hw.c revision d4659912b557e9f68c0ad8be14e2cafd3210dd16
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <asm/unaligned.h>
20
21#include "hw.h"
22#include "hw-ops.h"
23#include "rc.h"
24#include "ar9003_mac.h"
25
26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28MODULE_AUTHOR("Atheros Communications");
29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31MODULE_LICENSE("Dual BSD/GPL");
32
33static int __init ath9k_init(void)
34{
35	return 0;
36}
37module_init(ath9k_init);
38
39static void __exit ath9k_exit(void)
40{
41	return;
42}
43module_exit(ath9k_exit);
44
45/* Private hardware callbacks */
46
47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48{
49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50}
51
52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53{
54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55}
56
57static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58{
59	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61	return priv_ops->macversion_supported(ah->hw_version.macVersion);
62}
63
64static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65					struct ath9k_channel *chan)
66{
67	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68}
69
70static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71{
72	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73		return;
74
75	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76}
77
78static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79{
80	/* You will not have this callback if using the old ANI */
81	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82		return;
83
84	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85}
86
87/********************/
88/* Helper Functions */
89/********************/
90
91static void ath9k_hw_set_clockrate(struct ath_hw *ah)
92{
93	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94	struct ath_common *common = ath9k_hw_common(ah);
95	unsigned int clockrate;
96
97	if (!ah->curchan) /* should really check for CCK instead */
98		clockrate = ATH9K_CLOCK_RATE_CCK;
99	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
100		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
101	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
102		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
103	else
104		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
105
106	if (conf_is_ht40(conf))
107		clockrate *= 2;
108
109	common->clockrate = clockrate;
110}
111
112static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
113{
114	struct ath_common *common = ath9k_hw_common(ah);
115
116	return usecs * common->clockrate;
117}
118
119bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120{
121	int i;
122
123	BUG_ON(timeout < AH_TIME_QUANTUM);
124
125	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126		if ((REG_READ(ah, reg) & mask) == val)
127			return true;
128
129		udelay(AH_TIME_QUANTUM);
130	}
131
132	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
133		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134		  timeout, reg, REG_READ(ah, reg), mask, val);
135
136	return false;
137}
138EXPORT_SYMBOL(ath9k_hw_wait);
139
140u32 ath9k_hw_reverse_bits(u32 val, u32 n)
141{
142	u32 retval;
143	int i;
144
145	for (i = 0, retval = 0; i < n; i++) {
146		retval = (retval << 1) | (val & 1);
147		val >>= 1;
148	}
149	return retval;
150}
151
152bool ath9k_get_channel_edges(struct ath_hw *ah,
153			     u16 flags, u16 *low,
154			     u16 *high)
155{
156	struct ath9k_hw_capabilities *pCap = &ah->caps;
157
158	if (flags & CHANNEL_5GHZ) {
159		*low = pCap->low_5ghz_chan;
160		*high = pCap->high_5ghz_chan;
161		return true;
162	}
163	if ((flags & CHANNEL_2GHZ)) {
164		*low = pCap->low_2ghz_chan;
165		*high = pCap->high_2ghz_chan;
166		return true;
167	}
168	return false;
169}
170
171u16 ath9k_hw_computetxtime(struct ath_hw *ah,
172			   u8 phy, int kbps,
173			   u32 frameLen, u16 rateix,
174			   bool shortPreamble)
175{
176	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
177
178	if (kbps == 0)
179		return 0;
180
181	switch (phy) {
182	case WLAN_RC_PHY_CCK:
183		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
184		if (shortPreamble)
185			phyTime >>= 1;
186		numBits = frameLen << 3;
187		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
188		break;
189	case WLAN_RC_PHY_OFDM:
190		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192			numBits = OFDM_PLCP_BITS + (frameLen << 3);
193			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194			txTime = OFDM_SIFS_TIME_QUARTER
195				+ OFDM_PREAMBLE_TIME_QUARTER
196				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197		} else if (ah->curchan &&
198			   IS_CHAN_HALF_RATE(ah->curchan)) {
199			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202			txTime = OFDM_SIFS_TIME_HALF +
203				OFDM_PREAMBLE_TIME_HALF
204				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
205		} else {
206			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207			numBits = OFDM_PLCP_BITS + (frameLen << 3);
208			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210				+ (numSymbols * OFDM_SYMBOL_TIME);
211		}
212		break;
213	default:
214		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
215			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
216		txTime = 0;
217		break;
218	}
219
220	return txTime;
221}
222EXPORT_SYMBOL(ath9k_hw_computetxtime);
223
224void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225				  struct ath9k_channel *chan,
226				  struct chan_centers *centers)
227{
228	int8_t extoff;
229
230	if (!IS_CHAN_HT40(chan)) {
231		centers->ctl_center = centers->ext_center =
232			centers->synth_center = chan->channel;
233		return;
234	}
235
236	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238		centers->synth_center =
239			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
240		extoff = 1;
241	} else {
242		centers->synth_center =
243			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
244		extoff = -1;
245	}
246
247	centers->ctl_center =
248		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249	/* 25 MHz spacing is supported by hw but not on upper layers */
250	centers->ext_center =
251		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
252}
253
254/******************/
255/* Chip Revisions */
256/******************/
257
258static void ath9k_hw_read_revisions(struct ath_hw *ah)
259{
260	u32 val;
261
262	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
263
264	if (val == 0xFF) {
265		val = REG_READ(ah, AR_SREV);
266		ah->hw_version.macVersion =
267			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
270	} else {
271		if (!AR_SREV_9100(ah))
272			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
273
274		ah->hw_version.macRev = val & AR_SREV_REVISION;
275
276		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277			ah->is_pciexpress = true;
278	}
279}
280
281/************************************/
282/* HW Attach, Detach, Init Routines */
283/************************************/
284
285static void ath9k_hw_disablepcie(struct ath_hw *ah)
286{
287	if (AR_SREV_9100(ah))
288		return;
289
290	ENABLE_REGWRITE_BUFFER(ah);
291
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
298	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
299	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
300	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
301
302	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
303
304	REGWRITE_BUFFER_FLUSH(ah);
305}
306
307/* This should work for all families including legacy */
308static bool ath9k_hw_chip_test(struct ath_hw *ah)
309{
310	struct ath_common *common = ath9k_hw_common(ah);
311	u32 regAddr[2] = { AR_STA_ID0 };
312	u32 regHold[2];
313	u32 patternData[4] = { 0x55555555,
314			       0xaaaaaaaa,
315			       0x66666666,
316			       0x99999999 };
317	int i, j, loop_max;
318
319	if (!AR_SREV_9300_20_OR_LATER(ah)) {
320		loop_max = 2;
321		regAddr[1] = AR_PHY_BASE + (8 << 2);
322	} else
323		loop_max = 1;
324
325	for (i = 0; i < loop_max; i++) {
326		u32 addr = regAddr[i];
327		u32 wrData, rdData;
328
329		regHold[i] = REG_READ(ah, addr);
330		for (j = 0; j < 0x100; j++) {
331			wrData = (j << 16) | j;
332			REG_WRITE(ah, addr, wrData);
333			rdData = REG_READ(ah, addr);
334			if (rdData != wrData) {
335				ath_print(common, ATH_DBG_FATAL,
336					  "address test failed "
337					  "addr: 0x%08x - wr:0x%08x != "
338					  "rd:0x%08x\n",
339					  addr, wrData, rdData);
340				return false;
341			}
342		}
343		for (j = 0; j < 4; j++) {
344			wrData = patternData[j];
345			REG_WRITE(ah, addr, wrData);
346			rdData = REG_READ(ah, addr);
347			if (wrData != rdData) {
348				ath_print(common, ATH_DBG_FATAL,
349					  "address test failed "
350					  "addr: 0x%08x - wr:0x%08x != "
351					  "rd:0x%08x\n",
352					  addr, wrData, rdData);
353				return false;
354			}
355		}
356		REG_WRITE(ah, regAddr[i], regHold[i]);
357	}
358	udelay(100);
359
360	return true;
361}
362
363static void ath9k_hw_init_config(struct ath_hw *ah)
364{
365	int i;
366
367	ah->config.dma_beacon_response_time = 2;
368	ah->config.sw_beacon_response_time = 10;
369	ah->config.additional_swba_backoff = 0;
370	ah->config.ack_6mb = 0x0;
371	ah->config.cwm_ignore_extcca = 0;
372	ah->config.pcie_powersave_enable = 0;
373	ah->config.pcie_clock_req = 0;
374	ah->config.pcie_waen = 0;
375	ah->config.analog_shiftreg = 1;
376	ah->config.enable_ani = true;
377
378	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
379		ah->config.spurchans[i][0] = AR_NO_SPUR;
380		ah->config.spurchans[i][1] = AR_NO_SPUR;
381	}
382
383	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
384		ah->config.ht_enable = 1;
385	else
386		ah->config.ht_enable = 0;
387
388	ah->config.rx_intr_mitigation = true;
389	ah->config.pcieSerDesWrite = true;
390
391	/*
392	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
393	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
394	 * This means we use it for all AR5416 devices, and the few
395	 * minor PCI AR9280 devices out there.
