hw.c revision c91ec465cab4a831671e01d65113330239faee61
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <asm/unaligned.h>
21
22#include "hw.h"
23#include "hw-ops.h"
24#include "rc.h"
25#include "ar9003_mac.h"
26
27static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28
29MODULE_AUTHOR("Atheros Communications");
30MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32MODULE_LICENSE("Dual BSD/GPL");
33
34static int __init ath9k_init(void)
35{
36	return 0;
37}
38module_init(ath9k_init);
39
40static void __exit ath9k_exit(void)
41{
42	return;
43}
44module_exit(ath9k_exit);
45
46/* Private hardware callbacks */
47
48static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49{
50	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
51}
52
53static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54{
55	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
56}
57
58static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
59					struct ath9k_channel *chan)
60{
61	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
62}
63
64static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
65{
66	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
67		return;
68
69	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
70}
71
72static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
73{
74	/* You will not have this callback if using the old ANI */
75	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
76		return;
77
78	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
79}
80
81/********************/
82/* Helper Functions */
83/********************/
84
85static void ath9k_hw_set_clockrate(struct ath_hw *ah)
86{
87	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88	struct ath_common *common = ath9k_hw_common(ah);
89	unsigned int clockrate;
90
91	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
93		clockrate = 117;
94	else if (!ah->curchan) /* should really check for CCK instead */
95		clockrate = ATH9K_CLOCK_RATE_CCK;
96	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
97		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
98	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
99		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
100	else
101		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
102
103	if (conf_is_ht40(conf))
104		clockrate *= 2;
105
106	if (ah->curchan) {
107		if (IS_CHAN_HALF_RATE(ah->curchan))
108			clockrate /= 2;
109		if (IS_CHAN_QUARTER_RATE(ah->curchan))
110			clockrate /= 4;
111	}
112
113	common->clockrate = clockrate;
114}
115
116static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
117{
118	struct ath_common *common = ath9k_hw_common(ah);
119
120	return usecs * common->clockrate;
121}
122
123bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
124{
125	int i;
126
127	BUG_ON(timeout < AH_TIME_QUANTUM);
128
129	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
130		if ((REG_READ(ah, reg) & mask) == val)
131			return true;
132
133		udelay(AH_TIME_QUANTUM);
134	}
135
136	ath_dbg(ath9k_hw_common(ah), ANY,
137		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138		timeout, reg, REG_READ(ah, reg), mask, val);
139
140	return false;
141}
142EXPORT_SYMBOL(ath9k_hw_wait);
143
144void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
145			  int column, unsigned int *writecnt)
146{
147	int r;
148
149	ENABLE_REGWRITE_BUFFER(ah);
150	for (r = 0; r < array->ia_rows; r++) {
151		REG_WRITE(ah, INI_RA(array, r, 0),
152			  INI_RA(array, r, column));
153		DO_DELAY(*writecnt);
154	}
155	REGWRITE_BUFFER_FLUSH(ah);
156}
157
158u32 ath9k_hw_reverse_bits(u32 val, u32 n)
159{
160	u32 retval;
161	int i;
162
163	for (i = 0, retval = 0; i < n; i++) {
164		retval = (retval << 1) | (val & 1);
165		val >>= 1;
166	}
167	return retval;
168}
169
170u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171			   u8 phy, int kbps,
172			   u32 frameLen, u16 rateix,
173			   bool shortPreamble)
174{
175	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176
177	if (kbps == 0)
178		return 0;
179
180	switch (phy) {
181	case WLAN_RC_PHY_CCK:
182		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183		if (shortPreamble)
184			phyTime >>= 1;
185		numBits = frameLen << 3;
186		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187		break;
188	case WLAN_RC_PHY_OFDM:
189		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193			txTime = OFDM_SIFS_TIME_QUARTER
194				+ OFDM_PREAMBLE_TIME_QUARTER
195				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196		} else if (ah->curchan &&
197			   IS_CHAN_HALF_RATE(ah->curchan)) {
198			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199			numBits = OFDM_PLCP_BITS + (frameLen << 3);
200			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201			txTime = OFDM_SIFS_TIME_HALF +
202				OFDM_PREAMBLE_TIME_HALF
203				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
204		} else {
205			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206			numBits = OFDM_PLCP_BITS + (frameLen << 3);
207			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209				+ (numSymbols * OFDM_SYMBOL_TIME);
210		}
211		break;
212	default:
213		ath_err(ath9k_hw_common(ah),
214			"Unknown phy %u (rate ix %u)\n", phy, rateix);
215		txTime = 0;
216		break;
217	}
218
219	return txTime;
220}
221EXPORT_SYMBOL(ath9k_hw_computetxtime);
222
223void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224				  struct ath9k_channel *chan,
225				  struct chan_centers *centers)
226{
227	int8_t extoff;
228
229	if (!IS_CHAN_HT40(chan)) {
230		centers->ctl_center = centers->ext_center =
231			centers->synth_center = chan->channel;
232		return;
233	}
234
235	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237		centers->synth_center =
238			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239		extoff = 1;
240	} else {
241		centers->synth_center =
242			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243		extoff = -1;
244	}
245
246	centers->ctl_center =
247		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248	/* 25 MHz spacing is supported by hw but not on upper layers */
249	centers->ext_center =
250		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251}
252
253/******************/
254/* Chip Revisions */
255/******************/
256
257static void ath9k_hw_read_revisions(struct ath_hw *ah)
258{
259	u32 val;
260
261	switch (ah->hw_version.devid) {
262	case AR5416_AR9100_DEVID:
263		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264		break;
265	case AR9300_DEVID_AR9330:
266		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267		if (ah->get_mac_revision) {
268			ah->hw_version.macRev = ah->get_mac_revision();
269		} else {
270			val = REG_READ(ah, AR_SREV);
271			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272		}
273		return;
274	case AR9300_DEVID_AR9340:
275		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276		val = REG_READ(ah, AR_SREV);
277		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
278		return;
279	}
280
281	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
282
283	if (val == 0xFF) {
284		val = REG_READ(ah, AR_SREV);
285		ah->hw_version.macVersion =
286			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
287		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
288
289		if (AR_SREV_9462(ah))
290			ah->is_pciexpress = true;
291		else
292			ah->is_pciexpress = (val &
293					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
294	} else {
295		if (!AR_SREV_9100(ah))
296			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
297
298		ah->hw_version.macRev = val & AR_SREV_REVISION;
299
300		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
301			ah->is_pciexpress = true;
302	}
303}
304
305/************************************/
306/* HW Attach, Detach, Init Routines */
307/************************************/
308
309static void ath9k_hw_disablepcie(struct ath_hw *ah)
310{
311	if (!AR_SREV_5416(ah))
312		return;
313
314	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
315	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
317	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
318	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
319	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
320	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
321	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
322	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
323
324	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
325}
326
327static void ath9k_hw_aspm_init(struct ath_hw *ah)
328{
329	struct ath_common *common = ath9k_hw_common(ah);
330
331	if (common->bus_ops->aspm_init)
332		common->bus_ops->aspm_init(common);
333}
334
335/* This should work for all families including legacy */
336static bool ath9k_hw_chip_test(struct ath_hw *ah)
337{
338	struct ath_common *common = ath9k_hw_common(ah);
339	u32 regAddr[2] = { AR_STA_ID0 };
340	u32 regHold[2];
341	static const u32 patternData[4] = {
342		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
343	};
344	int i, j, loop_max;
345
346	if (!AR_SREV_9300_20_OR_LATER(ah)) {
347		loop_max = 2;
348		regAddr[1] = AR_PHY_BASE + (8 << 2);
349	} else
350		loop_max = 1;
351
352	for (i = 0; i < loop_max; i++) {
353		u32 addr = regAddr[i];
354		u32 wrData, rdData;
355
356		regHold[i] = REG_READ(ah, addr);
357		for (j = 0; j < 0x100; j++) {
358			wrData = (j << 16) | j;
359			REG_WRITE(ah, addr, wrData);
360			rdData = REG_READ(ah, addr);
361			if (rdData != wrData) {
362				ath_err(common,
363					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364					addr, wrData, rdData);
365				return false;
366			}
367		}
368		for (j = 0; j < 4; j++) {
369			wrData = patternData[j];
370			REG_WRITE(ah, addr, wrData);
371			rdData = REG_READ(ah, addr);
372			if (wrData != rdData) {
373				ath_err(common,
374					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375					addr, wrData, rdData);
376				return false;
377			}
378		}
379		REG_WRITE(ah, regAddr[i], regHold[i]);
380	}
381	udelay(100);
382
383	return true;
384}
385
386static void ath9k_hw_init_config(struct ath_hw *ah)
387{
388	int i;
389
390	ah->config.dma_beacon_response_time = 2;
391	ah->config.sw_beacon_response_time = 10;
392	ah->config.additional_swba_backoff = 0;
393	ah->config.ack_6mb = 0x0;
394	ah->config.cwm_ignore_extcca = 0;
395	ah->config.pcie_clock_req = 0;
396	ah->config.pcie_waen = 0;
397	ah->config.analog_shiftreg = 1;
398	ah->config.enable_ani = true;
399
400	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
401		ah->config.spurchans[i][0] = AR_NO_SPUR;
402		ah->config.spurchans[i][1] = AR_NO_SPUR;
403	}
404
405	/* PAPRD needs some more work to be enabled */
406	ah->config.paprd_disable = 1;
407
408	ah->config.rx_intr_mitigation = true;
409	ah->config.pcieSerDesWrite = true;
410
411	/*
412	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414	 * This means we use it for all AR5416 devices, and the few
415	 * minor PCI AR9280 devices out there.
416	 *
417	 * Serialization is required because these devices do not handle
418	 * well the case of two concurrent reads/writes due to the latency
419	 * involved. During one read/write another read/write can be issued
420	 * on another CPU while the previous read/write may still be working
421	 * on our hardware, if we hit this case the hardware poops in a loop.
422	 * We prevent this by serializing reads and writes.
423	 *
424	 * This issue is not present on PCI-Express devices or pre-AR5416
425	 * devices (legacy, 802.11abg).
