hw.c revision c774d57fd47c71675bb8c41a4dc2aafd78baa39d
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/time.h>
21#include <linux/bitops.h>
22#include <asm/unaligned.h>
23
24#include "hw.h"
25#include "hw-ops.h"
26#include "ar9003_mac.h"
27#include "ar9003_mci.h"
28#include "ar9003_phy.h"
29#include "ath9k.h"
30
31static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32
33MODULE_AUTHOR("Atheros Communications");
34MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36MODULE_LICENSE("Dual BSD/GPL");
37
38static void ath9k_hw_set_clockrate(struct ath_hw *ah)
39{
40	struct ath_common *common = ath9k_hw_common(ah);
41	struct ath9k_channel *chan = ah->curchan;
42	unsigned int clockrate;
43
44	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
45	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
46		clockrate = 117;
47	else if (!chan) /* should really check for CCK instead */
48		clockrate = ATH9K_CLOCK_RATE_CCK;
49	else if (IS_CHAN_2GHZ(chan))
50		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
51	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
52		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
53	else
54		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
55
56	if (chan) {
57		if (IS_CHAN_HT40(chan))
58			clockrate *= 2;
59		if (IS_CHAN_HALF_RATE(chan))
60			clockrate /= 2;
61		if (IS_CHAN_QUARTER_RATE(chan))
62			clockrate /= 4;
63	}
64
65	common->clockrate = clockrate;
66}
67
68static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
69{
70	struct ath_common *common = ath9k_hw_common(ah);
71
72	return usecs * common->clockrate;
73}
74
75bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
76{
77	int i;
78
79	BUG_ON(timeout < AH_TIME_QUANTUM);
80
81	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
82		if ((REG_READ(ah, reg) & mask) == val)
83			return true;
84
85		udelay(AH_TIME_QUANTUM);
86	}
87
88	ath_dbg(ath9k_hw_common(ah), ANY,
89		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
90		timeout, reg, REG_READ(ah, reg), mask, val);
91
92	return false;
93}
94EXPORT_SYMBOL(ath9k_hw_wait);
95
96void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
97			  int hw_delay)
98{
99	hw_delay /= 10;
100
101	if (IS_CHAN_HALF_RATE(chan))
102		hw_delay *= 2;
103	else if (IS_CHAN_QUARTER_RATE(chan))
104		hw_delay *= 4;
105
106	udelay(hw_delay + BASE_ACTIVATE_DELAY);
107}
108
109void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
110			  int column, unsigned int *writecnt)
111{
112	int r;
113
114	ENABLE_REGWRITE_BUFFER(ah);
115	for (r = 0; r < array->ia_rows; r++) {
116		REG_WRITE(ah, INI_RA(array, r, 0),
117			  INI_RA(array, r, column));
118		DO_DELAY(*writecnt);
119	}
120	REGWRITE_BUFFER_FLUSH(ah);
121}
122
123u32 ath9k_hw_reverse_bits(u32 val, u32 n)
124{
125	u32 retval;
126	int i;
127
128	for (i = 0, retval = 0; i < n; i++) {
129		retval = (retval << 1) | (val & 1);
130		val >>= 1;
131	}
132	return retval;
133}
134
135u16 ath9k_hw_computetxtime(struct ath_hw *ah,
136			   u8 phy, int kbps,
137			   u32 frameLen, u16 rateix,
138			   bool shortPreamble)
139{
140	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
141
142	if (kbps == 0)
143		return 0;
144
145	switch (phy) {
146	case WLAN_RC_PHY_CCK:
147		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
148		if (shortPreamble)
149			phyTime >>= 1;
150		numBits = frameLen << 3;
151		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
152		break;
153	case WLAN_RC_PHY_OFDM:
154		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
155			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
156			numBits = OFDM_PLCP_BITS + (frameLen << 3);
157			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
158			txTime = OFDM_SIFS_TIME_QUARTER
159				+ OFDM_PREAMBLE_TIME_QUARTER
160				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
161		} else if (ah->curchan &&
162			   IS_CHAN_HALF_RATE(ah->curchan)) {
163			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
164			numBits = OFDM_PLCP_BITS + (frameLen << 3);
165			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166			txTime = OFDM_SIFS_TIME_HALF +
167				OFDM_PREAMBLE_TIME_HALF
168				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
169		} else {
170			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
171			numBits = OFDM_PLCP_BITS + (frameLen << 3);
172			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
174				+ (numSymbols * OFDM_SYMBOL_TIME);
175		}
176		break;
177	default:
178		ath_err(ath9k_hw_common(ah),
179			"Unknown phy %u (rate ix %u)\n", phy, rateix);
180		txTime = 0;
181		break;
182	}
183
184	return txTime;
185}
186EXPORT_SYMBOL(ath9k_hw_computetxtime);
187
188void ath9k_hw_get_channel_centers(struct ath_hw *ah,
189				  struct ath9k_channel *chan,
190				  struct chan_centers *centers)
191{
192	int8_t extoff;
193
194	if (!IS_CHAN_HT40(chan)) {
195		centers->ctl_center = centers->ext_center =
196			centers->synth_center = chan->channel;
197		return;
198	}
199
200	if (IS_CHAN_HT40PLUS(chan)) {
201		centers->synth_center =
202			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
203		extoff = 1;
204	} else {
205		centers->synth_center =
206			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
207		extoff = -1;
208	}
209
210	centers->ctl_center =
211		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
212	/* 25 MHz spacing is supported by hw but not on upper layers */
213	centers->ext_center =
214		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
215}
216
217/******************/
218/* Chip Revisions */
219/******************/
220
221static void ath9k_hw_read_revisions(struct ath_hw *ah)
222{
223	u32 val;
224
225	switch (ah->hw_version.devid) {
226	case AR5416_AR9100_DEVID:
227		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
228		break;
229	case AR9300_DEVID_AR9330:
230		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
231		if (ah->get_mac_revision) {
232			ah->hw_version.macRev = ah->get_mac_revision();
233		} else {
234			val = REG_READ(ah, AR_SREV);
235			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
236		}
237		return;
238	case AR9300_DEVID_AR9340:
239		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
240		val = REG_READ(ah, AR_SREV);
241		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
242		return;
243	case AR9300_DEVID_QCA955X:
244		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
245		return;
246	case AR9300_DEVID_AR953X:
247		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
248		if (ah->get_mac_revision)
249			ah->hw_version.macRev = ah->get_mac_revision();
250		return;
251	}
252
253	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
254
255	if (val == 0xFF) {
256		val = REG_READ(ah, AR_SREV);
257		ah->hw_version.macVersion =
258			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
260
261		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262			ah->is_pciexpress = true;
263		else
264			ah->is_pciexpress = (val &
265					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266	} else {
267		if (!AR_SREV_9100(ah))
268			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
269
270		ah->hw_version.macRev = val & AR_SREV_REVISION;
271
272		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273			ah->is_pciexpress = true;
274	}
275}
276
277/************************************/
278/* HW Attach, Detach, Init Routines */
279/************************************/
280
281static void ath9k_hw_disablepcie(struct ath_hw *ah)
282{
283	if (!AR_SREV_5416(ah))
284		return;
285
286	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
295
296	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
297}
298
299/* This should work for all families including legacy */
300static bool ath9k_hw_chip_test(struct ath_hw *ah)
301{
302	struct ath_common *common = ath9k_hw_common(ah);
303	u32 regAddr[2] = { AR_STA_ID0 };
304	u32 regHold[2];
305	static const u32 patternData[4] = {
306		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307	};
308	int i, j, loop_max;
309
310	if (!AR_SREV_9300_20_OR_LATER(ah)) {
311		loop_max = 2;
312		regAddr[1] = AR_PHY_BASE + (8 << 2);
313	} else
314		loop_max = 1;
315
316	for (i = 0; i < loop_max; i++) {
317		u32 addr = regAddr[i];
318		u32 wrData, rdData;
319
320		regHold[i] = REG_READ(ah, addr);
321		for (j = 0; j < 0x100; j++) {
322			wrData = (j << 16) | j;
323			REG_WRITE(ah, addr, wrData);
324			rdData = REG_READ(ah, addr);
325			if (rdData != wrData) {
326				ath_err(common,
327					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328					addr, wrData, rdData);
329				return false;
330			}
331		}
332		for (j = 0; j < 4; j++) {
333			wrData = patternData[j];
334			REG_WRITE(ah, addr, wrData);
335			rdData = REG_READ(ah, addr);
336			if (wrData != rdData) {
337				ath_err(common,
338					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339					addr, wrData, rdData);
340				return false;
341			}
342		}
343		REG_WRITE(ah, regAddr[i], regHold[i]);
344	}
345	udelay(100);
346
347	return true;
348}
349
350static void ath9k_hw_init_config(struct ath_hw *ah)
351{
352	struct ath_common *common = ath9k_hw_common(ah);
353
354	ah->config.dma_beacon_response_time = 1;
355	ah->config.sw_beacon_response_time = 6;
356	ah->config.cwm_ignore_extcca = 0;
357	ah->config.analog_shiftreg = 1;
358
359	ah->config.rx_intr_mitigation = true;
360
361	if (AR_SREV_9300_20_OR_LATER(ah)) {
362		ah->config.rimt_last = 500;
363		ah->config.rimt_first = 2000;
364	} else {
365		ah->config.rimt_last = 250;
366		ah->config.rimt_first = 700;
367	}
368
369	/*
370	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372	 * This means we use it for all AR5416 devices, and the few
373	 * minor PCI AR9280 devices out there.
374	 *
375	 * Serialization is required because these devices do not handle
376	 * well the case of two concurrent reads/writes due to the latency
377	 * involved. During one read/write another read/write can be issued
378	 * on another CPU while the previous read/write may still be working
379	 * on our hardware, if we hit this case the hardware poops in a loop.
380	 * We prevent this by serializing reads and writes.
381	 *
382	 * This issue is not present on PCI-Express devices or pre-AR5416
383	 * devices (legacy, 802.11abg).
