hw.c revision cfe8cba982cda73d4970dab712411bebdcc3b9cd
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <asm/unaligned.h>
19
20#include "hw.h"
21#include "rc.h"
22#include "initvals.h"
23
24#define ATH9K_CLOCK_RATE_CCK		22
25#define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26#define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27
28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31			      struct ar5416_eeprom_def *pEepData,
32			      u32 reg, u32 value);
33static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
34static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35
36/********************/
37/* Helper Functions */
38/********************/
39
40static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
41{
42	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
43
44	if (!ah->curchan) /* should really check for CCK instead */
45		return clks / ATH9K_CLOCK_RATE_CCK;
46	if (conf->channel->band == IEEE80211_BAND_2GHZ)
47		return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
48
49	return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
50}
51
52static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
53{
54	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
55
56	if (conf_is_ht40(conf))
57		return ath9k_hw_mac_usec(ah, clks) / 2;
58	else
59		return ath9k_hw_mac_usec(ah, clks);
60}
61
62static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
63{
64	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
65
66	if (!ah->curchan) /* should really check for CCK instead */
67		return usecs *ATH9K_CLOCK_RATE_CCK;
68	if (conf->channel->band == IEEE80211_BAND_2GHZ)
69		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
70	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
71}
72
73static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
74{
75	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
76
77	if (conf_is_ht40(conf))
78		return ath9k_hw_mac_clks(ah, usecs) * 2;
79	else
80		return ath9k_hw_mac_clks(ah, usecs);
81}
82
83bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
84{
85	int i;
86
87	BUG_ON(timeout < AH_TIME_QUANTUM);
88
89	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
90		if ((REG_READ(ah, reg) & mask) == val)
91			return true;
92
93		udelay(AH_TIME_QUANTUM);
94	}
95
96	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
97		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
98		  timeout, reg, REG_READ(ah, reg), mask, val);
99
100	return false;
101}
102
103u32 ath9k_hw_reverse_bits(u32 val, u32 n)
104{
105	u32 retval;
106	int i;
107
108	for (i = 0, retval = 0; i < n; i++) {
109		retval = (retval << 1) | (val & 1);
110		val >>= 1;
111	}
112	return retval;
113}
114
115bool ath9k_get_channel_edges(struct ath_hw *ah,
116			     u16 flags, u16 *low,
117			     u16 *high)
118{
119	struct ath9k_hw_capabilities *pCap = &ah->caps;
120
121	if (flags & CHANNEL_5GHZ) {
122		*low = pCap->low_5ghz_chan;
123		*high = pCap->high_5ghz_chan;
124		return true;
125	}
126	if ((flags & CHANNEL_2GHZ)) {
127		*low = pCap->low_2ghz_chan;
128		*high = pCap->high_2ghz_chan;
129		return true;
130	}
131	return false;
132}
133
134u16 ath9k_hw_computetxtime(struct ath_hw *ah,
135			   const struct ath_rate_table *rates,
136			   u32 frameLen, u16 rateix,
137			   bool shortPreamble)
138{
139	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
140	u32 kbps;
141
142	kbps = rates->info[rateix].ratekbps;
143
144	if (kbps == 0)
145		return 0;
146
147	switch (rates->info[rateix].phy) {
148	case WLAN_RC_PHY_CCK:
149		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
150		if (shortPreamble && rates->info[rateix].short_preamble)
151			phyTime >>= 1;
152		numBits = frameLen << 3;
153		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
154		break;
155	case WLAN_RC_PHY_OFDM:
156		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
157			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
158			numBits = OFDM_PLCP_BITS + (frameLen << 3);
159			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
160			txTime = OFDM_SIFS_TIME_QUARTER
161				+ OFDM_PREAMBLE_TIME_QUARTER
162				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
163		} else if (ah->curchan &&
164			   IS_CHAN_HALF_RATE(ah->curchan)) {
165			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
166			numBits = OFDM_PLCP_BITS + (frameLen << 3);
167			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
168			txTime = OFDM_SIFS_TIME_HALF +
169				OFDM_PREAMBLE_TIME_HALF
170				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
171		} else {
172			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
173			numBits = OFDM_PLCP_BITS + (frameLen << 3);
174			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
175			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
176				+ (numSymbols * OFDM_SYMBOL_TIME);
177		}
178		break;
179	default:
180		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
181			  "Unknown phy %u (rate ix %u)\n",
182			  rates->info[rateix].phy, rateix);
183		txTime = 0;
184		break;
185	}
186
187	return txTime;
188}
189
190void ath9k_hw_get_channel_centers(struct ath_hw *ah,
191				  struct ath9k_channel *chan,
192				  struct chan_centers *centers)
193{
194	int8_t extoff;
195
196	if (!IS_CHAN_HT40(chan)) {
197		centers->ctl_center = centers->ext_center =
198			centers->synth_center = chan->channel;
199		return;
200	}
201
202	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
203	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
204		centers->synth_center =
205			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
206		extoff = 1;
207	} else {
208		centers->synth_center =
209			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
210		extoff = -1;
211	}
212
213	centers->ctl_center =
214		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
215	/* 25 MHz spacing is supported by hw but not on upper layers */
216	centers->ext_center =
217		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
218}
219
220/******************/
221/* Chip Revisions */
222/******************/
223
224static void ath9k_hw_read_revisions(struct ath_hw *ah)
225{
226	u32 val;
227
228	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
229
230	if (val == 0xFF) {
231		val = REG_READ(ah, AR_SREV);
232		ah->hw_version.macVersion =
233			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
234		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
235		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
236	} else {
237		if (!AR_SREV_9100(ah))
238			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
239
240		ah->hw_version.macRev = val & AR_SREV_REVISION;
241
242		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
243			ah->is_pciexpress = true;
244	}
245}
246
247static int ath9k_hw_get_radiorev(struct ath_hw *ah)
248{
249	u32 val;
250	int i;
251
252	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
253
254	for (i = 0; i < 8; i++)
255		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
256	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
257	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
258
259	return ath9k_hw_reverse_bits(val, 8);
260}
261
262/************************************/
263/* HW Attach, Detach, Init Routines */
264/************************************/
265
266static void ath9k_hw_disablepcie(struct ath_hw *ah)
267{
268	if (AR_SREV_9100(ah))
269		return;
270
271	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
272	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
273	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
274	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
275	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
276	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
277	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
278	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
279	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
280
281	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
282}
283
284static bool ath9k_hw_chip_test(struct ath_hw *ah)
285{
286	struct ath_common *common = ath9k_hw_common(ah);
287	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
288	u32 regHold[2];
289	u32 patternData[4] = { 0x55555555,
290			       0xaaaaaaaa,
291			       0x66666666,
292			       0x99999999 };
293	int i, j;
294
295	for (i = 0; i < 2; i++) {
296		u32 addr = regAddr[i];
297		u32 wrData, rdData;
298
299		regHold[i] = REG_READ(ah, addr);
300		for (j = 0; j < 0x100; j++) {
301			wrData = (j << 16) | j;
302			REG_WRITE(ah, addr, wrData);
303			rdData = REG_READ(ah, addr);
304			if (rdData != wrData) {
305				ath_print(common, ATH_DBG_FATAL,
306					  "address test failed "
307					  "addr: 0x%08x - wr:0x%08x != "
308					  "rd:0x%08x\n",
309					  addr, wrData, rdData);
310				return false;
311			}
312		}
313		for (j = 0; j < 4; j++) {
314			wrData = patternData[j];
315			REG_WRITE(ah, addr, wrData);
316			rdData = REG_READ(ah, addr);
317			if (wrData != rdData) {
318				ath_print(common, ATH_DBG_FATAL,
319					  "address test failed "
320					  "addr: 0x%08x - wr:0x%08x != "
321					  "rd:0x%08x\n",
322					  addr, wrData, rdData);
323				return false;
324			}
325		}
326		REG_WRITE(ah, regAddr[i], regHold[i]);
327	}
328	udelay(100);
329
330	return true;
331}
332
333static const char *ath9k_hw_devname(u16 devid)
334{
335	switch (devid) {
336	case AR5416_DEVID_PCI:
337		return "Atheros 5416";
338	case AR5416_DEVID_PCIE:
339		return "Atheros 5418";
340	case AR9160_DEVID_PCI:
341		return "Atheros 9160";
342	case AR5416_AR9100_DEVID:
343		return "Atheros 9100";
344	case AR9280_DEVID_PCI:
345	case AR9280_DEVID_PCIE:
346		return "Atheros 9280";
347	case AR9285_DEVID_PCIE:
348		return "Atheros 9285";
349	case AR5416_DEVID_AR9287_PCI:
350	case AR5416_DEVID_AR9287_PCIE:
351		return "Atheros 9287";
352	}
353
354	return NULL;
355}
356
357static void ath9k_hw_init_config(struct ath_hw *ah)
358{
359	int i;
360
361	ah->config.dma_beacon_response_time = 2;
362	ah->config.sw_beacon_response_time = 10;
363	ah->config.additional_swba_backoff = 0;
364	ah->config.ack_6mb = 0x0;
365	ah->config.cwm_ignore_extcca = 0;
366	ah->config.pcie_powersave_enable = 0;
367	ah->config.pcie_clock_req = 0;
368	ah->config.pcie_waen = 0;
369	ah->config.analog_shiftreg = 1;
370	ah->config.ht_enable = 1;
371	ah->config.ofdm_trig_low = 200;
372	ah->config.ofdm_trig_high = 500;
373	ah->config.cck_trig_high = 200;
374	ah->config.cck_trig_low = 100;
375	ah->config.enable_ani = 1;
376	ah->config.diversity_control = ATH9K_ANT_VARIABLE;
377	ah->config.antenna_switch_swap = 0;
378
379	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
380		ah->config.spurchans[i][0] = AR_NO_SPUR;
381		ah->config.spurchans[i][1] = AR_NO_SPUR;
382	}
383
384	ah->config.intr_mitigation = true;
385
386	/*
387	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
388	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
389	 * This means we use it for all AR5416 devices, and the few
390	 * minor PCI AR9280 devices out there.
391	 *
392	 * Serialization is required because these devices do not handle
393	 * well the case of two concurrent reads/writes due to the latency
394	 * involved. During one read/write another read/write can be issued
395	 * on another CPU while the previous read/write may still be working
396	 * on our hardware, if we hit this case the hardware poops in a loop.
397	 * We prevent this by serializing reads and writes.
398	 *
399	 * This issue is not present on PCI-Express devices or pre-AR5416
400	 * devices (legacy, 802.11abg).