426	 */
427	if (num_possible_cpus() > 1)
428		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
429}
430
431static void ath9k_hw_init_defaults(struct ath_hw *ah)
432{
433	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
434
435	regulatory->country_code = CTRY_DEFAULT;
436	regulatory->power_limit = MAX_RATE_POWER;
437
438	ah->hw_version.magic = AR5416_MAGIC;
439	ah->hw_version.subvendorid = 0;
440
441	ah->atim_window = 0;
442	ah->sta_id1_defaults =
443		AR_STA_ID1_CRPT_MIC_ENABLE |
444		AR_STA_ID1_MCAST_KSRCH;
445	if (AR_SREV_9100(ah))
446		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
447	ah->enable_32kHz_clock = DONT_USE_32KHZ;
448	ah->slottime = ATH9K_SLOT_TIME_9;
449	ah->globaltxtimeout = (u32) -1;
450	ah->power_mode = ATH9K_PM_UNDEFINED;
451}
452
453static int ath9k_hw_init_macaddr(struct ath_hw *ah)
454{
455	struct ath_common *common = ath9k_hw_common(ah);
456	u32 sum;
457	int i;
458	u16 eeval;
459	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
460
461	sum = 0;
462	for (i = 0; i < 3; i++) {
463		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
464		sum += eeval;
465		common->macaddr[2 * i] = eeval >> 8;
466		common->macaddr[2 * i + 1] = eeval & 0xff;
467	}
468	if (sum == 0 || sum == 0xffff * 3)
469		return -EADDRNOTAVAIL;
470
471	return 0;
472}
473
474static int ath9k_hw_post_init(struct ath_hw *ah)
475{
476	struct ath_common *common = ath9k_hw_common(ah);
477	int ecode;
478
479	if (common->bus_ops->ath_bus_type != ATH_USB) {
480		if (!ath9k_hw_chip_test(ah))
481			return -ENODEV;
482	}
483
484	if (!AR_SREV_9300_20_OR_LATER(ah)) {
485		ecode = ar9002_hw_rf_claim(ah);
486		if (ecode != 0)
487			return ecode;
488	}
489
490	ecode = ath9k_hw_eeprom_init(ah);
491	if (ecode != 0)
492		return ecode;
493
494	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
495		ah->eep_ops->get_eeprom_ver(ah),
496		ah->eep_ops->get_eeprom_rev(ah));
497
498	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
499	if (ecode) {
500		ath_err(ath9k_hw_common(ah),
501			"Failed allocating banks for external radio\n");
502		ath9k_hw_rf_free_ext_banks(ah);
503		return ecode;
504	}
505
506	if (ah->config.enable_ani) {
507		ath9k_hw_ani_setup(ah);
508		ath9k_hw_ani_init(ah);
509	}
510
511	return 0;
512}
513
514static void ath9k_hw_attach_ops(struct ath_hw *ah)
515{
516	if (AR_SREV_9300_20_OR_LATER(ah))
517		ar9003_hw_attach_ops(ah);
518	else
519		ar9002_hw_attach_ops(ah);
520}
521
522/* Called for all hardware families */
523static int __ath9k_hw_init(struct ath_hw *ah)
524{
525	struct ath_common *common = ath9k_hw_common(ah);
526	int r = 0;
527
528	ath9k_hw_read_revisions(ah);
529
530	/*
531	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532	 * We need to do this to avoid RMW of this register. We cannot
533	 * read the reg when chip is asleep.
534	 */
535	ah->WARegVal = REG_READ(ah, AR_WA);
536	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
537			 AR_WA_ASPM_TIMER_BASED_DISABLE);
538
539	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540		ath_err(common, "Couldn't reset chip\n");
541		return -EIO;
542	}
543
544	if (AR_SREV_9462(ah))
545		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
546
547	ath9k_hw_init_defaults(ah);
548	ath9k_hw_init_config(ah);
549
550	ath9k_hw_attach_ops(ah);
551
552	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
553		ath_err(common, "Couldn't wakeup chip\n");
554		return -EIO;
555	}
556
557	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
558		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
559		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
560		     !ah->is_pciexpress)) {
561			ah->config.serialize_regmode =
562				SER_REG_MODE_ON;
563		} else {
564			ah->config.serialize_regmode =
565				SER_REG_MODE_OFF;
566		}
567	}
568
569	ath_dbg(common, RESET, "serialize_regmode is %d\n",
570		ah->config.serialize_regmode);
571
572	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
573		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
574	else
575		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
576
577	switch (ah->hw_version.macVersion) {
578	case AR_SREV_VERSION_5416_PCI:
579	case AR_SREV_VERSION_5416_PCIE:
580	case AR_SREV_VERSION_9160:
581	case AR_SREV_VERSION_9100:
582	case AR_SREV_VERSION_9280:
583	case AR_SREV_VERSION_9285:
584	case AR_SREV_VERSION_9287:
585	case AR_SREV_VERSION_9271:
586	case AR_SREV_VERSION_9300:
587	case AR_SREV_VERSION_9330:
588	case AR_SREV_VERSION_9485:
589	case AR_SREV_VERSION_9340:
590	case AR_SREV_VERSION_9462:
591		break;
592	default:
593		ath_err(common,
594			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
595			ah->hw_version.macVersion, ah->hw_version.macRev);
596		return -EOPNOTSUPP;
597	}
598
599	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
600	    AR_SREV_9330(ah))
601		ah->is_pciexpress = false;
602
603	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
604	ath9k_hw_init_cal_settings(ah);
605
606	ah->ani_function = ATH9K_ANI_ALL;
607	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
608		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
609	if (!AR_SREV_9300_20_OR_LATER(ah))
610		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
611
612	/* disable ANI for 9340 */
613	if (AR_SREV_9340(ah))
614		ah->config.enable_ani = false;
615
616	ath9k_hw_init_mode_regs(ah);
617
618	if (!ah->is_pciexpress)
619		ath9k_hw_disablepcie(ah);
620
621	if (!AR_SREV_9300_20_OR_LATER(ah))
622		ar9002_hw_cck_chan14_spread(ah);
623
624	r = ath9k_hw_post_init(ah);
625	if (r)
626		return r;
627
628	ath9k_hw_init_mode_gain_regs(ah);
629	r = ath9k_hw_fill_cap_info(ah);
630	if (r)
631		return r;
632
633	if (ah->is_pciexpress)
634		ath9k_hw_aspm_init(ah);
635
636	r = ath9k_hw_init_macaddr(ah);
637	if (r) {
638		ath_err(common, "Failed to initialize MAC address\n");
639		return r;
640	}
641
642	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
643		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
644	else
645		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
646
647	if (AR_SREV_9330(ah))
648		ah->bb_watchdog_timeout_ms = 85;
649	else
650		ah->bb_watchdog_timeout_ms = 25;
651
652	common->state = ATH_HW_INITIALIZED;
653
654	return 0;
655}
656
657int ath9k_hw_init(struct ath_hw *ah)
658{
659	int ret;
660	struct ath_common *common = ath9k_hw_common(ah);
661
662	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
663	switch (ah->hw_version.devid) {
664	case AR5416_DEVID_PCI:
665	case AR5416_DEVID_PCIE:
666	case AR5416_AR9100_DEVID:
667	case AR9160_DEVID_PCI:
668	case AR9280_DEVID_PCI:
669	case AR9280_DEVID_PCIE:
670	case AR9285_DEVID_PCIE:
671	case AR9287_DEVID_PCI:
672	case AR9287_DEVID_PCIE:
673	case AR2427_DEVID_PCIE:
674	case AR9300_DEVID_PCIE:
675	case AR9300_DEVID_AR9485_PCIE:
676	case AR9300_DEVID_AR9330:
677	case AR9300_DEVID_AR9340:
678	case AR9300_DEVID_AR9580:
679	case AR9300_DEVID_AR9462:
680		break;
681	default:
682		if (common->bus_ops->ath_bus_type == ATH_USB)
683			break;
684		ath_err(common, "Hardware device ID 0x%04x not supported\n",
685			ah->hw_version.devid);
686		return -EOPNOTSUPP;
687	}
688
689	ret = __ath9k_hw_init(ah);
690	if (ret) {
691		ath_err(common,
692			"Unable to initialize hardware; initialization status: %d\n",
693			ret);
694		return ret;
695	}
696
697	return 0;
698}
699EXPORT_SYMBOL(ath9k_hw_init);
700
701static void ath9k_hw_init_qos(struct ath_hw *ah)
702{
703	ENABLE_REGWRITE_BUFFER(ah);
704
705	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
706	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
707
708	REG_WRITE(ah, AR_QOS_NO_ACK,
709		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
710		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
711		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
712
713	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
714	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
715	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
716	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
717	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
718
719	REGWRITE_BUFFER_FLUSH(ah);
720}
721
722u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
723{
724	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
725	udelay(100);
726	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
727
728	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
729		udelay(100);
730
731	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
732}
733EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
734
735static void ath9k_hw_init_pll(struct ath_hw *ah,
736			      struct ath9k_channel *chan)
737{
738	u32 pll;
739
740	if (AR_SREV_9485(ah)) {
741
742		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746			      AR_CH0_DPLL2_KD, 0x40);
747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748			      AR_CH0_DPLL2_KI, 0x4);
749
750		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
751			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
752		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
753			      AR_CH0_BB_DPLL1_NINI, 0x58);
754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
755			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
756
757		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
759		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
761		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
763
764		/* program BB PLL phase_shift to 0x6 */
765		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
766			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
767
768		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
770		udelay(1000);
771	} else if (AR_SREV_9330(ah)) {
772		u32 ddr_dpll2, pll_control2, kd;
773
774		if (ah->is_clk_25mhz) {
775			ddr_dpll2 = 0x18e82f01;
776			pll_control2 = 0xe04a3d;
777			kd = 0x1d;
778		} else {
779			ddr_dpll2 = 0x19e82f01;
780			pll_control2 = 0x886666;
781			kd = 0x3d;
782		}
783
784		/* program DDR PLL ki and kd value */
785		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
786
787		/* program DDR PLL phase_shift */
788		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
789			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
790
791		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
792		udelay(1000);
793
794		/* program refdiv, nint, frac to RTC register */
795		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
796
797		/* program BB PLL kd and ki value */
798		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