384	 */
385	if (num_possible_cpus() > 1)
386		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
387
388	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391		     !ah->is_pciexpress)) {
392			ah->config.serialize_regmode = SER_REG_MODE_ON;
393		} else {
394			ah->config.serialize_regmode = SER_REG_MODE_OFF;
395		}
396	}
397
398	ath_dbg(common, RESET, "serialize_regmode is %d\n",
399		ah->config.serialize_regmode);
400
401	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403	else
404		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
405}
406
407static void ath9k_hw_init_defaults(struct ath_hw *ah)
408{
409	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410
411	regulatory->country_code = CTRY_DEFAULT;
412	regulatory->power_limit = MAX_RATE_POWER;
413
414	ah->hw_version.magic = AR5416_MAGIC;
415	ah->hw_version.subvendorid = 0;
416
417	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418			       AR_STA_ID1_MCAST_KSRCH;
419	if (AR_SREV_9100(ah))
420		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
421
422	ah->slottime = ATH9K_SLOT_TIME_9;
423	ah->globaltxtimeout = (u32) -1;
424	ah->power_mode = ATH9K_PM_UNDEFINED;
425	ah->htc_reset_init = true;
426
427	ah->ani_function = ATH9K_ANI_ALL;
428	if (!AR_SREV_9300_20_OR_LATER(ah))
429		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
430
431	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
432		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
433	else
434		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
435}
436
437static int ath9k_hw_init_macaddr(struct ath_hw *ah)
438{
439	struct ath_common *common = ath9k_hw_common(ah);
440	u32 sum;
441	int i;
442	u16 eeval;
443	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
444
445	sum = 0;
446	for (i = 0; i < 3; i++) {
447		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
448		sum += eeval;
449		common->macaddr[2 * i] = eeval >> 8;
450		common->macaddr[2 * i + 1] = eeval & 0xff;
451	}
452	if (sum == 0 || sum == 0xffff * 3)
453		return -EADDRNOTAVAIL;
454
455	return 0;
456}
457
458static int ath9k_hw_post_init(struct ath_hw *ah)
459{
460	struct ath_common *common = ath9k_hw_common(ah);
461	int ecode;
462
463	if (common->bus_ops->ath_bus_type != ATH_USB) {
464		if (!ath9k_hw_chip_test(ah))
465			return -ENODEV;
466	}
467
468	if (!AR_SREV_9300_20_OR_LATER(ah)) {
469		ecode = ar9002_hw_rf_claim(ah);
470		if (ecode != 0)
471			return ecode;
472	}
473
474	ecode = ath9k_hw_eeprom_init(ah);
475	if (ecode != 0)
476		return ecode;
477
478	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
479		ah->eep_ops->get_eeprom_ver(ah),
480		ah->eep_ops->get_eeprom_rev(ah));
481
482	ath9k_hw_ani_init(ah);
483
484	/*
485	 * EEPROM needs to be initialized before we do this.
486	 * This is required for regulatory compliance.
487	 */
488	if (AR_SREV_9300_20_OR_LATER(ah)) {
489		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
490		if ((regdmn & 0xF0) == CTL_FCC) {
491			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
492			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
493		}
494	}
495
496	return 0;
497}
498
499static int ath9k_hw_attach_ops(struct ath_hw *ah)
500{
501	if (!AR_SREV_9300_20_OR_LATER(ah))
502		return ar9002_hw_attach_ops(ah);
503
504	ar9003_hw_attach_ops(ah);
505	return 0;
506}
507
508/* Called for all hardware families */
509static int __ath9k_hw_init(struct ath_hw *ah)
510{
511	struct ath_common *common = ath9k_hw_common(ah);
512	int r = 0;
513
514	ath9k_hw_read_revisions(ah);
515
516	switch (ah->hw_version.macVersion) {
517	case AR_SREV_VERSION_5416_PCI:
518	case AR_SREV_VERSION_5416_PCIE:
519	case AR_SREV_VERSION_9160:
520	case AR_SREV_VERSION_9100:
521	case AR_SREV_VERSION_9280:
522	case AR_SREV_VERSION_9285:
523	case AR_SREV_VERSION_9287:
524	case AR_SREV_VERSION_9271:
525	case AR_SREV_VERSION_9300:
526	case AR_SREV_VERSION_9330:
527	case AR_SREV_VERSION_9485:
528	case AR_SREV_VERSION_9340:
529	case AR_SREV_VERSION_9462:
530	case AR_SREV_VERSION_9550:
531	case AR_SREV_VERSION_9565:
532	case AR_SREV_VERSION_9531:
533		break;
534	default:
535		ath_err(common,
536			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
537			ah->hw_version.macVersion, ah->hw_version.macRev);
538		return -EOPNOTSUPP;
539	}
540
541	/*
542	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
543	 * We need to do this to avoid RMW of this register. We cannot
544	 * read the reg when chip is asleep.
545	 */
546	if (AR_SREV_9300_20_OR_LATER(ah)) {
547		ah->WARegVal = REG_READ(ah, AR_WA);
548		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
549				 AR_WA_ASPM_TIMER_BASED_DISABLE);
550	}
551
552	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
553		ath_err(common, "Couldn't reset chip\n");
554		return -EIO;
555	}
556
557	if (AR_SREV_9565(ah)) {
558		ah->WARegVal |= AR_WA_BIT22;
559		REG_WRITE(ah, AR_WA, ah->WARegVal);
560	}
561
562	ath9k_hw_init_defaults(ah);
563	ath9k_hw_init_config(ah);
564
565	r = ath9k_hw_attach_ops(ah);
566	if (r)
567		return r;
568
569	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
570		ath_err(common, "Couldn't wakeup chip\n");
571		return -EIO;
572	}
573
574	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
575	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
576		ah->is_pciexpress = false;
577
578	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
579	ath9k_hw_init_cal_settings(ah);
580
581	if (!ah->is_pciexpress)
582		ath9k_hw_disablepcie(ah);
583
584	r = ath9k_hw_post_init(ah);
585	if (r)
586		return r;
587
588	ath9k_hw_init_mode_gain_regs(ah);
589	r = ath9k_hw_fill_cap_info(ah);
590	if (r)
591		return r;
592
593	r = ath9k_hw_init_macaddr(ah);
594	if (r) {
595		ath_err(common, "Failed to initialize MAC address\n");
596		return r;
597	}
598
599	ath9k_hw_init_hang_checks(ah);
600
601	common->state = ATH_HW_INITIALIZED;
602
603	return 0;
604}
605
606int ath9k_hw_init(struct ath_hw *ah)
607{
608	int ret;
609	struct ath_common *common = ath9k_hw_common(ah);
610
611	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
612	switch (ah->hw_version.devid) {
613	case AR5416_DEVID_PCI:
614	case AR5416_DEVID_PCIE:
615	case AR5416_AR9100_DEVID:
616	case AR9160_DEVID_PCI:
617	case AR9280_DEVID_PCI:
618	case AR9280_DEVID_PCIE:
619	case AR9285_DEVID_PCIE:
620	case AR9287_DEVID_PCI:
621	case AR9287_DEVID_PCIE:
622	case AR2427_DEVID_PCIE:
623	case AR9300_DEVID_PCIE:
624	case AR9300_DEVID_AR9485_PCIE:
625	case AR9300_DEVID_AR9330:
626	case AR9300_DEVID_AR9340:
627	case AR9300_DEVID_QCA955X:
628	case AR9300_DEVID_AR9580:
629	case AR9300_DEVID_AR9462:
630	case AR9485_DEVID_AR1111:
631	case AR9300_DEVID_AR9565:
632	case AR9300_DEVID_AR953X:
633		break;
634	default:
635		if (common->bus_ops->ath_bus_type == ATH_USB)
636			break;
637		ath_err(common, "Hardware device ID 0x%04x not supported\n",
638			ah->hw_version.devid);
639		return -EOPNOTSUPP;
640	}
641
642	ret = __ath9k_hw_init(ah);
643	if (ret) {
644		ath_err(common,
645			"Unable to initialize hardware; initialization status: %d\n",
646			ret);
647		return ret;
648	}
649
650	ath_dynack_init(ah);
651
652	return 0;
653}
654EXPORT_SYMBOL(ath9k_hw_init);
655
656static void ath9k_hw_init_qos(struct ath_hw *ah)
657{
658	ENABLE_REGWRITE_BUFFER(ah);
659
660	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
661	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
662
663	REG_WRITE(ah, AR_QOS_NO_ACK,
664		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
665		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
666		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
667
668	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
669	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
670	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
671	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
672	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
673
674	REGWRITE_BUFFER_FLUSH(ah);
675}
676
677u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
678{
679	struct ath_common *common = ath9k_hw_common(ah);
680	int i = 0;
681
682	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
683	udelay(100);
684	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
685
686	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
687
688		udelay(100);
689
690		if (WARN_ON_ONCE(i >= 100)) {
691			ath_err(common, "PLL4 meaurement not done\n");
692			break;
693		}
694
695		i++;
696	}
697
698	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
699}
700EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
701
702static void ath9k_hw_init_pll(struct ath_hw *ah,
703			      struct ath9k_channel *chan)
704{
705	u32 pll;
706
707	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
708		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
709		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
710			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
711		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712			      AR_CH0_DPLL2_KD, 0x40);
713		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
714			      AR_CH0_DPLL2_KI, 0x4);
715
716		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
717			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
718		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
719			      AR_CH0_BB_DPLL1_NINI, 0x58);
720		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
721			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
722
723		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
725		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
727		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
728			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
729
730		/* program BB PLL phase_shift to 0x6 */
731		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
732			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
733
734		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
735			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
736		udelay(1000);
737	} else if (AR_SREV_9330(ah)) {
738		u32 ddr_dpll2, pll_control2, kd;
739
740		if (ah->is_clk_25mhz) {
741			ddr_dpll2 = 0x18e82f01;
742			pll_control2 = 0xe04a3d;
743			kd = 0x1d;
744		} else {
745			ddr_dpll2 = 0x19e82f01;
746			pll_control2 = 0x886666;
747			kd = 0x3d;
748		}
749
750		/* program DDR PLL ki and kd value */
751		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
752
753		/* program DDR PLL phase_shift */
754		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
755			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
756
757		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
758		udelay(1000);
759
760		/* program refdiv, nint, frac to RTC register */
761		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
762
763		/* program BB PLL kd and ki value */
764		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
765		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
766
767		/* program BB PLL phase_shift */
768		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
769			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
770	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
771		u32 regval, pll2_divint, pll2_divfrac, refdiv;
772
773		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
774		udelay(1000);
775
776		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
777		udelay(100);
778
779		if (ah->is_clk_25mhz) {
780			if (AR_SREV_9531(ah)) {
781				pll2_divint = 0x1c;
782				pll2_divfrac = 0xa3d2;
783				refdiv = 1;
784			} else {
785				pll2_divint = 0x54;
786				pll2_divfrac = 0x1eb85;
787				refdiv = 3;
788			}
789		} else {
790			if (AR_SREV_9340(ah)) {
791				pll2_divint = 88;
792				pll2_divfrac = 0;
793				refdiv = 5;
794			} else {
795				pll2_divint = 0x11;
796				pll2_divfrac =
797					AR_SREV_9531(ah) ? 0x26665 : 0x26666;
798				refdiv = 1;
799			}
800		}
801
802		regval = REG_READ(ah, AR_PHY_PLL_MODE);
803		if (AR_SREV_9531(ah))
804			regval |= (0x1 << 22);
805		else
806			regval |= (0x1 << 16);
807		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
808		udelay(100);
809
810		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
811			  (pll2_divint << 18) | pll2_divfrac);
