hw.c revision cd2ea0df6892893c9a47b55f37a4d73736221a39
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58					struct ath9k_channel *chan)
59{
60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61}
62
63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64{
65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66		return;
67
68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69}
70
71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72{
73	/* You will not have this callback if using the old ANI */
74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75		return;
76
77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78}
79
80/********************/
81/* Helper Functions */
82/********************/
83
84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85{
86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87	struct ath_common *common = ath9k_hw_common(ah);
88	unsigned int clockrate;
89
90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
92		clockrate = 117;
93	else if (!ah->curchan) /* should really check for CCK instead */
94		clockrate = ATH9K_CLOCK_RATE_CCK;
95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
99	else
100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
101
102	if (conf_is_ht40(conf))
103		clockrate *= 2;
104
105	if (ah->curchan) {
106		if (IS_CHAN_HALF_RATE(ah->curchan))
107			clockrate /= 2;
108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
109			clockrate /= 4;
110	}
111
112	common->clockrate = clockrate;
113}
114
115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
116{
117	struct ath_common *common = ath9k_hw_common(ah);
118
119	return usecs * common->clockrate;
120}
121
122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123{
124	int i;
125
126	BUG_ON(timeout < AH_TIME_QUANTUM);
127
128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
129		if ((REG_READ(ah, reg) & mask) == val)
130			return true;
131
132		udelay(AH_TIME_QUANTUM);
133	}
134
135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137		timeout, reg, REG_READ(ah, reg), mask, val);
138
139	return false;
140}
141EXPORT_SYMBOL(ath9k_hw_wait);
142
143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
144			  int column, unsigned int *writecnt)
145{
146	int r;
147
148	ENABLE_REGWRITE_BUFFER(ah);
149	for (r = 0; r < array->ia_rows; r++) {
150		REG_WRITE(ah, INI_RA(array, r, 0),
151			  INI_RA(array, r, column));
152		DO_DELAY(*writecnt);
153	}
154	REGWRITE_BUFFER_FLUSH(ah);
155}
156
157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
158{
159	u32 retval;
160	int i;
161
162	for (i = 0, retval = 0; i < n; i++) {
163		retval = (retval << 1) | (val & 1);
164		val >>= 1;
165	}
166	return retval;
167}
168
169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
170			   u8 phy, int kbps,
171			   u32 frameLen, u16 rateix,
172			   bool shortPreamble)
173{
174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175
176	if (kbps == 0)
177		return 0;
178
179	switch (phy) {
180	case WLAN_RC_PHY_CCK:
181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
182		if (shortPreamble)
183			phyTime >>= 1;
184		numBits = frameLen << 3;
185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
186		break;
187	case WLAN_RC_PHY_OFDM:
188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192			txTime = OFDM_SIFS_TIME_QUARTER
193				+ OFDM_PREAMBLE_TIME_QUARTER
194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195		} else if (ah->curchan &&
196			   IS_CHAN_HALF_RATE(ah->curchan)) {
197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200			txTime = OFDM_SIFS_TIME_HALF +
201				OFDM_PREAMBLE_TIME_HALF
202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203		} else {
204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208				+ (numSymbols * OFDM_SYMBOL_TIME);
209		}
210		break;
211	default:
212		ath_err(ath9k_hw_common(ah),
213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214		txTime = 0;
215		break;
216	}
217
218	return txTime;
219}
220EXPORT_SYMBOL(ath9k_hw_computetxtime);
221
222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223				  struct ath9k_channel *chan,
224				  struct chan_centers *centers)
225{
226	int8_t extoff;
227
228	if (!IS_CHAN_HT40(chan)) {
229		centers->ctl_center = centers->ext_center =
230			centers->synth_center = chan->channel;
231		return;
232	}
233
234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
236		centers->synth_center =
237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
238		extoff = 1;
239	} else {
240		centers->synth_center =
241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
242		extoff = -1;
243	}
244
245	centers->ctl_center =
246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247	/* 25 MHz spacing is supported by hw but not on upper layers */
248	centers->ext_center =
249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
250}
251
252/******************/
253/* Chip Revisions */
254/******************/
255
256static void ath9k_hw_read_revisions(struct ath_hw *ah)
257{
258	u32 val;
259
260	switch (ah->hw_version.devid) {
261	case AR5416_AR9100_DEVID:
262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263		break;
264	case AR9300_DEVID_AR9330:
265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266		if (ah->get_mac_revision) {
267			ah->hw_version.macRev = ah->get_mac_revision();
268		} else {
269			val = REG_READ(ah, AR_SREV);
270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271		}
272		return;
273	case AR9300_DEVID_AR9340:
274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275		val = REG_READ(ah, AR_SREV);
276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
277		return;
278	}
279
280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
281
282	if (val == 0xFF) {
283		val = REG_READ(ah, AR_SREV);
284		ah->hw_version.macVersion =
285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
287
288		if (AR_SREV_9480(ah))
289			ah->is_pciexpress = true;
290		else
291			ah->is_pciexpress = (val &
292					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
293	} else {
294		if (!AR_SREV_9100(ah))
295			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
296
297		ah->hw_version.macRev = val & AR_SREV_REVISION;
298
299		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
300			ah->is_pciexpress = true;
301	}
302}
303
304/************************************/
305/* HW Attach, Detach, Init Routines */
306/************************************/
307
308static void ath9k_hw_disablepcie(struct ath_hw *ah)
309{
310	if (!AR_SREV_5416(ah))
311		return;
312
313	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
314	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
315	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
316	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
317	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
318	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
319	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
320	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
321	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
322
323	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
324}
325
326static void ath9k_hw_aspm_init(struct ath_hw *ah)
327{
328	struct ath_common *common = ath9k_hw_common(ah);
329
330	if (common->bus_ops->aspm_init)
331		common->bus_ops->aspm_init(common);
332}
333
334/* This should work for all families including legacy */
335static bool ath9k_hw_chip_test(struct ath_hw *ah)
336{
337	struct ath_common *common = ath9k_hw_common(ah);
338	u32 regAddr[2] = { AR_STA_ID0 };
339	u32 regHold[2];
340	static const u32 patternData[4] = {
341		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
342	};
343	int i, j, loop_max;
344
345	if (!AR_SREV_9300_20_OR_LATER(ah)) {
346		loop_max = 2;
347		regAddr[1] = AR_PHY_BASE + (8 << 2);
348	} else
349		loop_max = 1;
350
351	for (i = 0; i < loop_max; i++) {
352		u32 addr = regAddr[i];
353		u32 wrData, rdData;
354
355		regHold[i] = REG_READ(ah, addr);
356		for (j = 0; j < 0x100; j++) {
357			wrData = (j << 16) | j;
358			REG_WRITE(ah, addr, wrData);
359			rdData = REG_READ(ah, addr);
360			if (rdData != wrData) {
361				ath_err(common,
362					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
363					addr, wrData, rdData);
364				return false;
365			}
366		}
367		for (j = 0; j < 4; j++) {
368			wrData = patternData[j];
369			REG_WRITE(ah, addr, wrData);
370			rdData = REG_READ(ah, addr);
371			if (wrData != rdData) {
372				ath_err(common,
373					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
374					addr, wrData, rdData);
375				return false;
376			}
377		}
378		REG_WRITE(ah, regAddr[i], regHold[i]);
379	}
380	udelay(100);
381
382	return true;
383}
384
385static void ath9k_hw_init_config(struct ath_hw *ah)
386{
387	int i;
388
389	ah->config.dma_beacon_response_time = 2;
390	ah->config.sw_beacon_response_time = 10;
391	ah->config.additional_swba_backoff = 0;
392	ah->config.ack_6mb = 0x0;
393	ah->config.cwm_ignore_extcca = 0;
394	ah->config.pcie_clock_req = 0;
395	ah->config.pcie_waen = 0;
396	ah->config.analog_shiftreg = 1;
397	ah->config.enable_ani = true;
398
399	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
400		ah->config.spurchans[i][0] = AR_NO_SPUR;
401		ah->config.spurchans[i][1] = AR_NO_SPUR;
402	}
403
404	/* PAPRD needs some more work to be enabled */
405	ah->config.paprd_disable = 1;
406
407	ah->config.rx_intr_mitigation = true;
408	ah->config.pcieSerDesWrite = true;
409
410	/*
411	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
412	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
413	 * This means we use it for all AR5416 devices, and the few
414	 * minor PCI AR9280 devices out there.
415	 *
416	 * Serialization is required because these devices do not handle
417	 * well the case of two concurrent reads/writes due to the latency
418	 * involved. During one read/write another read/write can be issued
419	 * on another CPU while the previous read/write may still be working
420	 * on our hardware, if we hit this case the hardware poops in a loop.
421	 * We prevent this by serializing reads and writes.
422	 *
423	 * This issue is not present on PCI-Express devices or pre-AR5416
424	 * devices (legacy, 802.11abg).