401	 */
402	if (num_possible_cpus() > 1)
403		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
404}
405
406static void ath9k_hw_init_defaults(struct ath_hw *ah)
407{
408	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
409
410	regulatory->country_code = CTRY_DEFAULT;
411	regulatory->power_limit = MAX_RATE_POWER;
412	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
413
414	ah->hw_version.magic = AR5416_MAGIC;
415	ah->hw_version.subvendorid = 0;
416
417	ah->ah_flags = 0;
418	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
419		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
420	if (!AR_SREV_9100(ah))
421		ah->ah_flags = AH_USE_EEPROM;
422
423	ah->atim_window = 0;
424	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
425	ah->beacon_interval = 100;
426	ah->enable_32kHz_clock = DONT_USE_32KHZ;
427	ah->slottime = (u32) -1;
428	ah->acktimeout = (u32) -1;
429	ah->ctstimeout = (u32) -1;
430	ah->globaltxtimeout = (u32) -1;
431
432	ah->gbeacon_rate = 0;
433
434	ah->power_mode = ATH9K_PM_UNDEFINED;
435}
436
437static int ath9k_hw_rfattach(struct ath_hw *ah)
438{
439	bool rfStatus = false;
440	int ecode = 0;
441
442	rfStatus = ath9k_hw_init_rf(ah, &ecode);
443	if (!rfStatus) {
444		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
445			  "RF setup failed, status: %u\n", ecode);
446		return ecode;
447	}
448
449	return 0;
450}
451
452static int ath9k_hw_rf_claim(struct ath_hw *ah)
453{
454	u32 val;
455
456	REG_WRITE(ah, AR_PHY(0), 0x00000007);
457
458	val = ath9k_hw_get_radiorev(ah);
459	switch (val & AR_RADIO_SREV_MAJOR) {
460	case 0:
461		val = AR_RAD5133_SREV_MAJOR;
462		break;
463	case AR_RAD5133_SREV_MAJOR:
464	case AR_RAD5122_SREV_MAJOR:
465	case AR_RAD2133_SREV_MAJOR:
466	case AR_RAD2122_SREV_MAJOR:
467		break;
468	default:
469		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
470			  "Radio Chip Rev 0x%02X not supported\n",
471			  val & AR_RADIO_SREV_MAJOR);
472		return -EOPNOTSUPP;
473	}
474
475	ah->hw_version.analog5GhzRev = val;
476
477	return 0;
478}
479
480static int ath9k_hw_init_macaddr(struct ath_hw *ah)
481{
482	struct ath_common *common = ath9k_hw_common(ah);
483	u32 sum;
484	int i;
485	u16 eeval;
486
487	sum = 0;
488	for (i = 0; i < 3; i++) {
489		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
490		sum += eeval;
491		common->macaddr[2 * i] = eeval >> 8;
492		common->macaddr[2 * i + 1] = eeval & 0xff;
493	}
494	if (sum == 0 || sum == 0xffff * 3)
495		return -EADDRNOTAVAIL;
496
497	return 0;
498}
499
500static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
501{
502	u32 rxgain_type;
503
504	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
505		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
506
507		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
508			INIT_INI_ARRAY(&ah->iniModesRxGain,
509			ar9280Modes_backoff_13db_rxgain_9280_2,
510			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
511		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
512			INIT_INI_ARRAY(&ah->iniModesRxGain,
513			ar9280Modes_backoff_23db_rxgain_9280_2,
514			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
515		else
516			INIT_INI_ARRAY(&ah->iniModesRxGain,
517			ar9280Modes_original_rxgain_9280_2,
518			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
519	} else {
520		INIT_INI_ARRAY(&ah->iniModesRxGain,
521			ar9280Modes_original_rxgain_9280_2,
522			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
523	}
524}
525
526static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
527{
528	u32 txgain_type;
529
530	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
531		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
532
533		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
534			INIT_INI_ARRAY(&ah->iniModesTxGain,
535			ar9280Modes_high_power_tx_gain_9280_2,
536			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
537		else
538			INIT_INI_ARRAY(&ah->iniModesTxGain,
539			ar9280Modes_original_tx_gain_9280_2,
540			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
541	} else {
542		INIT_INI_ARRAY(&ah->iniModesTxGain,
543		ar9280Modes_original_tx_gain_9280_2,
544		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
545	}
546}
547
548static int ath9k_hw_post_init(struct ath_hw *ah)
549{
550	int ecode;
551
552	if (!ath9k_hw_chip_test(ah))
553		return -ENODEV;
554
555	ecode = ath9k_hw_rf_claim(ah);
556	if (ecode != 0)
557		return ecode;
558
559	ecode = ath9k_hw_eeprom_init(ah);
560	if (ecode != 0)
561		return ecode;
562
563	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
564		  "Eeprom VER: %d, REV: %d\n",
565		  ah->eep_ops->get_eeprom_ver(ah),
566		  ah->eep_ops->get_eeprom_rev(ah));
567
568	ecode = ath9k_hw_rfattach(ah);
569	if (ecode != 0)
570		return ecode;
571
572	if (!AR_SREV_9100(ah)) {
573		ath9k_hw_ani_setup(ah);
574		ath9k_hw_ani_init(ah);
575	}
576
577	return 0;
578}
579
580static bool ath9k_hw_devid_supported(u16 devid)
581{
582	switch (devid) {
583	case AR5416_DEVID_PCI:
584	case AR5416_DEVID_PCIE:
585	case AR5416_AR9100_DEVID:
586	case AR9160_DEVID_PCI:
587	case AR9280_DEVID_PCI:
588	case AR9280_DEVID_PCIE:
589	case AR9285_DEVID_PCIE:
590	case AR5416_DEVID_AR9287_PCI:
591	case AR5416_DEVID_AR9287_PCIE:
592		return true;
593	default:
594		break;
595	}
596	return false;
597}
598
599static bool ath9k_hw_macversion_supported(u32 macversion)
600{
601	switch (macversion) {
602	case AR_SREV_VERSION_5416_PCI:
603	case AR_SREV_VERSION_5416_PCIE:
604	case AR_SREV_VERSION_9160:
605	case AR_SREV_VERSION_9100:
606	case AR_SREV_VERSION_9280:
607	case AR_SREV_VERSION_9285:
608	case AR_SREV_VERSION_9287:
609		return true;
610	/* Not yet */
611	case AR_SREV_VERSION_9271:
612	default:
613		break;
614	}
615	return false;
616}
617
618static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
619{
620	if (AR_SREV_9160_10_OR_LATER(ah)) {
621		if (AR_SREV_9280_10_OR_LATER(ah)) {
622			ah->iq_caldata.calData = &iq_cal_single_sample;
623			ah->adcgain_caldata.calData =
624				&adc_gain_cal_single_sample;
625			ah->adcdc_caldata.calData =
626				&adc_dc_cal_single_sample;
627			ah->adcdc_calinitdata.calData =
628				&adc_init_dc_cal;
629		} else {
630			ah->iq_caldata.calData = &iq_cal_multi_sample;
631			ah->adcgain_caldata.calData =
632				&adc_gain_cal_multi_sample;
633			ah->adcdc_caldata.calData =
634				&adc_dc_cal_multi_sample;
635			ah->adcdc_calinitdata.calData =
636				&adc_init_dc_cal;
637		}
638		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
639	}
640}
641
642static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
643{
644	if (AR_SREV_9271(ah)) {
645		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
646			       ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
647		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
648			       ARRAY_SIZE(ar9271Common_9271_1_0), 2);
649		return;
650	}
651
652	if (AR_SREV_9287_11_OR_LATER(ah)) {
653		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
654				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
655		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
656				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
657		if (ah->config.pcie_clock_req)
658			INIT_INI_ARRAY(&ah->iniPcieSerdes,
659			ar9287PciePhy_clkreq_off_L1_9287_1_1,
660			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
661		else
662			INIT_INI_ARRAY(&ah->iniPcieSerdes,
663			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
664			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
665					2);
666	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
667		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
668				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
669		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
670				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
671
672		if (ah->config.pcie_clock_req)
673			INIT_INI_ARRAY(&ah->iniPcieSerdes,
674			ar9287PciePhy_clkreq_off_L1_9287_1_0,
675			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
676		else
677			INIT_INI_ARRAY(&ah->iniPcieSerdes,
678			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
679			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
680				  2);
681	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
682
683
684		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
685			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
686		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
687			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
688
689		if (ah->config.pcie_clock_req) {
690			INIT_INI_ARRAY(&ah->iniPcieSerdes,
691			ar9285PciePhy_clkreq_off_L1_9285_1_2,
692			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
693		} else {
694			INIT_INI_ARRAY(&ah->iniPcieSerdes,
695			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
696			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
697				  2);
698		}
699	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
700		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
701			       ARRAY_SIZE(ar9285Modes_9285), 6);
702		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
703			       ARRAY_SIZE(ar9285Common_9285), 2);
704
705		if (ah->config.pcie_clock_req) {
706			INIT_INI_ARRAY(&ah->iniPcieSerdes,
707			ar9285PciePhy_clkreq_off_L1_9285,
708			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
709		} else {
710			INIT_INI_ARRAY(&ah->iniPcieSerdes,
711			ar9285PciePhy_clkreq_always_on_L1_9285,
712			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
713		}
714	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
715		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
716			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
717		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
718			       ARRAY_SIZE(ar9280Common_9280_2), 2);
719
720		if (ah->config.pcie_clock_req) {
721			INIT_INI_ARRAY(&ah->iniPcieSerdes,
722			       ar9280PciePhy_clkreq_off_L1_9280,
723			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
724		} else {
725			INIT_INI_ARRAY(&ah->iniPcieSerdes,
726			       ar9280PciePhy_clkreq_always_on_L1_9280,
727			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
728		}
729		INIT_INI_ARRAY(&ah->iniModesAdditional,
730			       ar9280Modes_fast_clock_9280_2,
731			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
732	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
733		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
734			       ARRAY_SIZE(ar9280Modes_9280), 6);
735		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
736			       ARRAY_SIZE(ar9280Common_9280), 2);
737	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
738		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
739			       ARRAY_SIZE(ar5416Modes_9160), 6);
740		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
741			       ARRAY_SIZE(ar5416Common_9160), 2);
742		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
743			       ARRAY_SIZE(ar5416Bank0_9160), 2);
744		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
745			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
746		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
747			       ARRAY_SIZE(ar5416Bank1_9160), 2);
748		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
749			       ARRAY_SIZE(ar5416Bank2_9160), 2);
750		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
751			       ARRAY_SIZE(ar5416Bank3_9160), 3);
752		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
753			       ARRAY_SIZE(ar5416Bank6_9160), 3);
754		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
755			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
756		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
757			       ARRAY_SIZE(ar5416Bank7_9160), 2);
758		if (AR_SREV_9160_11(ah)) {
759			INIT_INI_ARRAY(&ah->iniAddac,
760				       ar5416Addac_91601_1,
761				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
762		} else {
763			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
764				       ARRAY_SIZE(ar5416Addac_9160), 2);
765		}
766	} else if (AR_SREV_9100_OR_LATER(ah)) {
767		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
768			       ARRAY_SIZE(ar5416Modes_9100), 6);
769		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
770			       ARRAY_SIZE(ar5416Common_9100), 2);
771		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
772			       ARRAY_SIZE(ar5416Bank0_9100), 2);
773		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
774			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
775		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
776			       ARRAY_SIZE(ar5416Bank1_9100), 2);
777		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
778			       ARRAY_SIZE(ar5416Bank2_9100), 2);
779		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
780			       ARRAY_SIZE(ar5416Bank3_9100), 3);
781		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
782			       ARRAY_SIZE(ar5416Bank6_9100), 3);
783		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
784			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
785		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
786			       ARRAY_SIZE(ar5416Bank7_9100), 2);
787		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
788			       ARRAY_SIZE(ar5416Addac_9100), 2);
789	} else {
790		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
791			       ARRAY_SIZE(ar5416Modes), 6);
792		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
793			       ARRAY_SIZE(ar5416Common), 2);
794		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
795			       ARRAY_SIZE(ar5416Bank0), 2);
796		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
797			       ARRAY_SIZE(ar5416BB_RfGain), 3);
798		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
799			       ARRAY_SIZE(ar5416Bank1), 2);
800		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
801			       ARRAY_SIZE(ar5416Bank2), 2);
802		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
803			       ARRAY_SIZE(ar5416Bank3), 3);
804		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
805			       ARRAY_SIZE(ar5416Bank6), 3);
806		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
807			       ARRAY_SIZE(ar5416Bank6TPC), 3);
808		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
809			       ARRAY_SIZE(ar5416Bank7), 2);
810		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
811			       ARRAY_SIZE(ar5416Addac), 2);
812	}
813}
814
815static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
816{
817	if (AR_SREV_9287_11_OR_LATER(ah))
818		INIT_INI_ARRAY(&ah->iniModesRxGain,
819		ar9287Modes_rx_gain_9287_1_1,
820		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
821	else if (AR_SREV_9287_10(ah))
822		INIT_INI_ARRAY(&ah->iniModesRxGain,
823		ar9287Modes_rx_gain_9287_1_0,
824		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
825	else if (AR_SREV_9280_20(ah))
826		ath9k_hw_init_rxgain_ini(ah);
827
828	if (AR_SREV_9287_11_OR_LATER(ah)) {
829		INIT_INI_ARRAY(&ah->iniModesTxGain,
830		ar9287Modes_tx_gain_9287_1_1,
831		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
832	} else if (AR_SREV_9287_10(ah)) {
833		INIT_INI_ARRAY(&ah->iniModesTxGain,
834		ar9287Modes_tx_gain_9287_1_0,
835		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
836	} else if (AR_SREV_9280_20(ah)) {
837		ath9k_hw_init_txgain_ini(ah);
838	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
839		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
840
841		/* txgain table */
842		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
843			INIT_INI_ARRAY(&ah->iniModesTxGain,
844			ar9285Modes_high_power_tx_gain_9285_1_2,
845			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
846		} else {
847			INIT_INI_ARRAY(&ah->iniModesTxGain,
848			ar9285Modes_original_tx_gain_9285_1_2,
849			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
850		}
851
852	}
853}
854
855static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
856{
857	u32 i, j;
858
859	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
860	    test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
861
862		/* EEPROM Fixup */
863		for (i = 0; i < ah->iniModes.ia_rows; i++) {
864			u32 reg = INI_RA(&ah->iniModes, i, 0);
865
866			for (j = 1; j < ah->iniModes.ia_columns; j++) {
867				u32 val = INI_RA(&ah->iniModes, i, j);
868
869				INI_RA(&ah->iniModes, i, j) =
870					ath9k_hw_ini_fixup(ah,
871							   &ah->eeprom.def,
872							   reg, val);
873			}
874		}
875	}
876}
877
878int ath9k_hw_init(struct ath_hw *ah)
879{
880	struct ath_common *common = ath9k_hw_common(ah);
881	int r = 0;
882
883	if (!ath9k_hw_devid_supported(ah->hw_version.devid))
884		return -EOPNOTSUPP;
885
886	ath9k_hw_init_defaults(ah);
887	ath9k_hw_init_config(ah);
888
889	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
890		ath_print(common, ATH_DBG_FATAL,
891			  "Couldn't reset chip\n");
892		return -EIO;
893	}
894
895	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
896		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
897		return -EIO;
898	}
899
900	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
901		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
902		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
903			ah->config.serialize_regmode =
904				SER_REG_MODE_ON;
905		} else {
906			ah->config.serialize_regmode =
907				SER_REG_MODE_OFF;
908		}
909	}
910
911	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
912		ah->config.serialize_regmode);
913
914	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
915		ath_print(common, ATH_DBG_FATAL,
916			  "Mac Chip Rev 0x%02x.%x is not supported by "
917			  "this driver\n", ah->hw_version.macVersion,
918			  ah->hw_version.macRev);
919		return -EOPNOTSUPP;
920	}
921
922	if (AR_SREV_9100(ah)) {
923		ah->iq_caldata.calData = &iq_cal_multi_sample;
924		ah->supp_cals = IQ_MISMATCH_CAL;
925		ah->is_pciexpress = false;
926	}
927
928	if (AR_SREV_9271(ah))
929		ah->is_pciexpress = false;
930
931	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
932
933	ath9k_hw_init_cal_settings(ah);
934
935	ah->ani_function = ATH9K_ANI_ALL;
936	if (AR_SREV_9280_10_OR_LATER(ah))
937		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
938
939	ath9k_hw_init_mode_regs(ah);
940
941	if (ah->is_pciexpress)
942		ath9k_hw_configpcipowersave(ah, 0, 0);
943	else
944		ath9k_hw_disablepcie(ah);
945
946	r = ath9k_hw_post_init(ah);
947	if (r)
948		return r;
949
950	ath9k_hw_init_mode_gain_regs(ah);
951	ath9k_hw_fill_cap_info(ah);
952	ath9k_hw_init_11a_eeprom_fix(ah);
953
954	r = ath9k_hw_init_macaddr(ah);
955	if (r) {
956		ath_print(common, ATH_DBG_FATAL,
957			  "Failed to initialize MAC address\n");
958		return r;
959	}
960
961	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
962		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
963	else
964		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
965
966	ath9k_init_nfcal_hist_buffer(ah);
967
968	return 0;
969}
970
971static void ath9k_hw_init_bb(struct ath_hw *ah,
972			     struct ath9k_channel *chan)
973{
974	u32 synthDelay;
975
976	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
977	if (IS_CHAN_B(chan))
978		synthDelay = (4 * synthDelay) / 22;
979	else
980		synthDelay /= 10;
981
982	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
983
984	udelay(synthDelay + BASE_ACTIVATE_DELAY);
985}
986
987static void ath9k_hw_init_qos(struct ath_hw *ah)
988{
989	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
990	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
991
992	REG_WRITE(ah, AR_QOS_NO_ACK,
993		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
994		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
995		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
996
997	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
998	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
999	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1000	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1001	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1002}
1003
1004static void ath9k_hw_init_pll(struct ath_hw *ah,
1005			      struct ath9k_channel *chan)
1006{
1007	u32 pll;
1008
1009	if (AR_SREV_9100(ah)) {
1010		if (chan && IS_CHAN_5GHZ(chan))
1011			pll = 0x1450;
1012		else
1013			pll = 0x1458;
1014	} else {
1015		if (AR_SREV_9280_10_OR_LATER(ah)) {
1016			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1017
1018			if (chan && IS_CHAN_HALF_RATE(chan))
1019				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1020			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1021				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1022
1023			if (chan && IS_CHAN_5GHZ(chan)) {
1024				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1025
1026
1027				if (AR_SREV_9280_20(ah)) {
1028					if (((chan->channel % 20) == 0)
1029					    || ((chan->channel % 10) == 0))
1030						pll = 0x2850;
1031					else
1032						pll = 0x142c;
1033				}
1034			} else {
1035				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1036			}
1037
1038		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1039
1040			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1041
1042			if (chan && IS_CHAN_HALF_RATE(chan))
1043				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1044			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1045				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1046
1047			if (chan && IS_CHAN_5GHZ(chan))
1048				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1049			else
1050				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1051		} else {
1052			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1053
1054			if (chan && IS_CHAN_HALF_RATE(chan))
1055				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1056			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1057				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1058
1059			if (chan && IS_CHAN_5GHZ(chan))
1060				pll |= SM(0xa, AR_RTC_PLL_DIV);
1061			else
1062				pll |= SM(0xb, AR_RTC_PLL_DIV);
1063		}
1064	}
1065	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1066
1067	udelay(RTC_PLL_SETTLE_DELAY);
1068
1069	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1070}
1071
1072static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1073{
1074	int rx_chainmask, tx_chainmask;
1075
1076	rx_chainmask = ah->rxchainmask;
1077	tx_chainmask = ah->txchainmask;
1078
1079	switch (rx_chainmask) {
1080	case 0x5:
1081		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1082			    AR_PHY_SWAP_ALT_CHAIN);
1083	case 0x3:
1084		if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1085			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1086			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1087			break;
1088		}
1089	case 0x1:
1090	case 0x2:
1091	case 0x7:
1092		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1093		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1094		break;
1095	default:
1096		break;
1097	}
1098
1099	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1100	if (tx_chainmask == 0x5) {
1101		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1102			    AR_PHY_SWAP_ALT_CHAIN);
1103	}
1104	if (AR_SREV_9100(ah))
1105		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1106			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1107}
1108
1109static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1110					  enum nl80211_iftype opmode)
1111{
1112	ah->mask_reg = AR_IMR_TXERR |
1113		AR_IMR_TXURN |
1114		AR_IMR_RXERR |
1115		AR_IMR_RXORN |
1116		AR_IMR_BCNMISC;
1117
1118	if (ah->config.intr_mitigation)
1119		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1120	else
1121		ah->mask_reg |= AR_IMR_RXOK;
1122
1123	ah->mask_reg |= AR_IMR_TXOK;
1124
1125	if (opmode == NL80211_IFTYPE_AP)
1126		ah->mask_reg |= AR_IMR_MIB;
1127
1128	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1129	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1130
1131	if (!AR_SREV_9100(ah)) {
1132		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1133		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1134		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1135	}
1136}
1137
1138static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1139{
1140	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1141		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1142			  "bad ack timeout %u\n", us);
1143		ah->acktimeout = (u32) -1;
1144		return false;
1145	} else {
1146		REG_RMW_FIELD(ah, AR_TIME_OUT,
1147			      AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1148		ah->acktimeout = us;
1149		return true;
1150	}
1151}
1152
1153static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1154{
1155	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1156		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1157			  "bad cts timeout %u\n", us);
1158		ah->ctstimeout = (u32) -1;
1159		return false;
1160	} else {
1161		REG_RMW_FIELD(ah, AR_TIME_OUT,
1162			      AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1163		ah->ctstimeout = us;
1164		return true;
1165	}
1166}
1167
1168static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1169{
1170	if (tu > 0xFFFF) {
1171		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1172			  "bad global tx timeout %u\n", tu);
1173		ah->globaltxtimeout = (u32) -1;
1174		return false;
1175	} else {
1176		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1177		ah->globaltxtimeout = tu;
1178		return true;
1179	}
1180}
1181
1182static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1183{
1184	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1185		  ah->misc_mode);
1186
1187	if (ah->misc_mode != 0)
1188		REG_WRITE(ah, AR_PCU_MISC,
1189			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1190	if (ah->slottime != (u32) -1)
1191		ath9k_hw_setslottime(ah, ah->slottime);
1192	if (ah->acktimeout != (u32) -1)
1193		ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1194	if (ah->ctstimeout != (u32) -1)
1195		ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1196	if (ah->globaltxtimeout != (u32) -1)
1197		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1198}
1199
1200const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1201{
1202	return vendorid == ATHEROS_VENDOR_ID ?