812		udelay(100);
813
814		regval = REG_READ(ah, AR_PHY_PLL_MODE);
815		if (AR_SREV_9340(ah))
816			regval = (regval & 0x80071fff) |
817				(0x1 << 30) |
818				(0x1 << 13) |
819				(0x4 << 26) |
820				(0x18 << 19);
821		else if (AR_SREV_9531(ah))
822			regval = (regval & 0x01c00fff) |
823				(0x1 << 31) |
824				(0x2 << 29) |
825				(0xa << 25) |
826				(0x1 << 19) |
827				(0x6 << 12);
828		else
829			regval = (regval & 0x80071fff) |
830				(0x3 << 30) |
831				(0x1 << 13) |
832				(0x4 << 26) |
833				(0x60 << 19);
834		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
835
836		if (AR_SREV_9531(ah))
837			REG_WRITE(ah, AR_PHY_PLL_MODE,
838				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
839		else
840			REG_WRITE(ah, AR_PHY_PLL_MODE,
841				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
842
843		udelay(1000);
844	}
845
846	pll = ath9k_hw_compute_pll_control(ah, chan);
847	if (AR_SREV_9565(ah))
848		pll |= 0x40000;
849	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
850
851	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
852	    AR_SREV_9550(ah))
853		udelay(1000);
854
855	/* Switch the core clock for ar9271 to 117Mhz */
856	if (AR_SREV_9271(ah)) {
857		udelay(500);
858		REG_WRITE(ah, 0x50040, 0x304);
859	}
860
861	udelay(RTC_PLL_SETTLE_DELAY);
862
863	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
864
865	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
866		if (ah->is_clk_25mhz) {
867			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
868			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
869			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
870		} else {
871			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
872			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
873			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
874		}
875		udelay(100);
876	}
877}
878
879static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
880					  enum nl80211_iftype opmode)
881{
882	u32 sync_default = AR_INTR_SYNC_DEFAULT;
883	u32 imr_reg = AR_IMR_TXERR |
884		AR_IMR_TXURN |
885		AR_IMR_RXERR |
886		AR_IMR_RXORN |
887		AR_IMR_BCNMISC;
888
889	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
890		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
891
892	if (AR_SREV_9300_20_OR_LATER(ah)) {
893		imr_reg |= AR_IMR_RXOK_HP;
894		if (ah->config.rx_intr_mitigation)
895			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
896		else
897			imr_reg |= AR_IMR_RXOK_LP;
898
899	} else {
900		if (ah->config.rx_intr_mitigation)
901			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
902		else
903			imr_reg |= AR_IMR_RXOK;
904	}
905
906	if (ah->config.tx_intr_mitigation)
907		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
908	else
909		imr_reg |= AR_IMR_TXOK;
910
911	ENABLE_REGWRITE_BUFFER(ah);
912
913	REG_WRITE(ah, AR_IMR, imr_reg);
914	ah->imrs2_reg |= AR_IMR_S2_GTT;
915	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
916
917	if (!AR_SREV_9100(ah)) {
918		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
919		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
920		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
921	}
922
923	REGWRITE_BUFFER_FLUSH(ah);
924
925	if (AR_SREV_9300_20_OR_LATER(ah)) {
926		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
927		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
928		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
929		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
930	}
931}
932
933static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
934{
935	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
936	val = min(val, (u32) 0xFFFF);
937	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
938}
939
940void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
941{
942	u32 val = ath9k_hw_mac_to_clks(ah, us);
943	val = min(val, (u32) 0xFFFF);
944	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
945}
946
947void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
948{
949	u32 val = ath9k_hw_mac_to_clks(ah, us);
950	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
951	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
952}
953
954void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
955{
956	u32 val = ath9k_hw_mac_to_clks(ah, us);
957	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
958	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
959}
960
961static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
962{
963	if (tu > 0xFFFF) {
964		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
965			tu);
966		ah->globaltxtimeout = (u32) -1;
967		return false;
968	} else {
969		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
970		ah->globaltxtimeout = tu;
971		return true;
972	}
973}
974
975void ath9k_hw_init_global_settings(struct ath_hw *ah)
976{
977	struct ath_common *common = ath9k_hw_common(ah);
978	const struct ath9k_channel *chan = ah->curchan;
979	int acktimeout, ctstimeout, ack_offset = 0;
980	int slottime;
981	int sifstime;
982	int rx_lat = 0, tx_lat = 0, eifs = 0;
983	u32 reg;
984
985	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
986		ah->misc_mode);
987
988	if (!chan)
989		return;
990
991	if (ah->misc_mode != 0)
992		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
993
994	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
995		rx_lat = 41;
996	else
997		rx_lat = 37;
998	tx_lat = 54;
999
1000	if (IS_CHAN_5GHZ(chan))
1001		sifstime = 16;
1002	else
1003		sifstime = 10;
1004
1005	if (IS_CHAN_HALF_RATE(chan)) {
1006		eifs = 175;
1007		rx_lat *= 2;
1008		tx_lat *= 2;
1009		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1010		    tx_lat += 11;
1011
1012		sifstime = 32;
1013		ack_offset = 16;
1014		slottime = 13;
1015	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1016		eifs = 340;
1017		rx_lat = (rx_lat * 4) - 1;
1018		tx_lat *= 4;
1019		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1020		    tx_lat += 22;
1021
1022		sifstime = 64;
1023		ack_offset = 32;
1024		slottime = 21;
1025	} else {
1026		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1027			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1028			reg = AR_USEC_ASYNC_FIFO;
1029		} else {
1030			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1031				common->clockrate;
1032			reg = REG_READ(ah, AR_USEC);
1033		}
1034		rx_lat = MS(reg, AR_USEC_RX_LAT);
1035		tx_lat = MS(reg, AR_USEC_TX_LAT);
1036
1037		slottime = ah->slottime;
1038	}
1039
1040	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1041	slottime += 3 * ah->coverage_class;
1042	acktimeout = slottime + sifstime + ack_offset;
1043	ctstimeout = acktimeout;
1044
1045	/*
1046	 * Workaround for early ACK timeouts, add an offset to match the
1047	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1048	 * This was initially only meant to work around an issue with delayed
1049	 * BA frames in some implementations, but it has been found to fix ACK
1050	 * timeout issues in other cases as well.
1051	 */
1052	if (IS_CHAN_2GHZ(chan) &&
1053	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1054		acktimeout += 64 - sifstime - ah->slottime;
1055		ctstimeout += 48 - sifstime - ah->slottime;
1056	}
1057
1058	ath9k_hw_set_sifs_time(ah, sifstime);
1059	ath9k_hw_setslottime(ah, slottime);
1060	ath9k_hw_set_ack_timeout(ah, acktimeout);
1061	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1062	if (ah->globaltxtimeout != (u32) -1)
1063		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1064
1065	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1066	REG_RMW(ah, AR_USEC,
1067		(common->clockrate - 1) |
1068		SM(rx_lat, AR_USEC_RX_LAT) |
1069		SM(tx_lat, AR_USEC_TX_LAT),
1070		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1071
1072}
1073EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1074
1075void ath9k_hw_deinit(struct ath_hw *ah)
1076{
1077	struct ath_common *common = ath9k_hw_common(ah);
1078
1079	if (common->state < ATH_HW_INITIALIZED)
1080		return;
1081
1082	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1083}
1084EXPORT_SYMBOL(ath9k_hw_deinit);
1085
1086/*******/
1087/* INI */
1088/*******/
1089
1090u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1091{
1092	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1093
1094	if (IS_CHAN_2GHZ(chan))
1095		ctl |= CTL_11G;
1096	else
1097		ctl |= CTL_11A;
1098
1099	return ctl;
1100}
1101
1102/****************************************/
1103/* Reset and Channel Switching Routines */
1104/****************************************/
1105
1106static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1107{
1108	struct ath_common *common = ath9k_hw_common(ah);
1109	int txbuf_size;
1110
1111	ENABLE_REGWRITE_BUFFER(ah);
1112
1113	/*
1114	 * set AHB_MODE not to do cacheline prefetches
1115	*/
1116	if (!AR_SREV_9300_20_OR_LATER(ah))
1117		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1118
1119	/*
1120	 * let mac dma reads be in 128 byte chunks
1121	 */
1122	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1123
1124	REGWRITE_BUFFER_FLUSH(ah);
1125
1126	/*
1127	 * Restore TX Trigger Level to its pre-reset value.
1128	 * The initial value depends on whether aggregation is enabled, and is
1129	 * adjusted whenever underruns are detected.
1130	 */
1131	if (!AR_SREV_9300_20_OR_LATER(ah))
1132		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1133
1134	ENABLE_REGWRITE_BUFFER(ah);
1135
1136	/*
1137	 * let mac dma writes be in 128 byte chunks
1138	 */
1139	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1140
1141	/*
1142	 * Setup receive FIFO threshold to hold off TX activities
1143	 */
1144	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1145
1146	if (AR_SREV_9300_20_OR_LATER(ah)) {
1147		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1148		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1149
1150		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1151			ah->caps.rx_status_len);
1152	}
1153
1154	/*
1155	 * reduce the number of usable entries in PCU TXBUF to avoid
1156	 * wrap around issues.
1157	 */
1158	if (AR_SREV_9285(ah)) {
1159		/* For AR9285 the number of Fifos are reduced to half.
1160		 * So set the usable tx buf size also to half to
1161		 * avoid data/delimiter underruns
1162		 */
1163		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1164	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1165		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1166		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1167	} else {
1168		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1169	}
1170
1171	if (!AR_SREV_9271(ah))
1172		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1173
1174	REGWRITE_BUFFER_FLUSH(ah);
1175
1176	if (AR_SREV_9300_20_OR_LATER(ah))
1177		ath9k_hw_reset_txstatus_ring(ah);
1178}
1179
1180static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1181{
1182	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1183	u32 set = AR_STA_ID1_KSRCH_MODE;
1184
1185	switch (opmode) {
1186	case NL80211_IFTYPE_ADHOC:
1187		set |= AR_STA_ID1_ADHOC;
1188		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1189		break;
1190	case NL80211_IFTYPE_MESH_POINT:
1191	case NL80211_IFTYPE_AP:
1192		set |= AR_STA_ID1_STA_AP;
1193		/* fall through */
1194	case NL80211_IFTYPE_STATION:
1195		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1196		break;
1197	default:
1198		if (!ah->is_monitoring)
1199			set = 0;
1200		break;
1201	}
1202	REG_RMW(ah, AR_STA_ID1, set, mask);
1203}
1204
1205void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1206				   u32 *coef_mantissa, u32 *coef_exponent)
1207{
1208	u32 coef_exp, coef_man;
1209
1210	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1211		if ((coef_scaled >> coef_exp) & 0x1)
1212			break;
1213
1214	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1215
1216	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1217
1218	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1219	*coef_exponent = coef_exp - 16;
1220}
1221
1222/* AR9330 WAR:
1223 * call external reset function to reset WMAC if:
1224 * - doing a cold reset
1225 * - we have pending frames in the TX queues.