425	 */
426	if (num_possible_cpus() > 1)
427		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
428}
429
430static void ath9k_hw_init_defaults(struct ath_hw *ah)
431{
432	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
433
434	regulatory->country_code = CTRY_DEFAULT;
435	regulatory->power_limit = MAX_RATE_POWER;
436
437	ah->hw_version.magic = AR5416_MAGIC;
438	ah->hw_version.subvendorid = 0;
439
440	ah->atim_window = 0;
441	ah->sta_id1_defaults =
442		AR_STA_ID1_CRPT_MIC_ENABLE |
443		AR_STA_ID1_MCAST_KSRCH;
444	if (AR_SREV_9100(ah))
445		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
446	ah->enable_32kHz_clock = DONT_USE_32KHZ;
447	ah->slottime = ATH9K_SLOT_TIME_9;
448	ah->globaltxtimeout = (u32) -1;
449	ah->power_mode = ATH9K_PM_UNDEFINED;
450}
451
452static int ath9k_hw_init_macaddr(struct ath_hw *ah)
453{
454	struct ath_common *common = ath9k_hw_common(ah);
455	u32 sum;
456	int i;
457	u16 eeval;
458	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
459
460	sum = 0;
461	for (i = 0; i < 3; i++) {
462		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
463		sum += eeval;
464		common->macaddr[2 * i] = eeval >> 8;
465		common->macaddr[2 * i + 1] = eeval & 0xff;
466	}
467	if (sum == 0 || sum == 0xffff * 3)
468		return -EADDRNOTAVAIL;
469
470	return 0;
471}
472
473static int ath9k_hw_post_init(struct ath_hw *ah)
474{
475	struct ath_common *common = ath9k_hw_common(ah);
476	int ecode;
477
478	if (common->bus_ops->ath_bus_type != ATH_USB) {
479		if (!ath9k_hw_chip_test(ah))
480			return -ENODEV;
481	}
482
483	if (!AR_SREV_9300_20_OR_LATER(ah)) {
484		ecode = ar9002_hw_rf_claim(ah);
485		if (ecode != 0)
486			return ecode;
487	}
488
489	ecode = ath9k_hw_eeprom_init(ah);
490	if (ecode != 0)
491		return ecode;
492
493	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
494		"Eeprom VER: %d, REV: %d\n",
495		ah->eep_ops->get_eeprom_ver(ah),
496		ah->eep_ops->get_eeprom_rev(ah));
497
498	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
499	if (ecode) {
500		ath_err(ath9k_hw_common(ah),
501			"Failed allocating banks for external radio\n");
502		ath9k_hw_rf_free_ext_banks(ah);
503		return ecode;
504	}
505
506	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
507		ath9k_hw_ani_setup(ah);
508		ath9k_hw_ani_init(ah);
509	}
510
511	return 0;
512}
513
514static void ath9k_hw_attach_ops(struct ath_hw *ah)
515{
516	if (AR_SREV_9300_20_OR_LATER(ah))
517		ar9003_hw_attach_ops(ah);
518	else
519		ar9002_hw_attach_ops(ah);
520}
521
522/* Called for all hardware families */
523static int __ath9k_hw_init(struct ath_hw *ah)
524{
525	struct ath_common *common = ath9k_hw_common(ah);
526	int r = 0;
527
528	ath9k_hw_read_revisions(ah);
529
530	/*
531	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532	 * We need to do this to avoid RMW of this register. We cannot
533	 * read the reg when chip is asleep.
534	 */
535	ah->WARegVal = REG_READ(ah, AR_WA);
536	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
537			 AR_WA_ASPM_TIMER_BASED_DISABLE);
538
539	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540		ath_err(common, "Couldn't reset chip\n");
541		return -EIO;
542	}
543
544	ath9k_hw_init_defaults(ah);
545	ath9k_hw_init_config(ah);
546
547	ath9k_hw_attach_ops(ah);
548
549	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
550		ath_err(common, "Couldn't wakeup chip\n");
551		return -EIO;
552	}
553
554	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
555		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
556		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
557		     !ah->is_pciexpress)) {
558			ah->config.serialize_regmode =
559				SER_REG_MODE_ON;
560		} else {
561			ah->config.serialize_regmode =
562				SER_REG_MODE_OFF;
563		}
564	}
565
566	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
567		ah->config.serialize_regmode);
568
569	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
570		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
571	else
572		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
573
574	switch (ah->hw_version.macVersion) {
575	case AR_SREV_VERSION_5416_PCI:
576	case AR_SREV_VERSION_5416_PCIE:
577	case AR_SREV_VERSION_9160:
578	case AR_SREV_VERSION_9100:
579	case AR_SREV_VERSION_9280:
580	case AR_SREV_VERSION_9285:
581	case AR_SREV_VERSION_9287:
582	case AR_SREV_VERSION_9271:
583	case AR_SREV_VERSION_9300:
584	case AR_SREV_VERSION_9330:
585	case AR_SREV_VERSION_9485:
586	case AR_SREV_VERSION_9340:
587	case AR_SREV_VERSION_9480:
588		break;
589	default:
590		ath_err(common,
591			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
592			ah->hw_version.macVersion, ah->hw_version.macRev);
593		return -EOPNOTSUPP;
594	}
595
596	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
597	    AR_SREV_9330(ah))
598		ah->is_pciexpress = false;
599
600	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
601	ath9k_hw_init_cal_settings(ah);
602
603	ah->ani_function = ATH9K_ANI_ALL;
604	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
605		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
606	if (!AR_SREV_9300_20_OR_LATER(ah))
607		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
608
609	ath9k_hw_init_mode_regs(ah);
610
611	if (!ah->is_pciexpress)
612		ath9k_hw_disablepcie(ah);
613
614	if (!AR_SREV_9300_20_OR_LATER(ah))
615		ar9002_hw_cck_chan14_spread(ah);
616
617	r = ath9k_hw_post_init(ah);
618	if (r)
619		return r;
620
621	ath9k_hw_init_mode_gain_regs(ah);
622	r = ath9k_hw_fill_cap_info(ah);
623	if (r)
624		return r;
625
626	if (ah->is_pciexpress)
627		ath9k_hw_aspm_init(ah);
628
629	r = ath9k_hw_init_macaddr(ah);
630	if (r) {
631		ath_err(common, "Failed to initialize MAC address\n");
632		return r;
633	}
634
635	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
636		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
637	else
638		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
639
640	if (AR_SREV_9330(ah))
641		ah->bb_watchdog_timeout_ms = 85;
642	else
643		ah->bb_watchdog_timeout_ms = 25;
644
645	common->state = ATH_HW_INITIALIZED;
646
647	return 0;
648}
649
650int ath9k_hw_init(struct ath_hw *ah)
651{
652	int ret;
653	struct ath_common *common = ath9k_hw_common(ah);
654
655	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
656	switch (ah->hw_version.devid) {
657	case AR5416_DEVID_PCI:
658	case AR5416_DEVID_PCIE:
659	case AR5416_AR9100_DEVID:
660	case AR9160_DEVID_PCI:
661	case AR9280_DEVID_PCI:
662	case AR9280_DEVID_PCIE:
663	case AR9285_DEVID_PCIE:
664	case AR9287_DEVID_PCI:
665	case AR9287_DEVID_PCIE:
666	case AR2427_DEVID_PCIE:
667	case AR9300_DEVID_PCIE:
668	case AR9300_DEVID_AR9485_PCIE:
669	case AR9300_DEVID_AR9330:
670	case AR9300_DEVID_AR9340:
671	case AR9300_DEVID_AR9580:
672	case AR9300_DEVID_AR9480:
673		break;
674	default:
675		if (common->bus_ops->ath_bus_type == ATH_USB)
676			break;
677		ath_err(common, "Hardware device ID 0x%04x not supported\n",
678			ah->hw_version.devid);
679		return -EOPNOTSUPP;
680	}
681
682	ret = __ath9k_hw_init(ah);
683	if (ret) {
684		ath_err(common,
685			"Unable to initialize hardware; initialization status: %d\n",
686			ret);
687		return ret;
688	}
689
690	return 0;
691}
692EXPORT_SYMBOL(ath9k_hw_init);
693
694static void ath9k_hw_init_qos(struct ath_hw *ah)
695{
696	ENABLE_REGWRITE_BUFFER(ah);
697
698	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
699	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
700
701	REG_WRITE(ah, AR_QOS_NO_ACK,
702		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
703		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
704		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
705
706	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
707	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
708	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
709	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
710	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
711
712	REGWRITE_BUFFER_FLUSH(ah);
713}
714
715u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
716{
717	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
718	udelay(100);
719	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
720
721	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
722		udelay(100);
723
724	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
725}
726EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
727
728static void ath9k_hw_init_pll(struct ath_hw *ah,
729			      struct ath9k_channel *chan)
730{
731	u32 pll;
732
733	if (AR_SREV_9485(ah)) {
734
735		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
736		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
737			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
738		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
739			      AR_CH0_DPLL2_KD, 0x40);
740		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
741			      AR_CH0_DPLL2_KI, 0x4);
742
743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
744			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
746			      AR_CH0_BB_DPLL1_NINI, 0x58);
747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
748			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
749
750		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
751			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
752		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
753			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
756
757		/* program BB PLL phase_shift to 0x6 */
758		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
759			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
760
761		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
763		udelay(1000);
764	} else if (AR_SREV_9330(ah)) {
765		u32 ddr_dpll2, pll_control2, kd;
766
767		if (ah->is_clk_25mhz) {
768			ddr_dpll2 = 0x18e82f01;
769			pll_control2 = 0xe04a3d;
770			kd = 0x1d;
771		} else {
772			ddr_dpll2 = 0x19e82f01;
773			pll_control2 = 0x886666;
774			kd = 0x3d;
775		}
776
777		/* program DDR PLL ki and kd value */
778		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
779
780		/* program DDR PLL phase_shift */
781		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
782			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
783
784		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
785		udelay(1000);
786
787		/* program refdiv, nint, frac to RTC register */
788		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
789
790		/* program BB PLL kd and ki value */
