_init_qos(ah);
2066
2067	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2068		ath9k_enable_rfkill(ah);
2069
2070	ath9k_hw_init_global_settings(ah);
2071
2072	if (AR_SREV_9287_12_OR_LATER(ah)) {
2073		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2074			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2075		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2076			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2077		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2078			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2079
2080		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2081		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2082
2083		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2084			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2085		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2086			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2087	}
2088	if (AR_SREV_9287_12_OR_LATER(ah)) {
2089		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2090				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2091	}
2092
2093	REG_WRITE(ah, AR_STA_ID1,
2094		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2095
2096	ath9k_hw_set_dma(ah);
2097
2098	REG_WRITE(ah, AR_OBS, 8);
2099
2100	if (ah->config.rx_intr_mitigation) {
2101		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2102		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2103	}
2104
2105	ath9k_hw_init_bb(ah, chan);
2106
2107	if (!ath9k_hw_init_cal(ah, chan))
2108		return -EIO;
2109
2110	rx_chainmask = ah->rxchainmask;
2111	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2112		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2113		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2114	}
2115
2116	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2117
2118	/*
2119	 * For big endian systems turn on swapping for descriptors
2120	 */
2121	if (AR_SREV_9100(ah)) {
2122		u32 mask;
2123		mask = REG_READ(ah, AR_CFG);
2124		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2125			ath_print(common, ATH_DBG_RESET,
2126				"CFG Byte Swap Set 0x%x\n", mask);
2127		} else {
2128			mask =
2129				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2130			REG_WRITE(ah, AR_CFG, mask);
2131			ath_print(common, ATH_DBG_RESET,
2132				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2133		}
2134	} else {
2135		/* Configure AR9271 target WLAN */
2136                if (AR_SREV_9271(ah))
2137			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2138#ifdef __BIG_ENDIAN
2139                else
2140			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2141#endif
2142	}
2143
2144	if (ah->btcoex_hw.enabled)
2145		ath9k_hw_btcoex_enable(ah);
2146
2147	return 0;
2148}
2149EXPORT_SYMBOL(ath9k_hw_reset);
2150
2151/************************/
2152/* Key Cache Management */
2153/************************/
2154
2155bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2156{
2157	u32 keyType;
2158
2159	if (entry >= ah->caps.keycache_size) {
2160		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2161			  "keychache entry %u out of range\n", entry);
2162		return false;
2163	}
2164
2165	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2166
2167	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2168	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2169	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2170	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2171	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2172	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2173	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2174	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2175
2176	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2177		u16 micentry = entry + 64;
2178
2179		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2180		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2181		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2182		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2183
2184	}
2185
2186	return true;
2187}
2188EXPORT_SYMBOL(ath9k_hw_keyreset);
2189
2190bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2191{
2192	u32 macHi, macLo;
2193
2194	if (entry >= ah->caps.keycache_size) {
2195		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2196			  "keychache entry %u out of range\n", entry);
2197		return false;
2198	}
2199
2200	if (mac != NULL) {
2201		macHi = (mac[5] << 8) | mac[4];
2202		macLo = (mac[3] << 24) |
2203			(mac[2] << 16) |
2204			(mac[1] << 8) |
2205			mac[0];
2206		macLo >>= 1;
2207		macLo |= (macHi & 1) << 31;
2208		macHi >>= 1;
2209	} else {
2210		macLo = macHi = 0;
2211	}
2212	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2213	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2214
2215	return true;
2216}
2217EXPORT_SYMBOL(ath9k_hw_keysetmac);
2218
2219bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2220				 const struct ath9k_keyval *k,
2221				 const u8 *mac)
2222{
2223	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2224	struct ath_common *common = ath9k_hw_common(ah);
2225	u32 key0, key1, key2, key3, key4;
2226	u32 keyType;
2227
2228	if (entry >= pCap->keycache_size) {
2229		ath_print(common, ATH_DBG_FATAL,
2230			  "keycache entry %u out of range\n", entry);
2231		return false;
2232	}
2233
2234	switch (k->kv_type) {
2235	case ATH9K_CIPHER_AES_OCB:
2236		keyType = AR_KEYTABLE_TYPE_AES;
2237		break;
2238	case ATH9K_CIPHER_AES_CCM:
2239		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2240			ath_print(common, ATH_DBG_ANY,
2241				  "AES-CCM not supported by mac rev 0x%x\n",
2242				  ah->hw_version.macRev);
2243			return false;
2244		}
2245		keyType = AR_KEYTABLE_TYPE_CCM;
2246		break;
2247	case ATH9K_CIPHER_TKIP:
2248		keyType = AR_KEYTABLE_TYPE_TKIP;
2249		if (ATH9K_IS_MIC_ENABLED(ah)
2250		    && entry + 64 >= pCap->keycache_size) {
2251			ath_print(common, ATH_DBG_ANY,
2252				  "entry %u inappropriate for TKIP\n", entry);
2253			return false;
2254		}
2255		break;
2256	case ATH9K_CIPHER_WEP:
2257		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2258			ath_print(common, ATH_DBG_ANY,
2259				  "WEP key length %u too small\n", k->kv_len);
2260			return false;
2261		}
2262		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2263			keyType = AR_KEYTABLE_TYPE_40;
2264		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2265			keyType = AR_KEYTABLE_TYPE_104;
2266		else
2267			keyType = AR_KEYTABLE_TYPE_128;
2268		break;
2269	case ATH9K_CIPHER_CLR:
2270		keyType = AR_KEYTABLE_TYPE_CLR;
2271		break;
2272	default:
2273		ath_print(common, ATH_DBG_FATAL,
2274			  "cipher %u not supported\n", k->kv_type);
2275		return false;
2276	}
2277
2278	key0 = get_unaligned_le32(k->kv_val + 0);
2279	key1 = get_unaligned_le16(k->kv_val + 4);
2280	key2 = get_unaligned_le32(k->kv_val + 6);
2281	key3 = get_unaligned_le16(k->kv_val + 10);
2282	key4 = get_unaligned_le32(k->kv_val + 12);
2283	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2284		key4 &= 0xff;
2285
2286	/*
2287	 * Note: Key cache registers access special memory area that requires
2288	 * two 32-bit writes to actually update the values in the internal
2289	 * memory. Consequently, the exact order and pairs used here must be
2290	 * maintained.
2291	 */
2292
2293	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2294		u16 micentry = entry + 64;
2295
2296		/*
2297		 * Write inverted key[47:0] first to avoid Michael MIC errors
2298		 * on frames that could be sent or received at the same time.