1203		ath9k_hw_devname(devid) : NULL;
1204}
1205
1206void ath9k_hw_detach(struct ath_hw *ah)
1207{
1208	if (!AR_SREV_9100(ah))
1209		ath9k_hw_ani_disable(ah);
1210
1211	ath9k_hw_rf_free(ah);
1212	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1213	kfree(ah);
1214	ah = NULL;
1215}
1216
1217/*******/
1218/* INI */
1219/*******/
1220
1221static void ath9k_hw_override_ini(struct ath_hw *ah,
1222				  struct ath9k_channel *chan)
1223{
1224	u32 val;
1225
1226	if (AR_SREV_9271(ah)) {
1227		/*
1228		 * Enable spectral scan to solution for issues with stuck
1229		 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1230		 * AR9271 1.1
1231		 */
1232		if (AR_SREV_9271_10(ah)) {
1233			val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1234			REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1235		}
1236		else if (AR_SREV_9271_11(ah))
1237			/*
1238			 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1239			 * present on AR9271 1.1
1240			 */
1241			REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1242		return;
1243	}
1244
1245	/*
1246	 * Set the RX_ABORT and RX_DIS and clear if off only after
1247	 * RXE is set for MAC. This prevents frames with corrupted
1248	 * descriptor status.
1249	 */
1250	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1251
1252	if (AR_SREV_9280_10_OR_LATER(ah)) {
1253		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1254			       (~AR_PCU_MISC_MODE2_HWWAR1);
1255
1256		if (AR_SREV_9287_10_OR_LATER(ah))
1257			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1258
1259		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1260	}
1261
1262	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1263	    AR_SREV_9280_10_OR_LATER(ah))
1264		return;
1265	/*
1266	 * Disable BB clock gating
1267	 * Necessary to avoid issues on AR5416 2.0
1268	 */
1269	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1270}
1271
1272static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1273			      struct ar5416_eeprom_def *pEepData,
1274			      u32 reg, u32 value)
1275{
1276	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1277	struct ath_common *common = ath9k_hw_common(ah);
1278
1279	switch (ah->hw_version.devid) {
1280	case AR9280_DEVID_PCI:
1281		if (reg == 0x7894) {
1282			ath_print(common, ATH_DBG_EEPROM,
1283				"ini VAL: %x  EEPROM: %x\n", value,
1284				(pBase->version & 0xff));
1285
1286			if ((pBase->version & 0xff) > 0x0a) {
1287				ath_print(common, ATH_DBG_EEPROM,
1288					  "PWDCLKIND: %d\n",
1289					  pBase->pwdclkind);
1290				value &= ~AR_AN_TOP2_PWDCLKIND;
1291				value |= AR_AN_TOP2_PWDCLKIND &
1292					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1293			} else {
1294				ath_print(common, ATH_DBG_EEPROM,
1295					  "PWDCLKIND Earlier Rev\n");
1296			}
1297
1298			ath_print(common, ATH_DBG_EEPROM,
1299				  "final ini VAL: %x\n", value);
1300		}
1301		break;
1302	}
1303
1304	return value;
1305}
1306
1307static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1308			      struct ar5416_eeprom_def *pEepData,
1309			      u32 reg, u32 value)
1310{
1311	if (ah->eep_map == EEP_MAP_4KBITS)
1312		return value;
1313	else
1314		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1315}
1316
1317static void ath9k_olc_init(struct ath_hw *ah)
1318{
1319	u32 i;
1320
1321	if (OLC_FOR_AR9287_10_LATER) {
1322		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1323				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1324		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1325				AR9287_AN_TXPC0_TXPCMODE,
1326				AR9287_AN_TXPC0_TXPCMODE_S,
1327				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1328		udelay(100);
1329	} else {
1330		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1331			ah->originalGain[i] =
1332				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1333						AR_PHY_TX_GAIN);
1334		ah->PDADCdelta = 0;
1335	}
1336}
1337
1338static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1339			      struct ath9k_channel *chan)
1340{
1341	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1342
1343	if (IS_CHAN_B(chan))
1344		ctl |= CTL_11B;
1345	else if (IS_CHAN_G(chan))
1346		ctl |= CTL_11G;
1347	else
1348		ctl |= CTL_11A;
1349
1350	return ctl;
1351}
1352
1353static int ath9k_hw_process_ini(struct ath_hw *ah,
1354				struct ath9k_channel *chan)
1355{
1356	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1357	int i, regWrites = 0;
1358	struct ieee80211_channel *channel = chan->chan;
1359	u32 modesIndex, freqIndex;
1360
1361	switch (chan->chanmode) {
1362	case CHANNEL_A:
1363	case CHANNEL_A_HT20:
1364		modesIndex = 1;
1365		freqIndex = 1;
1366		break;
1367	case CHANNEL_A_HT40PLUS:
1368	case CHANNEL_A_HT40MINUS:
1369		modesIndex = 2;
1370		freqIndex = 1;
1371		break;
1372	case CHANNEL_G:
1373	case CHANNEL_G_HT20:
1374	case CHANNEL_B:
1375		modesIndex = 4;
1376		freqIndex = 2;
1377		break;
1378	case CHANNEL_G_HT40PLUS:
1379	case CHANNEL_G_HT40MINUS:
1380		modesIndex = 3;
1381		freqIndex = 2;
1382		break;
1383
1384	default:
1385		return -EINVAL;
1386	}
1387
1388	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1389	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1390	ah->eep_ops->set_addac(ah, chan);
1391
1392	if (AR_SREV_5416_22_OR_LATER(ah)) {
1393		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1394	} else {
1395		struct ar5416IniArray temp;
1396		u32 addacSize =
1397			sizeof(u32) * ah->iniAddac.ia_rows *
1398			ah->iniAddac.ia_columns;
1399
1400		memcpy(ah->addac5416_21,
1401		       ah->iniAddac.ia_array, addacSize);
1402
1403		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1404
1405		temp.ia_array = ah->addac5416_21;
1406		temp.ia_columns = ah->iniAddac.ia_columns;
1407		temp.ia_rows = ah->iniAddac.ia_rows;
1408		REG_WRITE_ARRAY(&temp, 1, regWrites);
1409	}
1410
1411	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1412
1413	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1414		u32 reg = INI_RA(&ah->iniModes, i, 0);
1415		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1416
1417		REG_WRITE(ah, reg, val);
1418
1419		if (reg >= 0x7800 && reg < 0x78a0
1420		    && ah->config.analog_shiftreg) {
1421			udelay(100);
1422		}
1423
1424		DO_DELAY(regWrites);
1425	}
1426
1427	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1428		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1429
1430	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1431	    AR_SREV_9287_10_OR_LATER(ah))
1432		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1433
1434	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1435		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1436		u32 val = INI_RA(&ah->iniCommon, i, 1);
1437
1438		REG_WRITE(ah, reg, val);
1439
1440		if (reg >= 0x7800 && reg < 0x78a0
1441		    && ah->config.analog_shiftreg) {
1442			udelay(100);
1443		}
1444
1445		DO_DELAY(regWrites);
1446	}
1447
1448	ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1449
1450	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1451		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1452				regWrites);
1453	}
1454
1455	ath9k_hw_override_ini(ah, chan);
1456	ath9k_hw_set_regs(ah, chan);
1457	ath9k_hw_init_chain_masks(ah);
1458
1459	if (OLC_FOR_AR9280_20_LATER)
1460		ath9k_olc_init(ah);
1461
1462	ah->eep_ops->set_txpower(ah, chan,
1463				 ath9k_regd_get_ctl(regulatory, chan),
1464				 channel->max_antenna_gain * 2,
1465				 channel->max_power * 2,
1466				 min((u32) MAX_RATE_POWER,
1467				 (u32) regulatory->power_limit));
1468
1469	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1470		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1471			  "ar5416SetRfRegs failed\n");
1472		return -EIO;
1473	}
1474
1475	return 0;
1476}
1477
1478/****************************************/
1479/* Reset and Channel Switching Routines */
1480/****************************************/
1481
1482static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1483{
1484	u32 rfMode = 0;
1485
1486	if (chan == NULL)
1487		return;
1488
1489	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1490		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1491
1492	if (!AR_SREV_9280_10_OR_LATER(ah))
1493		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1494			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1495
1496	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1497		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1498
1499	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1500}
1501
1502static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1503{
1504	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1505}
1506
1507static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1508{
1509	u32 regval;
1510
1511	/*
1512	 * set AHB_MODE not to do cacheline prefetches
1513	*/
1514	regval = REG_READ(ah, AR_AHB_MODE);
1515	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1516
1517	/*
1518	 * let mac dma reads be in 128 byte chunks
1519	 */
1520	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1521	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1522
1523	/*
1524	 * Restore TX Trigger Level to its pre-reset value.
1525	 * The initial value depends on whether aggregation is enabled, and is
1526	 * adjusted whenever underruns are detected.
1527	 */
1528	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1529
1530	/*
1531	 * let mac dma writes be in 128 byte chunks
1532	 */
1533	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1534	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1535
1536	/*
1537	 * Setup receive FIFO threshold to hold off TX activities
1538	 */
1539	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1540
1541	/*
1542	 * reduce the number of usable entries in PCU TXBUF to avoid
1543	 * wrap around issues.
1544	 */
1545	if (AR_SREV_9285(ah)) {
1546		/* For AR9285 the number of Fifos are reduced to half.