791		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
792		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
793
794		/* program BB PLL phase_shift */
795		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
796			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
797	} else if (AR_SREV_9340(ah)) {
798		u32 regval, pll2_divint, pll2_divfrac, refdiv;
799
800		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
801		udelay(1000);
802
803		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
804		udelay(100);
805
806		if (ah->is_clk_25mhz) {
807			pll2_divint = 0x54;
808			pll2_divfrac = 0x1eb85;
809			refdiv = 3;
810		} else {
811			pll2_divint = 88;
812			pll2_divfrac = 0;
813			refdiv = 5;
814		}
815
816		regval = REG_READ(ah, AR_PHY_PLL_MODE);
817		regval |= (0x1 << 16);
818		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
819		udelay(100);
820
821		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
822			  (pll2_divint << 18) | pll2_divfrac);
823		udelay(100);
824
825		regval = REG_READ(ah, AR_PHY_PLL_MODE);
826		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
827			 (0x4 << 26) | (0x18 << 19);
828		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
829		REG_WRITE(ah, AR_PHY_PLL_MODE,
830			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
831		udelay(1000);
832	}
833
834	pll = ath9k_hw_compute_pll_control(ah, chan);
835
836	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
837
838	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
839		udelay(1000);
840
841	/* Switch the core clock for ar9271 to 117Mhz */
842	if (AR_SREV_9271(ah)) {
843		udelay(500);
844		REG_WRITE(ah, 0x50040, 0x304);
845	}
846
847	udelay(RTC_PLL_SETTLE_DELAY);
848
849	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
850
851	if (AR_SREV_9340(ah)) {
852		if (ah->is_clk_25mhz) {
853			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
854			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
855			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
856		} else {
857			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
858			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
859			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
860		}
861		udelay(100);
862	}
863}
864
865static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
866					  enum nl80211_iftype opmode)
867{
868	u32 sync_default = AR_INTR_SYNC_DEFAULT;
869	u32 imr_reg = AR_IMR_TXERR |
870		AR_IMR_TXURN |
871		AR_IMR_RXERR |
872		AR_IMR_RXORN |
873		AR_IMR_BCNMISC;
874
875	if (AR_SREV_9340(ah))
876		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
877
878	if (AR_SREV_9300_20_OR_LATER(ah)) {
879		imr_reg |= AR_IMR_RXOK_HP;
880		if (ah->config.rx_intr_mitigation)
881			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
882		else
883			imr_reg |= AR_IMR_RXOK_LP;
884
885	} else {
886		if (ah->config.rx_intr_mitigation)
887			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
888		else
889			imr_reg |= AR_IMR_RXOK;
890	}
891
892	if (ah->config.tx_intr_mitigation)
893		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
894	else
895		imr_reg |= AR_IMR_TXOK;
896
897	if (opmode == NL80211_IFTYPE_AP)
898		imr_reg |= AR_IMR_MIB;
899
900	ENABLE_REGWRITE_BUFFER(ah);
901
902	REG_WRITE(ah, AR_IMR, imr_reg);
903	ah->imrs2_reg |= AR_IMR_S2_GTT;
904	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
905
906	if (!AR_SREV_9100(ah)) {
907		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
908		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
909		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
910	}
911
912	REGWRITE_BUFFER_FLUSH(ah);
913
914	if (AR_SREV_9300_20_OR_LATER(ah)) {
915		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
916		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
917		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
918		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
919	}
920}
921
922static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
923{
924	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
925	val = min(val, (u32) 0xFFFF);
926	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
927}
928
929static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
930{
931	u32 val = ath9k_hw_mac_to_clks(ah, us);
932	val = min(val, (u32) 0xFFFF);
933	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
934}
935
936static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
937{
938	u32 val = ath9k_hw_mac_to_clks(ah, us);
939	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
940	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
941}
942
943static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
944{
945	u32 val = ath9k_hw_mac_to_clks(ah, us);
946	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
947	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
948}
949
950static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
951{
952	if (tu > 0xFFFF) {
953		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
954			"bad global tx timeout %u\n", tu);
955		ah->globaltxtimeout = (u32) -1;
956		return false;
957	} else {
958		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
959		ah->globaltxtimeout = tu;
960		return true;
961	}
962}
963
964void ath9k_hw_init_global_settings(struct ath_hw *ah)
965{
966	struct ath_common *common = ath9k_hw_common(ah);
967	struct ieee80211_conf *conf = &common->hw->conf;
968	const struct ath9k_channel *chan = ah->curchan;
969	int acktimeout, ctstimeout;
970	int slottime;
971	int sifstime;
972	int rx_lat = 0, tx_lat = 0, eifs = 0;
973	u32 reg;
974
975	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
976		ah->misc_mode);
977
978	if (!chan)
979		return;
980
981	if (ah->misc_mode != 0)
982		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
983
984	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
985		rx_lat = 41;
986	else
987		rx_lat = 37;
988	tx_lat = 54;
989
990	if (IS_CHAN_HALF_RATE(chan)) {
991		eifs = 175;
992		rx_lat *= 2;
993		tx_lat *= 2;
994		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
995		    tx_lat += 11;
996
997		slottime = 13;
998		sifstime = 32;
999	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1000		eifs = 340;
1001		rx_lat = (rx_lat * 4) - 1;
1002		tx_lat *= 4;
1003		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1004		    tx_lat += 22;
1005
1006		slottime = 21;
1007		sifstime = 64;
1008	} else {
1009		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1010			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1011			reg = AR_USEC_ASYNC_FIFO;
1012		} else {
1013			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1014				common->clockrate;
1015			reg = REG_READ(ah, AR_USEC);
1016		}
1017		rx_lat = MS(reg, AR_USEC_RX_LAT);
1018		tx_lat = MS(reg, AR_USEC_TX_LAT);
1019
1020		slottime = ah->slottime;
1021		if (IS_CHAN_5GHZ(chan))
1022			sifstime = 16;
1023		else
1024			sifstime = 10;
1025	}
1026
1027	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1028	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1029	ctstimeout = acktimeout;
1030
1031	/*
1032	 * Workaround for early ACK timeouts, add an offset to match the
1033	 * initval's 64us ack timeout value.
1034	 * This was initially only meant to work around an issue with delayed
1035	 * BA frames in some implementations, but it has been found to fix ACK
1036	 * timeout issues in other cases as well.
1037	 */
1038	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1039		acktimeout += 64 - sifstime - ah->slottime;
1040
1041	ath9k_hw_set_sifs_time(ah, sifstime);
1042	ath9k_hw_setslottime(ah, slottime);
1043	ath9k_hw_set_ack_timeout(ah, acktimeout);
1044	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1045	if (ah->globaltxtimeout != (u32) -1)
1046		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1047
1048	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1049	REG_RMW(ah, AR_USEC,
1050		(common->clockrate - 1) |
1051		SM(rx_lat, AR_USEC_RX_LAT) |
1052		SM(tx_lat, AR_USEC_TX_LAT),
1053		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1054
1055}
1056EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1057
1058void ath9k_hw_deinit(struct ath_hw *ah)
1059{
1060	struct ath_common *common = ath9k_hw_common(ah);
1061
1062	if (common->state < ATH_HW_INITIALIZED)
1063		goto free_hw;
1064
1065	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1066
1067free_hw:
1068	ath9k_hw_rf_free_ext_banks(ah);
1069}
1070EXPORT_SYMBOL(ath9k_hw_deinit);
1071
1072/*******/
1073/* INI */
1074/*******/
1075
1076u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1077{
1078	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1079
1080	if (IS_CHAN_B(chan))
1081		ctl |= CTL_11B;
1082	else if (IS_CHAN_G(chan))
1083		ctl |= CTL_11G;
1084	else
1085		ctl |= CTL_11A;
1086
1087	return ctl;
1088}
1089
1090/****************************************/
1091/* Reset and Channel Switching Routines */
1092/****************************************/
1093
1094static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1095{
1096	struct ath_common *common = ath9k_hw_common(ah);
1097
1098	ENABLE_REGWRITE_BUFFER(ah);
1099
1100	/*
1101	 * set AHB_MODE not to do cacheline prefetches
1102	*/
1103	if (!AR_SREV_9300_20_OR_LATER(ah))
1104		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1105
1106	/*
1107	 * let mac dma reads be in 128 byte chunks
1108	 */
1109	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1110
1111	REGWRITE_BUFFER_FLUSH(ah);
1112
1113	/*
1114	 * Restore TX Trigger Level to its pre-reset value.
1115	 * The initial value depends on whether aggregation is enabled, and is
1116	 * adjusted whenever underruns are detected.
1117	 */
1118	if (!AR_SREV_9300_20_OR_LATER(ah))
1119		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1120
1121	ENABLE_REGWRITE_BUFFER(ah);
1122
1123	/*
1124	 * let mac dma writes be in 128 byte chunks
1125	 */
1126	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1127
1128	/*
1129	 * Setup receive FIFO threshold to hold off TX activities
1130	 */
1131	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1132
1133	if (AR_SREV_9300_20_OR_LATER(ah)) {
1134		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1135		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1136
1137		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1138			ah->caps.rx_status_len);
1139	}
1140
1141	/*
1142	 * reduce the number of usable entries in PCU TXBUF to avoid
1143	 * wrap around issues.
1144	 */
1145	if (AR_SREV_9285(ah)) {
1146		/* For AR9285 the number of Fifos are reduced to half.