799		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
800
801		/* program BB PLL phase_shift */
802		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
803			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
804	} else if (AR_SREV_9340(ah)) {
805		u32 regval, pll2_divint, pll2_divfrac, refdiv;
806
807		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
808		udelay(1000);
809
810		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
811		udelay(100);
812
813		if (ah->is_clk_25mhz) {
814			pll2_divint = 0x54;
815			pll2_divfrac = 0x1eb85;
816			refdiv = 3;
817		} else {
818			pll2_divint = 88;
819			pll2_divfrac = 0;
820			refdiv = 5;
821		}
822
823		regval = REG_READ(ah, AR_PHY_PLL_MODE);
824		regval |= (0x1 << 16);
825		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
826		udelay(100);
827
828		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
829			  (pll2_divint << 18) | pll2_divfrac);
830		udelay(100);
831
832		regval = REG_READ(ah, AR_PHY_PLL_MODE);
833		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
834			 (0x4 << 26) | (0x18 << 19);
835		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836		REG_WRITE(ah, AR_PHY_PLL_MODE,
837			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
838		udelay(1000);
839	}
840
841	pll = ath9k_hw_compute_pll_control(ah, chan);
842
843	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
844
845	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
846		udelay(1000);
847
848	/* Switch the core clock for ar9271 to 117Mhz */
849	if (AR_SREV_9271(ah)) {
850		udelay(500);
851		REG_WRITE(ah, 0x50040, 0x304);
852	}
853
854	udelay(RTC_PLL_SETTLE_DELAY);
855
856	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
857
858	if (AR_SREV_9340(ah)) {
859		if (ah->is_clk_25mhz) {
860			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
861			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
862			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
863		} else {
864			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
865			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
866			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
867		}
868		udelay(100);
869	}
870}
871
872static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
873					  enum nl80211_iftype opmode)
874{
875	u32 sync_default = AR_INTR_SYNC_DEFAULT;
876	u32 imr_reg = AR_IMR_TXERR |
877		AR_IMR_TXURN |
878		AR_IMR_RXERR |
879		AR_IMR_RXORN |
880		AR_IMR_BCNMISC;
881
882	if (AR_SREV_9340(ah))
883		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
884
885	if (AR_SREV_9300_20_OR_LATER(ah)) {
886		imr_reg |= AR_IMR_RXOK_HP;
887		if (ah->config.rx_intr_mitigation)
888			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
889		else
890			imr_reg |= AR_IMR_RXOK_LP;
891
892	} else {
893		if (ah->config.rx_intr_mitigation)
894			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
895		else
896			imr_reg |= AR_IMR_RXOK;
897	}
898
899	if (ah->config.tx_intr_mitigation)
900		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
901	else
902		imr_reg |= AR_IMR_TXOK;
903
904	if (opmode == NL80211_IFTYPE_AP)
905		imr_reg |= AR_IMR_MIB;
906
907	ENABLE_REGWRITE_BUFFER(ah);
908
909	REG_WRITE(ah, AR_IMR, imr_reg);
910	ah->imrs2_reg |= AR_IMR_S2_GTT;
911	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
912
913	if (!AR_SREV_9100(ah)) {
914		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
915		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
916		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
917	}
918
919	REGWRITE_BUFFER_FLUSH(ah);
920
921	if (AR_SREV_9300_20_OR_LATER(ah)) {
922		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
923		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
924		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
925		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
926	}
927}
928
929static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
930{
931	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
932	val = min(val, (u32) 0xFFFF);
933	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
934}
935
936static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
937{
938	u32 val = ath9k_hw_mac_to_clks(ah, us);
939	val = min(val, (u32) 0xFFFF);
940	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
941}
942
943static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
944{
945	u32 val = ath9k_hw_mac_to_clks(ah, us);
946	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
947	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
948}
949
950static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
951{
952	u32 val = ath9k_hw_mac_to_clks(ah, us);
953	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
954	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
955}
956
957static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
958{
959	if (tu > 0xFFFF) {
960		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
961			tu);
962		ah->globaltxtimeout = (u32) -1;
963		return false;
964	} else {
965		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
966		ah->globaltxtimeout = tu;
967		return true;
968	}
969}
970
971void ath9k_hw_init_global_settings(struct ath_hw *ah)
972{
973	struct ath_common *common = ath9k_hw_common(ah);
974	struct ieee80211_conf *conf = &common->hw->conf;
975	const struct ath9k_channel *chan = ah->curchan;
976	int acktimeout, ctstimeout;
977	int slottime;
978	int sifstime;
979	int rx_lat = 0, tx_lat = 0, eifs = 0;
980	u32 reg;
981
982	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983		ah->misc_mode);
984
985	if (!chan)
986		return;
987
988	if (ah->misc_mode != 0)
989		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990
991	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992		rx_lat = 41;
993	else
994		rx_lat = 37;
995	tx_lat = 54;
996
997	if (IS_CHAN_HALF_RATE(chan)) {
998		eifs = 175;
999		rx_lat *= 2;
1000		tx_lat *= 2;
1001		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1002		    tx_lat += 11;
1003
1004		slottime = 13;
1005		sifstime = 32;
1006	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1007		eifs = 340;
1008		rx_lat = (rx_lat * 4) - 1;
1009		tx_lat *= 4;
1010		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1011		    tx_lat += 22;
1012
1013		slottime = 21;
1014		sifstime = 64;
1015	} else {
1016		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1017			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1018			reg = AR_USEC_ASYNC_FIFO;
1019		} else {
1020			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1021				common->clockrate;
1022			reg = REG_READ(ah, AR_USEC);
1023		}
1024		rx_lat = MS(reg, AR_USEC_RX_LAT);
1025		tx_lat = MS(reg, AR_USEC_TX_LAT);
1026
1027		slottime = ah->slottime;
1028		if (IS_CHAN_5GHZ(chan))
1029			sifstime = 16;
1030		else
1031			sifstime = 10;
1032	}
1033
1034	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1035	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1036	ctstimeout = acktimeout;
1037
1038	/*
1039	 * Workaround for early ACK timeouts, add an offset to match the
1040	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1041	 * This was initially only meant to work around an issue with delayed
1042	 * BA frames in some implementations, but it has been found to fix ACK
1043	 * timeout issues in other cases as well.
1044	 */
1045	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
1046		acktimeout += 64 - sifstime - ah->slottime;
1047		ctstimeout += 48 - sifstime - ah->slottime;
1048	}
1049
1050
1051	ath9k_hw_set_sifs_time(ah, sifstime);
1052	ath9k_hw_setslottime(ah, slottime);
1053	ath9k_hw_set_ack_timeout(ah, acktimeout);
1054	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1055	if (ah->globaltxtimeout != (u32) -1)
1056		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1057
1058	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1059	REG_RMW(ah, AR_USEC,
1060		(common->clockrate - 1) |
1061		SM(rx_lat, AR_USEC_RX_LAT) |
1062		SM(tx_lat, AR_USEC_TX_LAT),
1063		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1064
1065}
1066EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1067
1068void ath9k_hw_deinit(struct ath_hw *ah)
1069{
1070	struct ath_common *common = ath9k_hw_common(ah);
1071
1072	if (common->state < ATH_HW_INITIALIZED)
1073		goto free_hw;
1074
1075	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1076
1077free_hw:
1078	ath9k_hw_rf_free_ext_banks(ah);
1079}
1080EXPORT_SYMBOL(ath9k_hw_deinit);
1081
1082/*******/
1083/* INI */
1084/*******/
1085
1086u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1087{
1088	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1089
1090	if (IS_CHAN_B(chan))
1091		ctl |= CTL_11B;
1092	else if (IS_CHAN_G(chan))
1093		ctl |= CTL_11G;
1094	else
1095		ctl |= CTL_11A;
1096
1097	return ctl;
1098}
1099
1100/****************************************/
1101/* Reset and Channel Switching Routines */
1102/****************************************/
1103
1104static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1105{
1106	struct ath_common *common = ath9k_hw_common(ah);
1107
1108	ENABLE_REGWRITE_BUFFER(ah);
1109
1110	/*
1111	 * set AHB_MODE not to do cacheline prefetches
1112	*/
1113	if (!AR_SREV_9300_20_OR_LATER(ah))
1114		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1115
1116	/*
1117	 * let mac dma reads be in 128 byte chunks
1118	 */
1119	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1120
1121	REGWRITE_BUFFER_FLUSH(ah);
1122
1123	/*
1124	 * Restore TX Trigger Level to its pre-reset value.
1125	 * The initial value depends on whether aggregation is enabled, and is
1126	 * adjusted whenever underruns are detected.
1127	 */
1128	if (!AR_SREV_9300_20_OR_LATER(ah))
1129		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1130
1131	ENABLE_REGWRITE_BUFFER(ah);
1132
1133	/*
1134	 * let mac dma writes be in 128 byte chunks
1135	 */
1136	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1137
1138	/*
1139	 * Setup receive FIFO threshold to hold off TX activities
1140	 */
1141	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1142
1143	if (AR_SREV_9300_20_OR_LATER(ah)) {
1144		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1146
1147		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148			ah->caps.rx_status_len);
1149	}
1150
1151	/*
1152	 * reduce the number of usable entries in PCU TXBUF to avoid
1153	 * wrap around issues.
1154	 */
1155	if (AR_SREV_9285(ah)) {
1156		/* For AR9285 the number of Fifos are reduced to half.