396	 *
397	 * Serialization is required because these devices do not handle
398	 * well the case of two concurrent reads/writes due to the latency
399	 * involved. During one read/write another read/write can be issued
400	 * on another CPU while the previous read/write may still be working
401	 * on our hardware, if we hit this case the hardware poops in a loop.
402	 * We prevent this by serializing reads and writes.
403	 *
404	 * This issue is not present on PCI-Express devices or pre-AR5416
405	 * devices (legacy, 802.11abg).
406	 */
407	if (num_possible_cpus() > 1)
408		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
409}
410
411static void ath9k_hw_init_defaults(struct ath_hw *ah)
412{
413	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
414
415	regulatory->country_code = CTRY_DEFAULT;
416	regulatory->power_limit = MAX_RATE_POWER;
417	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
418
419	ah->hw_version.magic = AR5416_MAGIC;
420	ah->hw_version.subvendorid = 0;
421
422	ah->ah_flags = 0;
423	if (!AR_SREV_9100(ah))
424		ah->ah_flags = AH_USE_EEPROM;
425
426	ah->atim_window = 0;
427	ah->sta_id1_defaults =
428		AR_STA_ID1_CRPT_MIC_ENABLE |
429		AR_STA_ID1_MCAST_KSRCH;
430	ah->beacon_interval = 100;
431	ah->enable_32kHz_clock = DONT_USE_32KHZ;
432	ah->slottime = (u32) -1;
433	ah->globaltxtimeout = (u32) -1;
434	ah->power_mode = ATH9K_PM_UNDEFINED;
435}
436
437static int ath9k_hw_init_macaddr(struct ath_hw *ah)
438{
439	struct ath_common *common = ath9k_hw_common(ah);
440	u32 sum;
441	int i;
442	u16 eeval;
443	u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
444
445	sum = 0;
446	for (i = 0; i < 3; i++) {
447		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
448		sum += eeval;
449		common->macaddr[2 * i] = eeval >> 8;
450		common->macaddr[2 * i + 1] = eeval & 0xff;
451	}
452	if (sum == 0 || sum == 0xffff * 3)
453		return -EADDRNOTAVAIL;
454
455	return 0;
456}
457
458static int ath9k_hw_post_init(struct ath_hw *ah)
459{
460	int ecode;
461
462	if (!AR_SREV_9271(ah)) {
463		if (!ath9k_hw_chip_test(ah))
464			return -ENODEV;
465	}
466
467	if (!AR_SREV_9300_20_OR_LATER(ah)) {
468		ecode = ar9002_hw_rf_claim(ah);
469		if (ecode != 0)
470			return ecode;
471	}
472
473	ecode = ath9k_hw_eeprom_init(ah);
474	if (ecode != 0)
475		return ecode;
476
477	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
478		  "Eeprom VER: %d, REV: %d\n",
479		  ah->eep_ops->get_eeprom_ver(ah),
480		  ah->eep_ops->get_eeprom_rev(ah));
481
482	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
483	if (ecode) {
484		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
485			  "Failed allocating banks for "
486			  "external radio\n");
487		return ecode;
488	}
489
490	if (!AR_SREV_9100(ah)) {
491		ath9k_hw_ani_setup(ah);
492		ath9k_hw_ani_init(ah);
493	}
494
495	return 0;
496}
497
498static void ath9k_hw_attach_ops(struct ath_hw *ah)
499{
500	if (AR_SREV_9300_20_OR_LATER(ah))
501		ar9003_hw_attach_ops(ah);
502	else
503		ar9002_hw_attach_ops(ah);
504}
505
506/* Called for all hardware families */
507static int __ath9k_hw_init(struct ath_hw *ah)
508{
509	struct ath_common *common = ath9k_hw_common(ah);
510	int r = 0;
511
512	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
513		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
514
515	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
516		ath_print(common, ATH_DBG_FATAL,
517			  "Couldn't reset chip\n");
518		return -EIO;
519	}
520
521	ath9k_hw_init_defaults(ah);
522	ath9k_hw_init_config(ah);
523
524	ath9k_hw_attach_ops(ah);
525
526	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
527		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
528		return -EIO;
529	}
530
531	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
532		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
533		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
534		     !ah->is_pciexpress)) {
535			ah->config.serialize_regmode =
536				SER_REG_MODE_ON;
537		} else {
538			ah->config.serialize_regmode =
539				SER_REG_MODE_OFF;
540		}
541	}
542
543	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
544		ah->config.serialize_regmode);
545
546	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
547		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
548	else
549		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
550
551	if (!ath9k_hw_macversion_supported(ah)) {
552		ath_print(common, ATH_DBG_FATAL,
553			  "Mac Chip Rev 0x%02x.%x is not supported by "
554			  "this driver\n", ah->hw_version.macVersion,
555			  ah->hw_version.macRev);
556		return -EOPNOTSUPP;
557	}
558
559	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
560		ah->is_pciexpress = false;
561
562	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
563	ath9k_hw_init_cal_settings(ah);
564
565	ah->ani_function = ATH9K_ANI_ALL;
566	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
567		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
568	if (!AR_SREV_9300_20_OR_LATER(ah))
569		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
570
571	ath9k_hw_init_mode_regs(ah);
572
573	/*
574	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
575	 * We need to do this to avoid RMW of this register. We cannot
576	 * read the reg when chip is asleep.
577	 */
578	ah->WARegVal = REG_READ(ah, AR_WA);
579	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
580			 AR_WA_ASPM_TIMER_BASED_DISABLE);
581
582	if (ah->is_pciexpress)
583		ath9k_hw_configpcipowersave(ah, 0, 0);
584	else
585		ath9k_hw_disablepcie(ah);
586
587	if (!AR_SREV_9300_20_OR_LATER(ah))
588		ar9002_hw_cck_chan14_spread(ah);
589
590	r = ath9k_hw_post_init(ah);
591	if (r)
592		return r;
593
594	ath9k_hw_init_mode_gain_regs(ah);
595	r = ath9k_hw_fill_cap_info(ah);
596	if (r)
597		return r;
598
599	r = ath9k_hw_init_macaddr(ah);
600	if (r) {
601		ath_print(common, ATH_DBG_FATAL,
602			  "Failed to initialize MAC address\n");
603		return r;
604	}
605
606	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
607		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
608	else
609		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
610
611	ah->bb_watchdog_timeout_ms = 25;
612
613	common->state = ATH_HW_INITIALIZED;
614
615	return 0;
616}
617
618int ath9k_hw_init(struct ath_hw *ah)
619{
620	int ret;
621	struct ath_common *common = ath9k_hw_common(ah);
622
623	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
624	switch (ah->hw_version.devid) {
625	case AR5416_DEVID_PCI:
626	case AR5416_DEVID_PCIE:
627	case AR5416_AR9100_DEVID:
628	case AR9160_DEVID_PCI:
629	case AR9280_DEVID_PCI:
630	case AR9280_DEVID_PCIE:
631	case AR9285_DEVID_PCIE:
632	case AR9287_DEVID_PCI:
633	case AR9287_DEVID_PCIE:
634	case AR2427_DEVID_PCIE:
635	case AR9300_DEVID_PCIE:
636		break;
637	default:
638		if (common->bus_ops->ath_bus_type == ATH_USB)
639			break;
640		ath_print(common, ATH_DBG_FATAL,
641			  "Hardware device ID 0x%04x not supported\n",
642			  ah->hw_version.devid);
643		return -EOPNOTSUPP;
644	}
645
646	ret = __ath9k_hw_init(ah);
647	if (ret) {
648		ath_print(common, ATH_DBG_FATAL,
649			  "Unable to initialize hardware; "
650			  "initialization status: %d\n", ret);
651		return ret;
652	}
653
654	return 0;
655}
656EXPORT_SYMBOL(ath9k_hw_init);
657
658static void ath9k_hw_init_qos(struct ath_hw *ah)
659{
660	ENABLE_REGWRITE_BUFFER(ah);
661
662	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
663	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
664