1147		 * So set the usable tx buf size also to half to
1148		 * avoid data/delimiter underruns
1149		 */
1150		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1151			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1152	} else if (!AR_SREV_9271(ah)) {
1153		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1154			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1155	}
1156
1157	REGWRITE_BUFFER_FLUSH(ah);
1158
1159	if (AR_SREV_9300_20_OR_LATER(ah))
1160		ath9k_hw_reset_txstatus_ring(ah);
1161}
1162
1163static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1164{
1165	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1166	u32 set = AR_STA_ID1_KSRCH_MODE;
1167
1168	switch (opmode) {
1169	case NL80211_IFTYPE_ADHOC:
1170	case NL80211_IFTYPE_MESH_POINT:
1171		set |= AR_STA_ID1_ADHOC;
1172		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1173		break;
1174	case NL80211_IFTYPE_AP:
1175		set |= AR_STA_ID1_STA_AP;
1176		/* fall through */
1177	case NL80211_IFTYPE_STATION:
1178		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1179		break;
1180	default:
1181		if (!ah->is_monitoring)
1182			set = 0;
1183		break;
1184	}
1185	REG_RMW(ah, AR_STA_ID1, set, mask);
1186}
1187
1188void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1189				   u32 *coef_mantissa, u32 *coef_exponent)
1190{
1191	u32 coef_exp, coef_man;
1192
1193	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1194		if ((coef_scaled >> coef_exp) & 0x1)
1195			break;
1196
1197	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1198
1199	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1200
1201	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1202	*coef_exponent = coef_exp - 16;
1203}
1204
1205static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1206{
1207	u32 rst_flags;
1208	u32 tmpReg;
1209
1210	if (AR_SREV_9100(ah)) {
1211		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1212			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1213		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1214	}
1215
1216	ENABLE_REGWRITE_BUFFER(ah);
1217
1218	if (AR_SREV_9300_20_OR_LATER(ah)) {
1219		REG_WRITE(ah, AR_WA, ah->WARegVal);
1220		udelay(10);
1221	}
1222
1223	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1224		  AR_RTC_FORCE_WAKE_ON_INT);
1225
1226	if (AR_SREV_9100(ah)) {
1227		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1228			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1229	} else {
1230		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1231		if (tmpReg &
1232		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1233		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1234			u32 val;
1235			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1236
1237			val = AR_RC_HOSTIF;
1238			if (!AR_SREV_9300_20_OR_LATER(ah))
1239				val |= AR_RC_AHB;
1240			REG_WRITE(ah, AR_RC, val);
1241
1242		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1243			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1244
1245		rst_flags = AR_RTC_RC_MAC_WARM;
1246		if (type == ATH9K_RESET_COLD)
1247			rst_flags |= AR_RTC_RC_MAC_COLD;
1248	}
1249
1250	if (AR_SREV_9330(ah)) {
1251		int npend = 0;
1252		int i;
1253
1254		/* AR9330 WAR:
1255		 * call external reset function to reset WMAC if:
1256		 * - doing a cold reset
1257		 * - we have pending frames in the TX queues
1258		 */
1259
1260		for (i = 0; i < AR_NUM_QCU; i++) {
1261			npend = ath9k_hw_numtxpending(ah, i);
1262			if (npend)
1263				break;
1264		}
1265
1266		if (ah->external_reset &&
1267		    (npend || type == ATH9K_RESET_COLD)) {
1268			int reset_err = 0;
1269
1270			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1271				"reset MAC via external reset\n");
1272
1273			reset_err = ah->external_reset();
1274			if (reset_err) {
1275				ath_err(ath9k_hw_common(ah),
1276					"External reset failed, err=%d\n",
1277					reset_err);
1278				return false;
1279			}
1280
1281			REG_WRITE(ah, AR_RTC_RESET, 1);
1282		}
1283	}
1284
1285	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1286
1287	REGWRITE_BUFFER_FLUSH(ah);
1288
1289	udelay(50);
1290
1291	REG_WRITE(ah, AR_RTC_RC, 0);
1292	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1293		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1294			"RTC stuck in MAC reset\n");
1295		return false;
1296	}
1297
1298	if (!AR_SREV_9100(ah))
1299		REG_WRITE(ah, AR_RC, 0);
1300
1301	if (AR_SREV_9100(ah))
1302		udelay(50);
1303
1304	return true;
1305}
1306
1307static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1308{
1309	ENABLE_REGWRITE_BUFFER(ah);
1310
1311	if (AR_SREV_9300_20_OR_LATER(ah)) {
1312		REG_WRITE(ah, AR_WA, ah->WARegVal);
1313		udelay(10);
1314	}
1315
1316	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1317		  AR_RTC_FORCE_WAKE_ON_INT);
1318
1319	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1320		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1321
1322	REG_WRITE(ah, AR_RTC_RESET, 0);
1323
1324	REGWRITE_BUFFER_FLUSH(ah);
1325
1326	if (!AR_SREV_9300_20_OR_LATER(ah))
1327		udelay(2);
1328
1329	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1330		REG_WRITE(ah, AR_RC, 0);
1331
1332	REG_WRITE(ah, AR_RTC_RESET, 1);
1333
1334	if (!ath9k_hw_wait(ah,
1335			   AR_RTC_STATUS,
1336			   AR_RTC_STATUS_M,
1337			   AR_RTC_STATUS_ON,
1338			   AH_WAIT_TIMEOUT)) {
1339		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1340			"RTC not waking up\n");
1341		return false;
1342	}
1343
1344	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1345}
1346
1347static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1348{
1349
1350	if (AR_SREV_9300_20_OR_LATER(ah)) {
1351		REG_WRITE(ah, AR_WA, ah->WARegVal);
1352		udelay(10);
1353	}
1354
1355	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1356		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1357
1358	switch (type) {
1359	case ATH9K_RESET_POWER_ON:
1360		return ath9k_hw_set_reset_power_on(ah);
1361	case ATH9K_RESET_WARM:
1362	case ATH9K_RESET_COLD:
1363		return ath9k_hw_set_reset(ah, type);
1364	default:
1365		return false;
1366	}
1367}
1368
1369static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1370				struct ath9k_channel *chan)
1371{
1372	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1373		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1374			return false;
1375	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1376		return false;
1377
1378	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1379		return false;
1380
1381	ah->chip_fullsleep = false;
1382	ath9k_hw_init_pll(ah, chan);
1383	ath9k_hw_set_rfmode(ah, chan);
1384
1385	return true;
1386}
1387
1388static bool ath9k_hw_channel_change(struct ath_hw *ah,
1389				    struct ath9k_channel *chan)
1390{
1391	struct ath_common *common = ath9k_hw_common(ah);
1392	u32 qnum;
1393	int r;
1394
1395	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1396		if (ath9k_hw_numtxpending(ah, qnum)) {
1397			ath_dbg(common, ATH_DBG_QUEUE,
1398				"Transmit frames pending on queue %d\n", qnum);
1399			return false;
1400		}
1401	}
1402
1403	if (!ath9k_hw_rfbus_req(ah)) {
1404		ath_err(common, "Could not kill baseband RX\n");
1405		return false;
1406	}
1407
1408	ath9k_hw_set_channel_regs(ah, chan);
1409
1410	r = ath9k_hw_rf_set_freq(ah, chan);
1411	if (r) {
1412		ath_err(common, "Failed to set channel\n");
1413		return false;
1414	}
1415	ath9k_hw_set_clockrate(ah);
1416	ath9k_hw_apply_txpower(ah, chan);
1417	ath9k_hw_rfbus_done(ah);
1418
1419	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1420		ath9k_hw_set_delta_slope(ah, chan);
1421
1422	ath9k_hw_spur_mitigate_freq(ah, chan);
1423
1424	return true;
1425}
1426
1427static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1428{
1429	u32 gpio_mask = ah->gpio_mask;
1430	int i;
1431
1432	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1433		if (!(gpio_mask & 1))
1434			continue;
1435
1436		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1437		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1438	}
1439}
1440
1441bool ath9k_hw_check_alive(struct ath_hw *ah)
1442{
1443	int count = 50;
1444	u32 reg;
1445
1446	if (AR_SREV_9285_12_OR_LATER(ah))
1447		return true;
1448
1449	do {
1450		reg = REG_READ(ah, AR_OBS_BUS_1);
1451
1452		if ((reg & 0x7E7FFFEF) == 0x00702400)
1453			continue;
1454
1455		switch (reg & 0x7E000B00) {
1456		case 0x1E000000:
1457		case 0x52000B00:
1458		case 0x18000B00:
1459			continue;
1460		default:
1461			return true;
1462		}
1463	} while (count-- > 0);
1464
1465	return false;
1466}
1467EXPORT_SYMBOL(ath9k_hw_check_alive);
1468
1469int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1470		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1471{
1472	struct ath_common *common = ath9k_hw_common(ah);
1473	u32 saveLedState;
1474	struct ath9k_channel *curchan = ah->curchan;
1475	u32 saveDefAntenna;
1476	u32 macStaId1;
1477	u64 tsf = 0;
1478	int i, r;
1479
1480	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1481		return -EIO;
1482
1483	if (curchan && !ah->chip_fullsleep)
1484		ath9k_hw_getnf(ah, curchan);
1485
1486	ah->caldata = caldata;
1487	if (caldata &&
1488	    (chan->channel != caldata->channel ||
1489	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1490	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1491		/* Operating channel changed, reset channel calibration data */
1492		memset(caldata, 0, sizeof(*caldata));
1493		ath9k_init_nfcal_hist_buffer(ah, chan);
1494	}
1495	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1496
1497	if ((AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) ||
1498	    (AR_SREV_9300_20_OR_LATER(ah) && IS_CHAN_5GHZ(chan)))
1499		bChannelChange = false;
1500
1501	if (bChannelChange &&
1502	    (ah->chip_fullsleep != true) &&
1503	    (ah->curchan != NULL) &&
1504	    (chan->channel != ah->curchan->channel) &&
1505	    ((chan->channelFlags & CHANNEL_ALL) ==
1506	     (ah->curchan->channelFlags & CHANNEL_ALL))) {
1507		if (ath9k_hw_channel_change(ah, chan)) {