1157		 * So set the usable tx buf size also to half to
1158		 * avoid data/delimiter underruns
1159		 */
1160		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1161			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1162	} else if (!AR_SREV_9271(ah)) {
1163		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1164			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1165	}
1166
1167	REGWRITE_BUFFER_FLUSH(ah);
1168
1169	if (AR_SREV_9300_20_OR_LATER(ah))
1170		ath9k_hw_reset_txstatus_ring(ah);
1171}
1172
1173static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1174{
1175	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1176	u32 set = AR_STA_ID1_KSRCH_MODE;
1177
1178	switch (opmode) {
1179	case NL80211_IFTYPE_ADHOC:
1180	case NL80211_IFTYPE_MESH_POINT:
1181		set |= AR_STA_ID1_ADHOC;
1182		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1183		break;
1184	case NL80211_IFTYPE_AP:
1185		set |= AR_STA_ID1_STA_AP;
1186		/* fall through */
1187	case NL80211_IFTYPE_STATION:
1188		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1189		break;
1190	default:
1191		if (!ah->is_monitoring)
1192			set = 0;
1193		break;
1194	}
1195	REG_RMW(ah, AR_STA_ID1, set, mask);
1196}
1197
1198void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1199				   u32 *coef_mantissa, u32 *coef_exponent)
1200{
1201	u32 coef_exp, coef_man;
1202
1203	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1204		if ((coef_scaled >> coef_exp) & 0x1)
1205			break;
1206
1207	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1208
1209	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1210
1211	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1212	*coef_exponent = coef_exp - 16;
1213}
1214
1215static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1216{
1217	u32 rst_flags;
1218	u32 tmpReg;
1219
1220	if (AR_SREV_9100(ah)) {
1221		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1222			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1223		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1224	}
1225
1226	ENABLE_REGWRITE_BUFFER(ah);
1227
1228	if (AR_SREV_9300_20_OR_LATER(ah)) {
1229		REG_WRITE(ah, AR_WA, ah->WARegVal);
1230		udelay(10);
1231	}
1232
1233	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1234		  AR_RTC_FORCE_WAKE_ON_INT);
1235
1236	if (AR_SREV_9100(ah)) {
1237		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1238			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1239	} else {
1240		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1241		if (tmpReg &
1242		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1243		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1244			u32 val;
1245			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1246
1247			val = AR_RC_HOSTIF;
1248			if (!AR_SREV_9300_20_OR_LATER(ah))
1249				val |= AR_RC_AHB;
1250			REG_WRITE(ah, AR_RC, val);
1251
1252		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1253			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1254
1255		rst_flags = AR_RTC_RC_MAC_WARM;
1256		if (type == ATH9K_RESET_COLD)
1257			rst_flags |= AR_RTC_RC_MAC_COLD;
1258	}
1259
1260	if (AR_SREV_9330(ah)) {
1261		int npend = 0;
1262		int i;
1263
1264		/* AR9330 WAR:
1265		 * call external reset function to reset WMAC if:
1266		 * - doing a cold reset
1267		 * - we have pending frames in the TX queues
1268		 */
1269
1270		for (i = 0; i < AR_NUM_QCU; i++) {
1271			npend = ath9k_hw_numtxpending(ah, i);
1272			if (npend)
1273				break;
1274		}
1275
1276		if (ah->external_reset &&
1277		    (npend || type == ATH9K_RESET_COLD)) {
1278			int reset_err = 0;
1279
1280			ath_dbg(ath9k_hw_common(ah), RESET,
1281				"reset MAC via external reset\n");
1282
1283			reset_err = ah->external_reset();
1284			if (reset_err) {
1285				ath_err(ath9k_hw_common(ah),
1286					"External reset failed, err=%d\n",
1287					reset_err);
1288				return false;
1289			}
1290
1291			REG_WRITE(ah, AR_RTC_RESET, 1);
1292		}
1293	}
1294
1295	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1296
1297	REGWRITE_BUFFER_FLUSH(ah);
1298
1299	udelay(50);
1300
1301	REG_WRITE(ah, AR_RTC_RC, 0);
1302	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1303		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1304		return false;
1305	}
1306
1307	if (!AR_SREV_9100(ah))
1308		REG_WRITE(ah, AR_RC, 0);
1309
1310	if (AR_SREV_9100(ah))
1311		udelay(50);
1312
1313	return true;
1314}
1315
1316static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1317{
1318	ENABLE_REGWRITE_BUFFER(ah);
1319
1320	if (AR_SREV_9300_20_OR_LATER(ah)) {
1321		REG_WRITE(ah, AR_WA, ah->WARegVal);
1322		udelay(10);
1323	}
1324
1325	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1326		  AR_RTC_FORCE_WAKE_ON_INT);
1327
1328	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1329		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1330
1331	REG_WRITE(ah, AR_RTC_RESET, 0);
1332
1333	REGWRITE_BUFFER_FLUSH(ah);
1334
1335	if (!AR_SREV_9300_20_OR_LATER(ah))
1336		udelay(2);
1337
1338	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1339		REG_WRITE(ah, AR_RC, 0);
1340
1341	REG_WRITE(ah, AR_RTC_RESET, 1);
1342
1343	if (!ath9k_hw_wait(ah,
1344			   AR_RTC_STATUS,
1345			   AR_RTC_STATUS_M,
1346			   AR_RTC_STATUS_ON,
1347			   AH_WAIT_TIMEOUT)) {
1348		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1349		return false;
1350	}
1351
1352	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1353}
1354
1355static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1356{
1357	bool ret = false;
1358
1359	if (AR_SREV_9300_20_OR_LATER(ah)) {
1360		REG_WRITE(ah, AR_WA, ah->WARegVal);
1361		udelay(10);
1362	}
1363
1364	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1365		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1366
1367	switch (type) {
1368	case ATH9K_RESET_POWER_ON:
1369		ret = ath9k_hw_set_reset_power_on(ah);
1370		break;
1371	case ATH9K_RESET_WARM:
1372	case ATH9K_RESET_COLD:
1373		ret = ath9k_hw_set_reset(ah, type);
1374		break;
1375	default:
1376		break;
1377	}
1378
1379	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1380		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1381
1382	return ret;
1383}
1384
1385static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1386				struct ath9k_channel *chan)
1387{
1388	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1389		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1390			return false;
1391	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1392		return false;
1393
1394	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1395		return false;
1396
1397	ah->chip_fullsleep = false;
1398	ath9k_hw_init_pll(ah, chan);
1399	ath9k_hw_set_rfmode(ah, chan);
1400
1401	return true;
1402}
1403
1404static bool ath9k_hw_channel_change(struct ath_hw *ah,
1405				    struct ath9k_channel *chan)
1406{
1407	struct ath_common *common = ath9k_hw_common(ah);
1408	u32 qnum;
1409	int r;
1410	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1411	bool band_switch, mode_diff;
1412	u8 ini_reloaded;
1413
1414	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1415		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1416						    CHANNEL_5GHZ));
1417	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1418
1419	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1420		if (ath9k_hw_numtxpending(ah, qnum)) {
1421			ath_dbg(common, QUEUE,
1422				"Transmit frames pending on queue %d\n", qnum);
1423			return false;
1424		}
1425	}
1426
1427	if (!ath9k_hw_rfbus_req(ah)) {
1428		ath_err(common, "Could not kill baseband RX\n");
1429		return false;
1430	}
1431
1432	if (edma && (band_switch || mode_diff)) {
1433		ath9k_hw_mark_phy_inactive(ah);
1434		udelay(5);
1435
1436		ath9k_hw_init_pll(ah, NULL);
1437
1438		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1439			ath_err(common, "Failed to do fast channel change\n");
1440			return false;
1441		}
1442	}
1443
1444	ath9k_hw_set_channel_regs(ah, chan);
1445
1446	r = ath9k_hw_rf_set_freq(ah, chan);
1447	if (r) {
1448		ath_err(common, "Failed to set channel\n");
1449		return false;
1450	}
1451	ath9k_hw_set_clockrate(ah);
1452	ath9k_hw_apply_txpower(ah, chan);
1453	ath9k_hw_rfbus_done(ah);
1454
1455	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1456		ath9k_hw_set_delta_slope(ah, chan);
1457
1458	ath9k_hw_spur_mitigate_freq(ah, chan);
1459
1460	if (edma && (band_switch || mode_diff)) {
1461		ah->ah_flags |= AH_FASTCC;
1462		if (band_switch || ini_reloaded)
1463			ah->eep_ops->set_board_values(ah, chan);
1464
1465		ath9k_hw_init_bb(ah, chan);
1466
1467		if (band_switch || ini_reloaded)
1468			ath9k_hw_init_cal(ah, chan);
1469		ah->ah_flags &= ~AH_FASTCC;
1470	}
1471
1472	return true;
1473}
1474
1475static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1476{
1477	u32 gpio_mask = ah->gpio_mask;
1478	int i;
1479
1480	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1481		if (!(gpio_mask & 1))
1482			continue;
1483
1484		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1485		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1486	}
1487}
1488
1489bool ath9k_hw_check_alive(struct ath_hw *ah)
1490{
1491	int count = 50;
1492	u32 reg;
1493
1494	if (AR_SREV_9285_12_OR_LATER(ah))
1495		return true;
1496
1497	do {
1498		reg = REG_READ(ah, AR_OBS_BUS_1);
1499
1500		if ((reg & 0x7E7FFFEF) == 0x00702400)
1501			continue;
1502
1503		switch (reg & 0x7E000B00) {
1504		case 0x1E000000:
1505		case 0x52000B00:
1506		case 0x18000B00:
1507			continue;
1508		default:
1509			return true;
1510		}
1511	} while (count-- > 0);
1512
1513	return false;
1514}
1515EXPORT_SYMBOL(ath9k_hw_check_alive);
1516
1517int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1518		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1519{
1520	struct ath_common *common = ath9k_hw_common(ah);
1521	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
1522	u32 saveLedState;
1523	struct ath9k_channel *curchan = ah->curchan;
1524	u32 saveDefAntenna;
1525	u32 macStaId1;
1526	u64 tsf = 0;
1527	int i, r;
1528	bool allow_fbs = false;
1529	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1530	bool save_fullsleep = ah->chip_fullsleep;
1531
1532	if (mci) {
1533
1534		ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
1535
1536		if (mci_hw->bt_state == MCI_BT_CAL_START) {
1537			u32 payload[4] = {0, 0, 0, 0};
1538
1539			ath_dbg(common, MCI, "MCI stop rx for BT CAL\n");
1540
1541			mci_hw->bt_state = MCI_BT_CAL;
1542
1543			/*
1544			 * MCI FIX: disable mci interrupt here. This is to avoid
1545			 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
1546			 * lead to mci_intr reentry.