1226 */
1227static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1228{
1229	int i, npend = 0;
1230
1231	for (i = 0; i < AR_NUM_QCU; i++) {
1232		npend = ath9k_hw_numtxpending(ah, i);
1233		if (npend)
1234			break;
1235	}
1236
1237	if (ah->external_reset &&
1238	    (npend || type == ATH9K_RESET_COLD)) {
1239		int reset_err = 0;
1240
1241		ath_dbg(ath9k_hw_common(ah), RESET,
1242			"reset MAC via external reset\n");
1243
1244		reset_err = ah->external_reset();
1245		if (reset_err) {
1246			ath_err(ath9k_hw_common(ah),
1247				"External reset failed, err=%d\n",
1248				reset_err);
1249			return false;
1250		}
1251
1252		REG_WRITE(ah, AR_RTC_RESET, 1);
1253	}
1254
1255	return true;
1256}
1257
1258static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1259{
1260	u32 rst_flags;
1261	u32 tmpReg;
1262
1263	if (AR_SREV_9100(ah)) {
1264		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1265			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1266		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1267	}
1268
1269	ENABLE_REGWRITE_BUFFER(ah);
1270
1271	if (AR_SREV_9300_20_OR_LATER(ah)) {
1272		REG_WRITE(ah, AR_WA, ah->WARegVal);
1273		udelay(10);
1274	}
1275
1276	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1277		  AR_RTC_FORCE_WAKE_ON_INT);
1278
1279	if (AR_SREV_9100(ah)) {
1280		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1281			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1282	} else {
1283		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1284		if (AR_SREV_9340(ah))
1285			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1286		else
1287			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1288				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1289
1290		if (tmpReg) {
1291			u32 val;
1292			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1293
1294			val = AR_RC_HOSTIF;
1295			if (!AR_SREV_9300_20_OR_LATER(ah))
1296				val |= AR_RC_AHB;
1297			REG_WRITE(ah, AR_RC, val);
1298
1299		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1300			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1301
1302		rst_flags = AR_RTC_RC_MAC_WARM;
1303		if (type == ATH9K_RESET_COLD)
1304			rst_flags |= AR_RTC_RC_MAC_COLD;
1305	}
1306
1307	if (AR_SREV_9330(ah)) {
1308		if (!ath9k_hw_ar9330_reset_war(ah, type))
1309			return false;
1310	}
1311
1312	if (ath9k_hw_mci_is_enabled(ah))
1313		ar9003_mci_check_gpm_offset(ah);
1314
1315	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1316
1317	REGWRITE_BUFFER_FLUSH(ah);
1318
1319	if (AR_SREV_9300_20_OR_LATER(ah))
1320		udelay(50);
1321	else if (AR_SREV_9100(ah))
1322		mdelay(10);
1323	else
1324		udelay(100);
1325
1326	REG_WRITE(ah, AR_RTC_RC, 0);
1327	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1328		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1329		return false;
1330	}
1331
1332	if (!AR_SREV_9100(ah))
1333		REG_WRITE(ah, AR_RC, 0);
1334
1335	if (AR_SREV_9100(ah))
1336		udelay(50);
1337
1338	return true;
1339}
1340
1341static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1342{
1343	ENABLE_REGWRITE_BUFFER(ah);
1344
1345	if (AR_SREV_9300_20_OR_LATER(ah)) {
1346		REG_WRITE(ah, AR_WA, ah->WARegVal);
1347		udelay(10);
1348	}
1349
1350	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1351		  AR_RTC_FORCE_WAKE_ON_INT);
1352
1353	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1354		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1355
1356	REG_WRITE(ah, AR_RTC_RESET, 0);
1357
1358	REGWRITE_BUFFER_FLUSH(ah);
1359
1360	udelay(2);
1361
1362	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1363		REG_WRITE(ah, AR_RC, 0);
1364
1365	REG_WRITE(ah, AR_RTC_RESET, 1);
1366
1367	if (!ath9k_hw_wait(ah,
1368			   AR_RTC_STATUS,
1369			   AR_RTC_STATUS_M,
1370			   AR_RTC_STATUS_ON,
1371			   AH_WAIT_TIMEOUT)) {
1372		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1373		return false;
1374	}
1375
1376	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1377}
1378
1379static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1380{
1381	bool ret = false;
1382
1383	if (AR_SREV_9300_20_OR_LATER(ah)) {
1384		REG_WRITE(ah, AR_WA, ah->WARegVal);
1385		udelay(10);
1386	}
1387
1388	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1389		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1390
1391	if (!ah->reset_power_on)
1392		type = ATH9K_RESET_POWER_ON;
1393
1394	switch (type) {
1395	case ATH9K_RESET_POWER_ON:
1396		ret = ath9k_hw_set_reset_power_on(ah);
1397		if (ret)
1398			ah->reset_power_on = true;
1399		break;
1400	case ATH9K_RESET_WARM:
1401	case ATH9K_RESET_COLD:
1402		ret = ath9k_hw_set_reset(ah, type);
1403		break;
1404	default:
1405		break;
1406	}
1407
1408	return ret;
1409}
1410
1411static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1412				struct ath9k_channel *chan)
1413{
1414	int reset_type = ATH9K_RESET_WARM;
1415
1416	if (AR_SREV_9280(ah)) {
1417		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1418			reset_type = ATH9K_RESET_POWER_ON;
1419		else
1420			reset_type = ATH9K_RESET_COLD;
1421	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1422		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1423		reset_type = ATH9K_RESET_COLD;
1424
1425	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1426		return false;
1427
1428	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1429		return false;
1430
1431	ah->chip_fullsleep = false;
1432
1433	if (AR_SREV_9330(ah))
1434		ar9003_hw_internal_regulator_apply(ah);
1435	ath9k_hw_init_pll(ah, chan);
1436
1437	return true;
1438}
1439
1440static bool ath9k_hw_channel_change(struct ath_hw *ah,
1441				    struct ath9k_channel *chan)
1442{
1443	struct ath_common *common = ath9k_hw_common(ah);
1444	struct ath9k_hw_capabilities *pCap = &ah->caps;
1445	bool band_switch = false, mode_diff = false;
1446	u8 ini_reloaded = 0;
1447	u32 qnum;
1448	int r;
1449
1450	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1451		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1452		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1453		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1454	}
1455
1456	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1457		if (ath9k_hw_numtxpending(ah, qnum)) {
1458			ath_dbg(common, QUEUE,
1459				"Transmit frames pending on queue %d\n", qnum);
1460			return false;
1461		}
1462	}
1463
1464	if (!ath9k_hw_rfbus_req(ah)) {
1465		ath_err(common, "Could not kill baseband RX\n");
1466		return false;
1467	}
1468
1469	if (band_switch || mode_diff) {
1470		ath9k_hw_mark_phy_inactive(ah);
1471		udelay(5);
1472
1473		if (band_switch)
1474			ath9k_hw_init_pll(ah, chan);
1475
1476		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1477			ath_err(common, "Failed to do fast channel change\n");
1478			return false;
1479		}
1480	}
1481
1482	ath9k_hw_set_channel_regs(ah, chan);
1483
1484	r = ath9k_hw_rf_set_freq(ah, chan);
1485	if (r) {
1486		ath_err(common, "Failed to set channel\n");
1487		return false;
1488	}
1489	ath9k_hw_set_clockrate(ah);
1490	ath9k_hw_apply_txpower(ah, chan, false);
1491
1492	ath9k_hw_set_delta_slope(ah, chan);
1493	ath9k_hw_spur_mitigate_freq(ah, chan);
1494
1495	if (band_switch || ini_reloaded)
1496		ah->eep_ops->set_board_values(ah, chan);
1497
1498	ath9k_hw_init_bb(ah, chan);
1499	ath9k_hw_rfbus_done(ah);
1500
1501	if (band_switch || ini_reloaded) {
1502		ah->ah_flags |= AH_FASTCC;
1503		ath9k_hw_init_cal(ah, chan);
1504		ah->ah_flags &= ~AH_FASTCC;
1505	}
1506
1507	return true;
1508}
1509
1510static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1511{
1512	u32 gpio_mask = ah->gpio_mask;
1513	int i;
1514
1515	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1516		if (!(gpio_mask & 1))
1517			continue;
1518
1519		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1520		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1521	}
1522}
1523
1524void ath9k_hw_check_nav(struct ath_hw *ah)
1525{
1526	struct ath_common *common = ath9k_hw_common(ah);
1527	u32 val;
1528
1529	val = REG_READ(ah, AR_NAV);
1530	if (val != 0xdeadbeef && val > 0x7fff) {
1531		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1532		REG_WRITE(ah, AR_NAV, 0);
1533	}
1534}
1535EXPORT_SYMBOL(ath9k_hw_check_nav);
1536
1537bool ath9k_hw_check_alive(struct ath_hw *ah)
1538{
1539	int count = 50;
1540	u32 reg, last_val;
1541
1542	if (AR_SREV_9300(ah))
1543		return !ath9k_hw_detect_mac_hang(ah);
1544
1545	if (AR_SREV_9285_12_OR_LATER(ah))
1546		return true;
1547
1548	last_val = REG_READ(ah, AR_OBS_BUS_1);
1549	do {
1550		reg = REG_READ(ah, AR_OBS_BUS_1);
1551		if (reg != last_val)
1552			return true;
1553
1554		udelay(1);
1555		last_val = reg;
1556		if ((reg & 0x7E7FFFEF) == 0x00702400)
1557			continue;
1558
1559		switch (reg & 0x7E000B00) {
1560		case 0x1E000000:
1561		case 0x52000B00:
1562		case 0x18000B00:
1563			continue;
1564		default:
1565			return true;
1566		}
1567	} while (count-- > 0);
1568
1569	return false;
1570}
1571EXPORT_SYMBOL(ath9k_hw_check_alive);
1572
1573static void ath9k_hw_init_mfp(struct ath_hw *ah)
1574{
1575	/* Setup MFP options for CCMP */
1576	if (AR_SREV_9280_20_OR_LATER(ah)) {
1577		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1578		 * frames when constructing CCMP AAD. */
1579		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1580			      0xc7ff);
1581		ah->sw_mgmt_crypto = false;
1582	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1583		/* Disable hardware crypto for management frames */
1584		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1586		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1587			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1588		ah->sw_mgmt_crypto = true;
1589	} else {
1590		ah->sw_mgmt_crypto = true;
1591	}
1592}
1593
1594static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1595				  u32 macStaId1, u32 saveDefAntenna)
1596{
1597	struct ath_common *common = ath9k_hw_common(ah);
1598
1599	ENABLE_REGWRITE_BUFFER(ah);
1600
1601	REG_RMW(ah, AR_STA_ID1, macStaId1
1602		  | AR_STA_ID1_RTS_USE_DEF
1603		  | ah->sta_id1_defaults,
1604		  ~AR_STA_ID1_SADH_MASK);
1605	ath_hw_setbssidmask(common);
1606	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1607	ath9k_hw_write_associd(ah);
1608	REG_WRITE(ah, AR_ISR, ~0);
1609	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1610
1611	REGWRITE_BUFFER_FLUSH(ah);
1612
1613	ath9k_hw_set_operating_mode(ah, ah->opmode);