1508			ath9k_hw_loadnf(ah, ah->curchan);
1509			ath9k_hw_start_nfcal(ah, true);
1510			if (AR_SREV_9271(ah))
1511				ar9002_hw_load_ani_reg(ah, chan);
1512			return 0;
1513		}
1514	}
1515
1516	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1517	if (saveDefAntenna == 0)
1518		saveDefAntenna = 1;
1519
1520	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1521
1522	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1523	if (AR_SREV_9100(ah) ||
1524	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1525		tsf = ath9k_hw_gettsf64(ah);
1526
1527	saveLedState = REG_READ(ah, AR_CFG_LED) &
1528		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1529		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1530
1531	ath9k_hw_mark_phy_inactive(ah);
1532
1533	ah->paprd_table_write_done = false;
1534
1535	/* Only required on the first reset */
1536	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1537		REG_WRITE(ah,
1538			  AR9271_RESET_POWER_DOWN_CONTROL,
1539			  AR9271_RADIO_RF_RST);
1540		udelay(50);
1541	}
1542
1543	if (!ath9k_hw_chip_reset(ah, chan)) {
1544		ath_err(common, "Chip reset failed\n");
1545		return -EINVAL;
1546	}
1547
1548	/* Only required on the first reset */
1549	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1550		ah->htc_reset_init = false;
1551		REG_WRITE(ah,
1552			  AR9271_RESET_POWER_DOWN_CONTROL,
1553			  AR9271_GATE_MAC_CTL);
1554		udelay(50);
1555	}
1556
1557	/* Restore TSF */
1558	if (tsf)
1559		ath9k_hw_settsf64(ah, tsf);
1560
1561	if (AR_SREV_9280_20_OR_LATER(ah))
1562		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1563
1564	if (!AR_SREV_9300_20_OR_LATER(ah))
1565		ar9002_hw_enable_async_fifo(ah);
1566
1567	r = ath9k_hw_process_ini(ah, chan);
1568	if (r)
1569		return r;
1570
1571	/*
1572	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1573	 * right after the chip reset. When that happens, write a new
1574	 * value after the initvals have been applied, with an offset
1575	 * based on measured time difference
1576	 */
1577	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1578		tsf += 1500;
1579		ath9k_hw_settsf64(ah, tsf);
1580	}
1581
1582	/* Setup MFP options for CCMP */
1583	if (AR_SREV_9280_20_OR_LATER(ah)) {
1584		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1585		 * frames when constructing CCMP AAD. */
1586		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1587			      0xc7ff);
1588		ah->sw_mgmt_crypto = false;
1589	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1590		/* Disable hardware crypto for management frames */
1591		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1592			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1593		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1594			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1595		ah->sw_mgmt_crypto = true;
1596	} else
1597		ah->sw_mgmt_crypto = true;
1598
1599	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1600		ath9k_hw_set_delta_slope(ah, chan);
1601
1602	ath9k_hw_spur_mitigate_freq(ah, chan);
1603	ah->eep_ops->set_board_values(ah, chan);
1604
1605	ENABLE_REGWRITE_BUFFER(ah);
1606
1607	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1608	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1609		  | macStaId1
1610		  | AR_STA_ID1_RTS_USE_DEF
1611		  | (ah->config.
1612		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1613		  | ah->sta_id1_defaults);
1614	ath_hw_setbssidmask(common);
1615	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1616	ath9k_hw_write_associd(ah);
1617	REG_WRITE(ah, AR_ISR, ~0);
1618	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1619
1620	REGWRITE_BUFFER_FLUSH(ah);
1621
1622	ath9k_hw_set_operating_mode(ah, ah->opmode);
1623
1624	r = ath9k_hw_rf_set_freq(ah, chan);
1625	if (r)
1626		return r;
1627
1628	ath9k_hw_set_clockrate(ah);
1629
1630	ENABLE_REGWRITE_BUFFER(ah);
1631
1632	for (i = 0; i < AR_NUM_DCU; i++)
1633		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1634
1635	REGWRITE_BUFFER_FLUSH(ah);
1636
1637	ah->intr_txqs = 0;
1638	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1639		ath9k_hw_resettxqueue(ah, i);
1640
1641	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1642	ath9k_hw_ani_cache_ini_regs(ah);
1643	ath9k_hw_init_qos(ah);
1644
1645	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1646		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1647
1648	ath9k_hw_init_global_settings(ah);
1649
1650	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1651		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1652			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1653		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1654			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1655		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1656			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1657	}
1658
1659	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1660
1661	ath9k_hw_set_dma(ah);
1662
1663	REG_WRITE(ah, AR_OBS, 8);
1664
1665	if (ah->config.rx_intr_mitigation) {
1666		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1667		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1668	}
1669
1670	if (ah->config.tx_intr_mitigation) {
1671		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1672		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1673	}
1674
1675	ath9k_hw_init_bb(ah, chan);
1676
1677	if (!ath9k_hw_init_cal(ah, chan))
1678		return -EIO;
1679
1680	ENABLE_REGWRITE_BUFFER(ah);
1681
1682	ath9k_hw_restore_chainmask(ah);
1683	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1684
1685	REGWRITE_BUFFER_FLUSH(ah);
1686
1687	/*
1688	 * For big endian systems turn on swapping for descriptors
1689	 */
1690	if (AR_SREV_9100(ah)) {
1691		u32 mask;
1692		mask = REG_READ(ah, AR_CFG);
1693		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1694			ath_dbg(common, ATH_DBG_RESET,
1695				"CFG Byte Swap Set 0x%x\n", mask);
1696		} else {
1697			mask =
1698				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1699			REG_WRITE(ah, AR_CFG, mask);
1700			ath_dbg(common, ATH_DBG_RESET,
1701				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1702		}
1703	} else {
1704		if (common->bus_ops->ath_bus_type == ATH_USB) {
1705			/* Configure AR9271 target WLAN */
1706			if (AR_SREV_9271(ah))
1707				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1708			else
1709				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1710		}
1711#ifdef __BIG_ENDIAN
1712		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1713			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1714		else
1715			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1716#endif
1717	}
1718
1719	if (ah->btcoex_hw.enabled)
1720		ath9k_hw_btcoex_enable(ah);
1721
1722	if (AR_SREV_9300_20_OR_LATER(ah)) {
1723		ar9003_hw_bb_watchdog_config(ah);
1724
1725		ar9003_hw_disable_phy_restart(ah);
1726	}
1727
1728	ath9k_hw_apply_gpio_override(ah);
1729
1730	return 0;
1731}
1732EXPORT_SYMBOL(ath9k_hw_reset);
1733
1734/******************************/
1735/* Power Management (Chipset) */
1736/******************************/
1737
1738/*
1739 * Notify Power Mgt is disabled in self-generated frames.
1740 * If requested, force chip to sleep.
1741 */
1742static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1743{
1744	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1745	if (setChip) {
1746		if (AR_SREV_9480(ah)) {
1747			REG_WRITE(ah, AR_TIMER_MODE,
1748				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1749			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1750				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1751			REG_WRITE(ah, AR_SLP32_INC,
1752				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1753			/* xxx Required for WLAN only case ? */
1754			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1755			udelay(100);
1756		}
1757
1758		/*
1759		 * Clear the RTC force wake bit to allow the
1760		 * mac to go to sleep.
1761		 */
1762		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1763
1764		if (AR_SREV_9480(ah))
1765			udelay(100);
1766
1767		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1768			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1769
1770		/* Shutdown chip. Active low */
1771		if (!AR_SREV_5416(ah) &&
1772				!AR_SREV_9271(ah) && !AR_SREV_9480_10(ah)) {
1773			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1774			udelay(2);
1775		}
1776	}
1777
1778	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1779	if (!AR_SREV_9480(ah))
1780		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1781}
1782
1783/*
1784 * Notify Power Management is enabled in self-generating
1785 * frames. If request, set power mode of chip to
1786 * auto/normal.  Duration in units of 128us (1/8 TU).
1787 */
1788static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1789{
1790	u32 val;
1791
1792	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1793	if (setChip) {
1794		struct ath9k_hw_capabilities *pCap = &ah->caps;
1795
1796		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1797			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1798			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1799				  AR_RTC_FORCE_WAKE_ON_INT);
1800		} else {
1801
1802			/* When chip goes into network sleep, it could be waken
1803			 * up by MCI_INT interrupt caused by BT's HW messages
1804			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1805			 * rate (~100us). This will cause chip to leave and
1806			 * re-enter network sleep mode frequently, which in
1807			 * consequence will have WLAN MCI HW to generate lots of
1808			 * SYS_WAKING and SYS_SLEEPING messages which will make
1809			 * BT CPU to busy to process.
1810			 */
1811			if (AR_SREV_9480(ah)) {
1812				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
1813					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
1814				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
1815			}
1816			/*
1817			 * Clear the RTC force wake bit to allow the
1818			 * mac to go to sleep.