1547			 */
1548
1549			ar9003_mci_disable_interrupt(ah);
1550
1551			ath_dbg(common, MCI, "send WLAN_CAL_GRANT\n");
1552			MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
1553			ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
1554						16, true, false);
1555
1556			ath_dbg(common, MCI, "\nMCI BT is calibrating\n");
1557
1558			/* Wait BT calibration to be completed for 25ms */
1559
1560			if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
1561								  0, 25000))
1562				ath_dbg(common, MCI,
1563					"MCI got BT_CAL_DONE\n");
1564			else
1565				ath_dbg(common, MCI,
1566					"MCI ### BT cal takes to long, force bt_state to be bt_awake\n");
1567			mci_hw->bt_state = MCI_BT_AWAKE;
1568			/* MCI FIX: enable mci interrupt here */
1569			ar9003_mci_enable_interrupt(ah);
1570
1571			return true;
1572		}
1573	}
1574
1575
1576	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1577		return -EIO;
1578
1579	if (curchan && !ah->chip_fullsleep)
1580		ath9k_hw_getnf(ah, curchan);
1581
1582	ah->caldata = caldata;
1583	if (caldata &&
1584	    (chan->channel != caldata->channel ||
1585	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1586	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1587		/* Operating channel changed, reset channel calibration data */
1588		memset(caldata, 0, sizeof(*caldata));
1589		ath9k_init_nfcal_hist_buffer(ah, chan);
1590	}
1591	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1592
1593	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1594		bChannelChange = false;
1595
1596	if (caldata &&
1597	    caldata->done_txiqcal_once &&
1598	    caldata->done_txclcal_once &&
1599	    caldata->rtt_hist.num_readings)
1600		allow_fbs = true;
1601
1602	if (bChannelChange &&
1603	    (ah->chip_fullsleep != true) &&
1604	    (ah->curchan != NULL) &&
1605	    (chan->channel != ah->curchan->channel) &&
1606	    (allow_fbs ||
1607	     ((chan->channelFlags & CHANNEL_ALL) ==
1608	      (ah->curchan->channelFlags & CHANNEL_ALL)))) {
1609		if (ath9k_hw_channel_change(ah, chan)) {
1610			ath9k_hw_loadnf(ah, ah->curchan);
1611			ath9k_hw_start_nfcal(ah, true);
1612			if (mci && mci_hw->ready)
1613				ar9003_mci_2g5g_switch(ah, true);
1614
1615			if (AR_SREV_9271(ah))
1616				ar9002_hw_load_ani_reg(ah, chan);
1617			return 0;
1618		}
1619	}
1620
1621	if (mci) {
1622		ar9003_mci_disable_interrupt(ah);
1623
1624		if (mci_hw->ready && !save_fullsleep) {
1625			ar9003_mci_mute_bt(ah);
1626			udelay(20);
1627			REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
1628		}
1629
1630		mci_hw->bt_state = MCI_BT_SLEEP;
1631		mci_hw->ready = false;
1632	}
1633
1634
1635	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1636	if (saveDefAntenna == 0)
1637		saveDefAntenna = 1;
1638
1639	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1640
1641	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1642	if (AR_SREV_9100(ah) ||
1643	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1644		tsf = ath9k_hw_gettsf64(ah);
1645
1646	saveLedState = REG_READ(ah, AR_CFG_LED) &
1647		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1648		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1649
1650	ath9k_hw_mark_phy_inactive(ah);
1651
1652	ah->paprd_table_write_done = false;
1653
1654	/* Only required on the first reset */
1655	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1656		REG_WRITE(ah,
1657			  AR9271_RESET_POWER_DOWN_CONTROL,
1658			  AR9271_RADIO_RF_RST);
1659		udelay(50);
1660	}
1661
1662	if (!ath9k_hw_chip_reset(ah, chan)) {
1663		ath_err(common, "Chip reset failed\n");
1664		return -EINVAL;
1665	}
1666
1667	/* Only required on the first reset */
1668	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1669		ah->htc_reset_init = false;
1670		REG_WRITE(ah,
1671			  AR9271_RESET_POWER_DOWN_CONTROL,
1672			  AR9271_GATE_MAC_CTL);
1673		udelay(50);
1674	}
1675
1676	/* Restore TSF */
1677	if (tsf)
1678		ath9k_hw_settsf64(ah, tsf);
1679
1680	if (AR_SREV_9280_20_OR_LATER(ah))
1681		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1682
1683	if (!AR_SREV_9300_20_OR_LATER(ah))
1684		ar9002_hw_enable_async_fifo(ah);
1685
1686	r = ath9k_hw_process_ini(ah, chan);
1687	if (r)
1688		return r;
1689
1690	if (mci)
1691		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1692
1693	/*
1694	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1695	 * right after the chip reset. When that happens, write a new
1696	 * value after the initvals have been applied, with an offset
1697	 * based on measured time difference
1698	 */
1699	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1700		tsf += 1500;
1701		ath9k_hw_settsf64(ah, tsf);
1702	}
1703
1704	/* Setup MFP options for CCMP */
1705	if (AR_SREV_9280_20_OR_LATER(ah)) {
1706		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1707		 * frames when constructing CCMP AAD. */
1708		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1709			      0xc7ff);
1710		ah->sw_mgmt_crypto = false;
1711	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1712		/* Disable hardware crypto for management frames */
1713		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1714			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1715		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1716			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1717		ah->sw_mgmt_crypto = true;
1718	} else
1719		ah->sw_mgmt_crypto = true;
1720
1721	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1722		ath9k_hw_set_delta_slope(ah, chan);
1723
1724	ath9k_hw_spur_mitigate_freq(ah, chan);
1725	ah->eep_ops->set_board_values(ah, chan);
1726
1727	ENABLE_REGWRITE_BUFFER(ah);
1728
1729	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1730	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1731		  | macStaId1
1732		  | AR_STA_ID1_RTS_USE_DEF
1733		  | (ah->config.
1734		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1735		  | ah->sta_id1_defaults);
1736	ath_hw_setbssidmask(common);
1737	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1738	ath9k_hw_write_associd(ah);
1739	REG_WRITE(ah, AR_ISR, ~0);
1740	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1741
1742	REGWRITE_BUFFER_FLUSH(ah);
1743
1744	ath9k_hw_set_operating_mode(ah, ah->opmode);
1745
1746	r = ath9k_hw_rf_set_freq(ah, chan);
1747	if (r)
1748		return r;
1749
1750	ath9k_hw_set_clockrate(ah);
1751
1752	ENABLE_REGWRITE_BUFFER(ah);
1753
1754	for (i = 0; i < AR_NUM_DCU; i++)
1755		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1756
1757	REGWRITE_BUFFER_FLUSH(ah);
1758
1759	ah->intr_txqs = 0;
1760	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1761		ath9k_hw_resettxqueue(ah, i);
1762
1763	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1764	ath9k_hw_ani_cache_ini_regs(ah);
1765	ath9k_hw_init_qos(ah);
1766
1767	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1768		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1769
1770	ath9k_hw_init_global_settings(ah);
1771
1772	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1773		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1774			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1775		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1776			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1777		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1778			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1779	}
1780
1781	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1782
1783	ath9k_hw_set_dma(ah);
1784
1785	REG_WRITE(ah, AR_OBS, 8);
1786
1787	if (ah->config.rx_intr_mitigation) {
1788		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1789		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1790	}
1791
1792	if (ah->config.tx_intr_mitigation) {
1793		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1794		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1795	}
1796
1797	ath9k_hw_init_bb(ah, chan);
1798
1799	if (caldata) {
1800		caldata->done_txiqcal_once = false;
1801		caldata->done_txclcal_once = false;
1802		caldata->rtt_hist.num_readings = 0;
1803	}
1804	if (!ath9k_hw_init_cal(ah, chan))
1805		return -EIO;
1806
1807	ath9k_hw_loadnf(ah, chan);
1808	ath9k_hw_start_nfcal(ah, true);
1809
1810	if (mci && mci_hw->ready) {
1811
1812		if (IS_CHAN_2GHZ(chan) &&
1813		    (mci_hw->bt_state == MCI_BT_SLEEP)) {
1814
1815			if (ar9003_mci_check_int(ah,
1816			    AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
1817			    ar9003_mci_check_int(ah,
1818			    AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) {
1819
1820				/*
1821				 * BT is sleeping. Check if BT wakes up during
1822				 * WLAN calibration. If BT wakes up during
1823				 * WLAN calibration, need to go through all
1824				 * message exchanges again and recal.
1825				 */
1826
1827				ath_dbg(common, MCI,
1828					"MCI BT wakes up during WLAN calibration\n");
1829
1830				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
1831					  AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
1832					  AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
1833				ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
1834				ar9003_mci_remote_reset(ah, true);
1835				ar9003_mci_send_sys_waking(ah, true);
1836				udelay(1);
1837				if (IS_CHAN_2GHZ(chan))
1838					ar9003_mci_send_lna_transfer(ah, true);
1839
1840				mci_hw->bt_state = MCI_BT_AWAKE;
1841
1842				ath_dbg(common, MCI, "MCI re-cal\n");
1843
1844				if (caldata) {
1845					caldata->done_txiqcal_once = false;
1846					caldata->done_txclcal_once = false;
1847					caldata->rtt_hist.num_readings = 0;
1848				}
1849
1850				if (!ath9k_hw_init_cal(ah, chan))
1851					return -EIO;
1852
1853			}
1854		}
1855		ar9003_mci_enable_interrupt(ah);
1856	}
1857
1858	ENABLE_REGWRITE_BUFFER(ah);
1859
1860	ath9k_hw_restore_chainmask(ah);
1861	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1862
1863	REGWRITE_BUFFER_FLUSH(ah);
1864
1865	/*
1866	 * For big endian systems turn on swapping for descriptors
1867	 */
1868	if (AR_SREV_9100(ah)) {
1869		u32 mask;
1870		mask = REG_READ(ah, AR_CFG);
1871		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1872			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1873				mask);
1874		} else {
1875			mask =
1876				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1877			REG_WRITE(ah, AR_CFG, mask);
1878			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1879				REG_READ(ah, AR_CFG));
1880		}
1881	} else {
1882		if (common->bus_ops->ath_bus_type == ATH_USB) {
1883			/* Configure AR9271 target WLAN */
1884			if (AR_SREV_9271(ah))
1885				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1886			else
1887				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1888		}
1889#ifdef __BIG_ENDIAN
1890		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1891			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1892		else
1893			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1894#endif
1895	}
1896
1897	if (ah->btcoex_hw.enabled &&
1898	    ath9k_hw_get_btcoex_scheme(ah) != ATH_BTCOEX_CFG_NONE)
1899		ath9k_hw_btcoex_enable(ah);
1900
1901	if (mci && mci_hw->ready) {
1902		/*
1903		 * check BT state again to make
1904		 * sure it's not changed.
1905		 */
1906
1907		ar9003_mci_sync_bt_state(ah);
1908		ar9003_mci_2g5g_switch(ah, true);
1909
1910		if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
1911				(mci_hw->query_bt == true)) {
1912			mci_hw->need_flush_btinfo = true;
1913		}
1914	}
1915
1916	if (AR_SREV_9300_20_OR_LATER(ah)) {
1917		ar9003_hw_bb_watchdog_config(ah);
1918
1919		ar9003_hw_disable_phy_restart(ah);
1920	}
1921
1922	ath9k_hw_apply_gpio_override(ah);
1923
1924	return 0;
1925}
1926EXPORT_SYMBOL(ath9k_hw_reset);
1927
1928/******************************/
1929/* Power Management (Chipset) */
1930/******************************/
1931
1932/*
1933 * Notify Power Mgt is disabled in self-generated frames.
1934 * If requested, force chip to sleep.
1935 */
1936static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1937{
1938	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1939	if (setChip) {
1940		if (AR_SREV_9462(ah)) {
1941			REG_WRITE(ah, AR_TIMER_MODE,
1942				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1943			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1944				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1945			REG_WRITE(ah, AR_SLP32_INC,
1946				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1947			/* xxx Required for WLAN only case ? */
1948			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1949			udelay(100);
1950		}
1951
1952		/*
1953		 * Clear the RTC force wake bit to allow the
1954		 * mac to go to sleep.
1955		 */
1956		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1957
1958		if (AR_SREV_9462(ah))
1959			udelay(100);
1960
1961		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1962			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1963
1964		/* Shutdown chip. Active low */
1965		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1966			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1967			udelay(2);
1968		}
1969	}
1970
1971	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1972	if (AR_SREV_9300_20_OR_LATER(ah))
1973		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1974}
1975
1976/*
1977 * Notify Power Management is enabled in self-generating
1978 * frames. If request, set power mode of chip to
1979 * auto/normal.  Duration in units of 128us (1/8 TU).
1980 */
1981static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1982{
1983	u32 val;
1984
1985	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1986	if (setChip) {
1987		struct ath9k_hw_capabilities *pCap = &ah->caps;
1988
1989		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1990			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1991			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1992				  AR_RTC_FORCE_WAKE_ON_INT);
1993		} else {
1994
1995			/* When chip goes into network sleep, it could be waken
1996			 * up by MCI_INT interrupt caused by BT's HW messages
1997			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1998			 * rate (~100us). This will cause chip to leave and
1999			 * re-enter network sleep mode frequently, which in
2000			 * consequence will have WLAN MCI HW to generate lots of
2001			 * SYS_WAKING and SYS_SLEEPING messages which will make
2002			 * BT CPU to busy to process.