1547		 * So set the usable tx buf size also to half to
1548		 * avoid data/delimiter underruns
1549		 */
1550		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1551			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1552	} else if (!AR_SREV_9271(ah)) {
1553		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1554			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1555	}
1556}
1557
1558static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1559{
1560	u32 val;
1561
1562	val = REG_READ(ah, AR_STA_ID1);
1563	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1564	switch (opmode) {
1565	case NL80211_IFTYPE_AP:
1566		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1567			  | AR_STA_ID1_KSRCH_MODE);
1568		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1569		break;
1570	case NL80211_IFTYPE_ADHOC:
1571	case NL80211_IFTYPE_MESH_POINT:
1572		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1573			  | AR_STA_ID1_KSRCH_MODE);
1574		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1575		break;
1576	case NL80211_IFTYPE_STATION:
1577	case NL80211_IFTYPE_MONITOR:
1578		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1579		break;
1580	}
1581}
1582
1583static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1584						 u32 coef_scaled,
1585						 u32 *coef_mantissa,
1586						 u32 *coef_exponent)
1587{
1588	u32 coef_exp, coef_man;
1589
1590	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1591		if ((coef_scaled >> coef_exp) & 0x1)
1592			break;
1593
1594	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1595
1596	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1597
1598	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1599	*coef_exponent = coef_exp - 16;
1600}
1601
1602static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1603				     struct ath9k_channel *chan)
1604{
1605	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1606	u32 clockMhzScaled = 0x64000000;
1607	struct chan_centers centers;
1608
1609	if (IS_CHAN_HALF_RATE(chan))
1610		clockMhzScaled = clockMhzScaled >> 1;
1611	else if (IS_CHAN_QUARTER_RATE(chan))
1612		clockMhzScaled = clockMhzScaled >> 2;
1613
1614	ath9k_hw_get_channel_centers(ah, chan, &centers);
1615	coef_scaled = clockMhzScaled / centers.synth_center;
1616
1617	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1618				      &ds_coef_exp);
1619
1620	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1621		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1622	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1623		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1624
1625	coef_scaled = (9 * coef_scaled) / 10;
1626
1627	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1628				      &ds_coef_exp);
1629
1630	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1631		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1632	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1633		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1634}
1635
1636static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1637{
1638	u32 rst_flags;
1639	u32 tmpReg;
1640
1641	if (AR_SREV_9100(ah)) {
1642		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1643		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1644		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1645		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1646		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1647	}
1648
1649	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1650		  AR_RTC_FORCE_WAKE_ON_INT);
1651
1652	if (AR_SREV_9100(ah)) {
1653		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1654			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1655	} else {
1656		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1657		if (tmpReg &
1658		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1659		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1660			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1661			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1662		} else {
1663			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1664		}
1665
1666		rst_flags = AR_RTC_RC_MAC_WARM;
1667		if (type == ATH9K_RESET_COLD)
1668			rst_flags |= AR_RTC_RC_MAC_COLD;
1669	}
1670
1671	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1672	udelay(50);
1673
1674	REG_WRITE(ah, AR_RTC_RC, 0);
1675	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1676		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1677			  "RTC stuck in MAC reset\n");
1678		return false;
1679	}
1680
1681	if (!AR_SREV_9100(ah))
1682		REG_WRITE(ah, AR_RC, 0);
1683
1684	ath9k_hw_init_pll(ah, NULL);
1685
1686	if (AR_SREV_9100(ah))
1687		udelay(50);
1688
1689	return true;
1690}
1691
1692static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1693{
1694	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1695		  AR_RTC_FORCE_WAKE_ON_INT);
1696
1697	if (!AR_SREV_9100(ah))
1698		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1699
1700	REG_WRITE(ah, AR_RTC_RESET, 0);
1701	udelay(2);
1702
1703	if (!AR_SREV_9100(ah))
1704		REG_WRITE(ah, AR_RC, 0);
1705
1706	REG_WRITE(ah, AR_RTC_RESET, 1);
1707
1708	if (!ath9k_hw_wait(ah,
1709			   AR_RTC_STATUS,
1710			   AR_RTC_STATUS_M,
1711			   AR_RTC_STATUS_ON,
1712			   AH_WAIT_TIMEOUT)) {
1713		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1714			  "RTC not waking up\n");
1715		return false;
1716	}
1717
1718	ath9k_hw_read_revisions(ah);
1719
1720	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1721}
1722
1723static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1724{
1725	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1726		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1727
1728	switch (type) {
1729	case ATH9K_RESET_POWER_ON:
1730		return ath9k_hw_set_reset_power_on(ah);
1731	case ATH9K_RESET_WARM:
1732	case ATH9K_RESET_COLD:
1733		return ath9k_hw_set_reset(ah, type);
1734	default:
1735		return false;
1736	}
1737}
1738
1739static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1740{
1741	u32 phymode;
1742	u32 enableDacFifo = 0;
1743
1744	if (AR_SREV_9285_10_OR_LATER(ah))
1745		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1746					 AR_PHY_FC_ENABLE_DAC_FIFO);
1747
1748	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1749		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1750
1751	if (IS_CHAN_HT40(chan)) {
1752		phymode |= AR_PHY_FC_DYN2040_EN;
1753
1754		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1755		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1756			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1757
1758	}
1759	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1760
1761	ath9k_hw_set11nmac2040(ah);
1762
1763	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1764	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1765}
1766
1767static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1768				struct ath9k_channel *chan)
1769{
1770	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1771		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1772			return false;
1773	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1774		return false;
1775
1776	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1777		return false;
1778
1779	ah->chip_fullsleep = false;
1780	ath9k_hw_init_pll(ah, chan);
1781	ath9k_hw_set_rfmode(ah, chan);
1782
1783	return true;
1784}
1785
1786static bool ath9k_hw_channel_change(struct ath_hw *ah,
1787				    struct ath9k_channel *chan)
1788{
1789	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1790	struct ath_common *common = ath9k_hw_common(ah);
1791	struct ieee80211_channel *channel = chan->chan;
1792	u32 synthDelay, qnum;
1793
1794	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1795		if (ath9k_hw_numtxpending(ah, qnum)) {
1796			ath_print(common, ATH_DBG_QUEUE,
1797				  "Transmit frames pending on "
1798				  "queue %d\n", qnum);
1799			return false;
1800		}
1801	}
1802
1803	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1804	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1805			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1806		ath_print(common, ATH_DBG_FATAL,
1807			  "Could not kill baseband RX\n");
1808		return false;
1809	}
1810
1811	ath9k_hw_set_regs(ah, chan);
1812
1813	if (AR_SREV_9280_10_OR_LATER(ah)) {
1814		ath9k_hw_ar9280_set_channel(ah, chan);
1815	} else {
1816		if (!(ath9k_hw_set_channel(ah, chan))) {
1817			ath_print(common, ATH_DBG_FATAL,
1818				  "Failed to set channel\n");
1819			return false;
1820		}
1821	}
1822
1823	ah->eep_ops->set_txpower(ah, chan,
1824			     ath9k_regd_get_ctl(regulatory, chan),
1825			     channel->max_antenna_gain * 2,
1826			     channel->max_power * 2,
1827			     min((u32) MAX_RATE_POWER,
1828			     (u32) regulatory->power_limit));
1829
1830	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1831	if (IS_CHAN_B(chan))
1832		synthDelay = (4 * synthDelay) / 22;
1833	else
1834		synthDelay /= 10;
1835
1836	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1837
1838	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1839
1840	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1841		ath9k_hw_set_delta_slope(ah, chan);
1842
1843	if (AR_SREV_9280_10_OR_LATER(ah))
1844		ath9k_hw_9280_spur_mitigate(ah, chan);
1845	else
1846		ath9k_hw_spur_mitigate(ah, chan);
1847
1848	if (!chan->oneTimeCalsDone)
1849		chan->oneTimeCalsDone = true;
1850
1851	return true;
1852}
1853
1854static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1855{
1856	int bb_spur = AR_NO_SPUR;
1857	int freq;
1858	int bin, cur_bin;
1859	int bb_spur_off, spur_subchannel_sd;
1860	int spur_freq_sd;
1861	int spur_delta_phase;
1862	int denominator;
1863	int upper, lower, cur_vit_mask;
1864	int tmp, newVal;
1865	int i;
1866	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1867			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1868	};
1869	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1870			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1871	};
1872	int inc[4] = { 0, 100, 0, 0 };
1873	struct chan_centers centers;
1874
1875	int8_t mask_m[123];
1876	int8_t mask_p[123];
1877	int8_t mask_amt;
1878	int tmp_mask;
1879	int cur_bb_spur;
1880	bool is2GHz = IS_CHAN_2GHZ(chan);
1881
1882	memset(&mask_m, 0, sizeof(int8_t) * 123);
1883	memset(&mask_p, 0, sizeof(int8_t) * 123);
1884
1885	ath9k_hw_get_channel_centers(ah, chan, &centers);
1886	freq = centers.synth_center;
1887
1888	ah->config.spurmode = SPUR_ENABLE_EEPROM;
1889	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1890		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1891
1892		if (is2GHz)
1893			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1894		else
1895			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1896
1897		if (AR_NO_SPUR == cur_bb_spur)
1898			break;
1899		cur_bb_spur = cur_bb_spur - freq;
1900
1901		if (IS_CHAN_HT40(chan)) {
1902			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1903			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1904				bb_spur = cur_bb_spur;
1905				break;
1906			}
1907		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1908			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1909			bb_spur = cur_bb_spur;
1910			break;
1911		}
1912	}
1913
1914	if (AR_NO_SPUR == bb_spur) {
1915		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1916			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1917		return;
1918	} else {
1919		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1920			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1921	}
1922
1923	bin = bb_spur * 320;
1924
1925	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1926
1927	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1928			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1929			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1930			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1931	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1932
1933	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1934		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1935		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1936		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1937		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1938	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1939
1940	if (IS_CHAN_HT40(chan)) {
1941		if (bb_spur < 0) {
1942			spur_subchannel_sd = 1;
1943			bb_spur_off = bb_spur + 10;
1944		} else {
1945			spur_subchannel_sd = 0;
1946			bb_spur_off = bb_spur - 10;
1947		}
1948	} else {
1949		spur_subchannel_sd = 0;
1950		bb_spur_off = bb_spur;
1951	}
1952
1953	if (IS_CHAN_HT40(chan))
1954		spur_delta_phase =
1955			((bb_spur * 262144) /
1956			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1957	else
1958		spur_delta_phase =
1959			((bb_spur * 524288) /
1960			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1961
1962	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1963	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1964
1965	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1966		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1967		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1968	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1969
1970	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1971	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1972
1973	cur_bin = -6000;
1974	upper = bin + 100;
1975	lower = bin - 100;
1976
1977	for (i = 0; i < 4; i++) {
1978		int pilot_mask = 0;
1979		int chan_mask = 0;
1980		int bp = 0;
1981		for (bp = 0; bp < 30; bp++) {
1982			if ((cur_bin > lower) && (cur_bin < upper)) {
1983				pilot_mask = pilot_mask | 0x1 << bp;
1984				chan_mask = chan_mask | 0x1 << bp;
1985			}
1986			cur_bin += 100;
1987		}
1988		cur_bin += inc[i];
1989		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1990		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1991	}
1992
1993	cur_vit_mask = 6100;
1994	upper = bin + 120;
1995	lower = bin - 120;
1996
1997	for (i = 0; i < 123; i++) {
1998		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1999
2000			/* workaround for gcc bug #37014 */
2001			volatile int tmp_v = abs(cur_vit_mask - bin);
2002
2003			if (tmp_v < 75)
2004				mask_amt = 1;
2005			else
2006				mask_amt = 0;
2007			if (cur_vit_mask < 0)
2008				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2009			else
2010				mask_p[cur_vit_mask / 100] = mask_amt;
2011		}
2012		cur_vit_mask -= 100;
2013	}
2014
2015	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2016		| (mask_m[48] << 26) | (mask_m[49] << 24)
2017		| (mask_m[50] << 22) | (mask_m[51] << 20)
2018		| (mask_m[52] << 18) | (mask_m[53] << 16)
2019		| (mask_m[54] << 14) | (mask_m[55] << 12)
2020		| (mask_m[56] << 10) | (mask_m[57] << 8)
2021		| (mask_m[58] << 6) | (mask_m[59] << 4)
2022		| (mask_m[60] << 2) | (mask_m[61] << 0);
2023	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2024	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2025
2026	tmp_mask = (mask_m[31] << 28)
2027		| (mask_m[32] << 26) | (mask_m[33] << 24)
2028		| (mask_m[34] << 22) | (mask_m[35] << 20)
2029		| (mask_m[36] << 18) | (mask_m[37] << 16)
2030		| (mask_m[48] << 14) | (mask_m[39] << 12)
2031		| (mask_m[40] << 10) | (mask_m[41] << 8)
2032		| (mask_m[42] << 6) | (mask_m[43] << 4)
2033		| (mask_m[44] << 2) | (mask_m[45] << 0);
2034	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2035	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2036
2037	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2038		| (mask_m[18] << 26) | (mask_m[18] << 24)
2039		| (mask_m[20] << 22) | (mask_m[20] << 20)
2040		| (mask_m[22] << 18) | (mask_m[22] << 16)
2041		| (mask_m[24] << 14) | (mask_m[24] << 12)
2042		| (mask_m[25] << 10) | (mask_m[26] << 8)
2043		| (mask_m[27] << 6) | (mask_m[28] << 4)
2044		| (mask_m[29] << 2) | (mask_m[30] << 0);
2045	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2046	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2047
2048	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2049		| (mask_m[2] << 26) | (mask_m[3] << 24)
2050		| (mask_m[4] << 22) | (mask_m[5] << 20)
2051		| (mask_m[6] << 18) | (mask_m[7] << 16)
2052		| (mask_m[8] << 14) | (mask_m[9] << 12)
2053		| (mask_m[10] << 10) | (mask_m[11] << 8)
2054		| (mask_m[12] << 6) | (mask_m[13] << 4)
2055		| (mask_m[14] << 2) | (mask_m[15] << 0);
2056	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2057	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2058
2059	tmp_mask = (mask_p[15] << 28)
2060		| (mask_p[14] << 26) | (mask_p[13] << 24)
2061		| (mask_p[12] << 22) | (mask_p[11] << 20)
2062		| (mask_p[10] << 18) | (mask_p[9] << 16)
2063		| (mask_p[8] << 14) | (mask_p[7] << 12)
2064		| (mask_p[6] << 10) | (mask_p[5] << 8)
2065		| (mask_p[4] << 6) | (mask_p[3] << 4)
2066		| (mask_p[2] << 2) | (mask_p[1] << 0);
2067	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2068	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2069
2070	tmp_mask = (mask_p[30] << 28)
2071		| (mask_p[29] << 26) | (mask_p[28] << 24)
2072		| (mask_p[27] << 22) | (mask_p[26] << 20)
2073		| (mask_p[25] << 18) | (mask_p[24] << 16)
2074		| (mask_p[23] << 14) | (mask_p[22] << 12)
2075		| (mask_p[21] << 10) | (mask_p[20] << 8)
2076		| (mask_p[19] << 6) | (mask_p[18] << 4)
2077		| (mask_p[17] << 2) | (mask_p[16] << 0);
2078	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2079	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2080
2081	tmp_mask = (mask_p[45] << 28)
2082		| (mask_p[44] << 26) | (mask_p[43] << 24)
2083		| (mask_p[42] << 22) | (mask_p[41] << 20)
2084		| (mask_p[40] << 18) | (mask_p[39] << 16)
2085		| (mask_p[38] << 14) | (mask_p[37] << 12)
2086		| (mask_p[36] << 10) | (mask_p[35] << 8)
2087		| (mask_p[34] << 6) | (mask_p[33] << 4)
2088		| (mask_p[32] << 2) | (mask_p[31] << 0);
2089	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2090	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2091
2092	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2093		| (mask_p[59] << 26) | (mask_p[58] << 24)
2094		| (mask_p[57] << 22) | (mask_p[56] << 20)
2095		| (mask_p[55] << 18) | (mask_p[54] << 16)
2096		| (mask_p[53] << 14) | (mask_p[52] << 12)
2097		| (mask_p[51] << 10) | (mask_p[50] << 8)
2098		| (mask_p[49] << 6) | (mask_p[48] << 4)
2099		| (mask_p[47] << 2) | (mask_p[46] << 0);
2100	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2101	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2102}
2103
2104static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2105{
2106	int bb_spur = AR_NO_SPUR;
2107	int bin, cur_bin;
2108	int spur_freq_sd;
2109	int spur_delta_phase;
2110	int denominator;
2111	int upper, lower, cur_vit_mask;
2112	int tmp, new;
2113	int i;
2114	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2115			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2116	};
2117	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2118			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2119	};
2120	int inc[4] = { 0, 100, 0, 0 };
2121
2122	int8_t mask_m[123];
2123	int8_t mask_p[123];
2124	int8_t mask_amt;
2125	int tmp_mask;
2126	int cur_bb_spur;
2127	bool is2GHz = IS_CHAN_2GHZ(chan);
2128
2129	memset(&mask_m, 0, sizeof(int8_t) * 123);
2130	memset(&mask_p, 0, sizeof(int8_t) * 123);
2131