1819			 */
1820			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1821				    AR_RTC_FORCE_WAKE_EN);
1822
1823			if (AR_SREV_9480(ah))
1824				udelay(30);
1825		}
1826	}
1827
1828	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1829	if (AR_SREV_9300_20_OR_LATER(ah))
1830		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1831}
1832
1833static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1834{
1835	u32 val;
1836	int i;
1837
1838	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1839	if (AR_SREV_9300_20_OR_LATER(ah)) {
1840		REG_WRITE(ah, AR_WA, ah->WARegVal);
1841		udelay(10);
1842	}
1843
1844	if (setChip) {
1845		if ((REG_READ(ah, AR_RTC_STATUS) &
1846		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1847			if (ath9k_hw_set_reset_reg(ah,
1848					   ATH9K_RESET_POWER_ON) != true) {
1849				return false;
1850			}
1851			if (!AR_SREV_9300_20_OR_LATER(ah))
1852				ath9k_hw_init_pll(ah, NULL);
1853		}
1854		if (AR_SREV_9100(ah))
1855			REG_SET_BIT(ah, AR_RTC_RESET,
1856				    AR_RTC_RESET_EN);
1857
1858		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1859			    AR_RTC_FORCE_WAKE_EN);
1860		udelay(50);
1861
1862		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1863			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1864			if (val == AR_RTC_STATUS_ON)
1865				break;
1866			udelay(50);
1867			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1868				    AR_RTC_FORCE_WAKE_EN);
1869		}
1870		if (i == 0) {
1871			ath_err(ath9k_hw_common(ah),
1872				"Failed to wakeup in %uus\n",
1873				POWER_UP_TIME / 20);
1874			return false;
1875		}
1876	}
1877
1878	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1879
1880	return true;
1881}
1882
1883bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1884{
1885	struct ath_common *common = ath9k_hw_common(ah);
1886	int status = true, setChip = true;
1887	static const char *modes[] = {
1888		"AWAKE",
1889		"FULL-SLEEP",
1890		"NETWORK SLEEP",
1891		"UNDEFINED"
1892	};
1893
1894	if (ah->power_mode == mode)
1895		return status;
1896
1897	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1898		modes[ah->power_mode], modes[mode]);
1899
1900	switch (mode) {
1901	case ATH9K_PM_AWAKE:
1902		status = ath9k_hw_set_power_awake(ah, setChip);
1903		break;
1904	case ATH9K_PM_FULL_SLEEP:
1905		ath9k_set_power_sleep(ah, setChip);
1906		ah->chip_fullsleep = true;
1907		break;
1908	case ATH9K_PM_NETWORK_SLEEP:
1909		ath9k_set_power_network_sleep(ah, setChip);
1910		break;
1911	default:
1912		ath_err(common, "Unknown power mode %u\n", mode);
1913		return false;
1914	}
1915	ah->power_mode = mode;
1916
1917	/*
1918	 * XXX: If this warning never comes up after a while then
1919	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1920	 * ath9k_hw_setpower() return type void.
1921	 */
1922
1923	if (!(ah->ah_flags & AH_UNPLUGGED))
1924		ATH_DBG_WARN_ON_ONCE(!status);
1925
1926	return status;
1927}
1928EXPORT_SYMBOL(ath9k_hw_setpower);
1929
1930/*******************/
1931/* Beacon Handling */
1932/*******************/
1933
1934void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1935{
1936	int flags = 0;
1937
1938	ENABLE_REGWRITE_BUFFER(ah);
1939
1940	switch (ah->opmode) {
1941	case NL80211_IFTYPE_ADHOC:
1942	case NL80211_IFTYPE_MESH_POINT:
1943		REG_SET_BIT(ah, AR_TXCFG,
1944			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1945		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1946			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1947		flags |= AR_NDP_TIMER_EN;
1948	case NL80211_IFTYPE_AP:
1949		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1950		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1951			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1952		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1953			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1954		flags |=
1955			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1956		break;
1957	default:
1958		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1959			"%s: unsupported opmode: %d\n",
1960			__func__, ah->opmode);
1961		return;
1962		break;
1963	}
1964
1965	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1966	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1967	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1968	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1969
1970	REGWRITE_BUFFER_FLUSH(ah);
1971
1972	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1973}
1974EXPORT_SYMBOL(ath9k_hw_beaconinit);
1975
1976void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1977				    const struct ath9k_beacon_state *bs)
1978{
1979	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1980	struct ath9k_hw_capabilities *pCap = &ah->caps;
1981	struct ath_common *common = ath9k_hw_common(ah);
1982
1983	ENABLE_REGWRITE_BUFFER(ah);
1984
1985	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1986
1987	REG_WRITE(ah, AR_BEACON_PERIOD,
1988		  TU_TO_USEC(bs->bs_intval));
1989	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1990		  TU_TO_USEC(bs->bs_intval));
1991
1992	REGWRITE_BUFFER_FLUSH(ah);
1993
1994	REG_RMW_FIELD(ah, AR_RSSI_THR,
1995		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1996
1997	beaconintval = bs->bs_intval;
1998
1999	if (bs->bs_sleepduration > beaconintval)
2000		beaconintval = bs->bs_sleepduration;
2001
2002	dtimperiod = bs->bs_dtimperiod;
2003	if (bs->bs_sleepduration > dtimperiod)
2004		dtimperiod = bs->bs_sleepduration;
2005
2006	if (beaconintval == dtimperiod)
2007		nextTbtt = bs->bs_nextdtim;
2008	else
2009		nextTbtt = bs->bs_nexttbtt;
2010
2011	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2012	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2013	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2014	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2015
2016	ENABLE_REGWRITE_BUFFER(ah);
2017
2018	REG_WRITE(ah, AR_NEXT_DTIM,
2019		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2020	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2021
2022	REG_WRITE(ah, AR_SLEEP1,
2023		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2024		  | AR_SLEEP1_ASSUME_DTIM);
2025
2026	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2027		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2028	else
2029		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2030
2031	REG_WRITE(ah, AR_SLEEP2,
2032		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2033
2034	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2035	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2036
2037	REGWRITE_BUFFER_FLUSH(ah);
2038
2039	REG_SET_BIT(ah, AR_TIMER_MODE,
2040		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2041		    AR_DTIM_TIMER_EN);
2042
2043	/* TSF Out of Range Threshold */
2044	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2045}
2046EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2047
2048/*******************/
2049/* HW Capabilities */
2050/*******************/
2051
2052static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2053{
2054	eeprom_chainmask &= chip_chainmask;
2055	if (eeprom_chainmask)
2056		return eeprom_chainmask;
2057	else
2058		return chip_chainmask;
2059}
2060
2061int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2062{
2063	struct ath9k_hw_capabilities *pCap = &ah->caps;
2064	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2065	struct ath_common *common = ath9k_hw_common(ah);
2066	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2067	unsigned int chip_chainmask;
2068
2069	u16 eeval;
2070	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2071
2072	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2073	regulatory->current_rd = eeval;
2074
2075	if (ah->opmode != NL80211_IFTYPE_AP &&
2076	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2077		if (regulatory->current_rd == 0x64 ||
2078		    regulatory->current_rd == 0x65)
2079			regulatory->current_rd += 5;
2080		else if (regulatory->current_rd == 0x41)
2081			regulatory->current_rd = 0x43;
2082		ath_dbg(common, ATH_DBG_REGULATORY,
2083			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2084	}
2085
2086	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2087	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2088		ath_err(common,
2089			"no band has been marked as supported in EEPROM\n");
2090		return -EINVAL;
2091	}
2092
2093	if (eeval & AR5416_OPFLAGS_11A)
2094		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2095
2096	if (eeval & AR5416_OPFLAGS_11G)
2097		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2098
2099	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2100		chip_chainmask = 1;
2101	else if (!AR_SREV_9280_20_OR_LATER(ah))
2102		chip_chainmask = 7;
2103	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2104		chip_chainmask = 3;
2105	else
2106		chip_chainmask = 7;
2107
2108	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2109	/*
2110	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2111	 * the EEPROM.