2003			 */
2004			if (AR_SREV_9462(ah)) {
2005				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2006					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2007				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2008			}
2009			/*
2010			 * Clear the RTC force wake bit to allow the
2011			 * mac to go to sleep.
2012			 */
2013			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2014				    AR_RTC_FORCE_WAKE_EN);
2015
2016			if (AR_SREV_9462(ah))
2017				udelay(30);
2018		}
2019	}
2020
2021	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2022	if (AR_SREV_9300_20_OR_LATER(ah))
2023		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2024}
2025
2026static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2027{
2028	u32 val;
2029	int i;
2030
2031	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2032	if (AR_SREV_9300_20_OR_LATER(ah)) {
2033		REG_WRITE(ah, AR_WA, ah->WARegVal);
2034		udelay(10);
2035	}
2036
2037	if (setChip) {
2038		if ((REG_READ(ah, AR_RTC_STATUS) &
2039		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2040			if (ath9k_hw_set_reset_reg(ah,
2041					   ATH9K_RESET_POWER_ON) != true) {
2042				return false;
2043			}
2044			if (!AR_SREV_9300_20_OR_LATER(ah))
2045				ath9k_hw_init_pll(ah, NULL);
2046		}
2047		if (AR_SREV_9100(ah))
2048			REG_SET_BIT(ah, AR_RTC_RESET,
2049				    AR_RTC_RESET_EN);
2050
2051		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2052			    AR_RTC_FORCE_WAKE_EN);
2053		udelay(50);
2054
2055		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2056			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2057			if (val == AR_RTC_STATUS_ON)
2058				break;
2059			udelay(50);
2060			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2061				    AR_RTC_FORCE_WAKE_EN);
2062		}
2063		if (i == 0) {
2064			ath_err(ath9k_hw_common(ah),
2065				"Failed to wakeup in %uus\n",
2066				POWER_UP_TIME / 20);
2067			return false;
2068		}
2069	}
2070
2071	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2072
2073	return true;
2074}
2075
2076bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2077{
2078	struct ath_common *common = ath9k_hw_common(ah);
2079	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
2080	int status = true, setChip = true;
2081	static const char *modes[] = {
2082		"AWAKE",
2083		"FULL-SLEEP",
2084		"NETWORK SLEEP",
2085		"UNDEFINED"
2086	};
2087
2088	if (ah->power_mode == mode)
2089		return status;
2090
2091	ath_dbg(common, RESET, "%s -> %s\n",
2092		modes[ah->power_mode], modes[mode]);
2093
2094	switch (mode) {
2095	case ATH9K_PM_AWAKE:
2096		status = ath9k_hw_set_power_awake(ah, setChip);
2097
2098		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2099			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2100
2101		break;
2102	case ATH9K_PM_FULL_SLEEP:
2103
2104		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) {
2105			if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
2106				(mci->bt_state != MCI_BT_SLEEP) &&
2107				!mci->halted_bt_gpm) {
2108				ath_dbg(common, MCI,
2109					"MCI halt BT GPM (full_sleep)\n");
2110				ar9003_mci_send_coex_halt_bt_gpm(ah,
2111								 true, true);
2112			}
2113
2114			mci->ready = false;
2115			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2116		}
2117
2118		ath9k_set_power_sleep(ah, setChip);
2119		ah->chip_fullsleep = true;
2120		break;
2121	case ATH9K_PM_NETWORK_SLEEP:
2122
2123		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2124			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2125
2126		ath9k_set_power_network_sleep(ah, setChip);
2127		break;
2128	default:
2129		ath_err(common, "Unknown power mode %u\n", mode);
2130		return false;
2131	}
2132	ah->power_mode = mode;
2133
2134	/*
2135	 * XXX: If this warning never comes up after a while then
2136	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2137	 * ath9k_hw_setpower() return type void.
2138	 */
2139
2140	if (!(ah->ah_flags & AH_UNPLUGGED))
2141		ATH_DBG_WARN_ON_ONCE(!status);
2142
2143	return status;
2144}
2145EXPORT_SYMBOL(ath9k_hw_setpower);
2146
2147/*******************/
2148/* Beacon Handling */
2149/*******************/
2150
2151void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2152{
2153	int flags = 0;
2154
2155	ENABLE_REGWRITE_BUFFER(ah);
2156
2157	switch (ah->opmode) {
2158	case NL80211_IFTYPE_ADHOC:
2159	case NL80211_IFTYPE_MESH_POINT:
2160		REG_SET_BIT(ah, AR_TXCFG,
2161			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2162		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2163			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2164		flags |= AR_NDP_TIMER_EN;
2165	case NL80211_IFTYPE_AP:
2166		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2167		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2168			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2169		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2170			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2171		flags |=
2172			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2173		break;
2174	default:
2175		ath_dbg(ath9k_hw_common(ah), BEACON,
2176			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2177		return;
2178		break;
2179	}
2180
2181	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2182	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2183	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2184	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2185
2186	REGWRITE_BUFFER_FLUSH(ah);
2187
2188	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2189}
2190EXPORT_SYMBOL(ath9k_hw_beaconinit);
2191
2192void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2193				    const struct ath9k_beacon_state *bs)
2194{
2195	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2196	struct ath9k_hw_capabilities *pCap = &ah->caps;
2197	struct ath_common *common = ath9k_hw_common(ah);
2198
2199	ENABLE_REGWRITE_BUFFER(ah);
2200
2201	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2202
2203	REG_WRITE(ah, AR_BEACON_PERIOD,
2204		  TU_TO_USEC(bs->bs_intval));
2205	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2206		  TU_TO_USEC(bs->bs_intval));
2207
2208	REGWRITE_BUFFER_FLUSH(ah);
2209
2210	REG_RMW_FIELD(ah, AR_RSSI_THR,
2211		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2212
2213	beaconintval = bs->bs_intval;
2214
2215	if (bs->bs_sleepduration > beaconintval)
2216		beaconintval = bs->bs_sleepduration;
2217
2218	dtimperiod = bs->bs_dtimperiod;
2219	if (bs->bs_sleepduration > dtimperiod)
2220		dtimperiod = bs->bs_sleepduration;
2221
2222	if (beaconintval == dtimperiod)
2223		nextTbtt = bs->bs_nextdtim;
2224	else
2225		nextTbtt = bs->bs_nexttbtt;
2226
2227	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2228	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2229	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2230	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2231
2232	ENABLE_REGWRITE_BUFFER(ah);
2233
2234	REG_WRITE(ah, AR_NEXT_DTIM,
2235		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2236	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2237
2238	REG_WRITE(ah, AR_SLEEP1,
2239		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2240		  | AR_SLEEP1_ASSUME_DTIM);
2241
2242	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2243		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2244	else
2245		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2246
2247	REG_WRITE(ah, AR_SLEEP2,
2248		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2249
2250	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2251	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2252
2253	REGWRITE_BUFFER_FLUSH(ah);
2254
2255	REG_SET_BIT(ah, AR_TIMER_MODE,
2256		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2257		    AR_DTIM_TIMER_EN);
2258
2259	/* TSF Out of Range Threshold */
2260	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2261}
2262EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2263
2264/*******************/
2265/* HW Capabilities */
2266/*******************/
2267
2268static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2269{
2270	eeprom_chainmask &= chip_chainmask;
2271	if (eeprom_chainmask)
2272		return eeprom_chainmask;
2273	else
2274		return chip_chainmask;
2275}
2276
2277/**
2278 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2279 * @ah: the atheros hardware data structure
2280 *
2281 * We enable DFS support upstream on chipsets which have passed a series
2282 * of tests. The testing requirements are going to be documented. Desired
2283 * test requirements are documented at:
2284 *
2285 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2286 *
2287 * Once a new chipset gets properly tested an individual commit can be used
2288 * to document the testing for DFS for that chipset.
2289 */
2290static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2291{
2292
2293	switch (ah->hw_version.macVersion) {
2294	/* AR9580 will likely be our first target to get testing on */
2295	case AR_SREV_VERSION_9580:
2296	default:
2297		return false;
2298	}
2299}
2300
2301int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2302{
2303	struct ath9k_hw_capabilities *pCap = &ah->caps;
2304	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2305	struct ath_common *common = ath9k_hw_common(ah);
2306	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2307	unsigned int chip_chainmask;
2308
2309	u16 eeval;
2310	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2311
2312	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2313	regulatory->current_rd = eeval;
2314
2315	if (ah->opmode != NL80211_IFTYPE_AP &&
2316	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2317		if (regulatory->current_rd == 0x64 ||
2318		    regulatory->current_rd == 0x65)
2319			regulatory->current_rd += 5;
2320		else if (regulatory->current_rd == 0x41)
2321			regulatory->current_rd = 0x43;
2322		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2323			regulatory->current_rd);
2324	}
2325
2326	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2327	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2328		ath_err(common,
2329			"no band has been marked as supported in EEPROM\n");
2330		return -EINVAL;
2331	}
2332
2333	if (eeval & AR5416_OPFLAGS_11A)
2334		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2335
2336	if (eeval & AR5416_OPFLAGS_11G)
2337		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2338
2339	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2340		chip_chainmask = 1;
2341	else if (AR_SREV_9462(ah))
2342		chip_chainmask = 3;
2343	else if (!AR_SREV_9280_20_OR_LATER(ah))
2344		chip_chainmask = 7;
2345	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2346		chip_chainmask = 3;
2347	else
2348		chip_chainmask = 7;
2349
2350	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2351	/*
2352	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2353	 * the EEPROM.