1614}
1615
1616static void ath9k_hw_init_queues(struct ath_hw *ah)
1617{
1618	int i;
1619
1620	ENABLE_REGWRITE_BUFFER(ah);
1621
1622	for (i = 0; i < AR_NUM_DCU; i++)
1623		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1624
1625	REGWRITE_BUFFER_FLUSH(ah);
1626
1627	ah->intr_txqs = 0;
1628	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1629		ath9k_hw_resettxqueue(ah, i);
1630}
1631
1632/*
1633 * For big endian systems turn on swapping for descriptors
1634 */
1635static void ath9k_hw_init_desc(struct ath_hw *ah)
1636{
1637	struct ath_common *common = ath9k_hw_common(ah);
1638
1639	if (AR_SREV_9100(ah)) {
1640		u32 mask;
1641		mask = REG_READ(ah, AR_CFG);
1642		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1643			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1644				mask);
1645		} else {
1646			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1647			REG_WRITE(ah, AR_CFG, mask);
1648			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1649				REG_READ(ah, AR_CFG));
1650		}
1651	} else {
1652		if (common->bus_ops->ath_bus_type == ATH_USB) {
1653			/* Configure AR9271 target WLAN */
1654			if (AR_SREV_9271(ah))
1655				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1656			else
1657				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1658		}
1659#ifdef __BIG_ENDIAN
1660		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1661			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1662			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1663		else
1664			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1665#endif
1666	}
1667}
1668
1669/*
1670 * Fast channel change:
1671 * (Change synthesizer based on channel freq without resetting chip)
1672 */
1673static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1674{
1675	struct ath_common *common = ath9k_hw_common(ah);
1676	struct ath9k_hw_capabilities *pCap = &ah->caps;
1677	int ret;
1678
1679	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1680		goto fail;
1681
1682	if (ah->chip_fullsleep)
1683		goto fail;
1684
1685	if (!ah->curchan)
1686		goto fail;
1687
1688	if (chan->channel == ah->curchan->channel)
1689		goto fail;
1690
1691	if ((ah->curchan->channelFlags | chan->channelFlags) &
1692	    (CHANNEL_HALF | CHANNEL_QUARTER))
1693		goto fail;
1694
1695	/*
1696	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1697	 */
1698	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1699	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1700		goto fail;
1701
1702	if (!ath9k_hw_check_alive(ah))
1703		goto fail;
1704
1705	/*
1706	 * For AR9462, make sure that calibration data for
1707	 * re-using are present.
1708	 */
1709	if (AR_SREV_9462(ah) && (ah->caldata &&
1710				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1711				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1712				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1713		goto fail;
1714
1715	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1716		ah->curchan->channel, chan->channel);
1717
1718	ret = ath9k_hw_channel_change(ah, chan);
1719	if (!ret)
1720		goto fail;
1721
1722	if (ath9k_hw_mci_is_enabled(ah))
1723		ar9003_mci_2g5g_switch(ah, false);
1724
1725	ath9k_hw_loadnf(ah, ah->curchan);
1726	ath9k_hw_start_nfcal(ah, true);
1727
1728	if (AR_SREV_9271(ah))
1729		ar9002_hw_load_ani_reg(ah, chan);
1730
1731	return 0;
1732fail:
1733	return -EINVAL;
1734}
1735
1736u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1737{
1738	struct timespec ts;
1739	s64 usec;
1740
1741	if (!cur) {
1742		getrawmonotonic(&ts);
1743		cur = &ts;
1744	}
1745
1746	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1747	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1748
1749	return (u32) usec;
1750}
1751EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1752
1753int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1754		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1755{
1756	struct ath_common *common = ath9k_hw_common(ah);
1757	u32 saveLedState;
1758	u32 saveDefAntenna;
1759	u32 macStaId1;
1760	u64 tsf = 0;
1761	s64 usec = 0;
1762	int r;
1763	bool start_mci_reset = false;
1764	bool save_fullsleep = ah->chip_fullsleep;
1765
1766	if (ath9k_hw_mci_is_enabled(ah)) {
1767		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1768		if (start_mci_reset)
1769			return 0;
1770	}
1771
1772	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1773		return -EIO;
1774
1775	if (ah->curchan && !ah->chip_fullsleep)
1776		ath9k_hw_getnf(ah, ah->curchan);
1777
1778	ah->caldata = caldata;
1779	if (caldata && (chan->channel != caldata->channel ||
1780			chan->channelFlags != caldata->channelFlags)) {
1781		/* Operating channel changed, reset channel calibration data */
1782		memset(caldata, 0, sizeof(*caldata));
1783		ath9k_init_nfcal_hist_buffer(ah, chan);
1784	} else if (caldata) {
1785		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1786	}
1787	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1788
1789	if (fastcc) {
1790		r = ath9k_hw_do_fastcc(ah, chan);
1791		if (!r)
1792			return r;
1793	}
1794
1795	if (ath9k_hw_mci_is_enabled(ah))
1796		ar9003_mci_stop_bt(ah, save_fullsleep);
1797
1798	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1799	if (saveDefAntenna == 0)
1800		saveDefAntenna = 1;
1801
1802	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1803
1804	/* Save TSF before chip reset, a cold reset clears it */
1805	tsf = ath9k_hw_gettsf64(ah);
1806	usec = ktime_to_us(ktime_get_raw());
1807
1808	saveLedState = REG_READ(ah, AR_CFG_LED) &
1809		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1810		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1811
1812	ath9k_hw_mark_phy_inactive(ah);
1813
1814	ah->paprd_table_write_done = false;
1815
1816	/* Only required on the first reset */
1817	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1818		REG_WRITE(ah,
1819			  AR9271_RESET_POWER_DOWN_CONTROL,
1820			  AR9271_RADIO_RF_RST);
1821		udelay(50);
1822	}
1823
1824	if (!ath9k_hw_chip_reset(ah, chan)) {
1825		ath_err(common, "Chip reset failed\n");
1826		return -EINVAL;
1827	}
1828
1829	/* Only required on the first reset */
1830	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1831		ah->htc_reset_init = false;
1832		REG_WRITE(ah,
1833			  AR9271_RESET_POWER_DOWN_CONTROL,
1834			  AR9271_GATE_MAC_CTL);
1835		udelay(50);
1836	}
1837
1838	/* Restore TSF */
1839	usec = ktime_to_us(ktime_get_raw()) - usec;
1840	ath9k_hw_settsf64(ah, tsf + usec);
1841
1842	if (AR_SREV_9280_20_OR_LATER(ah))
1843		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1844
1845	if (!AR_SREV_9300_20_OR_LATER(ah))
1846		ar9002_hw_enable_async_fifo(ah);
1847
1848	r = ath9k_hw_process_ini(ah, chan);
1849	if (r)
1850		return r;
1851
1852	ath9k_hw_set_rfmode(ah, chan);
1853
1854	if (ath9k_hw_mci_is_enabled(ah))
1855		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1856
1857	/*
1858	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1859	 * right after the chip reset. When that happens, write a new
1860	 * value after the initvals have been applied, with an offset
1861	 * based on measured time difference
1862	 */
1863	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1864		tsf += 1500;
1865		ath9k_hw_settsf64(ah, tsf);
1866	}
1867
1868	ath9k_hw_init_mfp(ah);
1869
1870	ath9k_hw_set_delta_slope(ah, chan);
1871	ath9k_hw_spur_mitigate_freq(ah, chan);
1872	ah->eep_ops->set_board_values(ah, chan);
1873
1874	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1875
1876	r = ath9k_hw_rf_set_freq(ah, chan);
1877	if (r)
1878		return r;
1879
1880	ath9k_hw_set_clockrate(ah);
1881
1882	ath9k_hw_init_queues(ah);
1883	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1884	ath9k_hw_ani_cache_ini_regs(ah);
1885	ath9k_hw_init_qos(ah);
1886
1887	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1888		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1889
1890	ath9k_hw_init_global_settings(ah);
1891
1892	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1893		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1894			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1895		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1896			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1897		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1898			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1899	}
1900
1901	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1902
1903	ath9k_hw_set_dma(ah);
1904
1905	if (!ath9k_hw_mci_is_enabled(ah))
1906		REG_WRITE(ah, AR_OBS, 8);
1907
1908	if (ah->config.rx_intr_mitigation) {
1909		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1910		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1911	}
1912
1913	if (ah->config.tx_intr_mitigation) {
1914		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1915		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1916	}
1917
1918	ath9k_hw_init_bb(ah, chan);
1919
1920	if (caldata) {
1921		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1922		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1923	}
1924	if (!ath9k_hw_init_cal(ah, chan))
1925		return -EIO;
1926
1927	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1928		return -EIO;
1929
1930	ENABLE_REGWRITE_BUFFER(ah);
1931
1932	ath9k_hw_restore_chainmask(ah);
1933	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1934
1935	REGWRITE_BUFFER_FLUSH(ah);
1936
1937	ath9k_hw_init_desc(ah);
1938
1939	if (ath9k_hw_btcoex_is_enabled(ah))
1940		ath9k_hw_btcoex_enable(ah);
1941
1942	if (ath9k_hw_mci_is_enabled(ah))
1943		ar9003_mci_check_bt(ah);
1944
1945	ath9k_hw_loadnf(ah, chan);
1946	ath9k_hw_start_nfcal(ah, true);
1947
1948	if (AR_SREV_9300_20_OR_LATER(ah))
1949		ar9003_hw_bb_watchdog_config(ah);
1950
1951	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1952		ar9003_hw_disable_phy_restart(ah);
1953
1954	ath9k_hw_apply_gpio_override(ah);
1955
1956	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1957		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1958
1959	if (ah->hw->conf.radar_enabled) {
1960		/* set HW specific DFS configuration */
1961		ath9k_hw_set_radar_params(ah);
1962	}
1963
1964	return 0;
1965}
1966EXPORT_SYMBOL(ath9k_hw_reset);
1967
1968/******************************/
1969/* Power Management (Chipset) */
1970/******************************/
1971
1972/*
1973 * Notify Power Mgt is disabled in self-generated frames.