2299		 * The correct key will be written in the end once everything
2300		 * else is ready.
2301		 */
2302		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2303		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2304
2305		/* Write key[95:48] */
2306		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2307		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2308
2309		/* Write key[127:96] and key type */
2310		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2311		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2312
2313		/* Write MAC address for the entry */
2314		(void) ath9k_hw_keysetmac(ah, entry, mac);
2315
2316		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2317			/*
2318			 * TKIP uses two key cache entries:
2319			 * Michael MIC TX/RX keys in the same key cache entry
2320			 * (idx = main index + 64):
2321			 * key0 [31:0] = RX key [31:0]
2322			 * key1 [15:0] = TX key [31:16]
2323			 * key1 [31:16] = reserved
2324			 * key2 [31:0] = RX key [63:32]
2325			 * key3 [15:0] = TX key [15:0]
2326			 * key3 [31:16] = reserved
2327			 * key4 [31:0] = TX key [63:32]
2328			 */
2329			u32 mic0, mic1, mic2, mic3, mic4;
2330
2331			mic0 = get_unaligned_le32(k->kv_mic + 0);
2332			mic2 = get_unaligned_le32(k->kv_mic + 4);
2333			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2334			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2335			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2336
2337			/* Write RX[31:0] and TX[31:16] */
2338			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2339			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2340
2341			/* Write RX[63:32] and TX[15:0] */
2342			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2343			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2344
2345			/* Write TX[63:32] and keyType(reserved) */
2346			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2347			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2348				  AR_KEYTABLE_TYPE_CLR);
2349
2350		} else {
2351			/*
2352			 * TKIP uses four key cache entries (two for group
2353			 * keys):
2354			 * Michael MIC TX/RX keys are in different key cache
2355			 * entries (idx = main index + 64 for TX and
2356			 * main index + 32 + 96 for RX):
2357			 * key0 [31:0] = TX/RX MIC key [31:0]
2358			 * key1 [31:0] = reserved
2359			 * key2 [31:0] = TX/RX MIC key [63:32]
2360			 * key3 [31:0] = reserved
2361			 * key4 [31:0] = reserved
2362			 *
2363			 * Upper layer code will call this function separately
2364			 * for TX and RX keys when these registers offsets are
2365			 * used.
2366			 */
2367			u32 mic0, mic2;
2368
2369			mic0 = get_unaligned_le32(k->kv_mic + 0);
2370			mic2 = get_unaligned_le32(k->kv_mic + 4);
2371
2372			/* Write MIC key[31:0] */
2373			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2374			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2375
2376			/* Write MIC key[63:32] */
2377			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2378			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2379
2380			/* Write TX[63:32] and keyType(reserved) */
2381			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2382			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2383				  AR_KEYTABLE_TYPE_CLR);
2384		}
2385
2386		/* MAC address registers are reserved for the MIC entry */
2387		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2388		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2389
2390		/*
2391		 * Write the correct (un-inverted) key[47:0] last to enable
2392		 * TKIP now that all other registers are set with correct
2393		 * values.
2394		 */
2395		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2396		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2397	} else {
2398		/* Write key[47:0] */
2399		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2400		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2401
2402		/* Write key[95:48] */
2403		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2404		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2405
2406		/* Write key[127:96] and key type */
2407		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2408		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2409
2410		/* Write MAC address for the entry */
2411		(void) ath9k_hw_keysetmac(ah, entry, mac);
2412	}
2413
2414	return true;
2415}
2416EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2417
2418bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2419{
2420	if (entry < ah->caps.keycache_size) {
2421		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2422		if (val & AR_KEYTABLE_VALID)
2423			return true;
2424	}
2425	return false;
2426}
2427EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2428
2429/******************************/
2430/* Power Management (Chipset) */
2431/******************************/
2432
2433static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2434{
2435	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2436	if (setChip) {
2437		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2438			    AR_RTC_FORCE_WAKE_EN);
2439		if (!AR_SREV_9100(ah))
2440			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2441
2442		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2443			REG_CLR_BIT(ah, (AR_RTC_RESET),
2444				    AR_RTC_RESET_EN);
2445	}
2446}
2447
2448static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2449{
2450	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2451	if (setChip) {
2452		struct ath9k_hw_capabilities *pCap = &ah->caps;
2453
2454		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2455			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2456				  AR_RTC_FORCE_WAKE_ON_INT);
2457		} else {
2458			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2459				    AR_RTC_FORCE_WAKE_EN);
2460		}
2461	}
2462}
2463
2464static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2465{
2466	u32 val;
2467	int i;
2468
2469	if (setChip) {
2470		if ((REG_READ(ah, AR_RTC_STATUS) &
2471		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2472			if (ath9k_hw_set_reset_reg(ah,
2473					   ATH9K_RESET_POWER_ON) != true) {
2474				return false;
2475			}
2476			ath9k_hw_init_pll(ah, NULL);
2477		}
2478		if (AR_SREV_9100(ah))
2479			REG_SET_BIT(ah, AR_RTC_RESET,
2480				    AR_RTC_RESET_EN);
2481
2482		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2483			    AR_RTC_FORCE_WAKE_EN);
2484		udelay(50);
2485
2486		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2487			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2488			if (val == AR_RTC_STATUS_ON)
2489				break;
2490			udelay(50);
2491			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2492				    AR_RTC_FORCE_WAKE_EN);
2493		}
2494		if (i == 0) {
2495			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2496				  "Failed to wakeup in %uus\n",
2497				  POWER_UP_TIME / 20);
2498			return false;
2499		}
2500	}
2501
2502	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2503
2504	return true;
2505}
2506
2507bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2508{
2509	struct ath_common *common = ath9k_hw_common(ah);
2510	int status = true, setChip = true;
2511	static const char *modes[] = {
2512		"AWAKE",
2513		"FULL-SLEEP",
2514		"NETWORK SLEEP",
2515		"UNDEFINED"
2516	};
2517
2518	if (ah->power_mode == mode)
2519		return status;
2520
2521	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2522		  modes[ah->power_mode], modes[mode]);
2523
2524	switch (mode) {
2525	case ATH9K_PM_AWAKE:
2526		status = ath9k_hw_set_power_awake(ah, setChip);
2527		break;
2528	case ATH9K_PM_FULL_SLEEP:
2529		ath9k_set_power_sleep(ah, setChip);
2530		ah->chip_fullsleep = true;
2531		break;
2532	case ATH9K_PM_NETWORK_SLEEP:
2533		ath9k_set_power_network_sleep(ah, setChip);
2534		break;
2535	default:
2536		ath_print(common, ATH_DBG_FATAL,
2537			  "Unknown power mode %u\n", mode);
2538		return false;
2539	}
2540	ah->power_mode = mode;
2541
2542	return status;
2543}
2544EXPORT_SYMBOL(ath9k_hw_setpower);
2545
2546/*
2547 * Helper for ASPM support.