2132	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2133		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2134		if (AR_NO_SPUR == cur_bb_spur)
2135			break;
2136		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2137		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2138			bb_spur = cur_bb_spur;
2139			break;
2140		}
2141	}
2142
2143	if (AR_NO_SPUR == bb_spur)
2144		return;
2145
2146	bin = bb_spur * 32;
2147
2148	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2149	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2150		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2151		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2152		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2153
2154	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2155
2156	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2157	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2158	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2159	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2160	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2161	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2162
2163	spur_delta_phase = ((bb_spur * 524288) / 100) &
2164		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2165
2166	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2167	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2168
2169	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2170	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2171	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2172	REG_WRITE(ah, AR_PHY_TIMING11, new);
2173
2174	cur_bin = -6000;
2175	upper = bin + 100;
2176	lower = bin - 100;
2177
2178	for (i = 0; i < 4; i++) {
2179		int pilot_mask = 0;
2180		int chan_mask = 0;
2181		int bp = 0;
2182		for (bp = 0; bp < 30; bp++) {
2183			if ((cur_bin > lower) && (cur_bin < upper)) {
2184				pilot_mask = pilot_mask | 0x1 << bp;
2185				chan_mask = chan_mask | 0x1 << bp;
2186			}
2187			cur_bin += 100;
2188		}
2189		cur_bin += inc[i];
2190		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2191		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2192	}
2193
2194	cur_vit_mask = 6100;
2195	upper = bin + 120;
2196	lower = bin - 120;
2197
2198	for (i = 0; i < 123; i++) {
2199		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2200
2201			/* workaround for gcc bug #37014 */
2202			volatile int tmp_v = abs(cur_vit_mask - bin);
2203
2204			if (tmp_v < 75)
2205				mask_amt = 1;
2206			else
2207				mask_amt = 0;
2208			if (cur_vit_mask < 0)
2209				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2210			else
2211				mask_p[cur_vit_mask / 100] = mask_amt;
2212		}
2213		cur_vit_mask -= 100;
2214	}
2215
2216	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2217		| (mask_m[48] << 26) | (mask_m[49] << 24)
2218		| (mask_m[50] << 22) | (mask_m[51] << 20)
2219		| (mask_m[52] << 18) | (mask_m[53] << 16)
2220		| (mask_m[54] << 14) | (mask_m[55] << 12)
2221		| (mask_m[56] << 10) | (mask_m[57] << 8)
2222		| (mask_m[58] << 6) | (mask_m[59] << 4)
2223		| (mask_m[60] << 2) | (mask_m[61] << 0);
2224	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2225	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2226
2227	tmp_mask = (mask_m[31] << 28)
2228		| (mask_m[32] << 26) | (mask_m[33] << 24)
2229		| (mask_m[34] << 22) | (mask_m[35] << 20)
2230		| (mask_m[36] << 18) | (mask_m[37] << 16)
2231		| (mask_m[48] << 14) | (mask_m[39] << 12)
2232		| (mask_m[40] << 10) | (mask_m[41] << 8)
2233		| (mask_m[42] << 6) | (mask_m[43] << 4)
2234		| (mask_m[44] << 2) | (mask_m[45] << 0);
2235	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2236	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2237
2238	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2239		| (mask_m[18] << 26) | (mask_m[18] << 24)
2240		| (mask_m[20] << 22) | (mask_m[20] << 20)
2241		| (mask_m[22] << 18) | (mask_m[22] << 16)
2242		| (mask_m[24] << 14) | (mask_m[24] << 12)
2243		| (mask_m[25] << 10) | (mask_m[26] << 8)
2244		| (mask_m[27] << 6) | (mask_m[28] << 4)
2245		| (mask_m[29] << 2) | (mask_m[30] << 0);
2246	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2247	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2248
2249	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2250		| (mask_m[2] << 26) | (mask_m[3] << 24)
2251		| (mask_m[4] << 22) | (mask_m[5] << 20)
2252		| (mask_m[6] << 18) | (mask_m[7] << 16)
2253		| (mask_m[8] << 14) | (mask_m[9] << 12)
2254		| (mask_m[10] << 10) | (mask_m[11] << 8)
2255		| (mask_m[12] << 6) | (mask_m[13] << 4)
2256		| (mask_m[14] << 2) | (mask_m[15] << 0);
2257	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2258	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2259
2260	tmp_mask = (mask_p[15] << 28)
2261		| (mask_p[14] << 26) | (mask_p[13] << 24)
2262		| (mask_p[12] << 22) | (mask_p[11] << 20)
2263		| (mask_p[10] << 18) | (mask_p[9] << 16)
2264		| (mask_p[8] << 14) | (mask_p[7] << 12)
2265		| (mask_p[6] << 10) | (mask_p[5] << 8)
2266		| (mask_p[4] << 6) | (mask_p[3] << 4)
2267		| (mask_p[2] << 2) | (mask_p[1] << 0);
2268	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2269	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2270
2271	tmp_mask = (mask_p[30] << 28)
2272		| (mask_p[29] << 26) | (mask_p[28] << 24)
2273		| (mask_p[27] << 22) | (mask_p[26] << 20)
2274		| (mask_p[25] << 18) | (mask_p[24] << 16)
2275		| (mask_p[23] << 14) | (mask_p[22] << 12)
2276		| (mask_p[21] << 10) | (mask_p[20] << 8)
2277		| (mask_p[19] << 6) | (mask_p[18] << 4)
2278		| (mask_p[17] << 2) | (mask_p[16] << 0);
2279	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2280	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2281
2282	tmp_mask = (mask_p[45] << 28)
2283		| (mask_p[44] << 26) | (mask_p[43] << 24)
2284		| (mask_p[42] << 22) | (mask_p[41] << 20)
2285		| (mask_p[40] << 18) | (mask_p[39] << 16)
2286		| (mask_p[38] << 14) | (mask_p[37] << 12)
2287		| (mask_p[36] << 10) | (mask_p[35] << 8)
2288		| (mask_p[34] << 6) | (mask_p[33] << 4)
2289		| (mask_p[32] << 2) | (mask_p[31] << 0);
2290	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2291	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2292
2293	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2294		| (mask_p[59] << 26) | (mask_p[58] << 24)
2295		| (mask_p[57] << 22) | (mask_p[56] << 20)
2296		| (mask_p[55] << 18) | (mask_p[54] << 16)
2297		| (mask_p[53] << 14) | (mask_p[52] << 12)
2298		| (mask_p[51] << 10) | (mask_p[50] << 8)
2299		| (mask_p[49] << 6) | (mask_p[48] << 4)
2300		| (mask_p[47] << 2) | (mask_p[46] << 0);
2301	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2302	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2303}
2304
2305static void ath9k_enable_rfkill(struct ath_hw *ah)
2306{
2307	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2308		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2309
2310	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2311		    AR_GPIO_INPUT_MUX2_RFSILENT);
2312
2313	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2314	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2315}
2316
2317int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2318		    bool bChannelChange)
2319{
2320	struct ath_common *common = ath9k_hw_common(ah);
2321	u32 saveLedState;
2322	struct ath9k_channel *curchan = ah->curchan;
2323	u32 saveDefAntenna;
2324	u32 macStaId1;
2325	u64 tsf = 0;
2326	int i, rx_chainmask, r;
2327
2328	ah->txchainmask = common->tx_chainmask;
2329	ah->rxchainmask = common->rx_chainmask;
2330
2331	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2332		return -EIO;
2333
2334	if (curchan && !ah->chip_fullsleep)
2335		ath9k_hw_getnf(ah, curchan);
2336
2337	if (bChannelChange &&
2338	    (ah->chip_fullsleep != true) &&
2339	    (ah->curchan != NULL) &&
2340	    (chan->channel != ah->curchan->channel) &&
2341	    ((chan->channelFlags & CHANNEL_ALL) ==
2342	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2343	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2344	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2345
2346		if (ath9k_hw_channel_change(ah, chan)) {
2347			ath9k_hw_loadnf(ah, ah->curchan);
2348			ath9k_hw_start_nfcal(ah);
2349			return 0;
2350		}
2351	}
2352
2353	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2354	if (saveDefAntenna == 0)
2355		saveDefAntenna = 1;
2356
2357	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2358
2359	/* For chips on which RTC reset is done, save TSF before it gets cleared */
2360	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2361		tsf = ath9k_hw_gettsf64(ah);
2362
2363	saveLedState = REG_READ(ah, AR_CFG_LED) &
2364		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2365		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2366
2367	ath9k_hw_mark_phy_inactive(ah);
2368
2369	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2370		REG_WRITE(ah,
2371			  AR9271_RESET_POWER_DOWN_CONTROL,
2372			  AR9271_RADIO_RF_RST);
2373		udelay(50);
2374	}
2375
2376	if (!ath9k_hw_chip_reset(ah, chan)) {
2377		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2378		return -EINVAL;
2379	}
2380
2381	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2382		ah->htc_reset_init = false;
2383		REG_WRITE(ah,
2384			  AR9271_RESET_POWER_DOWN_CONTROL,
2385			  AR9271_GATE_MAC_CTL);
2386		udelay(50);
2387	}
2388
2389	/* Restore TSF */
2390	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2391		ath9k_hw_settsf64(ah, tsf);
2392
2393	if (AR_SREV_9280_10_OR_LATER(ah))
2394		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2395
2396	if (AR_SREV_9287_12_OR_LATER(ah)) {
2397		/* Enable ASYNC FIFO */
2398		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2399				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2400		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2401		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2402				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2403		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2404				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2405	}
2406	r = ath9k_hw_process_ini(ah, chan);
2407	if (r)
2408		return r;
2409
2410	/* Setup MFP options for CCMP */
2411	if (AR_SREV_9280_20_OR_LATER(ah)) {
2412		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2413		 * frames when constructing CCMP AAD. */
2414		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2415			      0xc7ff);
2416		ah->sw_mgmt_crypto = false;
2417	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2418		/* Disable hardware crypto for management frames */
2419		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2420			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2421		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2422			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2423		ah->sw_mgmt_crypto = true;
2424	} else
2425		ah->sw_mgmt_crypto = true;
2426
2427	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2428		ath9k_hw_set_delta_slope(ah, chan);
2429
2430	if (AR_SREV_9280_10_OR_LATER(ah))
2431		ath9k_hw_9280_spur_mitigate(ah, chan);
2432	else
2433		ath9k_hw_spur_mitigate(ah, chan);
2434
2435	ah->eep_ops->set_board_values(ah, chan);
2436
2437	ath9k_hw_decrease_chain_power(ah, chan);
2438
2439	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2440	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2441		  | macStaId1
2442		  | AR_STA_ID1_RTS_USE_DEF
2443		  | (ah->config.
2444		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2445		  | ah->sta_id1_defaults);
2446	ath9k_hw_set_operating_mode(ah, ah->opmode);
2447
2448	ath_hw_setbssidmask(common);
2449
2450	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2451
2452	ath9k_hw_write_associd(ah);
2453
2454	REG_WRITE(ah, AR_ISR, ~0);
2455
2456	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2457
2458	if (AR_SREV_9280_10_OR_LATER(ah))
2459		ath9k_hw_ar9280_set_channel(ah, chan);
2460	else
2461		if (!(ath9k_hw_set_channel(ah, chan)))
2462			return -EIO;
2463
2464	for (i = 0; i < AR_NUM_DCU; i++)
2465		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2466
2467	ah->intr_txqs = 0;
2468	for (i = 0; i < ah->caps.total_queues; i++)
2469		ath9k_hw_resettxqueue(ah, i);
2470
2471	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2472	ath9k_hw_init_qos(ah);
2473
2474	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2475		ath9k_enable_rfkill(ah);
2476
2477	ath9k_hw_init_user_settings(ah);
2478
2479	if (AR_SREV_9287_12_OR_LATER(ah)) {
2480		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2481			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2482		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2483			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2484		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2485			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2486
2487		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2488		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2489
2490		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2491			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2492		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2493			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2494	}
2495	if (AR_SREV_9287_12_OR_LATER(ah)) {
2496		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2497				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2498	}
2499
2500	REG_WRITE(ah, AR_STA_ID1,
2501		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2502
2503	ath9k_hw_set_dma(ah);
2504
2505	REG_WRITE(ah, AR_OBS, 8);
2506
2507	if (ah->config.intr_mitigation) {
2508		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2509		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2510	}
2511
2512	ath9k_hw_init_bb(ah, chan);
2513
2514	if (!ath9k_hw_init_cal(ah, chan))
2515		return -EIO;
2516
2517	rx_chainmask = ah->rxchainmask;
2518	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2519		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2520		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2521	}
2522
2523	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2524
2525	/*
2526	 * For big endian systems turn on swapping for descriptors
2527	 */
2528	if (AR_SREV_9100(ah)) {
2529		u32 mask;
2530		mask = REG_READ(ah, AR_CFG);
2531		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2532			ath_print(common, ATH_DBG_RESET,
2533				"CFG Byte Swap Set 0x%x\n", mask);
2534		} else {
2535			mask =
2536				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2537			REG_WRITE(ah, AR_CFG, mask);
2538			ath_print(common, ATH_DBG_RESET,
2539				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2540		}
2541	} else {
2542		/* Configure AR9271 target WLAN */
2543                if (AR_SREV_9271(ah))
2544			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2545#ifdef __BIG_ENDIAN
2546                else
2547			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2548#endif
2549	}
2550
2551	if (ah->btcoex_hw.enabled)
2552		ath9k_hw_btcoex_enable(ah);
2553
2554	return 0;
2555}
2556
2557/************************/
2558/* Key Cache Management */
2559/************************/
2560
2561bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2562{
2563	u32 keyType;
2564
2565	if (entry >= ah->caps.keycache_size) {
2566		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2567			  "keychache entry %u out of range\n", entry);
2568		return false;
2569	}
2570
2571	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2572
2573	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2574	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2575	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2576	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2577	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2578	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2579	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2580	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2581
2582	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2583		u16 micentry = entry + 64;
2584
2585		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2586		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2587		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2588		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2589
2590	}
2591
2592	return true;
2593}
2594
2595bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2596{
2597	u32 macHi, macLo;
2598
2599	if (entry >= ah->caps.keycache_size) {
2600		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2601			  "keychache entry %u out of range\n", entry);
2602		return false;
2603	}
2604
2605	if (mac != NULL) {
2606		macHi = (mac[5] << 8) | mac[4];
2607		macLo = (mac[3] << 24) |
2608			(mac[2] << 16) |
2609			(mac[1] << 8) |
2610			mac[0];
2611		macLo >>= 1;
2612		macLo |= (macHi & 1) << 31;
2613		macHi >>= 1;
2614	} else {
2615		macLo = macHi = 0;
2616	}
2617	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2618	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2619
2620	return true;
2621}
2622
2623bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2624				 const struct ath9k_keyval *k,
2625				 const u8 *mac)
2626{
2627	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2628	struct ath_common *common = ath9k_hw_common(ah);
2629	u32 key0, key1, key2, key3, key4;
2630	u32 keyType;
2631
2632	if (entry >= pCap->keycache_size) {
2633		ath_print(common, ATH_DBG_FATAL,
2634			  "keycache entry %u out of range\n", entry);
2635		return false;
2636	}
2637
2638	switch (k->kv_type) {
2639	case ATH9K_CIPHER_AES_OCB:
2640		keyType = AR_KEYTABLE_TYPE_AES;
2641		break;
2642	case ATH9K_CIPHER_AES_CCM:
2643		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2644			ath_print(common, ATH_DBG_ANY,
2645				  "AES-CCM not supported by mac rev 0x%x\n",
2646				  ah->hw_version.macRev);
2647			return false;
2648		}
2649		keyType = AR_KEYTABLE_TYPE_CCM;
2650		break;
2651	case ATH9K_CIPHER_TKIP:
2652		keyType = AR_KEYTABLE_TYPE_TKIP;
2653		if (ATH9K_IS_MIC_ENABLED(ah)
2654		    && entry + 64 >= pCap->keycache_size) {
2655			ath_print(common, ATH_DBG_ANY,
2656				  "entry %u inappropriate for TKIP\n", entry);
2657			return false;
2658		}
2659		break;
2660	case ATH9K_CIPHER_WEP:
2661		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2662			ath_print(common, ATH_DBG_ANY,
2663				  "WEP key length %u too small\n", k->kv_len);
2664			return false;
2665		}
2666		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2667			keyType = AR_KEYTABLE_TYPE_40;
2668		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2669			keyType = AR_KEYTABLE_TYPE_104;
2670		else
2671			keyType = AR_KEYTABLE_TYPE_128;
2672		break;
2673	case ATH9K_CIPHER_CLR:
2674		keyType = AR_KEYTABLE_TYPE_CLR;
2675		break;
2676	default:
2677		ath_print(common, ATH_DBG_FATAL,
2678			  "cipher %u not supported\n", k->kv_type);
2679		return false;
2680	}
2681
2682	key0 = get_unaligned_le32(k->kv_val + 0);
2683	key1 = get_unaligned_le16(k->kv_val + 4);
2684	key2 = get_unaligned_le32(k->kv_val + 6);
2685	key3 = get_unaligned_le16(k->kv_val + 10);
2686	key4 = get_unaligned_le32(k->kv_val + 12);
2687	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2688		key4 &= 0xff;
2689
2690	/*
2691	 * Note: Key cache registers access special memory area that requires
2692	 * two 32-bit writes to actually update the values in the internal
2693	 * memory. Consequently, the exact order and pairs used here must be
2694	 * maintained.