1974 * If requested, force chip to sleep.
1975 */
1976static void ath9k_set_power_sleep(struct ath_hw *ah)
1977{
1978	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1979
1980	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1981		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1982		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1983		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1984		/* xxx Required for WLAN only case ? */
1985		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1986		udelay(100);
1987	}
1988
1989	/*
1990	 * Clear the RTC force wake bit to allow the
1991	 * mac to go to sleep.
1992	 */
1993	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1994
1995	if (ath9k_hw_mci_is_enabled(ah))
1996		udelay(100);
1997
1998	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1999		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2000
2001	/* Shutdown chip. Active low */
2002	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2003		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2004		udelay(2);
2005	}
2006
2007	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2008	if (AR_SREV_9300_20_OR_LATER(ah))
2009		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2010}
2011
2012/*
2013 * Notify Power Management is enabled in self-generating
2014 * frames. If request, set power mode of chip to
2015 * auto/normal.  Duration in units of 128us (1/8 TU).
2016 */
2017static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2018{
2019	struct ath9k_hw_capabilities *pCap = &ah->caps;
2020
2021	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2022
2023	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2024		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2025		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2026			  AR_RTC_FORCE_WAKE_ON_INT);
2027	} else {
2028
2029		/* When chip goes into network sleep, it could be waken
2030		 * up by MCI_INT interrupt caused by BT's HW messages
2031		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2032		 * rate (~100us). This will cause chip to leave and
2033		 * re-enter network sleep mode frequently, which in
2034		 * consequence will have WLAN MCI HW to generate lots of
2035		 * SYS_WAKING and SYS_SLEEPING messages which will make
2036		 * BT CPU to busy to process.
2037		 */
2038		if (ath9k_hw_mci_is_enabled(ah))
2039			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2040				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2041		/*
2042		 * Clear the RTC force wake bit to allow the
2043		 * mac to go to sleep.
2044		 */
2045		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2046
2047		if (ath9k_hw_mci_is_enabled(ah))
2048			udelay(30);
2049	}
2050
2051	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2052	if (AR_SREV_9300_20_OR_LATER(ah))
2053		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2054}
2055
2056static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2057{
2058	u32 val;
2059	int i;
2060
2061	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2062	if (AR_SREV_9300_20_OR_LATER(ah)) {
2063		REG_WRITE(ah, AR_WA, ah->WARegVal);
2064		udelay(10);
2065	}
2066
2067	if ((REG_READ(ah, AR_RTC_STATUS) &
2068	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2069		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2070			return false;
2071		}
2072		if (!AR_SREV_9300_20_OR_LATER(ah))
2073			ath9k_hw_init_pll(ah, NULL);
2074	}
2075	if (AR_SREV_9100(ah))
2076		REG_SET_BIT(ah, AR_RTC_RESET,
2077			    AR_RTC_RESET_EN);
2078
2079	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2080		    AR_RTC_FORCE_WAKE_EN);
2081	if (AR_SREV_9100(ah))
2082		mdelay(10);
2083	else
2084		udelay(50);
2085
2086	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2087		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2088		if (val == AR_RTC_STATUS_ON)
2089			break;
2090		udelay(50);
2091		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2092			    AR_RTC_FORCE_WAKE_EN);
2093	}
2094	if (i == 0) {
2095		ath_err(ath9k_hw_common(ah),
2096			"Failed to wakeup in %uus\n",
2097			POWER_UP_TIME / 20);
2098		return false;
2099	}
2100
2101	if (ath9k_hw_mci_is_enabled(ah))
2102		ar9003_mci_set_power_awake(ah);
2103
2104	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2105
2106	return true;
2107}
2108
2109bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2110{
2111	struct ath_common *common = ath9k_hw_common(ah);
2112	int status = true;
2113	static const char *modes[] = {
2114		"AWAKE",
2115		"FULL-SLEEP",
2116		"NETWORK SLEEP",
2117		"UNDEFINED"
2118	};
2119
2120	if (ah->power_mode == mode)
2121		return status;
2122
2123	ath_dbg(common, RESET, "%s -> %s\n",
2124		modes[ah->power_mode], modes[mode]);
2125
2126	switch (mode) {
2127	case ATH9K_PM_AWAKE:
2128		status = ath9k_hw_set_power_awake(ah);
2129		break;
2130	case ATH9K_PM_FULL_SLEEP:
2131		if (ath9k_hw_mci_is_enabled(ah))
2132			ar9003_mci_set_full_sleep(ah);
2133
2134		ath9k_set_power_sleep(ah);
2135		ah->chip_fullsleep = true;
2136		break;
2137	case ATH9K_PM_NETWORK_SLEEP:
2138		ath9k_set_power_network_sleep(ah);
2139		break;
2140	default:
2141		ath_err(common, "Unknown power mode %u\n", mode);
2142		return false;
2143	}
2144	ah->power_mode = mode;
2145
2146	/*
2147	 * XXX: If this warning never comes up after a while then
2148	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2149	 * ath9k_hw_setpower() return type void.
2150	 */
2151
2152	if (!(ah->ah_flags & AH_UNPLUGGED))
2153		ATH_DBG_WARN_ON_ONCE(!status);
2154
2155	return status;
2156}
2157EXPORT_SYMBOL(ath9k_hw_setpower);
2158
2159/*******************/
2160/* Beacon Handling */
2161/*******************/
2162
2163void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2164{
2165	int flags = 0;
2166
2167	ENABLE_REGWRITE_BUFFER(ah);
2168
2169	switch (ah->opmode) {
2170	case NL80211_IFTYPE_ADHOC:
2171		REG_SET_BIT(ah, AR_TXCFG,
2172			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2173	case NL80211_IFTYPE_MESH_POINT:
2174	case NL80211_IFTYPE_AP:
2175		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2176		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2177			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2178		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2179			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2180		flags |=
2181			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2182		break;
2183	default:
2184		ath_dbg(ath9k_hw_common(ah), BEACON,
2185			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2186		return;
2187		break;
2188	}
2189
2190	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2191	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2192	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2193
2194	REGWRITE_BUFFER_FLUSH(ah);
2195
2196	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2197}
2198EXPORT_SYMBOL(ath9k_hw_beaconinit);
2199
2200void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2201				    const struct ath9k_beacon_state *bs)
2202{
2203	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2204	struct ath9k_hw_capabilities *pCap = &ah->caps;
2205	struct ath_common *common = ath9k_hw_common(ah);
2206
2207	ENABLE_REGWRITE_BUFFER(ah);
2208
2209	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2210	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2211	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2212
2213	REGWRITE_BUFFER_FLUSH(ah);
2214
2215	REG_RMW_FIELD(ah, AR_RSSI_THR,
2216		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2217
2218	beaconintval = bs->bs_intval;
2219
2220	if (bs->bs_sleepduration > beaconintval)
2221		beaconintval = bs->bs_sleepduration;
2222
2223	dtimperiod = bs->bs_dtimperiod;
2224	if (bs->bs_sleepduration > dtimperiod)
2225		dtimperiod = bs->bs_sleepduration;
2226
2227	if (beaconintval == dtimperiod)
2228		nextTbtt = bs->bs_nextdtim;
2229	else
2230		nextTbtt = bs->bs_nexttbtt;
2231
2232	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2233	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2234	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2235	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2236
2237	ENABLE_REGWRITE_BUFFER(ah);
2238
2239	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2240	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2241
2242	REG_WRITE(ah, AR_SLEEP1,
2243		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2244		  | AR_SLEEP1_ASSUME_DTIM);
2245
2246	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2247		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2248	else
2249		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2250
2251	REG_WRITE(ah, AR_SLEEP2,
2252		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2253
2254	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2255	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2256
2257	REGWRITE_BUFFER_FLUSH(ah);
2258
2259	REG_SET_BIT(ah, AR_TIMER_MODE,
2260		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2261		    AR_DTIM_TIMER_EN);
2262
2263	/* TSF Out of Range Threshold */
2264	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2265}
2266EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2267
2268/*******************/
2269/* HW Capabilities */
2270/*******************/
2271
2272static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2273{
2274	eeprom_chainmask &= chip_chainmask;
2275	if (eeprom_chainmask)
2276		return eeprom_chainmask;
2277	else
2278		return chip_chainmask;
2279}
2280
2281/**
2282 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2283 * @ah: the atheros hardware data structure
2284 *
2285 * We enable DFS support upstream on chipsets which have passed a series
2286 * of tests. The testing requirements are going to be documented. Desired
2287 * test requirements are documented at:
2288 *
2289 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2290 *
2291 * Once a new chipset gets properly tested an individual commit can be used
2292 * to document the testing for DFS for that chipset.
2293 */
2294static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2295{
2296
2297	switch (ah->hw_version.macVersion) {
2298	/* for temporary testing DFS with 9280 */
2299	case AR_SREV_VERSION_9280:
2300	/* AR9580 will likely be our first target to get testing on */
2301	case AR_SREV_VERSION_9580:
2302		return true;
2303	default:
2304		return false;
2305	}
2306}
2307
2308int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2309{
2310	struct ath9k_hw_capabilities *pCap = &ah->caps;
2311	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2312	struct ath_common *common = ath9k_hw_common(ah);
2313	unsigned int chip_chainmask;
2314
2315	u16 eeval;
2316	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2317
2318	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2319	regulatory->current_rd = eeval;
2320
2321	if (ah->opmode != NL80211_IFTYPE_AP &&
2322	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2323		if (regulatory->current_rd == 0x64 ||
2324		    regulatory->current_rd == 0x65)
2325			regulatory->current_rd += 5;
2326		else if (regulatory->current_rd == 0x41)
2327			regulatory->current_rd = 0x43;
2328		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2329			regulatory->current_rd);
2330	}
2331
2332	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2333	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2334		ath_err(common,
2335			"no band has been marked as supported in EEPROM\n");
2336		return -EINVAL;
2337	}
2338
2339	if (eeval & AR5416_OPFLAGS_11A)
2340		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2341
2342	if (eeval & AR5416_OPFLAGS_11G)
2343		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2344
2345	if (AR_SREV_9485(ah) ||
2346	    AR_SREV_9285(ah) ||
2347	    AR_SREV_9330(ah) ||
2348	    AR_SREV_9565(ah))
2349		chip_chainmask = 1;
2350	else if (AR_SREV_9462(ah))
2351		chip_chainmask = 3;
2352	else if (!AR_SREV_9280_20_OR_LATER(ah))
2353		chip_chainmask = 7;
2354	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2355		chip_chainmask = 3;
2356	else
2357		chip_chainmask = 7;
2358
2359	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2360	/*
2361	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2362	 * the EEPROM.