2548 *
2549 * Disable PLL when in L0s as well as receiver clock when in L1.
2550 * This power saving option must be enabled through the SerDes.
2551 *
2552 * Programming the SerDes must go through the same 288 bit serial shift
2553 * register as the other analog registers.  Hence the 9 writes.
2554 */
2555void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2556{
2557	u8 i;
2558	u32 val;
2559
2560	if (ah->is_pciexpress != true)
2561		return;
2562
2563	/* Do not touch SerDes registers */
2564	if (ah->config.pcie_powersave_enable == 2)
2565		return;
2566
2567	/* Nothing to do on restore for 11N */
2568	if (!restore) {
2569		if (AR_SREV_9280_20_OR_LATER(ah)) {
2570			/*
2571			 * AR9280 2.0 or later chips use SerDes values from the
2572			 * initvals.h initialized depending on chipset during
2573			 * ath9k_hw_init()
2574			 */
2575			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2576				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2577					  INI_RA(&ah->iniPcieSerdes, i, 1));
2578			}
2579		} else if (AR_SREV_9280(ah) &&
2580			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2581			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2582			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2583
2584			/* RX shut off when elecidle is asserted */
2585			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2586			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2587			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2588
2589			/* Shut off CLKREQ active in L1 */
2590			if (ah->config.pcie_clock_req)
2591				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2592			else
2593				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2594
2595			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2596			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2597			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2598
2599			/* Load the new settings */
2600			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2601
2602		} else {
2603			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2604			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2605
2606			/* RX shut off when elecidle is asserted */
2607			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2608			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2609			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2610
2611			/*
2612			 * Ignore ah->ah_config.pcie_clock_req setting for
2613			 * pre-AR9280 11n
2614			 */
2615			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2616
2617			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2618			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2619			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2620
2621			/* Load the new settings */
2622			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2623		}
2624
2625		udelay(1000);
2626
2627		/* set bit 19 to allow forcing of pcie core into L1 state */
2628		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2629
2630		/* Several PCIe massages to ensure proper behaviour */
2631		if (ah->config.pcie_waen) {
2632			val = ah->config.pcie_waen;
2633			if (!power_off)
2634				val &= (~AR_WA_D3_L1_DISABLE);
2635		} else {
2636			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2637			    AR_SREV_9287(ah)) {
2638				val = AR9285_WA_DEFAULT;
2639				if (!power_off)
2640					val &= (~AR_WA_D3_L1_DISABLE);
2641			} else if (AR_SREV_9280(ah)) {
2642				/*
2643				 * On AR9280 chips bit 22 of 0x4004 needs to be
2644				 * set otherwise card may disappear.
2645				 */
2646				val = AR9280_WA_DEFAULT;
2647				if (!power_off)
2648					val &= (~AR_WA_D3_L1_DISABLE);
2649			} else
2650				val = AR_WA_DEFAULT;
2651		}
2652
2653		REG_WRITE(ah, AR_WA, val);
2654	}
2655
2656	if (power_off) {
2657		/*
2658		 * Set PCIe workaround bits
2659		 * bit 14 in WA register (disable L1) should only
2660		 * be set when device enters D3 and be cleared
2661		 * when device comes back to D0.
2662		 */
2663		if (ah->config.pcie_waen) {
2664			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2665				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2666		} else {
2667			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2668			      AR_SREV_9287(ah)) &&
2669			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2670			    (AR_SREV_9280(ah) &&
2671			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2672				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2673			}
2674		}
2675	}
2676}
2677EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2678
2679/**********************/
2680/* Interrupt Handling */
2681/**********************/
2682
2683bool ath9k_hw_intrpend(struct ath_hw *ah)
2684{
2685	u32 host_isr;
2686
2687	if (AR_SREV_9100(ah))
2688		return true;
2689
2690	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2691	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2692		return true;
2693
2694	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2695	if ((host_isr & AR_INTR_SYNC_DEFAULT)
2696	    && (host_isr != AR_INTR_SPURIOUS))
2697		return true;
2698
2699	return false;
2700}
2701EXPORT_SYMBOL(ath9k_hw_intrpend);
2702
2703bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2704{
2705	u32 isr = 0;
2706	u32 mask2 = 0;
2707	struct ath9k_hw_capabilities *pCap = &ah->caps;
2708	u32 sync_cause = 0;
2709	bool fatal_int = false;
2710	struct ath_common *common = ath9k_hw_common(ah);
2711
2712	if (!AR_SREV_9100(ah)) {
2713		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2714			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2715			    == AR_RTC_STATUS_ON) {
2716				isr = REG_READ(ah, AR_ISR);
2717			}
2718		}
2719
2720		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2721			AR_INTR_SYNC_DEFAULT;
2722
2723		*masked = 0;
2724
2725		if (!isr && !sync_cause)
2726			return false;
2727	} else {
2728		*masked = 0;
2729		isr = REG_READ(ah, AR_ISR);
2730	}
2731
2732	if (isr) {
2733		if (isr & AR_ISR_BCNMISC) {
2734			u32 isr2;
2735			isr2 = REG_READ(ah, AR_ISR_S2);
2736			if (isr2 & AR_ISR_S2_TIM)
2737				mask2 |= ATH9K_INT_TIM;
2738			if (isr2 & AR_ISR_S2_DTIM)
2739				mask2 |= ATH9K_INT_DTIM;
2740			if (isr2 & AR_ISR_S2_DTIMSYNC)
2741				mask2 |= ATH9K_INT_DTIMSYNC;
2742			if (isr2 & (AR_ISR_S2_CABEND))
2743				mask2 |= ATH9K_INT_CABEND;
2744			if (isr2 & AR_ISR_S2_GTT)
2745				mask2 |= ATH9K_INT_GTT;
2746			if (isr2 & AR_ISR_S2_CST)
2747				mask2 |= ATH9K_INT_CST;
2748			if (isr2 & AR_ISR_S2_TSFOOR)
2749				mask2 |= ATH9K_INT_TSFOOR;
2750		}
2751
2752		isr = REG_READ(ah, AR_ISR_RAC);
2753		if (isr == 0xffffffff) {
2754			*masked = 0;
2755			return false;
2756		}
2757
2758		*masked = isr & ATH9K_INT_COMMON;
2759
2760		if (ah->config.rx_intr_mitigation) {
2761			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2762				*masked |= ATH9K_INT_RX;
2763		}
2764
2765		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2766			*masked |= ATH9K_INT_RX;
2767		if (isr &
2768		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2769		     AR_ISR_TXEOL)) {
2770			u32 s0_s, s1_s;
2771