665	REG_WRITE(ah, AR_QOS_NO_ACK,
666		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
667		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
668		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
669
670	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
671	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
672	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
673	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
674	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
675
676	REGWRITE_BUFFER_FLUSH(ah);
677}
678
679static void ath9k_hw_init_pll(struct ath_hw *ah,
680			      struct ath9k_channel *chan)
681{
682	u32 pll = ath9k_hw_compute_pll_control(ah, chan);
683
684	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
685
686	/* Switch the core clock for ar9271 to 117Mhz */
687	if (AR_SREV_9271(ah)) {
688		udelay(500);
689		REG_WRITE(ah, 0x50040, 0x304);
690	}
691
692	udelay(RTC_PLL_SETTLE_DELAY);
693
694	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
695}
696
697static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
698					  enum nl80211_iftype opmode)
699{
700	u32 imr_reg = AR_IMR_TXERR |
701		AR_IMR_TXURN |
702		AR_IMR_RXERR |
703		AR_IMR_RXORN |
704		AR_IMR_BCNMISC;
705
706	if (AR_SREV_9300_20_OR_LATER(ah)) {
707		imr_reg |= AR_IMR_RXOK_HP;
708		if (ah->config.rx_intr_mitigation)
709			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
710		else
711			imr_reg |= AR_IMR_RXOK_LP;
712
713	} else {
714		if (ah->config.rx_intr_mitigation)
715			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
716		else
717			imr_reg |= AR_IMR_RXOK;
718	}
719
720	if (ah->config.tx_intr_mitigation)
721		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
722	else
723		imr_reg |= AR_IMR_TXOK;
724
725	if (opmode == NL80211_IFTYPE_AP)
726		imr_reg |= AR_IMR_MIB;
727
728	ENABLE_REGWRITE_BUFFER(ah);
729
730	REG_WRITE(ah, AR_IMR, imr_reg);
731	ah->imrs2_reg |= AR_IMR_S2_GTT;
732	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
733
734	if (!AR_SREV_9100(ah)) {
735		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
736		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
737		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
738	}
739
740	REGWRITE_BUFFER_FLUSH(ah);
741
742	if (AR_SREV_9300_20_OR_LATER(ah)) {
743		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
744		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
745		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
746		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
747	}
748}
749
750static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
751{
752	u32 val = ath9k_hw_mac_to_clks(ah, us);
753	val = min(val, (u32) 0xFFFF);
754	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
755}
756
757static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
758{
759	u32 val = ath9k_hw_mac_to_clks(ah, us);
760	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
761	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
762}
763
764static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
765{
766	u32 val = ath9k_hw_mac_to_clks(ah, us);
767	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
768	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
769}
770
771static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
772{
773	if (tu > 0xFFFF) {
774		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
775			  "bad global tx timeout %u\n", tu);
776		ah->globaltxtimeout = (u32) -1;
777		return false;
778	} else {
779		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
780		ah->globaltxtimeout = tu;
781		return true;
782	}
783}
784
785void ath9k_hw_init_global_settings(struct ath_hw *ah)
786{
787	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
788	int acktimeout;
789	int slottime;
790	int sifstime;
791
792	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
793		  ah->misc_mode);
794
795	if (ah->misc_mode != 0)
796		REG_WRITE(ah, AR_PCU_MISC,
797			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
798
799	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
800		sifstime = 16;
801	else
802		sifstime = 10;
803
804	/* As defined by IEEE 802.11-2007 17.3.8.6 */
805	slottime = ah->slottime + 3 * ah->coverage_class;
806	acktimeout = slottime + sifstime;
807
808	/*
809	 * Workaround for early ACK timeouts, add an offset to match the
810	 * initval's 64us ack timeout value.
811	 * This was initially only meant to work around an issue with delayed
812	 * BA frames in some implementations, but it has been found to fix ACK
813	 * timeout issues in other cases as well.
814	 */
815	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
816		acktimeout += 64 - sifstime - ah->slottime;
817
818	ath9k_hw_setslottime(ah, slottime);
819	ath9k_hw_set_ack_timeout(ah, acktimeout);
820	ath9k_hw_set_cts_timeout(ah, acktimeout);
821	if (ah->globaltxtimeout != (u32) -1)
822		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
823}
824EXPORT_SYMBOL(ath9k_hw_init_global_settings);
825
826void ath9k_hw_deinit(struct ath_hw *ah)
827{
828	struct ath_common *common = ath9k_hw_common(ah);
829
830	if (common->state < ATH_HW_INITIALIZED)
831		goto free_hw;
832
833	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
834
835free_hw:
836	ath9k_hw_rf_free_ext_banks(ah);
837}
838EXPORT_SYMBOL(ath9k_hw_deinit);
839
840/*******/
841/* INI */
842/*******/
843
844u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
845{
846	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
847
848	if (IS_CHAN_B(chan))
849		ctl |= CTL_11B;
850	else if (IS_CHAN_G(chan))
851		ctl |= CTL_11G;
852	else
853		ctl |= CTL_11A;
854
855	return ctl;
856}
857
858/****************************************/
859/* Reset and Channel Switching Routines */
860/****************************************/
861
862static inline void ath9k_hw_set_dma(struct ath_hw *ah)
863{
864	struct ath_common *common = ath9k_hw_common(ah);
865	u32 regval;
866
867	ENABLE_REGWRITE_BUFFER(ah);
868
869	/*
870	 * set AHB_MODE not to do cacheline prefetches
871	*/
872	if (!AR_SREV_9300_20_OR_LATER(ah)) {
873		regval = REG_READ(ah, AR_AHB_MODE);
874		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
875	}
876
877	/*
878	 * let mac dma reads be in 128 byte chunks
879	 */
880	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
881	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
882
883	REGWRITE_BUFFER_FLUSH(ah);
884
885	/*
886	 * Restore TX Trigger Level to its pre-reset value.
887	 * The initial value depends on whether aggregation is enabled, and is
888	 * adjusted whenever underruns are detected.
889	 */
890	if (!AR_SREV_9300_20_OR_LATER(ah))
891		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
892
893	ENABLE_REGWRITE_BUFFER(ah);
894
895	/*
896	 * let mac dma writes be in 128 byte chunks
897	 */
898	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
899	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
900
901	/*
902	 * Setup receive FIFO threshold to hold off TX activities
903	 */
904	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
905
906	if (AR_SREV_9300_20_OR_LATER(ah)) {
907		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
908		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
909
910		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
911			ah->caps.rx_status_len);
912	}
913
914	/*
915	 * reduce the number of usable entries in PCU TXBUF to avoid
916	 * wrap around issues.
917	 */
918	if (AR_SREV_9285(ah)) {
919		/* For AR9285 the number of Fifos are reduced to half.