2112	 */
2113	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2114	    !(eeval & AR5416_OPFLAGS_11A) &&
2115	    !(AR_SREV_9271(ah)))
2116		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2117		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2118	else if (AR_SREV_9100(ah))
2119		pCap->rx_chainmask = 0x7;
2120	else
2121		/* Use rx_chainmask from EEPROM. */
2122		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2123
2124	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2125	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2126	ah->txchainmask = pCap->tx_chainmask;
2127	ah->rxchainmask = pCap->rx_chainmask;
2128
2129	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2130
2131	/* enable key search for every frame in an aggregate */
2132	if (AR_SREV_9300_20_OR_LATER(ah))
2133		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2134
2135	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2136
2137	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2138		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2139	else
2140		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2141
2142	if (AR_SREV_9271(ah))
2143		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2144	else if (AR_DEVID_7010(ah))
2145		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2146	else if (AR_SREV_9300_20_OR_LATER(ah))
2147		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2148	else if (AR_SREV_9287_11_OR_LATER(ah))
2149		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2150	else if (AR_SREV_9285_12_OR_LATER(ah))
2151		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2152	else if (AR_SREV_9280_20_OR_LATER(ah))
2153		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2154	else
2155		pCap->num_gpio_pins = AR_NUM_GPIO;
2156
2157	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2158		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2159		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2160	} else {
2161		pCap->rts_aggr_limit = (8 * 1024);
2162	}
2163
2164#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2165	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2166	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2167		ah->rfkill_gpio =
2168			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2169		ah->rfkill_polarity =
2170			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2171
2172		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2173	}
2174#endif
2175	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2176		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2177	else
2178		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2179
2180	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2181		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2182	else
2183		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2184
2185	if (common->btcoex_enabled) {
2186		if (AR_SREV_9300_20_OR_LATER(ah)) {
2187			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2188			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2189			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2190			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2191		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2192			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2193			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2194
2195			if (AR_SREV_9285(ah)) {
2196				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2197				btcoex_hw->btpriority_gpio =
2198						ATH_BTPRIORITY_GPIO_9285;
2199			} else {
2200				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2201			}
2202		}
2203	} else {
2204		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2205	}
2206
2207	if (AR_SREV_9300_20_OR_LATER(ah)) {
2208		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2209		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2210			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2211
2212		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2213		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2214		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2215		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2216		pCap->txs_len = sizeof(struct ar9003_txs);
2217		if (!ah->config.paprd_disable &&
2218		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2219			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2220	} else {
2221		pCap->tx_desc_len = sizeof(struct ath_desc);
2222		if (AR_SREV_9280_20(ah))
2223			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2224	}
2225
2226	if (AR_SREV_9300_20_OR_LATER(ah))
2227		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2228
2229	if (AR_SREV_9300_20_OR_LATER(ah))
2230		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2231
2232	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2233		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2234
2235	if (AR_SREV_9285(ah))
2236		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2237			ant_div_ctl1 =
2238				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2239			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2240				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2241		}
2242	if (AR_SREV_9300_20_OR_LATER(ah)) {
2243		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2244			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2245	}
2246
2247
2248	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2249		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2250		/*
2251		 * enable the diversity-combining algorithm only when
2252		 * both enable_lna_div and enable_fast_div are set
2253		 *		Table for Diversity
2254		 * ant_div_alt_lnaconf		bit 0-1
2255		 * ant_div_main_lnaconf		bit 2-3
2256		 * ant_div_alt_gaintb		bit 4
2257		 * ant_div_main_gaintb		bit 5
2258		 * enable_ant_div_lnadiv	bit 6
2259		 * enable_ant_fast_div		bit 7
2260		 */
2261		if ((ant_div_ctl1 >> 0x6) == 0x3)
2262			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2263	}
2264
2265	if (AR_SREV_9485_10(ah)) {
2266		pCap->pcie_lcr_extsync_en = true;
2267		pCap->pcie_lcr_offset = 0x80;
2268	}
2269
2270	tx_chainmask = pCap->tx_chainmask;
2271	rx_chainmask = pCap->rx_chainmask;
2272	while (tx_chainmask || rx_chainmask) {
2273		if (tx_chainmask & BIT(0))
2274			pCap->max_txchains++;
2275		if (rx_chainmask & BIT(0))
2276			pCap->max_rxchains++;
2277
2278		tx_chainmask >>= 1;
2279		rx_chainmask >>= 1;
2280	}
2281
2282	return 0;
2283}
2284
2285/****************************/
2286/* GPIO / RFKILL / Antennae */
2287/****************************/
2288
2289static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2290					 u32 gpio, u32 type)
2291{
2292	int addr;
2293	u32 gpio_shift, tmp;
2294
2295	if (gpio > 11)
2296		addr = AR_GPIO_OUTPUT_MUX3;
2297	else if (gpio > 5)
2298		addr = AR_GPIO_OUTPUT_MUX2;
2299	else
2300		addr = AR_GPIO_OUTPUT_MUX1;
2301
2302	gpio_shift = (gpio % 6) * 5;
2303
2304	if (AR_SREV_9280_20_OR_LATER(ah)
2305	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2306		REG_RMW(ah, addr, (type << gpio_shift),
2307			(0x1f << gpio_shift));
2308	} else {
2309		tmp = REG_READ(ah, addr);
2310		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2311		tmp &= ~(0x1f << gpio_shift);
2312		tmp |= (type << gpio_shift);
2313		REG_WRITE(ah, addr, tmp);
2314	}
2315}
2316
2317void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2318{
2319	u32 gpio_shift;
2320
2321	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2322
2323	if (AR_DEVID_7010(ah)) {
2324		gpio_shift = gpio;
2325		REG_RMW(ah, AR7010_GPIO_OE,
2326			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2327			(AR7010_GPIO_OE_MASK << gpio_shift));
2328		return;
2329	}
2330
2331	gpio_shift = gpio << 1;
2332	REG_RMW(ah,
2333		AR_GPIO_OE_OUT,
2334		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2335		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2336}
2337EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2338
2339u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2340{
2341#define MS_REG_READ(x, y) \
2342	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2343
2344	if (gpio >= ah->caps.num_gpio_pins)
2345		return 0xffffffff;
2346
2347	if (AR_DEVID_7010(ah)) {
2348		u32 val;
2349		val = REG_READ(ah, AR7010_GPIO_IN);
2350		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2351	} else if (AR_SREV_9300_20_OR_LATER(ah))
2352		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2353			AR_GPIO_BIT(gpio)) != 0;
2354	else if (AR_SREV_9271(ah))
2355		return MS_REG_READ(AR9271, gpio) != 0;
2356	else if (AR_SREV_9287_11_OR_LATER(ah))
2357		return MS_REG_READ(AR9287, gpio) != 0;
2358	else if (AR_SREV_9285_12_OR_LATER(ah))
2359		return MS_REG_READ(AR9285, gpio) != 0;
2360	else if (AR_SREV_9280_20_OR_LATER(ah))
2361		return MS_REG_READ(AR928X, gpio) != 0;
2362	else
2363		return MS_REG_READ(AR, gpio) != 0;
2364}
2365EXPORT_SYMBOL(ath9k_hw_gpio_get);
2366
2367void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2368			 u32 ah_signal_type)
2369{
2370	u32 gpio_shift;
2371
2372	if (AR_DEVID_7010(ah)) {
2373		gpio_shift = gpio;
2374		REG_RMW(ah, AR7010_GPIO_OE,
2375			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2376			(AR7010_GPIO_OE_MASK << gpio_shift));
2377		return;
2378	}
2379
2380	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2381	gpio_shift = 2 * gpio;
2382	REG_RMW(ah,
2383		AR_GPIO_OE_OUT,
2384		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2385		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2386}
2387EXPORT_SYMBOL(ath9k_hw_cfg_output);
2388
2389void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2390{
2391	if (AR_DEVID_7010(ah)) {
2392		val = val ? 0 : 1;
2393		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2394			AR_GPIO_BIT(gpio));
2395		return;
2396	}
2397
2398	if (AR_SREV_9271(ah))
2399		val = ~val;
2400
2401	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2402		AR_GPIO_BIT(gpio));
2403}
2404EXPORT_SYMBOL(ath9k_hw_set_gpio);
2405
2406u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2407{
2408	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2409}
2410EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2411
2412void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2413{
2414	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2415}
2416EXPORT_SYMBOL(ath9k_hw_setantenna);
2417
2418/*********************/
2419/* General Operation */
2420/*********************/
2421
2422u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2423{
2424	u32 bits = REG_READ(ah, AR_RX_FILTER);
2425	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2426
2427	if (phybits & AR_PHY_ERR_RADAR)
2428		bits |= ATH9K_RX_FILTER_PHYRADAR;
2429	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2430		bits |= ATH9K_RX_FILTER_PHYERR;
2431
2432	return bits;
2433}
2434EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2435
2436void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2437{
2438	u32 phybits;
2439
2440	ENABLE_REGWRITE_BUFFER(ah);
2441
2442	if (AR_SREV_9480(ah))
2443		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2444
2445	REG_WRITE(ah, AR_RX_FILTER, bits);
2446
2447	phybits = 0;
2448	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2449		phybits |= AR_PHY_ERR_RADAR;
2450	if (bits & ATH9K_RX_FILTER_PHYERR)
2451		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2452	REG_WRITE(ah, AR_PHY_ERR, phybits);
2453
2454	if (phybits)
2455		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2456	else
2457		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2458
2459	REGWRITE_BUFFER_FLUSH(ah);
2460}
2461EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2462
2463bool ath9k_hw_phy_disable(struct ath_hw *ah)
2464{
2465	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2466		return false;
2467
2468	ath9k_hw_init_pll(ah, NULL);
2469	return true;
2470}
2471EXPORT_SYMBOL(ath9k_hw_phy_disable);
2472
2473bool ath9k_hw_disable(struct ath_hw *ah)
2474{
2475	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2476		return false;
2477
2478	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2479		return false;
2480
2481	ath9k_hw_init_pll(ah, NULL);
2482	return true;
2483}
2484EXPORT_SYMBOL(ath9k_hw_disable);
2485
2486static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2487{
2488	enum eeprom_param gain_param;
2489
2490	if (IS_CHAN_2GHZ(chan))
2491		gain_param = EEP_ANTENNA_GAIN_2G;
2492	else
2493		gain_param = EEP_ANTENNA_GAIN_5G;
2494
2495	return ah->eep_ops->get_eeprom(ah, gain_param);
2496}
2497
2498void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2499{
2500	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2501	struct ieee80211_channel *channel;
2502	int chan_pwr, new_pwr, max_gain;
2503	int ant_gain, ant_reduction = 0;
2504
2505	if (!chan)
2506		return;
2507
2508	channel = chan->chan;
2509	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2510	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2511	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2512