2772			*masked |= ATH9K_INT_TX;
2773
2774			s0_s = REG_READ(ah, AR_ISR_S0_S);
2775			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2776			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2777
2778			s1_s = REG_READ(ah, AR_ISR_S1_S);
2779			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2780			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2781		}
2782
2783		if (isr & AR_ISR_RXORN) {
2784			ath_print(common, ATH_DBG_INTERRUPT,
2785				  "receive FIFO overrun interrupt\n");
2786		}
2787
2788		if (!AR_SREV_9100(ah)) {
2789			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2790				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2791				if (isr5 & AR_ISR_S5_TIM_TIMER)
2792					*masked |= ATH9K_INT_TIM_TIMER;
2793			}
2794		}
2795
2796		*masked |= mask2;
2797	}
2798
2799	if (AR_SREV_9100(ah))
2800		return true;
2801
2802	if (isr & AR_ISR_GENTMR) {
2803		u32 s5_s;
2804
2805		s5_s = REG_READ(ah, AR_ISR_S5_S);
2806		if (isr & AR_ISR_GENTMR) {
2807			ah->intr_gen_timer_trigger =
2808				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2809
2810			ah->intr_gen_timer_thresh =
2811				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2812
2813			if (ah->intr_gen_timer_trigger)
2814				*masked |= ATH9K_INT_GENTIMER;
2815
2816		}
2817	}
2818
2819	if (sync_cause) {
2820		fatal_int =
2821			(sync_cause &
2822			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2823			? true : false;
2824
2825		if (fatal_int) {
2826			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2827				ath_print(common, ATH_DBG_ANY,
2828					  "received PCI FATAL interrupt\n");
2829			}
2830			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2831				ath_print(common, ATH_DBG_ANY,
2832					  "received PCI PERR interrupt\n");
2833			}
2834			*masked |= ATH9K_INT_FATAL;
2835		}
2836		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2837			ath_print(common, ATH_DBG_INTERRUPT,
2838				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2839			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2840			REG_WRITE(ah, AR_RC, 0);
2841			*masked |= ATH9K_INT_FATAL;
2842		}
2843		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2844			ath_print(common, ATH_DBG_INTERRUPT,
2845				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2846		}
2847
2848		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2849		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2850	}
2851
2852	return true;
2853}
2854EXPORT_SYMBOL(ath9k_hw_getisr);
2855
2856enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2857{
2858	enum ath9k_int omask = ah->imask;
2859	u32 mask, mask2;
2860	struct ath9k_hw_capabilities *pCap = &ah->caps;
2861	struct ath_common *common = ath9k_hw_common(ah);
2862
2863	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2864
2865	if (omask & ATH9K_INT_GLOBAL) {
2866		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2867		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2868		(void) REG_READ(ah, AR_IER);
2869		if (!AR_SREV_9100(ah)) {
2870			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2871			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2872
2873			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2874			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2875		}
2876	}
2877
2878	mask = ints & ATH9K_INT_COMMON;
2879	mask2 = 0;
2880
2881	if (ints & ATH9K_INT_TX) {
2882		if (ah->txok_interrupt_mask)
2883			mask |= AR_IMR_TXOK;
2884		if (ah->txdesc_interrupt_mask)
2885			mask |= AR_IMR_TXDESC;
2886		if (ah->txerr_interrupt_mask)
2887			mask |= AR_IMR_TXERR;
2888		if (ah->txeol_interrupt_mask)
2889			mask |= AR_IMR_TXEOL;
2890	}
2891	if (ints & ATH9K_INT_RX) {
2892		mask |= AR_IMR_RXERR;
2893		if (ah->config.rx_intr_mitigation)
2894			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2895		else
2896			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2897		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2898			mask |= AR_IMR_GENTMR;
2899	}
2900
2901	if (ints & (ATH9K_INT_BMISC)) {
2902		mask |= AR_IMR_BCNMISC;
2903		if (ints & ATH9K_INT_TIM)
2904			mask2 |= AR_IMR_S2_TIM;
2905		if (ints & ATH9K_INT_DTIM)
2906			mask2 |= AR_IMR_S2_DTIM;
2907		if (ints & ATH9K_INT_DTIMSYNC)
2908			mask2 |= AR_IMR_S2_DTIMSYNC;
2909		if (ints & ATH9K_INT_CABEND)
2910			mask2 |= AR_IMR_S2_CABEND;
2911		if (ints & ATH9K_INT_TSFOOR)
2912			mask2 |= AR_IMR_S2_TSFOOR;
2913	}
2914
2915	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2916		mask |= AR_IMR_BCNMISC;
2917		if (ints & ATH9K_INT_GTT)
2918			mask2 |= AR_IMR_S2_GTT;
2919		if (ints & ATH9K_INT_CST)
2920			mask2 |= AR_IMR_S2_CST;
2921	}
2922
2923	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2924	REG_WRITE(ah, AR_IMR, mask);
2925	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2926			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2927			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2928	ah->imrs2_reg |= mask2;
2929	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2930
2931	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2932		if (ints & ATH9K_INT_TIM_TIMER)
2933			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2934		else
2935			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2936	}
2937
2938	if (ints & ATH9K_INT_GLOBAL) {
2939		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2940		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2941		if (!AR_SREV_9100(ah)) {
2942			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2943				  AR_INTR_MAC_IRQ);
2944			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2945
2946
2947			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2948				  AR_INTR_SYNC_DEFAULT);
2949			REG_WRITE(ah, AR_INTR_SYNC_MASK,
2950				  AR_INTR_SYNC_DEFAULT);
2951		}
2952		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2953			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2954	}
2955
2956	return omask;
2957}
2958EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2959
2960/*******************/
2961/* Beacon Handling */
2962/*******************/
2963
2964void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2965{
2966	int flags = 0;
2967
2968	ah->beacon_interval = beacon_period;
2969
2970	switch (ah->opmode) {
2971	case NL80211_IFTYPE_STATION:
2972	case NL80211_IFTYPE_MONITOR:
2973		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2974		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2975		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2976		flags |= AR_TBTT_TIMER_EN;
2977		break;
2978	case NL80211_IFTYPE_ADHOC:
2979	case NL80211_IFTYPE_MESH_POINT:
2980		REG_SET_BIT(ah, AR_TXCFG,
2981			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2982		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2983			  TU_TO_USEC(next_beacon +
2984				     (ah->atim_window ? ah->
2985				      atim_window : 1)));
2986		flags |= AR_NDP_TIMER_EN;
2987	case NL80211_IFTYPE_AP:
2988		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2989		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2990			  TU_TO_USEC(next_beacon -
2991				     ah->config.