2363	 */
2364	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2365	    !(eeval & AR5416_OPFLAGS_11A) &&
2366	    !(AR_SREV_9271(ah)))
2367		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2368		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2369	else if (AR_SREV_9100(ah))
2370		pCap->rx_chainmask = 0x7;
2371	else
2372		/* Use rx_chainmask from EEPROM. */
2373		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2374
2375	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2376	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2377	ah->txchainmask = pCap->tx_chainmask;
2378	ah->rxchainmask = pCap->rx_chainmask;
2379
2380	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2381
2382	/* enable key search for every frame in an aggregate */
2383	if (AR_SREV_9300_20_OR_LATER(ah))
2384		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2385
2386	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2387
2388	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2389		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2390	else
2391		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2392
2393	if (AR_SREV_9271(ah))
2394		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2395	else if (AR_DEVID_7010(ah))
2396		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2397	else if (AR_SREV_9300_20_OR_LATER(ah))
2398		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2399	else if (AR_SREV_9287_11_OR_LATER(ah))
2400		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2401	else if (AR_SREV_9285_12_OR_LATER(ah))
2402		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2403	else if (AR_SREV_9280_20_OR_LATER(ah))
2404		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2405	else
2406		pCap->num_gpio_pins = AR_NUM_GPIO;
2407
2408	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2409		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2410	else
2411		pCap->rts_aggr_limit = (8 * 1024);
2412
2413#ifdef CONFIG_ATH9K_RFKILL
2414	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2415	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2416		ah->rfkill_gpio =
2417			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2418		ah->rfkill_polarity =
2419			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2420
2421		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2422	}
2423#endif
2424	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2425		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2426	else
2427		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2428
2429	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2430		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2431	else
2432		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2433
2434	if (AR_SREV_9300_20_OR_LATER(ah)) {
2435		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2436		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2437			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2438
2439		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2440		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2441		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2442		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2443		pCap->txs_len = sizeof(struct ar9003_txs);
2444	} else {
2445		pCap->tx_desc_len = sizeof(struct ath_desc);
2446		if (AR_SREV_9280_20(ah))
2447			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2448	}
2449
2450	if (AR_SREV_9300_20_OR_LATER(ah))
2451		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2452
2453	if (AR_SREV_9300_20_OR_LATER(ah))
2454		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2455
2456	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2457		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2458
2459	if (AR_SREV_9285(ah)) {
2460		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2461			ant_div_ctl1 =
2462				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2463			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2464				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2465				ath_info(common, "Enable LNA combining\n");
2466			}
2467		}
2468	}
2469
2470	if (AR_SREV_9300_20_OR_LATER(ah)) {
2471		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2472			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2473	}
2474
2475	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2476		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2477		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2478			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2479			ath_info(common, "Enable LNA combining\n");
2480		}
2481	}
2482
2483	if (ath9k_hw_dfs_tested(ah))
2484		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2485
2486	tx_chainmask = pCap->tx_chainmask;
2487	rx_chainmask = pCap->rx_chainmask;
2488	while (tx_chainmask || rx_chainmask) {
2489		if (tx_chainmask & BIT(0))
2490			pCap->max_txchains++;
2491		if (rx_chainmask & BIT(0))
2492			pCap->max_rxchains++;
2493
2494		tx_chainmask >>= 1;
2495		rx_chainmask >>= 1;
2496	}
2497
2498	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2499		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2500			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2501
2502		if (AR_SREV_9462_20_OR_LATER(ah))
2503			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2504	}
2505
2506	if (AR_SREV_9462(ah))
2507		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2508
2509	if (AR_SREV_9300_20_OR_LATER(ah) &&
2510	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2511			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2512
2513	return 0;
2514}
2515
2516/****************************/
2517/* GPIO / RFKILL / Antennae */
2518/****************************/
2519
2520static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2521					 u32 gpio, u32 type)
2522{
2523	int addr;
2524	u32 gpio_shift, tmp;
2525
2526	if (gpio > 11)
2527		addr = AR_GPIO_OUTPUT_MUX3;
2528	else if (gpio > 5)
2529		addr = AR_GPIO_OUTPUT_MUX2;
2530	else
2531		addr = AR_GPIO_OUTPUT_MUX1;
2532
2533	gpio_shift = (gpio % 6) * 5;
2534
2535	if (AR_SREV_9280_20_OR_LATER(ah)
2536	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2537		REG_RMW(ah, addr, (type << gpio_shift),
2538			(0x1f << gpio_shift));
2539	} else {
2540		tmp = REG_READ(ah, addr);
2541		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2542		tmp &= ~(0x1f << gpio_shift);
2543		tmp |= (type << gpio_shift);
2544		REG_WRITE(ah, addr, tmp);
2545	}
2546}
2547
2548void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2549{
2550	u32 gpio_shift;
2551
2552	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2553
2554	if (AR_DEVID_7010(ah)) {
2555		gpio_shift = gpio;
2556		REG_RMW(ah, AR7010_GPIO_OE,
2557			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2558			(AR7010_GPIO_OE_MASK << gpio_shift));
2559		return;
2560	}
2561
2562	gpio_shift = gpio << 1;
2563	REG_RMW(ah,
2564		AR_GPIO_OE_OUT,
2565		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2566		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2567}
2568EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2569
2570u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2571{
2572#define MS_REG_READ(x, y) \
2573	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2574
2575	if (gpio >= ah->caps.num_gpio_pins)
2576		return 0xffffffff;
2577
2578	if (AR_DEVID_7010(ah)) {
2579		u32 val;
2580		val = REG_READ(ah, AR7010_GPIO_IN);
2581		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2582	} else if (AR_SREV_9300_20_OR_LATER(ah))
2583		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2584			AR_GPIO_BIT(gpio)) != 0;
2585	else if (AR_SREV_9271(ah))
2586		return MS_REG_READ(AR9271, gpio) != 0;
2587	else if (AR_SREV_9287_11_OR_LATER(ah))
2588		return MS_REG_READ(AR9287, gpio) != 0;
2589	else if (AR_SREV_9285_12_OR_LATER(ah))
2590		return MS_REG_READ(AR9285, gpio) != 0;
2591	else if (AR_SREV_9280_20_OR_LATER(ah))
2592		return MS_REG_READ(AR928X, gpio) != 0;
2593	else
2594		return MS_REG_READ(AR, gpio) != 0;
2595}
2596EXPORT_SYMBOL(ath9k_hw_gpio_get);
2597
2598void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2599			 u32 ah_signal_type)
2600{
2601	u32 gpio_shift;
2602
2603	if (AR_DEVID_7010(ah)) {
2604		gpio_shift = gpio;
2605		REG_RMW(ah, AR7010_GPIO_OE,
2606			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2607			(AR7010_GPIO_OE_MASK << gpio_shift));
2608		return;
2609	}
2610
2611	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2612	gpio_shift = 2 * gpio;
2613	REG_RMW(ah,
2614		AR_GPIO_OE_OUT,
2615		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2616		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2617}
2618EXPORT_SYMBOL(ath9k_hw_cfg_output);
2619
2620void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2621{
2622	if (AR_DEVID_7010(ah)) {
2623		val = val ? 0 : 1;
2624		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2625			AR_GPIO_BIT(gpio));
2626		return;
2627	}
2628
2629	if (AR_SREV_9271(ah))
2630		val = ~val;
2631
2632	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2633		AR_GPIO_BIT(gpio));
2634}
2635EXPORT_SYMBOL(ath9k_hw_set_gpio);
2636
2637void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2638{
2639	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2640}
2641EXPORT_SYMBOL(ath9k_hw_setantenna);
2642
2643/*********************/
2644/* General Operation */
2645/*********************/
2646
2647u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2648{
2649	u32 bits = REG_READ(ah, AR_RX_FILTER);
2650	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2651
2652	if (phybits & AR_PHY_ERR_RADAR)
2653		bits |= ATH9K_RX_FILTER_PHYRADAR;
2654	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2655		bits |= ATH9K_RX_FILTER_PHYERR;
2656
2657	return bits;
2658}
2659EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2660
2661void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2662{
2663	u32 phybits;
2664
2665	ENABLE_REGWRITE_BUFFER(ah);
2666
2667	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2668		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2669
2670	REG_WRITE(ah, AR_RX_FILTER, bits);
2671
2672	phybits = 0;
2673	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2674		phybits |= AR_PHY_ERR_RADAR;
2675	if (bits & ATH9K_RX_FILTER_PHYERR)
2676		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2677	REG_WRITE(ah, AR_PHY_ERR, phybits);
2678
2679	if (phybits)
2680		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2681	else
2682		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2683
2684	REGWRITE_BUFFER_FLUSH(ah);
2685}
2686EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2687
2688bool ath9k_hw_phy_disable(struct ath_hw *ah)
2689{
2690	if (ath9k_hw_mci_is_enabled(ah))
2691		ar9003_mci_bt_gain_ctrl(ah);
2692
2693	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2694		return false;
2695
2696	ath9k_hw_init_pll(ah, NULL);
2697	ah->htc_reset_init = true;
2698	return true;
2699}
2700EXPORT_SYMBOL(ath9k_hw_phy_disable);
2701
2702bool ath9k_hw_disable(struct ath_hw *ah)
2703{
2704	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2705		return false;
2706
2707	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2708		return false;
2709
2710	ath9k_hw_init_pll(ah, NULL);
2711	return true;
2712}
2713EXPORT_SYMBOL(ath9k_hw_disable);
2714
2715static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2716{
2717	enum eeprom_param gain_param;
2718
2719	if (IS_CHAN_2GHZ(chan))
2720		gain_param = EEP_ANTENNA_GAIN_2G;
2721	else
2722		gain_param = EEP_ANTENNA_GAIN_5G;
2723
2724	return ah->eep_ops->get_eeprom(ah, gain_param);
2725}
2726
2727void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2728			    bool test)
2729{
2730	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2731	struct ieee80211_channel *channel;
2732	int chan_pwr, new_pwr, max_gain;
2733	int ant_gain, ant_reduction = 0;
2734
2735	if (!chan)
2736		return;
2737
2738	channel = chan->chan;
2739	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2740	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2741	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2742
2743	ant_gain = get_antenna_gain(ah, chan);
2744	if (ant_gain > max_gain)
2745		ant_reduction = ant_gain - max_gain;
2746
2747	ah->eep_ops->set_txpower(ah, chan,
2748				 ath9k_regd_get_ctl(reg, chan),
2749				 ant_reduction, new_pwr, test);
2750}
2751