2354	 */
2355	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2356	    !(eeval & AR5416_OPFLAGS_11A) &&
2357	    !(AR_SREV_9271(ah)))
2358		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2359		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2360	else if (AR_SREV_9100(ah))
2361		pCap->rx_chainmask = 0x7;
2362	else
2363		/* Use rx_chainmask from EEPROM. */
2364		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2365
2366	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2367	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2368	ah->txchainmask = pCap->tx_chainmask;
2369	ah->rxchainmask = pCap->rx_chainmask;
2370
2371	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2372
2373	/* enable key search for every frame in an aggregate */
2374	if (AR_SREV_9300_20_OR_LATER(ah))
2375		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2376
2377	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2378
2379	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2380		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2381	else
2382		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2383
2384	if (AR_SREV_9271(ah))
2385		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2386	else if (AR_DEVID_7010(ah))
2387		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2388	else if (AR_SREV_9300_20_OR_LATER(ah))
2389		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2390	else if (AR_SREV_9287_11_OR_LATER(ah))
2391		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2392	else if (AR_SREV_9285_12_OR_LATER(ah))
2393		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2394	else if (AR_SREV_9280_20_OR_LATER(ah))
2395		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2396	else
2397		pCap->num_gpio_pins = AR_NUM_GPIO;
2398
2399	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2400		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2401	else
2402		pCap->rts_aggr_limit = (8 * 1024);
2403
2404#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2405	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2406	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2407		ah->rfkill_gpio =
2408			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2409		ah->rfkill_polarity =
2410			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2411
2412		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2413	}
2414#endif
2415	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2416		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2417	else
2418		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2419
2420	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2421		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2422	else
2423		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2424
2425	if (common->btcoex_enabled) {
2426		if (AR_SREV_9462(ah))
2427			btcoex_hw->scheme = ATH_BTCOEX_CFG_MCI;
2428		else if (AR_SREV_9300_20_OR_LATER(ah)) {
2429			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2430			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2431			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2432			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2433		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2434			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2435			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2436
2437			if (AR_SREV_9285(ah)) {
2438				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2439				btcoex_hw->btpriority_gpio =
2440						ATH_BTPRIORITY_GPIO_9285;
2441			} else {
2442				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2443			}
2444		}
2445	} else {
2446		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2447	}
2448
2449	if (AR_SREV_9300_20_OR_LATER(ah)) {
2450		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2451		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2452			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2453
2454		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2455		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2456		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2457		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2458		pCap->txs_len = sizeof(struct ar9003_txs);
2459		if (!ah->config.paprd_disable &&
2460		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2461			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2462	} else {
2463		pCap->tx_desc_len = sizeof(struct ath_desc);
2464		if (AR_SREV_9280_20(ah))
2465			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2466	}
2467
2468	if (AR_SREV_9300_20_OR_LATER(ah))
2469		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2470
2471	if (AR_SREV_9300_20_OR_LATER(ah))
2472		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2473
2474	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2475		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2476
2477	if (AR_SREV_9285(ah))
2478		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2479			ant_div_ctl1 =
2480				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2481			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2482				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2483		}
2484	if (AR_SREV_9300_20_OR_LATER(ah)) {
2485		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2486			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2487	}
2488
2489
2490	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2491		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2492		/*
2493		 * enable the diversity-combining algorithm only when
2494		 * both enable_lna_div and enable_fast_div are set
2495		 *		Table for Diversity
2496		 * ant_div_alt_lnaconf		bit 0-1
2497		 * ant_div_main_lnaconf		bit 2-3
2498		 * ant_div_alt_gaintb		bit 4
2499		 * ant_div_main_gaintb		bit 5
2500		 * enable_ant_div_lnadiv	bit 6
2501		 * enable_ant_fast_div		bit 7
2502		 */
2503		if ((ant_div_ctl1 >> 0x6) == 0x3)
2504			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2505	}
2506
2507	if (AR_SREV_9485_10(ah)) {
2508		pCap->pcie_lcr_extsync_en = true;
2509		pCap->pcie_lcr_offset = 0x80;
2510	}
2511
2512	if (ath9k_hw_dfs_tested(ah))
2513		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2514
2515	tx_chainmask = pCap->tx_chainmask;
2516	rx_chainmask = pCap->rx_chainmask;
2517	while (tx_chainmask || rx_chainmask) {
2518		if (tx_chainmask & BIT(0))
2519			pCap->max_txchains++;
2520		if (rx_chainmask & BIT(0))
2521			pCap->max_rxchains++;
2522
2523		tx_chainmask >>= 1;
2524		rx_chainmask >>= 1;
2525	}
2526
2527	if (AR_SREV_9300_20_OR_LATER(ah)) {
2528		ah->enabled_cals |= TX_IQ_CAL;
2529		if (AR_SREV_9485_OR_LATER(ah))
2530			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2531	}
2532	if (AR_SREV_9462(ah))
2533		pCap->hw_caps |= ATH9K_HW_CAP_RTT | ATH9K_HW_CAP_MCI;
2534
2535	return 0;
2536}
2537
2538/****************************/
2539/* GPIO / RFKILL / Antennae */
2540/****************************/
2541
2542static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2543					 u32 gpio, u32 type)
2544{
2545	int addr;
2546	u32 gpio_shift, tmp;
2547
2548	if (gpio > 11)
2549		addr = AR_GPIO_OUTPUT_MUX3;
2550	else if (gpio > 5)
2551		addr = AR_GPIO_OUTPUT_MUX2;
2552	else
2553		addr = AR_GPIO_OUTPUT_MUX1;
2554
2555	gpio_shift = (gpio % 6) * 5;
2556
2557	if (AR_SREV_9280_20_OR_LATER(ah)
2558	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2559		REG_RMW(ah, addr, (type << gpio_shift),
2560			(0x1f << gpio_shift));
2561	} else {
2562		tmp = REG_READ(ah, addr);
2563		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2564		tmp &= ~(0x1f << gpio_shift);
2565		tmp |= (type << gpio_shift);
2566		REG_WRITE(ah, addr, tmp);
2567	}
2568}
2569
2570void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2571{
2572	u32 gpio_shift;
2573
2574	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2575
2576	if (AR_DEVID_7010(ah)) {
2577		gpio_shift = gpio;
2578		REG_RMW(ah, AR7010_GPIO_OE,
2579			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2580			(AR7010_GPIO_OE_MASK << gpio_shift));
2581		return;
2582	}
2583
2584	gpio_shift = gpio << 1;
2585	REG_RMW(ah,
2586		AR_GPIO_OE_OUT,
2587		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2588		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2589}
2590EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2591
2592u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2593{
2594#define MS_REG_READ(x, y) \
2595	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2596
2597	if (gpio >= ah->caps.num_gpio_pins)
2598		return 0xffffffff;
2599
2600	if (AR_DEVID_7010(ah)) {
2601		u32 val;
2602		val = REG_READ(ah, AR7010_GPIO_IN);
2603		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2604	} else if (AR_SREV_9300_20_OR_LATER(ah))
2605		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2606			AR_GPIO_BIT(gpio)) != 0;
2607	else if (AR_SREV_9271(ah))
2608		return MS_REG_READ(AR9271, gpio) != 0;
2609	else if (AR_SREV_9287_11_OR_LATER(ah))
2610		return MS_REG_READ(AR9287, gpio) != 0;
2611	else if (AR_SREV_9285_12_OR_LATER(ah))
2612		return MS_REG_READ(AR9285, gpio) != 0;
2613	else if (AR_SREV_9280_20_OR_LATER(ah))
2614		return MS_REG_READ(AR928X, gpio) != 0;
2615	else
2616		return MS_REG_READ(AR, gpio) != 0;
2617}
2618EXPORT_SYMBOL(ath9k_hw_gpio_get);
2619
2620void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2621			 u32 ah_signal_type)
2622{
2623	u32 gpio_shift;
2624
2625	if (AR_DEVID_7010(ah)) {
2626		gpio_shift = gpio;
2627		REG_RMW(ah, AR7010_GPIO_OE,
2628			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2629			(AR7010_GPIO_OE_MASK << gpio_shift));
2630		return;
2631	}
2632
2633	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2634	gpio_shift = 2 * gpio;
2635	REG_RMW(ah,
2636		AR_GPIO_OE_OUT,
2637		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2638		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2639}
2640EXPORT_SYMBOL(ath9k_hw_cfg_output);
2641
2642void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2643{
2644	if (AR_DEVID_7010(ah)) {
2645		val = val ? 0 : 1;
2646		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2647			AR_GPIO_BIT(gpio));
2648		return;
2649	}
2650
2651	if (AR_SREV_9271(ah))
2652		val = ~val;
2653
2654	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2655		AR_GPIO_BIT(gpio));
2656}
2657EXPORT_SYMBOL(ath9k_hw_set_gpio);
2658
2659u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2660{
2661	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2662}
2663EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2664
2665void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2666{
2667	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2668}
2669EXPORT_SYMBOL(ath9k_hw_setantenna);
2670
2671/*********************/
2672/* General Operation */
2673/*********************/
2674
2675u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2676{
2677	u32 bits = REG_READ(ah, AR_RX_FILTER);
2678	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2679
2680	if (phybits & AR_PHY_ERR_RADAR)
2681		bits |= ATH9K_RX_FILTER_PHYRADAR;
2682	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2683		bits |= ATH9K_RX_FILTER_PHYERR;
2684
2685	return bits;
2686}
2687EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2688
2689void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2690{
2691	u32 phybits;
2692
2693	ENABLE_REGWRITE_BUFFER(ah);
2694
2695	if (AR_SREV_9462(ah))
2696		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2697
2698	REG_WRITE(ah, AR_RX_FILTER, bits);
2699
2700	phybits = 0;
2701	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2702		phybits |= AR_PHY_ERR_RADAR;
2703	if (bits & ATH9K_RX_FILTER_PHYERR)
2704		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2705	REG_WRITE(ah, AR_PHY_ERR, phybits);
2706
2707	if (phybits)
2708		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2709	else
2710		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2711
2712	REGWRITE_BUFFER_FLUSH(ah);
2713}
2714EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2715
2716bool ath9k_hw_phy_disable(struct ath_hw *ah)
2717{
2718	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2719		return false;
2720
2721	ath9k_hw_init_pll(ah, NULL);
2722	return true;
2723}
2724EXPORT_SYMBOL(ath9k_hw_phy_disable);
2725
2726bool ath9k_hw_disable(struct ath_hw *ah)
2727{
2728	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2729		return false;
2730
2731	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2732		return false;
2733
2734	ath9k_hw_init_pll(ah, NULL);
2735	return true;
2736}
2737EXPORT_SYMBOL(ath9k_hw_disable);
2738
2739static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2740{
2741	enum eeprom_param gain_param;
2742
2743	if (IS_CHAN_2GHZ(chan))
2744		gain_param = EEP_ANTENNA_GAIN_2G;
2745	else
2746		gain_param = EEP_ANTENNA_GAIN_5G;
2747
2748	return ah->eep_ops->get_eeprom(ah, gain_param);
2749}
2750
2751void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2752{
2753	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2754	struct ieee80211_channel *channel;
2755	int chan_pwr, new_pwr, max_gain;
2756	int ant_gain, ant_reduction = 0;
2757
2758	if (!chan)