2992				     dma_beacon_response_time));
2993		REG_WRITE(ah, AR_NEXT_SWBA,
2994			  TU_TO_USEC(next_beacon -
2995				     ah->config.
2996				     sw_beacon_response_time));
2997		flags |=
2998			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2999		break;
3000	default:
3001		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3002			  "%s: unsupported opmode: %d\n",
3003			  __func__, ah->opmode);
3004		return;
3005		break;
3006	}
3007
3008	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3009	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3010	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3011	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3012
3013	beacon_period &= ~ATH9K_BEACON_ENA;
3014	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3015		ath9k_hw_reset_tsf(ah);
3016	}
3017
3018	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3019}
3020EXPORT_SYMBOL(ath9k_hw_beaconinit);
3021
3022void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3023				    const struct ath9k_beacon_state *bs)
3024{
3025	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3026	struct ath9k_hw_capabilities *pCap = &ah->caps;
3027	struct ath_common *common = ath9k_hw_common(ah);
3028
3029	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3030
3031	REG_WRITE(ah, AR_BEACON_PERIOD,
3032		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3033	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3034		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3035
3036	REG_RMW_FIELD(ah, AR_RSSI_THR,
3037		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3038
3039	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3040
3041	if (bs->bs_sleepduration > beaconintval)
3042		beaconintval = bs->bs_sleepduration;
3043
3044	dtimperiod = bs->bs_dtimperiod;
3045	if (bs->bs_sleepduration > dtimperiod)
3046		dtimperiod = bs->bs_sleepduration;
3047
3048	if (beaconintval == dtimperiod)
3049		nextTbtt = bs->bs_nextdtim;
3050	else
3051		nextTbtt = bs->bs_nexttbtt;
3052
3053	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3054	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3055	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3056	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3057
3058	REG_WRITE(ah, AR_NEXT_DTIM,
3059		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3060	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3061
3062	REG_WRITE(ah, AR_SLEEP1,
3063		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3064		  | AR_SLEEP1_ASSUME_DTIM);
3065
3066	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3067		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3068	else
3069		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3070
3071	REG_WRITE(ah, AR_SLEEP2,
3072		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3073
3074	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3075	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3076
3077	REG_SET_BIT(ah, AR_TIMER_MODE,
3078		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3079		    AR_DTIM_TIMER_EN);
3080
3081	/* TSF Out of Range Threshold */
3082	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3083}
3084EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3085
3086/*******************/
3087/* HW Capabilities */
3088/*******************/
3089
3090int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3091{
3092	struct ath9k_hw_capabilities *pCap = &ah->caps;
3093	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3094	struct ath_common *common = ath9k_hw_common(ah);
3095	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3096
3097	u16 capField = 0, eeval;
3098
3099	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3100	regulatory->current_rd = eeval;
3101
3102	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3103	if (AR_SREV_9285_10_OR_LATER(ah))
3104		eeval |= AR9285_RDEXT_DEFAULT;
3105	regulatory->current_rd_ext = eeval;
3106
3107	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3108
3109	if (ah->opmode != NL80211_IFTYPE_AP &&
3110	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3111		if (regulatory->current_rd == 0x64 ||
3112		    regulatory->current_rd == 0x65)
3113			regulatory->current_rd += 5;
3114		else if (regulatory->current_rd == 0x41)
3115			regulatory->current_rd = 0x43;
3116		ath_print(common, ATH_DBG_REGULATORY,
3117			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3118	}
3119
3120	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3121	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3122		ath_print(common, ATH_DBG_FATAL,
3123			  "no band has been marked as supported in EEPROM.\n");
3124		return -EINVAL;
3125	}
3126
3127	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3128
3129	if (eeval & AR5416_OPFLAGS_11A) {
3130		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3131		if (ah->config.ht_enable) {
3132			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3133				set_bit(ATH9K_MODE_11NA_HT20,
3134					pCap->wireless_modes);
3135			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3136				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3137					pCap->wireless_modes);
3138				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3139					pCap->wireless_modes);
3140			}
3141		}
3142	}
3143
3144	if (eeval & AR5416_OPFLAGS_11G) {
3145		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3146		if (ah->config.ht_enable) {
3147			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3148				set_bit(ATH9K_MODE_11NG_HT20,
3149					pCap->wireless_modes);
3150			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3151				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3152					pCap->wireless_modes);
3153				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3154					pCap->wireless_modes);
3155			}
3156		}
3157	}
3158
3159	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3160	/*
3161	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3162	 * the EEPROM.