920		 * So set the usable tx buf size also to half to
921		 * avoid data/delimiter underruns
922		 */
923		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
924			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
925	} else if (!AR_SREV_9271(ah)) {
926		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
927			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
928	}
929
930	REGWRITE_BUFFER_FLUSH(ah);
931
932	if (AR_SREV_9300_20_OR_LATER(ah))
933		ath9k_hw_reset_txstatus_ring(ah);
934}
935
936static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
937{
938	u32 val;
939
940	val = REG_READ(ah, AR_STA_ID1);
941	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
942	switch (opmode) {
943	case NL80211_IFTYPE_AP:
944		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
945			  | AR_STA_ID1_KSRCH_MODE);
946		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
947		break;
948	case NL80211_IFTYPE_ADHOC:
949	case NL80211_IFTYPE_MESH_POINT:
950		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
951			  | AR_STA_ID1_KSRCH_MODE);
952		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
953		break;
954	case NL80211_IFTYPE_STATION:
955	case NL80211_IFTYPE_MONITOR:
956		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
957		break;
958	}
959}
960
961void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
962				   u32 *coef_mantissa, u32 *coef_exponent)
963{
964	u32 coef_exp, coef_man;
965
966	for (coef_exp = 31; coef_exp > 0; coef_exp--)
967		if ((coef_scaled >> coef_exp) & 0x1)
968			break;
969
970	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
971
972	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
973
974	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
975	*coef_exponent = coef_exp - 16;
976}
977
978static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
979{
980	u32 rst_flags;
981	u32 tmpReg;
982
983	if (AR_SREV_9100(ah)) {
984		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
985		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
986		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
987		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
988		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
989	}
990
991	ENABLE_REGWRITE_BUFFER(ah);
992
993	if (AR_SREV_9300_20_OR_LATER(ah)) {
994		REG_WRITE(ah, AR_WA, ah->WARegVal);
995		udelay(10);
996	}
997
998	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
999		  AR_RTC_FORCE_WAKE_ON_INT);
1000
1001	if (AR_SREV_9100(ah)) {
1002		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1003			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1004	} else {
1005		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1006		if (tmpReg &
1007		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1008		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1009			u32 val;
1010			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1011
1012			val = AR_RC_HOSTIF;
1013			if (!AR_SREV_9300_20_OR_LATER(ah))
1014				val |= AR_RC_AHB;
1015			REG_WRITE(ah, AR_RC, val);
1016
1017		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1018			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1019
1020		rst_flags = AR_RTC_RC_MAC_WARM;
1021		if (type == ATH9K_RESET_COLD)
1022			rst_flags |= AR_RTC_RC_MAC_COLD;
1023	}
1024
1025	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1026
1027	REGWRITE_BUFFER_FLUSH(ah);
1028
1029	udelay(50);
1030
1031	REG_WRITE(ah, AR_RTC_RC, 0);
1032	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1033		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1034			  "RTC stuck in MAC reset\n");
1035		return false;
1036	}
1037
1038	if (!AR_SREV_9100(ah))
1039		REG_WRITE(ah, AR_RC, 0);
1040
1041	if (AR_SREV_9100(ah))
1042		udelay(50);
1043
1044	return true;
1045}
1046
1047static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1048{
1049	ENABLE_REGWRITE_BUFFER(ah);
1050
1051	if (AR_SREV_9300_20_OR_LATER(ah)) {
1052		REG_WRITE(ah, AR_WA, ah->WARegVal);
1053		udelay(10);
1054	}
1055
1056	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1057		  AR_RTC_FORCE_WAKE_ON_INT);
1058
1059	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1060		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1061
1062	REG_WRITE(ah, AR_RTC_RESET, 0);
1063	udelay(2);
1064
1065	REGWRITE_BUFFER_FLUSH(ah);
1066
1067	if (!AR_SREV_9300_20_OR_LATER(ah))
1068		udelay(2);
1069
1070	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1071		REG_WRITE(ah, AR_RC, 0);
1072
1073	REG_WRITE(ah, AR_RTC_RESET, 1);
1074
1075	if (!ath9k_hw_wait(ah,
1076			   AR_RTC_STATUS,
1077			   AR_RTC_STATUS_M,
1078			   AR_RTC_STATUS_ON,
1079			   AH_WAIT_TIMEOUT)) {
1080		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1081			  "RTC not waking up\n");
1082		return false;
1083	}
1084
1085	ath9k_hw_read_revisions(ah);
1086
1087	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1088}
1089
1090static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1091{
1092	if (AR_SREV_9300_20_OR_LATER(ah)) {
1093		REG_WRITE(ah, AR_WA, ah->WARegVal);
1094		udelay(10);
1095	}
1096
1097	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1098		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1099
1100	switch (type) {
1101	case ATH9K_RESET_POWER_ON:
1102		return ath9k_hw_set_reset_power_on(ah);
1103	case ATH9K_RESET_WARM:
1104	case ATH9K_RESET_COLD:
1105		return ath9k_hw_set_reset(ah, type);
1106	default:
1107		return false;
1108	}
1109}
1110
1111static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1112				struct ath9k_channel *chan)
1113{
1114	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1115		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1116			return false;
1117	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1118		return false;
1119
1120	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1121		return false;
1122
1123	ah->chip_fullsleep = false;
1124	ath9k_hw_init_pll(ah, chan);
1125	ath9k_hw_set_rfmode(ah, chan);
1126
1127	return true;
1128}
1129
1130static bool ath9k_hw_channel_change(struct ath_hw *ah,
1131				    struct ath9k_channel *chan)
1132{
1133	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1134	struct ath_common *common = ath9k_hw_common(ah);
1135	struct ieee80211_channel *channel = chan->chan;
1136	u32 qnum;
1137	int r;
1138
1139	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1140		if (ath9k_hw_numtxpending(ah, qnum)) {
1141			ath_print(common, ATH_DBG_QUEUE,
1142				  "Transmit frames pending on "
1143				  "queue %d\n", qnum);
1144			return false;
1145		}
1146	}
1147
1148	if (!ath9k_hw_rfbus_req(ah)) {
1149		ath_print(common, ATH_DBG_FATAL,
1150			  "Could not kill baseband RX\n");
1151		return false;
1152	}
1153
1154	ath9k_hw_set_channel_regs(ah, chan);
1155
1156	r = ath9k_hw_rf_set_freq(ah, chan);
1157	if (r) {
1158		ath_print(common, ATH_DBG_FATAL,
1159			  "Failed to set channel\n");
1160		return false;
1161	}
1162	ath9k_hw_set_clockrate(ah);
1163
1164	ah->eep_ops->set_txpower(ah, chan,
1165			     ath9k_regd_get_ctl(regulatory, chan),
1166			     channel->max_antenna_gain * 2,
1167			     channel->max_power * 2,
1168			     min((u32) MAX_RATE_POWER,
1169			     (u32) regulatory->power_limit));
1170
1171	ath9k_hw_rfbus_done(ah);
1172
1173	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1174		ath9k_hw_set_delta_slope(ah, chan);
1175
1176	ath9k_hw_spur_mitigate_freq(ah, chan);
1177
1178	return true;
1179}
1180
1181bool ath9k_hw_check_alive(struct ath_hw *ah)
1182{
1183	int count = 50;
1184	u32 reg;
1185
1186	if (AR_SREV_9285_12_OR_LATER(ah))
1187		return true;
1188
1189	do {
1190		reg = REG_READ(ah, AR_OBS_BUS_1);
1191
1192		if ((reg & 0x7E7FFFEF) == 0x00702400)
1193			continue;
1194
1195		switch (reg & 0x7E000B00) {
1196		case 0x1E000000:
1197		case 0x52000B00:
1198		case 0x18000B00:
1199			continue;
1200		default:
1201			return true;
1202		}
1203	} while (count-- > 0);
1204
1205	return false;
1206}
1207EXPORT_SYMBOL(ath9k_hw_check_alive);
1208
1209int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1210		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1211{
1212	struct ath_common *common = ath9k_hw_common(ah);
1213	u32 saveLedState;
1214	struct ath9k_channel *curchan = ah->curchan;
1215	u32 saveDefAntenna;
1216	u32 macStaId1;
1217	u64 tsf = 0;
1218	int i, r;
1219
1220	ah->txchainmask = common->tx_chainmask;
1221	ah->rxchainmask = common->rx_chainmask;
1222
1223	if (!ah->chip_fullsleep) {
1224		ath9k_hw_abortpcurecv(ah);
1225		if (!ath9k_hw_stopdmarecv(ah)) {
1226			ath_print(common, ATH_DBG_XMIT,
1227				"Failed to stop receive dma\n");
1228			bChannelChange = false;
1229		}
1230	}
1231
1232	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1233		return -EIO;
1234
1235	if (curchan && !ah->chip_fullsleep)
1236		ath9k_hw_getnf(ah, curchan);
1237
1238	ah->caldata = caldata;
1239	if (caldata &&
1240	    (chan->channel != caldata->channel ||
1241	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1242	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1243		/* Operating channel changed, reset channel calibration data */
1244		memset(caldata, 0, sizeof(*caldata));
1245		ath9k_init_nfcal_hist_buffer(ah, chan);
1246	}
1247
1248	if (bChannelChange &&
1249	    (ah->chip_fullsleep != true) &&
1250	    (ah->curchan != NULL) &&
1251	    (chan->channel != ah->curchan->channel) &&
1252	    ((chan->channelFlags & CHANNEL_ALL) ==
1253	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1254	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1255
1256		if (ath9k_hw_channel_change(ah, chan)) {
1257			ath9k_hw_loadnf(ah, ah->curchan);
1258			ath9k_hw_start_nfcal(ah, true);
1259			if (AR_SREV_9271(ah))
1260				ar9002_hw_load_ani_reg(ah, chan);
1261			return 0;
1262		}
1263	}
1264
1265	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1266	if (saveDefAntenna == 0)
1267		saveDefAntenna = 1;
1268
1269	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1270
1271	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1272	if (AR_SREV_9100(ah) ||
1273	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1274		tsf = ath9k_hw_gettsf64(ah);
1275
1276	saveLedState = REG_READ(ah, AR_CFG_LED) &
1277		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1278		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1279
1280	ath9k_hw_mark_phy_inactive(ah);
1281
1282	/* Only required on the first reset */
1283	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1284		REG_WRITE(ah,
1285			  AR9271_RESET_POWER_DOWN_CONTROL,
1286			  AR9271_RADIO_RF_RST);
1287		udelay(50);
1288	}
1289
1290	if (!ath9k_hw_chip_reset(ah, chan)) {
1291		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1292		return -EINVAL;
1293	}
1294
1295	/* Only required on the first reset */
1296	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1297		ah->htc_reset_init = false;
1298		REG_WRITE(ah,
1299			  AR9271_RESET_POWER_DOWN_CONTROL,
1300			  AR9271_GATE_MAC_CTL);
1301		udelay(50);
1302	}
1303
1304	/* Restore TSF */
1305	if (tsf)
1306		ath9k_hw_settsf64(ah, tsf);
1307
1308	if (AR_SREV_9280_20_OR_LATER(ah))
1309		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1310
1311	if (!AR_SREV_9300_20_OR_LATER(ah))
1312		ar9002_hw_enable_async_fifo(ah);
1313
1314	r = ath9k_hw_process_ini(ah, chan);
1315	if (r)
1316		return r;
1317
1318	/*
1319	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1320	 * right after the chip reset. When that happens, write a new
1321	 * value after the initvals have been applied, with an offset
1322	 * based on measured time difference
1323	 */
1324	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1325		tsf += 1500;
1326		ath9k_hw_settsf64(ah, tsf);
1327	}
1328
1329	/* Setup MFP options for CCMP */
1330	if (AR_SREV_9280_20_OR_LATER(ah)) {
1331		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1332		 * frames when constructing CCMP AAD. */
1333		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1334			      0xc7ff);
1335		ah->sw_mgmt_crypto = false;
1336	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1337		/* Disable hardware crypto for management frames */
1338		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1339			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1340		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1341			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1342		ah->sw_mgmt_crypto = true;
1343	} else
1344		ah->sw_mgmt_crypto = true;
1345
1346	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1347		ath9k_hw_set_delta_slope(ah, chan);
1348
1349	ath9k_hw_spur_mitigate_freq(ah, chan);
1350	ah->eep_ops->set_board_values(ah, chan);
1351
1352	ath9k_hw_set_operating_mode(ah, ah->opmode);
1353
1354	ENABLE_REGWRITE_BUFFER(ah);
1355
1356	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1357	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1358		  | macStaId1
1359		  | AR_STA_ID1_RTS_USE_DEF
1360		  | (ah->config.