2513	ant_gain = get_antenna_gain(ah, chan);
2514	if (ant_gain > max_gain)
2515		ant_reduction = ant_gain - max_gain;
2516
2517	ah->eep_ops->set_txpower(ah, chan,
2518				 ath9k_regd_get_ctl(reg, chan),
2519				 ant_reduction, new_pwr, false);
2520}
2521
2522void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2523{
2524	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2525	struct ath9k_channel *chan = ah->curchan;
2526	struct ieee80211_channel *channel = chan->chan;
2527
2528	reg->power_limit = min_t(int, limit, MAX_RATE_POWER);
2529	if (test)
2530		channel->max_power = MAX_RATE_POWER / 2;
2531
2532	ath9k_hw_apply_txpower(ah, chan);
2533
2534	if (test)
2535		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2536}
2537EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2538
2539void ath9k_hw_setopmode(struct ath_hw *ah)
2540{
2541	ath9k_hw_set_operating_mode(ah, ah->opmode);
2542}
2543EXPORT_SYMBOL(ath9k_hw_setopmode);
2544
2545void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2546{
2547	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2548	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2549}
2550EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2551
2552void ath9k_hw_write_associd(struct ath_hw *ah)
2553{
2554	struct ath_common *common = ath9k_hw_common(ah);
2555
2556	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2557	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2558		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2559}
2560EXPORT_SYMBOL(ath9k_hw_write_associd);
2561
2562#define ATH9K_MAX_TSF_READ 10
2563
2564u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2565{
2566	u32 tsf_lower, tsf_upper1, tsf_upper2;
2567	int i;
2568
2569	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2570	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2571		tsf_lower = REG_READ(ah, AR_TSF_L32);
2572		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2573		if (tsf_upper2 == tsf_upper1)
2574			break;
2575		tsf_upper1 = tsf_upper2;
2576	}
2577
2578	WARN_ON( i == ATH9K_MAX_TSF_READ );
2579
2580	return (((u64)tsf_upper1 << 32) | tsf_lower);
2581}
2582EXPORT_SYMBOL(ath9k_hw_gettsf64);
2583
2584void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2585{
2586	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2587	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2588}
2589EXPORT_SYMBOL(ath9k_hw_settsf64);
2590
2591void ath9k_hw_reset_tsf(struct ath_hw *ah)
2592{
2593	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2594			   AH_TSF_WRITE_TIMEOUT))
2595		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2596			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2597
2598	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2599}
2600EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2601
2602void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2603{
2604	if (setting)
2605		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2606	else
2607		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2608}
2609EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2610
2611void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2612{
2613	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2614	u32 macmode;
2615
2616	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2617		macmode = AR_2040_JOINED_RX_CLEAR;
2618	else
2619		macmode = 0;
2620
2621	REG_WRITE(ah, AR_2040_MODE, macmode);
2622}
2623
2624/* HW Generic timers configuration */
2625
2626static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2627{
2628	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2629	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2630	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2631	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2632	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2633	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2634	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2635	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2636	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2637	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2638				AR_NDP2_TIMER_MODE, 0x0002},
2639	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2640				AR_NDP2_TIMER_MODE, 0x0004},
2641	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2642				AR_NDP2_TIMER_MODE, 0x0008},
2643	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2644				AR_NDP2_TIMER_MODE, 0x0010},
2645	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2646				AR_NDP2_TIMER_MODE, 0x0020},
2647	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2648				AR_NDP2_TIMER_MODE, 0x0040},
2649	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2650				AR_NDP2_TIMER_MODE, 0x0080}
2651};
2652
2653/* HW generic timer primitives */
2654
2655/* compute and clear index of rightmost 1 */
2656static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2657{
2658	u32 b;
2659
2660	b = *mask;
2661	b &= (0-b);
2662	*mask &= ~b;
2663	b *= debruijn32;
2664	b >>= 27;
2665
2666	return timer_table->gen_timer_index[b];
2667}
2668
2669u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2670{
2671	return REG_READ(ah, AR_TSF_L32);
2672}
2673EXPORT_SYMBOL(ath9k_hw_gettsf32);
2674
2675struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2676					  void (*trigger)(void *),
2677					  void (*overflow)(void *),
2678					  void *arg,
2679					  u8 timer_index)
2680{
2681	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2682	struct ath_gen_timer *timer;
2683
2684	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2685
2686	if (timer == NULL) {
2687		ath_err(ath9k_hw_common(ah),
2688			"Failed to allocate memory for hw timer[%d]\n",
2689			timer_index);
2690		return NULL;
2691	}
2692
2693	/* allocate a hardware generic timer slot */
2694	timer_table->timers[timer_index] = timer;
2695	timer->index = timer_index;
2696	timer->trigger = trigger;
2697	timer->overflow = overflow;
2698	timer->arg = arg;
2699
2700	return timer;
2701}
2702EXPORT_SYMBOL(ath_gen_timer_alloc);
2703
2704void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2705			      struct ath_gen_timer *timer,
2706			      u32 trig_timeout,
2707			      u32 timer_period)
2708{
2709	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2710	u32 tsf, timer_next;
2711
2712	BUG_ON(!timer_period);
2713
2714	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2715
2716	tsf = ath9k_hw_gettsf32(ah);
2717
2718	timer_next = tsf + trig_timeout;
2719
2720	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2721		"current tsf %x period %x timer_next %x\n",
2722		tsf, timer_period, timer_next);
2723
2724	/*
2725	 * Program generic timer registers
2726	 */
2727	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2728		 timer_next);
2729	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2730		  timer_period);
2731	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2732		    gen_tmr_configuration[timer->index].mode_mask);
2733
2734	if (AR_SREV_9480(ah)) {
2735		/*
2736		 * Starting from AR9480, each generic timer can select which tsf
2737		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2738		 * 8 - 15  use tsf2.
2739		 */
2740		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2741			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2742				       (1 << timer->index));
2743		else
2744			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2745				       (1 << timer->index));
2746	}
2747
2748	/* Enable both trigger and thresh interrupt masks */
2749	REG_SET_BIT(ah, AR_IMR_S5,
2750		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2751		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2752}
2753EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2754
2755void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2756{
2757	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2758
2759	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2760		(timer->index >= ATH_MAX_GEN_TIMER)) {
2761		return;
2762	}
2763
2764	/* Clear generic timer enable bits. */
2765	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2766			gen_tmr_configuration[timer->index].mode_mask);
2767
2768	/* Disable both trigger and thresh interrupt masks */
2769	REG_CLR_BIT(ah, AR_IMR_S5,
2770		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2771		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2772
2773	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2774}
2775EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2776
2777void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2778{
2779	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2780
2781	/* free the hardware generic timer slot */
2782	timer_table->timers[timer->index] = NULL;
2783	kfree(timer);
2784}
2785EXPORT_SYMBOL(ath_gen_timer_free);
2786
2787/*
2788 * Generic Timer Interrupts handling
2789 */
2790void ath_gen_timer_isr(struct ath_hw *ah)
2791{
2792	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2793	struct ath_gen_timer *timer;
2794	struct ath_common *common = ath9k_hw_common(ah);
2795	u32 trigger_mask, thresh_mask, index;
2796
2797	/* get hardware generic timer interrupt status */
2798	trigger_mask = ah->intr_gen_timer_trigger;
2799	thresh_mask = ah->intr_gen_timer_thresh;
2800	trigger_mask &= timer_table->timer_mask.val;
2801	thresh_mask &= timer_table->timer_mask.val;
2802
2803	trigger_mask &= ~thresh_mask;
2804
2805	while (thresh_mask) {
2806		index = rightmost_index(timer_table, &thresh_mask);
2807		timer = timer_table->timers[index];
2808		BUG_ON(!timer);
2809		ath_dbg(common, ATH_DBG_HWTIMER,
2810			"TSF overflow for Gen timer %d\n", index);
2811		timer->overflow(timer->arg);
2812	}
2813
2814	while (trigger_mask) {
2815		index = rightmost_index(timer_table, &trigger_mask);
2816		timer = timer_table->timers[index];
2817		BUG_ON(!timer);
2818		ath_dbg(common, ATH_DBG_HWTIMER,
2819			"Gen timer[%d] trigger\n", index);
2820		timer->trigger(timer->arg);
2821	}
2822}
2823EXPORT_SYMBOL(ath_gen_timer_isr);
2824
2825/********/
2826/* HTC  */
2827/********/
2828
2829void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2830{
2831	ah->htc_reset_init = true;
2832}
2833EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2834
2835static struct {
2836	u32 version;
2837	const char * name;
2838} ath_mac_bb_names[] = {
2839	/* Devices with external radios */
2840	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2841	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2842	{ AR_SREV_VERSION_9100,		"9100" },
2843	{ AR_SREV_VERSION_9160,		"9160" },
2844	/* Single-chip solutions */
2845	{ AR_SREV_VERSION_9280,		"9280" },
2846	{ AR_SREV_VERSION_9285,		"9285" },
2847	{ AR_SREV_VERSION_9287,         "9287" },
2848	{ AR_SREV_VERSION_9271,         "9271" },
2849	{ AR_SREV_VERSION_9300,         "9300" },
2850	{ AR_SREV_VERSION_9330,         "9330" },
2851	{ AR_SREV_VERSION_9340,		"9340" },
2852	{ AR_SREV_VERSION_9485,         "9485" },
2853	{ AR_SREV_VERSION_9480,         "9480" },
2854};
2855
2856/* For devices with external radios */
2857static struct {
2858	u16 version;
2859	const char * name;
2860} ath_rf_names[] = {
2861	{ 0,				"5133" },
2862	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2863	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2864	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2865	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2866};
2867
2868/*
2869 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2870 */
2871static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2872{
2873	int i;
2874
2875	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2876		if (ath_mac_bb_names[i].version == mac_bb_version) {
2877			return ath_mac_bb_names[i].name;
2878		}
2879	}
2880
2881	return "????";
2882}
2883
2884/*
2885 * Return the RF name. "????" is returned if the RF is unknown.
2886 * Used for devices with external radios.
2887 */
2888static const char *ath9k_hw_rf_name(u16 rf_version)
2889{
2890	int i;
2891
2892	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2893		if (ath_rf_names[i].version == rf_version) {
2894			return ath_rf_names[i].name;
2895		}
2896	}
2897
2898	return "????";
2899}
2900
2901void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2902{
2903	int used;
2904
2905	/* chipsets >= AR9280 are single-chip */
2906	if (AR_SREV_9280_20_OR_LATER(ah)) {
2907		used = snprintf(hw_name, len,
2908			       "Atheros AR%s Rev:%x",
2909			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2910			       ah->hw_version.macRev);
2911	}
2912	else {
2913		used = snprintf(hw_name, len,
2914			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2915			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2916			       ah->hw_version.macRev,
2917			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2918						AR_RADIO_SREV_MAJOR)),
2919			       ah->hw_version.phyRev);
2920	}
2921
2922	hw_name[used] = '\0';
2923}
2924EXPORT_SYMBOL(ath9k_hw_name);
2925