3163	 */
3164	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3165	    !(eeval & AR5416_OPFLAGS_11A) &&
3166	    !(AR_SREV_9271(ah)))
3167		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3168		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3169	else
3170		/* Use rx_chainmask from EEPROM. */
3171		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3172
3173	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3174		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3175
3176	pCap->low_2ghz_chan = 2312;
3177	pCap->high_2ghz_chan = 2732;
3178
3179	pCap->low_5ghz_chan = 4920;
3180	pCap->high_5ghz_chan = 6100;
3181
3182	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3183	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3184	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3185
3186	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3187	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3188	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3189
3190	if (ah->config.ht_enable)
3191		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3192	else
3193		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3194
3195	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3196	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3197	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3198	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3199
3200	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3201		pCap->total_queues =
3202			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3203	else
3204		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3205
3206	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3207		pCap->keycache_size =
3208			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3209	else
3210		pCap->keycache_size = AR_KEYTABLE_SIZE;
3211
3212	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3213
3214	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3215		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3216	else
3217		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3218
3219	if (AR_SREV_9271(ah))
3220		pCap->num_gpio_pins = AR9271_NUM_GPIO;
3221	else if (AR_SREV_9285_10_OR_LATER(ah))
3222		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3223	else if (AR_SREV_9280_10_OR_LATER(ah))
3224		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3225	else
3226		pCap->num_gpio_pins = AR_NUM_GPIO;
3227
3228	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3229		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3230		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3231	} else {
3232		pCap->rts_aggr_limit = (8 * 1024);
3233	}
3234
3235	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3236
3237#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3238	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3239	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3240		ah->rfkill_gpio =
3241			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3242		ah->rfkill_polarity =
3243			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3244
3245		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3246	}
3247#endif
3248	if (AR_SREV_9271(ah))
3249		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3250	else
3251		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3252
3253	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3254		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3255	else
3256		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3257
3258	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3259		pCap->reg_cap =
3260			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3261			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3262			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3263			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3264	} else {
3265		pCap->reg_cap =
3266			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3267			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3268	}
3269
3270	/* Advertise midband for AR5416 with FCC midband set in eeprom */
3271	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3272	    AR_SREV_5416(ah))
3273		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3274
3275	pCap->num_antcfg_5ghz =
3276		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3277	pCap->num_antcfg_2ghz =
3278		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3279
3280	if (AR_SREV_9280_10_OR_LATER(ah) &&
3281	    ath9k_hw_btcoex_supported(ah)) {
3282		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3283		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3284
3285		if (AR_SREV_9285(ah)) {
3286			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3287			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3288		} else {
3289			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3290		}
3291	} else {
3292		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3293	}
3294
3295	return 0;
3296}
3297
3298bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3299			    u32 capability, u32 *result)
3300{
3301	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3302	switch (type) {
3303	case ATH9K_CAP_CIPHER:
3304		switch (capability) {
3305		case ATH9K_CIPHER_AES_CCM:
3306		case ATH9K_CIPHER_AES_OCB:
3307		case ATH9K_CIPHER_TKIP:
3308		case ATH9K_CIPHER_WEP:
3309		case ATH9K_CIPHER_MIC:
3310		case ATH9K_CIPHER_CLR:
3311			return true;
3312		default:
3313			return false;
3314		}
3315	case ATH9K_CAP_TKIP_MIC:
3316		switch (capability) {
3317		case 0:
3318			return true;
3319		case 1:
3320			return (ah->sta_id1_defaults &
3321				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3322			false;
3323		}
3324	case ATH9K_CAP_TKIP_SPLIT:
3325		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3326			false : true;
3327	case ATH9K_CAP_DIVERSITY:
3328		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3329			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3330			true : false;
3331	case ATH9K_CAP_MCAST_KEYSRCH:
3332		switch (capability) {
3333		case 0:
3334			return true;
3335		case 1:
3336			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3337				return false;
3338			} else {
3339				return (ah->sta_id1_defaults &
3340					AR_STA_ID1_MCAST_KSRCH) ? true :
3341					false;
3342			}
3343		}
3344		return false;
3345	case ATH9K_CAP_TXPOW:
3346		switch (capability) {
3347		case 0:
3348			return 0;
3349		case 1:
3350			*result = regulatory->power_limit;
3351			return 0;
3352		case 2:
3353			*result = regulatory->max_power_level;
3354			return 0;
3355		case 3:
3356			*result = regulatory->tp_scale;
3357			return 0;
3358		}
3359		return false;
3360	case ATH9K_CAP_DS:
3361		return (AR_SREV_9280_20_OR_LATER(ah) &&
3362			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3363			? false : true;
3364	default:
3365		return false;
3366	}
3367}
3368EXPORT_SYMBOL(ath9k_hw_getcapability);
3369
3370bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3371			    u32 capability, u32 setting, int *status)
3372{
3373	u32 v;
3374
3375	switch (type) {
3376	case ATH9K_CAP_TKIP_MIC:
3377		if (setting)
3378			ah->sta_id1_defaults |=
3379				AR_STA_ID1_CRPT_MIC_ENABLE;
3380		else
3381			ah->sta_id1_defaults &=
3382				~AR_STA_ID1_CRPT_MIC_ENABLE;
3383		return true;
3384	case ATH9K_CAP_DIVERSITY:
3385		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3386		if (setting)
3387			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3388		else
3389			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3390		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3391		return true;
3392	case ATH9K_CAP_MCAST_KEYSRCH:
3393		if (setting)
3394			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3395		else