1361		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1362		  | ah->sta_id1_defaults);
1363	ath_hw_setbssidmask(common);
1364	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1365	ath9k_hw_write_associd(ah);
1366	REG_WRITE(ah, AR_ISR, ~0);
1367	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1368
1369	REGWRITE_BUFFER_FLUSH(ah);
1370
1371	r = ath9k_hw_rf_set_freq(ah, chan);
1372	if (r)
1373		return r;
1374
1375	ath9k_hw_set_clockrate(ah);
1376
1377	ENABLE_REGWRITE_BUFFER(ah);
1378
1379	for (i = 0; i < AR_NUM_DCU; i++)
1380		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1381
1382	REGWRITE_BUFFER_FLUSH(ah);
1383
1384	ah->intr_txqs = 0;
1385	for (i = 0; i < ah->caps.total_queues; i++)
1386		ath9k_hw_resettxqueue(ah, i);
1387
1388	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1389	ath9k_hw_ani_cache_ini_regs(ah);
1390	ath9k_hw_init_qos(ah);
1391
1392	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1393		ath9k_enable_rfkill(ah);
1394
1395	ath9k_hw_init_global_settings(ah);
1396
1397	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1398		ar9002_hw_update_async_fifo(ah);
1399		ar9002_hw_enable_wep_aggregation(ah);
1400	}
1401
1402	REG_WRITE(ah, AR_STA_ID1,
1403		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1404
1405	ath9k_hw_set_dma(ah);
1406
1407	REG_WRITE(ah, AR_OBS, 8);
1408
1409	if (ah->config.rx_intr_mitigation) {
1410		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1411		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1412	}
1413
1414	if (ah->config.tx_intr_mitigation) {
1415		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1416		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1417	}
1418
1419	ath9k_hw_init_bb(ah, chan);
1420
1421	if (!ath9k_hw_init_cal(ah, chan))
1422		return -EIO;
1423
1424	ENABLE_REGWRITE_BUFFER(ah);
1425
1426	ath9k_hw_restore_chainmask(ah);
1427	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1428
1429	REGWRITE_BUFFER_FLUSH(ah);
1430
1431	/*
1432	 * For big endian systems turn on swapping for descriptors
1433	 */
1434	if (AR_SREV_9100(ah)) {
1435		u32 mask;
1436		mask = REG_READ(ah, AR_CFG);
1437		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1438			ath_print(common, ATH_DBG_RESET,
1439				"CFG Byte Swap Set 0x%x\n", mask);
1440		} else {
1441			mask =
1442				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1443			REG_WRITE(ah, AR_CFG, mask);
1444			ath_print(common, ATH_DBG_RESET,
1445				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1446		}
1447	} else {
1448		if (common->bus_ops->ath_bus_type == ATH_USB) {
1449			/* Configure AR9271 target WLAN */
1450			if (AR_SREV_9271(ah))
1451				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1452			else
1453				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1454		}
1455#ifdef __BIG_ENDIAN
1456                else
1457			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1458#endif
1459	}
1460
1461	if (ah->btcoex_hw.enabled)
1462		ath9k_hw_btcoex_enable(ah);
1463
1464	if (AR_SREV_9300_20_OR_LATER(ah))
1465		ar9003_hw_bb_watchdog_config(ah);
1466
1467	return 0;
1468}
1469EXPORT_SYMBOL(ath9k_hw_reset);
1470
1471/******************************/
1472/* Power Management (Chipset) */
1473/******************************/
1474
1475/*
1476 * Notify Power Mgt is disabled in self-generated frames.
1477 * If requested, force chip to sleep.
1478 */
1479static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1480{
1481	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1482	if (setChip) {
1483		/*
1484		 * Clear the RTC force wake bit to allow the
1485		 * mac to go to sleep.
1486		 */
1487		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1488			    AR_RTC_FORCE_WAKE_EN);
1489		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1490			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1491
1492		/* Shutdown chip. Active low */
1493		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1494			REG_CLR_BIT(ah, (AR_RTC_RESET),
1495				    AR_RTC_RESET_EN);
1496	}
1497
1498	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1499	if (AR_SREV_9300_20_OR_LATER(ah))
1500		REG_WRITE(ah, AR_WA,
1501			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1502}
1503
1504/*
1505 * Notify Power Management is enabled in self-generating
1506 * frames. If request, set power mode of chip to
1507 * auto/normal.  Duration in units of 128us (1/8 TU).
1508 */
1509static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1510{
1511	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1512	if (setChip) {
1513		struct ath9k_hw_capabilities *pCap = &ah->caps;
1514
1515		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1516			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1517			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1518				  AR_RTC_FORCE_WAKE_ON_INT);
1519		} else {
1520			/*
1521			 * Clear the RTC force wake bit to allow the
1522			 * mac to go to sleep.