2695	 */
2696
2697	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2698		u16 micentry = entry + 64;
2699
2700		/*
2701		 * Write inverted key[47:0] first to avoid Michael MIC errors
2702		 * on frames that could be sent or received at the same time.
2703		 * The correct key will be written in the end once everything
2704		 * else is ready.
2705		 */
2706		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2707		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2708
2709		/* Write key[95:48] */
2710		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2711		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2712
2713		/* Write key[127:96] and key type */
2714		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2715		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2716
2717		/* Write MAC address for the entry */
2718		(void) ath9k_hw_keysetmac(ah, entry, mac);
2719
2720		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2721			/*
2722			 * TKIP uses two key cache entries:
2723			 * Michael MIC TX/RX keys in the same key cache entry
2724			 * (idx = main index + 64):
2725			 * key0 [31:0] = RX key [31:0]
2726			 * key1 [15:0] = TX key [31:16]
2727			 * key1 [31:16] = reserved
2728			 * key2 [31:0] = RX key [63:32]
2729			 * key3 [15:0] = TX key [15:0]
2730			 * key3 [31:16] = reserved
2731			 * key4 [31:0] = TX key [63:32]
2732			 */
2733			u32 mic0, mic1, mic2, mic3, mic4;
2734
2735			mic0 = get_unaligned_le32(k->kv_mic + 0);
2736			mic2 = get_unaligned_le32(k->kv_mic + 4);
2737			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2738			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2739			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2740
2741			/* Write RX[31:0] and TX[31:16] */
2742			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2743			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2744
2745			/* Write RX[63:32] and TX[15:0] */
2746			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2747			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2748
2749			/* Write TX[63:32] and keyType(reserved) */
2750			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2751			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2752				  AR_KEYTABLE_TYPE_CLR);
2753
2754		} else {
2755			/*
2756			 * TKIP uses four key cache entries (two for group
2757			 * keys):
2758			 * Michael MIC TX/RX keys are in different key cache
2759			 * entries (idx = main index + 64 for TX and
2760			 * main index + 32 + 96 for RX):
2761			 * key0 [31:0] = TX/RX MIC key [31:0]
2762			 * key1 [31:0] = reserved
2763			 * key2 [31:0] = TX/RX MIC key [63:32]
2764			 * key3 [31:0] = reserved
2765			 * key4 [31:0] = reserved
2766			 *
2767			 * Upper layer code will call this function separately
2768			 * for TX and RX keys when these registers offsets are
2769			 * used.
2770			 */
2771			u32 mic0, mic2;
2772
2773			mic0 = get_unaligned_le32(k->kv_mic + 0);
2774			mic2 = get_unaligned_le32(k->kv_mic + 4);
2775
2776			/* Write MIC key[31:0] */
2777			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2778			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2779
2780			/* Write MIC key[63:32] */
2781			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2782			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2783
2784			/* Write TX[63:32] and keyType(reserved) */
2785			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2786			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2787				  AR_KEYTABLE_TYPE_CLR);
2788		}
2789
2790		/* MAC address registers are reserved for the MIC entry */
2791		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2792		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2793
2794		/*
2795		 * Write the correct (un-inverted) key[47:0] last to enable
2796		 * TKIP now that all other registers are set with correct
2797		 * values.
2798		 */
2799		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2800		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2801	} else {
2802		/* Write key[47:0] */
2803		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2804		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2805
2806		/* Write key[95:48] */
2807		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2808		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2809
2810		/* Write key[127:96] and key type */
2811		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2812		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2813
2814		/* Write MAC address for the entry */
2815		(void) ath9k_hw_keysetmac(ah, entry, mac);
2816	}
2817
2818	return true;
2819}
2820
2821bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2822{
2823	if (entry < ah->caps.keycache_size) {
2824		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2825		if (val & AR_KEYTABLE_VALID)
2826			return true;
2827	}
2828	return false;
2829}
2830
2831/******************************/
2832/* Power Management (Chipset) */
2833/******************************/
2834
2835static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2836{
2837	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2838	if (setChip) {
2839		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2840			    AR_RTC_FORCE_WAKE_EN);
2841		if (!AR_SREV_9100(ah))
2842			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2843
2844		REG_CLR_BIT(ah, (AR_RTC_RESET),
2845			    AR_RTC_RESET_EN);
2846	}
2847}
2848
2849static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2850{
2851	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2852	if (setChip) {
2853		struct ath9k_hw_capabilities *pCap = &ah->caps;
2854
2855		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2856			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2857				  AR_RTC_FORCE_WAKE_ON_INT);
2858		} else {
2859			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2860				    AR_RTC_FORCE_WAKE_EN);
2861		}
2862	}
2863}
2864
2865static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2866{
2867	u32 val;
2868	int i;
2869
2870	if (setChip) {
2871		if ((REG_READ(ah, AR_RTC_STATUS) &
2872		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2873			if (ath9k_hw_set_reset_reg(ah,
2874					   ATH9K_RESET_POWER_ON) != true) {
2875				return false;
2876			}
2877		}
2878		if (AR_SREV_9100(ah))
2879			REG_SET_BIT(ah, AR_RTC_RESET,
2880				    AR_RTC_RESET_EN);
2881
2882		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2883			    AR_RTC_FORCE_WAKE_EN);
2884		udelay(50);
2885
2886		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2887			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2888			if (val == AR_RTC_STATUS_ON)
2889				break;
2890			udelay(50);
2891			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2892				    AR_RTC_FORCE_WAKE_EN);
2893		}
2894		if (i == 0) {
2895			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2896				  "Failed to wakeup in %uus\n",
2897				  POWER_UP_TIME / 20);
2898			return false;
2899		}
2900	}
2901
2902	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2903
2904	return true;
2905}
2906
2907bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2908{
2909	struct ath_common *common = ath9k_hw_common(ah);
2910	int status = true, setChip = true;
2911	static const char *modes[] = {
2912		"AWAKE",
2913		"FULL-SLEEP",
2914		"NETWORK SLEEP",
2915		"UNDEFINED"
2916	};
2917
2918	if (ah->power_mode == mode)
2919		return status;
2920
2921	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2922		  modes[ah->power_mode], modes[mode]);
2923
2924	switch (mode) {
2925	case ATH9K_PM_AWAKE:
2926		status = ath9k_hw_set_power_awake(ah, setChip);
2927		break;
2928	case ATH9K_PM_FULL_SLEEP:
2929		ath9k_set_power_sleep(ah, setChip);
2930		ah->chip_fullsleep = true;
2931		break;
2932	case ATH9K_PM_NETWORK_SLEEP:
2933		ath9k_set_power_network_sleep(ah, setChip);
2934		break;
2935	default:
2936		ath_print(common, ATH_DBG_FATAL,
2937			  "Unknown power mode %u\n", mode);
2938		return false;
2939	}
2940	ah->power_mode = mode;
2941
2942	return status;
2943}
2944
2945/*
2946 * Helper for ASPM support.
2947 *
2948 * Disable PLL when in L0s as well as receiver clock when in L1.
2949 * This power saving option must be enabled through the SerDes.
2950 *
2951 * Programming the SerDes must go through the same 288 bit serial shift
2952 * register as the other analog registers.  Hence the 9 writes.
2953 */
2954void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2955{
2956	u8 i;
2957	u32 val;
2958
2959	if (ah->is_pciexpress != true)
2960		return;
2961
2962	/* Do not touch SerDes registers */
2963	if (ah->config.pcie_powersave_enable == 2)
2964		return;
2965
2966	/* Nothing to do on restore for 11N */
2967	if (!restore) {
2968		if (AR_SREV_9280_20_OR_LATER(ah)) {
2969			/*
2970			 * AR9280 2.0 or later chips use SerDes values from the
2971			 * initvals.h initialized depending on chipset during
2972			 * ath9k_hw_init()
2973			 */
2974			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2975				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2976					  INI_RA(&ah->iniPcieSerdes, i, 1));
2977			}
2978		} else if (AR_SREV_9280(ah) &&
2979			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2980			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2981			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2982
2983			/* RX shut off when elecidle is asserted */
2984			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2985			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2986			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2987
2988			/* Shut off CLKREQ active in L1 */
2989			if (ah->config.pcie_clock_req)
2990				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2991			else
2992				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2993
2994			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2995			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2996			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2997
2998			/* Load the new settings */
2999			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3000
3001		} else {
3002			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3003			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3004
3005			/* RX shut off when elecidle is asserted */
3006			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3007			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3008			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3009
3010			/*
3011			 * Ignore ah->ah_config.pcie_clock_req setting for
3012			 * pre-AR9280 11n
3013			 */
3014			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3015
3016			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3017			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3018			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3019
3020			/* Load the new settings */
3021			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3022		}
3023
3024		udelay(1000);
3025
3026		/* set bit 19 to allow forcing of pcie core into L1 state */
3027		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3028
3029		/* Several PCIe massages to ensure proper behaviour */
3030		if (ah->config.pcie_waen) {
3031			val = ah->config.pcie_waen;
3032			if (!power_off)
3033				val &= (~AR_WA_D3_L1_DISABLE);
3034		} else {
3035			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3036			    AR_SREV_9287(ah)) {
3037				val = AR9285_WA_DEFAULT;
3038				if (!power_off)
3039					val &= (~AR_WA_D3_L1_DISABLE);
3040			} else if (AR_SREV_9280(ah)) {
3041				/*
3042				 * On AR9280 chips bit 22 of 0x4004 needs to be
3043				 * set otherwise card may disappear.
3044				 */
3045				val = AR9280_WA_DEFAULT;
3046				if (!power_off)
3047					val &= (~AR_WA_D3_L1_DISABLE);
3048			} else
3049				val = AR_WA_DEFAULT;
3050		}
3051
3052		REG_WRITE(ah, AR_WA, val);
3053	}
3054
3055	if (power_off) {
3056		/*
3057		 * Set PCIe workaround bits
3058		 * bit 14 in WA register (disable L1) should only
3059		 * be set when device enters D3 and be cleared
3060		 * when device comes back to D0.