3396			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3397		return true;
3398	default:
3399		return false;
3400	}
3401}
3402EXPORT_SYMBOL(ath9k_hw_setcapability);
3403
3404/****************************/
3405/* GPIO / RFKILL / Antennae */
3406/****************************/
3407
3408static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3409					 u32 gpio, u32 type)
3410{
3411	int addr;
3412	u32 gpio_shift, tmp;
3413
3414	if (gpio > 11)
3415		addr = AR_GPIO_OUTPUT_MUX3;
3416	else if (gpio > 5)
3417		addr = AR_GPIO_OUTPUT_MUX2;
3418	else
3419		addr = AR_GPIO_OUTPUT_MUX1;
3420
3421	gpio_shift = (gpio % 6) * 5;
3422
3423	if (AR_SREV_9280_20_OR_LATER(ah)
3424	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3425		REG_RMW(ah, addr, (type << gpio_shift),
3426			(0x1f << gpio_shift));
3427	} else {
3428		tmp = REG_READ(ah, addr);
3429		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3430		tmp &= ~(0x1f << gpio_shift);
3431		tmp |= (type << gpio_shift);
3432		REG_WRITE(ah, addr, tmp);
3433	}
3434}
3435
3436void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3437{
3438	u32 gpio_shift;
3439
3440	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3441
3442	gpio_shift = gpio << 1;
3443
3444	REG_RMW(ah,
3445		AR_GPIO_OE_OUT,
3446		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3447		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3448}
3449EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3450
3451u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3452{
3453#define MS_REG_READ(x, y) \
3454	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3455
3456	if (gpio >= ah->caps.num_gpio_pins)
3457		return 0xffffffff;
3458
3459	if (AR_SREV_9271(ah))
3460		return MS_REG_READ(AR9271, gpio) != 0;
3461	else if (AR_SREV_9287_10_OR_LATER(ah))
3462		return MS_REG_READ(AR9287, gpio) != 0;
3463	else if (AR_SREV_9285_10_OR_LATER(ah))
3464		return MS_REG_READ(AR9285, gpio) != 0;
3465	else if (AR_SREV_9280_10_OR_LATER(ah))
3466		return MS_REG_READ(AR928X, gpio) != 0;
3467	else
3468		return MS_REG_READ(AR, gpio) != 0;
3469}
3470EXPORT_SYMBOL(ath9k_hw_gpio_get);
3471
3472void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3473			 u32 ah_signal_type)
3474{
3475	u32 gpio_shift;
3476
3477	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3478
3479	gpio_shift = 2 * gpio;
3480
3481	REG_RMW(ah,
3482		AR_GPIO_OE_OUT,
3483		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3484		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3485}
3486EXPORT_SYMBOL(ath9k_hw_cfg_output);
3487
3488void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3489{
3490	if (AR_SREV_9271(ah))
3491		val = ~val;
3492
3493	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3494		AR_GPIO_BIT(gpio));
3495}
3496EXPORT_SYMBOL(ath9k_hw_set_gpio);
3497
3498u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3499{
3500	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3501}
3502EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3503
3504void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3505{
3506	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3507}
3508EXPORT_SYMBOL(ath9k_hw_setantenna);
3509
3510/*********************/
3511/* General Operation */
3512/*********************/
3513
3514u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3515{
3516	u32 bits = REG_READ(ah, AR_RX_FILTER);
3517	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3518
3519	if (phybits & AR_PHY_ERR_RADAR)
3520		bits |= ATH9K_RX_FILTER_PHYRADAR;
3521	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3522		bits |= ATH9K_RX_FILTER_PHYERR;
3523
3524	return bits;
3525}
3526EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3527
3528void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3529{
3530	u32 phybits;
3531
3532	REG_WRITE(ah, AR_RX_FILTER, bits);
3533
3534	phybits = 0;
3535	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3536		phybits |= AR_PHY_ERR_RADAR;
3537	if (bits & ATH9K_RX_FILTER_PHYERR)
3538		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3539	REG_WRITE(ah, AR_PHY_ERR, phybits);
3540
3541	if (phybits)
3542		REG_WRITE(ah, AR_RXCFG,
3543			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3544	else
3545		REG_WRITE(ah, AR_RXCFG,
3546			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3547}
3548EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3549
3550bool ath9k_hw_phy_disable(struct ath_hw *ah)
3551{
3552	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3553		return false;
3554
3555	ath9k_hw_init_pll(ah, NULL);
3556	return true;
3557}
3558EXPORT_SYMBOL(ath9k_hw_phy_disable);
3559
3560bool ath9k_hw_disable(struct ath_hw *ah)
3561{
3562	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3563		return false;
3564
3565	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3566		return false;
3567
3568	ath9k_hw_init_pll(ah, NULL);
3569	return true;
3570}
3571EXPORT_SYMBOL(ath9k_hw_disable);
3572
3573void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3574{
3575	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3576	struct ath9k_channel *chan = ah->curchan;
3577	struct ieee80211_channel *channel = chan->chan;
3578
3579	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3580
3581	ah->eep_ops->set_txpower(ah, chan,
3582				 ath9k_regd_get_ctl(regulatory, chan),
3583				 channel->max_antenna_gain * 2,
3584				 channel->max_power * 2,
3585				 min((u32) MAX_RATE_POWER,
3586				 (u32) regulatory->power_limit));
3587}
3588EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3589
3590void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3591{
3592	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3593}
3594EXPORT_SYMBOL(ath9k_hw_setmac);
3595
3596void ath9k_hw_setopmode(struct ath_hw *ah)
3597{
3598	ath9k_hw_set_operating_mode(ah, ah->opmode);
3599}
3600EXPORT_SYMBOL(ath9k_hw_setopmode);
3601
3602void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3603{
3604	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3605	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3606}
3607EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3608
3609void ath9k_hw_write_associd(struct ath_hw *ah)
3610{
3611	struct ath_common *common = ath9k_hw_common(ah);
3612
3613	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3614	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3615		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3616}
3617EXPORT_SYMBOL(ath9k_hw_write_associd);
3618
3619u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3620{
3621	u64 tsf;
3622
3623	tsf = REG_READ(ah, AR_TSF_U32);
3624	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3625
3626	return tsf;
3627}
3628EXPORT_SYMBOL(ath9k_hw_gettsf64);
3629
3630void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3631{
3632	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3633	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3634}
3635EXPORT_SYMBOL(ath9k_hw_settsf64);
3636
3637void ath9k_hw_reset_tsf(struct ath_hw *ah)
3638{
3639	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3640			   AH_TSF_WRITE_TIMEOUT))
3641		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3642			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3643
3644	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3645}
3646EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3647
3648void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3649{
3650	if (setting)
3651		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3652	else
3653		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3654}
3655EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3656
3657/*
3658 *  Extend 15-bit time stamp from rx descriptor to
3659 *  a full 64-bit TSF using the current h/w TSF.