1523			 */
1524			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1525				    AR_RTC_FORCE_WAKE_EN);
1526		}
1527	}
1528
1529	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1530	if (AR_SREV_9300_20_OR_LATER(ah))
1531		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1532}
1533
1534static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1535{
1536	u32 val;
1537	int i;
1538
1539	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1540	if (AR_SREV_9300_20_OR_LATER(ah)) {
1541		REG_WRITE(ah, AR_WA, ah->WARegVal);
1542		udelay(10);
1543	}
1544
1545	if (setChip) {
1546		if ((REG_READ(ah, AR_RTC_STATUS) &
1547		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1548			if (ath9k_hw_set_reset_reg(ah,
1549					   ATH9K_RESET_POWER_ON) != true) {
1550				return false;
1551			}
1552			if (!AR_SREV_9300_20_OR_LATER(ah))
1553				ath9k_hw_init_pll(ah, NULL);
1554		}
1555		if (AR_SREV_9100(ah))
1556			REG_SET_BIT(ah, AR_RTC_RESET,
1557				    AR_RTC_RESET_EN);
1558
1559		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1560			    AR_RTC_FORCE_WAKE_EN);
1561		udelay(50);
1562
1563		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1564			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1565			if (val == AR_RTC_STATUS_ON)
1566				break;
1567			udelay(50);
1568			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1569				    AR_RTC_FORCE_WAKE_EN);
1570		}
1571		if (i == 0) {
1572			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1573				  "Failed to wakeup in %uus\n",
1574				  POWER_UP_TIME / 20);
1575			return false;
1576		}
1577	}
1578
1579	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1580
1581	return true;
1582}
1583
1584bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1585{
1586	struct ath_common *common = ath9k_hw_common(ah);
1587	int status = true, setChip = true;
1588	static const char *modes[] = {
1589		"AWAKE",
1590		"FULL-SLEEP",
1591		"NETWORK SLEEP",
1592		"UNDEFINED"
1593	};
1594
1595	if (ah->power_mode == mode)
1596		return status;
1597
1598	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1599		  modes[ah->power_mode], modes[mode]);
1600
1601	switch (mode) {
1602	case ATH9K_PM_AWAKE:
1603		status = ath9k_hw_set_power_awake(ah, setChip);
1604		break;
1605	case ATH9K_PM_FULL_SLEEP:
1606		ath9k_set_power_sleep(ah, setChip);
1607		ah->chip_fullsleep = true;
1608		break;
1609	case ATH9K_PM_NETWORK_SLEEP:
1610		ath9k_set_power_network_sleep(ah, setChip);
1611		break;
1612	default:
1613		ath_print(common, ATH_DBG_FATAL,
1614			  "Unknown power mode %u\n", mode);
1615		return false;
1616	}
1617	ah->power_mode = mode;
1618
1619	return status;
1620}
1621EXPORT_SYMBOL(ath9k_hw_setpower);
1622
1623/*******************/
1624/* Beacon Handling */
1625/*******************/
1626
1627void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1628{
1629	int flags = 0;
1630
1631	ah->beacon_interval = beacon_period;
1632
1633	ENABLE_REGWRITE_BUFFER(ah);
1634
1635	switch (ah->opmode) {
1636	case NL80211_IFTYPE_STATION:
1637	case NL80211_IFTYPE_MONITOR:
1638		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1639		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1640		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1641		flags |= AR_TBTT_TIMER_EN;
1642		break;
1643	case NL80211_IFTYPE_ADHOC:
1644	case NL80211_IFTYPE_MESH_POINT:
1645		REG_SET_BIT(ah, AR_TXCFG,
1646			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1647		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1648			  TU_TO_USEC(next_beacon +
1649				     (ah->atim_window ? ah->
1650				      atim_window : 1)));
1651		flags |= AR_NDP_TIMER_EN;
1652	case NL80211_IFTYPE_AP:
1653		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1654		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1655			  TU_TO_USEC(next_beacon -
1656				     ah->config.
1657				     dma_beacon_response_time));
1658		REG_WRITE(ah, AR_NEXT_SWBA,
1659			  TU_TO_USEC(next_beacon -
1660				     ah->config.
1661				     sw_beacon_response_time));
1662		flags |=
1663			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1664		break;
1665	default:
1666		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1667			  "%s: unsupported opmode: %d\n",
1668			  __func__, ah->opmode);
1669		return;
1670		break;
1671	}
1672
1673	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1674	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1675	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1676	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1677
1678	REGWRITE_BUFFER_FLUSH(ah);
1679
1680	beacon_period &= ~ATH9K_BEACON_ENA;
1681	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1682		ath9k_hw_reset_tsf(ah);
1683	}
1684
1685	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1686}
1687EXPORT_SYMBOL(ath9k_hw_beaconinit);
1688
1689void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1690				    const struct ath9k_beacon_state *bs)
1691{
1692	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1693	struct ath9k_hw_capabilities *pCap = &ah->caps;
1694	struct ath_common *common = ath9k_hw_common(ah);
1695
1696	ENABLE_REGWRITE_BUFFER(ah);
1697
1698	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1699
1700	REG_WRITE(ah, AR_BEACON_PERIOD,
1701		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1702	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1703		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1704
1705	REGWRITE_BUFFER_FLUSH(ah);
1706
1707	REG_RMW_FIELD(ah, AR_RSSI_THR,
1708		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1709
1710	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1711
1712	if (bs->bs_sleepduration > beaconintval)
1713		beaconintval = bs->bs_sleepduration;
1714
1715	dtimperiod = bs->bs_dtimperiod;
1716	if (bs->bs_sleepduration > dtimperiod)
1717		dtimperiod = bs->bs_sleepduration;
1718
1719	if (beaconintval == dtimperiod)
1720		nextTbtt = bs->bs_nextdtim;
1721	else
1722		nextTbtt = bs->bs_nexttbtt;
1723
1724	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1725	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1726	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1727	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1728
1729	ENABLE_REGWRITE_BUFFER(ah);
1730
1731	REG_WRITE(ah, AR_NEXT_DTIM,
1732		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1733	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1734
1735	REG_WRITE(ah, AR_SLEEP1,
1736		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1737		  | AR_SLEEP1_ASSUME_DTIM);
1738
1739	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1740		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1741	else
1742		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1743
1744	REG_WRITE(ah, AR_SLEEP2,
1745		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1746
1747	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1748	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1749
1750	REGWRITE_BUFFER_FLUSH(ah);
1751
1752	REG_SET_BIT(ah, AR_TIMER_MODE,
1753		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1754		    AR_DTIM_TIMER_EN);
1755
1756	/* TSF Out of Range Threshold */
1757	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1758}
1759EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1760
1761/*******************/
1762/* HW Capabilities */
1763/*******************/
1764
1765int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1766{
1767	struct ath9k_hw_capabilities *pCap = &ah->caps;
1768	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1769	struct ath_common *common = ath9k_hw_common(ah);
1770	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1771
1772	u16 capField = 0, eeval;
1773	u8 ant_div_ctl1;
1774
1775	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1776	regulatory->current_rd = eeval;
1777
1778	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1779	if (AR_SREV_9285_12_OR_LATER(ah))
1780		eeval |= AR9285_RDEXT_DEFAULT;
1781	regulatory->current_rd_ext = eeval;
1782
1783	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1784
1785	if (ah->opmode != NL80211_IFTYPE_AP &&
1786	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1787		if (regulatory->current_rd == 0x64 ||
1788		    regulatory->current_rd == 0x65)
1789			regulatory->current_rd += 5;
1790		else if (regulatory->current_rd == 0x41)
1791			regulatory->current_rd = 0x43;
1792		ath_print(common, ATH_DBG_REGULATORY,
1793			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
1794	}
1795
1796	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1797	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1798		ath_print(common, ATH_DBG_FATAL,
1799			  "no band has been marked as supported in EEPROM.\n");
1800		return -EINVAL;
1801	}
1802
1803	if (eeval & AR5416_OPFLAGS_11A)
1804		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1805
1806	if (eeval & AR5416_OPFLAGS_11G)
1807		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1808
1809	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1810	/*
1811	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1812	 * the EEPROM.