3061		 */
3062		if (ah->config.pcie_waen) {
3063			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3064				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3065		} else {
3066			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3067			      AR_SREV_9287(ah)) &&
3068			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3069			    (AR_SREV_9280(ah) &&
3070			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3071				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3072			}
3073		}
3074	}
3075}
3076
3077/**********************/
3078/* Interrupt Handling */
3079/**********************/
3080
3081bool ath9k_hw_intrpend(struct ath_hw *ah)
3082{
3083	u32 host_isr;
3084
3085	if (AR_SREV_9100(ah))
3086		return true;
3087
3088	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3089	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3090		return true;
3091
3092	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3093	if ((host_isr & AR_INTR_SYNC_DEFAULT)
3094	    && (host_isr != AR_INTR_SPURIOUS))
3095		return true;
3096
3097	return false;
3098}
3099
3100bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3101{
3102	u32 isr = 0;
3103	u32 mask2 = 0;
3104	struct ath9k_hw_capabilities *pCap = &ah->caps;
3105	u32 sync_cause = 0;
3106	bool fatal_int = false;
3107	struct ath_common *common = ath9k_hw_common(ah);
3108
3109	if (!AR_SREV_9100(ah)) {
3110		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3111			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3112			    == AR_RTC_STATUS_ON) {
3113				isr = REG_READ(ah, AR_ISR);
3114			}
3115		}
3116
3117		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3118			AR_INTR_SYNC_DEFAULT;
3119
3120		*masked = 0;
3121
3122		if (!isr && !sync_cause)
3123			return false;
3124	} else {
3125		*masked = 0;
3126		isr = REG_READ(ah, AR_ISR);
3127	}
3128
3129	if (isr) {
3130		if (isr & AR_ISR_BCNMISC) {
3131			u32 isr2;
3132			isr2 = REG_READ(ah, AR_ISR_S2);
3133			if (isr2 & AR_ISR_S2_TIM)
3134				mask2 |= ATH9K_INT_TIM;
3135			if (isr2 & AR_ISR_S2_DTIM)
3136				mask2 |= ATH9K_INT_DTIM;
3137			if (isr2 & AR_ISR_S2_DTIMSYNC)
3138				mask2 |= ATH9K_INT_DTIMSYNC;
3139			if (isr2 & (AR_ISR_S2_CABEND))
3140				mask2 |= ATH9K_INT_CABEND;
3141			if (isr2 & AR_ISR_S2_GTT)
3142				mask2 |= ATH9K_INT_GTT;
3143			if (isr2 & AR_ISR_S2_CST)
3144				mask2 |= ATH9K_INT_CST;
3145			if (isr2 & AR_ISR_S2_TSFOOR)
3146				mask2 |= ATH9K_INT_TSFOOR;
3147		}
3148
3149		isr = REG_READ(ah, AR_ISR_RAC);
3150		if (isr == 0xffffffff) {
3151			*masked = 0;
3152			return false;
3153		}
3154
3155		*masked = isr & ATH9K_INT_COMMON;
3156
3157		if (ah->config.intr_mitigation) {
3158			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3159				*masked |= ATH9K_INT_RX;
3160		}
3161
3162		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3163			*masked |= ATH9K_INT_RX;
3164		if (isr &
3165		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3166		     AR_ISR_TXEOL)) {
3167			u32 s0_s, s1_s;
3168
3169			*masked |= ATH9K_INT_TX;
3170
3171			s0_s = REG_READ(ah, AR_ISR_S0_S);
3172			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3173			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3174
3175			s1_s = REG_READ(ah, AR_ISR_S1_S);
3176			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3177			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3178		}
3179
3180		if (isr & AR_ISR_RXORN) {
3181			ath_print(common, ATH_DBG_INTERRUPT,
3182				  "receive FIFO overrun interrupt\n");
3183		}
3184
3185		if (!AR_SREV_9100(ah)) {
3186			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3187				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3188				if (isr5 & AR_ISR_S5_TIM_TIMER)
3189					*masked |= ATH9K_INT_TIM_TIMER;
3190			}
3191		}
3192
3193		*masked |= mask2;
3194	}
3195
3196	if (AR_SREV_9100(ah))
3197		return true;
3198
3199	if (isr & AR_ISR_GENTMR) {
3200		u32 s5_s;
3201
3202		s5_s = REG_READ(ah, AR_ISR_S5_S);
3203		if (isr & AR_ISR_GENTMR) {
3204			ah->intr_gen_timer_trigger =
3205				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3206
3207			ah->intr_gen_timer_thresh =
3208				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3209
3210			if (ah->intr_gen_timer_trigger)
3211				*masked |= ATH9K_INT_GENTIMER;
3212
3213		}
3214	}
3215
3216	if (sync_cause) {
3217		fatal_int =
3218			(sync_cause &
3219			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3220			? true : false;
3221
3222		if (fatal_int) {
3223			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3224				ath_print(common, ATH_DBG_ANY,
3225					  "received PCI FATAL interrupt\n");
3226			}
3227			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3228				ath_print(common, ATH_DBG_ANY,
3229					  "received PCI PERR interrupt\n");
3230			}
3231			*masked |= ATH9K_INT_FATAL;
3232		}
3233		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3234			ath_print(common, ATH_DBG_INTERRUPT,
3235				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3236			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3237			REG_WRITE(ah, AR_RC, 0);
3238			*masked |= ATH9K_INT_FATAL;
3239		}
3240		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3241			ath_print(common, ATH_DBG_INTERRUPT,
3242				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3243		}
3244
3245		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3246		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3247	}
3248
3249	return true;
3250}
3251
3252enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3253{
3254	u32 omask = ah->mask_reg;
3255	u32 mask, mask2;
3256	struct ath9k_hw_capabilities *pCap = &ah->caps;
3257	struct ath_common *common = ath9k_hw_common(ah);
3258
3259	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3260
3261	if (omask & ATH9K_INT_GLOBAL) {
3262		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
3263		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3264		(void) REG_READ(ah, AR_IER);
3265		if (!AR_SREV_9100(ah)) {
3266			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3267			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3268
3269			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3270			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3271		}
3272	}
3273
3274	mask = ints & ATH9K_INT_COMMON;
3275	mask2 = 0;
3276
3277	if (ints & ATH9K_INT_TX) {
3278		if (ah->txok_interrupt_mask)
3279			mask |= AR_IMR_TXOK;
3280		if (ah->txdesc_interrupt_mask)
3281			mask |= AR_IMR_TXDESC;
3282		if (ah->txerr_interrupt_mask)
3283			mask |= AR_IMR_TXERR;
3284		if (ah->txeol_interrupt_mask)
3285			mask |= AR_IMR_TXEOL;
3286	}
3287	if (ints & ATH9K_INT_RX) {
3288		mask |= AR_IMR_RXERR;
3289		if (ah->config.intr_mitigation)
3290			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3291		else
3292			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3293		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3294			mask |= AR_IMR_GENTMR;
3295	}
3296
3297	if (ints & (ATH9K_INT_BMISC)) {
3298		mask |= AR_IMR_BCNMISC;
3299		if (ints & ATH9K_INT_TIM)
3300			mask2 |= AR_IMR_S2_TIM;
3301		if (ints & ATH9K_INT_DTIM)
3302			mask2 |= AR_IMR_S2_DTIM;
3303		if (ints & ATH9K_INT_DTIMSYNC)
3304			mask2 |= AR_IMR_S2_DTIMSYNC;
3305		if (ints & ATH9K_INT_CABEND)
3306			mask2 |= AR_IMR_S2_CABEND;
3307		if (ints & ATH9K_INT_TSFOOR)
3308			mask2 |= AR_IMR_S2_TSFOOR;
3309	}
3310
3311	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3312		mask |= AR_IMR_BCNMISC;
3313		if (ints & ATH9K_INT_GTT)
3314			mask2 |= AR_IMR_S2_GTT;
3315		if (ints & ATH9K_INT_CST)
3316			mask2 |= AR_IMR_S2_CST;
3317	}
3318
3319	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3320	REG_WRITE(ah, AR_IMR, mask);
3321	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3322					   AR_IMR_S2_DTIM |
3323					   AR_IMR_S2_DTIMSYNC |
3324					   AR_IMR_S2_CABEND |
3325					   AR_IMR_S2_CABTO |
3326					   AR_IMR_S2_TSFOOR |
3327					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
3328	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3329	ah->mask_reg = ints;
3330
3331	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3332		if (ints & ATH9K_INT_TIM_TIMER)
3333			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3334		else
3335			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3336	}
3337
3338	if (ints & ATH9K_INT_GLOBAL) {
3339		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
3340		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3341		if (!AR_SREV_9100(ah)) {
3342			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3343				  AR_INTR_MAC_IRQ);
3344			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3345
3346
3347			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3348				  AR_INTR_SYNC_DEFAULT);
3349			REG_WRITE(ah, AR_INTR_SYNC_MASK,
3350				  AR_INTR_SYNC_DEFAULT);
3351		}
3352		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3353			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3354	}
3355
3356	return omask;
3357}
3358
3359/*******************/
3360/* Beacon Handling */
3361/*******************/
3362
3363void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3364{
3365	int flags = 0;
3366
3367	ah->beacon_interval = beacon_period;
3368
3369	switch (ah->opmode) {
3370	case NL80211_IFTYPE_STATION:
3371	case NL80211_IFTYPE_MONITOR:
3372		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3373		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3374		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3375		flags |= AR_TBTT_TIMER_EN;
3376		break;
3377	case NL80211_IFTYPE_ADHOC:
3378	case NL80211_IFTYPE_MESH_POINT:
3379		REG_SET_BIT(ah, AR_TXCFG,
3380			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3381		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3382			  TU_TO_USEC(next_beacon +
3383				     (ah->atim_window ? ah->
3384				      atim_window : 1)));
3385		flags |= AR_NDP_TIMER_EN;
3386	case NL80211_IFTYPE_AP:
3387		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3388		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3389			  TU_TO_USEC(next_beacon -
3390				     ah->config.
3391				     dma_beacon_response_time));
3392		REG_WRITE(ah, AR_NEXT_SWBA,
3393			  TU_TO_USEC(next_beacon -
3394				     ah->config.
3395				     sw_beacon_response_time));
3396		flags |=
3397			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3398		break;
3399	default:
3400		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3401			  "%s: unsupported opmode: %d\n",
3402			  __func__, ah->opmode);
3403		return;
3404		break;
3405	}
3406
3407	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3408	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3409	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3410	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3411
3412	beacon_period &= ~ATH9K_BEACON_ENA;
3413	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3414		beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3415		ath9k_hw_reset_tsf(ah);
3416	}
3417
3418	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3419}
3420
3421void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3422				    const struct ath9k_beacon_state *bs)
3423{
3424	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3425	struct ath9k_hw_capabilities *pCap = &ah->caps;
3426	struct ath_common *common = ath9k_hw_common(ah);
3427
3428	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3429
3430	REG_WRITE(ah, AR_BEACON_PERIOD,
3431		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3432	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3433		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3434
3435	REG_RMW_FIELD(ah, AR_RSSI_THR,
3436		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3437
3438	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3439
3440	if (bs->bs_sleepduration > beaconintval)
3441		beaconintval = bs->bs_sleepduration;
3442
3443	dtimperiod = bs->bs_dtimperiod;
3444	if (bs->bs_sleepduration > dtimperiod)
3445		dtimperiod = bs->bs_sleepduration;
3446
3447	if (beaconintval == dtimperiod)
3448		nextTbtt = bs->bs_nextdtim;
3449	else
3450		nextTbtt = bs->bs_nexttbtt;
3451
3452	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3453	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3454	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3455	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3456
3457	REG_WRITE(ah, AR_NEXT_DTIM,
3458		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3459	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3460
3461	REG_WRITE(ah, AR_SLEEP1,
3462		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3463		  | AR_SLEEP1_ASSUME_DTIM);
3464
3465	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3466		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3467	else
3468		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3469
3470	REG_WRITE(ah, AR_SLEEP2,
3471		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3472
3473	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3474	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3475
3476	REG_SET_BIT(ah, AR_TIMER_MODE,
3477		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3478		    AR_DTIM_TIMER_EN);
3479
3480	/* TSF Out of Range Threshold */
3481	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3482}
3483
3484/*******************/
3485/* HW Capabilities */
3486/*******************/
3487
3488void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3489{
3490	struct ath9k_hw_capabilities *pCap = &ah->caps;
3491	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3492	struct ath_common *common = ath9k_hw_common(ah);
3493	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3494
3495	u16 capField = 0, eeval;
3496
3497	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3498	regulatory->current_rd = eeval;
3499
3500	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3501	if (AR_SREV_9285_10_OR_LATER(ah))
3502		eeval |= AR9285_RDEXT_DEFAULT;
3503	regulatory->current_rd_ext = eeval;
3504
3505	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3506
3507	if (ah->opmode != NL80211_IFTYPE_AP &&
3508	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3509		if (regulatory->current_rd == 0x64 ||
3510		    regulatory->current_rd == 0x65)
3511			regulatory->current_rd += 5;
3512		else if (regulatory->current_rd == 0x41)
3513			regulatory->current_rd = 0x43;
3514		ath_print(common, ATH_DBG_REGULATORY,
3515			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3516	}
3517
3518	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3519	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3520
3521	if (eeval & AR5416_OPFLAGS_11A) {
3522		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3523		if (ah->config.ht_enable) {
3524			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3525				set_bit(ATH9K_MODE_11NA_HT20,
3526					pCap->wireless_modes);
3527			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3528				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3529					pCap->wireless_modes);
3530				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3531					pCap->wireless_modes);
3532			}
3533		}
3534	}
3535
3536	if (eeval & AR5416_OPFLAGS_11G) {
3537		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3538		if (ah->config.ht_enable) {
3539			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3540				set_bit(ATH9K_MODE_11NG_HT20,
3541					pCap->wireless_modes);
3542			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3543				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3544					pCap->wireless_modes);
3545				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3546					pCap->wireless_modes);
3547			}
3548		}
3549	}
3550
3551	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3552	/*
3553	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3554	 * the EEPROM.