3660*/
3661u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3662{
3663	u64 tsf;
3664
3665	tsf = ath9k_hw_gettsf64(ah);
3666	if ((tsf & 0x7fff) < rstamp)
3667		tsf -= 0x8000;
3668	return (tsf & ~0x7fff) | rstamp;
3669}
3670EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3671
3672void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3673{
3674	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3675	u32 macmode;
3676
3677	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3678		macmode = AR_2040_JOINED_RX_CLEAR;
3679	else
3680		macmode = 0;
3681
3682	REG_WRITE(ah, AR_2040_MODE, macmode);
3683}
3684
3685/* HW Generic timers configuration */
3686
3687static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3688{
3689	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3690	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3691	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3692	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3693	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3694	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3695	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3696	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3697	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3698	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3699				AR_NDP2_TIMER_MODE, 0x0002},
3700	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3701				AR_NDP2_TIMER_MODE, 0x0004},
3702	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3703				AR_NDP2_TIMER_MODE, 0x0008},
3704	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3705				AR_NDP2_TIMER_MODE, 0x0010},
3706	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3707				AR_NDP2_TIMER_MODE, 0x0020},
3708	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3709				AR_NDP2_TIMER_MODE, 0x0040},
3710	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3711				AR_NDP2_TIMER_MODE, 0x0080}
3712};
3713
3714/* HW generic timer primitives */
3715
3716/* compute and clear index of rightmost 1 */
3717static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3718{
3719	u32 b;
3720
3721	b = *mask;
3722	b &= (0-b);
3723	*mask &= ~b;
3724	b *= debruijn32;
3725	b >>= 27;
3726
3727	return timer_table->gen_timer_index[b];
3728}
3729
3730u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3731{
3732	return REG_READ(ah, AR_TSF_L32);
3733}
3734EXPORT_SYMBOL(ath9k_hw_gettsf32);
3735
3736struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3737					  void (*trigger)(void *),
3738					  void (*overflow)(void *),
3739					  void *arg,
3740					  u8 timer_index)
3741{
3742	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3743	struct ath_gen_timer *timer;
3744
3745	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3746
3747	if (timer == NULL) {
3748		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3749			  "Failed to allocate memory"
3750			  "for hw timer[%d]\n", timer_index);
3751		return NULL;
3752	}
3753
3754	/* allocate a hardware generic timer slot */
3755	timer_table->timers[timer_index] = timer;
3756	timer->index = timer_index;
3757	timer->trigger = trigger;
3758	timer->overflow = overflow;
3759	timer->arg = arg;
3760
3761	return timer;
3762}
3763EXPORT_SYMBOL(ath_gen_timer_alloc);
3764
3765void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3766			      struct ath_gen_timer *timer,
3767			      u32 timer_next,
3768			      u32 timer_period)
3769{
3770	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3771	u32 tsf;
3772
3773	BUG_ON(!timer_period);
3774
3775	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3776
3777	tsf = ath9k_hw_gettsf32(ah);
3778
3779	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3780		  "curent tsf %x period %x"
3781		  "timer_next %x\n", tsf, timer_period, timer_next);
3782
3783	/*
3784	 * Pull timer_next forward if the current TSF already passed it
3785	 * because of software latency
3786	 */
3787	if (timer_next < tsf)
3788		timer_next = tsf + timer_period;
3789
3790	/*
3791	 * Program generic timer registers
3792	 */
3793	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3794		 timer_next);
3795	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3796		  timer_period);
3797	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3798		    gen_tmr_configuration[timer->index].mode_mask);
3799
3800	/* Enable both trigger and thresh interrupt masks */
3801	REG_SET_BIT(ah, AR_IMR_S5,
3802		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3803		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3804}
3805EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3806
3807void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3808{
3809	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3810
3811	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3812		(timer->index >= ATH_MAX_GEN_TIMER)) {
3813		return;
3814	}
3815
3816	/* Clear generic timer enable bits. */
3817	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3818			gen_tmr_configuration[timer->index].mode_mask);
3819
3820	/* Disable both trigger and thresh interrupt masks */
3821	REG_CLR_BIT(ah, AR_IMR_S5,
3822		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3823		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3824
3825	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3826}
3827EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3828
3829void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3830{
3831	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3832
3833	/* free the hardware generic timer slot */
3834	timer_table->timers[timer->index] = NULL;
3835	kfree(timer);
3836}
3837EXPORT_SYMBOL(ath_gen_timer_free);
3838
3839/*
3840 * Generic Timer Interrupts handling
3841 */
3842void ath_gen_timer_isr(struct ath_hw *ah)
3843{
3844	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3845	struct ath_gen_timer *timer;
3846	struct ath_common *common = ath9k_hw_common(ah);
3847	u32 trigger_mask, thresh_mask, index;
3848
3849	/* get hardware generic timer interrupt status */
3850	trigger_mask = ah->intr_gen_timer_trigger;
3851	thresh_mask = ah->intr_gen_timer_thresh;
3852	trigger_mask &= timer_table->timer_mask.val;
3853	thresh_mask &= timer_table->timer_mask.val;
3854
3855	trigger_mask &= ~thresh_mask;
3856
3857	while (thresh_mask) {
3858		index = rightmost_index(timer_table, &thresh_mask);
3859		timer = timer_table->timers[index];
3860		BUG_ON(!timer);
3861		ath_print(common, ATH_DBG_HWTIMER,
3862			  "TSF overflow for Gen timer %d\n", index);
3863		timer->overflow(timer->arg);
3864	}
3865
3866	while (trigger_mask) {
3867		index = rightmost_index(timer_table, &trigger_mask);
3868		timer = timer_table->timers[index];
3869		BUG_ON(!timer);
3870		ath_print(common, ATH_DBG_HWTIMER,
3871			  "Gen timer[%d] trigger\n", index);
3872		timer->trigger(timer->arg);
3873	}
3874}
3875EXPORT_SYMBOL(ath_gen_timer_isr);
3876
3877/********/
3878/* HTC  */
3879/********/
3880
3881void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3882{
3883	ah->htc_reset_init = true;
3884}
3885EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3886
3887static struct {
3888	u32 version;
3889	const char * name;
3890} ath_mac_bb_names[] = {
3891	/* Devices with external radios */
3892	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3893	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3894	{ AR_SREV_VERSION_9100,		"9100" },
3895	{ AR_SREV_VERSION_9160,		"9160" },
3896	/* Single-chip solutions */
3897	{ AR_SREV_VERSION_9280,		"9280" },
3898	{ AR_SREV_VERSION_9285,		"9285" },
3899	{ AR_SREV_VERSION_9287,         "9287" },
3900	{ AR_SREV_VERSION_9271,         "9271" },
3901};
3902
3903/* For devices with external radios */
3904static struct {
3905	u16 version;
3906	const char * name;
3907} ath_rf_names[] = {
3908	{ 0,				"5133" },
3909	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3910	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3911	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3912	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3913};
3914
3915/*
3916 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3917 */
3918static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3919{
3920	int i;
3921
3922	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3923		if (ath_mac_bb_names[i].version == mac_bb_version) {
3924			return ath_mac_bb_names[i].name;
3925		}
3926	}
3927
3928	return "????";
3929}
3930
3931/*
3932 * Return the RF name. "????" is returned if the RF is unknown.
3933 * Used for devices with external radios.
3934 */
3935static const char *ath9k_hw_rf_name(u16 rf_version)
3936{
3937	int i;
3938
3939	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3940		if (ath_rf_names[i].version == rf_version) {
3941			return ath_rf_names[i].name;
3942		}
3943	}
3944
3945	return "????";
3946}
3947
3948void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3949{
3950	int used;
3951
3952	/* chipsets >= AR9280 are single-chip */
3953	if (AR_SREV_9280_10_OR_LATER(ah)) {
3954		used = snprintf(hw_name, len,
3955			       "Atheros AR%s Rev:%x",
3956			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3957			       ah->hw_version.macRev);
3958	}
3959	else {
3960		used = snprintf(hw_name, len,
3961			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3962			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3963			       ah->hw_version.macRev,
3964			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3965						AR_RADIO_SREV_MAJOR)),
3966			       ah->hw_version.phyRev);
3967	}
3968
3969	hw_name[used] = '\0';
3970}
3971EXPORT_SYMBOL(ath9k_hw_name);
3972