2752void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2753{
2754	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2755	struct ath9k_channel *chan = ah->curchan;
2756	struct ieee80211_channel *channel = chan->chan;
2757
2758	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2759	if (test)
2760		channel->max_power = MAX_RATE_POWER / 2;
2761
2762	ath9k_hw_apply_txpower(ah, chan, test);
2763
2764	if (test)
2765		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2766}
2767EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2768
2769void ath9k_hw_setopmode(struct ath_hw *ah)
2770{
2771	ath9k_hw_set_operating_mode(ah, ah->opmode);
2772}
2773EXPORT_SYMBOL(ath9k_hw_setopmode);
2774
2775void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2776{
2777	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2778	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2779}
2780EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2781
2782void ath9k_hw_write_associd(struct ath_hw *ah)
2783{
2784	struct ath_common *common = ath9k_hw_common(ah);
2785
2786	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2787	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2788		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2789}
2790EXPORT_SYMBOL(ath9k_hw_write_associd);
2791
2792#define ATH9K_MAX_TSF_READ 10
2793
2794u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2795{
2796	u32 tsf_lower, tsf_upper1, tsf_upper2;
2797	int i;
2798
2799	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2800	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2801		tsf_lower = REG_READ(ah, AR_TSF_L32);
2802		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2803		if (tsf_upper2 == tsf_upper1)
2804			break;
2805		tsf_upper1 = tsf_upper2;
2806	}
2807
2808	WARN_ON( i == ATH9K_MAX_TSF_READ );
2809
2810	return (((u64)tsf_upper1 << 32) | tsf_lower);
2811}
2812EXPORT_SYMBOL(ath9k_hw_gettsf64);
2813
2814void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2815{
2816	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2817	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2818}
2819EXPORT_SYMBOL(ath9k_hw_settsf64);
2820
2821void ath9k_hw_reset_tsf(struct ath_hw *ah)
2822{
2823	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2824			   AH_TSF_WRITE_TIMEOUT))
2825		ath_dbg(ath9k_hw_common(ah), RESET,
2826			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2827
2828	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2829}
2830EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2831
2832void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2833{
2834	if (set)
2835		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2836	else
2837		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2838}
2839EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2840
2841void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2842{
2843	u32 macmode;
2844
2845	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2846		macmode = AR_2040_JOINED_RX_CLEAR;
2847	else
2848		macmode = 0;
2849
2850	REG_WRITE(ah, AR_2040_MODE, macmode);
2851}
2852
2853/* HW Generic timers configuration */
2854
2855static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2856{
2857	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2858	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2859	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2860	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2861	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2862	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2863	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2864	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2865	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2866	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2867				AR_NDP2_TIMER_MODE, 0x0002},
2868	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2869				AR_NDP2_TIMER_MODE, 0x0004},
2870	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2871				AR_NDP2_TIMER_MODE, 0x0008},
2872	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2873				AR_NDP2_TIMER_MODE, 0x0010},
2874	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2875				AR_NDP2_TIMER_MODE, 0x0020},
2876	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2877				AR_NDP2_TIMER_MODE, 0x0040},
2878	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2879				AR_NDP2_TIMER_MODE, 0x0080}
2880};
2881
2882/* HW generic timer primitives */
2883
2884u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2885{
2886	return REG_READ(ah, AR_TSF_L32);
2887}
2888EXPORT_SYMBOL(ath9k_hw_gettsf32);
2889
2890struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2891					  void (*trigger)(void *),
2892					  void (*overflow)(void *),
2893					  void *arg,
2894					  u8 timer_index)
2895{
2896	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2897	struct ath_gen_timer *timer;
2898
2899	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2900		(timer_index >= ATH_MAX_GEN_TIMER))
2901		return NULL;
2902
2903	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2904	if (timer == NULL)
2905		return NULL;
2906
2907	/* allocate a hardware generic timer slot */
2908	timer_table->timers[timer_index] = timer;
2909	timer->index = timer_index;
2910	timer->trigger = trigger;
2911	timer->overflow = overflow;
2912	timer->arg = arg;
2913
2914	return timer;
2915}
2916EXPORT_SYMBOL(ath_gen_timer_alloc);
2917
2918void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2919			      struct ath_gen_timer *timer,
2920			      u32 timer_next,
2921			      u32 timer_period)
2922{
2923	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2924	u32 mask = 0;
2925
2926	timer_table->timer_mask |= BIT(timer->index);
2927
2928	/*
2929	 * Program generic timer registers
2930	 */
2931	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2932		 timer_next);
2933	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2934		  timer_period);
2935	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2936		    gen_tmr_configuration[timer->index].mode_mask);
2937
2938	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2939		/*
2940		 * Starting from AR9462, each generic timer can select which tsf
2941		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2942		 * 8 - 15  use tsf2.
2943		 */
2944		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2945			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2946				       (1 << timer->index));
2947		else
2948			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2949				       (1 << timer->index));
2950	}
2951
2952	if (timer->trigger)
2953		mask |= SM(AR_GENTMR_BIT(timer->index),
2954			   AR_IMR_S5_GENTIMER_TRIG);
2955	if (timer->overflow)
2956		mask |= SM(AR_GENTMR_BIT(timer->index),
2957			   AR_IMR_S5_GENTIMER_THRESH);
2958
2959	REG_SET_BIT(ah, AR_IMR_S5, mask);
2960
2961	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2962		ah->imask |= ATH9K_INT_GENTIMER;
2963		ath9k_hw_set_interrupts(ah);
2964	}
2965}
2966EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2967
2968void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2969{
2970	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2971
2972	/* Clear generic timer enable bits. */
2973	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2974			gen_tmr_configuration[timer->index].mode_mask);
2975
2976	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2977		/*
2978		 * Need to switch back to TSF if it was using TSF2.
2979		 */
2980		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2981			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2982				    (1 << timer->index));
2983		}
2984	}
2985
2986	/* Disable both trigger and thresh interrupt masks */
2987	REG_CLR_BIT(ah, AR_IMR_S5,
2988		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2989		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2990
2991	timer_table->timer_mask &= ~BIT(timer->index);
2992
2993	if (timer_table->timer_mask == 0) {
2994		ah->imask &= ~ATH9K_INT_GENTIMER;
2995		ath9k_hw_set_interrupts(ah);
2996	}
2997}
2998EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2999
3000void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3001{
3002	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3003
3004	/* free the hardware generic timer slot */
3005	timer_table->timers[timer->index] = NULL;
3006	kfree(timer);
3007}
3008EXPORT_SYMBOL(ath_gen_timer_free);
3009
3010/*
3011 * Generic Timer Interrupts handling
3012 */
3013void ath_gen_timer_isr(struct ath_hw *ah)
3014{
3015	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3016	struct ath_gen_timer *timer;
3017	unsigned long trigger_mask, thresh_mask;
3018	unsigned int index;
3019
3020	/* get hardware generic timer interrupt status */
3021	trigger_mask = ah->intr_gen_timer_trigger;
3022	thresh_mask = ah->intr_gen_timer_thresh;
3023	trigger_mask &= timer_table->timer_mask;
3024	thresh_mask &= timer_table->timer_mask;
3025
3026	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3027		timer = timer_table->timers[index];
3028		if (!timer)
3029		    continue;
3030		if (!timer->overflow)
3031		    continue;
3032
3033		trigger_mask &= ~BIT(index);
3034		timer->overflow(timer->arg);
3035	}
3036
3037	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3038		timer = timer_table->timers[index];
3039		if (!timer)
3040		    continue;
3041		if (!timer->trigger)
3042		    continue;
3043		timer->trigger(timer->arg);
3044	}
3045}
3046EXPORT_SYMBOL(ath_gen_timer_isr);
3047
3048/********/
3049/* HTC  */
3050/********/
3051
3052static struct {
3053	u32 version;
3054	const char * name;
3055} ath_mac_bb_names[] = {
3056	/* Devices with external radios */
3057	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3058	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3059	{ AR_SREV_VERSION_9100,		"9100" },
3060	{ AR_SREV_VERSION_9160,		"9160" },
3061	/* Single-chip solutions */
3062	{ AR_SREV_VERSION_9280,		"9280" },
3063	{ AR_SREV_VERSION_9285,		"9285" },
3064	{ AR_SREV_VERSION_9287,         "9287" },
3065	{ AR_SREV_VERSION_9271,         "9271" },
3066	{ AR_SREV_VERSION_9300,         "9300" },
3067	{ AR_SREV_VERSION_9330,         "9330" },
3068	{ AR_SREV_VERSION_9340,		"9340" },
3069	{ AR_SREV_VERSION_9485,         "9485" },
3070	{ AR_SREV_VERSION_9462,         "9462" },
3071	{ AR_SREV_VERSION_9550,         "9550" },
3072	{ AR_SREV_VERSION_9565,         "9565" },
3073	{ AR_SREV_VERSION_9531,         "9531" },
3074};
3075
3076/* For devices with external radios */
3077static struct {
3078	u16 version;
3079	const char * name;
3080} ath_rf_names[] = {
3081	{ 0,				"5133" },
3082	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3083	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3084	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3085	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3086};
3087
3088/*
3089 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3090 */
3091static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3092{
3093	int i;
3094
3095	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3096		if (ath_mac_bb_names[i].version == mac_bb_version) {
3097			return ath_mac_bb_names[i].name;
3098		}
3099	}
3100
3101	return "????";
3102}
3103
3104/*
3105 * Return the RF name. "????" is returned if the RF is unknown.
3106 * Used for devices with external radios.
3107 */
3108static const char *ath9k_hw_rf_name(u16 rf_version)
3109{
3110	int i;
3111
3112	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3113		if (ath_rf_names[i].version == rf_version) {
3114			return ath_rf_names[i].name;
3115		}
3116	}
3117
3118	return "????";
3119}
3120
3121void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3122{
3123	int used;
3124
3125	/* chipsets >= AR9280 are single-chip */
3126	if (AR_SREV_9280_20_OR_LATER(ah)) {
3127		used = scnprintf(hw_name, len,
3128				 "Atheros AR%s Rev:%x",
3129				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3130				 ah->hw_version.macRev);
3131	}
3132	else {
3133		used = scnprintf(hw_name, len,
3134				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3135				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3136				 ah->hw_version.macRev,
3137				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3138						  & AR_RADIO_SREV_MAJOR)),
3139				 ah->hw_version.phyRev);
3140	}
3141
3142	hw_name[used] = '\0';
3143}
3144EXPORT_SYMBOL(ath9k_hw_name);
3145