1813	 */
1814	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1815	    !(eeval & AR5416_OPFLAGS_11A) &&
1816	    !(AR_SREV_9271(ah)))
1817		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1818		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1819	else
1820		/* Use rx_chainmask from EEPROM. */
1821		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1822
1823	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1824
1825	pCap->low_2ghz_chan = 2312;
1826	pCap->high_2ghz_chan = 2732;
1827
1828	pCap->low_5ghz_chan = 4920;
1829	pCap->high_5ghz_chan = 6100;
1830
1831	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1832
1833	if (ah->config.ht_enable)
1834		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1835	else
1836		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1837
1838	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1839		pCap->total_queues =
1840			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1841	else
1842		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1843
1844	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1845		pCap->keycache_size =
1846			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1847	else
1848		pCap->keycache_size = AR_KEYTABLE_SIZE;
1849
1850	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1851		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1852	else
1853		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1854
1855	if (AR_SREV_9271(ah))
1856		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1857	else if (AR_DEVID_7010(ah))
1858		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1859	else if (AR_SREV_9285_12_OR_LATER(ah))
1860		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1861	else if (AR_SREV_9280_20_OR_LATER(ah))
1862		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1863	else
1864		pCap->num_gpio_pins = AR_NUM_GPIO;
1865
1866	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1867		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1868		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1869	} else {
1870		pCap->rts_aggr_limit = (8 * 1024);
1871	}
1872
1873	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1874
1875#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1876	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1877	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1878		ah->rfkill_gpio =
1879			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1880		ah->rfkill_polarity =
1881			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1882
1883		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1884	}
1885#endif
1886	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1887		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1888	else
1889		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1890
1891	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1892		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1893	else
1894		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1895
1896	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1897		pCap->reg_cap =
1898			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1899			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1900			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1901			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1902	} else {
1903		pCap->reg_cap =
1904			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1905			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1906	}
1907
1908	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1909	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1910	    AR_SREV_5416(ah))
1911		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1912
1913	pCap->num_antcfg_5ghz =
1914		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
1915	pCap->num_antcfg_2ghz =
1916		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
1917
1918	if (AR_SREV_9280_20_OR_LATER(ah) &&
1919	    ath9k_hw_btcoex_supported(ah)) {
1920		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1921		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1922
1923		if (AR_SREV_9285(ah)) {
1924			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1925			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1926		} else {
1927			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1928		}
1929	} else {
1930		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1931	}
1932
1933	if (AR_SREV_9300_20_OR_LATER(ah)) {
1934		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
1935				 ATH9K_HW_CAP_FASTCLOCK;
1936		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1937		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1938		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1939		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1940		pCap->txs_len = sizeof(struct ar9003_txs);
1941		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1942			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1943	} else {
1944		pCap->tx_desc_len = sizeof(struct ath_desc);
1945		if (AR_SREV_9280_20(ah) &&
1946		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1947		      AR5416_EEP_MINOR_VER_16) ||
1948		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1949			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1950	}
1951
1952	if (AR_SREV_9300_20_OR_LATER(ah))
1953		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1954
1955	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1956		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1957
1958	if (AR_SREV_9285(ah))
1959		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1960			ant_div_ctl1 =
1961				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1962			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1963				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1964		}
1965
1966	return 0;
1967}
1968
1969/****************************/
1970/* GPIO / RFKILL / Antennae */
1971/****************************/
1972
1973static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1974					 u32 gpio, u32 type)
1975{
1976	int addr;
1977	u32 gpio_shift, tmp;
1978
1979	if (gpio > 11)
1980		addr = AR_GPIO_OUTPUT_MUX3;
1981	else if (gpio > 5)
1982		addr = AR_GPIO_OUTPUT_MUX2;
1983	else
1984		addr = AR_GPIO_OUTPUT_MUX1;
1985
1986	gpio_shift = (gpio % 6) * 5;
1987
1988	if (AR_SREV_9280_20_OR_LATER(ah)
1989	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
1990		REG_RMW(ah, addr, (type << gpio_shift),
1991			(0x1f << gpio_shift));
1992	} else {
1993		tmp = REG_READ(ah, addr);
1994		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
1995		tmp &= ~(0x1f << gpio_shift);
1996		tmp |= (type << gpio_shift);
1997		REG_WRITE(ah, addr, tmp);
1998	}
1999}
2000
2001void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2002{
2003	u32 gpio_shift;
2004
2005	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2006
2007	if (AR_DEVID_7010(ah)) {
2008		gpio_shift = gpio;
2009		REG_RMW(ah, AR7010_GPIO_OE,
2010			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2011			(AR7010_GPIO_OE_MASK << gpio_shift));
2012		return;
2013	}
2014
2015	gpio_shift = gpio << 1;
2016	REG_RMW(ah,
2017		AR_GPIO_OE_OUT,
2018		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2019		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2020}
2021EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2022
2023u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2024{
2025#define MS_REG_READ(x, y) \
2026	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2027
2028	if (gpio >= ah->caps.num_gpio_pins)
2029		return 0xffffffff;
2030
2031	if (AR_DEVID_7010(ah)) {
2032		u32 val;
2033		val = REG_READ(ah, AR7010_GPIO_IN);
2034		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2035	} else if (AR_SREV_9300_20_OR_LATER(ah))
2036		return MS_REG_READ(AR9300, gpio) != 0;
2037	else if (AR_SREV_9271(ah))
2038		return MS_REG_READ(AR9271, gpio) != 0;
2039	else if (AR_SREV_9287_11_OR_LATER(ah))
2040		return MS_REG_READ(AR9287, gpio) != 0;
2041	else if (AR_SREV_9285_12_OR_LATER(ah))
2042		return MS_REG_READ(AR9285, gpio) != 0;
2043	else if (AR_SREV_9280_20_OR_LATER(ah))
2044		return MS_REG_READ(AR928X, gpio) != 0;
2045	else
2046		return MS_REG_READ(AR, gpio) != 0;
2047}
2048EXPORT_SYMBOL(ath9k_hw_gpio_get);
2049
2050void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2051			 u32 ah_signal_type)
2052{
2053	u32 gpio_shift;
2054
2055	if (AR_DEVID_7010(ah)) {
2056		gpio_shift = gpio;
2057		REG_RMW(ah, AR7010_GPIO_OE,
2058			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2059			(AR7010_GPIO_OE_MASK << gpio_shift));
2060		return;
2061	}
2062
2063	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2064	gpio_shift = 2 * gpio;
2065	REG_RMW(ah,
2066		AR_GPIO_OE_OUT,
2067		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2068		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2069}
2070EXPORT_SYMBOL(ath9k_hw_cfg_output);
2071
2072void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2073{
2074	if (AR_DEVID_7010(ah)) {
2075		val = val ? 0 : 1;
2076		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2077			AR_GPIO_BIT(gpio));
2078		return;
2079	}
2080
2081	if (AR_SREV_9271(ah))
2082		val = ~val;
2083
2084	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2085		AR_GPIO_BIT(gpio));
2086}
2087EXPORT_SYMBOL(ath9k_hw_set_gpio);
2088
2089u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2090{
2091	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2092}
2093EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2094
2095void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2096{
2097	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2098}
2099EXPORT_SYMBOL(ath9k_hw_setantenna);
2100
2101/*********************/
2102/* General Operation */
2103/*********************/
2104
2105u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2106{
2107	u32 bits = REG_READ(ah, AR_RX_FILTER);
2108	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2109
2110	if (phybits & AR_PHY_ERR_RADAR)
2111		bits |= ATH9K_RX_FILTER_PHYRADAR;
2112	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2113		bits |= ATH9K_RX_FILTER_PHYERR;
2114
2115	return bits;
2116}
2117EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2118
2119void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2120{
2121	u32 phybits;
2122
2123	ENABLE_REGWRITE_BUFFER(ah);
2124
2125	REG_WRITE(ah, AR_RX_FILTER, bits);
2126
2127	phybits = 0;
2128	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2129		phybits |= AR_PHY_ERR_RADAR;
2130	if (bits & ATH9K_RX_FILTER_PHYERR)
2131		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2132	REG_WRITE(ah, AR_PHY_ERR, phybits);
2133
2134	if (phybits)
2135		REG_WRITE(ah, AR_RXCFG,
2136			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2137	else
2138		REG_WRITE(ah, AR_RXCFG,
2139			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2140
2141	REGWRITE_BUFFER_FLUSH(ah);
2142}
2143EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2144
2145bool ath9k_hw_phy_disable(struct ath_hw *ah)
2146{
2147	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2148		return false;
2149
2150	ath9k_hw_init_pll(ah, NULL);
2151	return true;
2152}
2153EXPORT_SYMBOL(ath9k_hw_phy_disable);
2154
2155bool ath9k_hw_disable(struct ath_hw *ah)
2156{
2157	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2158		return false;
2159
2160	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2161		return false;
2162
2163	ath9k_hw_init_pll(ah, NULL);
2164	return true;
2165}
2166EXPORT_SYMBOL(ath9k_hw_disable);
2167
2168void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2169{
2170	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2171	struct ath9k_channel *chan = ah->curchan;
2172	struct ieee80211_channel *channel = chan->chan;
2173
2174	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2175
2176	ah->eep_ops->set_txpower(ah, chan,
2177				 ath9k_regd_get_ctl(regulatory, chan),