3555	 */
3556	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3557	    !(eeval & AR5416_OPFLAGS_11A) &&
3558	    !(AR_SREV_9271(ah)))
3559		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3560		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3561	else
3562		/* Use rx_chainmask from EEPROM. */
3563		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3564
3565	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3566		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3567
3568	pCap->low_2ghz_chan = 2312;
3569	pCap->high_2ghz_chan = 2732;
3570
3571	pCap->low_5ghz_chan = 4920;
3572	pCap->high_5ghz_chan = 6100;
3573
3574	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3575	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3576	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3577
3578	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3579	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3580	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3581
3582	if (ah->config.ht_enable)
3583		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3584	else
3585		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3586
3587	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3588	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3589	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3590	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3591
3592	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3593		pCap->total_queues =
3594			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3595	else
3596		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3597
3598	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3599		pCap->keycache_size =
3600			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3601	else
3602		pCap->keycache_size = AR_KEYTABLE_SIZE;
3603
3604	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3605	pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3606
3607	if (AR_SREV_9285_10_OR_LATER(ah))
3608		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3609	else if (AR_SREV_9280_10_OR_LATER(ah))
3610		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3611	else
3612		pCap->num_gpio_pins = AR_NUM_GPIO;
3613
3614	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3615		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3616		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3617	} else {
3618		pCap->rts_aggr_limit = (8 * 1024);
3619	}
3620
3621	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3622
3623#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3624	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3625	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3626		ah->rfkill_gpio =
3627			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3628		ah->rfkill_polarity =
3629			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3630
3631		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3632	}
3633#endif
3634
3635	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3636
3637	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3638		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3639	else
3640		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3641
3642	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3643		pCap->reg_cap =
3644			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3645			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3646			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3647			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3648	} else {
3649		pCap->reg_cap =
3650			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3651			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3652	}
3653
3654	pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3655
3656	pCap->num_antcfg_5ghz =
3657		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3658	pCap->num_antcfg_2ghz =
3659		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3660
3661	if (AR_SREV_9280_10_OR_LATER(ah) &&
3662	    ath9k_hw_btcoex_supported(ah)) {
3663		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3664		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3665
3666		if (AR_SREV_9285(ah)) {
3667			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3668			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3669		} else {
3670			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3671		}
3672	} else {
3673		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3674	}
3675}
3676
3677bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3678			    u32 capability, u32 *result)
3679{
3680	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3681	switch (type) {
3682	case ATH9K_CAP_CIPHER:
3683		switch (capability) {
3684		case ATH9K_CIPHER_AES_CCM:
3685		case ATH9K_CIPHER_AES_OCB:
3686		case ATH9K_CIPHER_TKIP:
3687		case ATH9K_CIPHER_WEP:
3688		case ATH9K_CIPHER_MIC:
3689		case ATH9K_CIPHER_CLR:
3690			return true;
3691		default:
3692			return false;
3693		}
3694	case ATH9K_CAP_TKIP_MIC:
3695		switch (capability) {
3696		case 0:
3697			return true;
3698		case 1:
3699			return (ah->sta_id1_defaults &
3700				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3701			false;
3702		}
3703	case ATH9K_CAP_TKIP_SPLIT:
3704		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3705			false : true;
3706	case ATH9K_CAP_DIVERSITY:
3707		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3708			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3709			true : false;
3710	case ATH9K_CAP_MCAST_KEYSRCH:
3711		switch (capability) {
3712		case 0:
3713			return true;
3714		case 1:
3715			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3716				return false;
3717			} else {
3718				return (ah->sta_id1_defaults &
3719					AR_STA_ID1_MCAST_KSRCH) ? true :
3720					false;
3721			}
3722		}
3723		return false;
3724	case ATH9K_CAP_TXPOW:
3725		switch (capability) {
3726		case 0:
3727			return 0;
3728		case 1:
3729			*result = regulatory->power_limit;
3730			return 0;
3731		case 2:
3732			*result = regulatory->max_power_level;
3733			return 0;
3734		case 3:
3735			*result = regulatory->tp_scale;
3736			return 0;
3737		}
3738		return false;
3739	case ATH9K_CAP_DS:
3740		return (AR_SREV_9280_20_OR_LATER(ah) &&
3741			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3742			? false : true;
3743	default:
3744		return false;
3745	}
3746}
3747
3748bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3749			    u32 capability, u32 setting, int *status)
3750{
3751	u32 v;
3752
3753	switch (type) {
3754	case ATH9K_CAP_TKIP_MIC:
3755		if (setting)
3756			ah->sta_id1_defaults |=
3757				AR_STA_ID1_CRPT_MIC_ENABLE;
3758		else
3759			ah->sta_id1_defaults &=
3760				~AR_STA_ID1_CRPT_MIC_ENABLE;
3761		return true;
3762	case ATH9K_CAP_DIVERSITY:
3763		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3764		if (setting)
3765			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3766		else
3767			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3768		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3769		return true;
3770	case ATH9K_CAP_MCAST_KEYSRCH:
3771		if (setting)
3772			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3773		else
3774			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3775		return true;
3776	default:
3777		return false;
3778	}
3779}
3780
3781/****************************/
3782/* GPIO / RFKILL / Antennae */
3783/****************************/
3784
3785static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3786					 u32 gpio, u32 type)
3787{
3788	int addr;
3789	u32 gpio_shift, tmp;
3790
3791	if (gpio > 11)
3792		addr = AR_GPIO_OUTPUT_MUX3;
3793	else if (gpio > 5)
3794		addr = AR_GPIO_OUTPUT_MUX2;
3795	else
3796		addr = AR_GPIO_OUTPUT_MUX1;
3797
3798	gpio_shift = (gpio % 6) * 5;
3799
3800	if (AR_SREV_9280_20_OR_LATER(ah)
3801	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3802		REG_RMW(ah, addr, (type << gpio_shift),
3803			(0x1f << gpio_shift));
3804	} else {
3805		tmp = REG_READ(ah, addr);
3806		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3807		tmp &= ~(0x1f << gpio_shift);
3808		tmp |= (type << gpio_shift);
3809		REG_WRITE(ah, addr, tmp);
3810	}
3811}
3812
3813void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3814{
3815	u32 gpio_shift;
3816
3817	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3818
3819	gpio_shift = gpio << 1;
3820
3821	REG_RMW(ah,
3822		AR_GPIO_OE_OUT,
3823		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3824		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3825}
3826
3827u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3828{
3829#define MS_REG_READ(x, y) \
3830	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3831
3832	if (gpio >= ah->caps.num_gpio_pins)
3833		return 0xffffffff;
3834
3835	if (AR_SREV_9287_10_OR_LATER(ah))
3836		return MS_REG_READ(AR9287, gpio) != 0;
3837	else if (AR_SREV_9285_10_OR_LATER(ah))
3838		return MS_REG_READ(AR9285, gpio) != 0;
3839	else if (AR_SREV_9280_10_OR_LATER(ah))
3840		return MS_REG_READ(AR928X, gpio) != 0;
3841	else
3842		return MS_REG_READ(AR, gpio) != 0;
3843}
3844
3845void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3846			 u32 ah_signal_type)
3847{
3848	u32 gpio_shift;
3849
3850	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3851
3852	gpio_shift = 2 * gpio;
3853
3854	REG_RMW(ah,
3855		AR_GPIO_OE_OUT,
3856		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3857		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3858}
3859
3860void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3861{
3862	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3863		AR_GPIO_BIT(gpio));
3864}
3865
3866u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3867{
3868	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3869}
3870
3871void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3872{
3873	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3874}
3875
3876bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3877			       enum ath9k_ant_setting settings,
3878			       struct ath9k_channel *chan,
3879			       u8 *tx_chainmask,
3880			       u8 *rx_chainmask,
3881			       u8 *antenna_cfgd)
3882{
3883	static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3884
3885	if (AR_SREV_9280(ah)) {
3886		if (!tx_chainmask_cfg) {
3887
3888			tx_chainmask_cfg = *tx_chainmask;
3889			rx_chainmask_cfg = *rx_chainmask;
3890		}
3891
3892		switch (settings) {
3893		case ATH9K_ANT_FIXED_A:
3894			*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3895			*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3896			*antenna_cfgd = true;
3897			break;
3898		case ATH9K_ANT_FIXED_B:
3899			if (ah->caps.tx_chainmask >
3900			    ATH9K_ANTENNA1_CHAINMASK) {
3901				*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3902			}
3903			*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3904			*antenna_cfgd = true;
3905			break;
3906		case ATH9K_ANT_VARIABLE:
3907			*tx_chainmask = tx_chainmask_cfg;
3908			*rx_chainmask = rx_chainmask_cfg;
3909			*antenna_cfgd = true;
3910			break;
3911		default:
3912			break;
3913		}
3914	} else {
3915		ah->config.diversity_control = settings;
3916	}
3917
3918	return true;
3919}
3920
3921/*********************/
3922/* General Operation */
3923/*********************/
3924
3925u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3926{
3927	u32 bits = REG_READ(ah, AR_RX_FILTER);
3928	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3929
3930	if (phybits & AR_PHY_ERR_RADAR)
3931		bits |= ATH9K_RX_FILTER_PHYRADAR;
3932	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3933		bits |= ATH9K_RX_FILTER_PHYERR;
3934
3935	return bits;
3936}
3937
3938void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3939{
3940	u32 phybits;
3941
3942	REG_WRITE(ah, AR_RX_FILTER, bits);
3943
3944	phybits = 0;
3945	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3946		phybits |= AR_PHY_ERR_RADAR;
3947	if (bits & ATH9K_RX_FILTER_PHYERR)
3948		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3949	REG_WRITE(ah, AR_PHY_ERR, phybits);
3950
3951	if (phybits)
3952		REG_WRITE(ah, AR_RXCFG,
3953			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3954	else
3955		REG_WRITE(ah, AR_RXCFG,
3956			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3957}
3958
3959bool ath9k_hw_phy_disable(struct ath_hw *ah)
3960{
3961	return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3962}
3963
3964bool ath9k_hw_disable(struct ath_hw *ah)
3965{
3966	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3967		return false;
3968
3969	return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3970}
3971
3972void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3973{
3974	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3975	struct ath9k_channel *chan = ah->curchan;
3976	struct ieee80211_channel *channel = chan->chan;
3977
3978	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3979
3980	ah->eep_ops->set_txpower(ah, chan,
3981				 ath9k_regd_get_ctl(regulatory, chan),
3982				 channel->max_antenna_gain * 2,
3983				 channel->max_power * 2,
3984				 min((u32) MAX_RATE_POWER,
3985				 (u32) regulatory->power_limit));
3986}
3987
3988void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3989{
3990	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3991}
3992
3993void ath9k_hw_setopmode(struct ath_hw *ah)
3994{
3995	ath9k_hw_set_operating_mode(ah, ah->opmode);
3996}
3997
3998void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3999{
4000	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4001	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4002}
4003
4004void ath9k_hw_write_associd(struct ath_hw *ah)
4005{
4006	struct ath_common *common = ath9k_hw_common(ah);
4007
4008	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
4009	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
4010		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4011}
4012
4013u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4014{
4015	u64 tsf;
4016
4017	tsf = REG_READ(ah, AR_TSF_U32);
4018	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4019
4020	return tsf;
4021}
4022
4023void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4024{
4025	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4026	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4027}
4028
4029void ath9k_hw_reset_tsf(struct ath_hw *ah)
4030{
4031	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4032			   AH_TSF_WRITE_TIMEOUT))
4033		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
4034			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4035
4036	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4037}
4038
4039void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4040{
4041	if (setting)
4042		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4043	else
4044		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4045}
4046
4047bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4048{
4049	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4050		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
4051			  "bad slot time %u\n", us);
4052		ah->slottime = (u32) -1;
4053		return false;
4054	} else {
4055		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4056		ah->slottime = us;
4057		return true;
4058	}
4059}
4060
4061void ath9k_hw_set11nmac2040(struct ath_hw *ah)
4062{
4063	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
4064	u32 macmode;
4065
4066	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
4067		macmode = AR_2040_JOINED_RX_CLEAR;
4068	else
4069		macmode = 0;
4070
4071	REG_WRITE(ah, AR_2040_MODE, macmode);
4072}
4073
4074/* HW Generic timers configuration */
4075
4076static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4077{
4078	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4079	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4080	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4081	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4082	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4083	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4084	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4085	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4086	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4087	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4088				AR_NDP2_TIMER_MODE, 0x0002},
4089	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4090				AR_NDP2_TIMER_MODE, 0x0004},
4091	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4092				AR_NDP2_TIMER_MODE, 0x0008},
4093	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4094				AR_NDP2_TIMER_MODE, 0x0010},
4095	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4096				AR_NDP2_TIMER_MODE, 0x0020},
4097	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4098				AR_NDP2_TIMER_MODE, 0x0040},
4099	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4100				AR_NDP2_TIMER_MODE, 0x0080}
4101};
4102
4103/* HW generic timer primitives */
4104
4105/* compute and clear index of rightmost 1 */
4106static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4107{
4108	u32 b;
4109
4110	b = *mask;
4111	b &= (0-b);
4112	*mask &= ~b;
4113	b *= debruijn32;
4114	b >>= 27;
4115
4116	return timer_table->gen_timer_index[b];
4117}
4118
4119u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4120{
4121	return REG_READ(ah, AR_TSF_L32);
4122}
4123
4124struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4125					  void (*trigger)(void *),
4126					  void (*overflow)(void *),
4127					  void *arg,
4128					  u8 timer_index)
4129{
4130	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4131	struct ath_gen_timer *timer;
4132
4133	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4134
4135	if (timer == NULL) {
4136		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
4137			  "Failed to allocate memory"
4138			  "for hw timer[%d]\n", timer_index);
4139		return NULL;
4140	}
4141
4142	/* allocate a hardware generic timer slot */
4143	timer_table->timers[timer_index] = timer;
4144	timer->index = timer_index;
4145	timer->trigger = trigger;
4146	timer->overflow = overflow;
4147	timer->arg = arg;
4148
4149	return timer;
4150}
4151
4152void ath9k_hw_gen_timer_start(struct ath_hw *ah,
4153			      struct ath_gen_timer *timer,
4154			      u32 timer_next,
4155			      u32 timer_period)
4156{
4157	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4158	u32 tsf;
4159
4160	BUG_ON(!timer_period);
4161
4162	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4163
4164	tsf = ath9k_hw_gettsf32(ah);
4165
4166	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
4167		  "curent tsf %x period %x"
4168		  "timer_next %x\n", tsf, timer_period, timer_next);
4169
4170	/*
4171	 * Pull timer_next forward if the current TSF already passed it
4172	 * because of software latency
4173	 */
4174	if (timer_next < tsf)
4175		timer_next = tsf + timer_period;
4176
4177	/*
4178	 * Program generic timer registers
4179	 */
4180	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4181		 timer_next);
4182	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4183		  timer_period);
4184	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4185		    gen_tmr_configuration[timer->index].mode_mask);
4186
4187	/* Enable both trigger and thresh interrupt masks */
4188	REG_SET_BIT(ah, AR_IMR_S5,
4189		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4190		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4191}
4192
4193void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4194{
4195	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4196
4197	if ((timer->index < AR_FIRST_NDP_TIMER) ||
4198		(timer->index >= ATH_MAX_GEN_TIMER)) {
4199		return;
4200	}
4201
4202	/* Clear generic timer enable bits. */
4203	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4204			gen_tmr_configuration[timer->index].mode_mask);
4205
4206	/* Disable both trigger and thresh interrupt masks */
4207	REG_CLR_BIT(ah, AR_IMR_S5,
4208		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4209		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4210
4211	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4212}
4213
4214void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4215{
4216	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4217
4218	/* free the hardware generic timer slot */
4219	timer_table->timers[timer->index] = NULL;
4220	kfree(timer);
4221}
4222
4223/*
4224 * Generic Timer Interrupts handling
4225 */
4226void ath_gen_timer_isr(struct ath_hw *ah)
4227{
4228	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4229	struct ath_gen_timer *timer;
4230	struct ath_common *common = ath9k_hw_common(ah);
4231	u32 trigger_mask, thresh_mask, index;
4232
4233	/* get hardware generic timer interrupt status */
4234	trigger_mask = ah->intr_gen_timer_trigger;
4235	thresh_mask = ah->intr_gen_timer_thresh;
4236	trigger_mask &= timer_table->timer_mask.val;
4237	thresh_mask &= timer_table->timer_mask.val;
4238
4239	trigger_mask &= ~thresh_mask;
4240
4241	while (thresh_mask) {
4242		index = rightmost_index(timer_table, &thresh_mask);
4243		timer = timer_table->timers[index];
4244		BUG_ON(!timer);
4245		ath_print(common, ATH_DBG_HWTIMER,
4246			  "TSF overflow for Gen timer %d\n", index);
4247		timer->overflow(timer->arg);
4248	}
4249
4250	while (trigger_mask) {
4251		index = rightmost_index(timer_table, &trigger_mask);
4252		timer = timer_table->timers[index];
4253		BUG_ON(!timer);
4254		ath_print(common, ATH_DBG_HWTIMER,
4255			  "Gen timer[%d] trigger\n", index);
4256		timer->trigger(timer->arg);
4257	}
4258}
4259