2759		return;
2760
2761	channel = chan->chan;
2762	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2763	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2764	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2765
2766	ant_gain = get_antenna_gain(ah, chan);
2767	if (ant_gain > max_gain)
2768		ant_reduction = ant_gain - max_gain;
2769
2770	ah->eep_ops->set_txpower(ah, chan,
2771				 ath9k_regd_get_ctl(reg, chan),
2772				 ant_reduction, new_pwr, false);
2773}
2774
2775void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2776{
2777	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2778	struct ath9k_channel *chan = ah->curchan;
2779	struct ieee80211_channel *channel = chan->chan;
2780
2781	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2782	if (test)
2783		channel->max_power = MAX_RATE_POWER / 2;
2784
2785	ath9k_hw_apply_txpower(ah, chan);
2786
2787	if (test)
2788		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2789}
2790EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2791
2792void ath9k_hw_setopmode(struct ath_hw *ah)
2793{
2794	ath9k_hw_set_operating_mode(ah, ah->opmode);
2795}
2796EXPORT_SYMBOL(ath9k_hw_setopmode);
2797
2798void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2799{
2800	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2801	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2802}
2803EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2804
2805void ath9k_hw_write_associd(struct ath_hw *ah)
2806{
2807	struct ath_common *common = ath9k_hw_common(ah);
2808
2809	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2810	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2811		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2812}
2813EXPORT_SYMBOL(ath9k_hw_write_associd);
2814
2815#define ATH9K_MAX_TSF_READ 10
2816
2817u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2818{
2819	u32 tsf_lower, tsf_upper1, tsf_upper2;
2820	int i;
2821
2822	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2823	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2824		tsf_lower = REG_READ(ah, AR_TSF_L32);
2825		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2826		if (tsf_upper2 == tsf_upper1)
2827			break;
2828		tsf_upper1 = tsf_upper2;
2829	}
2830
2831	WARN_ON( i == ATH9K_MAX_TSF_READ );
2832
2833	return (((u64)tsf_upper1 << 32) | tsf_lower);
2834}
2835EXPORT_SYMBOL(ath9k_hw_gettsf64);
2836
2837void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2838{
2839	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2840	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2841}
2842EXPORT_SYMBOL(ath9k_hw_settsf64);
2843
2844void ath9k_hw_reset_tsf(struct ath_hw *ah)
2845{
2846	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2847			   AH_TSF_WRITE_TIMEOUT))
2848		ath_dbg(ath9k_hw_common(ah), RESET,
2849			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2850
2851	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2852}
2853EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2854
2855void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2856{
2857	if (setting)
2858		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2859	else
2860		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2861}
2862EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2863
2864void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2865{
2866	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2867	u32 macmode;
2868
2869	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2870		macmode = AR_2040_JOINED_RX_CLEAR;
2871	else
2872		macmode = 0;
2873
2874	REG_WRITE(ah, AR_2040_MODE, macmode);
2875}
2876
2877/* HW Generic timers configuration */
2878
2879static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2880{
2881	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2882	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2883	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2884	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2885	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2886	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2887	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2888	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2889	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2890	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2891				AR_NDP2_TIMER_MODE, 0x0002},
2892	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2893				AR_NDP2_TIMER_MODE, 0x0004},
2894	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2895				AR_NDP2_TIMER_MODE, 0x0008},
2896	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2897				AR_NDP2_TIMER_MODE, 0x0010},
2898	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2899				AR_NDP2_TIMER_MODE, 0x0020},
2900	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2901				AR_NDP2_TIMER_MODE, 0x0040},
2902	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2903				AR_NDP2_TIMER_MODE, 0x0080}
2904};
2905
2906/* HW generic timer primitives */
2907
2908/* compute and clear index of rightmost 1 */
2909static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2910{
2911	u32 b;
2912
2913	b = *mask;
2914	b &= (0-b);
2915	*mask &= ~b;
2916	b *= debruijn32;
2917	b >>= 27;
2918
2919	return timer_table->gen_timer_index[b];
2920}
2921
2922u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2923{
2924	return REG_READ(ah, AR_TSF_L32);
2925}
2926EXPORT_SYMBOL(ath9k_hw_gettsf32);
2927
2928struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2929					  void (*trigger)(void *),
2930					  void (*overflow)(void *),
2931					  void *arg,
2932					  u8 timer_index)
2933{
2934	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2935	struct ath_gen_timer *timer;
2936
2937	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2938
2939	if (timer == NULL) {
2940		ath_err(ath9k_hw_common(ah),
2941			"Failed to allocate memory for hw timer[%d]\n",
2942			timer_index);
2943		return NULL;
2944	}
2945
2946	/* allocate a hardware generic timer slot */
2947	timer_table->timers[timer_index] = timer;
2948	timer->index = timer_index;
2949	timer->trigger = trigger;
2950	timer->overflow = overflow;
2951	timer->arg = arg;
2952
2953	return timer;
2954}
2955EXPORT_SYMBOL(ath_gen_timer_alloc);
2956
2957void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2958			      struct ath_gen_timer *timer,
2959			      u32 trig_timeout,
2960			      u32 timer_period)
2961{
2962	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2963	u32 tsf, timer_next;
2964
2965	BUG_ON(!timer_period);
2966
2967	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2968
2969	tsf = ath9k_hw_gettsf32(ah);
2970
2971	timer_next = tsf + trig_timeout;
2972
2973	ath_dbg(ath9k_hw_common(ah), HWTIMER,
2974		"current tsf %x period %x timer_next %x\n",
2975		tsf, timer_period, timer_next);
2976
2977	/*
2978	 * Program generic timer registers
2979	 */
2980	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2981		 timer_next);
2982	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2983		  timer_period);
2984	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2985		    gen_tmr_configuration[timer->index].mode_mask);
2986
2987	if (AR_SREV_9462(ah)) {
2988		/*
2989		 * Starting from AR9462, each generic timer can select which tsf
2990		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2991		 * 8 - 15  use tsf2.
2992		 */
2993		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2994			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2995				       (1 << timer->index));
2996		else
2997			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2998				       (1 << timer->index));
2999	}
3000
3001	/* Enable both trigger and thresh interrupt masks */
3002	REG_SET_BIT(ah, AR_IMR_S5,
3003		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3004		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3005}
3006EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3007
3008void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3009{
3010	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3011
3012	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3013		(timer->index >= ATH_MAX_GEN_TIMER)) {
3014		return;
3015	}
3016
3017	/* Clear generic timer enable bits. */
3018	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3019			gen_tmr_configuration[timer->index].mode_mask);
3020
3021	/* Disable both trigger and thresh interrupt masks */
3022	REG_CLR_BIT(ah, AR_IMR_S5,
3023		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3024		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3025
3026	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3027}
3028EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3029
3030void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3031{
3032	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3033
3034	/* free the hardware generic timer slot */
3035	timer_table->timers[timer->index] = NULL;
3036	kfree(timer);
3037}
3038EXPORT_SYMBOL(ath_gen_timer_free);
3039
3040/*
3041 * Generic Timer Interrupts handling
3042 */
3043void ath_gen_timer_isr(struct ath_hw *ah)
3044{
3045	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3046	struct ath_gen_timer *timer;
3047	struct ath_common *common = ath9k_hw_common(ah);
3048	u32 trigger_mask, thresh_mask, index;
3049
3050	/* get hardware generic timer interrupt status */
3051	trigger_mask = ah->intr_gen_timer_trigger;
3052	thresh_mask = ah->intr_gen_timer_thresh;
3053	trigger_mask &= timer_table->timer_mask.val;
3054	thresh_mask &= timer_table->timer_mask.val;
3055
3056	trigger_mask &= ~thresh_mask;
3057
3058	while (thresh_mask) {
3059		index = rightmost_index(timer_table, &thresh_mask);
3060		timer = timer_table->timers[index];
3061		BUG_ON(!timer);
3062		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3063			index);
3064		timer->overflow(timer->arg);
3065	}
3066
3067	while (trigger_mask) {
3068		index = rightmost_index(timer_table, &trigger_mask);
3069		timer = timer_table->timers[index];
3070		BUG_ON(!timer);
3071		ath_dbg(common, HWTIMER,
3072			"Gen timer[%d] trigger\n", index);
3073		timer->trigger(timer->arg);
3074	}
3075}
3076EXPORT_SYMBOL(ath_gen_timer_isr);
3077
3078/********/
3079/* HTC  */
3080/********/
3081
3082void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3083{
3084	ah->htc_reset_init = true;
3085}
3086EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3087
3088static struct {
3089	u32 version;
3090	const char * name;
3091} ath_mac_bb_names[] = {
3092	/* Devices with external radios */
3093	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3094	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3095	{ AR_SREV_VERSION_9100,		"9100" },
3096	{ AR_SREV_VERSION_9160,		"9160" },
3097	/* Single-chip solutions */
3098	{ AR_SREV_VERSION_9280,		"9280" },
3099	{ AR_SREV_VERSION_9285,		"9285" },
3100	{ AR_SREV_VERSION_9287,         "9287" },
3101	{ AR_SREV_VERSION_9271,         "9271" },
3102	{ AR_SREV_VERSION_9300,         "9300" },
3103	{ AR_SREV_VERSION_9330,         "9330" },
3104	{ AR_SREV_VERSION_9340,		"9340" },
3105	{ AR_SREV_VERSION_9485,         "9485" },
3106	{ AR_SREV_VERSION_9462,         "9462" },
3107};
3108
3109/* For devices with external radios */
3110static struct {
3111	u16 version;
3112	const char * name;
3113} ath_rf_names[] = {
3114	{ 0,				"5133" },
3115	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3116	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3117	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3118	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3119};
3120
3121/*
3122 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3123 */
3124static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3125{
3126	int i;
3127
3128	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3129		if (ath_mac_bb_names[i].version == mac_bb_version) {
3130			return ath_mac_bb_names[i].name;
3131		}
3132	}
3133
3134	return "????";
3135}
3136
3137/*
3138 * Return the RF name. "????" is returned if the RF is unknown.
3139 * Used for devices with external radios.
3140 */
3141static const char *ath9k_hw_rf_name(u16 rf_version)
3142{
3143	int i;
3144
3145	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3146		if (ath_rf_names[i].version == rf_version) {
3147			return ath_rf_names[i].name;
3148		}
3149	}
3150
3151	return "????";
3152}
3153
3154void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3155{
3156	int used;
3157
3158	/* chipsets >= AR9280 are single-chip */
3159	if (AR_SREV_9280_20_OR_LATER(ah)) {
3160		used = snprintf(hw_name, len,
3161			       "Atheros AR%s Rev:%x",
3162			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3163			       ah->hw_version.macRev);
3164	}
3165	else {
3166		used = snprintf(hw_name, len,
3167			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3168			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3169			       ah->hw_version.macRev,
3170			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3171						AR_RADIO_SREV_MAJOR)),
3172			       ah->hw_version.phyRev);
3173	}
3174
3175	hw_name[used] = '\0';
3176}
3177EXPORT_SYMBOL(ath9k_hw_name);
3178