2178				 channel->max_antenna_gain * 2,
2179				 channel->max_power * 2,
2180				 min((u32) MAX_RATE_POWER,
2181				 (u32) regulatory->power_limit));
2182}
2183EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2184
2185void ath9k_hw_setopmode(struct ath_hw *ah)
2186{
2187	ath9k_hw_set_operating_mode(ah, ah->opmode);
2188}
2189EXPORT_SYMBOL(ath9k_hw_setopmode);
2190
2191void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2192{
2193	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2194	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2195}
2196EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2197
2198void ath9k_hw_write_associd(struct ath_hw *ah)
2199{
2200	struct ath_common *common = ath9k_hw_common(ah);
2201
2202	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2203	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2204		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2205}
2206EXPORT_SYMBOL(ath9k_hw_write_associd);
2207
2208#define ATH9K_MAX_TSF_READ 10
2209
2210u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2211{
2212	u32 tsf_lower, tsf_upper1, tsf_upper2;
2213	int i;
2214
2215	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2216	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2217		tsf_lower = REG_READ(ah, AR_TSF_L32);
2218		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2219		if (tsf_upper2 == tsf_upper1)
2220			break;
2221		tsf_upper1 = tsf_upper2;
2222	}
2223
2224	WARN_ON( i == ATH9K_MAX_TSF_READ );
2225
2226	return (((u64)tsf_upper1 << 32) | tsf_lower);
2227}
2228EXPORT_SYMBOL(ath9k_hw_gettsf64);
2229
2230void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2231{
2232	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2233	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2234}
2235EXPORT_SYMBOL(ath9k_hw_settsf64);
2236
2237void ath9k_hw_reset_tsf(struct ath_hw *ah)
2238{
2239	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2240			   AH_TSF_WRITE_TIMEOUT))
2241		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2242			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2243
2244	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2245}
2246EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2247
2248void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2249{
2250	if (setting)
2251		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2252	else
2253		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2254}
2255EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2256
2257void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2258{
2259	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2260	u32 macmode;
2261
2262	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2263		macmode = AR_2040_JOINED_RX_CLEAR;
2264	else
2265		macmode = 0;
2266
2267	REG_WRITE(ah, AR_2040_MODE, macmode);
2268}
2269
2270/* HW Generic timers configuration */
2271
2272static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2273{
2274	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2275	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2276	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2277	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2278	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2279	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2280	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2281	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2282	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2283	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2284				AR_NDP2_TIMER_MODE, 0x0002},
2285	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2286				AR_NDP2_TIMER_MODE, 0x0004},
2287	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2288				AR_NDP2_TIMER_MODE, 0x0008},
2289	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2290				AR_NDP2_TIMER_MODE, 0x0010},
2291	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2292				AR_NDP2_TIMER_MODE, 0x0020},
2293	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2294				AR_NDP2_TIMER_MODE, 0x0040},
2295	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2296				AR_NDP2_TIMER_MODE, 0x0080}
2297};
2298
2299/* HW generic timer primitives */
2300
2301/* compute and clear index of rightmost 1 */
2302static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2303{
2304	u32 b;
2305
2306	b = *mask;
2307	b &= (0-b);
2308	*mask &= ~b;
2309	b *= debruijn32;
2310	b >>= 27;
2311
2312	return timer_table->gen_timer_index[b];
2313}
2314
2315u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2316{
2317	return REG_READ(ah, AR_TSF_L32);
2318}
2319EXPORT_SYMBOL(ath9k_hw_gettsf32);
2320
2321struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2322					  void (*trigger)(void *),
2323					  void (*overflow)(void *),
2324					  void *arg,
2325					  u8 timer_index)
2326{
2327	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2328	struct ath_gen_timer *timer;
2329
2330	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2331
2332	if (timer == NULL) {
2333		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2334			  "Failed to allocate memory"
2335			  "for hw timer[%d]\n", timer_index);
2336		return NULL;
2337	}
2338
2339	/* allocate a hardware generic timer slot */
2340	timer_table->timers[timer_index] = timer;
2341	timer->index = timer_index;
2342	timer->trigger = trigger;
2343	timer->overflow = overflow;
2344	timer->arg = arg;
2345
2346	return timer;
2347}
2348EXPORT_SYMBOL(ath_gen_timer_alloc);
2349
2350void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2351			      struct ath_gen_timer *timer,
2352			      u32 timer_next,
2353			      u32 timer_period)
2354{
2355	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2356	u32 tsf;
2357
2358	BUG_ON(!timer_period);
2359
2360	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2361
2362	tsf = ath9k_hw_gettsf32(ah);
2363
2364	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2365		  "curent tsf %x period %x"
2366		  "timer_next %x\n", tsf, timer_period, timer_next);
2367
2368	/*
2369	 * Pull timer_next forward if the current TSF already passed it
2370	 * because of software latency
2371	 */
2372	if (timer_next < tsf)
2373		timer_next = tsf + timer_period;
2374
2375	/*
2376	 * Program generic timer registers
2377	 */
2378	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2379		 timer_next);
2380	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2381		  timer_period);
2382	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2383		    gen_tmr_configuration[timer->index].mode_mask);
2384
2385	/* Enable both trigger and thresh interrupt masks */
2386	REG_SET_BIT(ah, AR_IMR_S5,
2387		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2388		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2389}
2390EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2391
2392void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2393{
2394	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2395
2396	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2397		(timer->index >= ATH_MAX_GEN_TIMER)) {
2398		return;
2399	}
2400
2401	/* Clear generic timer enable bits. */
2402	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2403			gen_tmr_configuration[timer->index].mode_mask);
2404
2405	/* Disable both trigger and thresh interrupt masks */
2406	REG_CLR_BIT(ah, AR_IMR_S5,
2407		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2408		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2409
2410	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2411}
2412EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2413
2414void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2415{
2416	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2417
2418	/* free the hardware generic timer slot */
2419	timer_table->timers[timer->index] = NULL;
2420	kfree(timer);
2421}
2422EXPORT_SYMBOL(ath_gen_timer_free);
2423
2424/*
2425 * Generic Timer Interrupts handling
2426 */
2427void ath_gen_timer_isr(struct ath_hw *ah)
2428{
2429	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2430	struct ath_gen_timer *timer;
2431	struct ath_common *common = ath9k_hw_common(ah);
2432	u32 trigger_mask, thresh_mask, index;
2433
2434	/* get hardware generic timer interrupt status */
2435	trigger_mask = ah->intr_gen_timer_trigger;
2436	thresh_mask = ah->intr_gen_timer_thresh;
2437	trigger_mask &= timer_table->timer_mask.val;
2438	thresh_mask &= timer_table->timer_mask.val;
2439
2440	trigger_mask &= ~thresh_mask;
2441
2442	while (thresh_mask) {
2443		index = rightmost_index(timer_table, &thresh_mask);
2444		timer = timer_table->timers[index];
2445		BUG_ON(!timer);
2446		ath_print(common, ATH_DBG_HWTIMER,
2447			  "TSF overflow for Gen timer %d\n", index);
2448		timer->overflow(timer->arg);
2449	}
2450
2451	while (trigger_mask) {
2452		index = rightmost_index(timer_table, &trigger_mask);
2453		timer = timer_table->timers[index];
2454		BUG_ON(!timer);
2455		ath_print(common, ATH_DBG_HWTIMER,
2456			  "Gen timer[%d] trigger\n", index);
2457		timer->trigger(timer->arg);
2458	}
2459}
2460EXPORT_SYMBOL(ath_gen_timer_isr);
2461
2462/********/
2463/* HTC  */
2464/********/
2465
2466void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2467{
2468	ah->htc_reset_init = true;
2469}
2470EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2471
2472static struct {
2473	u32 version;
2474	const char * name;
2475} ath_mac_bb_names[] = {
2476	/* Devices with external radios */
2477	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2478	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2479	{ AR_SREV_VERSION_9100,		"9100" },
2480	{ AR_SREV_VERSION_9160,		"9160" },
2481	/* Single-chip solutions */
2482	{ AR_SREV_VERSION_9280,		"9280" },
2483	{ AR_SREV_VERSION_9285,		"9285" },
2484	{ AR_SREV_VERSION_9287,         "9287" },
2485	{ AR_SREV_VERSION_9271,         "9271" },
2486	{ AR_SREV_VERSION_9300,         "9300" },
2487};
2488
2489/* For devices with external radios */
2490static struct {
2491	u16 version;
2492	const char * name;
2493} ath_rf_names[] = {
2494	{ 0,				"5133" },
2495	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2496	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2497	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2498	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2499};
2500
2501/*
2502 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2503 */
2504static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2505{
2506	int i;
2507
2508	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2509		if (ath_mac_bb_names[i].version == mac_bb_version) {
2510			return ath_mac_bb_names[i].name;
2511		}
2512	}
2513
2514	return "????";
2515}
2516
2517/*
2518 * Return the RF name. "????" is returned if the RF is unknown.
2519 * Used for devices with external radios.
2520 */
2521static const char *ath9k_hw_rf_name(u16 rf_version)
2522{
2523	int i;
2524
2525	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2526		if (ath_rf_names[i].version == rf_version) {
2527			return ath_rf_names[i].name;
2528		}
2529	}
2530
2531	return "????";
2532}
2533
2534void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2535{
2536	int used;
2537
2538	/* chipsets >= AR9280 are single-chip */
2539	if (AR_SREV_9280_20_OR_LATER(ah)) {
2540		used = snprintf(hw_name, len,
2541			       "Atheros AR%s Rev:%x",
2542			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2543			       ah->hw_version.macRev);
2544	}
2545	else {
2546		used = snprintf(hw_name, len,
2547			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2548			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2549			       ah->hw_version.macRev,
2550			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2551						AR_RADIO_SREV_MAJOR)),
2552			       ah->hw_version.phyRev);
2553	}
2554
2555	hw_name[used] = '\0';
2556}
2557EXPORT_SYMBOL(ath9k_hw_name);
2558